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Search for direct production of charginos and neutralinos in events with three
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√
s =7TeV pp collisions with the

ATLAS detector

The ATLAS Collaboration

Abstract

A search for the direct production of charginos and neutralinos in final states with three electrons or muons and
missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of

√
s =7TeV proton-proton collision

data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with
Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper
limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in
simplified models, significantly extending previous results.

1. Introduction

Supersymmetry (SUSY) [1–9] postulates the existence
of SUSY particles, or “sparticles”, with spin differing by
one-half unit with respect to that of their Standard Model
(SM) partner. If R-parity [10–14] is conserved, the light-
est SUSY particle (LSP) is stable and sparticles can only
be pair-produced and decay into final states with SM par-

ticles and LSPs. Charginos (χ̃
±

i , i = 1, 2) and neutrali-

nos (χ̃
0
j , j = 1, 2, 3, 4) are the mass eigenstates formed

from the linear superposition of the SUSY partners of the
Higgs and electroweak gauge bosons. These are the Hig-
gsinos, and the winos, zino, and bino, collectively known

as gauginos. Naturalness requires χ̃±

i and χ̃0
j (and third-

generation sparticles) to have masses in the hundreds of
GeV range [15, 16]. In scenarios where squark and gluino
masses are larger than a few TeV, the direct production of
gauginos may be the dominant SUSY process at the Large
Hadron Collider (LHC). Charginos can decay into leptonic
final states via sneutrinos (ν̃ℓ), sleptons (ℓ̃ν) or W bosons
(Wχ̃0

1), while unstable neutralinos can decay via sleptons
(ℓℓ̃) or Z bosons (Z χ̃0

1).
This Letter presents a search with the ATLAS detec-

tor for the direct production of charginos and neutralinos
decaying to a final state with three leptons (electrons or
muons) and missing transverse momentum, the latter orig-
inating from the two undetected LSPs and the neutrinos.
The analysis is based on 4.7 fb−1 of proton-proton colli-
sion data delivered by the LHC at a centre-of-mass energy√
s=7TeV between March and October 2011. The search

described here significantly extends the current mass limits
on charginos and neutralinos set by ATLAS [17, 18]. Sim-
ilar searches have been conducted at the Tevatron [19, 20]
and LEP [21], where a model-independent lower limit of
103.5GeV was set at 95% confidence level (CL) on the
mass of promptly decaying charginos.

2. Detector Description

ATLAS [22] is a multipurpose particle detector with
forward-backward symmetric cylindrical geometry. It in-
cludes an inner tracker (ID) immersed in a 2T magnetic
field providing precision tracking of charged particles for
pseudorapidities |η|< 2.5 1. Calorimeter systems with ei-
ther liquid argon or scintillating tiles as the active me-
dia provide energy measurements over the range |η|< 4.9.
The muon detectors are positioned outside the calorime-
ters and are contained in an air-core toroidal magnetic
field produced by superconducting magnets with field in-
tegrals varying from 1T·m to 8T·m. They provide trigger
and high-precision tracking capabilities for |η|< 2.4 and
|η|< 2.7, respectively.

3. New Physics Scenarios

In this analysis, results are interpreted in the phe-
nomenological minimal supersymmetric SM (pMSSM [23])
and in simplified models [24].

In the pMSSM the mixing for the χ̃±

i and χ̃0
j depends

on the gaugino masses M1 and M2, the Higgs mass pa-
rameter µ, and tanβ, the ratio of the expectation values
of the two Higgs doublets. The dominant mode for gaug-
ino production leading to three-lepton final states is χ̃±

1 χ̃
0
2

production via the s-channel exchange of a virtual gauge

boson. Other χ̃±

i χ̃
0
j processes contribute a maximum of

1ATLAS uses a right-handed coordinate system with its origin
at the nominal interaction point (IP) in the centre of the detector
and the z-axis along the beam pipe. The x-axis points from the
IP to the centre of the LHC ring, and the y-axis points upward.
Cylindrical coordinates (r, φ) are used in the transverse plane, φ
being the azimuthal angle around the beam pipe. The pseudorapidity
is defined in terms of the polar angle θ as η = − ln tan(θ/2).

