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a b s t r a c t

In this paper, a generalized method is proposed for the accurate simulation of equal/
unequal power correlated Rayleigh fading channels to overcome the shortcomings of exist-
ing methods. Spatial and spectral correlations are also considered in this technique for dif-
ferent transmission conditions. It employs successive coloring for the inphase and
quadrature components of successive signals using real correlation vector of successive
signal envelopes rather than complex covariance matrix of the Gaussian signals which is
utilized in conventional methods. Any number of fading signals with any desired correla-
tions of successive envelope pairs in the interval [0, 1] can be generated with high accuracy.
Moreover, factorization of the desired covariance matrix is avoided to overcome the short-
comings and high computational complexity of conventional methods. Extensive simula-
tions of different representative scenarios demonstrate the effectiveness of the proposed
technique. The simplicity and accuracy of this method will help the researchers to study
and simulate the impact of fading correlation on the performance evaluation of various
multi-antenna and multicarrier communication systems. Moreover, it enables the engi-
neers for efficient design and deployment of new schemes for feasible wireless
applications.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

To meet the increasing demands for wireless communication services such as internet and media rich applications, effi-
cient exploitation of the limited spectral resources is required. Therefore, different promising multi-antenna and multicarrier
communication schemes are considered as key techniques that can fulfil high spectral efficiency demand of fourth genera-
tion (4G) cellular wireless systems and potentially leading to gigabits communications. The most important schemes are
multiple-input multiple-output (MIMO) [1–3], orthogonal frequency division multiplexing (OFDM) [4], multicarrier
code-division multiple-access (MC-CDMA) [5], the hybrid combinations MIMO–OFDM [6], MIMO-CDMA [7,8], and
MIMO-MC-CDMA [9]. However, it is well known that propagation channel modelling have a crucial impact on the perfor-
mance evaluation of any wireless communication system such as reliability and capacity. Moreover, it is an important per-
quisite for design, deployment and integration of new techniques into real wireless applications. Hence, realistic channel
modelling for different radio propagation conditions has attracted much attention by the research community [10–20].

Typically, in the analysis of multi-antenna and multicarrier systems, models of independent fading channels are usually
assumed due to the lack of a simple procedure for generating fading signals with an arbitrary cross-correlation which tends
to exaggerate the system gains. However, it is well known that channels’ correlation has direct influence on the diversity,
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multiplexing and capacity gains [5,21–25]. It can happen due to insufficient antenna separation at the transmit/receive ends,
poor scattering environment, small coherence bandwidth of the channel or inadequate frequency separation among subcar-
riers [12,26,27].

Based mainly on Jakes’ work [17] and for N �N desired covariance matrix of N correlated Rayleigh fading envelopes,
accurate generation methods for N ¼ 2 have been presented by many researchers such as Ertel and Reed [28] and Beaulieu
[29]. However, for N > 2 envelopes, many algorithms have been proposed with different limitations that affects their appli-
cability in realistic channel conditions such as Tran et al. [26], Sorooshyari and Daut [27], Natarajan et al. [30], and Beaulieu
and Merani [31]. Generation of correlated fading processes that possess specified cross-correlation and auto-correlation
functions is investigated in [32] using vector autoregressive stochastic model. In [33], Gaussian vector autoregressive process
and inverse transform sampling techniques are utilized to generate fading processes with desired cross-correlation, auto-
correlation, and heterogeneous probability density functions. The main shortcomings of the aforementioned methods are
summarized as follows:

(1) The assumption of real covariance matrix in [30] leads to high restriction of use to special cases since covariance
matrices are more likely to be complex in reality.

(2) The covariance matrix must be positive definite (i.e., positive eigenvalues) for successful factorization using Cholesky
decomposition as in [31,32] or positive semidefinite (i.e., zero or positive eigenvalues) when eigenvalue decomposition
is utilized [26].

(3) The nonpositive semidefinite or unrealizable covariance matrices produce unstable Gaussian vector autoregressive pro-
cess as in [32,33] methods.

(4) High computational burden for covariance matrix factorization using Cholesky or eigenvalue decomposition methods
as in [26,27,30–32].

(5) As N increased, the desired cross-correlation values will be limited to short interval of operation within the required
accuracy tolerance as in [26,27,31–33].

(6) In [26,27,31–33] and for complex covariance matrices, generation of fading processes with high cross-correlation level
such as 0.9 is not possible for N P 3 and as N increased, the correlation level that can be simulated will decreased.
Therefore, none of these methods can generate any number of fading processes with any desired covariance matrix.

To achieve the diversity, multiplexing, and capacity gains promised by multi-antenna systems, the total number of chan-
nels between transmit and receive antennas is more likely to be moderate to high. For example, MIMO system with Mt = 4
transmit antennas and Mr = 4 receive antennas has N ¼ MtMr ¼ 16 channels. Furthermore, in multicarrier systems such as
MC-CDMA, the total number of channels is usually high, for example, N ¼ 256 channels (subcarriers) are required to support
256 users. Consequently, hybrid combinations from these two systems will results in large number of fading channels.
Therefore, all of the aforementioned promising communication schemes involve large number of fading channels which is
difficult to be simulated using existing modelling methods.

In this paper, a generalized and straightforward technique is proposed for the accurate simulation of correlated Rayleigh
fading channels in different multi-antenna and multicarrier communication systems. The main contributions of this work
are highlighted as follows:

� The proposed approximation method is able to generate accurately any number of equal or unequal correlated Rayleigh
fading signals with any desired correlation values of successive signal envelopes in the interval [0, 1].
� It is applicable for spatial and spectral correlations which include different parameters such as Doppler frequency shift,

antenna spacing, angular spread, propagation delay spread and subcarriers frequency separation.
� The procedure involves coloring the inphase and quadrature components of successive signals using real correlation vec-

tor of successive signal envelopes rather than complex covariance matrix of the Gaussian signals. Hence, factorization of
the desired covariance matrix is avoided to overcome the shortcomings and high computational complexity of conven-
tional methods.
� The proposed technique is very flexible and efficient for simulating different scenarios of wireless communication sys-

tems such as single user MIMO (SU-MIMO), multiuser MIMO (MU-MIMO), CDMA, MC-CDMA, OFDM, MIMO–OFDM,
MIMO-CDMA, and MIMO-MC-CDMA.
� The simplicity and accuracy of this method will help the research community and the industrial sector to simulate the

performance of various promising wireless communication systems in realistic channel environment leading to efficient
design and deployment of new schemes for feasible wireless applications.

