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Word Learning Emerges From the Interaction of Online Referent Selection
and Slow Associative Learning

Bob McMurray
University of Iowa

Jessica S. Horst
University of Sussex

Larissa K. Samuelson
University of Iowa

Classic approaches to word learning emphasize referential ambiguity: In naming situations, a novel word

could refer to many possible objects, properties, actions, and so forth. To solve this, researchers have

posited constraints, and inference strategies, but assume that determining the referent of a novel word is

isomorphic to learning. We present an alternative in which referent selection is an online process and

independent of long-term learning. We illustrate this theoretical approach with a dynamic associative

model in which referent selection emerges from real-time competition between referents and learning is

associative (Hebbian). This model accounts for a range of findings including the differences in expressive

and receptive vocabulary, cross-situational learning under high degrees of ambiguity, accelerating

(vocabulary explosion) and decelerating (power law) learning, fast mapping by mutual exclusivity (and

differences in bilinguals), improvements in familiar word recognition with development, and correlations

between speed of processing and learning. Together it suggests that (a) association learning buttressed by

dynamic competition can account for much of the literature; (b) familiar word recognition is subserved

by the same processes that identify the referents of novel words (fast mapping); (c) online competition

may allow the children to leverage information available in the task to augment performance despite slow

learning; (d) in complex systems, associative learning is highly multifaceted; and (e) learning and referent

selection, though logically distinct, can be subtly related. It suggests more sophisticated ways of

describing the interaction between situation- and developmental-time processes and points to the need for

considering such interactions as a primary determinant of development.

Keywords: word learning, fast mapping, referential ambiguity, cross-situational learning, associative

learning
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The word is fundamental to language. Words serve an organiz-

ing role in syntactic parsing (MacDonald, Pearlmutter, & Seiden-

berg, 1994; Tanenhaus & Trueswell, 1995), speech perception

(Goldinger, 1998; McClelland, Mirman, & Holt, 2006), and se-

mantic organization (Elman, 2009; Lupyan, Rakison, & McClel-

land, 2007; Mayor & Plunkett, 2010; Samuelson & Smith, 2000;

Waxman, 2003). Lexical items live at a critical juncture in lan-

guage processing, linking sound, articulation, syntax, and mean-

ing, and as a result, the acquisition of words has attracted enor-

mous attention (P. Bloom, 2000; Carey, 1978; Fenson et al., 1994;

Golinkoff et al., 2000; Mayor & Plunkett, 2010; Xu & Tenenbaum,

2007).

Whether such research examines the growth of the lexicon as a

whole (e.g., Fenson et al., 1994; Ganger & Brent, 2004) or con-

ducts microinvestigations of single word learning (e.g., Carey &

Bartlett, 1978; Horst & Samuelson, 2008), the fundamental ques-

tions concern word knowledge: (a) whether children know a word,

(b) how they come to know it, and (c) how many words they know.

The typical article addressing this starts with the scale: Children

acquire about 60,000 words in about 18 years. It then describes

why this is so hard. Famously articulated by Quine (1960), in any

naming situation there are infinite interpretations for an unknown

word. Thus, children face a daunting task of ambiguity resolution

that they must solve thousands of times.

Such an article then proposes an explanation for how children

solve this problem, but often skips a primary question: What does

it mean to know or learn a word? A canonical finding is that

toddlers comprehend more words than they produce: Seventy-five
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percent of 12-month-olds understand all gone, but it takes 8 more

months before that many say it. When do we consider all gone

known? Children can often identify the referents of novel words on

their first exposure (Mervis & Bertrand, 1994), yet their ability to

recognize familiar words develops over some time (Fernald, Pinto,

Swingley, Weinberg, & McRoberts, 1998). Again, when do we

consider a word known?

Perhaps it is not possible to quantify when, or if, a word is

known. If so, the problem of lexical acquisition may be better

framed in terms of how children learn to use words. After all, we

can measure word use directly. Commonly, this idea calls to mind

the process of producing words, but we mean something broader.

To the extent that a word links sound and meaning, any time that

link is used to guide behavior, a word is being used. Thus, word

use also includes processes such as comprehending known words,

and even determining referents for new words.

If we ignore the uncertainty of knowledge and focus on only

children’s word use, children must still solve a set of difficult

problems. Yet, the concept of using a word does not appear in

classic descriptions of word learning. Rather, the focus is on the

information needed for learning, the amount that must be gathered,

and the difficulties in gathering it. This has led to theoretical views

that emphasize knowledge-based processes in accounting for

learning but inadvertently deemphasize use (Golinkoff & Hirsh-

Pasek, 2006; Golinkoff, Mervis, & Hirsh-Pasek, 1994; Mayor &

Plunkett, 2010; Woodward & Markman, 1998; Xu & Tenenbaum,

2007). Our purpose here is to advance an account of the develop-

ment of word use, both novel and familiar, over multiple time-

scales. We demonstrate its power with a computational model.

In developing our account, we start by discussing the standard

view of word learning and the theoretical tensions surrounding it.

We then distill word learning to the minimal computational prob-

lem to frame our account. Finally, we present an account based on

associative learning and dynamic competition and demonstrate its

power to illuminate lexical behavior. These simple mechanisms

operate on different timescales: Dynamic competition describes

the situation-time process of selecting a referent of a word,

whereas associative learning describes the developmental-time

process of slowly forming mappings between words and concepts.

Critically, the interactions of these timescales can yield emergent

power to describe lexical behaviors that does not derive from

either one alone.

The Standard View: Acquiring Lexical Knowledge

Early approaches to word learning used measurement studies to

examine the number of words known over development (e.g., L.

Bloom, 1973; Dore, Franklin, Miller, & Ramer, 1976; Fenson et

al., 1994; Reznick & Goldfield, 1992). A key finding was that

word learning appears to accelerate. The source of this is debated

(P. Bloom, 2000; Ganger & Brent, 2004; McMurray, 2007; Nazzi

& Bertoncini, 2003), but clearly children are efficient learners and

may become more efficient over development. This contrasts with

the apparent difficulty of word learning. A major obstacle to

acquiring words is referential ambiguity (Quine, 1960): In any

naming event, a novel word can refer to any object present, its

properties, the speaker’s feelings or intentions for it, an impending

action, or something else altogether. Even considering only the

smaller problem of which object or category of objects is being

referred to, this is still challenging.

The constraint approach offers a metatheory for solving refer-

ential ambiguity: Children have (perhaps innate) constraints, prin-

ciples, or biases that help them infer a word’s meaning by provid-

ing information not available in the situation (Golinkoff et al.,

1994; Woodward & Markman, 1998). The most elementary con-

straints simply restrict the possible interpretations of a novel word

(Markman, 1990), positing that new words refer to whole objects

(not parts) or to basic-level categories (rather than super- or

subordinate categories). More complex constraints such as social

cues may go further, pinpointing the correct referent (Baldwin,

1991; Baldwin, Markman, Bill, Desjardins, & Irwin, 1996; Toma-

sello, Strosberg, & Akhtar, 1996).

Particularly relevant to the present study is the mutual exclu-

sivity constraint (Markman & Wachtel, 1988) and the similar

novel name–nameless category principle (N3C; Mervis & Ber-

trand, 1994), which describe how children infer the referent of a

word on the basis of which other objects they have names for. For

example, when presented with a familiar spoon and a novel whisk,

children infer that whisk refers to the latter, if they know the word

spoon. The form of this inference has been debated (Grassmann &

Tomasello, 2010; Halberda, 2006; Jaswal & Hansen, 2006; Mark-

man & Wachtel, 1988; Mervis & Bertrand, 1994), yet it is clear

that children can make inferences that integrate available context

with the contents of their lexica.

In the constraint approach, such inferences become the primary

route to learning, and some have argued that it is the onset of these

constraints or the related social–pragmatic skills that create the

sudden acceleration in word learning (Golinkoff & Hirsh-Pasek,

2006; Golinkoff et al., 1994; Markman, 1990; Nazzi & Bertoncini,

2003). However, the constraint approach has been challenged on a

number of theoretical and empirical grounds.

Theoretical Challenges to Constraints

A classic concern with the constraint approach is its ability to

scale up. Once children master basic-level terms, how is the

taxonomic constraint relaxed to learn superordinates? When can

children violate the whole-object constraint to learn properties?

And how do children ignore mutual exclusivity to learn synonyms

or superordinates? Similarly, the constraint approach does not

provide a clear framework for how constraints interact or how

conflicts are resolved.

This has led some to cast word learning in terms of general

inference processes used for reasoning or social–pragmatic behav-

ior. Mutual exclusivity, for example, applies to concepts (Behrend,

Scofield, & Kleinknecht, 2001; P. Bloom & Markson, 1998;

Markson & Bloom, 1997; Waxman & Booth, 2000) and can be

described by principles such as deductive syllogism (Halberda,

2006). These more general-purpose problem-solving skills may

avoid issues related to the relaxation of hard constraints. A pow-

erful formulation of this is to frame the problem in terms of

probabilistic (Bayesian) inference (Frank, Goodman, & Tenen-

baum, 2009; Xu & Tenenbaum, 2007). In this view, constraints are

prior probabilities that interact with context and existing knowl-

edge using the laws of probability to determine the optimal solu-

tion. This can handle interacting constraints and allows constraints

to be violated when the data permit. Others have cast the problem
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in terms of social inference (Akhtar & Martinez-Sussman, 2007;

Moore, 2006; Tomasello, 2001). This transforms the problem from

determining what a word means to determining what a speaker is

referring to. Mutual exclusivity, then, becomes a social inference

process in which speakers are expected to follow social conven-

tions and use familiar words (e.g., Diesendruck & Markson, 2001).

Social and Bayesian accounts are not mutually exclusive. Both

approaches are cast fundamentally in terms of acquiring knowl-

edge about words, but say little about how words are used once (or

while) this knowledge is acquired (but see Frank et al., 2009) or

how these inferences and knowledge relate to long-term learning.

Empirical Challenges to Constraints

The foundations of the constraint approach have been shaken by

research on four topics: the vocabulary spurt, fast mapping, cross-

situational learning, and familiar word recognition.

Vocabulary Spurt

The sudden acceleration vocabulary growth has been seen as

indirect evidence for constraints by implying their sudden avail-

ability or a change in children’s approach to word learning. How-

ever, Ganger and Brent (2004) argued that if the vocabulary spurt

was a singular change, then the velocity profiles of individual

children should show a sudden shift in velocity. Yet, for 33 of 38

children, a smoothly accelerating function fit better.

Alternatively, it is possible that principles such as mutual ex-

clusivity are available all the time (Akhtar & Martinez-Sussman,

2007; Markman, Wasow, & Hanson, 2003; Tomasello, 2001), but

children simply do not have enough words (or other knowledge) to

use them. As the first few words are acquired, these exert greater

leverage, allowing the rate of acquisition to increase (cf. Elman et

al., 1996; van Geert, 1991). Recently, however, McMurray (2007;

Mitchell & McMurray, 2009) demonstrated that acceleration is

possible without such mechanisms. As long as learning proceeds in

parallel and the distribution of easy and hard words includes few

easy words, acceleration is guaranteed. Thus, although a change in

underlying learning mechanism or constraints could account for

acceleration, acceleration is not evidence for it.

Fast Mapping

In her original discussion, Carey (1978) contrasted children’s

quick mapping of a novel word to a novel referent (which was

illustrated with the first demonstrations of mutual exclusivity),

with a slower phase of learning the word’s full meaning. It is not

clear whether this “fast mapping” refers to partial, early stages of

learning or purely in-the-moment referent selection (though the

word mapping implies learning). Nevertheless, if word learning is

due to fast mapping, then the act of selecting the referent should

result in something being retained.

The most compelling test of this would be to ask first if the child

selects the correct referent, and then examine retention when the

child is retested in a neutral context. Prior studies failed to do this

(see Horst & Samuelson, 2008): Some studies retest with a sub-

sequent trial of the same sort, allowing children to simply solve the

problem again (e.g., Mervis & Bertrand, 1994; Wilkinson &

Mazzitelli, 2003), and others provide a short review of the name–

object linkages before testing retention (e.g., Goodman,

McDonough, & Brown, 1998).

To address this, Horst and Samuelson (2008) presented children

two known and one novel object and asked for the referent of a

novel name. Children successfully selected the referent via mutual

exclusivity. Five minutes later, however, they were unable to map

that same to its referent when it was presented with other novel

items they had just seen. This suggests that the linkage was not

retained. Thus, the use of mutual exclusivity does not necessarily

result in long-term learning. It is uncertain whether this generalizes

to other task variants or other ages (e.g., Kucker & Samuelson,

2012; Spiegel & Halberda, 2011) or to other constraints. Never-

theless, it suggests that mutual exclusivity may simply bias the

child toward the referent in the moment, and is not synonymous

with learning. This questions a fundamental assumption of the

constraint approach, that resolving referential ambiguity (via con-

straints) is the same as learning.

Cross-Situational Learning

If solving the problem of referential ambiguity is not the same

as learning words, how do children do it? One possibility is

statistical learning. In any novel naming situation the intended

referent may be ambiguous. However, across situations there may

be only one object consistently paired with a word. For example,

while the word dog may occur with a dog, a ball, and a leash in one

situation, later on it may be heard without ball or leash and with

other objects. Over time the referent, dog, is likely to be the most

frequently co-occurring object. Thus, at any given time, the child

may not need to determine the referent—the child only needs to

accumulate co-occurrence statistics to learn the mappings (Horst,

McMurray, & Samuelson, 2006; McMurray, Horst, Toscano, &

Samuelson, 2009; Siskind, 1996; Smith & Yu, 2008; Yu & Smith,

2007). If true, associative mechanisms (MacWhinney, 1987; Mer-

riman, 1999; Regier, 2005) may suffice for word learning.

This idea had been examined computationally (Horst et al.,

2006; McMurray, Horst, et al., 2009; Siskind, 1996), but Yu and

Smith offered the first empirical tests. Adults (Yu & Smith, 2007)

and infants (Smith & Yu, 2008) were exposed to small artificial

lexica that contained such regularities across trials. Both groups

successfully learned the word–object linkages from this alone. It is

still not known whether such learning can handle categories of

objects, and this may change the computational problem. How-

ever, this provides an important proof of concept, that statistical or

associative learning may proceed without solving referential am-

biguity and without constraints (though they may facilitate learn-

ing or in the moment language use).

Familiar Word Recognition

Finally, by focusing on information used to solve referential

ambiguity, the constraint approach has little to say once the child

has acquired word–object mappings (familiar words). However,

familiar word recognition also changes over development, and it is

not clear that this is related to constraints. Fernald et al. (1998)

measured the amount of time it took infants to fixate the correct

object (in a two-alternative forced-choice looking task) as a mea-

sure of the recognition of the word’s meaning. This decreased

dramatically over development, suggesting a tuning process for
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known or recently learned words (Fernald, Perfors, & Marchman,

2006; Fernald et al., 1998). This decrease cannot be accounted for

by attentional or oculomotor processes, as infants show no changes

in purely visual tasks during this time, and performance in the

visual task is not related to their speed of word recognition (Fer-

nald et al., 2006). More importantly, this improvement cannot be

characterized as simply refining an existing skill; rather, speed of

processing predicts the rate of long-term learning (Fernald et al.,

2006) and later linguistic and cognitive outcomes (Marchman &

Fernald, 2008), suggesting it is a more fundamental property of

word learning and use.

The constraint approach has no way to describe these changes,

as it lacks a theory of how words are used. Since such changes are

not likely driven by referential ambiguity, under the constraint

view they require a separate developmental mechanism. To be

clear, few existing accounts make a strong distinction between

learning novel and familiar words. Studies such as Merriman,

Lipko, and Evey’s (2008) have examined how children decide that

a word is novel or familiar (implying that such decisions may help

engage the right learning or processing strategies). However, this

is not an essential component of any major theoretical accounts.

Yet at the same time, no major theories address the improvement

in familiar word recognition, nor do they seem to have the theo-

retical tools do so. Fernald and colleagues’ work suggests an

important developmental phenomenon that demands an explana-

tion and should be linked to the word learning literature more

broadly. If an account can handle both novel and familiar word

learning with the same mechanism, this may offer a more parsi-

monious explanation of word learning.

A New Direction

Although none of these findings completely rule out constraints,

they paint a picture in which the solution to referential ambiguity

is subtly independent of long-term learning. These problems are

not limited to the constraint approach—any approach focusing

exclusively on referential ambiguity and the information used to

solve it will struggle to account for these findings. We need an

account that emphasizes how novel and familiar words are used

and builds from there to understand how this ability develops.

Such an account cannot ignore referential ambiguity. However, it

must move beyond it to account for development. Our thesis is that

we may make more headway by considering behavior at two

timescales. Referential ambiguity is a problem that children face in

a given situation and must be solved in real time. This differs

substantially from the problem of learning and retaining word–

object mappings, which may unfold over many situations, and

indeed over development.

Distilling the Word

To develop this account, we first distill word use and word

learning to their minimal computational components. We define

them in terms of association and activation, processes that are

independent of the information that contributes to word recogni-

tion and word learning. This distinction is not theoretically novel;

it builds on constructs from cognitive development that have been

most extensively developed by Munakata, McClelland, and col-

leagues working in the connectionist paradigm and by Thelen,

Smith, Schöner, and colleagues in dynamic systems theory (Mu-

nakata, 1998; Munakata & McClelland, 2003; Munakata, McClel-

land, Johnson, & Siegler, 1997; Smith, Thelen, Titzer, & McLin,

1999; Thelen, Schöner, Scheier, & Smith, 2001; see also Elman,

1990; Harm & Seidenberg, 1999; McMurray, Horst, et al., 2009;

Spencer, Perone, & Johnson, 2009). Our goal here is to translate

these concepts to word learning and to use them to develop an

account that stands independent of a strongly theoretically con-

nectionist stance, as our ideas are conceptually compatible with

other approaches that are distinct from connectionism. This ac-

count necessarily oversimplifies many things. We discuss this

later. However, it allows us to be precise about mechanisms to

frame them computationally.

Word use and learning fundamentally concern the relationship

between a phonological pattern and a semantic category. For

present purposes, we ignore the complexities of mapping sounds to

word forms and assume that the auditory system can identify

discrete word forms. This is not trivial, but by the middle of the

2nd year, many of the basic properties of auditory word-form

recognition are in place (Fernald, Swingley, & Pinto, 2001; Swin-

gley, 2009; Swingley & Aslin, 2002). Similarly, we assume that

infants can analyze a visual scene and categorize referents. This

too is not trivial, but again, by the middle of the 2nd year, children

appear adept at it (Bauer, Dow, & Hertsgaard, 1995; Behl-Chadha,

1996; Mareschal & Tan, 2007). To be clear, word learning in-

volves mapping words to categories, not merely to individual

objects (and there are excellent models that capture aspects of this:

Mayor & Plunkett, 2010; Samuelson, 2002). Our goal here is to

strip out these important processes to investigate the power of the

associations themselves and the real-time processes that operate

over them to form the basis of interesting word learning behavior.

Thus, we will assume some categorization ability and focus on the

mapping between word forms and categories, and for simplicity’s

sake we will often refer to objects and/or referents when what is

meant is a category of objects or referents.

Figure 1 shows our distillation. Circles represent representa-

tions, and their shading indicates how strongly each is considered.

Figure 1A shows the process of identifying the referent of a word

in situation time, in a situation with two visual competitors. Ini-

tially, the system starts with every word form under partial con-

sideration or activation (Figure 1A, left side), as nothing has been

heard yet. Two objects (dog and tree) are active, reflecting the

visual scene. As the word is heard, the system moves toward

considering one word and object (bottom). This shift in activation

represents the process of deciding what was heard and what should

be attended, as in many interactive activation models (McClelland

& Elman, 1986; Spivey, 2007).

Thus, resolving referential ambiguity is a matter of moving from

consideration of multiple objects to one. This demands a solution

in terms of activation or attention to referents, not learning. Such

changes in real-time consideration of the referents could derive

from external forces that decrease consideration or activation for

incorrect objects or increase consideration of the correct one. In

this example, if dog is unknown, eye gaze could add consideration

for dog; mutual exclusivity could reduce consideration of bug (if it

is known); or a context demanding animacy could rule out the tree

(see Figure 1B). Such external forces may also include attention

processes that facilitate (Fulkerson & Waxman, 2007; Samuelson
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& Smith, 1998) and/or interfere with word and category learning

(e.g., Robinson & Sloutsky, 2004, 2007).

Crucially, none of this has to involve a mapping, nor does it

entail learning. As long as the activation of the objects reaches the

correct state, there is no need to retain anything—the child has

arrived at the right inference. So how does learning occur? Taking

typical connectionist assumptions, initially, the system starts with

word forms and objects randomly connected—many possible map-

pings are under partial consideration or activation (see Figure 1D,

left side), as nothing has been heard or seen yet. Over time, some

of these connections will be pruned, and others will be strength-

ened. For example, the simultaneous consideration of a word (e.g.,

dog) and an object (a dog) could lead to links being strengthened

if learning is associative, and the link between dog and tree (which

is not present) being weakened (Figure 1D). Over time, such

changes could build a system of links that encompasses many

tree

dog

bug

tree

dog

bug

A

tree

dog

bug

Mutual 

exclusivity

SemanticsB

tree

dog

bug

tree

dog

bug

C

D

tree

dog

bug

tree

dog

bug

tree

dog

bug

Figure 1. A schematic of word learning. On the left side of each panel are units showing how strongly a

particular auditory word form is under consideration; on the right are units showing the strength of a visual object

under consideration. (A) Solving the problems of word recognition and referential ambiguity requires a transition

from a state in which multiple word forms and object categories are considered to a state in which only one is. (B)

Constraints such as pragmatics and mutual exclusivity can act by simply changing the degree of consideration without

affecting long-term linkages. (C) Familiar word recognition takes advantage of learned associations to activate object

representations from spoken words. (D) Learning is instantiated as long-term linkages between words and objects that

are strengthened when both word forms and objects are considered simultaneously.
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words and objects. This changing and building of linkages is the

result of learning, not external forces such as attention, or prag-

matics that guide activation to solve the referential ambiguity

problem in the moment. If such links become strong enough, such

pathways will be employed when the word is heard again, allowing

the word form, dog, to activate the appropriate concept without

external support (see Figure 1C).

