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Word Learning Emerges From the Interaction of Online Referent Selection
and Slow Associative Learning

Bob McMurray
University of Iowa

Jessica S. Horst
University of Sussex

Larissa K. Samuelson
University of Iowa

Classic approaches to word learning emphasize referential ambiguity: In naming situations, a novel word
could refer to many possible objects, properties, actions, and so forth. To solve this, researchers have
posited constraints, and inference strategies, but assume that determining the referent of a novel word is
isomorphic to learning. We present an alternative in which referent selection is an online process and
independent of long-term learning. We illustrate this theoretical approach with a dynamic associative
model in which referent selection emerges from real-time competition between referents and learning is
associative (Hebbian). This model accounts for a range of findings including the differences in expressive
and receptive vocabulary, cross-situational learning under high degrees of ambiguity, accelerating
(vocabulary explosion) and decelerating (power law) learning, fast mapping by mutual exclusivity (and
differences in bilinguals), improvements in familiar word recognition with development, and correlations
between speed of processing and learning. Together it suggests that (a) association learning buttressed by
dynamic competition can account for much of the literature; (b) familiar word recognition is subserved
by the same processes that identify the referents of novel words (fast mapping); (c) online competition
may allow the children to leverage information available in the task to augment performance despite slow
learning; (d) in complex systems, associative learning is highly multifaceted; and (e) learning and referent
selection, though logically distinct, can be subtly related. It suggests more sophisticated ways of
describing the interaction between situation- and developmental-time processes and points to the need for
considering such interactions as a primary determinant of development.

Keywords: word learning, fast mapping, referential ambiguity, cross-situational learning, associative
learning
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The word is fundamental to language. Words serve an organiz-
ing role in syntactic parsing (MacDonald, Pearlmutter, & Seiden-
berg, 1994; Tanenhaus & Trueswell, 1995), speech perception
(Goldinger, 1998; McClelland, Mirman, & Holt, 2006), and se-
mantic organization (Elman, 2009; Lupyan, Rakison, & McClel-
land, 2007; Mayor & Plunkett, 2010; Samuelson & Smith, 2000;

Waxman, 2003). Lexical items live at a critical juncture in lan-
guage processing, linking sound, articulation, syntax, and mean-
ing, and as a result, the acquisition of words has attracted enor-
mous attention (P. Bloom, 2000; Carey, 1978; Fenson et al., 1994;
Golinkoff et al., 2000; Mayor & Plunkett, 2010; Xu & Tenenbaum,
2007).

Whether such research examines the growth of the lexicon as a
whole (e.g., Fenson et al., 1994; Ganger & Brent, 2004) or con-
ducts microinvestigations of single word learning (e.g., Carey &
Bartlett, 1978; Horst & Samuelson, 2008), the fundamental ques-
tions concern word knowledge: (a) whether children know a word,
(b) how they come to know it, and (c) how many words they know.
The typical article addressing this starts with the scale: Children
acquire about 60,000 words in about 18 years. It then describes
why this is so hard. Famously articulated by Quine (1960), in any
naming situation there are infinite interpretations for an unknown
word. Thus, children face a daunting task of ambiguity resolution
that they must solve thousands of times.

Such an article then proposes an explanation for how children
solve this problem, but often skips a primary question: What does
it mean to know or learn a word? A canonical finding is that
toddlers comprehend more words than they produce: Seventy-five
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percent of 12-month-olds understand all gone, but it takes 8 more
months before that many say it. When do we consider all gone
known? Children can often identify the referents of novel words on
their first exposure (Mervis & Bertrand, 1994), yet their ability to
recognize familiar words develops over some time (Fernald, Pinto,
Swingley, Weinberg, & McRoberts, 1998). Again, when do we
consider a word known?

Perhaps it is not possible to quantify when, or if, a word is
known. If so, the problem of lexical acquisition may be better
framed in terms of how children learn to use words. After all, we
can measure word use directly. Commonly, this idea calls to mind
the process of producing words, but we mean something broader.
To the extent that a word links sound and meaning, any time that
link is used to guide behavior, a word is being used. Thus, word
use also includes processes such as comprehending known words,
and even determining referents for new words.

If we ignore the uncertainty of knowledge and focus on only
children’s word use, children must still solve a set of difficult
problems. Yet, the concept of using a word does not appear in
classic descriptions of word learning. Rather, the focus is on the
information needed for learning, the amount that must be gathered,
and the difficulties in gathering it. This has led to theoretical views
that emphasize knowledge-based processes in accounting for
learning but inadvertently deemphasize use (Golinkoff & Hirsh-
Pasek, 2006; Golinkoff, Mervis, & Hirsh-Pasek, 1994; Mayor &
Plunkett, 2010; Woodward & Markman, 1998; Xu & Tenenbaum,
2007). Our purpose here is to advance an account of the develop-
ment of word use, both novel and familiar, over multiple time-
scales. We demonstrate its power with a computational model.

In developing our account, we start by discussing the standard
view of word learning and the theoretical tensions surrounding it.
We then distill word learning to the minimal computational prob-
lem to frame our account. Finally, we present an account based on
associative learning and dynamic competition and demonstrate its
power to illuminate lexical behavior. These simple mechanisms
operate on different timescales: Dynamic competition describes
the situation-time process of selecting a referent of a word,
whereas associative learning describes the developmental-time
process of slowly forming mappings between words and concepts.
Critically, the interactions of these timescales can yield emergent
power to describe lexical behaviors that does not derive from
either one alone.

The Standard View: Acquiring Lexical Knowledge

Early approaches to word learning used measurement studies to
examine the number of words known over development (e.g., L.
Bloom, 1973; Dore, Franklin, Miller, & Ramer, 1976; Fenson et
al., 1994; Reznick & Goldfield, 1992). A key finding was that
word learning appears to accelerate. The source of this is debated
(P. Bloom, 2000; Ganger & Brent, 2004; McMurray, 2007; Nazzi
& Bertoncini, 2003), but clearly children are efficient learners and
may become more efficient over development. This contrasts with
the apparent difficulty of word learning. A major obstacle to
acquiring words is referential ambiguity (Quine, 1960): In any
naming event, a novel word can refer to any object present, its
properties, the speaker’s feelings or intentions for it, an impending
action, or something else altogether. Even considering only the

smaller problem of which object or category of objects is being
referred to, this is still challenging.

The constraint approach offers a metatheory for solving refer-
ential ambiguity: Children have (perhaps innate) constraints, prin-
ciples, or biases that help them infer a word’s meaning by provid-
ing information not available in the situation (Golinkoff et al.,
1994; Woodward & Markman, 1998). The most elementary con-
straints simply restrict the possible interpretations of a novel word
(Markman, 1990), positing that new words refer to whole objects
(not parts) or to basic-level categories (rather than super- or
subordinate categories). More complex constraints such as social
cues may go further, pinpointing the correct referent (Baldwin,
1991; Baldwin, Markman, Bill, Desjardins, & Irwin, 1996; Toma-
sello, Strosberg, & Akhtar, 1996).

Particularly relevant to the present study is the mutual exclu-
sivity constraint (Markman & Wachtel, 1988) and the similar
novel name–nameless category principle (N3C; Mervis & Ber-
trand, 1994), which describe how children infer the referent of a
word on the basis of which other objects they have names for. For
example, when presented with a familiar spoon and a novel whisk,
children infer that whisk refers to the latter, if they know the word
spoon. The form of this inference has been debated (Grassmann &
Tomasello, 2010; Halberda, 2006; Jaswal & Hansen, 2006; Mark-
man & Wachtel, 1988; Mervis & Bertrand, 1994), yet it is clear
that children can make inferences that integrate available context
with the contents of their lexica.

In the constraint approach, such inferences become the primary
route to learning, and some have argued that it is the onset of these
constraints or the related social–pragmatic skills that create the
sudden acceleration in word learning (Golinkoff & Hirsh-Pasek,
2006; Golinkoff et al., 1994; Markman, 1990; Nazzi & Bertoncini,
2003). However, the constraint approach has been challenged on a
number of theoretical and empirical grounds.

Theoretical Challenges to Constraints

A classic concern with the constraint approach is its ability to
scale up. Once children master basic-level terms, how is the
taxonomic constraint relaxed to learn superordinates? When can
children violate the whole-object constraint to learn properties?
And how do children ignore mutual exclusivity to learn synonyms
or superordinates? Similarly, the constraint approach does not
provide a clear framework for how constraints interact or how
conflicts are resolved.

This has led some to cast word learning in terms of general
inference processes used for reasoning or social–pragmatic behav-
ior. Mutual exclusivity, for example, applies to concepts (Behrend,
Scofield, & Kleinknecht, 2001; P. Bloom & Markson, 1998;
Markson & Bloom, 1997; Waxman & Booth, 2000) and can be
described by principles such as deductive syllogism (Halberda,
2006). These more general-purpose problem-solving skills may
avoid issues related to the relaxation of hard constraints. A pow-
erful formulation of this is to frame the problem in terms of
probabilistic (Bayesian) inference (Frank, Goodman, & Tenen-
baum, 2009; Xu & Tenenbaum, 2007). In this view, constraints are
prior probabilities that interact with context and existing knowl-
edge using the laws of probability to determine the optimal solu-
tion. This can handle interacting constraints and allows constraints
to be violated when the data permit. Others have cast the problem
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in terms of social inference (Akhtar & Martinez-Sussman, 2007;
Moore, 2006; Tomasello, 2001). This transforms the problem from
determining what a word means to determining what a speaker is
referring to. Mutual exclusivity, then, becomes a social inference
process in which speakers are expected to follow social conven-
tions and use familiar words (e.g., Diesendruck & Markson, 2001).
Social and Bayesian accounts are not mutually exclusive. Both
approaches are cast fundamentally in terms of acquiring knowl-
edge about words, but say little about how words are used once (or
while) this knowledge is acquired (but see Frank et al., 2009) or
how these inferences and knowledge relate to long-term learning.

Empirical Challenges to Constraints

The foundations of the constraint approach have been shaken by
research on four topics: the vocabulary spurt, fast mapping, cross-
situational learning, and familiar word recognition.

Vocabulary Spurt

The sudden acceleration vocabulary growth has been seen as
indirect evidence for constraints by implying their sudden avail-
ability or a change in children’s approach to word learning. How-
ever, Ganger and Brent (2004) argued that if the vocabulary spurt
was a singular change, then the velocity profiles of individual
children should show a sudden shift in velocity. Yet, for 33 of 38
children, a smoothly accelerating function fit better.

Alternatively, it is possible that principles such as mutual ex-
clusivity are available all the time (Akhtar & Martinez-Sussman,
2007; Markman, Wasow, & Hanson, 2003; Tomasello, 2001), but
children simply do not have enough words (or other knowledge) to
use them. As the first few words are acquired, these exert greater
leverage, allowing the rate of acquisition to increase (cf. Elman et
al., 1996; van Geert, 1991). Recently, however, McMurray (2007;
Mitchell & McMurray, 2009) demonstrated that acceleration is
possible without such mechanisms. As long as learning proceeds in
parallel and the distribution of easy and hard words includes few
easy words, acceleration is guaranteed. Thus, although a change in
underlying learning mechanism or constraints could account for
acceleration, acceleration is not evidence for it.

Fast Mapping

In her original discussion, Carey (1978) contrasted children’s
quick mapping of a novel word to a novel referent (which was
illustrated with the first demonstrations of mutual exclusivity),
with a slower phase of learning the word’s full meaning. It is not
clear whether this “fast mapping” refers to partial, early stages of
learning or purely in-the-moment referent selection (though the
word mapping implies learning). Nevertheless, if word learning is
due to fast mapping, then the act of selecting the referent should
result in something being retained.

The most compelling test of this would be to ask first if the child
selects the correct referent, and then examine retention when the
child is retested in a neutral context. Prior studies failed to do this
(see Horst & Samuelson, 2008): Some studies retest with a sub-
sequent trial of the same sort, allowing children to simply solve the
problem again (e.g., Mervis & Bertrand, 1994; Wilkinson &
Mazzitelli, 2003), and others provide a short review of the name–

object linkages before testing retention (e.g., Goodman,
McDonough, & Brown, 1998).

To address this, Horst and Samuelson (2008) presented children
two known and one novel object and asked for the referent of a
novel name. Children successfully selected the referent via mutual
exclusivity. Five minutes later, however, they were unable to map
that same to its referent when it was presented with other novel
items they had just seen. This suggests that the linkage was not
retained. Thus, the use of mutual exclusivity does not necessarily
result in long-term learning. It is uncertain whether this generalizes
to other task variants or other ages (e.g., Kucker & Samuelson,
2012; Spiegel & Halberda, 2011) or to other constraints. Never-
theless, it suggests that mutual exclusivity may simply bias the
child toward the referent in the moment, and is not synonymous
with learning. This questions a fundamental assumption of the
constraint approach, that resolving referential ambiguity (via con-
straints) is the same as learning.

Cross-Situational Learning

If solving the problem of referential ambiguity is not the same
as learning words, how do children do it? One possibility is
statistical learning. In any novel naming situation the intended
referent may be ambiguous. However, across situations there may
be only one object consistently paired with a word. For example,
while the word dog may occur with a dog, a ball, and a leash in one
situation, later on it may be heard without ball or leash and with
other objects. Over time the referent, dog, is likely to be the most
frequently co-occurring object. Thus, at any given time, the child
may not need to determine the referent—the child only needs to
accumulate co-occurrence statistics to learn the mappings (Horst,
McMurray, & Samuelson, 2006; McMurray, Horst, Toscano, &
Samuelson, 2009; Siskind, 1996; Smith & Yu, 2008; Yu & Smith,
2007). If true, associative mechanisms (MacWhinney, 1987; Mer-
riman, 1999; Regier, 2005) may suffice for word learning.

This idea had been examined computationally (Horst et al.,
2006; McMurray, Horst, et al., 2009; Siskind, 1996), but Yu and
Smith offered the first empirical tests. Adults (Yu & Smith, 2007)
and infants (Smith & Yu, 2008) were exposed to small artificial
lexica that contained such regularities across trials. Both groups
successfully learned the word–object linkages from this alone. It is
still not known whether such learning can handle categories of
objects, and this may change the computational problem. How-
ever, this provides an important proof of concept, that statistical or
associative learning may proceed without solving referential am-
biguity and without constraints (though they may facilitate learn-
ing or in the moment language use).

Familiar Word Recognition

Finally, by focusing on information used to solve referential
ambiguity, the constraint approach has little to say once the child
has acquired word–object mappings (familiar words). However,
familiar word recognition also changes over development, and it is
not clear that this is related to constraints. Fernald et al. (1998)
measured the amount of time it took infants to fixate the correct
object (in a two-alternative forced-choice looking task) as a mea-
sure of the recognition of the word’s meaning. This decreased
dramatically over development, suggesting a tuning process for
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known or recently learned words (Fernald, Perfors, & Marchman,
2006; Fernald et al., 1998). This decrease cannot be accounted for
by attentional or oculomotor processes, as infants show no changes
in purely visual tasks during this time, and performance in the
visual task is not related to their speed of word recognition (Fer-
nald et al., 2006). More importantly, this improvement cannot be
characterized as simply refining an existing skill; rather, speed of
processing predicts the rate of long-term learning (Fernald et al.,
2006) and later linguistic and cognitive outcomes (Marchman &
Fernald, 2008), suggesting it is a more fundamental property of
word learning and use.

The constraint approach has no way to describe these changes,
as it lacks a theory of how words are used. Since such changes are
not likely driven by referential ambiguity, under the constraint
view they require a separate developmental mechanism. To be
clear, few existing accounts make a strong distinction between
learning novel and familiar words. Studies such as Merriman,
Lipko, and Evey’s (2008) have examined how children decide that
a word is novel or familiar (implying that such decisions may help
engage the right learning or processing strategies). However, this
is not an essential component of any major theoretical accounts.
Yet at the same time, no major theories address the improvement
in familiar word recognition, nor do they seem to have the theo-
retical tools do so. Fernald and colleagues’ work suggests an
important developmental phenomenon that demands an explana-
tion and should be linked to the word learning literature more
broadly. If an account can handle both novel and familiar word
learning with the same mechanism, this may offer a more parsi-
monious explanation of word learning.

A New Direction

Although none of these findings completely rule out constraints,
they paint a picture in which the solution to referential ambiguity
is subtly independent of long-term learning. These problems are
not limited to the constraint approach—any approach focusing
exclusively on referential ambiguity and the information used to
solve it will struggle to account for these findings. We need an
account that emphasizes how novel and familiar words are used
and builds from there to understand how this ability develops.
Such an account cannot ignore referential ambiguity. However, it
must move beyond it to account for development. Our thesis is that
we may make more headway by considering behavior at two
timescales. Referential ambiguity is a problem that children face in
a given situation and must be solved in real time. This differs
substantially from the problem of learning and retaining word–
object mappings, which may unfold over many situations, and
indeed over development.

Distilling the Word

To develop this account, we first distill word use and word
learning to their minimal computational components. We define
them in terms of association and activation, processes that are
independent of the information that contributes to word recogni-
tion and word learning. This distinction is not theoretically novel;
it builds on constructs from cognitive development that have been
most extensively developed by Munakata, McClelland, and col-
leagues working in the connectionist paradigm and by Thelen,

Smith, Schöner, and colleagues in dynamic systems theory (Mu-
nakata, 1998; Munakata & McClelland, 2003; Munakata, McClel-
land, Johnson, & Siegler, 1997; Smith, Thelen, Titzer, & McLin,
1999; Thelen, Schöner, Scheier, & Smith, 2001; see also Elman,
1990; Harm & Seidenberg, 1999; McMurray, Horst, et al., 2009;
Spencer, Perone, & Johnson, 2009). Our goal here is to translate
these concepts to word learning and to use them to develop an
account that stands independent of a strongly theoretically con-
nectionist stance, as our ideas are conceptually compatible with
other approaches that are distinct from connectionism. This ac-
count necessarily oversimplifies many things. We discuss this
later. However, it allows us to be precise about mechanisms to
frame them computationally.

Word use and learning fundamentally concern the relationship
between a phonological pattern and a semantic category. For
present purposes, we ignore the complexities of mapping sounds to
word forms and assume that the auditory system can identify
discrete word forms. This is not trivial, but by the middle of the
2nd year, many of the basic properties of auditory word-form
recognition are in place (Fernald, Swingley, & Pinto, 2001; Swin-
gley, 2009; Swingley & Aslin, 2002). Similarly, we assume that
infants can analyze a visual scene and categorize referents. This
too is not trivial, but again, by the middle of the 2nd year, children
appear adept at it (Bauer, Dow, & Hertsgaard, 1995; Behl-Chadha,
1996; Mareschal & Tan, 2007). To be clear, word learning in-
volves mapping words to categories, not merely to individual
objects (and there are excellent models that capture aspects of this:
Mayor & Plunkett, 2010; Samuelson, 2002). Our goal here is to
strip out these important processes to investigate the power of the
associations themselves and the real-time processes that operate
over them to form the basis of interesting word learning behavior.
Thus, we will assume some categorization ability and focus on the
mapping between word forms and categories, and for simplicity’s
sake we will often refer to objects and/or referents when what is
meant is a category of objects or referents.

Figure 1 shows our distillation. Circles represent representa-
tions, and their shading indicates how strongly each is considered.
Figure 1A shows the process of identifying the referent of a word
in situation time, in a situation with two visual competitors. Ini-
tially, the system starts with every word form under partial con-
sideration or activation (Figure 1A, left side), as nothing has been
heard yet. Two objects (dog and tree) are active, reflecting the
visual scene. As the word is heard, the system moves toward
considering one word and object (bottom). This shift in activation
represents the process of deciding what was heard and what should
be attended, as in many interactive activation models (McClelland
& Elman, 1986; Spivey, 2007).

Thus, resolving referential ambiguity is a matter of moving from
consideration of multiple objects to one. This demands a solution
in terms of activation or attention to referents, not learning. Such
changes in real-time consideration of the referents could derive
from external forces that decrease consideration or activation for
incorrect objects or increase consideration of the correct one. In
this example, if dog is unknown, eye gaze could add consideration
for dog; mutual exclusivity could reduce consideration of bug (if it
is known); or a context demanding animacy could rule out the tree
(see Figure 1B). Such external forces may also include attention
processes that facilitate (Fulkerson & Waxman, 2007; Samuelson
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& Smith, 1998) and/or interfere with word and category learning
(e.g., Robinson & Sloutsky, 2004, 2007).

Crucially, none of this has to involve a mapping, nor does it
entail learning. As long as the activation of the objects reaches the
correct state, there is no need to retain anything—the child has
arrived at the right inference. So how does learning occur? Taking
typical connectionist assumptions, initially, the system starts with
word forms and objects randomly connected—many possible map-

pings are under partial consideration or activation (see Figure 1D,
left side), as nothing has been heard or seen yet. Over time, some
of these connections will be pruned, and others will be strength-
ened. For example, the simultaneous consideration of a word (e.g.,
dog) and an object (a dog) could lead to links being strengthened
if learning is associative, and the link between dog and tree (which
is not present) being weakened (Figure 1D). Over time, such
changes could build a system of links that encompasses many

tree

dog

bug

tree

dog

bug

A

tree

dog

bug

Mutual 
exclusivity

SemanticsB

tree

dog

bug

tree

dog

bug

C

D

tree

dog

bug

tree

dog

bug

tree

dog

bug

Figure 1. A schematic of word learning. On the left side of each panel are units showing how strongly a
particular auditory word form is under consideration; on the right are units showing the strength of a visual object
under consideration. (A) Solving the problems of word recognition and referential ambiguity requires a transition
from a state in which multiple word forms and object categories are considered to a state in which only one is. (B)
Constraints such as pragmatics and mutual exclusivity can act by simply changing the degree of consideration without
affecting long-term linkages. (C) Familiar word recognition takes advantage of learned associations to activate object
representations from spoken words. (D) Learning is instantiated as long-term linkages between words and objects that
are strengthened when both word forms and objects are considered simultaneously.
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words and objects. This changing and building of linkages is the
result of learning, not external forces such as attention, or prag-
matics that guide activation to solve the referential ambiguity
problem in the moment. If such links become strong enough, such
pathways will be employed when the word is heard again, allowing
the word form, dog, to activate the appropriate concept without
external support (see Figure 1C).