Preprint submitted to Physics Letters B August 15, 2012



20% to three-lepton final states depending on the values
of the mass parameters. The right-handed sleptons (in-
cluding third-generation sleptons) are assumed to be de-
generate and have a mass mℓ̃R

=(mχ̃0

2

+ mχ̃0

1

)/2, set via
the right-handed SUSY-breaking slepton mass parameter
at the electroweak scale. In these scenarios, decays to slep-
tons are favoured. The parameter tanβ is set to 6, yielding
comparable branching ratios into each slepton generation.
The masses of the gluinos, squarks and left-handed slep-
tons are chosen to be larger than 2TeV. In order to achieve
maximum mixing in the top squark sector the correspond-
ing trilinear couplings are set to non-zero values, while all
other trilineal couplings are set to zero.

In the simplified models considered, the masses of the
relevant particles (χ̃±

1 , χ̃
0
2, χ̃

0
1, ν̃, ℓ̃L) are the only free pa-

rameters. The charginos and heavy neutralinos are set to
be wino-like and mass degenerate, and the lightest neu-
tralino is set to be bino-like. Two different scenarios are
considered. In the first case, the χ̃±

1 and χ̃0
2 are pair-

produced and decay via left-handed sleptons, including
staus, and sneutrinos of massmν̃ = mℓ̃L

=(mχ̃0

1

+mχ̃
±

1

)/2)

with a branching ratio of 50% each. In the second scenario,
the χ̃±

1 and χ̃0
2 decay via W and Z bosons.

4. Monte Carlo simulation

Several Monte Carlo (MC) generators are used to simu-
late SM processes and new physics signals relevant for this
analysis. SHERPA [25] is used to simulate diboson processes
WZ and ZZ. These include all diagrams leading to three
leptons and one neutrino, and to four leptons, respectively,
including internal conversions (virtual photons converting
into lepton pairs). HERWIG [26] is used for WW , while
MadGraph [27] is used for the tt̄W , tt̄WW , tt̄Z, Wγ and
Zγ processes. MC@NLO [28] is chosen for the simulation of
single- and pair-production of top quarks, and ALPGEN [29]
is used to simulate W/Z+jets. Expected diboson yields
are normalised using next-to-leading-order (NLO) QCD
predictions obtained with MCFM [30, 31]. The top-quark
pair-production contribution is normalised to approximate
next-to-next-to-leading-order calculations (NNLO) [32] and
the tt̄W (W )/Z contributions are normalised to NLO [33,
34]. The Wγ and Zγ yields are normalised to be con-
sistent with the ATLAS cross-section measurement [35].
The QCD NNLO FEWZ [36, 37] cross-sections are used for
normalisation of the inclusive W+light-flavour jets and
Z+light-flavour jets. The ratio of the NNLO to LO cross-
section is used to rescale the W+heavy-flavour jets and
Z+heavy-flavour jets LO cross-sections.

The choice of the parton distribution functions (PDFs)
depends on the generator. The CTEQ6L1 [38] PDFs are
used with MadGraph and ALPGEN, and the CT10 [39] PDFs
with MC@NLO and SHERPA. The MRTSmcal PDF set [40] is
used for HERWIG.

The pMSSM samples are produced with HERWIG and
the simplified model samples with Herwig++ [41]. The

yields of the SUSY samples are normalised to the NLO
cross-sections obtained from PROSPINO [42] using the PDF
set CTEQ6.6 with the renormalisation/factorisation scales
set to the average of the relevant gaugino masses.

Fragmentation and hadronisation for the ALPGEN and
MC@NLO (MadGraph) samples are performed with HERWIG

(PYTHIA [43]), while for SHERPA, these are performed in-
ternally. JIMMY [44] is interfaced to HERWIG for simulating
the underlying event. For all MC samples, the propagation
of particles through the ATLAS detector is modelled using
GEANT4 [45, 46]. The effect of multiple proton-proton col-
lisions from the same or different bunch crossings is incor-
porated into the simulation by overlaying additional min-
imum bias events onto hard-scatter events using PYTHIA.
Simulated events are weighted to match the distribution
of the number of interactions per bunch crossing observed
in data.