This suggests two distinct processes: (a) the use or recognition

of a familiar or novel word (changing activation states) and (b) the

changing of the links between the word form and visual referent

(learning or the changes of connection weights). These processes

can be described on different timescales. The problem of deter-

mining the referent of a novel word is a problem of usage. It must

be solved very rapidly in situation time, that is, within the context

of a single naming event, and it could take advantage of learned

mappings or external support. In contrast, the problem of learning

is solved over developmental time: It is a problem of acquiring

lasting linkages between sound patterns and meanings that may

take weeks or years. For familiar words, deploying these mappings

to understand or produce a word is a situation-time phenomenon,

but enhancing the efficiency of this occurs over developmental

time. These problems rely on different theoretical mechanisms:

Situation-time processes involve changes in activation, or the

strength of consideration of particular words and objects, whereas

developmental-time learning processes involve changes in knowl-

edge, that is, associations between words and objects (Harm &

Seidenberg, 1999; McMurray, Horst, et al., 2009; Munakata &

McClelland, 2003; Munakata et al., 1997; Smith et al., 1999;

Spencer et al., 2009; Thelen et al., 2001).

Although both problems are fundamentally about matching

words and referents, the demands of these tasks are clearly differ-

ent. The problem of finding a referent in the moment does not

necessitate learning. Simply arriving at a state in which one word

and one object are under consideration is sufficient, and does not

require changing of the strength of the linkage. That is not to say

that children can turn off learning, or that learning may not occur

in some circumstances. Indeed, it is more parsimonious if learning

is “always on.” Rather, we are arguing these are not problems that

are solved by learning processes, and it may not matter how much

or little is learned in a situation for a child to find a referent. If

word–object linkages are ever created in situation time, these

linkages do not need to be complete. Thus, children could make

use of contextual cues to solve referential ambiguity for their

immediate communicative needs, but not necessarily commit to a

given mapping from one event.

Conversely, learning does not require the child to solve refer-

ential ambiguity. If multiple objects are under consideration, mul-

tiple linkages can be laid down. If this is done in small increments

over multiple naming events, the more consistent ones could rise

to the top, as in cross-situational learning (Smith & Yu, 2008; Yu

& Smith, 2007). Such a process would need to be slow. If all

available referents are strongly associated with a word in a single

event, many erroneous linkages will be considered. If learning is

too fast, these linkages could become solidified, permanent—and

wrong. This fits with the fact that the average child hears 17,000

words a day (Hart & Risley, 1995), and even at their peak rate of

learning, children may acquire only a handful of words in that

same period (Sénéchal & Cornell, 1993). Thus, children must learn

words slowly.

This framing yields enormous flexibility, as situation-time pro-

cesses can be optimized for the demands of speaking, compre-

hending, and inferring, whereas developmental-time processes can

be optimized to the demands of learning. Indeed, by moving much

of the sophisticated inference of novel word meanings (classically

described as constraints) to situation time, it may allow simpler

mechanisms of learning to have complex effects, as learning is not

entirely independent of such situation-time processes. For exam-

ple, if the system attends to a referent longer in some circum-

stances than in others, more learning may result; or if competition

between referents resolves faster (in situation time), the system

may be able to acquire more unambiguous associations. Similarly,

changes in situation-time familiar word recognition could be pro-

duced by simply improving the strength of the links between

referents and their auditory word forms or by eliminating unnec-

essary connections.

This approach also addresses the relationship between familiar

and novel words. To the extent that any partially formed mappings

are available for a novel word, the system may use those partial

mappings to increase consideration to the correct object and de-

crease consideration to erroneous objects—a form of mutual ex-

clusivity. Thus, novel word recognition may take advantage of

familiar word processes. Similarly, familiar word recognition may

be enhanced by the fact that well-learned words would have

stronger associations than newly learned ones—a type of fre-

quency effect. Indeed, the process of tuning these connections to

augment familiar words can derive from the same learning mech-

anisms that establish them. If both novel and familiar words

harness the same processes, there is no reason to ignore external

support (e.g., pragmatics, semantics) in even familiar word recog-

nition—something of recent interest in adult sentence comprehen-

sion (e.g., Chambers, Tanenhaus, & Magnuson, 2004; Hanna &

Tanenhaus, 2004; Tanenhaus & Brown-Schmidt, 2008).

Bringing together novel and familiar word learning can unify

the literature. It also reframes how we think about classic findings

by treating processes that have been described as constraints as

descriptors of referent selection, not learning. Finally, it eliminates

the classic distinction of fast and slow mapping. Carey (1978)

described fast mapping as a special stage of initial learning where

links between words and meaning were first forged. In our view,

it may reflect purely situation-time referent selection. Indeed, as

words are acquired, there are complex changes as connections are

built and pruned, but there is no reason to assume the underlying

processes are any different the first time. Thus, as the term fast

mapping conflates learning and situation-time processing, we

avoid it. Instead, we use referent selection to refer to situation-time

behavior in ambiguous naming situations and learning to refer to

developmental-time changes.

Mechanisms of Ambiguity Resolution and Learning

Our dynamic associative account makes two claims. First, novel

word processing (referent selection) is not distinct from familiar

word recognition. Second, and more importantly, word learning is

the interaction of situation-time processes that give rise to referent

selection and familiar word recognition (word use), and

developmental-time processes that give rise to retention and the

improvement of these abilities. Here we propose mechanisms.

Situation-time processes arise out of dynamic competition between
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referents and words, and developmental-time processes arise from

associative learning harnessing cross-situational statistics.

Dynamic Competition

In connectionist models, any time multiple items are considered

in parallel, some form of competition is present. Indeed, several

models of word learning hypothesize probabilistic representations

with this property (MacWhinney, 1987; Merriman, 1999; Regier,

2003, 2005; Xu & Tenenbaum, 2007). These provide a good

starting point; however, they do not describe how these probabil-

ities unfold over situation time. Though this is important for

modeling behavior such as reaction times or eye movements, one

could in principle derive simple linking functions to map these

probabilistic representations to reaction times. However, this may

not be sufficient. Computational models have shown that when

competition unfolds dynamically over time, unexpected effects can

occur—gangs of weakly active representations can suddenly in-

hibit a more active one (Spivey, 2007). Since we want to explore

situations such as mutual exclusivity characterized by such ambi-

guity, and investigate how these unintended consequences can

shape learning, it is crucial to implement competition as a dynamic

process that unfolds over time.

Dynamic competition has been postulated in a number of do-

mains involving constraint satisfaction and ambiguity resolution

including music (Bharucha, 1987), syntactic parsing (MacDonald

et al., 1994; McRae, Spivey-Knowlton, & Tanenhaus, 1998), com-

parison (Goldstone & Medin, 1994), visual scene organization

(Vecera & O’Reilly, 1998), visual categorization (Spivey & Dale,

2004), visual search (Spivey, 2007), speech perception (McClel-

land & Elman, 1986), and language production (Dell, 1986). Many

of these problems are clearly relevant for our domain. These

computational approaches all incorporate simple neural-like units

with graded activation. Activation feeds forward (from perceptual

inputs to higher level representations) and backward (from higher

level representations) while competing within a level over time.

The resulting pattern of activation usually represents the best

solution given the constraints imposed by the input, top-down

expectations, and structure of the network. Typically, after this

process, a single unit is active, and activation for competitors is

suppressed, offering a close fit to our distillation of referent selec-

tion. There are a number of computational formalisms for this

including interactive activation (Dell, 1986; McClelland & Elman,

1986), normalized recurrence (Spivey, 2007), and dynamic field

theory (Schutte, Spencer, & Schöner, 2003; Thelen et al., 2001),

which share these basic properties.

In our model, referent selection is modeled with dynamic com-

petition through normalized recurrence (McRae et al., 1998;

Spivey, 2007). Normalized recurrence has been applied to prob-

lems that are related to referent selection including speech percep-

tion (McMurray & Spivey, 2000), visual categorization (Spivey &

Dale, 2004), and visual search (Spivey, 2007, chapter 8), and has

been used to map lexical activation for known words to objects

(Spivey-Knowlton & Allopenna, 1997; Spivey, 2007, pp. 187–

200), embodying our distillation of word recognition for familiar

words. Most importantly, versions of this architecture combine this

competition with unsupervised learning (McMurray, Horst, et al.,

2009; McMurray & Spivey, 2000).

To model referent selection, words and referents are modeled as

localist units. On any trial, one word and multiple objects are

active. Words and referents pass activation to a lexical layer (what

Spivey, 2007, terms a “decision layer”), and recurrent competition

among all three layers forces the network to suppress activation for

the objects that do not map to the word. We discuss the motivation

for localist representations in the General Discussion. However, at

a purely practical level, virtually all of the above referenced

competition architectures use localist units, and it is difficult to

implement competition in a distributed representation.

Associative Learning

A number of researchers argue that word learning cannot be

associative: The fundamental mechanisms are social (Golinkoff &

Hirsh-Pasek, 2006; Nazzi & Bertoncini, 2003), referential or con-

ceptual (Waxman & Gelman, 2009), or constraint based (Wood-

ward & Markman, 1998). Although such accounts describe im-

portant sources of information and/or important representational

issues, it is not clear what these mean for learning because terms

such as social, referential, and conceptual learning do not have

clear definitions in learning theory.

Some of these nonassociative accounts still argue that early

word learning may be associative (e.g., Golinkoff & Hirsh-Pasek,

2006; Nazzi & Bertoncini, 2003; see also Namy, 2012). This is

almost a necessity—there is little lexical knowledge to facilitate

mutual exclusivity, and social skills such as the use of eye gaze are

still developing (e.g., Moore, 2008). These accounts typically

argue that more complex mechanisms such as constraints or social

pragmatics take over later. Thus, such accounts posit a disconti-

nuity in the learning process, but even with this discontinuity, they

do not offer an explanation for improvements in familiar word

recognition.

Such accounts critique a straw man version of associationism in

which raw perceptual inputs are directly associated without pro-

cessing or intervening representations (cf. McMurray, Zhao,

Kucker, & Samuelson, in press). Indeed, this critique seems to

focus on the information that is associated, not in the mechanisms

by which the linkages are made (cf. Smith, 2000). In contrast,

modern learning theory admits internal representations as a basis

of association and allows attention and other factors to shape the

strength of these associations (Livesey & McLaren, 2011; Shanks,

2007). This is also central to connectionist learning. Our model

does both: associating visual and auditory inputs to a lexical

concept and allowing competition to shape their strength. If asso-

ciative learning uses abstract representations and sophisticated

situation-time processing, there is no reason to abandon it after the

initial words. Indeed, as we described, by allowing social inference

or constraints to shape in-the-moment processes, learning may still

be associative at its base while leveraging these richer sources of

information.

Under our view, learning is the same whether children are in the

so-called association phase or the so-called constraint-based, ref-

erential, or social–pragmatic phase. The distinction highlighted by

these theories is in terms of the information used during learning

and novel word inference, not the learning mechanism. This makes

a simple story. Basic learning mechanisms handle the retention of

information. Initially co-occurrence may be the only source of

information available to them, but later, as the child learns to use
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other information in the environment and make more robust deci-

sions about what the referents of words are, these form more

precise activation patterns in situation time, which enables richer

and faster associative learning—but the associative learning is the

same. In this way, the timescale distinction allows us to distinguish

and relate these processes. Principles and constraints identify the

relevant information in situation time for the purpose of using

words, whereas associative learning processes build the correct

mappings over developmental time. By buttressing associative

learning with dynamic competition to handle the situation-time

ambiguity resolution, we may achieve a significantly more pow-

erful word learner, as in any novel naming instance, the learner

will have more activation for words and/or referents (enabling

stronger associations to be built more quickly) and will have less

activation for competing referents, preventing the formation of

spurious associations. Crucially, this can be accomplished without

having to posit qualitative distinctions between learning mecha-

nisms at different ages.

This framework may also help connect vocabulary learning to

classic findings in learning theory that are directly relevant to

words. These include phenomena such as the power law of learn-

ing (Heathcote, Brown, & Mewhort, 2000; Logan, 1992; Newell &

Rosenbloom, 1981; see also Section 2), the role of similarity

(Palmeri, 1997; Storkel, Armbrüster, & Hogan, 2006; Swingley &

Aslin, 2007; Wifall, McMurray, & Hazeltine, 2012), the role of

statistics (Yu & Smith, 2007), and even old phenomena such cue

neutralization (Apfelbaum & McMurray, 2011; Bourne & Restle,

1959; Bush & Mosteller, 1951; Rost & McMurray, 2010).

Thus, our goal was to investigate the consequences of associa-

tive learning when embedded in this richer framework of multiple

timescales and internal representations. Our model uses perhaps

the simplest form of associative learning, Hebbian learning. Inputs

(words or objects) will be associated with an internal lexical unit

if both are active; otherwise, the association decays. As in the case

of competition, both implementing and understanding such learn-

ing make the most sense with localist units.

Even within this simple approach, there are layers of complex-

ity. First, associations connect word forms and object categories to

lexical concepts, not to each other. These lexical concepts function

something like lemmas—abstract representations that connect

other representations. Their presence means that learning requires

at least two connections (word ¡ lexicon; lexicon ¡ object).

Second, learning must not just build connections, but also avoid or

eliminate unnecessary ones (cf. Regier, 1996). Consider the con-

nections between visual and lexical units (see Figure 2). If the

network heard dog in the presence of a dog and a bug, the most

salient connection is the positive association between the object

category dog and its lexical unit (thick line). However, this system

should also learn that the object category dog is not associated with

the word tree (which was not heard), a negative association

(dashed line). It also needs to reduce the negative association

between the object category, tree, which is not present, and the

word, dog (dotted line). Thus, for successful learning to occur, it

must increase one association and decrease two. In a larger lexi-

con, there will still be one positive connection, but there will now

be hundreds of spurious connections to prune.1

What is the source of these spurious associations? As we de-

scribed, these may exist from the earliest stages of learning. In

connectionist models connection weights start from small random

values—a necessity in unsupervised learning (e.g., Rumelhart &

Zipser, 1986). Some may also be formed during learning when

incorrect objects appear with the referent (e.g., bug). Either way,

these spurious associations will also need to be pruned. This

pruning must occur in a way that preserves plasticity for new

words. If connections to all words and referents were pruned

equally on each naming event, potential positive connections for

novel words and categories that have not been heard or seen would

be pruned as well, making such words difficult to learn. Rather, we

need a form of pruning that preserves potential connections for

novel words and referents, but still allows the system to refine its

connectivity for familiar words and referents. Thus, this pruning

process, which is not often what comes to mind when we think of

learning a word, could be an important determinant of develop-

ment, if only for its massive scale.

Overview of Architecture

At the broadest level, our dynamic associative model captures

short and long timescale dynamics by embedding a model of

learning in a model of use. It ignores the complexity of auditory

and visual processing, to link word forms to object categories.

However, it does not link them directly. Rather, word forms and

categories each link to intermediate lexical representations. We

implemented this in a hybrid connectionist–dynamic systems ap-

proach. Word forms and categories are represented by localist

units, which compete in situation time using normalized recurrence

to push the network toward a single interpretation. During com-

petition, connections between inputs and the lexical layer are tuned

via associative (Hebbian) learning. As we discussed, localist rep-

resentations are the most transparent way to implement these

mechanisms. However, they also offer a theoretical advantage: By

stripping out the emergent power of distributed representations,

they allow us to isolate these mechanisms and observe their

consequence in a more or less pure state. Our goal was to inves-

tigate the power of this unique combination of basic mechanisms.

1 We use the term prune here as a vivid metaphor. However we intend
a more graded sense in which spurious connections are slowly and grad-
ually reduced, not irrevocably eliminated in one step.

bug dog tree

Figure 2. A schematic of the sorts of connections that would need to be

acquired or pruned during learning.

838 MCMURRAY, HORST, AND SAMUELSON



Relationship to Standard Connectionist Approaches

By situating learning in connection weights and situation-time

processing in changing activation, our approach is broadly consis-

tent with classic connectionist thinking on development (Elman,

1990; Harm & Seidenberg, 1999; Munakata, 1998; Munakata &

McClelland, 2003; Munakata et al., 1997). In models such as these,

such a description can divorce emerging knowledge from the

ability to use it in a real task. For example, in Munakata’s models,

the model may have some latent ability to represent an object

under occlusion, but this can be overwhelmed in the moment.

Our model shares these broad properties, though it differs in

theoretically important ways. First, as in many models, situation-

time processing occurs over recurrent connections between units.

However, we argue that competition is the essential element of this

situation-time processing (in word learning), something other

models (Elman, 1990; Harm & Seidenberg, 1999; Munakata,

1998) have not explored. Second, many models of this sort make

the simplifying assumption that each time step corresponds to the

presentation of a single input, what Schlesinger and McMurray (in

press) term “trial time”2 (but see Harm & Seidenberg, 1999). In

contrast, in this domain it is important to model ongoing process-

ing after the presentation of an input, both to model things such as

reaction time and because settling can cause the network to change

its interpretation of the input, not just strengthen whatever is

already the most active (cf. McClelland & Elman, 1986; Spivey &

Dale, 2004). Third, all the prior networks have used more powerful

supervised learning, though we argue that unsupervised learning

may be fundamental to word learning. Thus, our framework is

built on classical connectionist thinking about learning and pro-

cessing, but makes specific and theoretically motivated decisions

about how to use these constructs that have not appeared in prior

models of cognitive development.

Why Another Computational Model of Word

Learning?

There are a many computational models of components of word

learning, examining topics ranging from the sequencing of pho-

nological material (Gupta & Tisdale, 2009; Sibley, Kello, David,

& Elman, 2008) to generalization of category membership (Col-

unga & Smith, 2005; Li, Farkas, & MacWhinney, 2004; Mayor &

Plunkett, 2010; Samuelson, 2002), to embodiment (Roy & Pent-

land, 2002; Yu, Ballard, & Aslin, 2005). There are several models

of the word–referent mapping problem (Frank et al., 2009; Li et

al., 2004; MacWhinney, 1987; Mayor & Plunkett, 2010; Merri-

man, 1999; Regier, 2005; Siskind, 1996; Xu & Tenenbaum, 2007).

These models make valuable contributions, highlighting the infor-

mation that is relevant to the problem (Siskind, 1996), the power

of associative mechanisms (Colunga & Smith, 2005; Li et al.,

2004; Mayor & Plunkett, 2010; Merriman, 1999; Regier, 2005;

Samuelson, 2002), and how constraint-like behavior emerges from

simpler systems (Merriman, 1999; Regier, 2005).

A complete analysis of these models is outside the scope of this

article (for useful reviews, see Frank et al., 2009; Regier, 2003,

2005), and we are not proposing a competitor to them. Our goal is

not to develop a complete model of word learning, but rather to use

computational tools to investigate the emergent consequences of

theoretical ideas (cf. Schlesinger & McMurray, in press). In that

sense, it is important to address what questions these models have

been used to answer, and any limitations that may inhibit their

ability to address our questions.

First, by not explicitly capturing both timescales, many models

do not succeed in modeling certain phenomena, or are forced to

treat problems such as referent selection as developmental-time

phenomena. For example, MacWhinney (1987), Merriman (1999),

and Regier (2005) incorporated something resembling competition

in their probabilistic representations. But they did not incorporate

situation-time dynamics, nor distinguish between aspects of the

problem that must occur in situation time (e.g., referent selection)

and those that occur over developmental time. Consequently, they

discussed things such as mutual exclusivity as a limit on learning

(e.g., it is difficult to learn a second label for an object), rather than

a principle of referent selection. Moreover, without implementing

dynamic competition, these models cannot investigate the emer-

gent interactions between competition and learning.

Bayesian models (Xu & Tenenbaum, 2007), in their focus on

how interacting constraints lead to accurate inferences, off-load

many constraints onto priors (and add new ones). This makes it

difficult to understand how these behaviors develop or could arise

from simpler processes. More recent Bayesian approaches (Frank

et al., 2009) do address independent timescales, acknowledging the

demands of both long-term learning and referent selection, and

offer an example of how statistical learning can be buttressed by

social cues. But lacking situation-time dynamics or a developmen-

tally plausible learning model, such approaches only serve as a

metalevel description of the information used for word learning

(Jones & Love, 2011).

Regier’s (2005) and Mayor and Plunkett’s (2010) models are

both associative and perhaps closest to ours. In some respects they

go further, examining the contributions of auditory and visual

similarity. In others they are more limited. At the level of asso-

ciative learning, both models include rich representations of audi-

tory word forms and basic categories, but do not include abstrac-

tion between them, so they may not be able to generalize word

knowledge to other processes such as action systems, spatial

processes, and orthography. Moreover, competition only arises

from probabilistic representations—not true dynamic competition.

As a result, they have not investigated the consequences of

situation-time competition (though these approaches are likely not

opposed to this). Further, these models emphasize issues in word

learning that are now understood differently. Regier focused on

accelerating vocabulary growth, when McMurray (2007) sug-

gested this is a property of many parallel learning systems. Both

models simulate fast mapping by mutual exclusivity as one-shot

learning, but Horst and Samuelson (2008) suggested this may not

be required—a model could perform well in the moment even if

little learning occurred (Horst et al., 2006). Finally, neither deals

with referential ambiguity, assuming a form of ostensive naming.

This, however, is a limitation of implementation: Such models

may be able to cope with many of the phenomena we examine

here, given their theoretical overlap.

2 Though this is a misnomer with respect to the Munakata models, as
each trial consists of multiple input presentations (the sequence of visual
inputs). The fact that there is not significant cycling of the network after
each presentation of the input is the relevant factor here.
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Finally, Samuelson (2002) and Colunga and Smith (2005) pre-

sented semisupervised associative learning models that do incor-

porate settling dynamics (though not competition). However, they

did not attempt to model the actual learning problem. Rather than

examine referential ambiguity, they focused on how associative

learning can lead to generalization and to the identification of

relevant dimensions for object categorization. Moreover, they did

not use the settling dynamics to explain situation-time behaviors

such as referent selection.