The reminder of this paper is organized as follows: in Section 2, analysis of previous techniques for the generation of cor-
related Rayleigh fading channels is given. In Section 3, the proposed successive coloring technique is presented. Section 4
presents generalized algorithm for equal/unequal power correlated Rayleigh fading channels. In Section 5, complexity anal-
ysis of the generalized algorithm is given. Simulations of practical system scenarios are presented in Section 6. Finally, Sec-
tion 7 concludes the paper.

The notations used in this paper are given as follows: bold-face uppercase and lowercase letters denote matrices and vec-
tors. Plain lowercase letters stand for scalars. Cm�u denotes complex m � u matrix while Rm�u is for real m � n matrix. E{�}
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stands for the expectation value. Superscripts [�]H and [�]Tstand for conjugate transposition and transposition, respectively.
J0(�) denotes the first-kind Bessel function of zero order.

2. Analysis of previous techniques on the generation of correlated Rayleigh fading channels

Conventionally, a vector of N complex colored signals A ¼ ½a1; � � � ; aN � 2 CN�1 with the desired complex covariance ma-
trix RAA ¼ EfAAHg 2 CN�N is generated by the use of coloring matrix L and vector Z ¼ ½z1; � � � ; zN � 2 CN�1 of predefined signals
from N unit power uncorrelated complex Gaussian sequences z1ðtÞ; � � � ; zN ðtÞ that have Rayleigh envelopes. The sequence
zkðtÞ; k ¼ 1; . . . ;N with normalized auto-correlation function and zero cross-correlation can be generated using different
methods such as sum of sinusoids (SoS) [19,20,35] and inverse discrete Fourier transform (IDFT) [26,34]. Cholesky decom-
position is performed for the factorization of RAA = LLH and the resultant lower triangle coloring matrix L is used for A = LZ
generation.

Since covariance matrices are more likely to be complex in reality, the assumption of real covariance matrix in [30] leads
to high restriction of use to special cases such as the real transmit or receive antenna correlation matrices in multi-antenna
systems [12,24]. In this case, envelopes and phases of the complex signals are correlated in contrast to complex covariance
matrices which produce correlation in envelopes only. For example, envelopes and phases of three highly correlated Rayleigh
fading signals are shown in Fig. 1 using the following real covariance matrix

RAA ¼
1 0:95 0:95

0:95 1 0:95
0:95 0:95 1

264
375 ð1Þ

As can be seen from this figure, all envelopes and phases are very close to each other according to the given desired cor-
relation matrix RAA.

For complex covariance matrices, algorithm of Beaulieu and Merani [31] is severely limited by the requirement of positive
definite covariance matrix RAA for successful factorization. Theoretically, covariance matrices are positive definite since the
nonpositive definite matrices cannot represent feasible systems where the correlation between any two signal envelopes are
not lying in the interval specified by the correlations of all other envelopes. However, covariance matrices formulated empir-
ically for more than two signals can be nonpositive definite [26,27]. In this situation, the diagonal matrix of eigenvalues K
resulting from eigenvalue decomposition RAA = VKV will have zero or negative values where V is eigenvector matrix. To
overcome this shortcoming, eigenvalue decomposition is performed in [26] rather than Cholesky decomposition which re-
quires the covariance matrix to be at least positive semidefinite. At cost of accuracy penalty, the procedure performs a
replacement of negative eigenvalues in K by zeros to produce approximate bK for coloring matrix calculation as L ¼ V

ffiffiffiffibKp .
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Fig. 1. Envelopes and phases of three highly correlated Rayleigh fading signals using real covariance matrix.
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In [27], zero and negative eigenvalues of K are replaced by small positive values to find bK and the approximate covariance
matrix bRAA ¼ VbKV is used for coloring matrix calculation using Cholesky decomposition as LLH ¼ bRAA.

Complex covariance matrices of the desired correlated signals have direct influence on the performance and limitations of
Tran et al. [26], Sorooshyari and Daut [27], and Beaulieu and Merani [31] algorithms. To clarify this fact by an example,
Monte Carlo simulation results of probability of positive definite covariance matrices as a function of minimum correlation
allowed between any pair of signal envelopes qkq;0k–q; k; q ¼ 1;2; . . . ;N are illustrated in Fig. 2. Different numbers of enve-
lopes N are used for different values of propagation factor k which represents the product of frequency separation between
adjacent signals and the channel delay spread as will be explained in the next section. From this figure and for all k values, it
is noticed that as N increased from 3 to 6, the probability of getting positive definite covariance matrix is decreased sharply.
As a result, the algorithm of Beaulieu and Merani [31] using Cholesky decomposition can not be applied to generate N P 5
envelopes with moderate to high correlations. This is also shown by another example where the desired correlations of all
successive envelopes are set to be equal with k = 1 and the range of all other correlations are measured using Monte Carlo
simulation. In Table 1, cells marked by ‘‘Not valid’’ represent the regions where algorithm of Beaulieu and Merani [31] is not
able to generate the required envelopes. Similarly, results of algorithms given in [26,27] are shown in Table 2 within error
tolerance e = �10%. The performance is better than of Beaulieu and Merani [31] but still unfeasible for moderate to high cor-
relations when five or more correlated envelopes are required. As N increased from 3 to 6 in the examined algorithms, the
range of allowed correlation between any nonsuccessive envelopes shrinks to short interval of operation within the required
accuracy tolerance. Moreover, none of these algorithms is able to generate envelopes ðN P 3Þ with high correlation of 0.9
and more which seriously affects the applicability of these algorithms.

