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MODELLING CELL MOTILITY AND CHEMOTAXIS WITH EVOLVING SURFA CE
FINITE ELEMENTS

CHARLES M. ELLIOTT, BJÖRN STINNER, AND CHANDRASEKHAR VENKATARAMAN

ABSTRACT. We present a mathematical and computational framework forthe modelling of cell motil-
ity. The cell membrane is represented by an evolving surface, with the movement of the cell determined
by the interaction of various forces that act normal to the surface. We consider external forces such as
those that may arise due to inhomogeneities in the medium anda pressure that constrains the enclosed
volume, as well as internal forces that arise from the reaction of the cells surface to stretching and bend-
ing. We also consider a protrusive force associated with a reaction-diffusion system posed on the cell
membrane, with cell polarisation modelled by this surface reaction-diffusion system. The computational
method is based on an evolving surface finite element method.The general method can account for the
large deformations that arise in cell motility and allows the simulation of cell migration in three dimen-
sions. We illustrate applications of the proposed modelling framework and numerical method by reporting
on numerical simulations of a model for eukaryotic chemotaxis and a model for the persistent movement
of keratocytes in two and three space dimensions. Movies of the simulated cells can be obtained from
http://homepages.warwick.ac.uk/ ˜ maskae/CV_Warwick/Chemotaxis.html

Keywords: cell motility, chemotaxis, surface finite elements, reaction diffusion systems

1. INTRODUCTION

Modelling the directional motility of cells is of much importance especially due to the central role
directed cell migration plays in several biological phenomena such as embryonic development, cancer,
tissue development and immune responses [1]. Broadly speaking the motile cycle of a cell consists of the
following processes:polarisationwhere the cell develops a front and a back through the redistribution
of proteins and lipids within the cell,protrusionat the leading edge of the cell pushing the front of the
cell outwards andretractionof the rear of the cell towards the leading edge [2]. Althoughthe main as-
pects of the motile cycle appear deceptively simple, as further details are added to the modelling various
complexities arise. For example in the case of chemotactic eukaryotic cells, the molecular mechanisms
that govern gradient sensing and cell polarisation are still not fully understood [3]. Furthermore, it is
difficult to quantify the forces associated with motility and only recently has experimental progress been
made in this direction [4, 5]. Direct numerical simulation of cell motility necessitates the consideration of
deformable surfaces [6, 7] or multi-phase flow models [8, 9] both of which are computationally challen-
ging. Finally, the deformation of the cell surface is linkedto the dynamics of actin and other cell resident
proteins and these dynamics must be coupled in a consistent way with the evolution of the cell surface.

In this work we present a mathematical framework for the modelling of cell motility and a numerical
method for the simulation of such models. The approach we propose uses ideas of existing2d models
but generalises these and extends the modelling to the three-dimensional setting. It consists of partial
differential equations, specifically those of reaction-diffusion type, posed on the cell boundary coupled to
an evolution law for the cell membrane. Further we discuss the inclusion of external forces and illustrate
this with a phenomenological model for the interaction between a cell and obstacles. We present a numer-
ical method, based on evolving triangulated surfaces, thatconsists of an evolving surface finite element
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method [10] for the approximation of the surface partial differential equation and a parameterised finite
element method [11] for the approximation of the surface evolution law.

It is our hope that the parametric approach we employ will be more efficient than other standard
approaches such as phase field [6] or level set methods [12]. The reasoning behind this statement is
that our methodology based on triangulated surfaces formulates the problem in one dimension less than
other approaches, in which the equations are discretised inthe embedding space. See, for example,
[13, 14, 15, 16] and references therein for further discussion.

We consider two specific models for cell motility. Firstly a model for eukaryotic chemotaxis. Aspects
of chemotaxis, such as changes in direction due to splittingand biased generation of pseudopods as well as
response to a changing chemotactic signal [17], are presentin this surface based model. We also present
simulations of pseudopod-driven migration of a cell in three-dimensions. We next consider a surface
based model for the persistent migration of fish keratocytes, presenting numerical simulations in two-
and three-dimensions. The surface based model is able to capture the different shapes that characterise
migrating keratocytes and the correlation between aspect ratio and cell speed [18].