Thus, our model is consistent with features of many models: It

incorporates associative learning (MacWhinney, 1987; Regier,

2003, 2005; Samuelson, 2002) and examines the role of statistical

structure (Frank et al., 2009; Siskind, 1996) using graded or

probabilistic representations (MacWhinney, 1987; Regier, 2005;

Xu & Tenenbaum, 2007). It examines the emergence of constraints

(Colunga & Smith, 2005; MacWhinney, 1987; Regier, 2005;

Samuelson, 2002), and its architecture combines situation-time

and learning processes (Colunga & Smith, 2005; Samuelson,

2002). However, it builds on these notions to examine a central

new issue: the emergent power of how mechanisms interact across

two timescales. The power of this combination is illustrated by

distilling the problem to the point where such mechanisms operate

over a minimally informative set of representations (e.g., word

forms and concepts stripped of their phonetic, visual, and concep-

tual processes), and by embedding them within a cross-situational

learning framework in which words can only be learned via

co-occurrence statistics.

Our goal is not to present a complete model of word learning,

but to use our dynamic associative model to learn how these

processes interact. This can test the sufficiency of these processes

to account for a range of phenomena. More importantly, we can

use the model to clarify how these processes are related and

develop a theoretical framework on which to base empirical in-

vestigations. This allows us to ask whether associative learning can

cope with referential ambiguity, and whether children must solve

this problem to learn words; how online processes and learning

interact; whether processes that underlie familiar word recognition

give rise to mutual exclusivity; and whether constraints such as

mutual exclusivity emerge without being built in. Answering these

will help develop a theoretical approach bigger than any one

model.

Specific Architecture

Our dynamic associative model (see Figure 3) has two layers of

localist inputs, for auditory word forms and visual objects. Each

auditory unit corresponds to a single word, and each visual unit

corresponds to one category of possible referent. During process-

ing, the auditory and visual layers are normalized such that the sum

across each layer is 1.0. Thus, if a single node were fully active, its

activation would be 1.0; if two were active, each would be .5; and

when all nodes are inactive (the resting level), they are set to 1/N

where N is the number of nodes. After normalization, the vector of

activations across a layer can be read as the distribution of likeli-

hoods that the auditory (or visual) hypothesis represented by that

node is present.

There are no direct connections between auditory and visual

units. Interactions occur because both connect to a hidden layer of

lexical units. These weights are initially random such that each

auditory and visual unit is connected to each lexical unit (with

differing strengths; see Figure 1A). However, after learning, these

weights generally reflect one-to-one mappings between word

forms and lexical units, and between referents and lexical units

(see Figure 1B).

The model contains more lexical units than needed to represent

all the words. This leads to better learning. Generally, Hebbian

learning reinforces existing associations and prunes unnecessary

ones. Thus, the first few connections formed during learning are

crucial. If the network initially randomly associated two inputs

with the same lexical node, this mismapping could be reinforced

over subsequent inputs and prevent the network from ever dis-

criminating them. Greater numbers of lexical units make this much

less likely (McMurray & Spivey, 2000).

On each trial, a single auditory unit (a name) is activated (set to

1.0). An array of visual units (the objects in the scene) is also

activated. Input layers are normalized, and activation from each

layer is sent concurrently to the layer of lexical units (Equation 1).

�lx � ��
z�A

wxzaz � �
z�V

uxzvz� (1)

The change in activation of a lexical unit is based on the net input

to that node: the sum of all the auditory units (az, for the zth

Lexical Units

Auditory 

Inputs

Visual 

Inputs

tree

cat

dog

grass

ball

bug

*weights are bidirectional

Lexical Units

Auditory 

Inputs

Visual 

Inputs

tree

cat

dog

grass

ball

bug

A. Initial Model

B. After Training

Figure 3. Architecture of the model, both before (A) and after (B)

learning.
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auditory unit) multiplied by their connection weight (wxz, which

connects auditory node x to lexical node z), and the corresponding

weighted (uxz) activation of the visual input units (vz). This is

multiplied by the feed-forward temperature (�ff), which controls

the weighting of the prior activation in setting the new activation

(we use the superscripted l(t) to denote l at time t).

lx
(t�1) � lx

(t) � �f f · �lx
(t) (2)

After updating the activations, lexical units inhibit each other using

squared normalization.

lx
(t�1) �

�lx
(t)�2

�
z�L

�lz
(t)�2

(3)

Since activation in the lexicon is always between 0 and 1, the result

of this is that highly active units become more active and dominate

less active ones.3 When run repeatedly over several cycles, this

approximates winner-take-all competition.

The resulting lexical activation then feeds back to the input

layers (Equations 4 and 5). The change in activation of an auditory

(or visual) unit, y, is proportional to the product of its previous

activation and the weighted activation (wyz) of the lexical units (lz).

�ay � ay · �
z�L

lzwyz (4)

ay
(t�1) � ay

(t) � �fb · �ay
(t) (5)

The fact that feedback is multiplied by the current activation

means that feedback from the lexical layer only affects active input

units. This prevents the network from activating perceptual inputs

on the basis of top-down evidence alone, and it also introduces

nonlinearity into the system. The temperature parameter, �fb, is not

required to be the same as for feed-forward activation and was not

for the simulations reported here.

After updating, the activations of the auditory and visual layers

undergo a small amount of inhibition (Equation 6) and are nor-

malized.

ay
(t�1) �

�ay
(t)��

�
x�A

�ax
(t)��

(6)

Here � represents the degree of inhibition. At � � 2, this would

yield strong inhibition as in the lexical layer; at 2 � � � 1 there is

less inhibition; at � � 1, no inhibition; and at � � 1 the activation

collapses back to the resting state. After this step, activation feeds

forward to the lexical layer and the cycle continues. Activation

cycles in this way until the lexical layer settles (i.e., the change in

lexical activation from time step to time step is close to zero).

Typically, on any trial the network is presented with multiple

visual units to simulate a cluttered scene. Throughout cycling, the

network partially considers each visual competitor simultaneously,

but after many cycles, the competition and feedback generally

result in a single object having more activation than the others.

This active visual unit is the network’s response—the network is

allocating more attention to this referent. Thus, recurrent cycling

causes the network to settle into an activation pattern across all

three layers that reflects the present constraints (the auditory and

visual inputs) and partial knowledge (in the weights).

Connections are modified at each cycle with Hebbian learning

(Equations 7 and 8). The network increases the strength of the

connection between simultaneously active input and lexical units,

and decreases the connection in other cases.

�wxy � axly�1 � wxy�

� .5 · �1 � ax� · lywxy

� .5 · ax�1 � ly� · wxy (7)

In Equation 7, the first line represents the positive term. If ax

(auditory unit x) and ly (activation for lexical unit y) are active, the

weight is increased proportional to its distance from 1 (its maxi-

mum value). The second and third terms are decay terms. A given

weight decreases if (a) the input unit is active and the lexical unit

is not or (b) the lexical unit is active and the input is not. If neither

is active, there is no decay. By restricting weight decay to only

connections between units that are actually used at that point in

time, the model maintains plasticity in weights connecting input

and lexical nodes that are not used. This is crucial for learning new

words in the future (for a similar learning rule, see Grossberg,

1976). Weights are updated with Equation 8.

wxy
(t�1) � wxy

(t) � � · �wxy
(t) (8)

Here � is the learning rate and is typically very small—on the

order of .0005. This is because learning occurs on each cycle of

competition (and with many cycles or input, this will add up). By

learning continuously, rather than at the end of processing, we

need no homunculus controlling when learning can occur, much as

children may not differentiate between training and test trials in the

laboratory from other learning opportunities.

An important question is what regularities in the input drive

functional learning. We examine one possibility here: co-

occurrence between words and referents, or cross-situational sta-

tistics (Yu & Smith, 2007). We implemented this style of learning

by ensuring that among the set of visual competitors active on any

given trial, one was consistently paired with the auditory target

while the others were randomly selected.

General Methods

For most models, a 35-word lexicon was used. Though the

network can learn larger lexica (see supplemental materials, Sim-

ulation S2), 35 was sufficient to be interesting while allowing the

network to run reasonably quickly.4 Thus, models were initialized

with 35 input units and 500 lexical units. Weights were initialized

to random values, generally between 0 and .5 (the wtsize param-

eter).

Training

Models were generally trained for 200,000 epochs, where an

epoch is one presentation of a word (though this entails many

3 This particular form of inhibition instantiates a form of lateral inhibi-
tion in which the ability of each unit to inhibit the other units is a function
of its proportion of the total activation.

4 A typical model completed training in 30 min to 2 hr, but for each
simulation we typically ran many repetitions of each model in several
conditions, requiring several days.
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cycles of competition as the word is processed). Although the

model can perform quite well after only a handful of exposures to

a word, it may take several thousand for the weights to settle on a

single strong association. Thus, a long period of training was

important for understanding both early and late stages of learning.

On training trials, a single auditory unit was activated, accom-

panied by the corresponding visual unit and a variable number of

competitors. The average number of visual units active across

trials is the degree of referential ambiguity present in naming

situations for that model. Thus, if on average 14 of 35 units were

active, the model faced 40.3% referential ambiguity. On any given

trial, the active visual units were determined by first choosing a

vector of 35 independent random values between 0 and 1. From

this, any unit whose random value was less than the level of

referential ambiguity would be active (e.g., for a referential am-

biguity of 20%, if the random value for a unit was .2 or lower, this

unit would be activated). Consequently, the number of competitors

was not constant over trials, though the mean level of ambiguity

was.

Testing

Although many tests of the model were particular to a simula-

tion, most models were tested in the following ways: (a) a simu-

lation of an N-alternative forced-choice referent selection task, (b)

a production task, and (c) an analysis of the weight matrix.

The N-alternative forced-choice (NAFC) task is similar to what

is used with children (e.g., Golinkoff, Hirsh-Pasek, Bailey, &

Wenger, 1992; Mervis & Bertrand, 1994). In this procedure, a

single auditory unit is activated with N visual units (typically

three). One of these is the target, and the others are randomly

selected. Activation settles through the model until the lexical

layer stabilizes. The activation in the visual units then determines

the model’s response. To correctly identify the word, the model

must pass activation from the auditory layer to the visual layer,

strengthening activation for the correct visual unit and suppressing

the competitors. This can be interpreted as the model attending to

one object (a look or a reach in a child). This is repeated for each

word to estimate the number of words known. This test emphasizes

the model’s observable behavior in a simulated experiment, rather

than analyzes its unobservable intermediate states (the lexical

units).

We also created a production task, to simulate laboratory nam-

ing tasks, and to simulate the “child says” version of the

MacArthur–Bates Communicative Development Inventory

(MCDI), which is commonly used to assess which words a child

knows. Here we run the model in reverse. This time a single

referent is active and the system must select from all the auditory

word forms—all the auditory units were partially active (1/N). In

this task, there are no constraints on which word forms are con-

sidered, and there will be typically many more auditory competi-

tors than visual competitors in a comprehension task. Activation

settles through the model until lexical layer stabilizes. Here the

most active auditory unit serves as the response. This is repeated

for each word to estimate the model’s productive vocabulary.

In addition to these tasks, we analyzed the weight matrix. This

is not comparable to anything that can be done with children, but

it assesses learning more directly. For each word, we first exam-

ined the auditory ¡ lexical weights to determine which lexical

unit was most strongly connected to that auditory unit. This was

repeated for the visual inputs. If this was the same unit, it would

imply that the model correctly formed the association between

auditory and visual representations for this word, and this word

was scored as correct. Occasionally some instantiations of the

model selected the same lexical unit for two word–object pairs,

implying that both words meant the same thing. Because this was

incorrect (in the lexicons used in the first three sections), only one

of the two words would be scored as correct. Thus, this analysis

asks whether the model has achieved a representation of the word

that is close to an idealized state in which each word corresponds

to one object (and vice versa).

Each of these tests was often repeated over training, raising the

possibility that the model could learn during test. Thus, unless we

have noted otherwise, any weight changes that accumulated during

testing were discarded before continuing with training.

Overview of Simulations

Our first goal is to show that this dynamic associative model can

account for a variety of empirical results. We do not do this to

emphasize the fit of this specific model. Rather, our model is

representative of a broad class of interactive and associative mech-

anisms. Thus, its ability to fit the data really emphasizes the

strength of these kinds of approaches, and of approaches operating

at two timescales more generally. A second, more important goal

is to use the model to understand the processing mechanisms that

underlie word learning phenomena such as mutual exclusivity,

familiar word recognition, and statistical learning. Thus, our sim-

ulations alternate between simulating empirical phenomena and

unpacking the models’ information processing.

Table 1 shows a summary of all the simulations presented here,

with citations to relevant empirical studies. Section 1 examines

learning. We ask whether the model can learn under referential

ambiguity (Simulation 1.1), and whether it shows differences

between comprehension and production (Simulation 1.2). We next

ask how much referential ambiguity the model tolerates (Simula-

tion 1.3) and about the shape of vocabulary growth (Simulation

1.4). These demonstrate the basic phenomena of word learning and

the role of word use in explaining them.

We next examine situation-time phenomena. Simulation 2.1

examines the time course of familiar word recognition and Simu-

lations 2.2 and 2.3 examine the use of mutual exclusivity for

referent selection. Both are assessed over development and our

analysis suggests that even these situation-time phenomena are

fundamentally shaped by developmental forces.

Section 3 examines the interaction of situation- and developmental-

time processes. Simulation 3.1 examines the apparent indepen-

dence of these timescales, focusing on referent selection and

retention (Horst & Samuelson, 2008). Next, we examine phenom-

ena arguing for more dependent timescales: the interaction of task

and mutual exclusivity (Simulation 3.2), and individual differences

in familiar word recognition (Simulation 3.3). Finally, Simulation

3.4 manipulates situation-time processes in the model to show that

they are necessary for learning.

Section 4 scales the model up in two important ways. First,

Simulation 4.1 trains the model on both basic-level and superor-

dinate labels to show that despite the model’s use of mutual

exclusivity, it can learn multiple labels for a referent. This also
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Table 1

Summary of Findings From the Simulations (With Reference to Relevant Empirical Studies)

Simulation Findings

Learning
1.1: Learning Model can learn under referential uncertainty.

Performance on comprehension exceeds competence due to task constraints.
Slow mapping or elaboration effects without semantics.
Relevant studies: Capone & McGregor (2005); Smith & Yu (2008); Yu & Smith (2007).

1.2: Comprehension and
production

Words can be comprehended earlier than produced.
Largely effect of task–competition environment.
Relevant studies: Huttenlocher (1974); Reznick & Goldfield (1992).

1.3: Referential ambiguity Model can learn complete lexicon under high referential ambiguity.
Relevant studies: Smith & Yu (2008); Yu & Smith (2007).

1.4: Accelerating learning Model shows acceleration, as long as learning task is difficult enough and learning is sampled frequently.
Relevant studies: Ganger & Brent (2004); McMurray (2007).

Situation-time processes

2.1: Familiar word
recognition

Settling time (reaction time) decreases over development.
Effect arises pruning connections between words and incorrect referents.
Similar pattern to power law of learning.
Acceleration in number of words unrelated to deceleration in reaction time.
Relevant studies: Fernald et al. (2006, 1998).

2.2: Fast mapping Model can fast-map by mutual exclusivity.
Function of both online dynamics and the weights set up by the learning and weight decay rule.
Relevant studies: Carey & Bartlett (1978); Horst & Samuelson (2008); Markman & Wachtel (1988); Mervis & Bertrand

(1994).
2.3: Fast mapping and

development
Fast mapping emerges out of changes in weight matrix.
Familiarity with visual objects can speed development.
Relevant study: Halberda (2003).

Learning–processing interactions

3.1: Fast mapping and
retention

Model fails to retain fast-mapped labels, unless visually familiar.
Only a small amount of learning occurs on any fast-mapping event.
Relevant studies: Horst & Samuelson (2008); Kucker & Samuelson (2012); Spiegel & Halberda (2011).

3.2: Fast mapping and
task

Model succeeds at 3AFC fast-mapping task at earlier points than 5AFC.
Both develop over time.
Relevant studies: Markman et al. (2003); Mervis & Bertrand (1994).

3.3: Familiar words and
individual differences

Model shows stability in reaction time, correlations between reaction time and knowledge.
Reaction time at early points in development predicts acceleration in vocabulary growth.
Speed of processing is not unitary—emerges out of interactions between processing parameters, learning parameters. and

developmental history.
Relevant studies: Fernald et al. (2006).

3.4: Processing and
learning

Competition is required for cross-situational learning.
Feedback slows learning but may be beneficial.
Relevant studies: Smith & Yu (2008); Yu & Smith (2007).

Scaling up

4.1: Superordinate
categories

Model can learn superordinate terms for objects in addition to basic level.
Basic-level advantage derives from frequency, spreading of associations.
Mutual exclusivity does not block learning of second names because it is an online process, not a constraint on learning.

4.2: One-to-one word
object mappings

Model can learn when all words have multiple meanings (e.g., polysemy).
Model can learn when all objects have multiple labels (e.g., bilingualism).
Fast-mapping performance is slightly reduced by polysemy.
Fast mapping is significantly degraded when all objects have multiple labels.
Relevant studies: Byers-Heinlein & Werker (2009).

Supplement

S1: Acceleration and
word difficulty

Acceleration observed whenever the overall difficulty of the words is high.
Varying frequency results in longer period of apparently slow learning.

S2: Temperature and
speed of processing

Higher temperatures appear to lead to slower processing for familiar words.
Effect derives from learning—higher temperatures offer initially faster settling and, as a result, fewer weights are pruned.
Higher temperature also slows learning.
Initially faster settling causes system to commit to more erroneous interpretations.

S3: Larger lexica Model can learn lexica of up to 150 words at high degrees of referential ambiguity (50%, or M � 75 competitors per trial).
S4: Slow learning Manipulated learning rates to see effect on learning.

At normal values for typical Hebbian learning (�.01), the model fails to learn, but can learn at intermediate and low
values.

Slow learning prevents model from overcommitting to erroneous mappings.

Note. AFC � alternative forced-choice.
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affords the opportunity to examine basic-level advantages in a

system that is not hierarchical. Simulation 4.2 generalizes this

finding, training the network on multiple referents for a word (e.g.,

homonyms or polysemy), or multiple labels for a given object

(e.g., bilingualism, synonomy). As these can disrupt the one-to-one

word–object mappings commonly thought to underlie referent

selection by mutual exclusivity, we evaluate both learning and

mutual exclusivity.

A number of additional simulations were also conducted and

reported in the supplemental materials. These support the simula-

tions presented here and do not introduce new theoretical points.

Commented MATLAB code for all simulations is also available in

the supplemental materials.

Section 1: Developmental Time Processes

We first ask whether the model can learn words under referen-

tial ambiguity, and whether differences in real-time comprehen-

sion and production tasks account for the commonly observed

delay in productive vocabulary growth relative to comprehension.

Next we assess how much referential uncertainty can be tolerated,

and the shape of learning.

Simulation 1.1: Learning, Measured by

Comprehension

Our first simulation validated that the model can learn under

referential uncertainty, using the simulated laboratory comprehen-

sion task. We initialized 10 models to learn 35 words under 50%

ambiguity (on average 17 competitors were present on every

trial—a substantial degree of ambiguity). Every 1000 epochs we

tested the model in the 3AFC and 10AFC tasks, and analyzed the

weights (Table 2 shows the parameters for all simulations in

Section 1).

Results. Figure 4 shows the number of words learned as a

function of time (training). The perceived rate of learning is largely

a function of the task. At 50,000 epochs, the model appears to

know most of its lexicon when tested in the 3AFC task, and can do

fairly well in the 10AFC task. However, this model has not

finished learning. The weight analysis shows that only 1.5 words

are known—for most words, the corresponding auditory and visual

units do not have strong associations to the same lexical unit. This

suggests that competition can make the model outperform its

stored knowledge, and even after the model can identify the

referent, there is still significant learning to do. Some have likened

this “slow mapping” process to an elaboration of the meaning,

syntax, and phonology (e.g., Capone & McGregor, 2005). This

undoubtedly occurs, but this model has no semantics, syntax, or

phonology. Thus, the raw word–object mappings may need to

undergo a similar process in which competing weights are gradu-

ally eliminated, and the correct connections sharpened, even after

the model demonstrates understanding of the word (Riches, To-

masello, & Conti-Ramsden, 2005). Crucially, however, we also

observe a disconnect between the model’s knowledge (which is

poor at early points in training) and its performance (which is

simultaneously quite good). Here task constraints, such as the

reduced number of competitors, actually allow the model to per-

form better than its knowledge, in an apparent reversal of the

performance competence distinction.

Simulation 1.2: Production and Comprehension

Simulation 1.1 suggests a dissociation between what a model

“knows” (the associative connections), and what it “does” (perfor-

mance on comprehension tasks). This raises the possibility that

vocabulary growth may appear to follow a different developmental

Table 2

Parameters for Simulations in Section 1

Parameter 1.1: Comprehension
1.2: Comprehension

and production 1.3: Ambiguity 1.4: Acceleration

Input units 35 35 35 35
Lexical units 500 500 500 500
Initial weight size .5 .5 .5 .5
Learning rate .0005 .0005 .0005 .0005
Referential ambiguity .5 .5 .2 – .95 .75
Feed-forward temperature .01 .01 .01 .01
Feedback temperature 2 2 2 2
Stability point 1e-12 1e-12 1e-12 1e-12
Input inhibition 1.05 1.05 1.05 1.05

Note. A number of parameters control the activation flow, rate of learning, and initial conditions of the model. Initial weight refers to the range of values
that the connection weights were randomly initialized to (e.g., a random number between 0 and .5). Learning rate affects the amount of weight change for
each leaning instance.
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Figure 4. Number of words known over the course of training as mea-

sured by 3AFC and 10AFC tasks as well as an analysis of the weights.

AFC � alternative forced-choice.
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time course when measured with production and comprehension

tasks.