This suggests two distinct processes: (a) the use or recognition
of a familiar or novel word (changing activation states) and (b) the
changing of the links between the word form and visual referent
(learning or the changes of connection weights). These processes
can be described on different timescales. The problem of deter-
mining the referent of a novel word is a problem of usage. It must
be solved very rapidly in situation time, that is, within the context
of a single naming event, and it could take advantage of learned
mappings or external support. In contrast, the problem of learning
is solved over developmental time: It is a problem of acquiring
lasting linkages between sound patterns and meanings that may
take weeks or years. For familiar words, deploying these mappings
to understand or produce a word is a situation-time phenomenon,
but enhancing the efficiency of this occurs over developmental
time. These problems rely on different theoretical mechanisms:
Situation-time processes involve changes in activation, or the
strength of consideration of particular words and objects, whereas
developmental-time learning processes involve changes in knowl-
edge, that is, associations between words and objects (Harm &
Seidenberg, 1999; McMurray, Horst, et al., 2009; Munakata &
McClelland, 2003; Munakata et al., 1997; Smith et al., 1999;
Spencer et al., 2009; Thelen et al., 2001).

Although both problems are fundamentally about matching
words and referents, the demands of these tasks are clearly differ-
ent. The problem of finding a referent in the moment does not
necessitate learning. Simply arriving at a state in which one word
and one object are under consideration is sufficient, and does not
require changing of the strength of the linkage. That is not to say
that children can turn off learning, or that learning may not occur
in some circumstances. Indeed, it is more parsimonious if learning
is “always on.” Rather, we are arguing these are not problems that
are solved by learning processes, and it may not matter how much
or little is learned in a situation for a child to find a referent. If
word–object linkages are ever created in situation time, these
linkages do not need to be complete. Thus, children could make
use of contextual cues to solve referential ambiguity for their
immediate communicative needs, but not necessarily commit to a
given mapping from one event.

Conversely, learning does not require the child to solve refer-
ential ambiguity. If multiple objects are under consideration, mul-
tiple linkages can be laid down. If this is done in small increments
over multiple naming events, the more consistent ones could rise
to the top, as in cross-situational learning (Smith & Yu, 2008; Yu
& Smith, 2007). Such a process would need to be slow. If all
available referents are strongly associated with a word in a single
event, many erroneous linkages will be considered. If learning is
too fast, these linkages could become solidified, permanent—and
wrong. This fits with the fact that the average child hears 17,000
words a day (Hart & Risley, 1995), and even at their peak rate of
learning, children may acquire only a handful of words in that
same period (Sénéchal & Cornell, 1993). Thus, children must learn
words slowly.

This framing yields enormous flexibility, as situation-time pro-
cesses can be optimized for the demands of speaking, compre-
hending, and inferring, whereas developmental-time processes can
be optimized to the demands of learning. Indeed, by moving much
of the sophisticated inference of novel word meanings (classically
described as constraints) to situation time, it may allow simpler
mechanisms of learning to have complex effects, as learning is not
entirely independent of such situation-time processes. For exam-
ple, if the system attends to a referent longer in some circum-
stances than in others, more learning may result; or if competition
between referents resolves faster (in situation time), the system
may be able to acquire more unambiguous associations. Similarly,
changes in situation-time familiar word recognition could be pro-
duced by simply improving the strength of the links between
referents and their auditory word forms or by eliminating unnec-
essary connections.

This approach also addresses the relationship between familiar
and novel words. To the extent that any partially formed mappings
are available for a novel word, the system may use those partial
mappings to increase consideration to the correct object and de-
crease consideration to erroneous objects—a form of mutual ex-
clusivity. Thus, novel word recognition may take advantage of
familiar word processes. Similarly, familiar word recognition may
be enhanced by the fact that well-learned words would have
stronger associations than newly learned ones—a type of fre-
quency effect. Indeed, the process of tuning these connections to
augment familiar words can derive from the same learning mech-
anisms that establish them. If both novel and familiar words
harness the same processes, there is no reason to ignore external
support (e.g., pragmatics, semantics) in even familiar word recog-
nition—something of recent interest in adult sentence comprehen-
sion (e.g., Chambers, Tanenhaus, & Magnuson, 2004; Hanna &
Tanenhaus, 2004; Tanenhaus & Brown-Schmidt, 2008).

Bringing together novel and familiar word learning can unify
the literature. It also reframes how we think about classic findings
by treating processes that have been described as constraints as
descriptors of referent selection, not learning. Finally, it eliminates
the classic distinction of fast and slow mapping. Carey (1978)
described fast mapping as a special stage of initial learning where
links between words and meaning were first forged. In our view,
it may reflect purely situation-time referent selection. Indeed, as
words are acquired, there are complex changes as connections are
built and pruned, but there is no reason to assume the underlying
processes are any different the first time. Thus, as the term fast
mapping conflates learning and situation-time processing, we
avoid it. Instead, we use referent selection to refer to situation-time
behavior in ambiguous naming situations and learning to refer to
developmental-time changes.

Mechanisms of Ambiguity Resolution and Learning

Our dynamic associative account makes two claims. First, novel
word processing (referent selection) is not distinct from familiar
word recognition. Second, and more importantly, word learning is
the interaction of situation-time processes that give rise to referent
selection and familiar word recognition (word use), and
developmental-time processes that give rise to retention and the
improvement of these abilities. Here we propose mechanisms.
Situation-time processes arise out of dynamic competition between
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referents and words, and developmental-time processes arise from
associative learning harnessing cross-situational statistics.

Dynamic Competition

In connectionist models, any time multiple items are considered
in parallel, some form of competition is present. Indeed, several
models of word learning hypothesize probabilistic representations
with this property (MacWhinney, 1987; Merriman, 1999; Regier,
2003, 2005; Xu & Tenenbaum, 2007). These provide a good
starting point; however, they do not describe how these probabil-
ities unfold over situation time. Though this is important for
modeling behavior such as reaction times or eye movements, one
could in principle derive simple linking functions to map these
probabilistic representations to reaction times. However, this may
not be sufficient. Computational models have shown that when
competition unfolds dynamically over time, unexpected effects can
occur—gangs of weakly active representations can suddenly in-
hibit a more active one (Spivey, 2007). Since we want to explore
situations such as mutual exclusivity characterized by such ambi-
guity, and investigate how these unintended consequences can
shape learning, it is crucial to implement competition as a dynamic
process that unfolds over time.

Dynamic competition has been postulated in a number of do-
mains involving constraint satisfaction and ambiguity resolution
including music (Bharucha, 1987), syntactic parsing (MacDonald
et al., 1994; McRae, Spivey-Knowlton, & Tanenhaus, 1998), com-
parison (Goldstone & Medin, 1994), visual scene organization
(Vecera & O’Reilly, 1998), visual categorization (Spivey & Dale,
2004), visual search (Spivey, 2007), speech perception (McClel-
land & Elman, 1986), and language production (Dell, 1986). Many
of these problems are clearly relevant for our domain. These
computational approaches all incorporate simple neural-like units
with graded activation. Activation feeds forward (from perceptual
inputs to higher level representations) and backward (from higher
level representations) while competing within a level over time.
The resulting pattern of activation usually represents the best
solution given the constraints imposed by the input, top-down
expectations, and structure of the network. Typically, after this
process, a single unit is active, and activation for competitors is
suppressed, offering a close fit to our distillation of referent selec-
tion. There are a number of computational formalisms for this
including interactive activation (Dell, 1986; McClelland & Elman,
1986), normalized recurrence (Spivey, 2007), and dynamic field
theory (Schutte, Spencer, & Schöner, 2003; Thelen et al., 2001),
which share these basic properties.

In our model, referent selection is modeled with dynamic com-
petition through normalized recurrence (McRae et al., 1998;
Spivey, 2007). Normalized recurrence has been applied to prob-
lems that are related to referent selection including speech percep-
tion (McMurray & Spivey, 2000), visual categorization (Spivey &
Dale, 2004), and visual search (Spivey, 2007, chapter 8), and has
been used to map lexical activation for known words to objects
(Spivey-Knowlton & Allopenna, 1997; Spivey, 2007, pp. 187–
200), embodying our distillation of word recognition for familiar
words. Most importantly, versions of this architecture combine this
competition with unsupervised learning (McMurray, Horst, et al.,
2009; McMurray & Spivey, 2000).

To model referent selection, words and referents are modeled as
localist units. On any trial, one word and multiple objects are
active. Words and referents pass activation to a lexical layer (what
Spivey, 2007, terms a “decision layer”), and recurrent competition
among all three layers forces the network to suppress activation for
the objects that do not map to the word. We discuss the motivation
for localist representations in the General Discussion. However, at
a purely practical level, virtually all of the above referenced
competition architectures use localist units, and it is difficult to
implement competition in a distributed representation.

Associative Learning

A number of researchers argue that word learning cannot be
associative: The fundamental mechanisms are social (Golinkoff &
Hirsh-Pasek, 2006; Nazzi & Bertoncini, 2003), referential or con-
ceptual (Waxman & Gelman, 2009), or constraint based (Wood-
ward & Markman, 1998). Although such accounts describe im-
portant sources of information and/or important representational
issues, it is not clear what these mean for learning because terms
such as social, referential, and conceptual learning do not have
clear definitions in learning theory.

Some of these nonassociative accounts still argue that early
word learning may be associative (e.g., Golinkoff & Hirsh-Pasek,
2006; Nazzi & Bertoncini, 2003; see also Namy, 2012). This is
almost a necessity—there is little lexical knowledge to facilitate
mutual exclusivity, and social skills such as the use of eye gaze are
still developing (e.g., Moore, 2008). These accounts typically
argue that more complex mechanisms such as constraints or social
pragmatics take over later. Thus, such accounts posit a disconti-
nuity in the learning process, but even with this discontinuity, they
do not offer an explanation for improvements in familiar word
recognition.

Such accounts critique a straw man version of associationism in
which raw perceptual inputs are directly associated without pro-
cessing or intervening representations (cf. McMurray, Zhao,
Kucker, & Samuelson, in press). Indeed, this critique seems to
focus on the information that is associated, not in the mechanisms
by which the linkages are made (cf. Smith, 2000). In contrast,
modern learning theory admits internal representations as a basis
of association and allows attention and other factors to shape the
strength of these associations (Livesey & McLaren, 2011; Shanks,
2007). This is also central to connectionist learning. Our model
does both: associating visual and auditory inputs to a lexical
concept and allowing competition to shape their strength. If asso-
ciative learning uses abstract representations and sophisticated
situation-time processing, there is no reason to abandon it after the
initial words. Indeed, as we described, by allowing social inference
or constraints to shape in-the-moment processes, learning may still
be associative at its base while leveraging these richer sources of
information.

Under our view, learning is the same whether children are in the
so-called association phase or the so-called constraint-based, ref-
erential, or social–pragmatic phase. The distinction highlighted by
these theories is in terms of the information used during learning
and novel word inference, not the learning mechanism. This makes
a simple story. Basic learning mechanisms handle the retention of
information. Initially co-occurrence may be the only source of
information available to them, but later, as the child learns to use
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other information in the environment and make more robust deci-
sions about what the referents of words are, these form more
precise activation patterns in situation time, which enables richer
and faster associative learning—but the associative learning is the
same. In this way, the timescale distinction allows us to distinguish
and relate these processes. Principles and constraints identify the
relevant information in situation time for the purpose of using
words, whereas associative learning processes build the correct
mappings over developmental time. By buttressing associative
learning with dynamic competition to handle the situation-time
ambiguity resolution, we may achieve a significantly more pow-
erful word learner, as in any novel naming instance, the learner
will have more activation for words and/or referents (enabling
stronger associations to be built more quickly) and will have less
activation for competing referents, preventing the formation of
spurious associations. Crucially, this can be accomplished without
having to posit qualitative distinctions between learning mecha-
nisms at different ages.

This framework may also help connect vocabulary learning to
classic findings in learning theory that are directly relevant to
words. These include phenomena such as the power law of learn-
ing (Heathcote, Brown, & Mewhort, 2000; Logan, 1992; Newell &
Rosenbloom, 1981; see also Section 2), the role of similarity
(Palmeri, 1997; Storkel, Armbrüster, & Hogan, 2006; Swingley &
Aslin, 2007; Wifall, McMurray, & Hazeltine, 2012), the role of
statistics (Yu & Smith, 2007), and even old phenomena such cue
neutralization (Apfelbaum & McMurray, 2011; Bourne & Restle,
1959; Bush & Mosteller, 1951; Rost & McMurray, 2010).

Thus, our goal was to investigate the consequences of associa-
tive learning when embedded in this richer framework of multiple
timescales and internal representations. Our model uses perhaps
the simplest form of associative learning, Hebbian learning. Inputs
(words or objects) will be associated with an internal lexical unit
if both are active; otherwise, the association decays. As in the case
of competition, both implementing and understanding such learn-
ing make the most sense with localist units.

Even within this simple approach, there are layers of complex-
ity. First, associations connect word forms and object categories to
lexical concepts, not to each other. These lexical concepts function
something like lemmas—abstract representations that connect
other representations. Their presence means that learning requires
at least two connections (word ¡ lexicon; lexicon ¡ object).
Second, learning must not just build connections, but also avoid or
eliminate unnecessary ones (cf. Regier, 1996). Consider the con-
nections between visual and lexical units (see Figure 2). If the
network heard dog in the presence of a dog and a bug, the most
salient connection is the positive association between the object
category dog and its lexical unit (thick line). However, this system
should also learn that the object category dog is not associated with
the word tree (which was not heard), a negative association
(dashed line). It also needs to reduce the negative association
between the object category, tree, which is not present, and the
word, dog (dotted line). Thus, for successful learning to occur, it
must increase one association and decrease two. In a larger lexi-
con, there will still be one positive connection, but there will now
be hundreds of spurious connections to prune.1

What is the source of these spurious associations? As we de-
scribed, these may exist from the earliest stages of learning. In
connectionist models connection weights start from small random

values—a necessity in unsupervised learning (e.g., Rumelhart &
Zipser, 1986). Some may also be formed during learning when
incorrect objects appear with the referent (e.g., bug). Either way,
these spurious associations will also need to be pruned. This
pruning must occur in a way that preserves plasticity for new
words. If connections to all words and referents were pruned
equally on each naming event, potential positive connections for
novel words and categories that have not been heard or seen would
be pruned as well, making such words difficult to learn. Rather, we
need a form of pruning that preserves potential connections for
novel words and referents, but still allows the system to refine its
connectivity for familiar words and referents. Thus, this pruning
process, which is not often what comes to mind when we think of
learning a word, could be an important determinant of develop-
ment, if only for its massive scale.

Overview of Architecture

At the broadest level, our dynamic associative model captures
short and long timescale dynamics by embedding a model of
learning in a model of use. It ignores the complexity of auditory
and visual processing, to link word forms to object categories.
However, it does not link them directly. Rather, word forms and
categories each link to intermediate lexical representations. We
implemented this in a hybrid connectionist–dynamic systems ap-
proach. Word forms and categories are represented by localist
units, which compete in situation time using normalized recurrence
to push the network toward a single interpretation. During com-
petition, connections between inputs and the lexical layer are tuned
via associative (Hebbian) learning. As we discussed, localist rep-
resentations are the most transparent way to implement these
mechanisms. However, they also offer a theoretical advantage: By
stripping out the emergent power of distributed representations,
they allow us to isolate these mechanisms and observe their
consequence in a more or less pure state. Our goal was to inves-
tigate the power of this unique combination of basic mechanisms.

1 We use the term prune here as a vivid metaphor. However we intend
a more graded sense in which spurious connections are slowly and grad-
ually reduced, not irrevocably eliminated in one step.

bug dog tree

Figure 2. A schematic of the sorts of connections that would need to be
acquired or pruned during learning.
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Relationship to Standard Connectionist Approaches

By situating learning in connection weights and situation-time
processing in changing activation, our approach is broadly consis-
tent with classic connectionist thinking on development (Elman,
1990; Harm & Seidenberg, 1999; Munakata, 1998; Munakata &
McClelland, 2003; Munakata et al., 1997). In models such as these,
such a description can divorce emerging knowledge from the
ability to use it in a real task. For example, in Munakata’s models,
the model may have some latent ability to represent an object
under occlusion, but this can be overwhelmed in the moment.

Our model shares these broad properties, though it differs in
theoretically important ways. First, as in many models, situation-
time processing occurs over recurrent connections between units.
However, we argue that competition is the essential element of this
situation-time processing (in word learning), something other
models (Elman, 1990; Harm & Seidenberg, 1999; Munakata,
1998) have not explored. Second, many models of this sort make
the simplifying assumption that each time step corresponds to the
presentation of a single input, what Schlesinger and McMurray (in
press) term “trial time”2 (but see Harm & Seidenberg, 1999). In
contrast, in this domain it is important to model ongoing process-
ing after the presentation of an input, both to model things such as
reaction time and because settling can cause the network to change
its interpretation of the input, not just strengthen whatever is
already the most active (cf. McClelland & Elman, 1986; Spivey &
Dale, 2004). Third, all the prior networks have used more powerful
supervised learning, though we argue that unsupervised learning
may be fundamental to word learning. Thus, our framework is
built on classical connectionist thinking about learning and pro-
cessing, but makes specific and theoretically motivated decisions
about how to use these constructs that have not appeared in prior
models of cognitive development.

Why Another Computational Model of Word
Learning?

There are a many computational models of components of word
learning, examining topics ranging from the sequencing of pho-
nological material (Gupta & Tisdale, 2009; Sibley, Kello, David,
& Elman, 2008) to generalization of category membership (Col-
unga & Smith, 2005; Li, Farkas, & MacWhinney, 2004; Mayor &
Plunkett, 2010; Samuelson, 2002), to embodiment (Roy & Pent-
land, 2002; Yu, Ballard, & Aslin, 2005). There are several models
of the word–referent mapping problem (Frank et al., 2009; Li et
al., 2004; MacWhinney, 1987; Mayor & Plunkett, 2010; Merri-
man, 1999; Regier, 2005; Siskind, 1996; Xu & Tenenbaum, 2007).
These models make valuable contributions, highlighting the infor-
mation that is relevant to the problem (Siskind, 1996), the power
of associative mechanisms (Colunga & Smith, 2005; Li et al.,
2004; Mayor & Plunkett, 2010; Merriman, 1999; Regier, 2005;
Samuelson, 2002), and how constraint-like behavior emerges from
simpler systems (Merriman, 1999; Regier, 2005).

A complete analysis of these models is outside the scope of this
article (for useful reviews, see Frank et al., 2009; Regier, 2003,
2005), and we are not proposing a competitor to them. Our goal is
not to develop a complete model of word learning, but rather to use
computational tools to investigate the emergent consequences of
theoretical ideas (cf. Schlesinger & McMurray, in press). In that

sense, it is important to address what questions these models have
been used to answer, and any limitations that may inhibit their
ability to address our questions.

First, by not explicitly capturing both timescales, many models
do not succeed in modeling certain phenomena, or are forced to
treat problems such as referent selection as developmental-time
phenomena. For example, MacWhinney (1987), Merriman (1999),
and Regier (2005) incorporated something resembling competition
in their probabilistic representations. But they did not incorporate
situation-time dynamics, nor distinguish between aspects of the
problem that must occur in situation time (e.g., referent selection)
and those that occur over developmental time. Consequently, they
discussed things such as mutual exclusivity as a limit on learning
(e.g., it is difficult to learn a second label for an object), rather than
a principle of referent selection. Moreover, without implementing
dynamic competition, these models cannot investigate the emer-
gent interactions between competition and learning.

Bayesian models (Xu & Tenenbaum, 2007), in their focus on
how interacting constraints lead to accurate inferences, off-load
many constraints onto priors (and add new ones). This makes it
difficult to understand how these behaviors develop or could arise
from simpler processes. More recent Bayesian approaches (Frank
et al., 2009) do address independent timescales, acknowledging the
demands of both long-term learning and referent selection, and
offer an example of how statistical learning can be buttressed by
social cues. But lacking situation-time dynamics or a developmen-
tally plausible learning model, such approaches only serve as a
metalevel description of the information used for word learning
(Jones & Love, 2011).

Regier’s (2005) and Mayor and Plunkett’s (2010) models are
both associative and perhaps closest to ours. In some respects they
go further, examining the contributions of auditory and visual
similarity. In others they are more limited. At the level of asso-
ciative learning, both models include rich representations of audi-
tory word forms and basic categories, but do not include abstrac-
tion between them, so they may not be able to generalize word
knowledge to other processes such as action systems, spatial
processes, and orthography. Moreover, competition only arises
from probabilistic representations—not true dynamic competition.
As a result, they have not investigated the consequences of
situation-time competition (though these approaches are likely not
opposed to this). Further, these models emphasize issues in word
learning that are now understood differently. Regier focused on
accelerating vocabulary growth, when McMurray (2007) sug-
gested this is a property of many parallel learning systems. Both
models simulate fast mapping by mutual exclusivity as one-shot
learning, but Horst and Samuelson (2008) suggested this may not
be required—a model could perform well in the moment even if
little learning occurred (Horst et al., 2006). Finally, neither deals
with referential ambiguity, assuming a form of ostensive naming.
This, however, is a limitation of implementation: Such models
may be able to cope with many of the phenomena we examine
here, given their theoretical overlap.

2 Though this is a misnomer with respect to the Munakata models, as
each trial consists of multiple input presentations (the sequence of visual
inputs). The fact that there is not significant cycling of the network after
each presentation of the input is the relevant factor here.
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Finally, Samuelson (2002) and Colunga and Smith (2005) pre-
sented semisupervised associative learning models that do incor-
porate settling dynamics (though not competition). However, they
did not attempt to model the actual learning problem. Rather than
examine referential ambiguity, they focused on how associative
learning can lead to generalization and to the identification of
relevant dimensions for object categorization. Moreover, they did
not use the settling dynamics to explain situation-time behaviors
such as referent selection.