5. Event Reconstruction and Preselection

The data sample was collected with an inclusive selec-
tion of single-lepton and double-lepton triggers. For single-
lepton triggers, at least one reconstructed muon (electron)
is requested to have transverse momentum pµT (transverse
energy Ee

T) above 20GeV (25GeV). For di-lepton trig-
gers, at least two leptons are required to be present in the
event with transverse energy or momentum above thresh-
old. The two muons are required to have pµT>12GeV for
di-muon triggers, and the two electrons to haveEe

T>17GeV
for di-electron triggers, while the thresholds for electron-
muon triggers areEe

T>15GeV and pµT>10GeV. These thresh-
olds are chosen such that the overall trigger efficiency is
high, typically in excess of 90%, and independent of the
transverse momentum of the triggerable objects within un-
certainties.

Events recorded during normal running conditions are
analysed if the primary vertex has five or more tracks as-
sociated to it. The primary vertex of an event is identified
as the vertex with the highest Σp2T of associated tracks.

Electrons must satisfy “tight” identification criteria [47]
and fulfill |η|< 2.47 and ET > 10GeV, where ET and |η|
are determined from the calibrated clustered energy de-
posits in the electromagnetic calorimeter and the matched
ID track respectively. Muons are reconstructed by com-
bining tracks in the ID and tracks in the muon spectrom-
eter [48]. Reconstructed muons are considered as candi-
dates if they have transverse momentum pT > 10GeV and
|η|< 2.4.

“Tagged” leptons are electrons and muons, well sep-
arated from each other and from candidate jets. Events
containing at least one tagged muon having transverse im-
pact parameter with respect to the primary vertex |d0|>
0.2mm or longitudinal impact parameter with respect to
the primary vertex |z0|> 1mm are rejected to suppress
cosmic muon background. “Signal leptons” are tagged lep-
tons for which the scalar sum of the transverse momenta
of tracks within a cone of ∆R≡

√

(∆φ)2 + (∆η)2 =0.2

2



around the lepton candidate, and excluding the lepton can-
didate track itself, is less than 10% of the lepton ET for
electrons and less than 1.8GeV for muons. Tracks selected
for the electron and muon isolation requirement, defined
above, have pT> 1GeV and are associated to the primary
vertex of the event. To suppress leptons originating from
secondary vertices, the distance of closest approach of the
lepton track to the primary vertex normalised to its un-
certainty is required to be small, with |d0|/σ(d0) < 6(3)
for electrons (muons).

Jets are reconstructed using the anti-kt algorithm [49]
with a radius parameter of R = 0.4 using clustered energy
deposits calibrated at the electromagnetic scale. The jet
energy is corrected to account for the non-compensating
nature of the calorimeter using correction factors param-
eterised as a function of the jet ET and η [50]. The cor-
rection factors applied to jets have been obtained from
simulation and have been tuned and validated using data.
Jets considered in this analysis have ET> 20GeV, |η|< 2.5
and a fraction of the jet’s track transverse momenta that
can be associated with the primary vertex greater than
0.75. Events containing jets failing the quality criteria de-
scribed in Ref. [50] are rejected to suppress both SM and
beam-induced background. Jets are identified as contain-
ing b-hadron decays, and thus called “b-tagged”, using a
multivariate technique based on quantities such as the im-
pact parameters of the tracks associated to a reconstructed
secondary vertex. The b-tagging algorithm [51] correctly
identifies b-quark jets in simulated top-quark decays with
an efficiency of 60% and misidentifies jets containing light-
flavour quarks and gluons with a rate of < 1%, for jets with
|η|< 2.5 and jet ET > 20GeV.

The missing transverse momentum, Emiss
T , is the mag-

nitude of the vector sum of the transverse momentum or
transverse energy of all pT> 10GeV muons, ET > 20GeV
electrons, ET> 20GeV jets, and calibrated calorimeter
clusters with |η|< 4.9 not associated to these objects [52].

6. Signal Region Selection

Selected events must contain exactly three signal lep-
tons. As R-parity conserving leptonic decays of χ̃

0
j yield

same-flavour opposite-sign (SFOS) lepton pairs, the pres-
ence of at least one such pair is required. The invariant
mass of any SFOS lepton pair must be above 20GeV to
suppress background from low-mass resonances and the
missing transverse momentummust satisfyEmiss

T > 75GeV.
Three signal regions are then defined: two “Z-depleted”

regions (SR1a and SR1b), with no SFOS pairs having in-
variant mass within 10GeV of the nominal Z-boson mass;
and a “Z-enriched” one (SR2), where at least one SFOS
pair has an invariant mass within 10GeV of the Z-boson
mass. Events in SR1a and SR1b are further required to
contain no b-tagged jets to suppress contributions from b-
jet-rich background processes, where a lepton could origi-
nate from the decay of a heavy-flavor quark. SR1b is de-
signed to increase sensitivity to scenarios characterised by

Table 1: The selection requirements for the three signal regions. The
Z-veto (Z-requirement) rejects (selects) events with mSFOS within
10GeV of the Z mass (91.2GeV). The mT is calculated from the
Emiss

T and the lepton not forming the best Z candidate.