Such differences are observed empirically: Children typically

comprehend more words than they can produce (Fenson et al.,

1994; Reznick & Goldfield, 1992). Though this is often attributed

to memory demands, difficulty planning articulation, or the earlier

age at which speech perception develops, in the model, such

differences cannot arise from these factors. However, as we have

described them, comprehension and production are different tasks,

as comprehension requires selecting from a small number of

referents, whereas production requires selecting from a vast num-

ber of word forms. Thus, this simulation asks whether task differ-

ences alone account for part of the delay in production. This is not

to say that such differences are artifacts of the tasks used to assess

them—they are fundamental to comprehension and production

more generally.

Twenty models were trained at 50% referential ambiguity (see

Table 1). Every 200 epochs they were tested on a number of

comprehension tasks: 3AFC, 5AFC, 10AFC. and 35AFC (as if the

entire lexicon were visually present) and a 35AFC production task.

Results. Figure 5 shows the number of words learned over

time for each task. As before, even when 50% of the lexicon was

present on any trial (�17 competitors), the model acquired the full

lexicon no matter how it was assessed. Moreover, the 3AFC,

5AFC, and 10AFC tasks suggested that like children, in compre-

hension tests, the network appears to know more words than in

production tests. However, by the end of training the network

performs equivalently for both tasks. Interestingly, the production

measure matches the estimates based on the weight analysis. Thus,

more difficult naming tasks may tap this level of competence.

The number of response alternatives plays a critical role in

predicting performance and the apparent rate of learning. To the

extent that the response set for comprehension must include fewer

objects than the full lexicon, task differences can account for

differences between comprehension and production. Similarly,

Huttenlocher (1974) described this in information processing

terms: Comprehension is a recognition task, while production is a

recall task. Our model instantiates both processes as variants in the

same underlying competition dynamics.

This might suggest that the number of response alternatives

alone dictates success. However, this is not entirely the case, as a

comparison of the 35AFC comprehension and production tasks

shows that now comprehension is delayed. This is due to an

asymmetry during training. Auditory units are always presented

singly, whereas visual units are not. As a result, the network has

experience suppressing unnecessary visual units, but has never

suppressed unnecessary auditory units.5 Nonetheless, this small

difference illustrates that task differences can arise from differ-

ences in both situation-time factors (the number of response alter-

natives) and developmental-time factors (the history of suppress-

ing competitors).

Critically, however, this distilled account of production versus

comprehension suggests that (a) the number of response alterna-

tives during testing can dictate how many words a child appears to

know, and (b) this somewhat obvious fact can give rise to differ-

ences in production and comprehension vocabulary.

Simulation 1.3: Learning Under Referential Ambiguity

Thus far, we have held referential ambiguity at 50%. This is

substantial, yet we found excellent learning. It is important to

determine the robustness of this learning, particularly when but-

tressed by dynamic competition. Thus, we varied the degree of

referential ambiguity from 20% to 95% and trained 10 models at

each level. Note that 95% means that on average 33.25 objects

were present with the referent in any naming situation, and on

16.5% of the naming instances all 35 words are active. Models

received 200,000 training trials, and we assessed performance in

the 3AFC and 10AFC tasks as well as a weight matrix analysis

every 25,000 epochs.

Results. Figure 6A displays the number of words identified in

the 3AFC task as a function of referential ambiguity. Chance is

33% (11.7 words). At low levels of noise, the model acquired most

words within about 25,000 epochs and learned all of them by

100,000 epochs. At 100,000 epochs an effect of referential ambi-

guity is seen: The model’s performance drops off as with more

competitors (though not very far). However, this is overcome with

additional training: At 200,000 trials, the model performed at

100% even at 95% ambiguity.

This success is emphasized by our more conservative analysis of

the weights (see Figure 6B). Here chance is much lower: The

probability of randomly mapping a single auditory and visual unit

to the same lexical unit is 1/500 � 1/500 � 0.0004%. Moreover,

to pass this test, the model cannot rely on competition to arrive

at the best guess if the weights are imperfect (as it can in the

3AFC task). By this criterion, it takes much longer to learn a word.

At 50,000 epochs, the model’s 3AFC performance is good, but its

underlying competence (the weight matrix) is far from complete.

For example, at 50% referential ambiguity the model has only

learned 10 words by this point in time. However, with enough

5 Of course, with a more realistic auditory representation, multiple
auditory word forms will be active in parallel (e.g., similar sounding words;
Allopenna, Magnuson, & Tanenhaus, 1998; Marslen-Wilson, 1987). This
may minimize the differences seen when the number of alternatives is
equated.
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training, the model performs well on this conservative measure

even at the largest degree of ambiguity. With 90% of available

referents copresent during learning, all models learned all 35

words; at 95% ambiguity they averaged 27.4 and may not have

stabilized yet. This suggests that the simple statistics of co-

occurrence (between visual and auditory events) can be extremely

powerful. Even when most of the lexicon is available on any given

naming situation, the model eventually determines the correct

mappings between words and referents. This undercuts claims that

associative learning cannot cope with the high degree of referential

ambiguity faced by real children. Given sufficient time, such

mechanisms may be sufficient when embedded in situation-time

competition framework.

Simulation 1.4: Acceleration

In the prior simulations, the model appears to start with high rate

of acquisition and taper off (e.g., the 3AFC and 10AFC tasks; see

Figures 4 and 5). This contradicts the consensus that word learning

accelerates (P. Bloom, 2000). Though acceleration was observed

in production (Figure 5) and in the weight analysis (Figures 4 and

5), in children comprehension also accelerates (Reznick & Gold-

field, 1992). More importantly, the McMurray (2007; Mitchell &

McMurray, 2009) analysis suggests that acceleration should be

observed in most parallel learning systems. So, though it is not

distinctive of word learning, it was unexpected that it was not

consistently observed.

There may be several reasons for this. First, perhaps we are not

sampling at a high enough density. The vocabulary explosion

typically appears during the 2nd year of life. Given that it takes the

model about 100,000 epochs to learn its adult lexicon, the explo-

sion would probably occur in the first 10,000 epochs, though the

above simulations only sampled twice during this time window.

Second, McMurray (2007) predicted acceleration only when words

vary in difficulty such that there are fewer easy words than

moderate or difficult words. As a simplifying factor in our simu-

lations, all words were equally difficult—they were equally fre-

quent, and the degree of ambiguity was the same across words.

Third, when measuring children’s vocabulary size, we do not

subject them to a 3AFC task for each word. Rather, we use a parent

questionnaire such as the MCDI (Dale & Fenson, 1996; Fenson et

al., 1994), which probably measures something like children’s

ability to use a word in a variety of contexts, that is, more of an

average performance across time for that word. In fact, ongoing

work (Mitchell & McMurray, 2008) using a stochastic version of

the (McMurray, 2007) model has shown that acceleration is only

observable when words require several exposures to learn. When

words can be learned in only one exposure, deceleration is guar-

anteed. Given the heavily constrained 3AFC task, it may only take

a small number of repetitions to learn a word by this criterion

(particularly at low levels of ambiguity), and we may not see

acceleration.

Thus, we ran 10 repetitions of the model with three changes.

First, we sampled every 200 epochs. Second, for each word, in

addition to the usual 3AFC and 10AFC tests, the model was tested

five times and had to get the right answer on at least four (to

simulate understanding a word in a variety of contexts). Third, we

increased the referential ambiguity to 75% (so all words took

longer to learn). We also explored the difficulty distribution by

manipulating the frequency of the words such that there were few

easy words and many harder ones. This version of the model also

showed acceleration. It is discussed in the supplemental materials

(Simulation S1).

Results. Figure 7 displays the results for the 3AFC and

10AFC tasks when all the words were of equal frequency. The thin

lines show when the word was considered known if the model was

correct in a single 3AFC or 10AFC task. The thick lines require the

model to be correct on four of five trials of these tasks. Requiring
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a word to pass multiple tests clearly slowed initial performance

and led to a steeper learning curve.

There is also more noise in these measurements (from epoch to

epoch) than was seen earlier. At this stage in development, the

model has not really learned the words, and its performance is

affected by fluctuations in the weights of competitors (that are still

settling down) and the choice of competitors in the comprehension

task (see Adolph, Robinson, Young, & Gill-Alvarez, 2008, for a

discussion of sampling issues in development). This suggests that

even using standardized measures such as the MCDI the implicit

task (the real-time behavior leading up to the measure) may shape

the outcomes we measure (see also Sandhofer, Smith, & Luo,

2000).

However, no matter how we measure it, the model undergoes a

period of slow learning followed by a period of fast growth (note

that the apparent threshold in the 10AFC task is only a momentary

plateau—by the end of training, all models learned all 35 words).

Thus, the critical factor for acceleration is difficulty—as long as

words are fairly difficult to learn, the model shows acceleration.

Measurement clearly plays a role, because it acts as sort of a

threshold: The number of repetitions required to pass a 3AFC task

is less than the number required for a 10AFC task. This is in accord

with the (Mitchell & McMurray, 2008) model of the vocabulary

explosion.

Section 1 Discussion

The first simulations suggest that this dynamic associative

model can acquire a lexicon under substantial uncertainty. Even

with 90% referential ambiguity, the model acquired all the words.

However, the model’s knowledge is a function of how it is tested.

Comprehension tasks with small numbers of competitors show

earlier learning than those with larger numbers or production tasks.

As a result, we see differences between comprehension and pro-

duction in a system that does not do either. Similarly, the growth

curve is a function of testing: Some tests can show decelerating

learning, whereas more realistic assessments show the predicted

acceleration.

Virtually all the tasks suggest the model knows more words than

are reflected in its connections (knowledge). This offers a para-

digm for thinking about the integration of short and long timescale

processes. Long-term knowledge (the weights) develops slowly

and may be incomplete for substantial portions of development.

However, fast competition processes allow the model (or child) to

augment these weak representations in the moment and act more

intelligently. This throws a novel spin on performance and com-

petence. Typically, children are thought to have better underlying

competence than their performance. Indeed, even in connectionist

networks that do not make a strong distinction between perfor-

mance and competence, we still see situations where the networks’

apparent knowledge can be overshadowed by in-the-moment task

demands (Munakata, 1998; Munakata et al., 1997). Yet here we

see the opposite: Situation-time performance compensates for

rather lousy competence. This is not a contrived product of the model.

In most real situations the environment (including the caregiver) may

provide information or support that allows the child to perform

significantly above his or her level of competence in many situa-

tions (cf. McCabe & Peterson, 1991; Reese & Fivush, 1993). Thus,

performance constraints, though usually thought of as impeding

our ability to see the true developmental level of the child, may

actually augment it in some circumstances.

These simulations also suggest that referential ambiguity may

not be as problematic as typically implied. Even in vastly ambig-

uous environments, associative learning can be successful over the

long term. However, learning must be slow, because the relevant

information can only be extracted across naming events—in fact,

fast learning may cause the model to overcommit to an incorrect

interpretation (as we demonstrate in this model in the supplemental

materials, Simulation S4). Here again, however, the interaction of

timescales helps: If fast, task-constrained processes buttress poor

knowledge, the model can perform well despite imperfect knowl-

edge in its weights.

Section 2: Situation Time Processes

This section examines children’s ability to use their lexica in

situation time. The existing literature tends to distinguish familiar

and novel word processes. Work on novel words focuses on

accuracy: Can children infer, in the moment, the referent of a novel

word? For familiar words, the emphasis is on the efficiency or

speed of referent selection. Thus, Simulation 2.1 examines devel-

opmental changes in the efficiency of children’s familiar word

recognition, and Simulations 2.2 and 2.3 examine referent selec-

tion by mutual exclusivity, a form of referent selection for novel

words. Both require children to use available information, in the

moment, to identify the referent of a word. Beyond offering a

model of these phenomena individually, these simulations also

argue that mutual exclusivity emerges from the same processes as

changes in familiar word recognition, and they help reveal funda-

mental properties of learning that make both possible.

Simulation 2.1: The Development of Word Recognition

and the Power Law of Learning

Fernald and colleagues (Fernald et al., 2006; Fernald et al.,

1998; Swingley & Aslin, 2000) have examined the time course of

children’s mapping of familiar words to their referents using

fixations. In this paradigm, children see pictures of two objects

(e.g., a ball and a car) and are instructed to look at one. The speed

at which they fixate the right object is taken as a measure of

processing speed, and this tends to decrease over development

(Fernald et al., 1998; Hurtado, Marchman, & Fernald, 2007).

Fixation time is also correlated with lexicon size (Fernald et al.,

2006; Zangl, Klarman, Thal, Fernald, & Bates, 2005) and is stable

and predictive among children (Fernald et al., 2006; Marchman &

Fernald, 2008). The goal of this simulation was to investigate this

computationally, in order to identify the potential loci of these

effects.

Ten models were run at three levels of referential ambiguity

(25%, 50%, 75%; see Table 3 for parameters). Every 250 epochs,

the model was tested on its entire lexicon in a 3AFC task to assess

the number of words known and the time it took the model to settle

on a referent for each of them. As with Fernald et al. (2006),

reaction time (RT) was only saved for trials in which the model

selected the correct referent.

Results: Development of RT. Figure 8 shows the settling

time in cycles as a function of training for each of the three levels

of ambiguity. There is a dramatic drop early in training, from 20 to
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30 cycles at 250 epochs to five to six cycles by the end of training.

There are small effects of referential ambiguity. These likely

derive from the fact that different levels of referential ambiguity

offer the model different amounts of exposure to visual competi-

tors, which may alter how competing associations for a given word

can be pruned (as we will discuss, this is a crucial determinant of

RT). Optimal learning, then, may require a mix of low-competitor

situations (e.g., ostensive naming) to establish the words and rule

out strong competitors, and high-competitor situations to improve

processing (cf. Horst, Scott, & Pollard, 2010; McMurray et al., in

press).

So what causes the decrease in settling time? Changes in the

dynamics of activation flow cannot account for the decrease in RT

because the parameters that control it (temperature and the degree

of lateral inhibition) did not change over learning. The only things

that did change were the weights. Figure 9 shows a representation

of the weights connecting the visual and lexical layers over devel-

opment. Along the x-axis are the 35 visual units. Along the y-axis

are 35 of the 500 lexical units. The strength of the connection

between each unit is represented by the darkness of the patch at

their intersection. At the beginning of training (see Figure 9A),

these connections are random, and there is no clear structure, but

even 10 epochs in we can see that the overall strength of the

connections has been reduced (though there are a few strong

connections for words that have been heard). Over the next 1,000

epochs, unnecessary connections are further pruned and positive

ones enhanced. By around 10,000 epochs (see Figure 9D), the

model only has a handful of strong connections. However, some of

these are ambiguous. For example, Lexical Unit 11 (circled) has

strong connections to at least three input units (and those units are

also connected to Lexical Unit 17). At 100,000 epochs these

competing representations have been eliminated—each visual unit

connects to only one lexical unit, and the bulk of the connections

are near zero.6

We can roughly characterize these changes in terms of the

entropy of the weight matrix: A “peaky” distribution of weights

characterized by a few strong connections and many weak ones

(low entropy) describes a more developed model, whereas a flatter

distribution (high entropy) characterizes a less developed model.

We tested this by running an additional 10 models with a refer-

ential ambiguity level of 50%. Every 500 epochs, models were

tested in a 3AFC and 10AFC task, and we evaluated both the

auditory and visual weight matrices using three measures. First, we

computed entropy, converting weight values to probabilities. By

this measure, relatively random weight matrices will have large

entropies, and peakier weights will have small entropies. Second,

at each point in training, we found the single strongest connection

linking each input unit to the lexical layer and recorded its strength

as a measure of how strong the positive connections were. Third,

we took the average of all the other connections as an indicator of

how weak the irrelevant connections were.

Entropy showed strong relationships with both learning and RT.

We found a negative correlation between entropy and time during

learning (R � 	.92), and between entropy and the number of

words known (10AFC task: R � 	.77; weight analysis: R �

	.92). Thus, entropy captures some aspect of overall learning or

development. Figure 10A relates entropy to the log of the RT in the

3AFC task. Though the relationship is nonlinear, high entropies

(relatively random weights), predict slower RTs (linear: R � .43;

hyperbolic: R � .92).

6 Note that over development, even the positively associated weights
tend to drift downward under this learning rule (they do eventually stabi-
lize; see Figure 10B). This accounts for the fact that the final weight matrix
(see Figure 9F) shows lower weights than in some of the earlier panels.

Table 3

Parameters for Simulations in Section 2

Parameter 2.1: Word recognition 2.2: Mutual exclusivity
2.3: Development of mutual

exclusivity

Input units 35 40 40
Familiar words 35 30 30
Lexical units 500 500 500
Initial weight size .5 .25 .25
Learning rate .0005 .0005 .0005
Referential ambiguity .25, .5, .75 .5 .5
Feed-forward temperature .01 .01 .01
Feedback temperature 2 2 2
Stability point 1e-12 1e-12 1e-12
Input inhibition 1.05 1.05 1.05
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The strength of the positive connections was not highly predic-

tive of performance on either of our tasks (3AFC: R � 	.27;

10AFC: R � 	.41) or settling time (R � .31), and analyses of the

scatterplots suggested this was not due to a nonlinear relationship

(see Figure 10B). It was moderately related to number of words

known (R � 	.60), but negatively. That is, lower connection

strengths tended to indicate more words known. All these results

derive from the fact that the positive connections fluctuated over
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training but ultimately decreased slightly (the negative ones de-

creased a lot more; see Figure 10C). The average of the negative

connections was much more predictive. It was highly negatively

correlated with performance on the lexical identification tasks

(3AFC: R � 	.94; 10AFC: R � 	.89) and with the log of settling

time (R � 	.92; see Figure 10D). In both cases, performance

increased with smaller irrelevant weights.

As a whole, then, the pruning of unnecessary connections is

the driving force behind both acquiring new words and recog-

nizing them faster. Unnecessary connections cause an auditory

input to activate multiple lexical units. These lexical units

compete, moving in the direction of winner-take-all. Since the

network does not settle until this competition is resolved, it is

the presence of these momentarily active competitors (driven by

unnecessary connections in the weights) that ultimately leads to

a longer settling time. This suggests that empirical correlations

between RT and vocabulary size (Fernald et al., 2006; Zangl et

al., 2005) may be driven by the fact that children who know

more words may also have fewer spurious associations at that

point in development. More sophisticated eye movement para-

digms may be able to test this by evaluating more precisely

degree of competitor activation.

Acceleration and deceleration. Developmentally, these sim-

ulations suggest a steep decrease in settling times early, followed

by a flattening. This pattern is commonly seen in power law or

exponential decay function in the literature on general learning

principles and has appeared in a variety of motor and cognitive

learning tasks (Anderson, 1982; Heathcote et al., 2000; Logan,

1992; Newell & Rosenbloom, 1981; Wifall et al., 2012), suggest-

ing that word learning may operate by similarly general principles.

The power law has always been interpreted as demonstrating that

learning slows throughout training, which would seem to violate

the acceleration commonly observed in word learning. However,

our model does both.

To understand this, we looked for a relationship between the

greatest change in RT and the change in number of words known.

Figure 11A shows the change in RT and words known for the

models learning under 25% referential ambiguity. Here both RT
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and words known undergo their greatest change at around 5,000

epochs, implying some fundamental process that affects both at

this time. However, Figure 11B shows the same data for the

models learning under 50% referential ambiguity. Here the time

course of lexical acquisition is pushed much later (peaking be-

tween 60,000 and 70,000), but the pattern of RT barely moves.

Thus, the timing of changes in RT does not clearly map to changes

in the number of words known.

What can explain apparent acceleration and deceleration in

learning? As we discussed in the prior section, the best predictor of

RT is the magnitude of the spurious connections between auditory

and visual competitors and the current lexical unit. These consti-

tute the bulk of the weight matrix. If there are 35 � 500 � 17,500

weights connecting auditory and lexical nodes, only 35 of them are

correct—17,465 must be suppressed over learning. However,

weight decay is also widespread. Every time a word is heard,

thousands of weights are not used and therefore suppressed. Thus,

there are quick RT gains to be made for suppressing unnecessary

competitor weights, and this can be done in virtually all circum-

stances. Any word, with any degree of referential ambiguity, will

result in some weights being decayed.

The number of words known is more complex. It requires two

positive weights (auditory ¡ lexical and visual ¡ lexical) and an

absence of competing weights. Neither the irrelevant weights nor

the positive weights are singly related to it. Even if the network

had a very strong connection between an auditory word form and

its lexical unit, if there were other strong competing connections,

the word would still not be learned. Thus, in contrast to reducing

RT, actually learning a word requires a confluence of events and

is much more difficult. This is clear in the correlations observed in

the previous section: Words known were best correlated with

entropy, a global measure of the weights (R � 	.91), and less so

with either spurious (R � 	.56) or relevant (R � 	.60) weights,

whereas RT was best correlated with spurious weights (R � .91)

and less so with the other measures (relevant weights: R � .21;

entropy: R � .42). Thus, despite the fact that the development of

both RT and vocabulary size rely on fundamentally the same

learning mechanism, the fact that each must be measured through

a situation-time measure means that they may tap different aspects

of learning, and hence show different learning curves.

Discussion. This simulation shows similar results to Fernald

et al.’s (1998, 2006) studies: The dynamic associative model’s

familiar word recognition improves over time. This improvement,

which appears as gains in the efficiency of a skill, actually derives

from changes in knowledge (connection weights). Crucially, the

suppression or pruning of the irrelevant weights is the dominant

factor—the bulk of word learning may consist of learning which

objects and words do not go together (cf. Regier, 1996). We also

show that word learning does not have to differ from general

approaches to learning that predict decelerating RTs, even as it

shows acceleration in vocabulary size. This underscores the fact

that word learning may operate by general learning principles and

challenges the utility of drawing strong conclusions based on the

shape of vocabulary growth (McMurray, 2007). Critically, each of

these measures derives from different changes in the underlying

associations, showing the multifaceted nature of association learn-

ing in this context. At a broader level, however, the acquisition of

word–object linkages, a clearly developmental-time learning phe-

nomenon, is directly implicated in the ongoing development of

processing speed, a situation-time measure. In fact, changes in

processing derive entirely from a nonobvious component of learn-

ing—suppression of irrelevant connections.