Thus, our model is consistent with features of many models: It
incorporates associative learning (MacWhinney, 1987; Regier,
2003, 2005; Samuelson, 2002) and examines the role of statistical
structure (Frank et al., 2009; Siskind, 1996) using graded or
probabilistic representations (MacWhinney, 1987; Regier, 2005;
Xu & Tenenbaum, 2007). It examines the emergence of constraints
(Colunga & Smith, 2005; MacWhinney, 1987; Regier, 2005;
Samuelson, 2002), and its architecture combines situation-time
and learning processes (Colunga & Smith, 2005; Samuelson,
2002). However, it builds on these notions to examine a central
new issue: the emergent power of how mechanisms interact across
two timescales. The power of this combination is illustrated by
distilling the problem to the point where such mechanisms operate
over a minimally informative set of representations (e.g., word
forms and concepts stripped of their phonetic, visual, and concep-
tual processes), and by embedding them within a cross-situational
learning framework in which words can only be learned via
co-occurrence statistics.

Our goal is not to present a complete model of word learning,
but to use our dynamic associative model to learn how these
processes interact. This can test the sufficiency of these processes
to account for a range of phenomena. More importantly, we can
use the model to clarify how these processes are related and
develop a theoretical framework on which to base empirical in-
vestigations. This allows us to ask whether associative learning can
cope with referential ambiguity, and whether children must solve
this problem to learn words; how online processes and learning
interact; whether processes that underlie familiar word recognition
give rise to mutual exclusivity; and whether constraints such as
mutual exclusivity emerge without being built in. Answering these
will help develop a theoretical approach bigger than any one
model.

Specific Architecture

Our dynamic associative model (see Figure 3) has two layers of
localist inputs, for auditory word forms and visual objects. Each
auditory unit corresponds to a single word, and each visual unit
corresponds to one category of possible referent. During process-
ing, the auditory and visual layers are normalized such that the sum
across each layer is 1.0. Thus, if a single node were fully active, its
activation would be 1.0; if two were active, each would be .5; and
when all nodes are inactive (the resting level), they are set to 1/N
where N is the number of nodes. After normalization, the vector of
activations across a layer can be read as the distribution of likeli-
hoods that the auditory (or visual) hypothesis represented by that
node is present.

There are no direct connections between auditory and visual
units. Interactions occur because both connect to a hidden layer of
lexical units. These weights are initially random such that each

auditory and visual unit is connected to each lexical unit (with
differing strengths; see Figure 1A). However, after learning, these
weights generally reflect one-to-one mappings between word
forms and lexical units, and between referents and lexical units
(see Figure 1B).

The model contains more lexical units than needed to represent
all the words. This leads to better learning. Generally, Hebbian
learning reinforces existing associations and prunes unnecessary
ones. Thus, the first few connections formed during learning are
crucial. If the network initially randomly associated two inputs
with the same lexical node, this mismapping could be reinforced
over subsequent inputs and prevent the network from ever dis-
criminating them. Greater numbers of lexical units make this much
less likely (McMurray & Spivey, 2000).

On each trial, a single auditory unit (a name) is activated (set to
1.0). An array of visual units (the objects in the scene) is also
activated. Input layers are normalized, and activation from each
layer is sent concurrently to the layer of lexical units (Equation 1).

�lx � ��z�A
wxzaz � �

z�V
uxzvz� (1)

The change in activation of a lexical unit is based on the net input
to that node: the sum of all the auditory units (az, for the zth

Lexical Units
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Inputs
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Inputs

tree

cat

dog
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ball

bug

*weights are bidirectional
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A. Initial Model

B. After Training

Figure 3. Architecture of the model, both before (A) and after (B)
learning.
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auditory unit) multiplied by their connection weight (wxz, which
connects auditory node x to lexical node z), and the corresponding
weighted (uxz) activation of the visual input units (vz). This is
multiplied by the feed-forward temperature (�ff), which controls
the weighting of the prior activation in setting the new activation
(we use the superscripted l(t) to denote l at time t).

lx
(t�1) � lx

(t) � �f f · �lx
(t) (2)

After updating the activations, lexical units inhibit each other using
squared normalization.

lx
(t�1) �

�lx
(t)�2

�
z�L

�lz
(t)�2 (3)

Since activation in the lexicon is always between 0 and 1, the result
of this is that highly active units become more active and dominate
less active ones.3 When run repeatedly over several cycles, this
approximates winner-take-all competition.

The resulting lexical activation then feeds back to the input
layers (Equations 4 and 5). The change in activation of an auditory
(or visual) unit, y, is proportional to the product of its previous
activation and the weighted activation (wyz) of the lexical units (lz).

�ay � ay · �
z�L

lzwyz (4)

ay
(t�1) � ay

(t) � �fb · �ay
(t) (5)

The fact that feedback is multiplied by the current activation
means that feedback from the lexical layer only affects active input
units. This prevents the network from activating perceptual inputs
on the basis of top-down evidence alone, and it also introduces
nonlinearity into the system. The temperature parameter, �fb, is not
required to be the same as for feed-forward activation and was not
for the simulations reported here.

After updating, the activations of the auditory and visual layers
undergo a small amount of inhibition (Equation 6) and are nor-
malized.

ay
(t�1) �

�ay
(t)��

�
x�A

�ax
(t)��

(6)

Here � represents the degree of inhibition. At � � 2, this would
yield strong inhibition as in the lexical layer; at 2 � � � 1 there is
less inhibition; at � � 1, no inhibition; and at � � 1 the activation
collapses back to the resting state. After this step, activation feeds
forward to the lexical layer and the cycle continues. Activation
cycles in this way until the lexical layer settles (i.e., the change in
lexical activation from time step to time step is close to zero).

Typically, on any trial the network is presented with multiple
visual units to simulate a cluttered scene. Throughout cycling, the
network partially considers each visual competitor simultaneously,
but after many cycles, the competition and feedback generally
result in a single object having more activation than the others.
This active visual unit is the network’s response—the network is
allocating more attention to this referent. Thus, recurrent cycling
causes the network to settle into an activation pattern across all
three layers that reflects the present constraints (the auditory and
visual inputs) and partial knowledge (in the weights).

Connections are modified at each cycle with Hebbian learning
(Equations 7 and 8). The network increases the strength of the
connection between simultaneously active input and lexical units,
and decreases the connection in other cases.

�wxy � axly�1 � wxy�
� .5 · �1 � ax� · lywxy

� .5 · ax�1 � ly� · wxy (7)

In Equation 7, the first line represents the positive term. If ax

(auditory unit x) and ly (activation for lexical unit y) are active, the
weight is increased proportional to its distance from 1 (its maxi-
mum value). The second and third terms are decay terms. A given
weight decreases if (a) the input unit is active and the lexical unit
is not or (b) the lexical unit is active and the input is not. If neither
is active, there is no decay. By restricting weight decay to only
connections between units that are actually used at that point in
time, the model maintains plasticity in weights connecting input
and lexical nodes that are not used. This is crucial for learning new
words in the future (for a similar learning rule, see Grossberg,
1976). Weights are updated with Equation 8.

wxy
(t�1) � wxy

(t) � � · �wxy
(t) (8)

Here � is the learning rate and is typically very small—on the
order of .0005. This is because learning occurs on each cycle of
competition (and with many cycles or input, this will add up). By
learning continuously, rather than at the end of processing, we
need no homunculus controlling when learning can occur, much as
children may not differentiate between training and test trials in the
laboratory from other learning opportunities.

An important question is what regularities in the input drive
functional learning. We examine one possibility here: co-
occurrence between words and referents, or cross-situational sta-
tistics (Yu & Smith, 2007). We implemented this style of learning
by ensuring that among the set of visual competitors active on any
given trial, one was consistently paired with the auditory target
while the others were randomly selected.

General Methods

For most models, a 35-word lexicon was used. Though the
network can learn larger lexica (see supplemental materials, Sim-
ulation S2), 35 was sufficient to be interesting while allowing the
network to run reasonably quickly.4 Thus, models were initialized
with 35 input units and 500 lexical units. Weights were initialized
to random values, generally between 0 and .5 (the wtsize param-
eter).

Training

Models were generally trained for 200,000 epochs, where an
epoch is one presentation of a word (though this entails many

3 This particular form of inhibition instantiates a form of lateral inhibi-
tion in which the ability of each unit to inhibit the other units is a function
of its proportion of the total activation.

4 A typical model completed training in 30 min to 2 hr, but for each
simulation we typically ran many repetitions of each model in several
conditions, requiring several days.
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cycles of competition as the word is processed). Although the
model can perform quite well after only a handful of exposures to
a word, it may take several thousand for the weights to settle on a
single strong association. Thus, a long period of training was
important for understanding both early and late stages of learning.

On training trials, a single auditory unit was activated, accom-
panied by the corresponding visual unit and a variable number of
competitors. The average number of visual units active across
trials is the degree of referential ambiguity present in naming
situations for that model. Thus, if on average 14 of 35 units were
active, the model faced 40.3% referential ambiguity. On any given
trial, the active visual units were determined by first choosing a
vector of 35 independent random values between 0 and 1. From
this, any unit whose random value was less than the level of
referential ambiguity would be active (e.g., for a referential am-
biguity of 20%, if the random value for a unit was .2 or lower, this
unit would be activated). Consequently, the number of competitors
was not constant over trials, though the mean level of ambiguity
was.

Testing

Although many tests of the model were particular to a simula-
tion, most models were tested in the following ways: (a) a simu-
lation of an N-alternative forced-choice referent selection task, (b)
a production task, and (c) an analysis of the weight matrix.

The N-alternative forced-choice (NAFC) task is similar to what
is used with children (e.g., Golinkoff, Hirsh-Pasek, Bailey, &
Wenger, 1992; Mervis & Bertrand, 1994). In this procedure, a
single auditory unit is activated with N visual units (typically
three). One of these is the target, and the others are randomly
selected. Activation settles through the model until the lexical
layer stabilizes. The activation in the visual units then determines
the model’s response. To correctly identify the word, the model
must pass activation from the auditory layer to the visual layer,
strengthening activation for the correct visual unit and suppressing
the competitors. This can be interpreted as the model attending to
one object (a look or a reach in a child). This is repeated for each
word to estimate the number of words known. This test emphasizes
the model’s observable behavior in a simulated experiment, rather
than analyzes its unobservable intermediate states (the lexical
units).

We also created a production task, to simulate laboratory nam-
ing tasks, and to simulate the “child says” version of the
MacArthur–Bates Communicative Development Inventory
(MCDI), which is commonly used to assess which words a child
knows. Here we run the model in reverse. This time a single
referent is active and the system must select from all the auditory
word forms—all the auditory units were partially active (1/N). In
this task, there are no constraints on which word forms are con-
sidered, and there will be typically many more auditory competi-
tors than visual competitors in a comprehension task. Activation
settles through the model until lexical layer stabilizes. Here the
most active auditory unit serves as the response. This is repeated
for each word to estimate the model’s productive vocabulary.

In addition to these tasks, we analyzed the weight matrix. This
is not comparable to anything that can be done with children, but
it assesses learning more directly. For each word, we first exam-
ined the auditory ¡ lexical weights to determine which lexical

unit was most strongly connected to that auditory unit. This was
repeated for the visual inputs. If this was the same unit, it would
imply that the model correctly formed the association between
auditory and visual representations for this word, and this word
was scored as correct. Occasionally some instantiations of the
model selected the same lexical unit for two word–object pairs,
implying that both words meant the same thing. Because this was
incorrect (in the lexicons used in the first three sections), only one
of the two words would be scored as correct. Thus, this analysis
asks whether the model has achieved a representation of the word
that is close to an idealized state in which each word corresponds
to one object (and vice versa).

Each of these tests was often repeated over training, raising the
possibility that the model could learn during test. Thus, unless we
have noted otherwise, any weight changes that accumulated during
testing were discarded before continuing with training.

Overview of Simulations

Our first goal is to show that this dynamic associative model can
account for a variety of empirical results. We do not do this to
emphasize the fit of this specific model. Rather, our model is
representative of a broad class of interactive and associative mech-
anisms. Thus, its ability to fit the data really emphasizes the
strength of these kinds of approaches, and of approaches operating
at two timescales more generally. A second, more important goal
is to use the model to understand the processing mechanisms that
underlie word learning phenomena such as mutual exclusivity,
familiar word recognition, and statistical learning. Thus, our sim-
ulations alternate between simulating empirical phenomena and
unpacking the models’ information processing.

Table 1 shows a summary of all the simulations presented here,
with citations to relevant empirical studies. Section 1 examines
learning. We ask whether the model can learn under referential
ambiguity (Simulation 1.1), and whether it shows differences
between comprehension and production (Simulation 1.2). We next
ask how much referential ambiguity the model tolerates (Simula-
tion 1.3) and about the shape of vocabulary growth (Simulation
1.4). These demonstrate the basic phenomena of word learning and
the role of word use in explaining them.

We next examine situation-time phenomena. Simulation 2.1
examines the time course of familiar word recognition and Simu-
lations 2.2 and 2.3 examine the use of mutual exclusivity for
referent selection. Both are assessed over development and our
analysis suggests that even these situation-time phenomena are
fundamentally shaped by developmental forces.

Section 3 examines the interaction of situation- and developmental-
time processes. Simulation 3.1 examines the apparent indepen-
dence of these timescales, focusing on referent selection and
retention (Horst & Samuelson, 2008). Next, we examine phenom-
ena arguing for more dependent timescales: the interaction of task
and mutual exclusivity (Simulation 3.2), and individual differences
in familiar word recognition (Simulation 3.3). Finally, Simulation
3.4 manipulates situation-time processes in the model to show that
they are necessary for learning.

Section 4 scales the model up in two important ways. First,
Simulation 4.1 trains the model on both basic-level and superor-
dinate labels to show that despite the model’s use of mutual
exclusivity, it can learn multiple labels for a referent. This also

842 MCMURRAY, HORST, AND SAMUELSON



Table 1
Summary of Findings From the Simulations (With Reference to Relevant Empirical Studies)

Simulation Findings

Learning
1.1: Learning Model can learn under referential uncertainty.

Performance on comprehension exceeds competence due to task constraints.
Slow mapping or elaboration effects without semantics.
Relevant studies: Capone & McGregor (2005); Smith & Yu (2008); Yu & Smith (2007).

1.2: Comprehension and
production

Words can be comprehended earlier than produced.
Largely effect of task–competition environment.
Relevant studies: Huttenlocher (1974); Reznick & Goldfield (1992).

1.3: Referential ambiguity Model can learn complete lexicon under high referential ambiguity.
Relevant studies: Smith & Yu (2008); Yu & Smith (2007).

1.4: Accelerating learning Model shows acceleration, as long as learning task is difficult enough and learning is sampled frequently.
Relevant studies: Ganger & Brent (2004); McMurray (2007).

Situation-time processes

2.1: Familiar word
recognition

Settling time (reaction time) decreases over development.
Effect arises pruning connections between words and incorrect referents.
Similar pattern to power law of learning.
Acceleration in number of words unrelated to deceleration in reaction time.
Relevant studies: Fernald et al. (2006, 1998).

2.2: Fast mapping Model can fast-map by mutual exclusivity.
Function of both online dynamics and the weights set up by the learning and weight decay rule.
Relevant studies: Carey & Bartlett (1978); Horst & Samuelson (2008); Markman & Wachtel (1988); Mervis & Bertrand

(1994).
2.3: Fast mapping and

development
Fast mapping emerges out of changes in weight matrix.
Familiarity with visual objects can speed development.
Relevant study: Halberda (2003).

Learning–processing interactions

3.1: Fast mapping and
retention

Model fails to retain fast-mapped labels, unless visually familiar.
Only a small amount of learning occurs on any fast-mapping event.
Relevant studies: Horst & Samuelson (2008); Kucker & Samuelson (2012); Spiegel & Halberda (2011).

3.2: Fast mapping and
task

Model succeeds at 3AFC fast-mapping task at earlier points than 5AFC.
Both develop over time.
Relevant studies: Markman et al. (2003); Mervis & Bertrand (1994).

3.3: Familiar words and
individual differences

Model shows stability in reaction time, correlations between reaction time and knowledge.
Reaction time at early points in development predicts acceleration in vocabulary growth.
Speed of processing is not unitary—emerges out of interactions between processing parameters, learning parameters. and

developmental history.
Relevant studies: Fernald et al. (2006).

3.4: Processing and
learning

Competition is required for cross-situational learning.
Feedback slows learning but may be beneficial.
Relevant studies: Smith & Yu (2008); Yu & Smith (2007).

Scaling up

4.1: Superordinate
categories

Model can learn superordinate terms for objects in addition to basic level.
Basic-level advantage derives from frequency, spreading of associations.
Mutual exclusivity does not block learning of second names because it is an online process, not a constraint on learning.

4.2: One-to-one word
object mappings

Model can learn when all words have multiple meanings (e.g., polysemy).
Model can learn when all objects have multiple labels (e.g., bilingualism).
Fast-mapping performance is slightly reduced by polysemy.
Fast mapping is significantly degraded when all objects have multiple labels.
Relevant studies: Byers-Heinlein & Werker (2009).

Supplement

S1: Acceleration and
word difficulty

Acceleration observed whenever the overall difficulty of the words is high.
Varying frequency results in longer period of apparently slow learning.

S2: Temperature and
speed of processing

Higher temperatures appear to lead to slower processing for familiar words.
Effect derives from learning—higher temperatures offer initially faster settling and, as a result, fewer weights are pruned.
Higher temperature also slows learning.
Initially faster settling causes system to commit to more erroneous interpretations.

S3: Larger lexica Model can learn lexica of up to 150 words at high degrees of referential ambiguity (50%, or M � 75 competitors per trial).
S4: Slow learning Manipulated learning rates to see effect on learning.

At normal values for typical Hebbian learning (�.01), the model fails to learn, but can learn at intermediate and low
values.

Slow learning prevents model from overcommitting to erroneous mappings.

Note. AFC � alternative forced-choice.
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affords the opportunity to examine basic-level advantages in a
system that is not hierarchical. Simulation 4.2 generalizes this
finding, training the network on multiple referents for a word (e.g.,
homonyms or polysemy), or multiple labels for a given object
(e.g., bilingualism, synonomy). As these can disrupt the one-to-one
word–object mappings commonly thought to underlie referent
selection by mutual exclusivity, we evaluate both learning and
mutual exclusivity.

A number of additional simulations were also conducted and
reported in the supplemental materials. These support the simula-
tions presented here and do not introduce new theoretical points.
Commented MATLAB code for all simulations is also available in
the supplemental materials.

Section 1: Developmental Time Processes

We first ask whether the model can learn words under referen-
tial ambiguity, and whether differences in real-time comprehen-
sion and production tasks account for the commonly observed
delay in productive vocabulary growth relative to comprehension.
Next we assess how much referential uncertainty can be tolerated,
and the shape of learning.

Simulation 1.1: Learning, Measured by
Comprehension

Our first simulation validated that the model can learn under
referential uncertainty, using the simulated laboratory comprehen-
sion task. We initialized 10 models to learn 35 words under 50%
ambiguity (on average 17 competitors were present on every
trial—a substantial degree of ambiguity). Every 1000 epochs we
tested the model in the 3AFC and 10AFC tasks, and analyzed the
weights (Table 2 shows the parameters for all simulations in
Section 1).

Results. Figure 4 shows the number of words learned as a
function of time (training). The perceived rate of learning is largely
a function of the task. At 50,000 epochs, the model appears to
know most of its lexicon when tested in the 3AFC task, and can do
fairly well in the 10AFC task. However, this model has not
finished learning. The weight analysis shows that only 1.5 words
are known—for most words, the corresponding auditory and visual
units do not have strong associations to the same lexical unit. This

suggests that competition can make the model outperform its
stored knowledge, and even after the model can identify the
referent, there is still significant learning to do. Some have likened
this “slow mapping” process to an elaboration of the meaning,
syntax, and phonology (e.g., Capone & McGregor, 2005). This
undoubtedly occurs, but this model has no semantics, syntax, or
phonology. Thus, the raw word–object mappings may need to
undergo a similar process in which competing weights are gradu-
ally eliminated, and the correct connections sharpened, even after
the model demonstrates understanding of the word (Riches, To-
masello, & Conti-Ramsden, 2005). Crucially, however, we also
observe a disconnect between the model’s knowledge (which is
poor at early points in training) and its performance (which is
simultaneously quite good). Here task constraints, such as the
reduced number of competitors, actually allow the model to per-
form better than its knowledge, in an apparent reversal of the
performance competence distinction.

Simulation 1.2: Production and Comprehension

Simulation 1.1 suggests a dissociation between what a model
“knows” (the associative connections), and what it “does” (perfor-
mance on comprehension tasks). This raises the possibility that
vocabulary growth may appear to follow a different developmental

Table 2
Parameters for Simulations in Section 1

Parameter 1.1: Comprehension
1.2: Comprehension

and production 1.3: Ambiguity 1.4: Acceleration

Input units 35 35 35 35
Lexical units 500 500 500 500
Initial weight size .5 .5 .5 .5
Learning rate .0005 .0005 .0005 .0005
Referential ambiguity .5 .5 .2 – .95 .75
Feed-forward temperature .01 .01 .01 .01
Feedback temperature 2 2 2 2
Stability point 1e-12 1e-12 1e-12 1e-12
Input inhibition 1.05 1.05 1.05 1.05

Note. A number of parameters control the activation flow, rate of learning, and initial conditions of the model. Initial weight refers to the range of values
that the connection weights were randomly initialized to (e.g., a random number between 0 and .5). Learning rate affects the amount of weight change for
each leaning instance.
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time course when measured with production and comprehension
tasks.