Selection SR1a SR1b SR2

Targeted Intermediate
Decay

l̃(∗) or Z∗ on-shell Z

N leptons (e, µ) Exactly 3
Lepton charge, flavour At least one SFOS pair with mℓℓ > 20GeV
Emiss

T > 75GeV
mSFOS Z-veto Z-veto Z-requirement
N b-jets 0 0 any
mT any > 90GeV > 90GeV
pT allℓ > 10GeV > 30GeV > 10GeV

large mass splittings between the heavy gauginos and the
LSP by requiring all three leptons to have pT > 30GeV.
In both SR1b and SR2, the transverse mass variable mT

must take values greater than 90 GeV, where mT is con-
structed using the Emiss

T and the lepton not included in
the lepton pair with invariant mass closest to the nominal
Z-boson mass. The mT requirement is introduced to sup-
press background from WZ events. The SR1a/b regions
target neutralino decays via intermediate sleptons or via
off-shell Z bosons while SR2 targets decays via an on-shell
Z boson. Table 1 summarises the selection requirements
for the three signal regions.

7. Standard Model Background Estimation

7.1. Reducible Background Processes

Several SM processes contribute to the background in
the signal regions. A “reducible” process has at least one
“fake” object, that is either a lepton from a semileptonic
decay of a heavy-flavour quark or an electron from an iso-
lated photon conversion. The contribution from misiden-
tified light-flavour quark or gluon jets is negligible in the
signal regions. The reducible background includes single-
and pair-production of top-quarks and WW or W/Z pro-
duced in association with jets or photons. The dominant
component is the production of top quarks, with a con-
tribution of 1% or less from Z+jets. The reducible back-
ground is estimated using a “matrix method” similar to
that described in Ref. [53].

In this implementation of the matrix method, the sig-
nal lepton with the highest pT or ET is taken to be real,
which is a valid assumption in 99% of the cases, based
on simulation. The number of observed events with one
or two fakes is then extracted from a system of linear
equations relating the number of events with two addi-
tional signal or tagged candidates to the number of events
with two additional candidates that are either real or fake.
The coefficients of the linear equations are functions of the
real-lepton identification efficiencies and of the fake-object
misidentification probabilities.
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The identification efficiency is measured in data us-
ing lepton candidates from Z → ℓℓ decays. Misidentifica-
tion probabilities for each relevant fake type (heavy flavour
or conversion) and for each reducible background process,
parameterised with the lepton pT and η, are obtained us-
ing simulated events with one signal and two tagged lep-
tons. These misidentification probabilities are then cor-
rected using the ratio (fake scale factor) of the misiden-
tification probability in data to that in simulation ob-
tained from dedicated control samples. For heavy-flavour
fakes, the correction factor is measured in a bb̄-dominated
control sample. This is defined by selecting events with
only one b-tagged jet (containing a muon) and a tagged
lepton, for which the fake rate is measured. The non-
bb̄ background includes top-quark pair production and W
bosons produced in association with a b-quark. An Emiss

T

requirement of less than 40GeV suppresses both the tt̄
and the W contamination, while requiring mT< 40GeV
reduces the W background. The remaining (small) back-
ground is subtracted from data using MC predictions. The
fake scale factor for the conversion candidates is deter-
mined in a sample of photons radiated from a muon in
Z → µµ decays. These are selected by requiring mµµe

to lie within 10GeV of the nominal Z-boson mass value.
A weighted average misidentification probability is then
calculated by weighting the corrected type- and process-
dependent misidentification probabilities according to the
relative contributions in a given signal or validation region,
defined below.