3. Successive Coloring Technique (SCT)

According to the analysis of previous methods, correlation values of successive envelopes have the main influence on
their performance. In the following, a simple SCT is proposed for designing any number of Rayleigh fading channels with
any desired correlation level by considering real correlation vector of signal envelopes.

3.1. Principles of successive coloring

Consider a vector ZðtÞ 2 C1�N of N equal power uncorrelated complex-valued i.i.d Rayleigh fading signals at time instant t
as
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Fig. 2. Probability of positive definite covariance matrices as a function of number envelopes N , propagation factor k, and minimum correlation allowed
between any pair of envelopes qkq; ðk – qÞ ¼ 1; . . . ;N .
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ZðtÞ ¼ z1ðtÞ � � � zkðtÞ � � � zN ðtÞ½ � ð2Þ

where

zkðtÞ ¼ wkðtÞ þ jvkðtÞ ð3Þ

Envelope of zk(t) is uk(t) = jzk(t)j while wk(t) and vk(t) are the in-phase and quadrature components of zero mean Gaussian
random signals each with r2

z

�
2 variance. The envelope of zk(t) has Rayleigh distribution while the phase ak(t) = tan�1(vk(t)/

wk(t)) is uniformly distributed over [�p, p]. For simplicity and notational convenience, the time index will be removed in the
rest of this chapter. According to Jakes [17] and for any two uncorrelated Rayleigh fading signals zk and zq with
1 6 ðk – qÞ 6 N assuming r2

z ¼ 1, the following conditions of inphase and quadrature components must be hold:

(1) E w2
k

� �
¼ E v2

k

� �
¼ E w2

q

n o
¼ E v2

q

n o
¼ r2

z=2.
(2) Efwkvkg ¼ Efwqvqg ¼ 0.
(3) Efwkwqg ¼ Efvkvqg ¼ 0.
(4) Efwkvqg ¼ �Efvkwqg ¼ 0.

The required vector A 2 C1�N of N equal power complex-valued correlated signals having Rayleigh fading envelopes is
represented by

A ¼ a1 � � � ak � � � aN½ � ð4Þ

where ak = xk + jyk, xk and yk are the in-phase and quadrature components of zero mean Gaussian random signals each with
r2

a

�
2 variance. The Rayleigh distributed envelope of ak is rk = jakj and the phase bk = tan�1(yk/xk) is uniformly distributed over

[�p, p]. The inphase and quadrature components of any pair of correlated signals ak and aq for 1 6 ðk – qÞ 6 N assuming
r2

a ¼ 1 must satisfy the following conditions:

(1) E x2
k

� �
¼ E y2

k

� �
¼ E x2

q

n o
¼ E y2

q

n o
¼ r2

a

�
2,

Table 1
Desired correlation of all successive envelopes with k ¼ 1 and the range of all other correlations using
algorithm of Beaulieu and Merani [31].

Desired correlation of
all successive envelopes

Correlation range of all other envelopes

N ¼ 3 N ¼ 4 N ¼ 5 N ¼ 6

0.0 0.00–1.00 0.00–0.38 0.00–0.22 0.00–0.14
0.1 0.00–0.97 0.00–0.45 0.00–0.26 0.00–0.18
0.2 0.00–0.94 0.00–0.45 0.00–0.27 0.00–0.19
0.3 0.00–0.91 0.00–0.44 0.00–0.27 0.00–0.20
0.4 0.00–0.86 0.00–0.42 0.00–0.27 0.05–0.20
0.5 0.00–0.79 0.00–0.39 0.00–0.27 0.12–0.20
0.6 0.00–0.69 0.00–0.34 Not valid Not valid
0.7 Not valid Not valid Not valid Not valid
0.8 Not valid Not valid Not valid Not valid
0.9 Not valid Not valid Not valid Not valid
1.0 Not valid Not valid Not valid Not valid

Table 2
Desired correlation of all successive envelopes with k ¼ 1 and the range of all other correlations using
algorithms of Tran et al. [26] and Sorooshyari and Daut [26,27] within error tolerance e = �10%.

Desired correlation of
all successive envelopes

Correlation range of all other envelopes �e.

N ¼ 3 N ¼ 4 N ¼ 5 N ¼ 6

0.0 0.00–1.00 0.00–0.39 0.00–0.25 0.00–0.16
0.1 0.00–1.00 0.00–0.48 0.00–0.32 0.00–0.21
0.2 0.00–1.00 0.00–0.56 0.00–0.35 0.00–0.21
0.3 0.00–1.00 0.00–0.56 0.00–0.35 0.00–0.21
0.4 0.00–1.00 0.00–0.52 0.00–0.34 0.05–0.21
0.5 0.00–0.97 0.00–0.48 0.00–0.33 0.12–0.21
0.6 0.00–0.93 0.00–0.45 0.10–0.32 Not valid
0.7 0.12–0.86 0.20–0.42 0.20–0.30 Not valid
0.8 0.40–0.84 0.25–0.35 Not valid Not valid
0.9 Not valid Not valid Not valid Not valid
1.0 Not valid Not valid Not valid Not valid
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(2) Efxkykg ¼ Efxqyqg ¼ 0,
(3) Efxkxqg ¼ Efykyqg ¼ gkq,
(4) Efxkyqg ¼ �Efykxqg ¼ pkq,

where the statistics (cross-correlation parameters) gkq and pkq are derived for isotropic scattering assumption as a function of
system specifications by Jakes [17]

gkq ¼
Joð2pfdskqÞ
2 1þ k2

kq

� � ð5Þ

pkq ¼ �kkqgkq ð6Þ

where J0(�) denotes the first-kind Bessel function of zero order, fd = vfc/c is the maximum Doppler frequency, v is the mobile
speed, fc is the carrier frequency, c = 3 � 108 m/s is the light speed, skq is the arrival time delay between fading signals,
kkq ¼ 2pðDfkqÞrs is the propagation factor, Dfkq = fq � fk is the frequency separation between signals and rs is the wireless
channel delay spread. Readers may refer to Jakes [17, p. 46–50] for rich details.