Such differences are observed empirically: Children typically
comprehend more words than they can produce (Fenson et al.,
1994; Reznick & Goldfield, 1992). Though this is often attributed
to memory demands, difficulty planning articulation, or the earlier
age at which speech perception develops, in the model, such
differences cannot arise from these factors. However, as we have
described them, comprehension and production are different tasks,
as comprehension requires selecting from a small number of
referents, whereas production requires selecting from a vast num-
ber of word forms. Thus, this simulation asks whether task differ-
ences alone account for part of the delay in production. This is not
to say that such differences are artifacts of the tasks used to assess
them—they are fundamental to comprehension and production
more generally.

Twenty models were trained at 50% referential ambiguity (see
Table 1). Every 200 epochs they were tested on a number of
comprehension tasks: 3AFC, 5AFC, 10AFC. and 35AFC (as if the
entire lexicon were visually present) and a 35AFC production task.

Results. Figure 5 shows the number of words learned over
time for each task. As before, even when 50% of the lexicon was
present on any trial (�17 competitors), the model acquired the full
lexicon no matter how it was assessed. Moreover, the 3AFC,
5AFC, and 10AFC tasks suggested that like children, in compre-
hension tests, the network appears to know more words than in
production tests. However, by the end of training the network
performs equivalently for both tasks. Interestingly, the production
measure matches the estimates based on the weight analysis. Thus,
more difficult naming tasks may tap this level of competence.

The number of response alternatives plays a critical role in
predicting performance and the apparent rate of learning. To the
extent that the response set for comprehension must include fewer
objects than the full lexicon, task differences can account for
differences between comprehension and production. Similarly,
Huttenlocher (1974) described this in information processing
terms: Comprehension is a recognition task, while production is a

recall task. Our model instantiates both processes as variants in the
same underlying competition dynamics.

This might suggest that the number of response alternatives
alone dictates success. However, this is not entirely the case, as a
comparison of the 35AFC comprehension and production tasks
shows that now comprehension is delayed. This is due to an
asymmetry during training. Auditory units are always presented
singly, whereas visual units are not. As a result, the network has
experience suppressing unnecessary visual units, but has never
suppressed unnecessary auditory units.5 Nonetheless, this small
difference illustrates that task differences can arise from differ-
ences in both situation-time factors (the number of response alter-
natives) and developmental-time factors (the history of suppress-
ing competitors).

Critically, however, this distilled account of production versus
comprehension suggests that (a) the number of response alterna-
tives during testing can dictate how many words a child appears to
know, and (b) this somewhat obvious fact can give rise to differ-
ences in production and comprehension vocabulary.

Simulation 1.3: Learning Under Referential Ambiguity

Thus far, we have held referential ambiguity at 50%. This is
substantial, yet we found excellent learning. It is important to
determine the robustness of this learning, particularly when but-
tressed by dynamic competition. Thus, we varied the degree of
referential ambiguity from 20% to 95% and trained 10 models at
each level. Note that 95% means that on average 33.25 objects
were present with the referent in any naming situation, and on
16.5% of the naming instances all 35 words are active. Models
received 200,000 training trials, and we assessed performance in
the 3AFC and 10AFC tasks as well as a weight matrix analysis
every 25,000 epochs.

Results. Figure 6A displays the number of words identified in
the 3AFC task as a function of referential ambiguity. Chance is
33% (11.7 words). At low levels of noise, the model acquired most
words within about 25,000 epochs and learned all of them by
100,000 epochs. At 100,000 epochs an effect of referential ambi-
guity is seen: The model’s performance drops off as with more
competitors (though not very far). However, this is overcome with
additional training: At 200,000 trials, the model performed at
100% even at 95% ambiguity.

This success is emphasized by our more conservative analysis of
the weights (see Figure 6B). Here chance is much lower: The
probability of randomly mapping a single auditory and visual unit
to the same lexical unit is 1/500 � 1/500 � 0.0004%. Moreover,
to pass this test, the model cannot rely on competition to arrive
at the best guess if the weights are imperfect (as it can in the
3AFC task). By this criterion, it takes much longer to learn a word.
At 50,000 epochs, the model’s 3AFC performance is good, but its
underlying competence (the weight matrix) is far from complete.
For example, at 50% referential ambiguity the model has only
learned 10 words by this point in time. However, with enough

5 Of course, with a more realistic auditory representation, multiple
auditory word forms will be active in parallel (e.g., similar sounding words;
Allopenna, Magnuson, & Tanenhaus, 1998; Marslen-Wilson, 1987). This
may minimize the differences seen when the number of alternatives is
equated.
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training, the model performs well on this conservative measure
even at the largest degree of ambiguity. With 90% of available
referents copresent during learning, all models learned all 35
words; at 95% ambiguity they averaged 27.4 and may not have
stabilized yet. This suggests that the simple statistics of co-
occurrence (between visual and auditory events) can be extremely
powerful. Even when most of the lexicon is available on any given
naming situation, the model eventually determines the correct
mappings between words and referents. This undercuts claims that
associative learning cannot cope with the high degree of referential
ambiguity faced by real children. Given sufficient time, such
mechanisms may be sufficient when embedded in situation-time
competition framework.

Simulation 1.4: Acceleration

In the prior simulations, the model appears to start with high rate
of acquisition and taper off (e.g., the 3AFC and 10AFC tasks; see
Figures 4 and 5). This contradicts the consensus that word learning
accelerates (P. Bloom, 2000). Though acceleration was observed
in production (Figure 5) and in the weight analysis (Figures 4 and
5), in children comprehension also accelerates (Reznick & Gold-
field, 1992). More importantly, the McMurray (2007; Mitchell &
McMurray, 2009) analysis suggests that acceleration should be

observed in most parallel learning systems. So, though it is not
distinctive of word learning, it was unexpected that it was not
consistently observed.

There may be several reasons for this. First, perhaps we are not
sampling at a high enough density. The vocabulary explosion
typically appears during the 2nd year of life. Given that it takes the
model about 100,000 epochs to learn its adult lexicon, the explo-
sion would probably occur in the first 10,000 epochs, though the
above simulations only sampled twice during this time window.
Second, McMurray (2007) predicted acceleration only when words
vary in difficulty such that there are fewer easy words than
moderate or difficult words. As a simplifying factor in our simu-
lations, all words were equally difficult—they were equally fre-
quent, and the degree of ambiguity was the same across words.

Third, when measuring children’s vocabulary size, we do not
subject them to a 3AFC task for each word. Rather, we use a parent
questionnaire such as the MCDI (Dale & Fenson, 1996; Fenson et
al., 1994), which probably measures something like children’s
ability to use a word in a variety of contexts, that is, more of an
average performance across time for that word. In fact, ongoing
work (Mitchell & McMurray, 2008) using a stochastic version of
the (McMurray, 2007) model has shown that acceleration is only
observable when words require several exposures to learn. When
words can be learned in only one exposure, deceleration is guar-
anteed. Given the heavily constrained 3AFC task, it may only take
a small number of repetitions to learn a word by this criterion
(particularly at low levels of ambiguity), and we may not see
acceleration.

Thus, we ran 10 repetitions of the model with three changes.
First, we sampled every 200 epochs. Second, for each word, in
addition to the usual 3AFC and 10AFC tests, the model was tested
five times and had to get the right answer on at least four (to
simulate understanding a word in a variety of contexts). Third, we
increased the referential ambiguity to 75% (so all words took
longer to learn). We also explored the difficulty distribution by
manipulating the frequency of the words such that there were few
easy words and many harder ones. This version of the model also
showed acceleration. It is discussed in the supplemental materials
(Simulation S1).

Results. Figure 7 displays the results for the 3AFC and
10AFC tasks when all the words were of equal frequency. The thin
lines show when the word was considered known if the model was
correct in a single 3AFC or 10AFC task. The thick lines require the
model to be correct on four of five trials of these tasks. Requiring
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a word to pass multiple tests clearly slowed initial performance
and led to a steeper learning curve.

There is also more noise in these measurements (from epoch to
epoch) than was seen earlier. At this stage in development, the
model has not really learned the words, and its performance is
affected by fluctuations in the weights of competitors (that are still
settling down) and the choice of competitors in the comprehension
task (see Adolph, Robinson, Young, & Gill-Alvarez, 2008, for a
discussion of sampling issues in development). This suggests that
even using standardized measures such as the MCDI the implicit
task (the real-time behavior leading up to the measure) may shape
the outcomes we measure (see also Sandhofer, Smith, & Luo,
2000).

However, no matter how we measure it, the model undergoes a
period of slow learning followed by a period of fast growth (note
that the apparent threshold in the 10AFC task is only a momentary
plateau—by the end of training, all models learned all 35 words).
Thus, the critical factor for acceleration is difficulty—as long as
words are fairly difficult to learn, the model shows acceleration.
Measurement clearly plays a role, because it acts as sort of a
threshold: The number of repetitions required to pass a 3AFC task
is less than the number required for a 10AFC task. This is in accord
with the (Mitchell & McMurray, 2008) model of the vocabulary
explosion.

Section 1 Discussion

The first simulations suggest that this dynamic associative
model can acquire a lexicon under substantial uncertainty. Even
with 90% referential ambiguity, the model acquired all the words.
However, the model’s knowledge is a function of how it is tested.
Comprehension tasks with small numbers of competitors show
earlier learning than those with larger numbers or production tasks.
As a result, we see differences between comprehension and pro-
duction in a system that does not do either. Similarly, the growth
curve is a function of testing: Some tests can show decelerating
learning, whereas more realistic assessments show the predicted
acceleration.

Virtually all the tasks suggest the model knows more words than
are reflected in its connections (knowledge). This offers a para-
digm for thinking about the integration of short and long timescale
processes. Long-term knowledge (the weights) develops slowly
and may be incomplete for substantial portions of development.
However, fast competition processes allow the model (or child) to
augment these weak representations in the moment and act more
intelligently. This throws a novel spin on performance and com-
petence. Typically, children are thought to have better underlying
competence than their performance. Indeed, even in connectionist
networks that do not make a strong distinction between perfor-
mance and competence, we still see situations where the networks’
apparent knowledge can be overshadowed by in-the-moment task
demands (Munakata, 1998; Munakata et al., 1997). Yet here we
see the opposite: Situation-time performance compensates for
rather lousy competence. This is not a contrived product of the model.
In most real situations the environment (including the caregiver) may
provide information or support that allows the child to perform
significantly above his or her level of competence in many situa-
tions (cf. McCabe & Peterson, 1991; Reese & Fivush, 1993). Thus,
performance constraints, though usually thought of as impeding

our ability to see the true developmental level of the child, may
actually augment it in some circumstances.

These simulations also suggest that referential ambiguity may
not be as problematic as typically implied. Even in vastly ambig-
uous environments, associative learning can be successful over the
long term. However, learning must be slow, because the relevant
information can only be extracted across naming events—in fact,
fast learning may cause the model to overcommit to an incorrect
interpretation (as we demonstrate in this model in the supplemental
materials, Simulation S4). Here again, however, the interaction of
timescales helps: If fast, task-constrained processes buttress poor
knowledge, the model can perform well despite imperfect knowl-
edge in its weights.

Section 2: Situation Time Processes

This section examines children’s ability to use their lexica in
situation time. The existing literature tends to distinguish familiar
and novel word processes. Work on novel words focuses on
accuracy: Can children infer, in the moment, the referent of a novel
word? For familiar words, the emphasis is on the efficiency or
speed of referent selection. Thus, Simulation 2.1 examines devel-
opmental changes in the efficiency of children’s familiar word
recognition, and Simulations 2.2 and 2.3 examine referent selec-
tion by mutual exclusivity, a form of referent selection for novel
words. Both require children to use available information, in the
moment, to identify the referent of a word. Beyond offering a
model of these phenomena individually, these simulations also
argue that mutual exclusivity emerges from the same processes as
changes in familiar word recognition, and they help reveal funda-
mental properties of learning that make both possible.

Simulation 2.1: The Development of Word Recognition
and the Power Law of Learning

Fernald and colleagues (Fernald et al., 2006; Fernald et al.,
1998; Swingley & Aslin, 2000) have examined the time course of
children’s mapping of familiar words to their referents using
fixations. In this paradigm, children see pictures of two objects
(e.g., a ball and a car) and are instructed to look at one. The speed
at which they fixate the right object is taken as a measure of
processing speed, and this tends to decrease over development
(Fernald et al., 1998; Hurtado, Marchman, & Fernald, 2007).
Fixation time is also correlated with lexicon size (Fernald et al.,
2006; Zangl, Klarman, Thal, Fernald, & Bates, 2005) and is stable
and predictive among children (Fernald et al., 2006; Marchman &
Fernald, 2008). The goal of this simulation was to investigate this
computationally, in order to identify the potential loci of these
effects.

Ten models were run at three levels of referential ambiguity
(25%, 50%, 75%; see Table 3 for parameters). Every 250 epochs,
the model was tested on its entire lexicon in a 3AFC task to assess
the number of words known and the time it took the model to settle
on a referent for each of them. As with Fernald et al. (2006),
reaction time (RT) was only saved for trials in which the model
selected the correct referent.

Results: Development of RT. Figure 8 shows the settling
time in cycles as a function of training for each of the three levels
of ambiguity. There is a dramatic drop early in training, from 20 to

847A DYNAMIC ASSOCIATIVE ACCOUNT OF WORD LEARNING



30 cycles at 250 epochs to five to six cycles by the end of training.
There are small effects of referential ambiguity. These likely
derive from the fact that different levels of referential ambiguity
offer the model different amounts of exposure to visual competi-
tors, which may alter how competing associations for a given word
can be pruned (as we will discuss, this is a crucial determinant of
RT). Optimal learning, then, may require a mix of low-competitor
situations (e.g., ostensive naming) to establish the words and rule
out strong competitors, and high-competitor situations to improve
processing (cf. Horst, Scott, & Pollard, 2010; McMurray et al., in
press).

So what causes the decrease in settling time? Changes in the
dynamics of activation flow cannot account for the decrease in RT
because the parameters that control it (temperature and the degree
of lateral inhibition) did not change over learning. The only things
that did change were the weights. Figure 9 shows a representation
of the weights connecting the visual and lexical layers over devel-
opment. Along the x-axis are the 35 visual units. Along the y-axis
are 35 of the 500 lexical units. The strength of the connection
between each unit is represented by the darkness of the patch at
their intersection. At the beginning of training (see Figure 9A),
these connections are random, and there is no clear structure, but

even 10 epochs in we can see that the overall strength of the
connections has been reduced (though there are a few strong
connections for words that have been heard). Over the next 1,000
epochs, unnecessary connections are further pruned and positive
ones enhanced. By around 10,000 epochs (see Figure 9D), the
model only has a handful of strong connections. However, some of
these are ambiguous. For example, Lexical Unit 11 (circled) has
strong connections to at least three input units (and those units are
also connected to Lexical Unit 17). At 100,000 epochs these
competing representations have been eliminated—each visual unit
connects to only one lexical unit, and the bulk of the connections
are near zero.6

We can roughly characterize these changes in terms of the
entropy of the weight matrix: A “peaky” distribution of weights
characterized by a few strong connections and many weak ones
(low entropy) describes a more developed model, whereas a flatter
distribution (high entropy) characterizes a less developed model.
We tested this by running an additional 10 models with a refer-
ential ambiguity level of 50%. Every 500 epochs, models were
tested in a 3AFC and 10AFC task, and we evaluated both the
auditory and visual weight matrices using three measures. First, we
computed entropy, converting weight values to probabilities. By
this measure, relatively random weight matrices will have large
entropies, and peakier weights will have small entropies. Second,
at each point in training, we found the single strongest connection
linking each input unit to the lexical layer and recorded its strength
as a measure of how strong the positive connections were. Third,
we took the average of all the other connections as an indicator of
how weak the irrelevant connections were.

Entropy showed strong relationships with both learning and RT.
We found a negative correlation between entropy and time during
learning (R � 	.92), and between entropy and the number of
words known (10AFC task: R � 	.77; weight analysis: R �
	.92). Thus, entropy captures some aspect of overall learning or
development. Figure 10A relates entropy to the log of the RT in the
3AFC task. Though the relationship is nonlinear, high entropies
(relatively random weights), predict slower RTs (linear: R � .43;
hyperbolic: R � .92).

6 Note that over development, even the positively associated weights
tend to drift downward under this learning rule (they do eventually stabi-
lize; see Figure 10B). This accounts for the fact that the final weight matrix
(see Figure 9F) shows lower weights than in some of the earlier panels.

Table 3
Parameters for Simulations in Section 2

Parameter 2.1: Word recognition 2.2: Mutual exclusivity
2.3: Development of mutual

exclusivity

Input units 35 40 40
Familiar words 35 30 30
Lexical units 500 500 500
Initial weight size .5 .25 .25
Learning rate .0005 .0005 .0005
Referential ambiguity .25, .5, .75 .5 .5
Feed-forward temperature .01 .01 .01
Feedback temperature 2 2 2
Stability point 1e-12 1e-12 1e-12
Input inhibition 1.05 1.05 1.05
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The strength of the positive connections was not highly predic-
tive of performance on either of our tasks (3AFC: R � 	.27;
10AFC: R � 	.41) or settling time (R � .31), and analyses of the
scatterplots suggested this was not due to a nonlinear relationship

(see Figure 10B). It was moderately related to number of words
known (R � 	.60), but negatively. That is, lower connection
strengths tended to indicate more words known. All these results
derive from the fact that the positive connections fluctuated over
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training but ultimately decreased slightly (the negative ones de-
creased a lot more; see Figure 10C). The average of the negative
connections was much more predictive. It was highly negatively
correlated with performance on the lexical identification tasks
(3AFC: R � 	.94; 10AFC: R � 	.89) and with the log of settling
time (R � 	.92; see Figure 10D). In both cases, performance
increased with smaller irrelevant weights.

As a whole, then, the pruning of unnecessary connections is
the driving force behind both acquiring new words and recog-
nizing them faster. Unnecessary connections cause an auditory
input to activate multiple lexical units. These lexical units
compete, moving in the direction of winner-take-all. Since the
network does not settle until this competition is resolved, it is
the presence of these momentarily active competitors (driven by
unnecessary connections in the weights) that ultimately leads to
a longer settling time. This suggests that empirical correlations
between RT and vocabulary size (Fernald et al., 2006; Zangl et
al., 2005) may be driven by the fact that children who know
more words may also have fewer spurious associations at that

point in development. More sophisticated eye movement para-
digms may be able to test this by evaluating more precisely
degree of competitor activation.

Acceleration and deceleration. Developmentally, these sim-
ulations suggest a steep decrease in settling times early, followed
by a flattening. This pattern is commonly seen in power law or
exponential decay function in the literature on general learning
principles and has appeared in a variety of motor and cognitive
learning tasks (Anderson, 1982; Heathcote et al., 2000; Logan,
1992; Newell & Rosenbloom, 1981; Wifall et al., 2012), suggest-
ing that word learning may operate by similarly general principles.
The power law has always been interpreted as demonstrating that
learning slows throughout training, which would seem to violate
the acceleration commonly observed in word learning. However,
our model does both.

To understand this, we looked for a relationship between the
greatest change in RT and the change in number of words known.
Figure 11A shows the change in RT and words known for the
models learning under 25% referential ambiguity. Here both RT
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and words known undergo their greatest change at around 5,000
epochs, implying some fundamental process that affects both at
this time. However, Figure 11B shows the same data for the
models learning under 50% referential ambiguity. Here the time
course of lexical acquisition is pushed much later (peaking be-
tween 60,000 and 70,000), but the pattern of RT barely moves.
Thus, the timing of changes in RT does not clearly map to changes
in the number of words known.

What can explain apparent acceleration and deceleration in
learning? As we discussed in the prior section, the best predictor of
RT is the magnitude of the spurious connections between auditory
and visual competitors and the current lexical unit. These consti-
tute the bulk of the weight matrix. If there are 35 � 500 � 17,500
weights connecting auditory and lexical nodes, only 35 of them are
correct—17,465 must be suppressed over learning. However,
weight decay is also widespread. Every time a word is heard,
thousands of weights are not used and therefore suppressed. Thus,
there are quick RT gains to be made for suppressing unnecessary
competitor weights, and this can be done in virtually all circum-
stances. Any word, with any degree of referential ambiguity, will
result in some weights being decayed.

The number of words known is more complex. It requires two
positive weights (auditory ¡ lexical and visual ¡ lexical) and an
absence of competing weights. Neither the irrelevant weights nor
the positive weights are singly related to it. Even if the network
had a very strong connection between an auditory word form and
its lexical unit, if there were other strong competing connections,
the word would still not be learned. Thus, in contrast to reducing
RT, actually learning a word requires a confluence of events and
is much more difficult. This is clear in the correlations observed in
the previous section: Words known were best correlated with
entropy, a global measure of the weights (R � 	.91), and less so
with either spurious (R � 	.56) or relevant (R � 	.60) weights,
whereas RT was best correlated with spurious weights (R � .91)
and less so with the other measures (relevant weights: R � .21;
entropy: R � .42). Thus, despite the fact that the development of
both RT and vocabulary size rely on fundamentally the same
learning mechanism, the fact that each must be measured through
a situation-time measure means that they may tap different aspects
of learning, and hence show different learning curves.

Discussion. This simulation shows similar results to Fernald
et al.’s (1998, 2006) studies: The dynamic associative model’s
familiar word recognition improves over time. This improvement,
which appears as gains in the efficiency of a skill, actually derives
from changes in knowledge (connection weights). Crucially, the
suppression or pruning of the irrelevant weights is the dominant
factor—the bulk of word learning may consist of learning which
objects and words do not go together (cf. Regier, 1996). We also
show that word learning does not have to differ from general
approaches to learning that predict decelerating RTs, even as it
shows acceleration in vocabulary size. This underscores the fact
that word learning may operate by general learning principles and
challenges the utility of drawing strong conclusions based on the
shape of vocabulary growth (McMurray, 2007). Critically, each of
these measures derives from different changes in the underlying
associations, showing the multifaceted nature of association learn-
ing in this context. At a broader level, however, the acquisition of
word–object linkages, a clearly developmental-time learning phe-
nomenon, is directly implicated in the ongoing development of
processing speed, a situation-time measure. In fact, changes in
processing derive entirely from a nonobvious component of learn-
ing—suppression of irrelevant connections.