Simulation 2.2: Referent Selection by Mutual

Exclusivity

If the development of familiar word recognition derives from

the same learning mechanisms as the acquisition of new words,

this raises the question of whether the processes that infer the

referents of novel words can also arise from these mechanisms.

The plethora of proposed constraints and specialized inference

processes imply that children deploy additional mechanisms in

novel naming situations. Yet, how does the child first determine

that the word is novel and then which constraints to apply?

Although some have argued for a decision process of some kind

(Merriman et al., 2008), an alternative and perhaps more parsimo-

nious account is that these biases emerge out of the same dynamics

that give rise to familiar word recognition.

In our dynamic associative model, both novel and familiar words

undergo the same competition and associative learning. Given that
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early in training all words are novel, the fact that this model is able to

learn words at all suggests that it is not a priori necessary to separate

novel and familiar word processing to solve the referential ambiguity

problem. However, it is not clear whether the model also shows

systematic biases in how it interprets novel words.

Simulation 2.2 evaluates mutual exclusivity. Mutual exclusivity

is the idea that a novel word cannot refer to a referent that has a

previously established word–referent link; that is, words are mu-

tually exclusive. In terms of behavior in referent selection tasks,

however, children are said to be following the mutual exclusivity

constraint when they exclude objects with known names as the

referent of novel words (Mervis & Bertrand, 1994). Note that there

are debates over whether the inference children make in such cases

is best described as mutual exclusivity (Markman & Wachtel,

1988), a process of matching novel words to novel objects (Mervis

& Bertrand, 1994), or another form of inference (Halberda, 2006).

Likewise there are debates over whether this constitutes learning

(Horst & Samuelson, 2008; Spiegel & Halberda, 2011). Here we

are only using mutual exclusivity as a moniker for a behavioral

phenomena that happens in the moment when children are con-

fronted with a novel name, a novel object, and several familiar

objects. We are not implying any specific inference principle (in

our view it arises from competition dynamics), nor are we imply-

ing learning—in terms of either an initial, quick link (as the term

fast mapping, often applied to such situations, does) or a longer,

more robust connection. Rather, we will simply refer to the phe-

nomenon of selecting the object that does not have a name when

confronted with novel and known objects and a novel name as

referent selection by mutual exclusivity, or M.E. reference selec-

tion for short.

Crucially, M.E. reference selection minimally requires a range

of available objects, a novel word, and some partially learned

weights. All of these are present in this model. Thus, though many

of the proposed biases and constraints “live outside” the simple

architecture of this model, mutual exclusivity is clearly within the

domain of our model, raising the possibility that it could arise in

the context of the competition dynamics.

To examine this, 20 networks were initialized with 40 auditory

and visual units and 500 output units (see Table 3). Of the 40 input

units, 30 were used during training; the remaining 10 novel units

were never heard or seen. Thus, by the end of the 100,000 training

trials, the model had a lexicon of 30 words, but an additional 10

novel words, whose weights were largely unchanged. After train-

ing at 50% referential ambiguity, the models were tested in three

ways. For ease of description, we describe these as three-letter

strings, with the first letter representing the status of the target.

First, we used a 3AFC task with all familiar words (FtFF) for

comparison with previous models. Second, we tested M.E. referent

selection trials, using a novel target, with two familiar objects

(NtFF). Finally, we used the same configuration of competitors,

but with a familiar target (FtFN). Here, if the model always

selected the novel object, we should see a performance decrement.

To construct five novel and familiar trials, the network needed to

know at least 10 words, so we tested all 30 words in a production

task prior to constructing these test trials, and models without a

10-word vocabulary were not tested.

Results. The models ultimately acquired 28.7 of the 30 words

(by the production task). Figure 12A shows the models performance

on the three primary tests. Models were 99.8% correct on the 3AFC

task and 100% correct on familiar word trials and M.E. referent

selection trials. Thus, fully trained models were effective at identify-

ing familiar words (both with and without the novel object) and at

matching the novel word with the unnamed visual object.

Given that the model has no explicit mechanism for mutual exclu-

sivity, how did this emerge? The answer lies in the interaction of the

competition and the learning rules. Figure 12B shows the visual-to-

lexical weight matrix for a single run of the model after 100,000

training epochs. The x-axis shows the index of each of the 40 visual

units (Units 1–30 are familiar words, and Units 31–40 are novel

words). The y-axis shows the index of the lexical units. The model

had 500 lexical units, but we only show lexical units that were

strongly connected to one of the familiar words along with a

random sample of 20 output units for the novel words.7

For familiar words each object is strongly connected to a single

lexical unit. This can be seen in Region 1, which resembles the

weight matrices displayed earlier for a trained network. Similarly,

Region 2 shows that the connections between these familiar ob-

jects and the unused lexical units were eliminated, so it would be

difficult to assign a novel word to one of these objects. Region 3

7 We also changed the order to group the “assigned” lexical units
together (a typical run of the model would recruit output units from across
the array with no relationship to the order of the inputs).
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Figure 12. (A) Performance on the 3AFC, familiar word, and mutual

exclusivity referent (M.E. ref.) selection trials. (B) Representative weight

matrix. Darker patches indicate stronger connections. AFC � alternative

forced-choice; F � familiar; N � novel.
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shows that lexical units that have been assigned to a visual input

are also not connected to any other visual input, including the

novel objects. Most importantly, however, Region 4 shows that the

novel objects all have small and variable connections to the re-

maining, unused lexical units. As a result, it is highly likely that

there will be an associative path that allows activation to spread

from a novel word to a novel object, even though these associa-

tions are random. Conversely, it is quite unlikely that a novel word

could activate known objects.

This particular structure in the weights comes from the weight

decay in the learning rule:

�wxy � vxly(1 � wxy)

�. 5 · (1 � vx) · ly · wxy

�. 5 · vx(1 � ly) · wxy. (9)

Here weights decay in two circumstances. First, they decay when-

ever a visual unit is on and the corresponding lexical unit is not.

Thus, the connections in Region 2 are pruned because the familiar

objects have developed connections with a single lexical unit, and

lexical inhibition prevents a second one from becoming active.

Second, they decay if a lexical unit is active but the visual input is

not. Thus, the weights in Region 3 decay because the network has

not encountered these objects but has used the corresponding

lexical units for other words. The weights connecting novel inputs

to unused lexical units never decay because neither class of units

is ever active. As a result, connections in Region 4 maintain their

original (small, random) values. Then, when a novel word is

encountered, these connections permit the network to activate (to

various degrees) a large number of lexical units. This activation

feeds back to the visual units, but since the familiar objects are not

connected to any of these now active lexical units, only the

activation of the novel visual objects is amplified. This allows the

network to select the correct (novel) object.

Thus, the selection of the novel object is dependent on the

learning rule, but not because the network needs to learn some-

thing about that object or word. Rather, the weights between the

known words and objects and the unused lexical units must decay,

and the weights between the novel ones must not in order to create

a platform upon which real-time competition dynamics can select

the right object. A different type of weight decay (e.g., if all

weights decayed on each epoch) would not preserve the right form

of the weight matrix. However, learning is not the whole story:

This pattern of connectivity could not be harnessed in situation

time without the gradual settling process represented by the inhi-

bition and feedback dynamics. Moreover, the model’s ability to

learn from M.E. referent selection may also depend on this

competition–feedback cycle. The model must select a single lex-

ical unit and selectively amplify the novel object in order to

eventually turn a word–referent link created during M.E. referent

selection into a known word by associating the novel object with

the novel word over many instances. Thus, though as a real-time

process mutual exclusivity is likely to impact learning, it is really

more the product of learning than a mechanism of it. This implies

that some types of learning environments may make it more

difficult for children to engage in this by eliminating this particular

structure of associative weights. This will be examined in Simu-

lation 4.2.

Simulation 2.3: The Development of M.E. Referent

Selection and Visual Familiarity

In some ways, the previous model performs mutual exclusivity

too well—children rarely approach 100%. Yet, this was a fully

trained adult model, so it was important to examine the model

developmentally. There have been few comprehensive develop-

mental investigations of mutual exclusivity. We do know that in a

2AFC task children can succeed at about 18 months, depending on

vocabulary size (Markman et al., 2003), but fail at 5AFC novel

word tasks until after the vocabulary spurt (Mervis & Bertrand,

1994). Further, Halberda (2003) showed a clear developmental

time course with 14- and 16-month-olds failing in a 2AFC looking

version of the task but 17-month-olds succeeding. Thus mutual

exclusivity is not an innate constraint but develops over time.

Given the prior simulation demonstrating the dependence of mu-

tual exclusivity on learning, we investigated this by rerunning the

20 models described in the previous section but measuring perfor-

mance every 5,000 epochs.

Results. Figure 13A shows the results. The lines marked by

open diamonds show the model’s performance on the 3AFC (FtFF)

and production tasks. These were run regardless of how many

words the model knew and show a steady improvement over

learning. The models knew enough words to be tested on M.E.

referent selection by around 45,000 epochs, and at this point

performed at nearly 100%: By the time model knew enough words

to be tested on mutual exclusivity, that ability was present. Indeed,

runs of this model with fewer novel word trials (hence requiring

fewer known words) show even earlier abilities, suggesting that

this model may be able to do this task with very little experience.

This was unexpected. Apparently it did not take much learning

to set up the right structure in the weight matrix (and given the

dramatic changes in irrelevant connections seen in the first 1,000

trials in Figure 9, this may be sufficient). One factor that may

moderate this is visual familiarity. Our analysis of the weight

matrix suggests that good M.E. referent selection derives from the

fact that the novel visual units have never been active to any

degree. Yet, most experiments do not use stimuli that are com-

pletely unfamiliar. Typical novel objects such as whisks and juic-

ers, though unlikely to be named, have likely been seen before, or

may be similar to things that children know. Thus, we ran an

additional set of simulations in which the novel visual units were

seen (but never named) on some proportion of the trials. The

likelihood of seeing a novel object varied from 5% to 50% (since

the referential ambiguity rate was 50%, so this last condition was

equivalent to the unnamed objects being as familiar as the known

objects).

The effect of familiarity. Results are shown in Figures 13B–

13F. Figure 13B shows the lowest level of familiarity—novel

objects appeared 5% of the time—and Figure 13F shows the

highest, in which novel objects were as likely to appear as known

objects (though never named). The familiarity of the novel objects

does not seem to influence responding on the familiar word trials

(FtFN)—performance was equally good in all simulations. Impor-

tantly, however, even a small amount of visual familiarity impedes

M.E. referent selection at early points in development. Figure 13B

shows that a marginal amount of familiarity brings initial perfor-

mance down to 55%, and any more can bring it down to chance.

Very quickly after that, performance seems to develop to full
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Figure 13. Performance on familiar and mutual exclusivity referent (M.E. ref.) selection trials over development
(filled symbols). Also shown are the number of words known (percentage of 35) measured by both the 3AFC and
weight analysis (open symbols). Panels represent different likelihoods of the novel words appearing as visual foils.
AFC � alternative forced-choice; F � familiar; N � novel.
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capacity. However, when the novel foils are highly familiar, M.E.

referent selection is never very good. Thus, at least for this model,

mutual exclusivity is not solely about lacking a name (as accounts

like N3C suggest). The familiarity of the object may play a role as

well.

Thus, there may be effects of visual novelty in these tasks that

can be seen developmentally—the use of more novel objects could

lead to better referent selection by mutual exclusivity. Indeed,

Horst, Samuelson, Kucker, and McMurray (2011) showed that in

a completely unconstrained referent selection task (three novel

objects), children were heavily biased toward objects that were not

seen in a brief familiarization. This raises the possibility that at

the early stages, mutual exclusivity is really more of a novelty

preference, rather than a complex inference. Moreover, beyond

visual novelty there may be other ways to slow down the

development of M.E. referent selection. For example, we have

found in ongoing work with this model that including some

quantity of low-ambiguity (ostensive naming) trials along with

higher ambiguity trials can give rise to a similar effect (Mc-

Murray et al., in press).

Section 2 Discussion

These simulations capture a number of classic findings in word

learning, including the improvement in efficiency of familiar word

recognition and referent selection by mutual exclusivity. They

show that changes in familiar word recognition, though manifested

in online processing, are better characterized by the shape of the

learned connections. Moreover, this same learning can give rise to

both a deceleration in RT and acceleration in the number of words

known. Word learning can be a general learning process. Simi-

larly, referent selection by mutual exclusivity, though it may

appear a specialized inference process, can arise out of the same

competition dynamics as familiar word recognition, when this

process plays out over connections established during learning.

This allows us to capture how exposure to objects alters referent

selection by mutual exclusivity. More importantly, embedding this

within a system that recognizes familiar words and learns word–

object linkages allows for a richer explanation.

In both of these simulations, these ostensibly situation-time

processes are the product of learning—but not any simple version

of learning. With respect to familiar words, the most important

predictor of processing speed is how the unnecessary connections

decay. Similarly, mutual exclusivity fundamentally relies on a

learning rule that describes a particular pattern of weight decay.

Thus, suppressing competing associations is essential to multiple

aspects of word learning. Similarly to Fernald et al.’s (2006)

account of changes in processing speed, Mervis and Bertrand

(1994) suggested that the number of words is the critical factor that

predicts the onset of M.E. referent selection. However, this does

not offer a clear mechanism of change in this context because the

competitors are always familiar in mutual exclusivity task. Our

model suggests that development has more to do with the pruning

of weights (which is likely correlated with the number of words

known, and was in the model). Across both simulations, however,

the more important message is that to take advantage of the

explanatory power inherent in this version of associative learning,

we must consider both the positive and negative associations.

Section 3: The Relationship of Situation- to

Developmental-Time Processes

The previous simulations demonstrate that apparently situation-

time processes are the product of learning. This section addresses

the converse: How do the details of processing impact learning?

Simulation 3.1 models data suggesting independence of time-

scales: Horst and Samuelson’s (2008) work on retention after M.E.

referent selection. Simulation 3.2 examines task effects on mutual

exclusivity over development. Simulation 3.3 returns to familiar

word recognition, and examines longitudinal work showing that

recognition time predicts the future rate of acquiring new words.

Finally, Simulation 3.4 asks whether learning can occur without

processing.

Simulation 3.1: Referent Selection by Mutual

Exclusivity and Retention

Horst and Samuelson (2008) showed that children do not retain

words after referent selection by mutual exclusivity. This suggests

that this behavior is a situation-time process and not synonymous

with learning. Our dynamic associative account is ideal for cap-

turing such effects: Referent selection emerges out of online com-

petition, while learning is slow and may not be able to acquire a

word in one exposure. Our model can extend these findings by

asking whether anything is retained from referent selection and

what circumstances may be necessary to see it.

We simulated Horst and Samuelson (2008) by initializing 20

models with 40 input units, but only training them on 30 words

(see Table 4 for parameters). This left 10 novel words and objects

that did not receive any training. Five were used to test mutual

exclusivity, and the other five were held out. Referential ambiguity

for familiar objects (Words 1–30) was set to 50%, with novel

objects appearing as competitors 8.75% of the time (but novel

names were never heard).

Models were tested on several tasks. First, we assessed which

words were known with the production task. Only words that

passed this test were used in subsequent testing. Next the model

received five novel (NtFF) and five familiar (FtFN) word trials as

in Simulations 2.2 and 2.3. However, unlike those simulations, the

model learned on these trials, enabling tests of retention for these

words. Finally, on retention trials, each of the five novel objects

named on the prior M.E. referent selection trials was paired with

another novel object and a held-out object (NtNH). Though learn-

ing (weight change) occurred throughout the sequence of test

trials, the total learning over a single batch of testing was not

carried back to training.

Results. Figure 14A shows the model’s performance on each

type of trial over the course of training. As before, familiar and

novel word performance was excellent after the emergence of

mutual exclusivity at around 45,000 epochs. However, the model

was not able to retain the words that were tested in the M.E.

referent selection trials, averaging 38% correct retention.

Based on the prior simulations, we were concerned that the

visual familiarity of the novel objects may have created this effect.

Thus, we replicated these simulations under two conditions: one in

which the novel and held-out objects were never seen during

training and one in which they occurred frequently (p � .375).

When the novel objects were completely unfamiliar, results were
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similar (see Figure 14B): Referent selection performance was at

ceiling (as in Simulation 3.1), but retention was at chance. How-

ever, when the novel objects were highly familiar (but unnamed),

there was a period during which the model did well in referent

selection, but not retention, followed by later points in develop-

ment when the model could do both (see Figure 14C). This fits

with recent work by Kucker and Samuelson (2012) showing that

24-month-old children can retain links created in an M.E. referent

selection context if they play with the objects prior to the mutual

exclusivity trials. It is also relevant to Spiegel and Halberda’s

(2011) recent finding that older children (30-month-olds) appear to

retain word–object mappings, though in an easier-looking task.

Overall, then, the model fits the pattern of Horst and Samuelson

(2008), showing excellent performance in referent selection by

mutual exclusivity, but a failure to retain when contextual support

is removed. This raises the question of how much, if anything, the

model learned from a single mutual exclusivity trial. Though gross

performance did not yield evidence of learning, there may be a

small amount of learning that is insufficient to drive overt reten-

tion.

To assess this, we examined the amount of change in subsets of

each weight matrix at various points in training using the root-

mean-squared difference between the weights at two points in time

(e.g., before and after the mutual exclusivity trials). Weights were

divided up (see Figure 14D) into weights connecting lexical units

to (a) familiar words, (b) novel words, and (c) held-out words. We

then computed the weight change (learning) in each group that

occurred during learning and during mutual exclusivity trials.

Including the held-out units allows us to determine how much

change to expect for completely unused items.

Figures 14E and 14F shows the results. Figure 14E shows the

amount of weight change up to the point where the model was

tested at 100,000 epochs. There is quite a bit more change in the

weights for familiar words (which are being trained) than the novel

or held-out words, particularly in the auditory weights. This makes

sense: The novel and held-out auditory units are never activated,

whereas the novel visual ones occasionally appear as competitors.

In contrast, Figure 14F shows the amount of weight change during

the mutual exclusivity trials. There was some learning on these

trials and generally more learning for the novel words than the

others. However, the amount of learning on these trials is far less

than what was learned about those words over the course of

training—when they were never heard! It is also far less than what

a truly familiar word would have received. Moreover, this small

amount of learning is not responsible for the excellent performance

in referent selection by mutual exclusivity—when learning was

turned off during these trials (Simulation 2.2), the model still

performed at 100%.

Nonetheless, this offers a clue to how M.E. referent selection

relates to learning. The model learns a little something from each

of these trials, and over the course of many such trials, this

accumulates to yield complete word learning (see also Horst et al.,

2006). But crucially, that tiny amount of learning we observed on

that first exposure to a novel word is not different from what would

be observed on the second, third, or fourth exposures. Moreover,

this learning consists not only of building or maintaining correct

associations, but also (and to a much larger extent) of suppressing

unnecessary ones. Thus, what happens during this first referent

selection is quite different from what earlier views (Carey, 1978)

may suggest. Thus, referent selection by mutual exclusivity,

though a primarily in the moment process, leaves a small trace in

the weights that can accumulate to achieve real knowledge.

In retrospect, the training used in all the simulations thus far

likely included many mutual exclusivity trials. Since competitors

were randomly chosen on each epoch, there were likely many

epochs in which the model knew all the words except the target (or

knew more about the competitors than the target). In this way,

there is nothing fundamentally different about familiar and novel

words.

Simulation 3.2: Effect of Task

Section 1 suggests that task has a critical effect on the model’s

performance (e.g., the delay in productive vs. receptive vocabu-

lary). Similarly, mutual exclusivity also has the characteristics of a

task effect: The two familiar words constrain the task, permitting

the model to perform well despite no knowledge of the novel word.

This predicts that task variables such as the number of alternatives

may affect mutual exclusivity, particularly early in development.

Mervis and Bertrand (1994) measured referent selection via

mutual exclusivity as a function of vocabulary size. They found

that only children with relatively large vocabularies (greater than

Table 4

Parameters for Simulations in Section 3

Parameter
3.1: Familiar

word retention
3.2: Familiar word

task
3.3: Longitudinal
word recognition

3.4: Learning and
competition

Input units 40 40 35 35
Familiar words/objects 30 30 35 35
Novel words/objects 5 10 0 0
Held-out words/objects 5 0 0 0
Lexical units 500 500 500 500
Initial weight size .25 .25 .5 
 .025 .5
Learning rate .0005 .0005 .0005 
 .00002 .0005
Referential ambiguity .5 .5 .65 
 .03 .2, .5, .8
Novel object seen .0875 .0875, .25
Feed-forward temperature .01 .01 .01 
 .0065 .01
Feedback temperature 2 2 2 
 .1 2
Stability point 1e-12 1e-12 10	12 
 .25 1e-12
Input inhibition 1.05 1.05 1.05 
 .01 1.05
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Figure 14. Performance on mutual exclusivity and retention. (A) Performance on familiar word, mutual
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90 words) consistently performed well in the mutual exclusivity

task (despite the fact that the familiar objects were known to each

child). Moreover, for the children who failed at this task, once their

vocabularies reached this level, they too could select the correct

referent. Thus, some critical quantity of words may be required

before this ability emerges. However, Markman et al. (2003)

pointed out that the four- and five-alternative mutual exclusivity

tasks used by Mervis and Bertrand may have simply been too

difficult. They used a two-alternative task (one familiar and one

novel object) and demonstrated that regardless of vocabulary level,

all children could succeed at the mutual exclusivity task. Horst et

al. (2010) further showed that by 30 months, the number of

competitors made little difference in children’s performance

(though it did affect retention). Thus, task differences may disap-

pear later in development.

To examine this, 20 models learned 30 words at 50% referential

ambiguity. As before, 10 novel words were held out for testing.

Novel visual units appeared as competitors with a likelihood of

8.75%, to obtain nonceiling performance on mutual exclusivity

trials. Every 2,000 epochs, the model was tested in both 3AFC and

5AFC familiar and novel word tasks. For both familiar and novel

word tasks, the competitors consisted of two or four familiar

objects and one novel object (FtFN, FtFFFN, NtFF, or NtFFFF). As

before, words were screened with the production task, and models

were not tested unless sufficient words were known.