For desired correlated fading vector A, the corresponding N �N complex covariance matrix RAA = E{AAH} is given by

RAA ¼

c11 c12 � � � c1N

c�21 c22 � � � c2N

..

. ..
. . .

. ..
.

c�N1 c�N2 � � � cNN

266664
377775 ¼

r2
a 2g12 � j2p12 � � � 2g1N � j2p1N

2g21 þ j2p21 r2
a � � � 2g2N � j2p2N

..

. ..
. . .

. ..
.

2gN1 þ j2pN1 2gN2 þ j2pN2 � � � r2
a

2666664

3777775 ð7Þ

where ckq; 8ðk – qÞ ¼ 1; . . . ;N is the cross-correlation between kth and qth complex signals (ak and aq) and
ckk ¼; 8k ¼ 1; . . . ;N is the autocorrelation (power) of signal ak. When kkq ¼ 0; k; q ¼ 1; . . . ;N , the covariance matrix will
be real and represented as

RAA ¼

r2
a 2g12 � � � 2g1N

2g21 r2
a � � � 2g2N

..

. ..
. . .

. ..
.

2gN1 2gN2 � � � r2
a

2666664

3777775 ð8Þ

The correlation factor qkq between the kth and qth envelopes (rk and rq) is given by

qkq ¼
Covfrk; rqgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarfrkgVarfrqg
p ¼

ð1þ kkqÞEi½ð2
ffiffiffiffiffiffiffi
kkq

p
Þ=ð1þ kkqÞ� � p

2

2� p
2

ð9Þ

where Ei[x] is the complete elliptic integral of the second kind with modulus x, and kkq is the magnitude of correlation be-
tween complex Gaussian signals ak and aq represented by

k2
kq ¼

Covfak; aqgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarfakgVarfaqg

p�����
�����

2

¼
g2

kq þ p2
kq

b2 ð10Þ

where b ¼ r2
a=2. In [17], the correlation factor qkq is well approximated by k2

kq as

qkq ffi k2
kq ¼

g2
kq þ p2

kq

b2 ð11Þ

Therefore, gkq can be approximated as

gkq ffi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qkq

1þ k2
kq

s
b ð12Þ

Correlation factors between any pairs of envelopes of A elements can be given in N �N correlation matrix form
q 2 RN�N as

q ¼

q11 q12 q13 � � � q1N

q21 q22 q23 � � � q2N

q31 q32 q33 � � � q3N

..

. ..
. ..

. . .
. ..

.

qN1 qN2 qN3 � � � qNN

266666664

377777775 ð13Þ
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where qkk ¼ 1; 8k ¼ 1; . . . ;N is the autocorrelation of each signal envelope and qkq ¼ qqk; 8ðk – qÞ ¼ 1; . . . ;N . The elements
of q are real values since they represent the correlation between envelopes (magnitudes of the complex signals).

In SCT, correlation vector qs 2 R1�ðN�1Þ of successive pairs from q matrix will be considered as

qs ¼ q12 q23 � � � qðN�1ÞN
	 


ð14Þ

To generate A ¼ ½a1 � � � ak � � � aN � with ak = xk + jyk from Z ¼ ½z1 � � � zk � � � zN � with zk = wk + jvk assuming r2
a ¼ r2

z ¼ 1, the
first stage of this process involves fixing a1 = z1. In the seconde stage, a2 will be calculated by coloring z2 with a1 as;
a2 ¼ A12a1 þ B12z2, where A12 and B12 are coloring factors used to achieve the desired correlation between successive enve-
lopes a1 and a2. Similarly, a3 will be calculated in the third stage from z3 and a2 as; a3 ¼ A23a2 þ B23z3, and so on. Therefore,
the overall process is summarized by using the following linear formulation:

ak ¼
zk; k ¼ 1
Aðk�1Þkak�1 þ Bðk�1Þkzk; 2 6 k 6 N

(
ð15Þ

where the coloring factors, Aðk�1Þk and Bðk�1Þk for 2 6 k 6 N are used to insure the required correlation among the inphase and
quadrature components of successive envelope pairs and maintains different channel propagation conditions. For this pur-
pose, at least one of these factors must be a complex number. Assuming that Aðk�1Þk and Bðk�1Þk are complex and real num-
bers, respectively, their values are derived directly by satisfying the aforementioned conditions of Jakes [17] in Eq. (15) and
using Eqs. (6), (11), and (12) as:

Aðk�1Þk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qðk�1Þk

1þ k2
ðk�1Þk

s
½1þ jkðk�1Þk� ð16Þ

Bðk�1Þk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� qðk�1Þk

q
ð17Þ

Correlation factors of any nonsuccessive pairs of envelopes qkq will be in the range satisfied by the correlations of all pairs
between kth and qth envelopes and determined approximately by the multiplication result of them as

qkq ffi
Yq�1

i¼k

qiðiþ1Þ; k < q� 1 ð18Þ

Note that for conventional methods, the desired correlation parameters must represent a feasible system (i.e. has a po-
sitive definite covariance matrix) in order to be simulated accurately. For example, if the desired correlations of three enve-
lopes are q12 = q23 = 0.9 then as explained in [27], q13 should be in the interval [0.64, 1.0]. That is, if there is high correlation
between (r1, r2) and (r2, r3), then there should be high correlation between (r1, r3). For this case, q13 using SCT will be 0.81
which is in the above interval. As the number of desired signals increased and/or moderate to high correlations of successive
signal envelopes is required, the admissible correlation ranges of all nonsuccessive envelopes will be shrinking to the specific
values of Eq. (18).