Simulation 2.2: Referent Selection by Mutual
Exclusivity

If the development of familiar word recognition derives from
the same learning mechanisms as the acquisition of new words,
this raises the question of whether the processes that infer the
referents of novel words can also arise from these mechanisms.
The plethora of proposed constraints and specialized inference
processes imply that children deploy additional mechanisms in
novel naming situations. Yet, how does the child first determine
that the word is novel and then which constraints to apply?
Although some have argued for a decision process of some kind
(Merriman et al., 2008), an alternative and perhaps more parsimo-
nious account is that these biases emerge out of the same dynamics
that give rise to familiar word recognition.

In our dynamic associative model, both novel and familiar words
undergo the same competition and associative learning. Given that
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early in training all words are novel, the fact that this model is able to
learn words at all suggests that it is not a priori necessary to separate
novel and familiar word processing to solve the referential ambiguity
problem. However, it is not clear whether the model also shows
systematic biases in how it interprets novel words.

Simulation 2.2 evaluates mutual exclusivity. Mutual exclusivity
is the idea that a novel word cannot refer to a referent that has a
previously established word–referent link; that is, words are mu-
tually exclusive. In terms of behavior in referent selection tasks,
however, children are said to be following the mutual exclusivity
constraint when they exclude objects with known names as the
referent of novel words (Mervis & Bertrand, 1994). Note that there
are debates over whether the inference children make in such cases
is best described as mutual exclusivity (Markman & Wachtel,
1988), a process of matching novel words to novel objects (Mervis
& Bertrand, 1994), or another form of inference (Halberda, 2006).
Likewise there are debates over whether this constitutes learning
(Horst & Samuelson, 2008; Spiegel & Halberda, 2011). Here we
are only using mutual exclusivity as a moniker for a behavioral
phenomena that happens in the moment when children are con-
fronted with a novel name, a novel object, and several familiar
objects. We are not implying any specific inference principle (in
our view it arises from competition dynamics), nor are we imply-
ing learning—in terms of either an initial, quick link (as the term
fast mapping, often applied to such situations, does) or a longer,
more robust connection. Rather, we will simply refer to the phe-
nomenon of selecting the object that does not have a name when
confronted with novel and known objects and a novel name as
referent selection by mutual exclusivity, or M.E. reference selec-
tion for short.

Crucially, M.E. reference selection minimally requires a range
of available objects, a novel word, and some partially learned
weights. All of these are present in this model. Thus, though many
of the proposed biases and constraints “live outside” the simple
architecture of this model, mutual exclusivity is clearly within the
domain of our model, raising the possibility that it could arise in
the context of the competition dynamics.

To examine this, 20 networks were initialized with 40 auditory
and visual units and 500 output units (see Table 3). Of the 40 input
units, 30 were used during training; the remaining 10 novel units
were never heard or seen. Thus, by the end of the 100,000 training
trials, the model had a lexicon of 30 words, but an additional 10
novel words, whose weights were largely unchanged. After train-
ing at 50% referential ambiguity, the models were tested in three
ways. For ease of description, we describe these as three-letter
strings, with the first letter representing the status of the target.
First, we used a 3AFC task with all familiar words (FtFF) for
comparison with previous models. Second, we tested M.E. referent
selection trials, using a novel target, with two familiar objects
(NtFF). Finally, we used the same configuration of competitors,
but with a familiar target (FtFN). Here, if the model always
selected the novel object, we should see a performance decrement.
To construct five novel and familiar trials, the network needed to
know at least 10 words, so we tested all 30 words in a production
task prior to constructing these test trials, and models without a
10-word vocabulary were not tested.

Results. The models ultimately acquired 28.7 of the 30 words
(by the production task). Figure 12A shows the models performance
on the three primary tests. Models were 99.8% correct on the 3AFC

task and 100% correct on familiar word trials and M.E. referent
selection trials. Thus, fully trained models were effective at identify-
ing familiar words (both with and without the novel object) and at
matching the novel word with the unnamed visual object.

Given that the model has no explicit mechanism for mutual exclu-
sivity, how did this emerge? The answer lies in the interaction of the
competition and the learning rules. Figure 12B shows the visual-to-
lexical weight matrix for a single run of the model after 100,000
training epochs. The x-axis shows the index of each of the 40 visual
units (Units 1–30 are familiar words, and Units 31–40 are novel
words). The y-axis shows the index of the lexical units. The model
had 500 lexical units, but we only show lexical units that were
strongly connected to one of the familiar words along with a
random sample of 20 output units for the novel words.7

For familiar words each object is strongly connected to a single
lexical unit. This can be seen in Region 1, which resembles the
weight matrices displayed earlier for a trained network. Similarly,
Region 2 shows that the connections between these familiar ob-
jects and the unused lexical units were eliminated, so it would be
difficult to assign a novel word to one of these objects. Region 3

7 We also changed the order to group the “assigned” lexical units
together (a typical run of the model would recruit output units from across
the array with no relationship to the order of the inputs).
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shows that lexical units that have been assigned to a visual input
are also not connected to any other visual input, including the
novel objects. Most importantly, however, Region 4 shows that the
novel objects all have small and variable connections to the re-
maining, unused lexical units. As a result, it is highly likely that
there will be an associative path that allows activation to spread
from a novel word to a novel object, even though these associa-
tions are random. Conversely, it is quite unlikely that a novel word
could activate known objects.

This particular structure in the weights comes from the weight
decay in the learning rule:

�wxy � vxly(1 � wxy)

�. 5 · (1 � vx) · ly · wxy

�. 5 · vx(1 � ly) · wxy. (9)

Here weights decay in two circumstances. First, they decay when-
ever a visual unit is on and the corresponding lexical unit is not.
Thus, the connections in Region 2 are pruned because the familiar
objects have developed connections with a single lexical unit, and
lexical inhibition prevents a second one from becoming active.
Second, they decay if a lexical unit is active but the visual input is
not. Thus, the weights in Region 3 decay because the network has
not encountered these objects but has used the corresponding
lexical units for other words. The weights connecting novel inputs
to unused lexical units never decay because neither class of units
is ever active. As a result, connections in Region 4 maintain their
original (small, random) values. Then, when a novel word is
encountered, these connections permit the network to activate (to
various degrees) a large number of lexical units. This activation
feeds back to the visual units, but since the familiar objects are not
connected to any of these now active lexical units, only the
activation of the novel visual objects is amplified. This allows the
network to select the correct (novel) object.

Thus, the selection of the novel object is dependent on the
learning rule, but not because the network needs to learn some-
thing about that object or word. Rather, the weights between the
known words and objects and the unused lexical units must decay,
and the weights between the novel ones must not in order to create
a platform upon which real-time competition dynamics can select
the right object. A different type of weight decay (e.g., if all
weights decayed on each epoch) would not preserve the right form
of the weight matrix. However, learning is not the whole story:
This pattern of connectivity could not be harnessed in situation
time without the gradual settling process represented by the inhi-
bition and feedback dynamics. Moreover, the model’s ability to
learn from M.E. referent selection may also depend on this
competition–feedback cycle. The model must select a single lex-
ical unit and selectively amplify the novel object in order to
eventually turn a word–referent link created during M.E. referent
selection into a known word by associating the novel object with
the novel word over many instances. Thus, though as a real-time
process mutual exclusivity is likely to impact learning, it is really
more the product of learning than a mechanism of it. This implies
that some types of learning environments may make it more
difficult for children to engage in this by eliminating this particular
structure of associative weights. This will be examined in Simu-
lation 4.2.

Simulation 2.3: The Development of M.E. Referent
Selection and Visual Familiarity

In some ways, the previous model performs mutual exclusivity
too well—children rarely approach 100%. Yet, this was a fully
trained adult model, so it was important to examine the model
developmentally. There have been few comprehensive develop-
mental investigations of mutual exclusivity. We do know that in a
2AFC task children can succeed at about 18 months, depending on
vocabulary size (Markman et al., 2003), but fail at 5AFC novel
word tasks until after the vocabulary spurt (Mervis & Bertrand,
1994). Further, Halberda (2003) showed a clear developmental
time course with 14- and 16-month-olds failing in a 2AFC looking
version of the task but 17-month-olds succeeding. Thus mutual
exclusivity is not an innate constraint but develops over time.
Given the prior simulation demonstrating the dependence of mu-
tual exclusivity on learning, we investigated this by rerunning the
20 models described in the previous section but measuring perfor-
mance every 5,000 epochs.

Results. Figure 13A shows the results. The lines marked by
open diamonds show the model’s performance on the 3AFC (FtFF)
and production tasks. These were run regardless of how many
words the model knew and show a steady improvement over
learning. The models knew enough words to be tested on M.E.
referent selection by around 45,000 epochs, and at this point
performed at nearly 100%: By the time model knew enough words
to be tested on mutual exclusivity, that ability was present. Indeed,
runs of this model with fewer novel word trials (hence requiring
fewer known words) show even earlier abilities, suggesting that
this model may be able to do this task with very little experience.

This was unexpected. Apparently it did not take much learning
to set up the right structure in the weight matrix (and given the
dramatic changes in irrelevant connections seen in the first 1,000
trials in Figure 9, this may be sufficient). One factor that may
moderate this is visual familiarity. Our analysis of the weight
matrix suggests that good M.E. referent selection derives from the
fact that the novel visual units have never been active to any
degree. Yet, most experiments do not use stimuli that are com-
pletely unfamiliar. Typical novel objects such as whisks and juic-
ers, though unlikely to be named, have likely been seen before, or
may be similar to things that children know. Thus, we ran an
additional set of simulations in which the novel visual units were
seen (but never named) on some proportion of the trials. The
likelihood of seeing a novel object varied from 5% to 50% (since
the referential ambiguity rate was 50%, so this last condition was
equivalent to the unnamed objects being as familiar as the known
objects).

The effect of familiarity. Results are shown in Figures 13B–
13F. Figure 13B shows the lowest level of familiarity—novel
objects appeared 5% of the time—and Figure 13F shows the
highest, in which novel objects were as likely to appear as known
objects (though never named). The familiarity of the novel objects
does not seem to influence responding on the familiar word trials
(FtFN)—performance was equally good in all simulations. Impor-
tantly, however, even a small amount of visual familiarity impedes
M.E. referent selection at early points in development. Figure 13B
shows that a marginal amount of familiarity brings initial perfor-
mance down to 55%, and any more can bring it down to chance.
Very quickly after that, performance seems to develop to full
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Figure 13. Performance on familiar and mutual exclusivity referent (M.E. ref.) selection trials over development
(filled symbols). Also shown are the number of words known (percentage of 35) measured by both the 3AFC and
weight analysis (open symbols). Panels represent different likelihoods of the novel words appearing as visual foils.
AFC � alternative forced-choice; F � familiar; N � novel.

854 MCMURRAY, HORST, AND SAMUELSON



capacity. However, when the novel foils are highly familiar, M.E.
referent selection is never very good. Thus, at least for this model,
mutual exclusivity is not solely about lacking a name (as accounts
like N3C suggest). The familiarity of the object may play a role as
well.

Thus, there may be effects of visual novelty in these tasks that
can be seen developmentally—the use of more novel objects could
lead to better referent selection by mutual exclusivity. Indeed,
Horst, Samuelson, Kucker, and McMurray (2011) showed that in
a completely unconstrained referent selection task (three novel
objects), children were heavily biased toward objects that were not
seen in a brief familiarization. This raises the possibility that at
the early stages, mutual exclusivity is really more of a novelty
preference, rather than a complex inference. Moreover, beyond
visual novelty there may be other ways to slow down the
development of M.E. referent selection. For example, we have
found in ongoing work with this model that including some
quantity of low-ambiguity (ostensive naming) trials along with
higher ambiguity trials can give rise to a similar effect (Mc-
Murray et al., in press).

Section 2 Discussion

These simulations capture a number of classic findings in word
learning, including the improvement in efficiency of familiar word
recognition and referent selection by mutual exclusivity. They
show that changes in familiar word recognition, though manifested
in online processing, are better characterized by the shape of the
learned connections. Moreover, this same learning can give rise to
both a deceleration in RT and acceleration in the number of words
known. Word learning can be a general learning process. Simi-
larly, referent selection by mutual exclusivity, though it may
appear a specialized inference process, can arise out of the same
competition dynamics as familiar word recognition, when this
process plays out over connections established during learning.
This allows us to capture how exposure to objects alters referent
selection by mutual exclusivity. More importantly, embedding this
within a system that recognizes familiar words and learns word–
object linkages allows for a richer explanation.

In both of these simulations, these ostensibly situation-time
processes are the product of learning—but not any simple version
of learning. With respect to familiar words, the most important
predictor of processing speed is how the unnecessary connections
decay. Similarly, mutual exclusivity fundamentally relies on a
learning rule that describes a particular pattern of weight decay.
Thus, suppressing competing associations is essential to multiple
aspects of word learning. Similarly to Fernald et al.’s (2006)
account of changes in processing speed, Mervis and Bertrand
(1994) suggested that the number of words is the critical factor that
predicts the onset of M.E. referent selection. However, this does
not offer a clear mechanism of change in this context because the
competitors are always familiar in mutual exclusivity task. Our
model suggests that development has more to do with the pruning
of weights (which is likely correlated with the number of words
known, and was in the model). Across both simulations, however,
the more important message is that to take advantage of the
explanatory power inherent in this version of associative learning,
we must consider both the positive and negative associations.

Section 3: The Relationship of Situation- to
Developmental-Time Processes

The previous simulations demonstrate that apparently situation-
time processes are the product of learning. This section addresses
the converse: How do the details of processing impact learning?
Simulation 3.1 models data suggesting independence of time-
scales: Horst and Samuelson’s (2008) work on retention after M.E.
referent selection. Simulation 3.2 examines task effects on mutual
exclusivity over development. Simulation 3.3 returns to familiar
word recognition, and examines longitudinal work showing that
recognition time predicts the future rate of acquiring new words.
Finally, Simulation 3.4 asks whether learning can occur without
processing.

Simulation 3.1: Referent Selection by Mutual
Exclusivity and Retention

Horst and Samuelson (2008) showed that children do not retain
words after referent selection by mutual exclusivity. This suggests
that this behavior is a situation-time process and not synonymous
with learning. Our dynamic associative account is ideal for cap-
turing such effects: Referent selection emerges out of online com-
petition, while learning is slow and may not be able to acquire a
word in one exposure. Our model can extend these findings by
asking whether anything is retained from referent selection and
what circumstances may be necessary to see it.

We simulated Horst and Samuelson (2008) by initializing 20
models with 40 input units, but only training them on 30 words
(see Table 4 for parameters). This left 10 novel words and objects
that did not receive any training. Five were used to test mutual
exclusivity, and the other five were held out. Referential ambiguity
for familiar objects (Words 1–30) was set to 50%, with novel
objects appearing as competitors 8.75% of the time (but novel
names were never heard).

Models were tested on several tasks. First, we assessed which
words were known with the production task. Only words that
passed this test were used in subsequent testing. Next the model
received five novel (NtFF) and five familiar (FtFN) word trials as
in Simulations 2.2 and 2.3. However, unlike those simulations, the
model learned on these trials, enabling tests of retention for these
words. Finally, on retention trials, each of the five novel objects
named on the prior M.E. referent selection trials was paired with
another novel object and a held-out object (NtNH). Though learn-
ing (weight change) occurred throughout the sequence of test
trials, the total learning over a single batch of testing was not
carried back to training.

Results. Figure 14A shows the model’s performance on each
type of trial over the course of training. As before, familiar and
novel word performance was excellent after the emergence of
mutual exclusivity at around 45,000 epochs. However, the model
was not able to retain the words that were tested in the M.E.
referent selection trials, averaging 38% correct retention.

Based on the prior simulations, we were concerned that the
visual familiarity of the novel objects may have created this effect.
Thus, we replicated these simulations under two conditions: one in
which the novel and held-out objects were never seen during
training and one in which they occurred frequently (p � .375).
When the novel objects were completely unfamiliar, results were
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similar (see Figure 14B): Referent selection performance was at
ceiling (as in Simulation 3.1), but retention was at chance. How-
ever, when the novel objects were highly familiar (but unnamed),
there was a period during which the model did well in referent
selection, but not retention, followed by later points in develop-
ment when the model could do both (see Figure 14C). This fits
with recent work by Kucker and Samuelson (2012) showing that
24-month-old children can retain links created in an M.E. referent
selection context if they play with the objects prior to the mutual
exclusivity trials. It is also relevant to Spiegel and Halberda’s
(2011) recent finding that older children (30-month-olds) appear to
retain word–object mappings, though in an easier-looking task.

Overall, then, the model fits the pattern of Horst and Samuelson
(2008), showing excellent performance in referent selection by
mutual exclusivity, but a failure to retain when contextual support
is removed. This raises the question of how much, if anything, the
model learned from a single mutual exclusivity trial. Though gross
performance did not yield evidence of learning, there may be a
small amount of learning that is insufficient to drive overt reten-
tion.

To assess this, we examined the amount of change in subsets of
each weight matrix at various points in training using the root-
mean-squared difference between the weights at two points in time
(e.g., before and after the mutual exclusivity trials). Weights were
divided up (see Figure 14D) into weights connecting lexical units
to (a) familiar words, (b) novel words, and (c) held-out words. We
then computed the weight change (learning) in each group that
occurred during learning and during mutual exclusivity trials.
Including the held-out units allows us to determine how much
change to expect for completely unused items.

Figures 14E and 14F shows the results. Figure 14E shows the
amount of weight change up to the point where the model was
tested at 100,000 epochs. There is quite a bit more change in the
weights for familiar words (which are being trained) than the novel
or held-out words, particularly in the auditory weights. This makes
sense: The novel and held-out auditory units are never activated,
whereas the novel visual ones occasionally appear as competitors.
In contrast, Figure 14F shows the amount of weight change during
the mutual exclusivity trials. There was some learning on these
trials and generally more learning for the novel words than the
others. However, the amount of learning on these trials is far less

than what was learned about those words over the course of
training—when they were never heard! It is also far less than what
a truly familiar word would have received. Moreover, this small
amount of learning is not responsible for the excellent performance
in referent selection by mutual exclusivity—when learning was
turned off during these trials (Simulation 2.2), the model still
performed at 100%.

Nonetheless, this offers a clue to how M.E. referent selection
relates to learning. The model learns a little something from each
of these trials, and over the course of many such trials, this
accumulates to yield complete word learning (see also Horst et al.,
2006). But crucially, that tiny amount of learning we observed on
that first exposure to a novel word is not different from what would
be observed on the second, third, or fourth exposures. Moreover,
this learning consists not only of building or maintaining correct
associations, but also (and to a much larger extent) of suppressing
unnecessary ones. Thus, what happens during this first referent
selection is quite different from what earlier views (Carey, 1978)
may suggest. Thus, referent selection by mutual exclusivity,
though a primarily in the moment process, leaves a small trace in
the weights that can accumulate to achieve real knowledge.

In retrospect, the training used in all the simulations thus far
likely included many mutual exclusivity trials. Since competitors
were randomly chosen on each epoch, there were likely many
epochs in which the model knew all the words except the target (or
knew more about the competitors than the target). In this way,
there is nothing fundamentally different about familiar and novel
words.

Simulation 3.2: Effect of Task

Section 1 suggests that task has a critical effect on the model’s
performance (e.g., the delay in productive vs. receptive vocabu-
lary). Similarly, mutual exclusivity also has the characteristics of a
task effect: The two familiar words constrain the task, permitting
the model to perform well despite no knowledge of the novel word.
This predicts that task variables such as the number of alternatives
may affect mutual exclusivity, particularly early in development.

Mervis and Bertrand (1994) measured referent selection via
mutual exclusivity as a function of vocabulary size. They found
that only children with relatively large vocabularies (greater than

Table 4
Parameters for Simulations in Section 3

Parameter
3.1: Familiar

word retention
3.2: Familiar word

task
3.3: Longitudinal
word recognition

3.4: Learning and
competition

Input units 40 40 35 35
Familiar words/objects 30 30 35 35
Novel words/objects 5 10 0 0
Held-out words/objects 5 0 0 0
Lexical units 500 500 500 500
Initial weight size .25 .25 .5 
 .025 .5
Learning rate .0005 .0005 .0005 
 .00002 .0005
Referential ambiguity .5 .5 .65 
 .03 .2, .5, .8
Novel object seen .0875 .0875, .25
Feed-forward temperature .01 .01 .01 
 .0065 .01
Feedback temperature 2 2 2 
 .1 2
Stability point 1e-12 1e-12 10	12 
 .25 1e-12
Input inhibition 1.05 1.05 1.05 
 .01 1.05
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Figure 14. Performance on mutual exclusivity and retention. (A) Performance on familiar word, mutual
exclusivity (ex.) referent selection, and retention trials when novel items appeared with a likelihood .0875. (B)
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90 words) consistently performed well in the mutual exclusivity
task (despite the fact that the familiar objects were known to each
child). Moreover, for the children who failed at this task, once their
vocabularies reached this level, they too could select the correct
referent. Thus, some critical quantity of words may be required
before this ability emerges. However, Markman et al. (2003)
pointed out that the four- and five-alternative mutual exclusivity
tasks used by Mervis and Bertrand may have simply been too
difficult. They used a two-alternative task (one familiar and one
novel object) and demonstrated that regardless of vocabulary level,
all children could succeed at the mutual exclusivity task. Horst et
al. (2010) further showed that by 30 months, the number of
competitors made little difference in children’s performance
(though it did affect retention). Thus, task differences may disap-
pear later in development.

To examine this, 20 models learned 30 words at 50% referential
ambiguity. As before, 10 novel words were held out for testing.
Novel visual units appeared as competitors with a likelihood of
8.75%, to obtain nonceiling performance on mutual exclusivity
trials. Every 2,000 epochs, the model was tested in both 3AFC and
5AFC familiar and novel word tasks. For both familiar and novel
word tasks, the competitors consisted of two or four familiar
objects and one novel object (FtFN, FtFFFN, NtFF, or NtFFFF). As
before, words were screened with the production task, and models
were not tested unless sufficient words were known.