Results. Figure 15A shows that, as expected, models per-

formed equivalently and at ceiling on both 3AFC and 5AFC

familiar word tasks. In the M.E. referent selection tasks, models

performed better in the 3AFC task than the 5AFC task early in

development, also as predicted. Figure 15B shows results from a

second set of simulations in which the novel objects appeared 25%

of the time. It suggests that this task difference was enhanced when

the objects were more familiar. In both cases, however, the effect

of task was eliminated quickly after M.E. referent selection got off

the ground. Thus, as in children, task differences in referent

selection by mutual exclusivity are only observed at a narrow

window in development.

Simulation 3.3: Processing Speed and Rate of

Acquisition

We have described referent selection by M.E. as primarily a

situation-time inference process, but one that is fundamentally

based to prior changes in the weights due to learning. We now ask

whether such interactions between timescales are also seen in

familiar word recognition.

A study by Fernald et al. (2006) offers an intriguing platform for

this. They examined 63 infants longitudinally between 12 and 25

months and assessed both the number of words known (using the

MCDI), and the infants’ speed of processing familiar words using

the looking-while-listening task. They found first that speed of

processing in this lexical task (RT) is stable across individuals

(though decreasing) from month to month. Second, there was a

correlation between speed of processing and accuracy in prefer-

ential looking. Third, RT was negatively correlated with the num-

ber of words known, particularly for the older children (25

months). These first findings could be accounted for by simply

assuming that processing speed is a function of learning, much as

we showed in Simulation 2.1; learning influences processing.

However, Fernald et al. also found that the children with signifi-

cantly shorter RTs at 25 months showed more acceleration in the

number of words acquired. This suggests the converse, that pro-

cessing influences learning. Fernald et al. concluded that process-

ing speed may be a property of the child that is fundamentally

related to word learning. This motivates a compelling link between

online processing and learning. They argued that children who can

identify words faster have more resources (or time) to process

subsequent words, allowing further opportunities for learning.

This simulation asks whether our model shows these same

dependencies. This can validate the model by simulating a com-

plex set of phenomena and extend it to individual differences. It

also affords the opportunity to understand the mechanisms that

give rise to this particular relationship between learning and pro-

cessing. In particular, our model does not have the sequential

processing demands of real children, so if it still shows such

dependencies, it may help illuminate alternative accounts. More-

over, as processing speed can derive from both differences in

activation flow and differences in learning, we can start to under-

stand the range of causes that can give rise to this crucial descrip-

tor.

To simulate this, we needed individual differences across mod-

els. Though some variation is created by the random initial weights
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and the random sequence of training, this was not sufficient. Thus,

across simulations we also varied the free parameters of the model

as an additional source of variation (cf. McMurray, Samelson, Lee,

& Tomblin, 2010). We initialized 100 networks and varied param-

eters such as the temperatures, the inhibition, and the learning rate

by adding Gaussian noise to the means used in prior simulations

(see Table 4).

Models were trained on a lexicon of 35 words. They were tested

every 1,000 epochs on all 35 words in a 2AFC task, and we

recorded both the number of words known (by this measure) and

the average settling time. Similar to that in Fernald et al. (2006),

settling time was only recorded for trials on which the network

answered correctly. Models were also tested on a 20AFC compre-

hension task. Our analysis follows the findings of Fernald et al.

(2006). We assess the stability (within a time slice) of our mea-

sures of RT and accuracy, and then the correlation of these

measures with the rate of long-term learning.

Results.

Stability of RT and accuracy measures. Table 5 shows the

pairwise correlations in RT and accuracy in the 2AFC task for

adjacent tests. Both RT and accuracy were highly correlated across

time, with an average correlation of .9 (RT) and .57 (Accuracy).

These are higher than the correlations found by Fernald et al.

(2006), who reported correlations in the range of .2–.4 for RT and

.25–.5 for accuracy, but not unexpected for two reasons. First,

children have a range of processes outside the model that may

introduce variability. Second, our test included all 35 words,

whereas Fernald et al. only tested four to eight words—a much

smaller sample of a much larger lexicon. As a result, the models’

estimates of RT and accuracy were likely to be closer to the true

values than behavioral work can derive for children.

Despite these correlations, however, the model is not perfectly

stable. Figure 16A shows 2AFC performance over training for six

representative runs of the model. Model 09, for example, starts

with one of the worst performances, but is quite successful by the

end. Model 07 is the worst, but by about 10,000 training trials (Log

4), it tracks quite closely with 11, the best. There is also consid-

erable variation when the models start to perform quite well.

Figure 16B shows a similar pattern for RT. Models 07 and 10, for

example, start with the worst RT, but end up with the lowest,

whereas Models 11 and 13 start low and stay low. Model 09

starts similar to Models 11 and 13, but ends high. Thus, despite

these remarkably high pointwise correlations, looking at the whole

time course of development (and sampling at a much higher rate),

we see that the underlying instability of the developmental time

course is not well captured by the correlations. This supports the

kinds of microanalyses advocated by Adolph et al. (2008).

Relationship of speed to accuracy. Fernald et al. (2006) also

found negative correlations between speed and accuracy at any

given month: Children who settled faster got more words correct

(R � 	.3 to 	.5). This was also observed in the simulations. Table

6 (Accuracy column) shows the correlations between the number

of correct 2AFC trials and the log of the settling time. At 5,000 and

10,000 time steps there was no significant correlation between

these two factors. However, this is expected, because the models

knew an average of 3.8 words at 5,000 and 4.9 at 10,000 (chance

on our 20AFC task would predict 1.75 words). By 15,000 epochs,

however, the models knew an average of 7.5 words (by our 20AFC

assessment), and correlations between RT and accuracy were

significant (R � 	.30, p � .01) and increased throughout devel-

opment (to R � 	.85 by 100,000 epochs). These correlations were

negative: Models with lower settling times knew more words.

Relationship of speed to vocabulary growth. In the longitu-

dinal study, RT at 25 months predicted the acceleration in word

learning across the period studied. To assess this, Fernald et al.

(2006) fit quadratic functions to the number of words known at

each month. They compared each term of this function to the RT

at 25 months and found a significant correlation with the quadratic

term (but not the linear term or the intercept), suggesting that

settling time is related to acceleration in vocabulary growth.

The model showed the same behavior. For each model, we fit a

quadratic function to the number of words known (in the 20AFC

task) over the first 25,000 epochs. This roughly corresponds to the

period of early learning studied by Fernald et al. (2006)—by

25,000 epochs, the models averaged 11 of the 35 words and were

through their first period of acceleration. As Table 6 shows, the

quadratic term was correlated with settling time at every time step,

whereas the linear and intercept terms were not (except at the first

time step). Thus, the model shows the same relationship between

speed of processing and vocabulary growth as children.

Fernald et al. (2006) posited that in running speech, children

who finish processing a word quickly can move on and learn from

subsequent words. This does not seem to be the case here—the

model is reset between words. Although this does not rule out this

sort of bootstrapping in children, it does suggest that such rela-

tionships can arise from other causes. For example, in our model,

the parameters controlling settling dynamics (RT) may also alter

the networks’ ability to resolve referential ambiguity, which could

affect learning. Or conversely, as we have shown, settling time is

primarily a function of learning, so both effects may derive from

the same cause.

What parameters influence outcome measures? Fernald et

al. (2006) described speed of processing as a fundamental param-

eter describing variation among children. At the level of descrip-

tion, this is undoubtedly correct, though the underlying mecha-

nisms are not clear. Our model offers a set of candidate

parameters, but no single one maps directly to speed of processing.

Rather, the speed with which the model processes input is an

emergent property that derives from multiple components: Param-

eters such as the temperature and the degree of inhibition that

directly affect the dynamics of settling are clearly important, but

Table 5

Correlation of Reaction Time and Accuracy (With Themselves)

Across Time Slices

Epochs Reaction time Accuracy (2AFC)

5,000–10,000 .77�� .39��

10,000–15,000 .83�� .47��

15,000–20,000 .90�� .54��

20,000–25,000 .94�� .66��

25,000–30,000 .94�� .53��

30,000–50,000 .96�� .54��

50,000–75,000 .92�� .65��

75,000–100,000 .95�� .79��

Note. AFC � alternative forced-choice.
�� p � .01.
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the biggest component may be the weight matrix, a product of

learning.

We examined the relationship between our behavioral measures

and each of the parameters that were manipulated to create indi-

vidual differences across development. Correlations are shown in

Table 7. A number of factors were significant predictors. The

number of visual competitors, for example, was correlated with

learning: Models with more competitors learned more slowly. The

stability point (e.g., how little change was required to end a trial)

was moderately correlated with RT (models with high thresholds

tended to settle slower) but inversely related to learning (the

models with the lowest thresholds knew the most words). Input

inhibition played a role in settling time, but not so much in learning

until the end of the simulation at which point models that had

stronger inhibition showed more words learned. This suggests that

the ability to inhibit competing representations in the visual layer

is important both for quickly settling on a target and for ultimately

learning the correct mapping. Learning rate was not a strong

predictor, but later simulations (see supplemental materials, Sim-

ulation S3) suggested that the range of learning rates we tested

may not have been sufficient.

The most important predictor was feed-forward temperature, the

rate that activation accumulated in the lexical layer from input

layers. It was highly correlated with settling time (at all points in

development) and with the number of words known at mid- to late

points in development. Oddly, however, the correlations with RT

were the inverse of what we expected: Models with higher tem-

peratures settled slower (and learned worse). Follow-up simula-

tions (reported in the supplemental materials, Simulation S2) dem-

onstrate that this is due to the fact that models at a high

temperature settle slower because they artificially increase activa-

tion for the competitors (as well as targets), and thus take longer to

suppress them.

Given the complex role of temperature and other parameters

contributing to settling time and learning, we suggest that concepts

such as “speed of processing” do not reflect a unary dimension of

the underlying architecture. Rather, they are emergent on a com-

plex interplay of system dynamics, the performance in the tasks,

and the developmental history. Crucially, even the parameters

controlling dynamics were correlated with number of words

learned (which in turn is a predictor of settling time), and thus

many of these effects may be mediated via learning.

Discussion. Our dynamic associative model provides a com-

pelling complement to Fernald et al. (2006). The model shows the

same stability of RT across development as children, but suggests

that there may significant instability when we look closer. It

demonstrates the link between RT and accelerating learning but

without any simple causal mechanism (e.g., processing capacity).

Rather, the relationship derives from the fact that both processing

and learning derive from changes in the weight matrix.

More importantly, the model offers a way to interpret RT. RT

may not be isomorphic to some elemental individual difference.

Rather, it emerges from the interplay of the properties of both

learning and the dynamics of competition. These create a fairly

stable measure, but one that affects RT and learning at different

points in time, as we saw in Simulation 2.1 with respect to

acceleration and deceleration. Although processing time is clearly

an emergent property of network dynamics and learning, it also

reflects individual differences in things such as the learning rate,

the temperature, and the like. And because these things also affect

learning, it suggests a highly circular and mediating relationship

Table 6

Correlations Between Speed and Accuracy, as Well as the Three

Components of the Growth Curve in Overall Words Known

(20AFC)

Time step Accuracy

Growth function

Quadratic Linear Intercept

5,000 .10 	.38�� .35�� 	.16
10,000 .04 	.34�� .08 .10
15,000 	.30�� 	.24� 	.07 .18
20,000 	.35�� 	.25� 	.07 .16
25,000 	.48�� 	.28�� 	.05 .18
30,000 	.52�� 	.28�� 	.05 .15
50,000 	.64�� 	.28�� 	.06 .17
70,000 	.77�� 	.29�� 	.04 .16

100,000 	.85�� 	.26�� 	.06 .15

Note. AFC � alternative forced-choice.
� p � .05. �� p � .01.
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between learning and processing. As Simulation 2.1 showed, pro-

cessing time is determined in large part by the nature of the weight

matrix (and the irrelevant connections in particular), so it should

not be surprising to find such a relationship. Only if processing

time is treated independently of lexical knowledge does this seem

surprising. This suggests that explanations of individual differ-

ences based on speed of processing (e.g., Kail, 1994), though

perhaps behaviorally stable, may oversimplify the problem, par-

ticularly when learning is involved.

Simulation 3.4: Is Online Processing Required for

Learning?

The previous simulations suggest interactions between learning

and processing, deriving in part from the nature of the weight

matrix and how it influences real-time competition. In the present

simulation, we take this to the extreme, asking whether real-time

processing is necessary for learning.

Models of unsupervised learning in other domains suggest that

unsupervised learning may require some form of competition

(McMurray, Aslin, & Toscano, 2009), and most unsupervised

architectures include some form of it (e.g., Kohonen, 1982; Ru-

melhart & Zipser, 1986). Perhaps, then, competition is required for

learning. If the competition–feedback dynamics allow the model to

improve upon ambiguous inputs, it would seem more efficient to

use the results of this processing as the basis of association, rather

than the more ambiguous inputs to it.

There are three components of competitive real-time processing

in this model. First, inhibition between lexical units allows more

active units to suppress activation for competitors. Second, feed-

back between the lexical layer and the inputs helps the network

suppress competing inputs (visual competitors) as it makes a

decision about the word. Finally, inhibition among input units

helps the network suppress competing inputs. All three contribute

to activating the correct lexical and visual units in situation time,

but it is not clear whether they are necessary for learning.

Thus, we ran a series of simulations that factorially varied

whether feedback, lexical inhibition, and input layer inhibition was

used. Each combination was run at three levels of referential

ambiguity (20%, 50%, 80%), yielding 24 simulations. This was

repeated 10 times for 240 simulations (see Table 4). Each model

was tested every 5,000 epochs. Models without feedback cannot

adjust activation in the visual units, making the NAFC tasks

useless. Thus, our primary measure was the analysis of the weight

matrices.

Results. Inhibition at the input layer was a fairly small con-

tributor to learning; thus, we averaged across models with and

without it for most of the analyses. Figure 17A shows the number

of words learned over training in each of the four permutations.

Lexical inhibition was required for learning. The models without it

acquired an average of 1.27 words, whereas all the models that

used it acquired all 35 words. Associative learning of this type

cannot proceed without the ability to suppress competitors at the

lexical level.

The effect of feedback (assuming the presence of lexical inhi-

bition) was more nuanced. The models with feedback (the full

model) acquired a few words very quickly, followed by a delay

before learning the rest (see Figure 17B). Models without feedback

took longer to get started, but once they did, they quickly outpaced

the models with feedback.

Although competition is clearly required, is there an advantage

for feedback? Possibly. It may help the model to acquire a small

working vocabulary quickly (see Figure 17B). It may also benefit

online processing. Figure 17C shows the settling time in a 3AFC

task of models with and without feedback. The processing ability

Table 7

Relationship Between Control Parameters and Output Measures in the Network

Measure
Initial

weight size
Learning

rate
No. visual

competitors
Stability

point
Feed-forward
temperature

Feedback
temperature

Input
inhibition

Reaction time

10,000 	.12 	.15 .09 	.19† .79�� 	.03 	.35��

25,000 	.09 	.09 .14 	.17† .82�� 	.04 	.30��

100,000 	.08 	.10 .09 	.12 .85�� 	.07 	.26��

Words known

10,000 .16 .07 	.31�� 	.20� .04 	.09 	.12
25,000 .22� .12 	.33�� 	.19� 	.31�� .02 .13

100,000 .09 .13 	.09 .27�� 	.87�� .09 .29��

2AFC accuracy

10,000 	.10 .21� 	.32�� 	.27�� .01 .02 	.11
25,000 0 .06 	.38�� 	.14 	.39�� .20† .17†

100,000 .09 .19† 	.09 .14 	.77�� .03 .22�

Growth curve

Quadratic .02 	.04 .01 .07 	.34�� .06 .24�

Linear .09 .11 	.15 	.13 .09 .02 	.14
Intercept 	.01 .03 	.09 	.02 .05 	.11 0

Note. AFC � alternative forced-choice.
† p � .10. � p � .05. �� p � .01.
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of the model with feedback improves much more rapidly and

stably than those without. Moreover, though feedback slows the

speed of learning, it may improve the quality. Figure 17D shows

the average of the weights connecting any given lexical unit to the

“incorrect” visual and auditory units. These should be 0 by the end

of learning. As can be seen in the figure, situation-time feedback

allows the model to suppress these connections faster over devel-

opmental time. Finally, feedback enables the model to change

activation in the visual layer as a lexical unit is selected, the basis

of our “behavioral” tests. Yet, this is not just a computational

convenience. For children, word learning must be integrated with

behaviors such as selecting referents (focusing attention). It makes

more sense to harness the word–object connections established by

word learning to guide these behaviors than to rely on a completely

feed-forward system that would have to acquire new mappings to

do this.

In Simulation 1.1, we described how online processing allows

the network to perform better than its partially learned knowledge

(weight matrix). However, the current simulations suggest that

online processing is much more important than that. Associative

learning in this model is simply not possible without some type of

lexical inhibition—the model must make a decision about what

word it was hearing. Online processing is not merely shaped by

learning, nor does it merely buttress performance. It is essential

for, and integrated with, learning.

Section 3 Discussion

This section simulated three empirical findings regarding the

interaction of situation- and developmental-time processes. Across

all three, we sought to determine (a) whether situation-time pro-

cesses are independent of development; (b) whether development,

particularly word learning, impacts situation-time processes;

and/or (c) whether situation-time processes impact learning.

Our dynamic associative account captured some of the evidence

for Objective a: the failure of children to retain recently novel

words from mutual exclusivity trials. However, it suggests that

though learning may be slow (requiring multiple trials), some

learning occurs during referent selection by mutual exclusivity. It

also accounted for Objective b: The model’s performance on

3AFC and 5AFC mutual exclusivity tasks was a function of its

development. However, unlike prior explanations based on num-

ber of words known, the pruning of unnecessary connections was

the determining factor. Our examination of Objective c was more
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ambiguous. Although we modeled the Fernald et al. (2006) lon-

gitudinal work, the model suggested that processing and learning

are both emergent from the whole network; however, when we

manipulated the component processes of the model in Simulation

3.4, we showed that processing is required for learning.

This last finding suggests the model is not entirely unsuper-

vised—it is self-supervised. The model does not just associate the

inputs it sees and hears. Rather, it performs something like an

inference process (implemented via competition and feedback) and

then uses the output of such a process as the basis of association.

The power of this model both to learn under high degrees of

ambiguity and to account for a wealth of data speaks to the power

of such a scheme.

Section 4: One Word/One Object?

Thus far, we have restricted our simulations to “pure” word–

object sets in which every object has one label and every label has

one referent. However, real language contains many polysemous

words (with two meanings). Conversely, most objects can be

labeled in multiple ways; most vividly, objects have labels at

multiple levels (e.g., basic level, superordinate). In this final sec-

tion, we begin to probe the limits of such situations in two ways to

determine how much of the model’s performance can be attributed

to its idealized “language.”

First, in addition to its use in describing real-time referent

selection, mutual exclusivity has been described as a hindrance to

learning second labels for objects (e.g., Markman et al., 2003;

Regier, 2005). As Xu and Tenenbaum (2007) pointed out, this

constraint must be relaxed for children to learn a second name for

an object (e.g., its superordinate name). Our model shows the first

sense of mutual exclusivity (referent selection in ambiguous situ-

ations), but it is not clear whether this will also impede learning

second labels. This is examined in Simulation 4.1 by training the

model on both basic and superordinate labels. Crucially, this

allows us to study basic-level advantages in a system that does not

represent taxonomy hierarchically.

Second, mapping multiple words to objects disrupts the one-to-

one mapping between words and objects. This consistency may be

essential both for learning in general and for the development of

mutual exclusivity. However, it is unclear whether a purely asso-

ciative system can generalize a principle across multiple words.

Thus, Simulation 4.2 examines two situations that disrupt this

mapping: (a) when words can refer to multiple objects (e.g.,

polysemy) and (b) when the same object can be referred to by

multiple words.

Simulation 4.1: Multiple Labels

Learning multiple labels for an object may challenge both

constraint and associative approaches. Constraints such as the

taxonomic constraint or mutual exclusivity must relax to learn

properties, synonyms, or other taxonomic categories (e.g., super-

ordinates) for the same object. Similarly, associative learning

could commit to a single label for an object and have a hard time

linking a second one. Xu and Tanenbaum (2007) argued that to

solve this problem, the system must be sensitive to statistical

distributions and show graded constraint satisfaction. They argued

that Bayesian inference uniquely has these properties. Indeed, the

localist representations and strong inhibition in our dynamic asso-

ciative account may make it difficult to assign multiple labels to a

one word.

Thus, this simulation examined the ability of the model to

handle both basic and superordinate names. Models were ini-

tialized with 25 auditory word form units and 25 object cate-

gory units (see Table 8). An additional five auditory units

corresponded to five superordinate categories. There were no

visual units for these: Each superordinate was associated with

five of the 25 objects. On each training trial, we first selected

one of the 30 auditory units (25 basic-level and five superor-

dinate units). Thus, the likelihood of hearing a superordinate

term was the same as each of the basic-level terms. If the

auditory unit was a basic-level name, the corresponding visual

unit was active (along with several competitors). If the auditory

unit was a superordinate, one of its five corresponding basic-

level visual units was activated. Consequently, basic-level

names and visual units should be strongly associated with each

other, whereas the association between superordinate names

and their category members may be smaller (since it will be

spread among five objects).

Basic-level performance was assessed by presenting one basic-

level name, its referent, and two competitors (for each of the 25

words). Superordinate performance was assessed by selecting a

superordinate name along with a target from that category, and

competitors from two categories. Each superordinate name was

tested five times (once for each member).

Results. Figure 18A shows the network’s performance on

both tasks. By the end of training, the model mastered both

superordinate and basic-level labels performing at 100% on both

tasks. Such performance requires that the model acquire multiple

names for each object, suggesting that the model displays the

necessary flexibility. The model also learned basic-level names

before superordinates, an example of the commonly reported ad-

vantage for basic-level terms (Rosch, Mervis, Gray, Johnson, &

Boyes-Braem, 1976).