A summary of the contributions of our study is as follows. We derive a rigorous mathematical frame-
work for the modelling of cell motility and chemotaxis in twoor three space dimensions, our modelling
includes both surface tension and bending rigidity with volume conservation and allows the inclusion of
external forces. We present a numerical method for the simulation of the model. Equations for and on the
surface of the cell are discretised on a discrete surface. The efficacy of our methodology is illustrated by
computer simulations of pseudopod driven migration and persistent migration in three space dimensions
and the simulation of cell migration in the presence of obstacles.

While a major part of this work is the investigation of modelling generalisations through numerical
simulation, especially with respect to cell motility in three-dimensions, our intention is to present a gen-
eral modelling framework and numerical method that will be apotentially useful methodology for exper-
imentalists and theoreticians alike in future studies of cell motility.

The remainder of our discussion proceeds as follows. In§2 we present our general modelling frame-
work and our modelling assumptions. In§3 we present a numerical method for the approximation of
surface evolution laws coupled to surface partial differential equations. In§4 we report the results of
numerical simulations of a model for chemotaxis. In§5 we report the results of numerical simulations
of a surface based model for the persistent motion of cells such as fish keratocytes. In§6 we discuss the
implications of our findings in the study of cell motility andpossible applications of our methodologies in
future studies. We provide the technical details of our modelling and the numerical methods we employ
in the electronic supplementary material (ESM).

2. A SURFACE BASED MODEL FOR CELL POLARISATION AND MOVEMENT

We consider models for cell motility and chemotaxis that consist of a geometric evolution law for a
hypersurface representing the cell boundary coupled to a spatial pattern generator on the evolving surface
describing polarisation of the cell. The particular form ofthe spatial patterning mechanism we shall
investigate is a Turing pattern generator i.e., a semi-linear reaction diffusion system (RDS). The use
of Turing type systems to model biological pattern formation phenomena is widespread (see [19] for a
review) and recent numerical studies of Turing type systemson evolving surfaces show that while the
key features of Turing mechanisms persist, such as spontaneous pattern formation and bifurcations due to
surface evolution, the geometry of the evolving surface strongly influences the patterns expressed [20, 21].
We stress, that our general modelling strategy and the numerical methods we employ can be generalised
to other possible polarisation mechanisms such as gradientbased models or excitable network and wave
based models all of which effectively couple surface partial differential equations to a surface evolution
law [3].
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2.1. Geometric evolution model. The cell membrane is represented by an evolving hypersurface, with
the movement of the cell determined by the interaction of various forces that act normal to the cell
membrane. We consider external forces such as a protrusive force associated with the RDS species and a
pressure that constrains the enclosed volume, as well as internal forces that arise from the reaction of the
cells surface to stretching and bending. We use the following force balance on the membrane, where we
neglect the inertia of the membrane:

0 = (Fp + Fv + Fvisc + Fext + Fs + Fb)ν,(2.1)

whereν denotes the outward pointing unit normal to the surfaceΓ. We account for the following force
contributions appearing in (2.1).

• A protrusive forcedepending on the densities of chemical species resident on the membrane (c.f. (2.9))
is denoted by

(2.2) Fp = Fp(a).

In the subsequent numerical simulations we make the phenomenological modelling assumption that the
force is proportional to the species densities and given byFp(a) = kp · a. The sign of the component
(kp)i of the vectorkp governs whether thei’th species promotes protrusion (positive) or retraction
(negative) of the cell membrane. For(kp)i > 0 such a force may model the protrusive force generated
by cross-linked filamentary actin in the vicinity of the cells surface while(kp)i < 0 could correspond
to the contraction force generated by actin bundles [22].