7.2. Irreducible Background Processes

A background process is considered “irreducible” if it
leads to events with three real and isolated leptons, re-
ferred to as “real” leptons below. Such processes include
diboson (WZ and ZZ) and tt̄W/Z production, where the
gauge boson may be produced off-mass-shell. The ZZ and
tt̄W/Z contribution is determined using the corresponding
MC samples, for which lepton and jet selection efficiencies
are corrected to account for differences with respect to
data.

The largest irreducible background,WZ, is determined
using a semi-data-driven approach. The WZ background
is fit to data in a control region including events with ex-
actly three leptons, one SFOS lepton pair, a Z candidate,
Emiss

T < 50GeV, a b-veto, and mT> 40GeV. The WZ pu-
rity in the control region is ∼80%. Non-WZ backgrounds,
both irreducible and reducible, are determined based on
simulation or by using the matrix method and subtracted.
A WZ normalisation factor 1.25±0.12 is obtained in the
control region under a background-only hypothesis and
used to estimate the WZ background in the validation
regions. To obtain the model-independent 95% CL upper
limit on the new phenomena cross-section, a fit is per-
formed simultaneously in the WZ control region and in
the signal region, with floating WZ normalisation factor
and a non-negative signal in the signal region only. This

Table 2: Expected numbers of events from SM backgrounds and
observed numbers of events in data, for 4.7 fb−1, in validation regions
VR1, VR2 and VR3. Both statistical and systematic uncertainties
are included.
Selection VR1 VR2 VR3
tt̄Z 0.17±0.14 0.12±0.10 1.1±0.9
tt̄W 0.6±0.5 0.7±0.5 0.10±0.08
tt̄WW 0.017±0.014 0.022±0.017 0.0023±0.0019
ZZ 17±15 0.10±0.05 3.9±0.6
WZ 46±8 0.93±0.29 98±12

Reducible Bkg. 50±28 13±7 3.1+4.7
−3.1

Total Bkg. 114±32 15±7 106±13
Data 126 18 109

allows the propagation of the uncertainties on the normal-
isation factor. When setting limits on specific new physics
scenarios, the potential signal contamination in the WZ
control region is accounted for in the simultaneous fit.

8. Background Model Validation

The background predictions have been tested in various
validation regions. A region (VR1) dominated by Drell-
Yan and WZ events is selected by requiring three signal
leptons, at least one SFOS lepton pair, 30GeV<Emiss

T <
75GeV, and a Z-boson veto. A reducible-background dom-
inated region (VR2, where top-quark pair-production and
decay to two real and one fake lepton is the main contri-
bution) is built by requiring three signal leptons, Emiss

T >
50GeV and by vetoing SFOS lepton pairs. Finally, a
WZ-dominated region (VR3) is defined by selecting events
with three signal leptons, at least one SFOS lepton pair, a
Z candidate, and 50GeV<Emiss

T < 75GeV. The data and
predictions are in agreement within the quoted statistical
and systematic uncertainties as shown in Table 2.

9. Systematic uncertainties

Several sources of systematic uncertainty are consid-
ered in the signal, control and validation regions. The
systematic uncertainties affecting the simulation-based es-
timates (the yield of the irreducible background, the cross-
section weighted misidentification probabilities, the signal
yield) include the theoretical cross-section uncertainties
due to renormalisation and factorisation scale and PDFs,
the acceptance uncertainty due to PDFs, the uncertainty
on the luminosity, the uncertainty due to the jet energy
scale, jet energy resolution, lepton energy scale, lepton
energy resolution, lepton efficiency, b-tagging efficiency,
mistag probability, and the choice of MC generator. In
SR1a, the total uncertainty on the irreducible background
is 24%. This is dominated by the uncertainty on the effi-
ciency of the signal region selection for the WZ generator,
determined by comparing the nominal yield with that ob-
tained with the HERWIG generator and found to be 20%.
The next largest uncertainties are the uncertainty due to
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the MC generator (16%) and that on the cross-sections
(9%) of the non-WZ background. The MC generator
uncertainty partially accounts for the cross-section uncer-
tainty, leading to a slight overestimate of the overall uncer-
tainty. All the remaining uncertainties on the irreducible
background in this signal region range between 0.5 and
5%. The total uncertainty on the irreducible background
in SR1b is slightly larger, at 25%, due to the limited num-
ber of simulated events. In SR2, the uncertainty on the ir-
reducible background is 24%, with increased contributions
from the jet energy scale and resolution and cross-section
uncertainties.