3.2. SCT algorithm

For wireless communication system, the desired channel A of equal power signals r2
a

� �
with an arbitrary correlation vec-

tor of successive pairs of envelopes qs can be generated as follows:

1. Given the desired correlation vector qs of qðk�1Þk; k ¼ 1; . . . ;N elements as in Eq. (14) and the propagation factors as
kðk�1Þk ¼ 2pðDfðk�1ÞkÞrs; 2 6 k 6 N .

2. Calculate the coloring factors, Aðk�1Þk and Bðk�1Þk for 2 6 k 6 N using Eqs. (16) and (17), respectively.
3. Generate a reference vector Z ¼ ½z1 � � � zk � � � zN � of N zero mean uncorrelated complex Gaussian signals with equal

power Rayleigh envelops r2
z ¼ r2

a

� �
using SoS or any other efficient method such as IDFT.

4. For k ¼ 1; . . . ;N , use Eq. (15) to generate the desired equal power signals of correlated Rayleigh fading channel
A ¼ ½a1 � � � ak � � � aN �.

4. Generalized SCT (GSCT) algorithm for equal/unequal power correlated Rayleigh fading channels

As shown in the previous section, SCT to generate equal power signals is a simple procedure. However, generation of un-
equal power signals bA ¼ ½â1 � � � âk � � � âN � 2 C1�N is very useful for many cases such as scattered users in different distances
from the base station receiver with the absence of accurate power control or unequal power transmission from the available
transmit antennas. Therefore the SCT algorithm is generalized here to also generate Rayleigh fading channels for unequal
signal powers with desired correlation.
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Consider a desired correlation matrix q̂ of N signal envelopes with unequal power of r2
âk

; k ¼ 1; . . . ;N as;

q̂ ¼

q̂11 q̂12 q̂13 � � � q̂1N

q̂21 q̂22 q̂23 � � � q̂2N

q̂31 q̂32 q̂33 � � � q̂3N

..

. ..
. ..

. . .
. ..

.

q̂N1 q̂N2 q̂N3 � � � q̂NN

266666664

377777775 ð19Þ

Therefore the correlation vector q̂s 2 R1�ðN�1Þ of successive pairs formulated from q̂ matrix will be addressed in the gen-
eralized algorithm as

q̂s ¼ q̂12 q̂23 � � � q̂ðN�1ÞN
	 


ð20Þ

The GSCT algorithm is given below in step by step manner to describe the generation of desired signals of correlated
Rayleigh fading channels for both equal and unequal powers.

1. Specify the desired powers of N correlated Rayleigh fading envelopes.
2. Specify the propagation factors as kðk�1Þk ¼ 2pðDfðk�1ÞkÞrs; 2 6 k 6 N .
3. If the desired powers of envelopes are equal r2

a

� �
, specify the required correlation vector qs of qðk�1Þk; k ¼ 1; . . . ;N

elements as in Eq. (14) and then Go to step No. 5. Otherwise, if the desired powers of envelopes are unequal defined

by r2
âk

n oN

k¼1
, identify the correlation vector q̂s of q̂ðk�1Þk; k ¼ 1; . . . ;N elements as in Eq. (20) and continue to next step.

4. Normalize the elements of correlation vector q̂s to create normalized vector qs using the following transformation [30]

qðk�1Þk ¼
q̂ðk�1Þkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

âðk�1Þ
r2

âk

q ð21Þ

Calculate the coloring factors, Aðk�1Þk and Bðk�1Þk for 2 6 k 6 N using Eqs. (16) and (17), respectively.

5. Generate a reference vector Z ¼ ½z1 � � � zk � � � zN � of N zero mean uncorrelated complex Gaussian signals with equal
power Rayleigh envelops r2

z ¼ r2
a

� �
using SoS [20,35] or any other efficient method such as IDFT [34].

6. For k ¼ 1; . . . ;N , use Eq. (15) to generate equal power signals of correlated Rayleigh fading channel represented by the
vector A ¼ ½a1 � � � ak � � � aN �. The algorithm terminates if the desired powers of all envelopes are equal, otherwise con-
tinue to the next step if they are unequal.

7. Use the transformation given in Eq. (22) similar to Natarajan et al. [30] to generate the unequal power signals represented
by the channel vector bA ¼ ½â1 � � � âk � � � âN �.

âk ¼
râk

ra
ak; k ¼ 1; . . . ;N ð22Þ

The above algorithmic procedure is realized in MATLAB simulation environment for different practical system settings
and scenarios explained in Section 6.

5. Complexity analysis of GSCT

Let’s assume that N is the total number of desired equal power correlated signals. To simulate these signals using the de-
sired correlation vector qs of N � 1 conditions in GSCT, approximate computational operations of 2N 2 � 3N þ 2 are required
which is OðN 2Þ efforts. This includes additions, subtractions, divisions, multiplications, and square roots. For Cholesky and
eigenvalue decomposition based methods, total calculations of ð2N 3 þ 3N 2 þN Þ=6 and ð6N 3 � 3N 2 � 3N Þ=6 are required,
respectively. Hence, the computational efforts of these methods is of OðN 3Þ, where the main computational burden is due
the requirement of N 3

=6 multiplications for covariance matrix RAA factorization. Furthermore,
PN�1

n¼1 ðnÞ correlation conditions
from RAA are to be satisfied for successful generation of desired signal. Therefore, the complexity of GSCT is reduced exponen-
tially compared with considered conventional methods. Summery of the complexity analysis is given in Table 3.