• Experimental studies suggest that while the cell surface area may exhibit variability during movement
the enclosed volume is relatively constant [18, 23]. We takethis fact into account as a hard constraint,
which means that the cell is able to immediately counterbalance small volume changes on the time
scale of the RDS and the boundary evolution. In the following, a corresponding Lagrange multiplier
will be denoted byλ ∈ R. It can be interpreted as a pressure difference between interior and exterior
of the cell. The corresponding force simply reads

Fv = λ.

Note that the Lagrange multiplierλ is spatially constant and therefore models a spatially uniform force
such that the enclosed volume is conserved.

• We include aviscous forcethat opposes motion

(2.3) Fvisc = −ωV,

whereω > 0 is a kinetic coefficient andV is such thatV ν = V , whereV is thematerial velocityof
the cell boundary (which we assume to be normal to the cell membrane). In the2d case adhesion and
de-adhesion may be modelled as an effective friction, i.e.,a force, of the form (2.3), proportional to the
local speed [24, 22]. In the3d case the situation is more complicated and we intend to treatthis subject
in future work.

• We writeFext for any otherexternal normal forcesacting on the cell boundary where we have inter-
action with the medium in mind. As a concrete example and in order to illustrate the versatility of
the proposed approach for cell motility in the complicated enviroments encountered in vitro, in§4.1.3
we present a simple phenomenological model for the movementof cells in the presence of obstacle
particles that the cell cannot invade but that it may push outof its way.

• Resistance of the cell boundary to stretching may be incorporated by means of asurface energyof the
form

(2.4) Es =

∫

Γ

ks

whereks > 0 can be interpreted as a surface tension. The variation of thearea functional is the mean
curvature (we refer to [25] for details of a derivation), hence the force arising from the surface energy
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is given by

(2.5) Fs = −ksH,

whereH is the mean curvature ofΓ.
• The lipid bilayer forming the basic component of the cell membranes also resists bending. We consider

the established model of [26] for thebending energy:

(2.6) Eb :=

∫

Γ

kb
2
H2,

wherekb > 0 is the bending rigidity. The variation of the bending energyyields the force contribution

(2.7) Fb = kb

(

∆ΓH +H |∇Γν|
2
−

1

2
H3

)

,

where∇Γ and∆Γ denote the surface gradient and Laplace-Beltrami operatorrespectively (ESM). We
refer to [27] for a derivation.

Summing up the forces with their specific choices except for the external force we obtain the following
equation for the evolution of the cell boundary:

ωV =

(

kp · a− ksH + kb

(

∆ΓH +H |∇Γν|
2
−

1

2
H3

)

+ λ+ Fext

)

ν.(2.8)

The variational formulation of the evolution law (2.8), that we use to construct a finite element discretisa-
tion, is given in the ESM.

2.2. Cell polarisation model. We consider an RDS posed on anevolving surface{Γ(t)}t>0:

(2.9) ∂•a+ a∇Γ(t) · V −D∆Γ(t)a = f(a) onΓ(t), t > 0,

wherea = (a1, . . . , am)t, m is the number of chemical species involved,ai denotes the density of the
ith chemical species,V is the material velocity of the surface (c.f., (2.3)),

(2.10) ∂•a := ∂ta+ V · ∇a,

is the material derivative with respect to the velocityV , D is a diagonal matrix of positive diffusion
coefficients andf (a) is the reaction. For details of the derivation we refer for example to [10, 21]. We
assume in the following that the evolving hypersurface is closed so that no boundary condition is required.
For the initial condition we write

(2.11) a(·, 0) = a0(·) onΓ(0).

3. DISCRETISATION

Here we describe the numerical methods we shall employ for the approximation of models for cell
motility of the form described in§2. We keep the exposition relatively non-technical referring the inter-
ested reader to the ESM for the technical details. We decouple the approximation of the surface evolution
and the RDS by treating the RDS concentration explicitly in the surface update step. The numerical
method is based on approximating the surfaceΓ(t) with a triangulated surfaceΓh(t), which stems from
the method described in the seminal paper of Dziuk [28].