Results. Figure 15A shows that, as expected, models per-
formed equivalently and at ceiling on both 3AFC and 5AFC
familiar word tasks. In the M.E. referent selection tasks, models
performed better in the 3AFC task than the 5AFC task early in
development, also as predicted. Figure 15B shows results from a
second set of simulations in which the novel objects appeared 25%
of the time. It suggests that this task difference was enhanced when
the objects were more familiar. In both cases, however, the effect
of task was eliminated quickly after M.E. referent selection got off
the ground. Thus, as in children, task differences in referent
selection by mutual exclusivity are only observed at a narrow
window in development.

Simulation 3.3: Processing Speed and Rate of
Acquisition

We have described referent selection by M.E. as primarily a
situation-time inference process, but one that is fundamentally
based to prior changes in the weights due to learning. We now ask
whether such interactions between timescales are also seen in
familiar word recognition.

A study by Fernald et al. (2006) offers an intriguing platform for
this. They examined 63 infants longitudinally between 12 and 25
months and assessed both the number of words known (using the
MCDI), and the infants’ speed of processing familiar words using
the looking-while-listening task. They found first that speed of
processing in this lexical task (RT) is stable across individuals
(though decreasing) from month to month. Second, there was a
correlation between speed of processing and accuracy in prefer-
ential looking. Third, RT was negatively correlated with the num-
ber of words known, particularly for the older children (25
months). These first findings could be accounted for by simply
assuming that processing speed is a function of learning, much as
we showed in Simulation 2.1; learning influences processing.

However, Fernald et al. also found that the children with signifi-
cantly shorter RTs at 25 months showed more acceleration in the
number of words acquired. This suggests the converse, that pro-
cessing influences learning. Fernald et al. concluded that process-
ing speed may be a property of the child that is fundamentally
related to word learning. This motivates a compelling link between
online processing and learning. They argued that children who can
identify words faster have more resources (or time) to process
subsequent words, allowing further opportunities for learning.

This simulation asks whether our model shows these same
dependencies. This can validate the model by simulating a com-
plex set of phenomena and extend it to individual differences. It
also affords the opportunity to understand the mechanisms that
give rise to this particular relationship between learning and pro-
cessing. In particular, our model does not have the sequential
processing demands of real children, so if it still shows such
dependencies, it may help illuminate alternative accounts. More-
over, as processing speed can derive from both differences in
activation flow and differences in learning, we can start to under-
stand the range of causes that can give rise to this crucial descrip-
tor.

To simulate this, we needed individual differences across mod-
els. Though some variation is created by the random initial weights
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and the random sequence of training, this was not sufficient. Thus,
across simulations we also varied the free parameters of the model
as an additional source of variation (cf. McMurray, Samelson, Lee,
& Tomblin, 2010). We initialized 100 networks and varied param-
eters such as the temperatures, the inhibition, and the learning rate
by adding Gaussian noise to the means used in prior simulations
(see Table 4).

Models were trained on a lexicon of 35 words. They were tested
every 1,000 epochs on all 35 words in a 2AFC task, and we
recorded both the number of words known (by this measure) and
the average settling time. Similar to that in Fernald et al. (2006),
settling time was only recorded for trials on which the network
answered correctly. Models were also tested on a 20AFC compre-
hension task. Our analysis follows the findings of Fernald et al.
(2006). We assess the stability (within a time slice) of our mea-
sures of RT and accuracy, and then the correlation of these
measures with the rate of long-term learning.

Results.
Stability of RT and accuracy measures. Table 5 shows the

pairwise correlations in RT and accuracy in the 2AFC task for
adjacent tests. Both RT and accuracy were highly correlated across
time, with an average correlation of .9 (RT) and .57 (Accuracy).
These are higher than the correlations found by Fernald et al.
(2006), who reported correlations in the range of .2–.4 for RT and
.25–.5 for accuracy, but not unexpected for two reasons. First,
children have a range of processes outside the model that may
introduce variability. Second, our test included all 35 words,
whereas Fernald et al. only tested four to eight words—a much
smaller sample of a much larger lexicon. As a result, the models’
estimates of RT and accuracy were likely to be closer to the true
values than behavioral work can derive for children.

Despite these correlations, however, the model is not perfectly
stable. Figure 16A shows 2AFC performance over training for six
representative runs of the model. Model 09, for example, starts
with one of the worst performances, but is quite successful by the
end. Model 07 is the worst, but by about 10,000 training trials (Log
4), it tracks quite closely with 11, the best. There is also consid-
erable variation when the models start to perform quite well.
Figure 16B shows a similar pattern for RT. Models 07 and 10, for
example, start with the worst RT, but end up with the lowest,
whereas Models 11 and 13 start low and stay low. Model 09
starts similar to Models 11 and 13, but ends high. Thus, despite
these remarkably high pointwise correlations, looking at the whole

time course of development (and sampling at a much higher rate),
we see that the underlying instability of the developmental time
course is not well captured by the correlations. This supports the
kinds of microanalyses advocated by Adolph et al. (2008).

Relationship of speed to accuracy. Fernald et al. (2006) also
found negative correlations between speed and accuracy at any
given month: Children who settled faster got more words correct
(R � 	.3 to 	.5). This was also observed in the simulations. Table
6 (Accuracy column) shows the correlations between the number
of correct 2AFC trials and the log of the settling time. At 5,000 and
10,000 time steps there was no significant correlation between
these two factors. However, this is expected, because the models
knew an average of 3.8 words at 5,000 and 4.9 at 10,000 (chance
on our 20AFC task would predict 1.75 words). By 15,000 epochs,
however, the models knew an average of 7.5 words (by our 20AFC
assessment), and correlations between RT and accuracy were
significant (R � 	.30, p � .01) and increased throughout devel-
opment (to R � 	.85 by 100,000 epochs). These correlations were
negative: Models with lower settling times knew more words.

Relationship of speed to vocabulary growth. In the longitu-
dinal study, RT at 25 months predicted the acceleration in word
learning across the period studied. To assess this, Fernald et al.
(2006) fit quadratic functions to the number of words known at
each month. They compared each term of this function to the RT
at 25 months and found a significant correlation with the quadratic
term (but not the linear term or the intercept), suggesting that
settling time is related to acceleration in vocabulary growth.

The model showed the same behavior. For each model, we fit a
quadratic function to the number of words known (in the 20AFC
task) over the first 25,000 epochs. This roughly corresponds to the
period of early learning studied by Fernald et al. (2006)—by
25,000 epochs, the models averaged 11 of the 35 words and were
through their first period of acceleration. As Table 6 shows, the
quadratic term was correlated with settling time at every time step,
whereas the linear and intercept terms were not (except at the first
time step). Thus, the model shows the same relationship between
speed of processing and vocabulary growth as children.

Fernald et al. (2006) posited that in running speech, children
who finish processing a word quickly can move on and learn from
subsequent words. This does not seem to be the case here—the
model is reset between words. Although this does not rule out this
sort of bootstrapping in children, it does suggest that such rela-
tionships can arise from other causes. For example, in our model,
the parameters controlling settling dynamics (RT) may also alter
the networks’ ability to resolve referential ambiguity, which could
affect learning. Or conversely, as we have shown, settling time is
primarily a function of learning, so both effects may derive from
the same cause.

What parameters influence outcome measures? Fernald et
al. (2006) described speed of processing as a fundamental param-
eter describing variation among children. At the level of descrip-
tion, this is undoubtedly correct, though the underlying mecha-
nisms are not clear. Our model offers a set of candidate
parameters, but no single one maps directly to speed of processing.
Rather, the speed with which the model processes input is an
emergent property that derives from multiple components: Param-
eters such as the temperature and the degree of inhibition that
directly affect the dynamics of settling are clearly important, but

Table 5
Correlation of Reaction Time and Accuracy (With Themselves)
Across Time Slices

Epochs Reaction time Accuracy (2AFC)

5,000–10,000 .77�� .39��

10,000–15,000 .83�� .47��

15,000–20,000 .90�� .54��

20,000–25,000 .94�� .66��

25,000–30,000 .94�� .53��

30,000–50,000 .96�� .54��

50,000–75,000 .92�� .65��

75,000–100,000 .95�� .79��

Note. AFC � alternative forced-choice.
�� p � .01.
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the biggest component may be the weight matrix, a product of
learning.

We examined the relationship between our behavioral measures
and each of the parameters that were manipulated to create indi-
vidual differences across development. Correlations are shown in
Table 7. A number of factors were significant predictors. The
number of visual competitors, for example, was correlated with
learning: Models with more competitors learned more slowly. The
stability point (e.g., how little change was required to end a trial)
was moderately correlated with RT (models with high thresholds
tended to settle slower) but inversely related to learning (the
models with the lowest thresholds knew the most words). Input
inhibition played a role in settling time, but not so much in learning
until the end of the simulation at which point models that had
stronger inhibition showed more words learned. This suggests that
the ability to inhibit competing representations in the visual layer
is important both for quickly settling on a target and for ultimately
learning the correct mapping. Learning rate was not a strong
predictor, but later simulations (see supplemental materials, Sim-
ulation S3) suggested that the range of learning rates we tested
may not have been sufficient.

The most important predictor was feed-forward temperature, the
rate that activation accumulated in the lexical layer from input
layers. It was highly correlated with settling time (at all points in
development) and with the number of words known at mid- to late
points in development. Oddly, however, the correlations with RT
were the inverse of what we expected: Models with higher tem-
peratures settled slower (and learned worse). Follow-up simula-
tions (reported in the supplemental materials, Simulation S2) dem-
onstrate that this is due to the fact that models at a high
temperature settle slower because they artificially increase activa-
tion for the competitors (as well as targets), and thus take longer to
suppress them.

Given the complex role of temperature and other parameters
contributing to settling time and learning, we suggest that concepts
such as “speed of processing” do not reflect a unary dimension of
the underlying architecture. Rather, they are emergent on a com-
plex interplay of system dynamics, the performance in the tasks,
and the developmental history. Crucially, even the parameters
controlling dynamics were correlated with number of words
learned (which in turn is a predictor of settling time), and thus
many of these effects may be mediated via learning.

Discussion. Our dynamic associative model provides a com-
pelling complement to Fernald et al. (2006). The model shows the
same stability of RT across development as children, but suggests
that there may significant instability when we look closer. It
demonstrates the link between RT and accelerating learning but
without any simple causal mechanism (e.g., processing capacity).
Rather, the relationship derives from the fact that both processing
and learning derive from changes in the weight matrix.

More importantly, the model offers a way to interpret RT. RT
may not be isomorphic to some elemental individual difference.
Rather, it emerges from the interplay of the properties of both
learning and the dynamics of competition. These create a fairly
stable measure, but one that affects RT and learning at different
points in time, as we saw in Simulation 2.1 with respect to
acceleration and deceleration. Although processing time is clearly
an emergent property of network dynamics and learning, it also
reflects individual differences in things such as the learning rate,
the temperature, and the like. And because these things also affect
learning, it suggests a highly circular and mediating relationship

Table 6
Correlations Between Speed and Accuracy, as Well as the Three
Components of the Growth Curve in Overall Words Known
(20AFC)

Time step Accuracy

Growth function

Quadratic Linear Intercept

5,000 .10 	.38�� .35�� 	.16
10,000 .04 	.34�� .08 .10
15,000 	.30�� 	.24� 	.07 .18
20,000 	.35�� 	.25� 	.07 .16
25,000 	.48�� 	.28�� 	.05 .18
30,000 	.52�� 	.28�� 	.05 .15
50,000 	.64�� 	.28�� 	.06 .17
70,000 	.77�� 	.29�� 	.04 .16

100,000 	.85�� 	.26�� 	.06 .15

Note. AFC � alternative forced-choice.
� p � .05. �� p � .01.
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between learning and processing. As Simulation 2.1 showed, pro-
cessing time is determined in large part by the nature of the weight
matrix (and the irrelevant connections in particular), so it should
not be surprising to find such a relationship. Only if processing
time is treated independently of lexical knowledge does this seem
surprising. This suggests that explanations of individual differ-
ences based on speed of processing (e.g., Kail, 1994), though
perhaps behaviorally stable, may oversimplify the problem, par-
ticularly when learning is involved.

Simulation 3.4: Is Online Processing Required for
Learning?

The previous simulations suggest interactions between learning
and processing, deriving in part from the nature of the weight
matrix and how it influences real-time competition. In the present
simulation, we take this to the extreme, asking whether real-time
processing is necessary for learning.

Models of unsupervised learning in other domains suggest that
unsupervised learning may require some form of competition
(McMurray, Aslin, & Toscano, 2009), and most unsupervised
architectures include some form of it (e.g., Kohonen, 1982; Ru-
melhart & Zipser, 1986). Perhaps, then, competition is required for
learning. If the competition–feedback dynamics allow the model to
improve upon ambiguous inputs, it would seem more efficient to
use the results of this processing as the basis of association, rather
than the more ambiguous inputs to it.

There are three components of competitive real-time processing
in this model. First, inhibition between lexical units allows more
active units to suppress activation for competitors. Second, feed-
back between the lexical layer and the inputs helps the network
suppress competing inputs (visual competitors) as it makes a
decision about the word. Finally, inhibition among input units

helps the network suppress competing inputs. All three contribute
to activating the correct lexical and visual units in situation time,
but it is not clear whether they are necessary for learning.

Thus, we ran a series of simulations that factorially varied
whether feedback, lexical inhibition, and input layer inhibition was
used. Each combination was run at three levels of referential
ambiguity (20%, 50%, 80%), yielding 24 simulations. This was
repeated 10 times for 240 simulations (see Table 4). Each model
was tested every 5,000 epochs. Models without feedback cannot
adjust activation in the visual units, making the NAFC tasks
useless. Thus, our primary measure was the analysis of the weight
matrices.

Results. Inhibition at the input layer was a fairly small con-
tributor to learning; thus, we averaged across models with and
without it for most of the analyses. Figure 17A shows the number
of words learned over training in each of the four permutations.
Lexical inhibition was required for learning. The models without it
acquired an average of 1.27 words, whereas all the models that
used it acquired all 35 words. Associative learning of this type
cannot proceed without the ability to suppress competitors at the
lexical level.

The effect of feedback (assuming the presence of lexical inhi-
bition) was more nuanced. The models with feedback (the full
model) acquired a few words very quickly, followed by a delay
before learning the rest (see Figure 17B). Models without feedback
took longer to get started, but once they did, they quickly outpaced
the models with feedback.

Although competition is clearly required, is there an advantage
for feedback? Possibly. It may help the model to acquire a small
working vocabulary quickly (see Figure 17B). It may also benefit
online processing. Figure 17C shows the settling time in a 3AFC
task of models with and without feedback. The processing ability

Table 7
Relationship Between Control Parameters and Output Measures in the Network

Measure
Initial

weight size
Learning

rate
No. visual

competitors
Stability

point
Feed-forward
temperature

Feedback
temperature

Input
inhibition

Reaction time

10,000 	.12 	.15 .09 	.19† .79�� 	.03 	.35��

25,000 	.09 	.09 .14 	.17† .82�� 	.04 	.30��

100,000 	.08 	.10 .09 	.12 .85�� 	.07 	.26��

Words known

10,000 .16 .07 	.31�� 	.20� .04 	.09 	.12
25,000 .22� .12 	.33�� 	.19� 	.31�� .02 .13

100,000 .09 .13 	.09 .27�� 	.87�� .09 .29��

2AFC accuracy

10,000 	.10 .21� 	.32�� 	.27�� .01 .02 	.11
25,000 0 .06 	.38�� 	.14 	.39�� .20† .17†

100,000 .09 .19† 	.09 .14 	.77�� .03 .22�

Growth curve

Quadratic .02 	.04 .01 .07 	.34�� .06 .24�

Linear .09 .11 	.15 	.13 .09 .02 	.14
Intercept 	.01 .03 	.09 	.02 .05 	.11 0

Note. AFC � alternative forced-choice.
† p � .10. � p � .05. �� p � .01.

861A DYNAMIC ASSOCIATIVE ACCOUNT OF WORD LEARNING



of the model with feedback improves much more rapidly and
stably than those without. Moreover, though feedback slows the
speed of learning, it may improve the quality. Figure 17D shows
the average of the weights connecting any given lexical unit to the
“incorrect” visual and auditory units. These should be 0 by the end
of learning. As can be seen in the figure, situation-time feedback
allows the model to suppress these connections faster over devel-
opmental time. Finally, feedback enables the model to change
activation in the visual layer as a lexical unit is selected, the basis
of our “behavioral” tests. Yet, this is not just a computational
convenience. For children, word learning must be integrated with
behaviors such as selecting referents (focusing attention). It makes
more sense to harness the word–object connections established by
word learning to guide these behaviors than to rely on a completely
feed-forward system that would have to acquire new mappings to
do this.

In Simulation 1.1, we described how online processing allows
the network to perform better than its partially learned knowledge
(weight matrix). However, the current simulations suggest that
online processing is much more important than that. Associative
learning in this model is simply not possible without some type of
lexical inhibition—the model must make a decision about what

word it was hearing. Online processing is not merely shaped by
learning, nor does it merely buttress performance. It is essential
for, and integrated with, learning.

Section 3 Discussion

This section simulated three empirical findings regarding the
interaction of situation- and developmental-time processes. Across
all three, we sought to determine (a) whether situation-time pro-
cesses are independent of development; (b) whether development,
particularly word learning, impacts situation-time processes;
and/or (c) whether situation-time processes impact learning.

Our dynamic associative account captured some of the evidence
for Objective a: the failure of children to retain recently novel
words from mutual exclusivity trials. However, it suggests that
though learning may be slow (requiring multiple trials), some
learning occurs during referent selection by mutual exclusivity. It
also accounted for Objective b: The model’s performance on
3AFC and 5AFC mutual exclusivity tasks was a function of its
development. However, unlike prior explanations based on num-
ber of words known, the pruning of unnecessary connections was
the determining factor. Our examination of Objective c was more
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ambiguous. Although we modeled the Fernald et al. (2006) lon-
gitudinal work, the model suggested that processing and learning
are both emergent from the whole network; however, when we
manipulated the component processes of the model in Simulation
3.4, we showed that processing is required for learning.

This last finding suggests the model is not entirely unsuper-
vised—it is self-supervised. The model does not just associate the
inputs it sees and hears. Rather, it performs something like an
inference process (implemented via competition and feedback) and
then uses the output of such a process as the basis of association.
The power of this model both to learn under high degrees of
ambiguity and to account for a wealth of data speaks to the power
of such a scheme.

Section 4: One Word/One Object?

Thus far, we have restricted our simulations to “pure” word–
object sets in which every object has one label and every label has
one referent. However, real language contains many polysemous
words (with two meanings). Conversely, most objects can be
labeled in multiple ways; most vividly, objects have labels at
multiple levels (e.g., basic level, superordinate). In this final sec-
tion, we begin to probe the limits of such situations in two ways to
determine how much of the model’s performance can be attributed
to its idealized “language.”

First, in addition to its use in describing real-time referent
selection, mutual exclusivity has been described as a hindrance to
learning second labels for objects (e.g., Markman et al., 2003;
Regier, 2005). As Xu and Tenenbaum (2007) pointed out, this
constraint must be relaxed for children to learn a second name for
an object (e.g., its superordinate name). Our model shows the first
sense of mutual exclusivity (referent selection in ambiguous situ-
ations), but it is not clear whether this will also impede learning
second labels. This is examined in Simulation 4.1 by training the
model on both basic and superordinate labels. Crucially, this
allows us to study basic-level advantages in a system that does not
represent taxonomy hierarchically.

Second, mapping multiple words to objects disrupts the one-to-
one mapping between words and objects. This consistency may be
essential both for learning in general and for the development of
mutual exclusivity. However, it is unclear whether a purely asso-
ciative system can generalize a principle across multiple words.
Thus, Simulation 4.2 examines two situations that disrupt this
mapping: (a) when words can refer to multiple objects (e.g.,
polysemy) and (b) when the same object can be referred to by
multiple words.

Simulation 4.1: Multiple Labels

Learning multiple labels for an object may challenge both
constraint and associative approaches. Constraints such as the
taxonomic constraint or mutual exclusivity must relax to learn
properties, synonyms, or other taxonomic categories (e.g., super-
ordinates) for the same object. Similarly, associative learning
could commit to a single label for an object and have a hard time
linking a second one. Xu and Tanenbaum (2007) argued that to
solve this problem, the system must be sensitive to statistical
distributions and show graded constraint satisfaction. They argued
that Bayesian inference uniquely has these properties. Indeed, the

localist representations and strong inhibition in our dynamic asso-
ciative account may make it difficult to assign multiple labels to a
one word.

Thus, this simulation examined the ability of the model to
handle both basic and superordinate names. Models were ini-
tialized with 25 auditory word form units and 25 object cate-
gory units (see Table 8). An additional five auditory units
corresponded to five superordinate categories. There were no
visual units for these: Each superordinate was associated with
five of the 25 objects. On each training trial, we first selected
one of the 30 auditory units (25 basic-level and five superor-
dinate units). Thus, the likelihood of hearing a superordinate
term was the same as each of the basic-level terms. If the
auditory unit was a basic-level name, the corresponding visual
unit was active (along with several competitors). If the auditory
unit was a superordinate, one of its five corresponding basic-
level visual units was activated. Consequently, basic-level
names and visual units should be strongly associated with each
other, whereas the association between superordinate names
and their category members may be smaller (since it will be
spread among five objects).

Basic-level performance was assessed by presenting one basic-
level name, its referent, and two competitors (for each of the 25
words). Superordinate performance was assessed by selecting a
superordinate name along with a target from that category, and
competitors from two categories. Each superordinate name was
tested five times (once for each member).