For comparison purpose, let’s consider the generation of N ¼ MtMr signals for Mt �Mr MIMO system. By using Mt = 6 and
Mr = 8, the required number of signals is N ¼ 48. This means, 4.466 � 103 approximate calculations are needed for GSCT
compared with 38.024 � 103 and 109.416 � 103 for Cholesky and eigenvalue decomposition methods, respectively. When
N ¼ 256 such as in MC-CDMA, approximate calculations of 0.13 � 106 are required for GSCT which are significantly less than
5.62 � 106 and 16.74 � 106 for Cholesky and eigenvalue decomposition methods, respectively. Also, we find that approxi-
mately more than 100% reduction in complexity can be achieved at N ¼ 9 compared with Cholesky and at N ¼ 4 compared
with eigenvalue decomposition method.

For unequal power correlated signals, GSCT requires extra 3ðN � 1Þ calculations for q̂s normalization and 2N for bA
elements formulation. Hence, the total extra required computations is 5N � 3. Similarly, when Cholesky or eigenvalue
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decomposition method is used, extra 3N 2 þ 2N computations are needed. Consequently, GSCT has more significant reduc-
tion compared with the other methods.

6. Simulation results

For the accuracy checking and to demonstrate the effectiveness of GSCT without loss of generality, we consider genera-
tion of correlated Rayleigh fading signals using four different representative examples. The first example is for simulating
four equal power signals of 2 � 2 SU-MIMO channel scenario with complex spatial covariance matrix. In the second example,
we consider simulation of four equal power signals for four receive antenna correlation scenario using real spatial covariance
matrix. The third example is for simulating 64 equal power signals of multi-carrier (OFDM) channel scenario with spectral
correlation. The last example is for simulating unequal power signal needed in many wireless applications that experiencing
spectral and/or spatial correlation such as MC-CDMA, MU-MIMO, and MIMO–OFDM. In this study, MATLAB/v.7.9 is used for
the simulations. The SoS method [20] using 16 sinusoids, Doppler frequency fd = 50Hz, and 8 kHz sampling frequency is em-
ployed for generating the reference signal vector Z in all considered examples due its simplicity and accuracy. Algorithm of
GSCT is applied to generate desired vector A of correlated signals from Z using the coloring factors and according to the avail-
able informations of considered examples.

Example 1. Consider generation of N ¼ 4 equal power flat Rayleigh fading signals as A ¼ a1 a2 a3 a4½ � for 2 � 2 SU-
MIMO system scenario using r2

a ¼ 2b ¼ 1 and the following empirically formulated covariance matrix.

RAA ¼

1 0:58þ j0:75 0:28þ j0:37 0:15þ j0:43
0:58� j0:75 1 0:17þ j0:47 0:27þ j0:39
0:28� j0:37 0:17þ j0:47 1 0:58þ j0:75
0:15� j0:43 0:27� j0:39 0:58� j0:75 1

26664
37775 ð23Þ

The eigenvalues of RAA are: �0.254, 0.198, 1.298, and 2.756. Since one of the eigenvalue is negative, RAA is neither a posi-
tive semidefinite nor a positive definite matrix. Besides serving as an illustration of GSCT effectiveness, the given covariance
matrix also provides an example of realistic channel conditions where the covariance matrices are not always positive def-
inite. It should be noted that eigenvalue decomposition based method can not be used directly for this example without forc-
ing RAA to be positive semidefinite by replacing the negative eigenvalue with zero as in [26]. Similarly, Cholesky
decomposition based method can not be employed without forcing RAA to be positive definite by replacing the negative
eigenvalue with small positive value as in [27]. However, forcing RAA to be positive semidefinite/definite will affect its struc-
ture leading to inaccurate realistic channel simulation and hence the performance evaluation of the considered communi-
cation system.

To generate A using the proposed GSCT, the desired correlation matrix of envelopes q can be calculated directly from RAA

using Eq. (11) as

q ¼

1 q12 q13 q14

q21 1 q23 q24

q31 q32 1 q34

q41 q42 q43 1

26664
37775 ¼

1 0:898 0:215 0:225
0:898 1 0:249 0:207
0:215 0:249 1 0:898
0:225 0:207 0:898 1

26664
37775 ð24Þ

Therefore, desired correlation vector qs of successive envelopes is

qs ¼ q12 q23 q34½ � ¼ 0:898 0:249 0:898½ � ð25Þ

Propagation factors of the successive signals are calculated also from RAA using Eq. (6) as k12 ¼ k34 ¼ 1:29 and k23 ¼ 2:76:
Envelopes (r1, r2, r3, r4) and phases (b1, b2, b3, b4) of the generated fading signals are depicted in Figs. 3 and 4, respectively. It
can be seen that envelopes (r1, r2) and (r3, r4) are very close to each other which reflects the desired high correlations of
q12 = q34 = 0.898 while envelopes (r1, r3), (r1, r4), (r2, r3), and (r2, r4) are unrelated to each other due to their low correlation
values shown in Eq. (24). In contrast to envelopes, all phases are independent even those related to the high correlated
envelopes (r1, r2) and (r3, r4) which is expected for complex covariance matrices. Probability density function (PDF) of the
generated Rayleigh fading envelopes and uniform distributed phases are coincides with the theoretical results as shown
in Figs. 5 and 6, respectively. The results shown in Figs. 3–6 demonstrate the effectiveness of simulating the desired corre-
lated fading signals with complex covariance matrices.

Table 3
Computational complexity of GSCT to generate equal power correlated fading signals compared
with the conventional methods that utilize Cholesky or eigenvalue decomposition.