3.1.Definition (Triangulated surface). A triangulated surfaceΓh is a polygon or polyhedron ford = 2
or 3 respectively with linear edges ford = 2 and planar faces ford = 3, such that

(3.1) Γh = ∪s∈Th
s,

whereTh consists of a finite number of closed intervals(d = 2) or a finite number of closed non-
degenerate triangles(d = 3). For the simulations on surfaces(d = 3) we make use ofquadratic tri-
angulated surfaces. That is a surface that consists of curvilinear triangles each of which are the images
of a reference triangle under a quadratic map as illustratedin Figure 1. We will useΓh to denote both
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FIGURE 1. (Online version in colour.) Snapshots of the triangulation during a simula-
tion of cell motility using a quadratic triangulated approximation to a surface.

a triangulated surface and a quadratic triangulated surface interchangeably. So as no confusion arises,
we stress that for the approximation of smooth curves we consider triangulated (polygonal) discrete sur-
faces and for the approximation of smooth surfaces (d = 3) we consider quadratic triangulated surfaces.
For details on triangulated surfaces, quadratic triangulated surfaces and approximation results we refer to
[10, 29, 30, 31, 32].

The evolution law (2.8) is discretised using a surface finiteelement described in detail in the ESM. The
method is based on the parametric finite element methods for fourth order geometric evolution equations
derived in [33] and [11]. Under the proposed method the movement of the nodes of the triangulation
satisfies the evolution law in the normal direction and includes a tangential velocity (that leaves the
evolution law unchanged) which gives highly desirable mesh-properties in practice. Figure 2 illustrates
an example of the robustness of the proposed scheme in the approximation of large deformations over
schemes where nodes are moved solely in the normal direction.

To solve the RDS posed on the evolving surface we employ a surface finite element method based on
the evolving surface finite element method [10] proposed by Dziuk and Elliot, where we account for the
tangential velocity induced by the surface update scheme.

We also describe, in the ESM, a framework for the inclusion ofstochastic external signals into the
model. In particular for the subsequent simulations of chemotaxis we include a signal that is modelled
by independent stochastic differential equations posed ineach element (interval or triangle) which we
approximate using the Euler-Maruyama method.

3.2. Software. The numerical methods were implemented using the adaptive finite element toolboxAL-
BERTA [34] and the linear systems were solved usingUMFPACK [35], a direct solver for sparse linear
systems.

4. MODELLING PSEUDOPOD DRIVEN CHEMOTAXIS

We investigate a model for eukaryotic chemotaxis originally proposed by Meinhardt [36]. The ori-
ginal model was posed at the discrete level and consisted of athree species RDS with a spatially varying
local activator, a spatially varying local inhibitor and a spatially constant global inhibitor. Meinhardt
proposed that such a model could account for the polarisation of chemotactic cells and the subsequent
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(a) Movement in normal direction only
(b) Tangential redistribution scheme

FIGURE 2. (Online version in colour.) Snapshots of the mesh during two simulations
of cell motility using a scheme that moves the nodes only in the normal direction and the
scheme that includes a tangential velocity. The large deformations result in meshes that
are not suitable for computation with the former approach necessitating a remeshing
step while with the latter approach the mesh quality remainsgood throughout.

relocation and splitting of activator peaks in response to changing external signals. He did not however
consider the mechanical aspects of the evolution of the cellmembrane. Neilson et al. [7] investigated a
continuous form of the model where the three species were allspatially dependent, approximating the
model equations with a surface finite element method for the RDS approximation and a level set method
for the surface update. They have conducted detailed comparisons of their simulations using a level set
method with experiments [37] as well as some preliminary investigations into robust computational meth-
ods, specifically short time simulations using a surface finite element method [16]. All their modelling
and simulation was conducted in2d, the model we consider extends the previous work by increasing the
dimension, accounting for the bending energy and modellingobstacles.