Results. Figure 18A shows the network’s performance on
both tasks. By the end of training, the model mastered both
superordinate and basic-level labels performing at 100% on both
tasks. Such performance requires that the model acquire multiple
names for each object, suggesting that the model displays the
necessary flexibility. The model also learned basic-level names
before superordinates, an example of the commonly reported ad-
vantage for basic-level terms (Rosch, Mervis, Gray, Johnson, &
Boyes-Braem, 1976).

The role of frequency. One factor that could contribute to the
basic-level advantage is frequency. The network was more likely
to hear a basic-level name than a superordinate. To examine this,

Table 8
Parameters for Simulations in Section 4

Parameter
4.1: Multiple

labels
4.2: Multiple labels

and referents

Visual units 25 30–15
Auditory units 30 30–15
Basic-level words 25
Superordinates 5 0
Words referring to two objects N/A 0, 5, 10, 15
Objects with two names N/A 0, 5, 10, 15
Novel visual and auditory units 0 5
Lexical units 500 500
Initial weight size .5 .5
Learning rate .0005 .0005
Referential ambiguity .5 .5
Feed-forward temperature .01 .01
Feedback temperature 2 2
Stability point 1e-12 1-e-12
Input inhibition 1.05 1.05
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we ran an additional simulation in which superordinate and basic-
level labels were equally likely by boosting the frequency of
individual superordinates (superordinate: p � .1; basic: p � .02).
Figure 18B shows the results (results of the prior simulation are
shown in gray). As expected, the network continued to perform
well on basic-level categories. This time, superordinate perfor-
mance was closer to basic level, yet there was still a basic-level
advantage.

Spreading associations. An additional contributor to the
basic-level advantage is the fact that superordinate names must
share associations with five objects. For every five exposures to a
basic-level name the corresponding object will be seen five times;
in contrast, for five exposures to a superordinate name, any given
basic-level object will be seen once. Thus, superordinate names
may have weaker associations with each of their members. To test
this, we conducted a third simulation in which there were 27
basic-level names and only three superordinate terms. Each super-
ordinate category now had nine members. This should enhance the
spread of associations and lead to even worse performance. To
ensure that frequency was not a factor, we ran two versions of the
model. In the first, the overall frequency of superordinate names

was matched to the first simulation in this section where superor-
dinates were as frequent as basic-level terms. That is, the proba-
bility of any of the three superordinates was 5/30, or .167; thus, the
probability of any individual one was .167/3 � .055. In the second
version, the frequency of individual superordinate names was the
same as the frequency for individual basic-level names (given the
smaller number of superordinates. That is, probability of any of
the three superordinates was 3/30 � .1; thus, the probability of any
individual one was .1/3 � .033. Figures 18C and 18D show the
results. Regardless of the superordinate frequency, networks
learned the superordinate categories, even with nine members;
however, the basic-level advantage in both was larger than in
Figure 18A, confirming that the spreading of association contrib-
utes to this effect.

Discussion. These simulations demonstrate that this dynamic
associative model is capable of learning both basic-level and super-
ordinate categories on the basis of co-occurrence statistics alone.
Thus, the model is considerably more flexible than the one-word-to-
one-object mappings we have largely focused on, and the ability to
use mutual exclusivity in the moment does not necessarily constrain
learning (nor does it rely on such a constraint).
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Given the intermediate lexical representations, our model has
two routes to achieve a mapping between one object and two
words. It could associate a superordinate word form with mul-
tiple lexical units, each of which is associated with a single
object; or it could associate a superordinate word with a single
lexical unit that is associated with all the category members. It
is unclear what the consequences of one or the other are, but a
preliminary analysis of several networks’ suggested that the
latter was the dominant pattern— each superordinate word was
associated with a new lexical unit, which in turn was associated
with multiple visual units.

More importantly, however, this model illustrates that behav-
iors such as mutual exclusivity and the use of multiple labels
can coexist comfortably in an associative architecture. The key
innovation is that mutual exclusivity is not a constraint on
learning (as in Regier, 2005; Xu & Tenenbaum, 2007). Rather,
it is a constraint on online behavior (referent selection) that has
consequences for an unconstrained learning system. In the
moment, the network is nudged away from assigning a new
name (the superordinate) to a known category (as predicted by
mutual exclusivity). However, it must be nudged toward an-
other object in the scene. Across trials, however, the available
visual objects are not consistent, so mutual exclusivity never
nudges it to consistently select one object for the superordinate
name. As a result, much stronger cross-situational statistics take
over and establish the correct associations.

Simulation 4.2: Violating One Word/One Object

The previous simulation shows that mutual exclusivity need not
be a constraint on learning; the model can learn multiple labels for
a given word despite the use of mutual exclusivity as an in-the-
moment referent selection strategy. The final simulation examines
three related issues. First, Simulation 4.1 did not actually test the
model’s ability to use mutual exclusivity. It is possible that even
with the disruption in the one-word/one-object nature of the word–
object mapping, the model could still learn, but that its ability to
use mutual exclusivity is hampered. Many approaches to M.E.
referent selection assume that such inferences are built on a real-
ization by the child that each word refers to one object, and
therefore a novel object must have a novel name (Halberda, 2006;
Markman & Wachtel, 1988). Although this generalization must be
acquired from the statistics of word–object relationships (which
our model is sensitive to), our model has no way to store such a
principle or strategy. If violating the one-word/one-object assump-
tion impairs the model’s ability to use mutual exclusivity, this
would be a powerful demonstration that even associative systems
can show principled generalization across words.

Second, Simulation 4.1 examined a special case in which ob-
jects have multiple names with a clear hierarchy. However, there
are also cases in which objects have two equally probable names.
An extreme example is bilingual children who learn two words for
most objects. An equally important property of real languages is
the converse, in which a name can refer to two objects or catego-
ries. This property of polysemy is common: Most words have
multiple meanings, but it may have different consequences for
both learning and M.E. referent selection from the many-names/
one-category situation.

To examine this, we ran a series of simulations (see Table 8 for
parameters). Two versions were run and varied parametrically. In
the multiple-meanings models, there were 30 objects, and some
number of auditory units referred to two of them, whereas the
remainder referred to one. This was varied in increments of five
from 30 unique words (30 words each referring to a single ob-
ject—the equivalent of the prior models) to 0 unique words (15
words, each referring to two of 30 objects). In the multiple-labels
models, there were 30 words, and some number of visual units had
two names, varying from 0 objects with two labels (the equivalent
of the prior model) to all 15 objects having two labels.

It was not clear how to test this network with our analysis of
the weight matrix, so we conducted a 10AFC task. During
testing, foils were restricted such that a word would only have
one of its referents present on a test trial (this restriction was not
present during training). In addition to this, five auditory and
visual units were not trained and used to test M.E. referent
selection, as in Simulation 2.2. Parameters (see Table 8) were
similar to those of prior simulations, and novel objects appeared
(during training) at 17.5% of the 50% referential ambiguity rate
(which yielded more realistic M.E. referent selection in the
prior simulations).

Results. Figures 19A and 19B show performance on the
trained words over the last 25,000 epochs of training for both
models. This is shown as a function of the number of words with
one-to-one mappings, and separately for words that had a unique
mapping, and those that did not. In the multiple-meanings model
(Figure 19A), all the models learned both types of words well.
Though words with one referent were learned slightly better than
words mapping to two objects, both types showed accuracy above
95% across all the simulations. Similarly, in the multiple-labels
model (Figure 19B), we also see a benefit for learning objects that
only have one word, and learning is somewhat lower when no
objects have a single label. However, again, performance is excel-
lent, with accuracy in the worst condition at 94.6%.

Figures 19C and 19D show mutual exclusivity performance.
Chance (33%) is indicated by the dashed line; the black curve
shows performance at the end of training; and the gray curve shows
performance early in training. At the end of training, the multiple-
meanings model shows no problem in mutual exclusivity—even
the model that completely violated the one-word/one-object map-
ping (with no words with one referent), performed at 97.9%. This
implies that “understanding” this systematicity is not a prerequisite
for mutual exclusivity in this model. This is underscored by our
analysis of the model’s mutual exclusivity performance early in
training (the gray curve). Here the model with no words referring
to one object actually performed better than models with more
unique mappings. This was somewhat surprising, and awaits em-
pirical testing, as there are few analyses of the number of polyse-
mous words for which children are exposed to both meanings.
However, it powerfully underscores the fact that in this system
mutual exclusivity behavior need not rely on a systematic one-
word/one-object bias in the input. Rather, as we described in
Simulation 2.2., what is required is that the learning rule preserves
some pathway through the weights to get from the novel visual to
the novel auditory units. Having more than one referent for each
word does not disrupt this (since weight decay relies on exposure
to the objects and word individually), thus preserving the ability to
use mutual exclusivity.
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Intriguingly, however, the multiple-labels model showed a very
different pattern of performance. Here we saw that even at the end
of training, mutual exclusivity performance dropped, as there were
fewer objects with only a single label. Indeed, in the extreme (with
no words with one label) the model barely performed above
chance.

Discussion. These simulations show that first and foremost,
disrupting the one-word/one-object mapping does not necessarily
disrupt overall learning performance. Though words that had two
referents (the multiple-meanings model) and objects that had two
words (the multiple-labels model) were learned slightly less well
than those with a one-to-one mapping, this performance decrement
was negligible. Thus, there is no reason to assume that these
principles cannot be scaled up to these more realistic situations, or
to situations such as bilingual word learning in which most objects
will have multiple names.

Second, mutual exclusivity, as a situation-time process, was
largely spared in these models. When words could have two

meanings, mutual exclusivity was fine at every level tested, and
appeared to develop faster with more polysemous words. There
has been little work looking at the number of words with multiple
meanings that children are exposed to or know, and it is unclear
where this benefit derives from in the model. However, this
counterintuitive prediction may be a useful hallmark of this model.
Mutual exclusivity was also largely preserved when models had
multiple words for each object (the multiple-labels model).
Though performance was degraded with more of these words, it
was still above chance (until there were no uniquely mapped
words). Thus, situations such as the basic and superordinate situ-
ation described above should not pose a problem for referent
selection by mutual exclusivity.

Third, in spite of this overall performance, the decrement seen in
the multiple-labels model is important. Byers-Heinlein and Werker
(2009) suggested that young bilinguals and trilinguals show dec-
rements in using mutual exclusivity. As multilingualism represents
the sort of extreme version of a multiple-labels system, our model
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offers an explanation for these findings. However, the contrast
with the multiple-meanings model, which did not show this dec-
rement, is revealing. It suggests that in an associative system, it is
not a strict one-word/one-meaning structure that is necessary.
Words may have any number of referents, as long as many objects
are largely named by one label. This suggests an important new
dimension to principles such as mutual exclusivity and the novel
name–nameless category that have been used to describe this
behavior.

More importantly, however, these simulations make the broader
point that in a way, this ostensibly associative system has derived
a principle from across its training experiences, a principle that it
can harness in the moment to make decisions about novel words.
However, it does so without any real capacity to represent princi-
ples such as this. Rather, it seems to have set up its associative
weights in such a way that this capacity emerges, in the moment,
during real-time competition between words and objects.

General Discussion

There are two levels on which to evaluate this (or any) model.
First, we can consider the range of empirical findings it captures.
Second, we can evaluate the theoretical advance made by the
model. Does the broader theory tell us something new about word
learning?

With respect to the first issue, Table 1 presents a summary of
our findings. To briefly summarize, we found that that this model
could learn words under conditions of very high referential ambi-
guity. It shows that differences between production and compre-
hension arise in part due to the fundamental differences in these
tasks. It can model the improvement in familiar word recognition
over time, including the structure of individual differences, with-
out any need for semantic elaboration, or for bootstrapping type
processes. It shows hallmarks of the power law of learning while
simultaneously showing accelerating vocabulary growth. It can
model referent selection via mutual exclusivity, its development,
the lack of retention observed by Horst and Samuelson (2008), and
differences in multilinguals (Byers-Heinlein & Werker, 2009). It
can also learn multiple names for categories and multiple mean-
ings for words, and it shows a basic-level category advantage.

This model can clearly capture substantial data from very di-
verse domains of word learning. However, such findings only
matter to the extent that they shape our theories of word learning
and our intuitions about the nature of the problem. This discussion
will focus on these issues. We start by describing some critical
limitations of our approach, and ask whether there is an (even)
simpler alternative. We then boil down the most important theo-
retical contributions of this range of work and end by discussing
predictions and new directions.

Limitations

Despite the range of phenomena this dynamic associative model
can account for, it is not intended as a complete model of word
learning and has a number of limitations. Here we distinguish
limitations of the theoretical approach from those of the simple
model we developed to illustrate it. There is no reason that similar
mechanisms could not be implemented in more complex models to
capture an even broader range of behaviors.

First, our model uses localist representations for words and
objects, treating each word or category as maximally different
from the others. This was deliberately chosen for a number of
reasons. Localist representations are easy to interpret and theoret-
ically fairly transparent. More importantly, our twin theoretical
claims are best instantiated in this framework. Inhibition between
representations is straightforward and easy to implement as a
dynamic process in localist representations, and there are no clear
ways for doing this with overlapping distributed representations.
Similarly, associative learning has long been modeled as linking
discrete, localist units, and thus this architecture best captured our
approach to learning as well.

Moving to a distributed representation for inputs (e.g., feature
vectors for objects) could make it difficult to solve the problem of
referential ambiguity. In the current localist scheme, to indicate
that multiple objects are present, we simply activate each of their
units. However, if objects were represented by a distributed rep-
resentation across multiple feature vectors, it would be difficult to
code more than a few objects—as the feature vectors add up,
gradually most, if not all, of the feature units would be active. As
a result, the distributed representation for multiple objects simply
becomes a concatenation of all features present in a scene. This
makes it very difficult to cope with high levels of referential
ambiguity. The problem is that in this simple architecture there is
no way to bind the features, to know that activity in some features
goes together (apples are red and round, blocks are brown and
square). This binding problem is a classic issue with distributed
representations (Hinton, McClelland, & Rumelhart, 1986), and
work must be done to determine whether any of the solutions
proposed for this can be integrated with this framework. Perhaps
some form of localist (or near localist representations, as seen in
topographic maps) is necessary at some level of the system?
Additional information in the input (beyond the presence or ab-
sence of a feature) may also be helpful, and approaches using
spatial location of features to bind them together seem a promising
direction (Johnson, Spencer, & Schoner, 2009; Samuelson, Smith,
Perry, & Spencer, 2011). In the meantime, however, our goal was
to examine the power of competition and associative learning, and
localism presented a clear platform in which to do so without
solving these historically difficult problems.

Second, our choice of representations completely ignores a
fundamental issue—that word learning must link categories of
words and/or objects. We have attempted to bypass this by assum-
ing that the auditory and visual inputs really represent the output of
some other categorization process, but we did not model these
processes. However, Hebbian normalized recurrence has already
been applied to problems such as speech categorization (McMur-
ray, Horst, et al., 2009; McMurray & Spivey, 2000), and non-
learning versions have been used to model visual categorization
(Spivey, 2007; Spivey & Dale, 2004). Thus, it may be possible
simply to chain together such models. Indeed, work in progress
(McMurray et al., in press) has already developed a network that
first categorizes visual feature vectors and then uses these catego-
ries as the inputs to the network described here. Such an extension
may allow the model to capture more of the interesting social,
attentional, and conceptual processes that guide children to the
right referent in real time, and our preliminary work on this
(McMurray et al., in press) suggests it can model complex phe-
nomena by which words sometimes impede visual categorization

867A DYNAMIC ASSOCIATIVE ACCOUNT OF WORD LEARNING



(Robinson & Sloutsky, 2004) and sometimes facilitate it (Lupyan
et al., 2007).

Even if we allow for such chained models, using localist rep-
resentations of words and objects appears to make the erroneous
assumption that similarity among objects or word forms is irrele-
vant to word learning. This obviously cannot be so. Fortunately,
such similarity relationships can be implemented in localist
scheme. Minimally, one would expect that similar categories
should be partially coactive due to their overlapping inputs. For a
real child, when bug is heard, similar sounding words such as bus
will be partially active (Swingley & Aslin, 2002). Similarly, when
a bug is identified in the visual scene, similar categories such as ant
or spider may be also active. All these competing, partially active
categories could significantly raise the number of spurious asso-
ciations that would have to be considered and eliminated. How-
ever, it is not clear whether this would ultimately be problematic:
The set of similar-sounding words (deer ¡ gear, deal, tear) is
distinct from the set of similar-looking objects (deer ¡ horse,
cow, antelope), so cross-situational statistics may quickly rule out
these associations. Conversely, competition dynamics at the level
of visual categories could eliminate some of these competitors.
Thus, the problem of coactive categories or ambiguous inputs may
not be hugely problematic, though it remains to be investigated.

Given all these issues with localist inputs, the self-organizing
map approach (Li et al., 2004; Mayor & Plunkett, 2010) may be a
natural bridge between localist representations that ignore similar-
ity and distributed representations that naturally reflect it. Such
networks capture similarity relations well and are based on similar
Hebbian learning rules to our network. However, they also have
enough topography and competition that input representations are
precise. The simple form of one-step competition they use could
likely be modified to be more dynamic, but they may need addi-
tional cues (like space) to cope with multiple inputs. Thus, using
self-organizing maps as the input to our model, or using our
settling dynamics in such approaches, may offer a useful hybrid.

A third limitation is the scale of our simulations. Most of our
simulations used only 35 words, which is small by comparison to
the real problem. Simulations reported in the supplemental mate-
rials (Simulation S3) show that the network can learn 150 words
with few modifications. We have not yet tested larger lexica than
that, but there is no reason in principle why this would fail.
Moreover, larger lexica may create more optimal statistics for
learning (Sibley et al., 2008). With a thousand words, the chance
of any given competitor appearing is miniscule, so more invariant
(correct) associations may pop out quicker. Of course, the larger
number of erroneous connections to suppress may also slow learn-
ing.

Fourth, our focus on concrete nouns is a limitation, but not
problematic. The localist visual units could easily be treated as tags
for properties of objects, allowing the model to learn adjectives.
Moreover, if the child or model can segment events from the scene
(Reynolds, Zacks, & Braver, 2007), visual units could serve as tags
for events or actions allowing the model to learn verbs. Siskind
(1996) has shown how cross-situational statistics can be used to
acquire word meanings from text, potentially enabling this mech-
anism to be applied to abstract nouns or verbs as well; and Scott
and Fisher (2012) have shown that cross-situational statistics could
be involved in verb learning as well. More broadly, the fact that
lexical representations are situated between multiple layers of

input could allow other sources of information (e.g., conceptual) to
interact with existing auditory and visual inputs to guide learn-
ing—something that would be difficult to accomplish if auditory
units were associated directly to visual ones.

Finally, our model illustrates the properties of learning neces-
sary to give rise to behaviors such as referent selection via mutual
exclusivity (the pattern of weight decay). However, our learning
rule is one instantiation of a variety of Hebbian rules, and there
may be other versions that are capable of learning more quickly or
with fewer lexical units. One could also explore the possibility that
supervised (error-driven) learning plays a role. Work in language
acquisition more generally suggests that children do receive some
feedback from caregivers ranging from quite overt error signals to
more subtle cues such as the way in which sentences are repeated
back, with or without modification (Bohannon & Stanowicz, 1988;
Chouinard & Clark, 2003). More directly, in word learning chil-
dren are corrected in various ways for naming mistakes or incor-
rect referent selection (Chouinard & Clark, 2003; Gruendel, 1977;
see also unpublished evidence cited in Chapman, Leonard, &
Mervis, 1986), and there is evidence that children benefit from
such feedback in word learning (Chapman et al., 1986; O’Hanlon
& Roberson, 2007). Even beyond this, connectionist models sug-
gest that simple prediction error (e.g., hearing a word, predicting
which objects are likely to be present, and learning on the basis of
the discrepancy) can be an extremely powerful way to use super-
vised, error-driven learning in an essentially unsupervised context
(Elman, 1990). Error-driven learning (even on a handful of learn-
ing events) may buttress some of the slowness of purely associa-
tive processes. However, error-driven learning is likely to have
very different consequences for the conditions under which irrel-
evant associations are suppressed, which will have ramifications
throughout the system. We also will have to explore when, during
processing, the error signal is available, and this could have
ramifications for learning. Such effects may ultimately be quite
diagnostic, allowing us to identify when and where unsupervised
and supervised learning contribute to word learning.

At their core these limitations are largely limitations of the
simple model we used to explore our broader dynamic associative
account. There are clearly more sophisticated competition algo-
rithms, better input representations, and richer approaches to learn-
ing that could be incorporated for a more realistic model. How-
ever, what is startling is how much of the word learning literature
we could to capture by stripping many of these factors out. The
delay in productive vocabulary acquisition can be partially ac-
counted for by the nature of the task, without any recourse to
articulation, phonology, or perception; relationships between pro-
cessing time and learning can be accounted for without resource
limitations or bootstrapping; so-called slow-mapping effects can
be observed without the need for semantic elaboration; a gen-
eral principle (mutual exclusivity) can emerge in a purely
associative framework; and basic-level categorization advan-
tages can emerge with no hierarchical semantics. Though these
explanations are only part of the story for these phenomena, we
would have missed them in a more complex model. Thus, the
broader theory concerning the linkages of real-time competition
and associative learning may have much explanatory power by
itself.
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Can We Get Any Simpler?

Given this, we might ask if this model could get any simpler.
Could this range of processes derive from even more basic prin-
ciples? There is some impetus to think about word learning in this
way; for example, the McMurray (2007) model of the vocabulary
spurt modeled learning as simply accumulating points and discov-
ered that acceleration falls out of parallel learning.

In terms of information processing (e.g., Marr’s first level of
description), perhaps the core of our model is cross-situational
learning. We modeled this via Hebbian associations, but one can
think of this in even simpler terms as simply co-occurrence counts
between words and objects. Yu and Smith (2012) modeled adult
cross-situational learning with exactly such a model (their “bare
bones” dumb associative model) and found that versions of it
performed quite similarly to a hypothesis-testing model. Medina,
Snedeker, Trueswell, and Gleitman (2011) have argued that co-
occurrence counts are not consistent with the fact that people reap
more benefit from low-ambiguity statistics early in training, since
by the end of training the accumulated statistics are the same
(though we have modeled such effects using our dynamic asso-
ciative network; McMurray et al., in press). But given this discus-
sion, it is worth asking whether our approach offers anything
substantive over and above a simpler co-occurrence counter.