Algorithm Total calculations Computational effort

Cholesky ð2N 3 þ 3N 2 þN Þ=6 OðN 3Þ
Eigenvalue ð6N 3 � 3N 2 � 3N Þ=6 OðN 3Þ
GSCT 2N 2 � 3N þ 2 OðN 2Þ
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For comparison purpose, envelopes (r1, r2, r3, r4) and phases (b1, b2, b3, b4) of generated fading signals using Cholesky and
eigenvalue based methods are depicted in Figs. 7 and 8, respectively. In these methods, the negative eigenvalue (�0.254) is
replaced by small positive value (d = 10�3) and zero for Cholesky and eigenvalue factorizations, respectively. In Table 4, the
measured correlations of simulated fading envelopes are compared with the desired values. As can be seen, results of GSCT
are very close to the desired values and outperform those of conventional methods which prove the accuracy of proposed
technique. Note that in GSCT, correlations of nonsuccessive envelopes are approximated by the associated successive
envelope correlations using Eq. (18) as q13 = q24 = 0.223 and q14 = 0.2. These values are in the admissible accuracy range of
desired correlations and close to the measured results.

Example 2. In this example, we consider generation of N ¼ 4 equal power flat Rayleigh fading signals as
A ¼ a1 a2 a3 a4½ � for 4 receive antenna correlation scenario. The constant spatial correlation model [24] is adopted in
this example due its popularity by using the following real constant receive covariance matrix reflecting small separation
distance among antennas.

RAA ¼

1 c12 c13 c14

c�21 1 c23 c24

c�31 c�32 1 c34

c�41 c�42 c�43 1

26664
37775 ¼

1 0:9 0:9 0:9
0:9 1 0:9 0:9
0:9 0:9 1 0:9
0:9 0:9 0:9 1

26664
37775 ð26Þ

The eigenvalues of RAA are: 0.061, 0.102, 0.309, and 3.526 . Since all eigenvalues are positive, RAA is a positive definite
matrix and many conventional methods such as Tran et al. [26], Sorooshyari and Daut [27], Natarajan et al. [30], Beaulieu
and Merani [31], Baddour and Beaulieu [32], and Chung et al. [33] can be used to generate the desired fading signals with
high level of accuracy.

Using Eq. (11) with r2
a ¼ 2b ¼ 1, the desired correlation matrix of envelopes q can be calculated directly from RAA as

q ¼

1 q12 q13 q14

q21 1 q23 q24

q31 q32 1 q34

q41 q42 q43 1

26664
37775 ¼

1 0:81 0:81 0:81
0:81 1 0:81 0:81
0:81 0:81 1 0:81
0:81 0:81 0:81 1

26664
37775 ð27Þ

Therefore, desired correlation vector qs of successive envelopes is

qs ¼ q12 q23 q34½ � ¼ 0:81 0:81 0:81½ � ð28Þ

In this example, all propagation factors kkq; ðk – qÞ ¼ 1; . . . ;4 are zero since RAA is a real covariance matrix. Envelopes (r1,
r2, r3, r4) and phases (b1, b2, b3, b4) of the generated fading signals are depicted in Figs. 9 and 10, respectively. As can be seen,
all phases and envelopes are closely correlated as expected for the given real covariance matrices. In this case, the inphase
and quadrature components of any two signals ak and aq are uncorrelated where E{xkyq} = �E{ykxq} = 0 in contrast to
Efxkyqg ¼ �Efykxqg ¼ pkq when complex covariance matrices are used (see Example 1). This example demonstrates the
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Fig. 3. Equal power envelopes of A generated using GSCT for the parameters given in Example 1 as; r2
a ¼ 1;q12 ¼ q34 ¼ 0:89;q23 ¼ 0:25;k12 ¼ k34 ¼ 1:29,

and k23 ¼ 2:76 which are related to complex RAA.
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applicability and accuracy of simulating signals with real covariance matrices using GSCT with less complexity compared
with conventional methods.

Example 3. Channels of many communication systems include large number of spectrally correlated fading signals. In this
example, we consider generation of N ¼ 64 equal power correlated flat Rayleigh fading signals as A ¼ a1 a2 � � � a64½ �
for multi-carrier system scenario of 64 subcarriers. Based on IEEE 802.11a specifications (OFDM) [4,27], the following
parameters are adopted in this example as: frequency separation between adjacent frequencies of Df = 312.5 kHz, channel
delay spread rs = 0.1 ls, maximum Doppler frequency fd = 50 Hz, arrival time delay between any adjacent signals are
s(k�1)k = 1 ms, k = 1, . . . , 64, and power of each signal is r2

a ¼ 2b ¼ 1.
Using Eqs. (5), (6), and (11), the desired correlation vector qs of successive envelopes can be calculated from the given

parameters as

qs ¼ q12 q23 � � � qð63Þð64Þ
	 


¼ 0:91 0:91 � � � 0:91½ � ð29Þ

where the calculated propagation factors are kðk�1Þk ¼ 0:196; k ¼ 1; . . . ;64.
From the generated signal of A using GSCT, envelopes r1, r2, r3, and r64 are shown only in Fig. 11 for simplicity. As can be

seen, frequency separation between signals is one of the parameters that has great impact on the channel correlation where
as Df decreased, the correlation increased. For example, envelopes r1, r2, and r3 are highly correlated while r3 appears
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Fig. 4. Phases of equal power signals of A generated using GSCT for the parameters given in Example 1 as; r2
a ¼ 1;q12 ¼ q34 ¼ 0:89;q23 ¼ 0:25; k12 ¼

k34 ¼ 1:29, and k23 ¼ 2:76 which are related to complex RAA.

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

En
ve

lo
pe

 P
D

F

x

envelope 1
envelope 2
envelope 3
envelope 4
theory

Fig. 5. PDF of the Rayleigh fading envelopes of A signals generated in Example 1.
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independent to them. The measured correlations for these envelopes are; q12 = 0.91, q23 = 0.91, q13 = 0.82, and
q1(64) = q2(64) = q3(64) ffi 0.0. It should be noted that none of the existing methods can generate the desired signals of this
example due to the large number of signals.