The role of frequency. One factor that could contribute to the

basic-level advantage is frequency. The network was more likely

to hear a basic-level name than a superordinate. To examine this,

Table 8

Parameters for Simulations in Section 4

Parameter
4.1: Multiple

labels
4.2: Multiple labels

and referents

Visual units 25 30–15
Auditory units 30 30–15
Basic-level words 25
Superordinates 5 0
Words referring to two objects N/A 0, 5, 10, 15
Objects with two names N/A 0, 5, 10, 15
Novel visual and auditory units 0 5
Lexical units 500 500
Initial weight size .5 .5
Learning rate .0005 .0005
Referential ambiguity .5 .5
Feed-forward temperature .01 .01
Feedback temperature 2 2
Stability point 1e-12 1-e-12
Input inhibition 1.05 1.05
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we ran an additional simulation in which superordinate and basic-

level labels were equally likely by boosting the frequency of

individual superordinates (superordinate: p � .1; basic: p � .02).

Figure 18B shows the results (results of the prior simulation are

shown in gray). As expected, the network continued to perform

well on basic-level categories. This time, superordinate perfor-

mance was closer to basic level, yet there was still a basic-level

advantage.

Spreading associations. An additional contributor to the

basic-level advantage is the fact that superordinate names must

share associations with five objects. For every five exposures to a

basic-level name the corresponding object will be seen five times;

in contrast, for five exposures to a superordinate name, any given

basic-level object will be seen once. Thus, superordinate names

may have weaker associations with each of their members. To test

this, we conducted a third simulation in which there were 27

basic-level names and only three superordinate terms. Each super-

ordinate category now had nine members. This should enhance the

spread of associations and lead to even worse performance. To

ensure that frequency was not a factor, we ran two versions of the

model. In the first, the overall frequency of superordinate names

was matched to the first simulation in this section where superor-

dinates were as frequent as basic-level terms. That is, the proba-

bility of any of the three superordinates was 5/30, or .167; thus, the

probability of any individual one was .167/3 � .055. In the second

version, the frequency of individual superordinate names was the

same as the frequency for individual basic-level names (given the

smaller number of superordinates. That is, probability of any of

the three superordinates was 3/30 � .1; thus, the probability of any

individual one was .1/3 � .033. Figures 18C and 18D show the

results. Regardless of the superordinate frequency, networks

learned the superordinate categories, even with nine members;

however, the basic-level advantage in both was larger than in

Figure 18A, confirming that the spreading of association contrib-

utes to this effect.

Discussion. These simulations demonstrate that this dynamic

associative model is capable of learning both basic-level and super-

ordinate categories on the basis of co-occurrence statistics alone.

Thus, the model is considerably more flexible than the one-word-to-

one-object mappings we have largely focused on, and the ability to

use mutual exclusivity in the moment does not necessarily constrain

learning (nor does it rely on such a constraint).
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Figure 18. Performance on basic-level and superordinate categorization over development. In all panels, gray

curves are the same data as Figure 18A. (A) In model with 25 basic-level terms and five basic-level categories.

(B) In the same model in which the probability of a superordinate term was increased to 0.5. (C) Performance
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Given the intermediate lexical representations, our model has

two routes to achieve a mapping between one object and two

words. It could associate a superordinate word form with mul-

tiple lexical units, each of which is associated with a single

object; or it could associate a superordinate word with a single

lexical unit that is associated with all the category members. It

is unclear what the consequences of one or the other are, but a

preliminary analysis of several networks’ suggested that the

latter was the dominant pattern— each superordinate word was

associated with a new lexical unit, which in turn was associated

with multiple visual units.

More importantly, however, this model illustrates that behav-

iors such as mutual exclusivity and the use of multiple labels

can coexist comfortably in an associative architecture. The key

innovation is that mutual exclusivity is not a constraint on

learning (as in Regier, 2005; Xu & Tenenbaum, 2007). Rather,

it is a constraint on online behavior (referent selection) that has

consequences for an unconstrained learning system. In the

moment, the network is nudged away from assigning a new

name (the superordinate) to a known category (as predicted by

mutual exclusivity). However, it must be nudged toward an-

other object in the scene. Across trials, however, the available

visual objects are not consistent, so mutual exclusivity never

nudges it to consistently select one object for the superordinate

name. As a result, much stronger cross-situational statistics take

over and establish the correct associations.

Simulation 4.2: Violating One Word/One Object

The previous simulation shows that mutual exclusivity need not

be a constraint on learning; the model can learn multiple labels for

a given word despite the use of mutual exclusivity as an in-the-

moment referent selection strategy. The final simulation examines

three related issues. First, Simulation 4.1 did not actually test the

model’s ability to use mutual exclusivity. It is possible that even

with the disruption in the one-word/one-object nature of the word–

object mapping, the model could still learn, but that its ability to

use mutual exclusivity is hampered. Many approaches to M.E.

referent selection assume that such inferences are built on a real-

ization by the child that each word refers to one object, and

therefore a novel object must have a novel name (Halberda, 2006;

Markman & Wachtel, 1988). Although this generalization must be

acquired from the statistics of word–object relationships (which

our model is sensitive to), our model has no way to store such a

principle or strategy. If violating the one-word/one-object assump-

tion impairs the model’s ability to use mutual exclusivity, this

would be a powerful demonstration that even associative systems

can show principled generalization across words.

Second, Simulation 4.1 examined a special case in which ob-

jects have multiple names with a clear hierarchy. However, there

are also cases in which objects have two equally probable names.

An extreme example is bilingual children who learn two words for

most objects. An equally important property of real languages is

the converse, in which a name can refer to two objects or catego-

ries. This property of polysemy is common: Most words have

multiple meanings, but it may have different consequences for

both learning and M.E. referent selection from the many-names/

one-category situation.

To examine this, we ran a series of simulations (see Table 8 for

parameters). Two versions were run and varied parametrically. In

the multiple-meanings models, there were 30 objects, and some

number of auditory units referred to two of them, whereas the

remainder referred to one. This was varied in increments of five

from 30 unique words (30 words each referring to a single ob-

ject—the equivalent of the prior models) to 0 unique words (15

words, each referring to two of 30 objects). In the multiple-labels

models, there were 30 words, and some number of visual units had

two names, varying from 0 objects with two labels (the equivalent

of the prior model) to all 15 objects having two labels.

It was not clear how to test this network with our analysis of

the weight matrix, so we conducted a 10AFC task. During

testing, foils were restricted such that a word would only have

one of its referents present on a test trial (this restriction was not

present during training). In addition to this, five auditory and

visual units were not trained and used to test M.E. referent

selection, as in Simulation 2.2. Parameters (see Table 8) were

similar to those of prior simulations, and novel objects appeared

(during training) at 17.5% of the 50% referential ambiguity rate

(which yielded more realistic M.E. referent selection in the

prior simulations).

Results. Figures 19A and 19B show performance on the

trained words over the last 25,000 epochs of training for both

models. This is shown as a function of the number of words with

one-to-one mappings, and separately for words that had a unique

mapping, and those that did not. In the multiple-meanings model

(Figure 19A), all the models learned both types of words well.

Though words with one referent were learned slightly better than

words mapping to two objects, both types showed accuracy above

95% across all the simulations. Similarly, in the multiple-labels

model (Figure 19B), we also see a benefit for learning objects that

only have one word, and learning is somewhat lower when no

objects have a single label. However, again, performance is excel-

lent, with accuracy in the worst condition at 94.6%.

Figures 19C and 19D show mutual exclusivity performance.

Chance (33%) is indicated by the dashed line; the black curve

shows performance at the end of training; and the gray curve shows

performance early in training. At the end of training, the multiple-

meanings model shows no problem in mutual exclusivity—even

the model that completely violated the one-word/one-object map-

ping (with no words with one referent), performed at 97.9%. This

implies that “understanding” this systematicity is not a prerequisite

for mutual exclusivity in this model. This is underscored by our

analysis of the model’s mutual exclusivity performance early in

training (the gray curve). Here the model with no words referring

to one object actually performed better than models with more

unique mappings. This was somewhat surprising, and awaits em-

pirical testing, as there are few analyses of the number of polyse-

mous words for which children are exposed to both meanings.

However, it powerfully underscores the fact that in this system

mutual exclusivity behavior need not rely on a systematic one-

word/one-object bias in the input. Rather, as we described in

Simulation 2.2., what is required is that the learning rule preserves

some pathway through the weights to get from the novel visual to

the novel auditory units. Having more than one referent for each

word does not disrupt this (since weight decay relies on exposure

to the objects and word individually), thus preserving the ability to

use mutual exclusivity.
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Intriguingly, however, the multiple-labels model showed a very

different pattern of performance. Here we saw that even at the end

of training, mutual exclusivity performance dropped, as there were

fewer objects with only a single label. Indeed, in the extreme (with

no words with one label) the model barely performed above

chance.

Discussion. These simulations show that first and foremost,

disrupting the one-word/one-object mapping does not necessarily

disrupt overall learning performance. Though words that had two

referents (the multiple-meanings model) and objects that had two

words (the multiple-labels model) were learned slightly less well

than those with a one-to-one mapping, this performance decrement

was negligible. Thus, there is no reason to assume that these

principles cannot be scaled up to these more realistic situations, or

to situations such as bilingual word learning in which most objects

will have multiple names.

Second, mutual exclusivity, as a situation-time process, was

largely spared in these models. When words could have two

meanings, mutual exclusivity was fine at every level tested, and

appeared to develop faster with more polysemous words. There

has been little work looking at the number of words with multiple

meanings that children are exposed to or know, and it is unclear

where this benefit derives from in the model. However, this

counterintuitive prediction may be a useful hallmark of this model.

Mutual exclusivity was also largely preserved when models had

multiple words for each object (the multiple-labels model).

Though performance was degraded with more of these words, it

was still above chance (until there were no uniquely mapped

words). Thus, situations such as the basic and superordinate situ-

ation described above should not pose a problem for referent

selection by mutual exclusivity.

Third, in spite of this overall performance, the decrement seen in

the multiple-labels model is important. Byers-Heinlein and Werker

(2009) suggested that young bilinguals and trilinguals show dec-

rements in using mutual exclusivity. As multilingualism represents

the sort of extreme version of a multiple-labels system, our model
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offers an explanation for these findings. However, the contrast

with the multiple-meanings model, which did not show this dec-

rement, is revealing. It suggests that in an associative system, it is

not a strict one-word/one-meaning structure that is necessary.

Words may have any number of referents, as long as many objects

are largely named by one label. This suggests an important new

dimension to principles such as mutual exclusivity and the novel

name–nameless category that have been used to describe this

behavior.

More importantly, however, these simulations make the broader

point that in a way, this ostensibly associative system has derived

a principle from across its training experiences, a principle that it

can harness in the moment to make decisions about novel words.

However, it does so without any real capacity to represent princi-

ples such as this. Rather, it seems to have set up its associative

weights in such a way that this capacity emerges, in the moment,

during real-time competition between words and objects.

General Discussion

There are two levels on which to evaluate this (or any) model.

First, we can consider the range of empirical findings it captures.

Second, we can evaluate the theoretical advance made by the

model. Does the broader theory tell us something new about word

learning?

With respect to the first issue, Table 1 presents a summary of

our findings. To briefly summarize, we found that that this model

could learn words under conditions of very high referential ambi-

guity. It shows that differences between production and compre-

hension arise in part due to the fundamental differences in these

tasks. It can model the improvement in familiar word recognition

over time, including the structure of individual differences, with-

out any need for semantic elaboration, or for bootstrapping type

processes. It shows hallmarks of the power law of learning while

simultaneously showing accelerating vocabulary growth. It can

model referent selection via mutual exclusivity, its development,

the lack of retention observed by Horst and Samuelson (2008), and

differences in multilinguals (Byers-Heinlein & Werker, 2009). It

can also learn multiple names for categories and multiple mean-

ings for words, and it shows a basic-level category advantage.

This model can clearly capture substantial data from very di-

verse domains of word learning. However, such findings only

matter to the extent that they shape our theories of word learning

and our intuitions about the nature of the problem. This discussion

will focus on these issues. We start by describing some critical

limitations of our approach, and ask whether there is an (even)

simpler alternative. We then boil down the most important theo-

retical contributions of this range of work and end by discussing

predictions and new directions.

Limitations

Despite the range of phenomena this dynamic associative model

can account for, it is not intended as a complete model of word

learning and has a number of limitations. Here we distinguish

limitations of the theoretical approach from those of the simple

model we developed to illustrate it. There is no reason that similar

mechanisms could not be implemented in more complex models to

capture an even broader range of behaviors.

First, our model uses localist representations for words and

objects, treating each word or category as maximally different

from the others. This was deliberately chosen for a number of

reasons. Localist representations are easy to interpret and theoret-

ically fairly transparent. More importantly, our twin theoretical

claims are best instantiated in this framework. Inhibition between

representations is straightforward and easy to implement as a

dynamic process in localist representations, and there are no clear

ways for doing this with overlapping distributed representations.

Similarly, associative learning has long been modeled as linking

discrete, localist units, and thus this architecture best captured our

approach to learning as well.

Moving to a distributed representation for inputs (e.g., feature

vectors for objects) could make it difficult to solve the problem of

referential ambiguity. In the current localist scheme, to indicate

that multiple objects are present, we simply activate each of their

units. However, if objects were represented by a distributed rep-

resentation across multiple feature vectors, it would be difficult to

code more than a few objects—as the feature vectors add up,

gradually most, if not all, of the feature units would be active. As

a result, the distributed representation for multiple objects simply

becomes a concatenation of all features present in a scene. This

makes it very difficult to cope with high levels of referential

ambiguity. The problem is that in this simple architecture there is

no way to bind the features, to know that activity in some features

goes together (apples are red and round, blocks are brown and

square). This binding problem is a classic issue with distributed

representations (Hinton, McClelland, & Rumelhart, 1986), and

work must be done to determine whether any of the solutions

proposed for this can be integrated with this framework. Perhaps

some form of localist (or near localist representations, as seen in

topographic maps) is necessary at some level of the system?

Additional information in the input (beyond the presence or ab-

sence of a feature) may also be helpful, and approaches using

spatial location of features to bind them together seem a promising

direction (Johnson, Spencer, & Schoner, 2009; Samuelson, Smith,

Perry, & Spencer, 2011). In the meantime, however, our goal was

to examine the power of competition and associative learning, and

localism presented a clear platform in which to do so without

solving these historically difficult problems.

Second, our choice of representations completely ignores a

fundamental issue—that word learning must link categories of

words and/or objects. We have attempted to bypass this by assum-

ing that the auditory and visual inputs really represent the output of

some other categorization process, but we did not model these

processes. However, Hebbian normalized recurrence has already

been applied to problems such as speech categorization (McMur-

ray, Horst, et al., 2009; McMurray & Spivey, 2000), and non-

learning versions have been used to model visual categorization

(Spivey, 2007; Spivey & Dale, 2004). Thus, it may be possible

simply to chain together such models. Indeed, work in progress

(McMurray et al., in press) has already developed a network that

first categorizes visual feature vectors and then uses these catego-

ries as the inputs to the network described here. Such an extension

may allow the model to capture more of the interesting social,

attentional, and conceptual processes that guide children to the

right referent in real time, and our preliminary work on this

(McMurray et al., in press) suggests it can model complex phe-

nomena by which words sometimes impede visual categorization
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(Robinson & Sloutsky, 2004) and sometimes facilitate it (Lupyan

et al., 2007).

Even if we allow for such chained models, using localist rep-

resentations of words and objects appears to make the erroneous

assumption that similarity among objects or word forms is irrele-

vant to word learning. This obviously cannot be so. Fortunately,

such similarity relationships can be implemented in localist

scheme. Minimally, one would expect that similar categories

should be partially coactive due to their overlapping inputs. For a

real child, when bug is heard, similar sounding words such as bus

will be partially active (Swingley & Aslin, 2002). Similarly, when

a bug is identified in the visual scene, similar categories such as ant

or spider may be also active. All these competing, partially active

categories could significantly raise the number of spurious asso-

ciations that would have to be considered and eliminated. How-

ever, it is not clear whether this would ultimately be problematic:

The set of similar-sounding words (deer ¡ gear, deal, tear) is

distinct from the set of similar-looking objects (deer ¡ horse,

cow, antelope), so cross-situational statistics may quickly rule out

these associations. Conversely, competition dynamics at the level

of visual categories could eliminate some of these competitors.

Thus, the problem of coactive categories or ambiguous inputs may

not be hugely problematic, though it remains to be investigated.

Given all these issues with localist inputs, the self-organizing

map approach (Li et al., 2004; Mayor & Plunkett, 2010) may be a

natural bridge between localist representations that ignore similar-

ity and distributed representations that naturally reflect it. Such

networks capture similarity relations well and are based on similar

Hebbian learning rules to our network. However, they also have

enough topography and competition that input representations are

precise. The simple form of one-step competition they use could

likely be modified to be more dynamic, but they may need addi-

tional cues (like space) to cope with multiple inputs. Thus, using

self-organizing maps as the input to our model, or using our

settling dynamics in such approaches, may offer a useful hybrid.

A third limitation is the scale of our simulations. Most of our

simulations used only 35 words, which is small by comparison to

the real problem. Simulations reported in the supplemental mate-

rials (Simulation S3) show that the network can learn 150 words

with few modifications. We have not yet tested larger lexica than

that, but there is no reason in principle why this would fail.

Moreover, larger lexica may create more optimal statistics for

learning (Sibley et al., 2008). With a thousand words, the chance

of any given competitor appearing is miniscule, so more invariant

(correct) associations may pop out quicker. Of course, the larger

number of erroneous connections to suppress may also slow learn-

ing.

Fourth, our focus on concrete nouns is a limitation, but not

problematic. The localist visual units could easily be treated as tags

for properties of objects, allowing the model to learn adjectives.

Moreover, if the child or model can segment events from the scene

(Reynolds, Zacks, & Braver, 2007), visual units could serve as tags

for events or actions allowing the model to learn verbs. Siskind

(1996) has shown how cross-situational statistics can be used to

acquire word meanings from text, potentially enabling this mech-

anism to be applied to abstract nouns or verbs as well; and Scott

and Fisher (2012) have shown that cross-situational statistics could

be involved in verb learning as well. More broadly, the fact that

lexical representations are situated between multiple layers of

input could allow other sources of information (e.g., conceptual) to

interact with existing auditory and visual inputs to guide learn-

ing—something that would be difficult to accomplish if auditory

units were associated directly to visual ones.

Finally, our model illustrates the properties of learning neces-

sary to give rise to behaviors such as referent selection via mutual

exclusivity (the pattern of weight decay). However, our learning

rule is one instantiation of a variety of Hebbian rules, and there

may be other versions that are capable of learning more quickly or

with fewer lexical units. One could also explore the possibility that

supervised (error-driven) learning plays a role. Work in language

acquisition more generally suggests that children do receive some

feedback from caregivers ranging from quite overt error signals to

more subtle cues such as the way in which sentences are repeated

back, with or without modification (Bohannon & Stanowicz, 1988;

Chouinard & Clark, 2003). More directly, in word learning chil-

dren are corrected in various ways for naming mistakes or incor-

rect referent selection (Chouinard & Clark, 2003; Gruendel, 1977;

see also unpublished evidence cited in Chapman, Leonard, &

Mervis, 1986), and there is evidence that children benefit from

such feedback in word learning (Chapman et al., 1986; O’Hanlon

& Roberson, 2007). Even beyond this, connectionist models sug-

gest that simple prediction error (e.g., hearing a word, predicting

which objects are likely to be present, and learning on the basis of

the discrepancy) can be an extremely powerful way to use super-

vised, error-driven learning in an essentially unsupervised context

(Elman, 1990). Error-driven learning (even on a handful of learn-

ing events) may buttress some of the slowness of purely associa-

tive processes. However, error-driven learning is likely to have

very different consequences for the conditions under which irrel-

evant associations are suppressed, which will have ramifications

throughout the system. We also will have to explore when, during

processing, the error signal is available, and this could have

ramifications for learning. Such effects may ultimately be quite

diagnostic, allowing us to identify when and where unsupervised

and supervised learning contribute to word learning.

At their core these limitations are largely limitations of the

simple model we used to explore our broader dynamic associative

account. There are clearly more sophisticated competition algo-

rithms, better input representations, and richer approaches to learn-

ing that could be incorporated for a more realistic model. How-

ever, what is startling is how much of the word learning literature

we could to capture by stripping many of these factors out. The

delay in productive vocabulary acquisition can be partially ac-

counted for by the nature of the task, without any recourse to

articulation, phonology, or perception; relationships between pro-

cessing time and learning can be accounted for without resource

limitations or bootstrapping; so-called slow-mapping effects can

be observed without the need for semantic elaboration; a gen-

eral principle (mutual exclusivity) can emerge in a purely

associative framework; and basic-level categorization advan-

tages can emerge with no hierarchical semantics. Though these

explanations are only part of the story for these phenomena, we

would have missed them in a more complex model. Thus, the

broader theory concerning the linkages of real-time competition

and associative learning may have much explanatory power by

itself.
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Can We Get Any Simpler?

Given this, we might ask if this model could get any simpler.

Could this range of processes derive from even more basic prin-

ciples? There is some impetus to think about word learning in this

way; for example, the McMurray (2007) model of the vocabulary

spurt modeled learning as simply accumulating points and discov-

ered that acceleration falls out of parallel learning.

In terms of information processing (e.g., Marr’s first level of

description), perhaps the core of our model is cross-situational

learning. We modeled this via Hebbian associations, but one can

think of this in even simpler terms as simply co-occurrence counts

between words and objects. Yu and Smith (2012) modeled adult

cross-situational learning with exactly such a model (their “bare

bones” dumb associative model) and found that versions of it

performed quite similarly to a hypothesis-testing model. Medina,

Snedeker, Trueswell, and Gleitman (2011) have argued that co-

occurrence counts are not consistent with the fact that people reap

more benefit from low-ambiguity statistics early in training, since

by the end of training the accumulated statistics are the same

(though we have modeled such effects using our dynamic asso-

ciative network; McMurray et al., in press). But given this discus-

sion, it is worth asking whether our approach offers anything

substantive over and above a simpler co-occurrence counter.