To some extent, many of our effects can derive from statistics
alone. Yu and Smith (2012) have argued that under some circum-
stances Hebbian learning can compute a co-occurrence matrix
quite directly, and our model’s ability to learn cross-situationally
derives from this. It is likely that our findings of a basic-level
advantage (stronger word–object associations for basic-level terms
that have one referent than superordinate terms that have multiple)
also derive from this. However, interestingly, Yu and Smith’s
associative model only reached about 40% correct in their most
difficult condition (18 words, four presented per trial), which
corresponds to a referential ambiguity rate of 17.6%. Our model is
at ceiling under these circumstances (though with more training).
Of course, our model also includes real-time processing (which
consequently enables slower learning), which may enable better
learning.

Other findings do not directly fall out of co-occurrence statistics,
but would require real-time processing. Differences in word learn-
ing or referent selection based on the task (number of alternatives)
could not be accounted for with co-occurrence alone. However,
they could if co-occurrence statistics were used as the input to
some kind of read-out rule (as in Yu & Smith, 2012). Our finding
of decreasing RTs over training would also require some sort of
decision rule that converts co-occurrence information into RTs
(maybe something like Ratcliff & Rouder, 1998; or Usher &
McClelland, 2001). However, these decision rules would need to
be built or tuned by hand to account for things such as exponential
decay in RTs, whereas in our model this is an emergent property
of our core theoretical principles, competition and learning. More-
over, at this point, the model would start to look quite similar to
ours, and it is not clear what would be gained. Perhaps most
importantly, these decision rules would ultimately be just a read-
out of learning and would not interact substantively with it—that
is, the real-time decisions made by the model during training
would have no effect on learning. This could be problematic for
modeling of Fernald et al.’s (2006) longitudinal work. We have

shown in multiple simulations here how important this linking
between real-time and developmental processes can be, and in our
other work (McMurray et al., in press) suggest it may make all the
difference to modeling results such as those by Medina et al.
(2011). If we are going to have to add some sort of dynamic
decision process, we may as well be modeling the interaction of
this with learning.

Our work on mutual exclusivity is perhaps the most difficult to
account for on the basis of co-occurrence. A novel name will have
no co-occurrences data for either the familiar or novel objects in
the scene, and thus no principled way to show a bias. As a result,
any pure co-occurrence counter would need some decision rule to
decide when to go with the novel object. Again, this would have to
be built in, to account for these results, rather than emerge out of
the same process that recognizes novel words. But how much
evidence counts as no evidence? If the model had seen an object
once or twice, how would it make this decision? And what about
retention? Once the model has a single piece of evidence for a
word–object pairing, the most optimal thing is to return to that on
retention trials, and yet children apparently do not. And how would
this decision rule develop?

Finally, our results on mutual exclusivity when words have
more than one referent (or referents have more than one word)
suggest that minimally the co-occurrence statistics are not sym-
metrical: Having two words for an object can hurt mutual exclu-
sivity, whereas the converse does not. This lends credence to our
use of internal (lexical) representations to mediate these co-
occurrences. But more importantly, the fact that the multilingual
models do not show mutual exclusivity suggests that the develop-
ment of this behavior is sensitive to the word/object statistics in
general, and suggests that our associative system can learn a
principle (or will fail to, if the statistics demand). It is not clear
how this could emerge out of pure co-occurrence counts.

The bottom line: In order to do mutual exclusivity and capture
the range of effects we have using only co-occurrence counts, one
would have to build it into the model, and build it in such a way
so that it can explicitly capture these effects. This treats behaviors
such as mutual exclusivity as fundamentally different from famil-
iar word recognition—they use different decision rules—whereas
our model shows how both of them emerge from the same com-
petition scheme. This would lead one to a very different theoretical
conclusion than what we have shown here.

Thus, our model is doing something more than just co-
occurrence statistics. It is the unique interaction of learning and
processing, embedded in an environment with such statistics, that
enables complex behavior to emerge from these mechanisms.
Indeed, reductionistically simplifying the model further would
require us to put substantial content in the situation-time decision
rules, and it might not be able to model all these effects anyway.
More importantly, it may lead to very different theoretical conclu-
sions.

Theoretical Insights

Although our model was able to capture numerous empirical
findings, its strength lies in its ability to highlight new theoretical
conclusions about word learning, conclusions that are substantially
broader than the rather narrow model we have presented.
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Learning can (and should) be slow. Most accounts of word
learning stress its effortlessness and speed: Children appear to
acquire words very rapidly. This is based on phenomena such as
so-called fast mapping and the vocabulary explosion. Such learn-
ing is seen as difficult for associative accounts, and thus associa-
tive accounts of word learning often stress their rapidity (Mayor &
Plunkett, 2010; Regier, 2005).

But is word learning really that fast? Children hear approxi-
mately 17,000 words a day (Hart & Risley, 1995). By 1 year, when
the first word is produced, an average child will have heard 6
million words. Even at the height of the vocabulary explosion,
children may show evidence of having acquired 15–20 words per
week. So slow learning may be required, just to account for the
actual acquisition curves.

One might argue that within these thousands of words the child
is hearing, there may be few tokens of the individual words that a
child appears to learn in a given week, so this still necessitates fast
learning. However, it is important to point out that under associa-
tive accounts like this one, much of the problem is simply sup-
pressing competing associations, something that is less dependent
on the specific words being heard. So thousands of exposures to
duck and goose may help children improve their ability to process
and acquire chicken. Despite apparently quick learning in the
laboratory, real learning may be fairly slow, but it also may benefit
from much broader experience than we normally count—experi-
ence with other words, and with objects alone, is all relevant for
learning a particular word.

This contrasts with more inferential or hypothesis-testing ap-
proaches that consider hypothetical word–meaning in parallel and
wait for the right data to update (Medina et al., 2011). In a sense,
due to random initial connections, associative systems start by
considering all hypotheses (with some variation in strength). A
true hypothesis-testing system could never rule them all out, work-
ing in serial. However, by suppressing many connections in par-
allel at each naming instance, this becomes more feasible. In a
sense, at each word, there are global, albeit small, changes in the
hypothesis space. This is made even more feasible by smarter
situation-time processes that allow the child to behave in the
moment on the basis of partial knowledge (Simulations 2.2, 2.3,
3.2, 4.3). Considering familiar words in the same framework as
novel words only underscores this: Developmental changes in
familiar word recognition take years to unfold (e.g., Fernald et al.,
1998, 2006; Zangl et al., 2005), even as the child is generally able
to select the correct referent fairly early in life. Thus, slow but
global changes on each naming instance may yield a fairly robust
system that accounts for multiple developmental phenomena.

And why it should be otherwise? The situations that children
find themselves in are inherently ambiguous—there are multiple
visual referents, and multiple possible interpretations, for any
given word. Even much vaunted social cues are not consistently
available and do not consistently disambiguate words (Frank et al.,
2009). Thus, cross-situational statistics may constitute a good
portion of the information available to link words to objects. If this
is the case, then slow learning may be more optimal in that it
prevents children from committing too strongly to a single (per-
haps erroneous) mapping before they have enough data. Indeed,
we investigated this in simulations reported in the supplemental
materials (Simulation S4) and found quite poor learning when the
learning rate of the model was too high.

Our simulations on mutual exclusivity (Simulations 3.1, 3.2, and
4.2) underscore this. Simulation 3.1 captures Horst and Samuelson
(2008), showing that the model can use mutual exclusivity for
referent selection, but it retains very little from this. The depen-
dence of mutual exclusivity on learning (Simulation 2.1), task
configuration (Simulation 3.2), and lexical statistics (Simulation
4.2) argues that this may be an unstable platform for learning, and
the fact that multilingual children and models (Simulation 4.2) still
learn words suggests it is not required for learning. Indeed, if
referent selection by mutual exclusivity was uniquely powerful for
learning, one must ask how often children know the name of every
item in the visual scene but one. This seems a fairly unlikely event,
underscoring the importance of slower, more gradual mechanisms.

But if learning is slow, this raises the question of how children
function while they wait for data to accumulate. This is not just
theoretical: Slow learning conflicts with the excellent performance
we see in many constrained laboratory tasks, and that parents
observe every day with their toddlers. Our dynamic associative
account suggests that fast, situation-time processes enable children
to take advantage of constraints offered by the environment and
children’s own incomplete mappings to perform impressively in
day-to-day and laboratory tasks, even while learning is slow. This
was made clear when we compared the model’s performance on
constrained tasks to its underlying weights: The model’s knowl-
edge was incomplete, but it still performed well on NAFC tasks. It
also appeared when we compared comprehension to production:
Comprehension was necessarily constrained by the response op-
tions and was consistently better than less constrained production.

Even associative learning is multifaceted. Our approach to
associative learning is more complex than commonly considered.
This has theoretical consequences beyond our model. First, since
auditory and visual units are independently associated with the
lexicon, learning on the auditory and visual side can have different
effects. This was most apparent in Simulation 4.2, where having
two words per object degraded mutual exclusivity performance but
having two objects per word did not. Even in a simple associative
framework, the relevant statistics (e.g., the fact that children en-
counter many visual competitors and fewer auditory ones) shape
situations in which both auditory and visual units may perform
different roles.

This was also seen in Simulations 2.3 and 3.1, which demon-
strated how familiarity with the visual objects alone can improve
both referent selection by mutual exclusivity and retention (Kucker
& Samuelson, 2012), even in the absence of learning any specific
content (the objects’ properties). This may be an important con-
sideration in future work on the M.E. referent selection task.
Similarly, Horst et al. (2011) recently showed that in a referent
selection task with completely novel objects pure visual familiarity
with some of the objects can bias children’s performance.8 How-
ever, in scaling these ideas to the real world, it is clear that novelty
may be a major factor in early lexical behavior. Familiarity is
graded, and there are few, if any, words that a child has literally no
experience with. Thus, our artificial segregation of objects as
familiar or novel (both in models and in typical laboratory tasks)

8 In our model, this novelty bias can derive from something as basic as
the random initial connections (that persist for novel objects), again point-
ing to the importance of pruning (or not).
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may not capture the situation in the real world. Crucially, even an
associative learning framework, this shows that not all learning
needs to involved both ends of the associative link.

This dynamic associative model also shows the surprising im-
portance of suppressing unnecessary associations. This turned out
to be the biggest predictor of settling time for familiar word
recognition (Simulation 2.1), and the pattern of weight decay was
essential for referent selection by mutual exclusivity (Simulation
2.2). This is because the bulk of learning consists of simply
suppressing the vast number of irrelevant connections, and this can
be done for virtually any naming event. This raises the possibility
that even when children select the wrong referent, or do not select
a referent at all, they may still be doing useful learning. This
nonobvious source of learning has not been considered in prior
theoretical, empirical, and computational work.

Finally, our work on referent selection by mutual exclusivity
suggests that associations, even among localist inputs, can derive
a principle that applies to even novel items. The ability to use
mutual exclusivity is not built into this model and clearly develops
from the input. More importantly, it can be blocked when there are
two words for many objects. In a companion piece (McMurray et
al., in press), we have conducted an extensive parameter search of
the model’s ability to use mutual exclusivity and discovered that
only models that have real-time competition dynamics and that use
internal representations (rather than directly linking words to ref-
erents) can do this. Thus, when associative learning is embedded in
a more realistic system with both real-time processing and abstract
representations, much richer, emergent behavior can arise.

Learning and processing are quasi-independent. Our
model was built on the theoretical commitment that using words
and learning them are different. Learning is accomplished by
changing the connections between words, objects, and the lexicon;
processing occurs when real-time competition allows activation to
flow over those weights to arrive at a solution. This quasi-
independence is fundamental. It allows the model to show disso-
ciations between mutual exclusivity and retention (Simulation 3.1)
and between performance and knowledge (Simulations 1.1 and
1.2). Moreover, by considering processing independently, we also
showed how both novel and familiar word processing can be
handled by the same system (Simulations 2.1–2.3).

The quasi-independence has useful functional consequences. By
off-loading mutual exclusivity to online processing, it no longer
blocks learning of multiple names for a given object (Simulations
4.1 and 4.2). More broadly, learning can be less than perfect
because processing can get the child the rest of the way. This is
what compensates for slow learning. The best system will be one
that uses processes optimized for learning to handle developmental-
time learning and processes optimized for in-the-moment demands
to handle real-time behavior.

Nonetheless, though computationally these are distinct pro-
cesses, they are not completely independent in practice: Situation-
time processes are dependent on learning. The changes in RT for
familiar words derive from learning, and the ability of the model
to use mutual exclusivity mapping derives from a weight matrix
created by the specific learning rule. Many people describe fast
mapping as the sort of initial stages of a slow learning process
(e.g., Capone & McGregor, 2005; Carey & Bartlett, 1978;
Golinkoff et al., 1992), a sort of incomplete learning. In contrast,
we suggest that mutual exclusivity behavior (referent selection) is a

real-time product of the type of learning that has occurred up to that
point, but this behavior in turn leaves an associative trace that can
build over repetitions to yield word learning. In this light, the learning
on the first exposure of a word (what has been termed fast mapping)
is no different from subsequent exposures (slow mapping).

Simulation 3.4 showed the converse, suggesting that learning is
impossible without processing. The necessity of such competitive
processes is implicit in many unsupervised learning models, but its
importance has not been highlighted before. Competitive learning
(Rumelhart & Zipser, 1986), for example, requires winner-take-all
learning; self-organizing maps (Kohonen, 1982; Mayor & Plun-
kett, 2010) include a competition–interaction kernel; and even the
quite unrelated mixture of Gaussians framework for clustering
benefits from competition (McMurray, Aslin, et al., 2009). How-
ever, though competition is essential, its outcome can be variable.
In simulations not reported here, we have found that useful learn-
ing still occurs even when competition gets the wrong referent.
Thus, the presence of competition is necessary for learning—the
system must make a choice. But on any trial, the specific choice is
less important.

Finally, Fernald et al.’s (2006) longitudinal study is perhaps the
best evidence for the dependence of learning and processing, as
they found that children’s RTs predicted acceleration in learning.
Our model also showed a similar pattern of results, but suggested
no simple construct to explain it. Learning rate and settling time
were the product of parameters that control learning and process-
ing; the same parameter (e.g., temperature) acts differently de-
pending on the referential ambiguity; and the biggest predictor of
RT was the nature of the learned weights. Thus, to understand a
functional property of the child such as speed of processing, we
must understand the myriad of components of both processing and
learning.

Word learning need not be specialized. A number of models
suggest that acquiring vocabulary may harness general-purpose
learning mechanisms. Regier (2005) and Mayor and Plunkett
(2010) showed the unexpected power of association learning. Xu
and Tenenbaum (2007) and Frank et al. (2009) used general
Bayesian inference mechanisms. McMurray (2007) suggested that
acceleration is not the hallmark of a specialized system but should
be seen virtually everywhere. There is also empirical work show-
ing that similar principles may span word learning and other types
of learning, whether they derive from general reasoning strategies
that apply to both facts and words (Behrend et al., 2001; P. Bloom
& Markson, 1998; Markson & Bloom, 1997; but see Waxman &
Booth, 2000) or lower level attention (Samuelson & Smith, 2000)
and novelty biases (Horst et al., 2011). Thus, there is a mounting
effort to explain vocabulary acquisition in terms of general cog-
nitive and learning processes.

Our dynamic associative account adds to this. First, it shows that
novel word inference and familiar word recognition can arise from
the same system. Both use the same set of online processes (which
themselves are quite general); both operate over the same map-
pings (weights) that are shaped by the same learning mechanism.
There is no need for any sort of monitoring mechanism to route
novel words to a more constrained or specialized learning mech-
anism. Moreover, referent selection by mutual exclusivity can be
modeled with something as general as dynamic competition, fur-
ther emphasizing the generality of these processes.
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Second, the patterns of learning observed in vocabulary are not
special. At face value, the decelerating learning predicted by the
ubiquitous power law of learning conflicts with acceleration dur-
ing the vocabulary explosion. Our model highlights this conflict,
showing both acceleration and deceleration, and both derive from
changes in the associative weights (Simulation 2.1). However, the
particular changes in the weights that yield gains in RT are not
equivalent to those that allow the model to appear as if it acquired
a new word: Whereas RT changes largely derive from suppressing
unnecessary connections, changes in the number of words known
require both the suppression of unnecessary connections and the
establishment of the right positive associations. Thus, depending
on the measurement (changes in RT or vocabulary size), and the
real-time processing that give rise to the behavior, we may reach
different conclusions about the shape of learning (accelerative or
decelerative), even as the underlying mechanism is the same. This
further cements word learning as a general process, but challenges
learning theory by suggesting that changes in RT may not fully
describe learning.

Finally, our use of associative learning does not entail a partic-
ular source of information: Our framework is consistent with
information sources such as attentional or social cues, and con-
ceptual structures that have been widely interpreted as special.
These exist outside the core lexical mapping system and constrain
the settling dynamics (from the outside), or simply determine the
type of representations that are associated. Thus, such higher order
factors may be fundamental to learning and/or lexical behavior, with-
out needing to be embedded in the learning system. This permits a soft
coupling: As children gain sensitivity to things such as speakers’
intentions (Moore, 2008), these sources of information gradually play
a larger role in shaping online behavior (and through it, learning)
without fundamentally restructuring word learning.

New Directions

The test of any model is its ability to make predictions and
highlight new research questions. Given the simplicity of the
model, it is not clear that we are in a position to make precise
empirical predictions for new tests and paradigms. Nonetheless,
the model and the broader theoretical view suggest a number of
important new areas of investigation in word learning.

Indeed, during the course of writing this article, a number of
predictions from the model were tested empirically. Our finding
that M.E. referent selection relies on the relative randomness of the
weights connecting the auditory and visual units, and the role of
simple (purely visual) experience suppressing them (Simulation
2.1), led us to predict, and confirm, that familiarity with objects
may bias children away from selecting them in referent selection
tasks (Horst et al., 2011); and our demonstration in Simulation 3.1
that visual familiarity can simultaneously influence retention mo-
tivated Kucker and Samuelson (2012), which showed similar re-
sults in children. Taken together, these simulations suggest that
mutual exclusivity may have two components: (a) a component
driven by novelty that leads to excellent referent selection
but more retention (b) and something that resembles a constraint
satisfaction, which leads to somewhat worse (but still good) ref-
erent selection but much better retention. This trade-off should be
explored, particularly as these components wax and wane over
development.

Similarly, although the simulations in 4.2 match evidence that
bilingual children (who have multiple names for many objects)
may perform worse in mutual exclusivity tasks (Byers-Heinlein &
Werker, 2009), they also suggest the converse—having multiple
meanings for many words—may not be problematic. There has
been little work on the statistics of word–object mappings in the
child’s environment and how they relate to behaviors such as
mutual exclusivity (analogous to the Perry & Samuelson, 2011,
and Samuelson & Smith, 1999, studies of how such statistics
predict the shape and material biases), and it is not entirely clear
why our model shows this asymmetry, but this is a clear avenue for
future work.

More broadly, our work points to a host of issues that the
statistics of word–object mappings (co-occurrence statistics) may
be involved in. Simulation 4.1 demonstrated how this can give rise
to an advantage of basic-level over superordinate category labels.
An important part of this is that superordinate terms have their
associations spread across multiple objects, whereas basic-level
terms are only associated with one. Conversely, we saw in our
simulations of familiar word recognition how suppressing irrele-
vant connections was crucial to improving performance, and that
this could only occur when competitors were present (but variable
from trial to trial). In this case, the spreading of association across
competitors prevents any of them from becoming strongly linked
with the target word. This spreading of associations has been
invoked in a number of other domains including early speech
perception, where spreading associations block children from as-
sociating irrelevant talker cues with words (Apfelbaum & McMur-
ray, 2011), and in semantic memory, where “context variability”
prevents aspects of the context from serving as a retrieval cue
(Steyvers & Malmberg, 2003). More broadly, however, these
simulations force us to think more creatively about the co-
occurrence statistics of words and objects—our distillation of the
problem suggests that they may play a role in numerous domains.

A third avenue of future study is the role of suppressing irrel-
evant connections. This is pivotal in predicting changes in pro-
cessing speed and giving rise to referent selection by mutual
exclusivity. However, this nonobvious result of learning has not
received extensive study. More complex eye movement paradigms
may allow us to index the strength of competing associations, to
look for correlations with these behaviors, and artificial language
paradigms may allow us to manipulate it by temporarily creating
strong spurious associations. Indeed, these may ultimately be
better predictors of behaviors such as mutual exclusivity and word
recognition time. Fitneva and Christiansen (2011) recently dem-
onstrated that in a cross-situational word learning paradigm, par-
ticipants who looked longer to the incorrect objects during learning
showed better performance. This clearly is consistent with the idea
that suppressing competing associations is critical for learning and
points to a paradigm in which to investigate these issues.

Finally, and most importantly, our approach suggests that even
in an associative account, what the child does and the exact
sequence of events will matter. For example, the timing of the
events in a learning trial could influence whether or not there is
sufficient time for competition among referents to resolve, and this
would alter learning dramatically. Similarly, the configuration of
items on a learning trial (e.g., the number of competitors) and the
behavior of the child can both affect learning, by influencing how
positive associations are formed (which require a fairly specific
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confluence of events) and how negative associations are sup-
pressed (which may be more general and not require a correct
response).

Conclusions

Lexical behavior must fundamentally be considered on two
timescales—children learn words over development, but they
must also use them here and now. Word learning is not about
acquisition of words as a type of knowledge; rather, we must study
how children acquire the abilities to recognize and produce words,
and infer the meanings of novel words. By embedding learning
within a structure of word use, our model offers a unified account
for a range of findings in word learning, word recognition, and
novel word inference. In this framework, word learning is the
simple product of ongoing interactions between developmental-
time processes such as associative learning and situation-time
processes such as dynamic competition.
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