Example 4. In many applications of wireless communication systems such as MC-CDMA, MU-MIMO, and MIMO–OFDM, the
fading channel exhibits unequal power signals due to system design requirement or inaccurate power control. In such sys-
tems, spectral and/or spatial correlation may occur frequently. Therefore, we consider generation of N ¼ 4 correlated flat
Rayleigh fading signals in this example as bA ¼ â1 â2 â3 â4

	 

for unequal power scenario using the following setting:

Signal power: r2
â1
¼ r2

â2
¼ 1;r2

â3
¼ 2, and r2

â4
¼ 3.
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Fig. 6. PDF of uniform distribution phases of A signals generated in Example 1.
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Fig. 7. Equal power envelopes and phases of A generated using Cholesky decomposition based method [27] for the parameters given in Example 1 as;
r2

a ¼ 1;q12 ¼ q34 ¼ 0:89;q23 ¼ 0:25; k12 ¼ k34 ¼ 1:29, and k23 ¼ 2:76 which are related to complex RAA.
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Fig. 8. Equal power envelopes and phases of A generated using eigenvalue decomposition based method [26] for the parameters given in Example 1 as;
r2

a ¼ 1;q12 ¼ q34 ¼ 0:89;q23 ¼ 0:25;k12 ¼ k34 ¼ 1:29, and k23 ¼ 2:76 which are related to complex RAA.

Table 4
Measured correlations of equal power correlated fading signal envelopes generated using GSCT, Cholesky decomposition based method [27], and eigenvalue
decomposition based method [26] compared with the desired values of Example 1.

Correlation q12 q23 q34 q13 q24 q14

Desired 0.898 0.249 0.898 0.215 0.207 0.225
Measured (GSCT) 0.897 0.250 0.902 0.221 0.201 0.224
Measured (Cholesky) 0.873 0.224 0.882 0.237 0.218 0.207
Measured (eigenvalue) 0.921 0.262 0.911 0.233 0.213 0.211
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Fig. 9. Equal power envelopes of A generated using GSCT for the parameters given in Example 2 as; r2
a ¼ 1;q12 ¼ q23 ¼ q34 ¼ 0:81 and k12 ¼ k23 ¼ k34 ¼ 0:0

which are related to real RAA.
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Propagation factors: k12 ¼ k23 ¼ k34 ¼ 1.
Desired correlation vector q̂s of successive envelopes is

q̂s ¼ q̂12 q̂23 q̂34½ � ¼ 0:9 0:3 0:7½ � ð30Þ

Using GSCT, the first step involves generation of equal unit power correlated Rayleigh fading signals A ¼ a1 a2 a3 a4½ �
with normalized correlation vector qs calculated from q̂s using Eq. (21) as

qs ¼ q12 q23 q34½ � ¼ 0:9 0:21 0:28½ � ð31Þ

In Fig. 12, envelopes (r1, r2, r3, r4) of the generated signals A are shown which reflects the correlation values of qs while all
phases (b1, b2, b3, b4) are independent since the corresponding covariance matrix of these signals is complex. In the second
step, desired unequal power signals bA are calculated from A using Eq. (22). Unequal power envelopes ðr̂1; r̂2; r̂3; r̂4Þ of bA are
depicted in Fig. 13 reflecting the desired signal power and correlations of q̂s while all phases ðb̂1; b̂2; b̂3; b̂4Þ are independent
as in the first step. From these figures, it can be seen that envelopes r3 and r4 are differ than r̂3 and r̂4 due to the power
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Fig. 10. Phases of equal power signals of A generated using GSCT for the parameters given in Example 2 as; r2
a ¼ 1;q12 ¼ q23 ¼ q34 ¼ 0:81 and

k12 ¼ k23 ¼ k34 ¼ 0:0 which are related to real RAA.
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Fig. 11. Equal power envelopes of A generated using GSCT for the parameters given in Example 3 as; r2
a ¼ 1;q12 ¼ q23 ¼ qð63Þð64Þ ¼ 0:91 and

kðk�1Þk ¼ 0:196; k ¼ 1; . . . ;64.
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Fig. 12. Equal unit power envelopes r2
a1
¼ r2

a2
¼ r2

a3
¼ r2

a4
¼ 1

� �
and phases of A generated in the first step of GSCT for the parameters calculated in

Example 4 as; q12 = 0.9, q23 = 0.21, and q34 = 0.28.
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Fig. 13. Unequal power envelopes and phases of desired bA generated in the second step of GSCT for the parameters given in Example 4 as;
r2

â1
¼ r2

â2
¼ 1;r2

â3
¼ 2;r2

â4
¼ 3; q̂12 ¼ 0:9; q̂23 ¼ 0:3; q̂34 ¼ 0:7, and k12 ¼ k23 ¼ k34 ¼ 1.
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difference in first and second steps of generation while r1 and r2 are same as r̂1 and r̂2 since they have equal powers in both
steps. On the other hand, all phases in the first step are similar to that of second step and not affected by the power
transformation as expected. Results of this example demonstrate the applicability of designing unequal power correlated
fading signals using GSCT.

7. Conclusions

In this paper, GSCT technique is proposed for the accurate generation of equal/unequal power correlated Rayleigh fading
channels for multi-antenna and multicarrier systems where spatial and spectral correlations are very common. It employs
real correlation vector of successive signal envelopes to avoid the high computational complexity burden for covariance ma-
trix decomposition required in conventional methods. In contrast to existing techniques, any number of fading signals with
any desired correlations of successive envelopes can be generated accurately using GSCT as demonstrated by simulations of
different practical system scenarios. It overcomes all shortcomings of conventional methods particularly as the number of
fading signals increased and/or moderate to high correlations is used. For small number of fading signals and/or low corre-
lation levels where the existing methods can be applied, GSCT provides similar high accuracy results for the successive sig-
nals with significant reduction in computational complexity. The simplicity and accuracy of this technique will help the
researchers and engineers to study and simulate the impact of channel correlations on the existing and new wireless com-
munication schemes.
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