The uncertainty on the reducible background includes
the MC uncertainty on the weights for the misidentifi-
cation probabilities from the sources listed above (up to
10%) and the uncertainty due to the dependence of the
misidentification probability on Emiss

T (0.6–15%). Also in-
cluded in the uncertainty on the reducible background is
the uncertainty on the fake scale factors (10–34%), and
that due to the limited number of data events with three
tagged leptons, of which at least one is a signal lepton (19–
130%). The latter uncertainty is highest in SR2 where the
reducible background is very low.

The total uncertainties on the signal yields are 10–
20%, where the largest contribution is from the uncer-
tainty on the cross-sections (7%). Signal cross-sections
are calculated to NLO in the strong coupling constant us-
ing PROSPINO. An envelope of cross-section predictions is
defined using the 68% CL ranges of the CTEQ6.6 [54] (in-
cluding the αS uncertainty) and the MSTW [55] PDF sets,
together with variations of the factorisation and renormal-
isation scales by factors of two or one half. The nominal
cross-section value is taken to be the midpoint of the en-
velope and the uncertainty assigned is half the full width
of the envelope, following the PDF4LHC recommenda-
tions [56].

In all of the above, the value used for the uncertainty on
the luminosity is 3.9% [57, 58]. Correlations of systematic
uncertainties between processes and regions are accounted
for.

10. Results and Interpretation

The numbers of observed events and the prediction for
SM backgrounds in SR1a, SR1b and SR2 are given in Ta-
ble 3. Distributions of the Emiss

T in SR1a and SR2 are
presented in Fig. 1.

No significant excess of events is found in any of the
three signal regions. Upper limits on the visible cross-
section, defined as the production cross-section times ac-
ceptance times efficiency, of 3.0 fb in SR1a, 0.7 fb in SR1b
and 2.0 fb in SR2 are placed at 95% CL with the modified
frequentist CLs prescription [59]. All systematic uncer-
tainties and their correlations are taken into account via
nuisance parameters in a profile likelihood fit [60]. The
corresponding expected limits are 3.0 fb, 0.8 fb and 2.0 fb,
respectively.

Table 3: Expected numbers of events from SM backgrounds and
observed numbers of events in data, for 4.7 fb−1, in signal re-
gions SR1a, SR1b and SR2. The yield for two of the simpli-
fied model scenarios, “SUSY ref. point 1” with intermediate slep-
tons, (m

χ̃
±

1

, mχ̃0

2

,m
ℓ̃L

, mχ̃0

1

=425, 425, 250, 75GeV) and “SUSY

ref. point 2” with no intermediate sleptons, (m
χ̃
±
1

, mχ̃0

2

,mχ̃0

1

=150,

150, 0GeV) are also presented. Both statistical and systematic un-
certainties are included. Upper limits on the observed and expected
visible production cross-section at 95% CL are also shown.

Selection SR1a SR1b SR2

tt̄Z 0.06±0.05 0.025±0.023 0.6±0.5
tt̄W 0.36±0.29 0.10±0.08 0.09±0.08
tt̄WW 0.010±0.008 0.0023±0.0019 0.004±0.004
ZZ 0.67±0.21 0.09±0.08 0.34±0.17
WZ 13.5±2.9 1.05±0.28 9.3±2.1

Reducible Bkg. 10±5 0.35±0.34 0.5+1.0
−0.5

Total Bkg. 25±6 1.6±0.5 10.9±2.4
Data 24 0 11

SUSY ref. point 1 8.0±0.8 6.5±0.6 0.46±0.05
SUSY ref. point 2 1.03±0.19 0.21±0.09 10.9±1.0
Visible σ (exp) < 3.0 fb < 0.8 fb < 2.0 fb
Visible σ (obs) < 3.0 fb < 0.7 fb < 2.0 fb

SR1a and SR1b provide the best sensitivity for the
pMSSM scenarios; in particular SR1a (SR1b) targets sce-
narios with small (large) mass splitting between the heavy
gauginos and the LSP. The limits are calculated using the
signal region providing the best expected limit for each of
the model points. The uncertainties on the signal cross-
section are not included in the limit calculation but their
impact on the observed limit is shown.