To some extent, many of our effects can derive from statistics

alone. Yu and Smith (2012) have argued that under some circum-

stances Hebbian learning can compute a co-occurrence matrix

quite directly, and our model’s ability to learn cross-situationally

derives from this. It is likely that our findings of a basic-level

advantage (stronger word–object associations for basic-level terms

that have one referent than superordinate terms that have multiple)

also derive from this. However, interestingly, Yu and Smith’s

associative model only reached about 40% correct in their most

difficult condition (18 words, four presented per trial), which

corresponds to a referential ambiguity rate of 17.6%. Our model is

at ceiling under these circumstances (though with more training).

Of course, our model also includes real-time processing (which

consequently enables slower learning), which may enable better

learning.

Other findings do not directly fall out of co-occurrence statistics,

but would require real-time processing. Differences in word learn-

ing or referent selection based on the task (number of alternatives)

could not be accounted for with co-occurrence alone. However,

they could if co-occurrence statistics were used as the input to

some kind of read-out rule (as in Yu & Smith, 2012). Our finding

of decreasing RTs over training would also require some sort of

decision rule that converts co-occurrence information into RTs

(maybe something like Ratcliff & Rouder, 1998; or Usher &

McClelland, 2001). However, these decision rules would need to

be built or tuned by hand to account for things such as exponential

decay in RTs, whereas in our model this is an emergent property

of our core theoretical principles, competition and learning. More-

over, at this point, the model would start to look quite similar to

ours, and it is not clear what would be gained. Perhaps most

importantly, these decision rules would ultimately be just a read-

out of learning and would not interact substantively with it—that

is, the real-time decisions made by the model during training

would have no effect on learning. This could be problematic for

modeling of Fernald et al.’s (2006) longitudinal work. We have

shown in multiple simulations here how important this linking

between real-time and developmental processes can be, and in our

other work (McMurray et al., in press) suggest it may make all the

difference to modeling results such as those by Medina et al.

(2011). If we are going to have to add some sort of dynamic

decision process, we may as well be modeling the interaction of

this with learning.

Our work on mutual exclusivity is perhaps the most difficult to

account for on the basis of co-occurrence. A novel name will have

no co-occurrences data for either the familiar or novel objects in

the scene, and thus no principled way to show a bias. As a result,

any pure co-occurrence counter would need some decision rule to

decide when to go with the novel object. Again, this would have to

be built in, to account for these results, rather than emerge out of

the same process that recognizes novel words. But how much

evidence counts as no evidence? If the model had seen an object

once or twice, how would it make this decision? And what about

retention? Once the model has a single piece of evidence for a

word–object pairing, the most optimal thing is to return to that on

retention trials, and yet children apparently do not. And how would

this decision rule develop?

Finally, our results on mutual exclusivity when words have

more than one referent (or referents have more than one word)

suggest that minimally the co-occurrence statistics are not sym-

metrical: Having two words for an object can hurt mutual exclu-

sivity, whereas the converse does not. This lends credence to our

use of internal (lexical) representations to mediate these co-

occurrences. But more importantly, the fact that the multilingual

models do not show mutual exclusivity suggests that the develop-

ment of this behavior is sensitive to the word/object statistics in

general, and suggests that our associative system can learn a

principle (or will fail to, if the statistics demand). It is not clear

how this could emerge out of pure co-occurrence counts.

The bottom line: In order to do mutual exclusivity and capture

the range of effects we have using only co-occurrence counts, one

would have to build it into the model, and build it in such a way

so that it can explicitly capture these effects. This treats behaviors

such as mutual exclusivity as fundamentally different from famil-

iar word recognition—they use different decision rules—whereas

our model shows how both of them emerge from the same com-

petition scheme. This would lead one to a very different theoretical

conclusion than what we have shown here.

Thus, our model is doing something more than just co-

occurrence statistics. It is the unique interaction of learning and

processing, embedded in an environment with such statistics, that

enables complex behavior to emerge from these mechanisms.

Indeed, reductionistically simplifying the model further would

require us to put substantial content in the situation-time decision

rules, and it might not be able to model all these effects anyway.

More importantly, it may lead to very different theoretical conclu-

sions.

Theoretical Insights

Although our model was able to capture numerous empirical

findings, its strength lies in its ability to highlight new theoretical

conclusions about word learning, conclusions that are substantially

broader than the rather narrow model we have presented.
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Learning can (and should) be slow. Most accounts of word

learning stress its effortlessness and speed: Children appear to

acquire words very rapidly. This is based on phenomena such as

so-called fast mapping and the vocabulary explosion. Such learn-

ing is seen as difficult for associative accounts, and thus associa-

tive accounts of word learning often stress their rapidity (Mayor &

Plunkett, 2010; Regier, 2005).

But is word learning really that fast? Children hear approxi-

mately 17,000 words a day (Hart & Risley, 1995). By 1 year, when

the first word is produced, an average child will have heard 6

million words. Even at the height of the vocabulary explosion,

children may show evidence of having acquired 15–20 words per

week. So slow learning may be required, just to account for the

actual acquisition curves.

One might argue that within these thousands of words the child

is hearing, there may be few tokens of the individual words that a

child appears to learn in a given week, so this still necessitates fast

learning. However, it is important to point out that under associa-

tive accounts like this one, much of the problem is simply sup-

pressing competing associations, something that is less dependent

on the specific words being heard. So thousands of exposures to

duck and goose may help children improve their ability to process

and acquire chicken. Despite apparently quick learning in the

laboratory, real learning may be fairly slow, but it also may benefit

from much broader experience than we normally count—experi-

ence with other words, and with objects alone, is all relevant for

learning a particular word.

This contrasts with more inferential or hypothesis-testing ap-

proaches that consider hypothetical word–meaning in parallel and

wait for the right data to update (Medina et al., 2011). In a sense,

due to random initial connections, associative systems start by

considering all hypotheses (with some variation in strength). A

true hypothesis-testing system could never rule them all out, work-

ing in serial. However, by suppressing many connections in par-

allel at each naming instance, this becomes more feasible. In a

sense, at each word, there are global, albeit small, changes in the

hypothesis space. This is made even more feasible by smarter

situation-time processes that allow the child to behave in the

moment on the basis of partial knowledge (Simulations 2.2, 2.3,

3.2, 4.3). Considering familiar words in the same framework as

novel words only underscores this: Developmental changes in

familiar word recognition take years to unfold (e.g., Fernald et al.,

1998, 2006; Zangl et al., 2005), even as the child is generally able

to select the correct referent fairly early in life. Thus, slow but

global changes on each naming instance may yield a fairly robust

system that accounts for multiple developmental phenomena.

And why it should be otherwise? The situations that children

find themselves in are inherently ambiguous—there are multiple

visual referents, and multiple possible interpretations, for any

given word. Even much vaunted social cues are not consistently

available and do not consistently disambiguate words (Frank et al.,

2009). Thus, cross-situational statistics may constitute a good

portion of the information available to link words to objects. If this

is the case, then slow learning may be more optimal in that it

prevents children from committing too strongly to a single (per-

haps erroneous) mapping before they have enough data. Indeed,

we investigated this in simulations reported in the supplemental

materials (Simulation S4) and found quite poor learning when the

learning rate of the model was too high.

Our simulations on mutual exclusivity (Simulations 3.1, 3.2, and

4.2) underscore this. Simulation 3.1 captures Horst and Samuelson

(2008), showing that the model can use mutual exclusivity for

referent selection, but it retains very little from this. The depen-

dence of mutual exclusivity on learning (Simulation 2.1), task

configuration (Simulation 3.2), and lexical statistics (Simulation

4.2) argues that this may be an unstable platform for learning, and

the fact that multilingual children and models (Simulation 4.2) still

learn words suggests it is not required for learning. Indeed, if

referent selection by mutual exclusivity was uniquely powerful for

learning, one must ask how often children know the name of every

item in the visual scene but one. This seems a fairly unlikely event,

underscoring the importance of slower, more gradual mechanisms.

But if learning is slow, this raises the question of how children

function while they wait for data to accumulate. This is not just

theoretical: Slow learning conflicts with the excellent performance

we see in many constrained laboratory tasks, and that parents

observe every day with their toddlers. Our dynamic associative

account suggests that fast, situation-time processes enable children

to take advantage of constraints offered by the environment and

children’s own incomplete mappings to perform impressively in

day-to-day and laboratory tasks, even while learning is slow. This

was made clear when we compared the model’s performance on

constrained tasks to its underlying weights: The model’s knowl-

edge was incomplete, but it still performed well on NAFC tasks. It

also appeared when we compared comprehension to production:

Comprehension was necessarily constrained by the response op-

tions and was consistently better than less constrained production.

Even associative learning is multifaceted. Our approach to

associative learning is more complex than commonly considered.

This has theoretical consequences beyond our model. First, since

auditory and visual units are independently associated with the

lexicon, learning on the auditory and visual side can have different

effects. This was most apparent in Simulation 4.2, where having

two words per object degraded mutual exclusivity performance but

having two objects per word did not. Even in a simple associative

framework, the relevant statistics (e.g., the fact that children en-

counter many visual competitors and fewer auditory ones) shape

situations in which both auditory and visual units may perform

different roles.

This was also seen in Simulations 2.3 and 3.1, which demon-

strated how familiarity with the visual objects alone can improve

both referent selection by mutual exclusivity and retention (Kucker

& Samuelson, 2012), even in the absence of learning any specific

content (the objects’ properties). This may be an important con-

sideration in future work on the M.E. referent selection task.

Similarly, Horst et al. (2011) recently showed that in a referent

selection task with completely novel objects pure visual familiarity

with some of the objects can bias children’s performance.8 How-

ever, in scaling these ideas to the real world, it is clear that novelty

may be a major factor in early lexical behavior. Familiarity is

graded, and there are few, if any, words that a child has literally no

experience with. Thus, our artificial segregation of objects as

familiar or novel (both in models and in typical laboratory tasks)

8 In our model, this novelty bias can derive from something as basic as
the random initial connections (that persist for novel objects), again point-
ing to the importance of pruning (or not).
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may not capture the situation in the real world. Crucially, even an

associative learning framework, this shows that not all learning

needs to involved both ends of the associative link.

This dynamic associative model also shows the surprising im-

portance of suppressing unnecessary associations. This turned out

to be the biggest predictor of settling time for familiar word

recognition (Simulation 2.1), and the pattern of weight decay was

essential for referent selection by mutual exclusivity (Simulation

2.2). This is because the bulk of learning consists of simply

suppressing the vast number of irrelevant connections, and this can

be done for virtually any naming event. This raises the possibility

that even when children select the wrong referent, or do not select

a referent at all, they may still be doing useful learning. This

nonobvious source of learning has not been considered in prior

theoretical, empirical, and computational work.

Finally, our work on referent selection by mutual exclusivity

suggests that associations, even among localist inputs, can derive

a principle that applies to even novel items. The ability to use

mutual exclusivity is not built into this model and clearly develops

from the input. More importantly, it can be blocked when there are

two words for many objects. In a companion piece (McMurray et

al., in press), we have conducted an extensive parameter search of

the model’s ability to use mutual exclusivity and discovered that

only models that have real-time competition dynamics and that use

internal representations (rather than directly linking words to ref-

erents) can do this. Thus, when associative learning is embedded in

a more realistic system with both real-time processing and abstract

representations, much richer, emergent behavior can arise.

Learning and processing are quasi-independent. Our

model was built on the theoretical commitment that using words

and learning them are different. Learning is accomplished by

changing the connections between words, objects, and the lexicon;

processing occurs when real-time competition allows activation to

flow over those weights to arrive at a solution. This quasi-

independence is fundamental. It allows the model to show disso-

ciations between mutual exclusivity and retention (Simulation 3.1)

and between performance and knowledge (Simulations 1.1 and

1.2). Moreover, by considering processing independently, we also

showed how both novel and familiar word processing can be

handled by the same system (Simulations 2.1–2.3).

The quasi-independence has useful functional consequences. By

off-loading mutual exclusivity to online processing, it no longer

blocks learning of multiple names for a given object (Simulations

4.1 and 4.2). More broadly, learning can be less than perfect

because processing can get the child the rest of the way. This is

what compensates for slow learning. The best system will be one

that uses processes optimized for learning to handle developmental-

time learning and processes optimized for in-the-moment demands

to handle real-time behavior.

Nonetheless, though computationally these are distinct pro-

cesses, they are not completely independent in practice: Situation-

time processes are dependent on learning. The changes in RT for

familiar words derive from learning, and the ability of the model

to use mutual exclusivity mapping derives from a weight matrix

created by the specific learning rule. Many people describe fast

mapping as the sort of initial stages of a slow learning process

(e.g., Capone & McGregor, 2005; Carey & Bartlett, 1978;

Golinkoff et al., 1992), a sort of incomplete learning. In contrast,

we suggest that mutual exclusivity behavior (referent selection) is a

real-time product of the type of learning that has occurred up to that

point, but this behavior in turn leaves an associative trace that can

build over repetitions to yield word learning. In this light, the learning

on the first exposure of a word (what has been termed fast mapping)

is no different from subsequent exposures (slow mapping).

Simulation 3.4 showed the converse, suggesting that learning is

impossible without processing. The necessity of such competitive

processes is implicit in many unsupervised learning models, but its

importance has not been highlighted before. Competitive learning

(Rumelhart & Zipser, 1986), for example, requires winner-take-all

learning; self-organizing maps (Kohonen, 1982; Mayor & Plun-

kett, 2010) include a competition–interaction kernel; and even the

quite unrelated mixture of Gaussians framework for clustering

benefits from competition (McMurray, Aslin, et al., 2009). How-

ever, though competition is essential, its outcome can be variable.

In simulations not reported here, we have found that useful learn-

ing still occurs even when competition gets the wrong referent.

Thus, the presence of competition is necessary for learning—the

system must make a choice. But on any trial, the specific choice is

less important.

Finally, Fernald et al.’s (2006) longitudinal study is perhaps the

best evidence for the dependence of learning and processing, as

they found that children’s RTs predicted acceleration in learning.

Our model also showed a similar pattern of results, but suggested

no simple construct to explain it. Learning rate and settling time

were the product of parameters that control learning and process-

ing; the same parameter (e.g., temperature) acts differently de-

pending on the referential ambiguity; and the biggest predictor of

RT was the nature of the learned weights. Thus, to understand a

functional property of the child such as speed of processing, we

must understand the myriad of components of both processing and

learning.

Word learning need not be specialized. A number of models

suggest that acquiring vocabulary may harness general-purpose

learning mechanisms. Regier (2005) and Mayor and Plunkett

(2010) showed the unexpected power of association learning. Xu

and Tenenbaum (2007) and Frank et al. (2009) used general

Bayesian inference mechanisms. McMurray (2007) suggested that

acceleration is not the hallmark of a specialized system but should

be seen virtually everywhere. There is also empirical work show-

ing that similar principles may span word learning and other types

of learning, whether they derive from general reasoning strategies

that apply to both facts and words (Behrend et al., 2001; P. Bloom

& Markson, 1998; Markson & Bloom, 1997; but see Waxman &

Booth, 2000) or lower level attention (Samuelson & Smith, 2000)

and novelty biases (Horst et al., 2011). Thus, there is a mounting

effort to explain vocabulary acquisition in terms of general cog-

nitive and learning processes.

Our dynamic associative account adds to this. First, it shows that

novel word inference and familiar word recognition can arise from

the same system. Both use the same set of online processes (which

themselves are quite general); both operate over the same map-

pings (weights) that are shaped by the same learning mechanism.

There is no need for any sort of monitoring mechanism to route

novel words to a more constrained or specialized learning mech-

anism. Moreover, referent selection by mutual exclusivity can be

modeled with something as general as dynamic competition, fur-

ther emphasizing the generality of these processes.
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Second, the patterns of learning observed in vocabulary are not

special. At face value, the decelerating learning predicted by the

ubiquitous power law of learning conflicts with acceleration dur-

ing the vocabulary explosion. Our model highlights this conflict,

showing both acceleration and deceleration, and both derive from

changes in the associative weights (Simulation 2.1). However, the

particular changes in the weights that yield gains in RT are not

equivalent to those that allow the model to appear as if it acquired

a new word: Whereas RT changes largely derive from suppressing

unnecessary connections, changes in the number of words known

require both the suppression of unnecessary connections and the

establishment of the right positive associations. Thus, depending

on the measurement (changes in RT or vocabulary size), and the

real-time processing that give rise to the behavior, we may reach

different conclusions about the shape of learning (accelerative or

decelerative), even as the underlying mechanism is the same. This

further cements word learning as a general process, but challenges

learning theory by suggesting that changes in RT may not fully

describe learning.

Finally, our use of associative learning does not entail a partic-

ular source of information: Our framework is consistent with

information sources such as attentional or social cues, and con-

ceptual structures that have been widely interpreted as special.

These exist outside the core lexical mapping system and constrain

the settling dynamics (from the outside), or simply determine the

type of representations that are associated. Thus, such higher order

factors may be fundamental to learning and/or lexical behavior, with-

out needing to be embedded in the learning system. This permits a soft

coupling: As children gain sensitivity to things such as speakers’

intentions (Moore, 2008), these sources of information gradually play

a larger role in shaping online behavior (and through it, learning)

without fundamentally restructuring word learning.

New Directions

The test of any model is its ability to make predictions and

highlight new research questions. Given the simplicity of the

model, it is not clear that we are in a position to make precise

empirical predictions for new tests and paradigms. Nonetheless,

the model and the broader theoretical view suggest a number of

important new areas of investigation in word learning.

Indeed, during the course of writing this article, a number of

predictions from the model were tested empirically. Our finding

that M.E. referent selection relies on the relative randomness of the

weights connecting the auditory and visual units, and the role of

simple (purely visual) experience suppressing them (Simulation

2.1), led us to predict, and confirm, that familiarity with objects

may bias children away from selecting them in referent selection

tasks (Horst et al., 2011); and our demonstration in Simulation 3.1

that visual familiarity can simultaneously influence retention mo-

tivated Kucker and Samuelson (2012), which showed similar re-

sults in children. Taken together, these simulations suggest that

mutual exclusivity may have two components: (a) a component

driven by novelty that leads to excellent referent selection

but more retention (b) and something that resembles a constraint

satisfaction, which leads to somewhat worse (but still good) ref-

erent selection but much better retention. This trade-off should be

explored, particularly as these components wax and wane over

development.

Similarly, although the simulations in 4.2 match evidence that

bilingual children (who have multiple names for many objects)

may perform worse in mutual exclusivity tasks (Byers-Heinlein &

Werker, 2009), they also suggest the converse—having multiple

meanings for many words—may not be problematic. There has

been little work on the statistics of word–object mappings in the

child’s environment and how they relate to behaviors such as

mutual exclusivity (analogous to the Perry & Samuelson, 2011,

and Samuelson & Smith, 1999, studies of how such statistics

predict the shape and material biases), and it is not entirely clear

why our model shows this asymmetry, but this is a clear avenue for

future work.

More broadly, our work points to a host of issues that the

statistics of word–object mappings (co-occurrence statistics) may

be involved in. Simulation 4.1 demonstrated how this can give rise

to an advantage of basic-level over superordinate category labels.

An important part of this is that superordinate terms have their

associations spread across multiple objects, whereas basic-level

terms are only associated with one. Conversely, we saw in our

simulations of familiar word recognition how suppressing irrele-

vant connections was crucial to improving performance, and that

this could only occur when competitors were present (but variable

from trial to trial). In this case, the spreading of association across

competitors prevents any of them from becoming strongly linked

with the target word. This spreading of associations has been

invoked in a number of other domains including early speech

perception, where spreading associations block children from as-

sociating irrelevant talker cues with words (Apfelbaum & McMur-

ray, 2011), and in semantic memory, where “context variability”

prevents aspects of the context from serving as a retrieval cue

(Steyvers & Malmberg, 2003). More broadly, however, these

simulations force us to think more creatively about the co-

occurrence statistics of words and objects—our distillation of the

problem suggests that they may play a role in numerous domains.

A third avenue of future study is the role of suppressing irrel-

evant connections. This is pivotal in predicting changes in pro-

cessing speed and giving rise to referent selection by mutual

exclusivity. However, this nonobvious result of learning has not

received extensive study. More complex eye movement paradigms

may allow us to index the strength of competing associations, to

look for correlations with these behaviors, and artificial language

paradigms may allow us to manipulate it by temporarily creating

strong spurious associations. Indeed, these may ultimately be

better predictors of behaviors such as mutual exclusivity and word

recognition time. Fitneva and Christiansen (2011) recently dem-

onstrated that in a cross-situational word learning paradigm, par-

ticipants who looked longer to the incorrect objects during learning

showed better performance. This clearly is consistent with the idea

that suppressing competing associations is critical for learning and

points to a paradigm in which to investigate these issues.

Finally, and most importantly, our approach suggests that even

in an associative account, what the child does and the exact

sequence of events will matter. For example, the timing of the

events in a learning trial could influence whether or not there is

sufficient time for competition among referents to resolve, and this

would alter learning dramatically. Similarly, the configuration of

items on a learning trial (e.g., the number of competitors) and the

behavior of the child can both affect learning, by influencing how

positive associations are formed (which require a fairly specific
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confluence of events) and how negative associations are sup-

pressed (which may be more general and not require a correct

response).

Conclusions

Lexical behavior must fundamentally be considered on two

timescales—children learn words over development, but they

must also use them here and now. Word learning is not about

acquisition of words as a type of knowledge; rather, we must study

how children acquire the abilities to recognize and produce words,

and infer the meanings of novel words. By embedding learning

within a structure of word use, our model offers a unified account

for a range of findings in word learning, word recognition, and

novel word inference. In this framework, word learning is the

simple product of ongoing interactions between developmental-

time processes such as associative learning and situation-time

processes such as dynamic competition.
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