The main features in the exclusion limits shown in
Fig. 2 as a function of the three parameters M1 , M2 and
µ can be explained in broad terms as follows. For a given
value of M1 , for example M1 =100GeV in Fig. 2 (a), the
production cross-section decreases as M2 and µ increase,
which explains why limits become less stringent when both
M2 and µ take high values. In general, the sensitivity is
reduced in the region at low M2 and high µ, due to the
small mass splitting between the χ̃0

2 and the χ̃0
1. When µ

is greater than M1 and M2 , which is true for example in
the rightmost part of the exclusion plots for M1 =100GeV
(Fig. 2 (a)) and M1 =140GeV (Fig. 2 (b)), the mass of the
gauginos does not depend on µ and the sensitivity remains
constant as a function of µ. On the contrary, in a large
section of the plane shown for M1 =250GeV (Fig. 2 (c)),
the condition that µ should be greater than M1 is not ful-
filled and the resulting limits on the same plane become
less stringent. Additionally, the reduced reach at high M2

and low µ for M1 =140 GeV can be explained in terms
of smaller cross-section values and smaller mass splittings
in that section of the parameter space. The difference
between expected and observed limits seen in the upper
right corner of the M1 =100 GeV exclusion plot, where
SR1b has the best sensitivity, is explained by the observed
under-fluctuation in data with respect to SM predictions.
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Figure 1: Emiss
T distributions for events in signal regions SR1a (a)

and SR2 (b). The uncertainty band includes both statistical and
systematic uncertainty, while the uncertainties on the data points
are statistical only. The yields for two of the simplified model sce-
narios are also shown for illustration purposes: one with intermedi-
ate sleptons “SUSY ref. point 1” (m

χ̃
±
1

, mχ̃0

2

,m
ℓ̃L

,mχ̃0

1

=425, 425,

250, 75GeV) and a second with no sleptons “SUSY ref. point 2”
(m

χ̃
±

1

,mχ̃0

2

, mχ̃0

1

=150, 150, 0GeV). The signal distribution is not

stacked on top of the expected background.

The value of tanβ does not have a significant impact on

σ(pp → χ̃±

i χ̃
0
j)×BR(χ̃

±

i χ̃
0
j → ℓνχ̃0

1ℓℓχ̃
0
1), which decreases

by 10% if tanβ is raised from 6 to 10.
The results obtained in signal regions SR1a and SR1b

are combined with results from the relevant signal region in
the ATLAS two-lepton search (SR-mT2) [61]. The fits are
performed on the combined likelihood function from SR-
mT2 with SR1a, and from SR-mT2 with SR1b. The combi-
nation yielding the highest expected sensitivity is selected
for optimal exclusions in the pMSSM planes (Fig. 3). The
uncertainties are profiled in the likelihood and correlations
between channels and processes are taken into account.
An improvement in the sensitivity for M1 =250GeV and
small values of M2 is seen when results from the three-
lepton and the two-lepton analyses are combined.

Region SR1b provides the best sensitivity to the sim-
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Figure 2: Observed and expected 95% CL limit contours for chargino
and neutralino production in the pMSSM for M1 =100GeV (a),
M1 =140GeV (b) and M1 =250GeV (c). The regions with low val-
ues of M2 and µ are the excluded ones for all values of M1. The
expected and observed limits are calculated without signal cross-
section uncertainty taken into account. The yellow band is the ±1σ
experimental uncertainty on the expected limit (black dashed line).
The red dotted band is the ±1σ signal theory uncertainty on the
observed limit (red solid line). The LEP2 limit in the Figure cor-
responds to the limit on the χ̃±

1 mass in [21] as transposed to this
pMSSM plane. Linear interpolation is used to account for the dis-
creteness of the signal grids. The exclusion contours are optimised
by applying in each signal grid point the CL values from the most
sensitive signal region (lowest expected CL) for M1 =100GeV and
140GeV, whereas signal region SR1a is used for M1 =250GeV.
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Figure 3: Observed and expected 95% CL limit contours for chargino
and neutralino production in the pMSSM for M1 =100GeV (a),
M1 =140GeV (b) and M1 =250GeV (c). Contours from the com-
bination of the results from this search with those of the two-lepton
ATLAS search in [61]. The various limits are as described in Figure 2.
The colour coding is the same as that in Figure 2.

plified models with intermediate slepton decay for which
the interpretation is shown in Fig. 4 (a). In the simplified
models with intermediate slepton decays, degenerate χ̃±

1

and χ̃0
2 masses up to 500GeV are excluded for large mass

differences from the χ̃0
1. Both SR1a and SR2 are used to

interpret the results in the simplified model with gaugi-
nos decaying via gauge bosons (Fig. 4 (b)). The signal
region SR1a has the best sensitivity for small mass differ-
ences between the heavy and light neutralinos, while SR2
is sensitive to decays of χ̃0

2 into on-mass-shell Z bosons.

 [GeV]
1

±χ∼m
0 100 200 300 400 500 600 700

 [G
eV

]
10 χ∼

m

0

50

100

150

200

250

300

350

400

450

500

1

0
χ∼

 <
 m

1
±

χ∼
m

ATLAS
-1

 L dt = 4.7 fb∫
 = 7 TeVs

)ν ν∼l (Ll
~
 ν∼), l ν ν∼l (Ll

~
 ν Ll

~
 → 0

2
χ∼ ±

1
χ∼

0

1
χ∼) ν ν l l (

0

1
χ∼ ν l →

0

2
χ∼ = m±

1
χ∼m

)/20

2
χ∼ + m0

1
χ∼m = (

 Ll
~
 

m

)theory
SUSYσ1 ±Observed limit (

)expσ1 ±Expected limit (

SUSY ref. point 1

 3 leptons-1ATLAS 2.06 fb

 (103.5 GeV)
1

±χ∼LEP2 

(a)

 [GeV]
1

±χ∼m
0 50 100 150 200 250

 [G
eV

]
10 χ∼

m

0

50

100

150

200

250
1

0
χ∼

 <
 m

1
±

χ∼m

ATLAS

 = 7 TeVs , 
-1

 L dt = 4.7 fb∫

1

0χ∼ (*)
 Z

1

0χ∼ (*)
 W→ 0

2
χ∼ ±

1
χ∼

0

2
χ∼ = m±

1
χ∼m

)theory
SUSYσ1 ±Observed limit (

)expσ1 ±Expected limit (

SUSY ref. point 2

 (103.5 GeV)
1

±χ∼LEP2 

(b)

Figure 4: Observed and expected 95% CL limit contours for chargino
and neutralino production in the simplified model scenario with in-
termediate slepton decay (a) and intermediate gauge boson decay
(b). The colour coding is the same as that in Figure 2. For scenarios
with intermediate slepton decay (with no intermediate slepton de-
cay) the reference point is “SUSY ref. point 1” (“SUSY ref. point
2”). The “ATLAS 2.06 fb−1 3 leptons” contour corresponds to the
result of the ATLAS search documented in [18].

11. Summary

Results from a search for direct production of charginos
and neutralinos in the final state with three leptons (elec-
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trons or muons) and missing transverse momentum are re-
ported. The analysis is based on 4.7 fb−1 of proton-proton
collision data delivered by the LHC at

√
s =7TeV and col-

lected by ATLAS. No significant excess of events is found
in data. The null result is interpreted in the pMSSM and
simplified models. For the pMSSM, an improvement in
the sensitivity for M1=250GeV and small values of M2

is seen when results from this analysis are combined with
those from the corresponding two-lepton ATLAS search.
For the simplified models with intermediate slepton de-
cays, degenerate χ̃±

1 and χ̃0
2 masses up to 500GeV are

excluded for large mass differences from the χ̃0
1. The anal-

ysis presented here also has sensitivity to direct gaugino
production with decays via gauge bosons.
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T. Moa146a,146b, V. Moeller28, K. Mönig42, N. Möser21, S. Mohapatra148, W. Mohr48, R. Moles-Valls167, A. Molfetas30,
J. Monk77, E. Monnier83, J. Montejo Berlingen12, F. Monticelli70, S. Monzani20a,20b, R.W. Moore3, G.F. Moorhead86,
C. Mora Herrera49, A. Moraes53, N. Morange136, J. Morel54, G. Morello37a,37b, D. Moreno81, M. Moreno Llácer167,
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120 Department of Physics, University of Pennsylvania, Philadelphia PA, United States of America
121 Petersburg Nuclear Physics Institute, Gatchina, Russia
122 (a)INFN Sezione di Pisa; (b)Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
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z Also at DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat a
l’Energie Atomique), Gif-sur-Yvette, France
aa Also at Section de Physique, Université de Genève, Geneva, Switzerland
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