In the original model posed by Meinhardt, the spatial independence of the global inhibitor is used
in the derivation of of the model. Since the global inhibitoris spatially constant, its concentration can
be obtained by averaging, i.e., the use of a non-local term (the mean value of the local activator). We
therefore consider the following transformation of Meinhardt’s model from the spatially discrete fixed
surface setting, to a continuous evolving surface:

∂•a1 + a1∇Γ(t) · V −D1∆Γ(t)a1 = γ

(

(r1 + s)(a21/a2 + b1)

(s3 + a3)(1 + s1a21)
− r1a1

)

,

a2 =
1

|Γ(t)|

∫

Γ(t)

a1,

∂•a3 + a3∇Γ(t) · V −D3∆Γ(t)a3 = γ(b3a1 − r3a3), onΓ(t), t > 0

a(·, 0) = a0(·) onΓ0.

(4.1)

Here theri, si andbi’s are material parameters,γ is a scaling parameter that governs the overall timescale
of the reaction rate and the terms(x, t) models both the underlying noise from the external media and
a noisy chemotactic signal. The term involving the chemotactic signal feeds multiplicatively into the
autocatalytic term in the activator equation. Weak signalsare amplified due to autocatalysis, thus the
model provides a mechanism for gradient sensing of small chemotactic gradients. The RDS is coupled
to the surface evolution law solely through the activator concentrationa1 which promotes protrusion of
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Reaction kinetic parameters

D1 D3 γ r1 r3 s1 s3 b1 b3
1.0 7.0 2.5× 104 2× 10−2 13× 10−3 1× 10−4 0.2 0.1 5× 10−3

TABLE 1. Parameter values for numerical experiments of the movement of two-
dimensional cells with the Meinhardt kinetics 4.1.

the cell membrane. Adopting the notation of§2, the contribution of the RDS species to the evolution law
(c.f. (2.2)) reads

(4.2) Fp = kp · a = (kp)1a1.

In fact the activator and inhibitor are in phase and this is one potential drawback of the Meinhardt model as
it presents no obvious mechanism for coupling surface concentrations to retraction of the cell membrane.
One can show that the model (4.1) is equivalent to the model considered by Neilson et al., if the diffusivity
of the global inhibitor in the Neilson model is sufficiently large relative to the diffusivity of the other two
species [38].

We model the stochastic terms(x, t) in (4.1) as the sum of an underlying noise termηt(x) due to, say,
heterogeneity in the medium and a termRt(x) that models the cells sensing of the chemotactic signal,
i.e.,s(x, t) := (Rt(x) + ηt(x)). The underlying noise term (present in all the simulations)satisfies the
following Ornstein-Uhlenbeck (mean-reversion) stochastic process

(4.3) d ηt = −ηt d t+ 2× 10−4 dW t,

whereW t denotes the Wiener process. We discretise in space by assumingη is constant over each finite
element and the Euler Maruyama method is used to approximatethe solution numerically (for details see
the ESM).

4.1. Results. For the results on curves we took the unit circle as the initial steady state and used the
reaction kinetic parameter values given in Table 1. The parameter values are those Meinhardt used in his
original study rescaled such that the diffusivity of the activator is 1.0, the only parameter we have tuned
is the saturation of the activator concentrations1, which is smaller to account for dilution in the activator
concentration due to domain growth. For all the simulationson curves we used the same equidistributed
initial mesh with 1024 degrees of freedom (further refinement did not change the solutions qualitatively)
and a timestep of10−5. The CPU times of all the calculations on curves is in the order of minutes, for
example the two simulations reported in Figure 3 had CPU times of just over 2000 seconds.

4.1.1. Random migration.Figure 3 shows the centroid trajectories of 5 cells migrating under two dif-
ferent geometric evolutions, surface tension evolution (ks = 25, kb = 0, (kp)1 = 1.5) and combined
surface tension - elastic evolution (ks = 23, kb = 3, (kp)1 = 2), with no chemotactic signal and different
realisations of the noise term. In both cases, the cells initially polarise and then migrate, with roughly
two pseudopods at the front of the cell at any given time. The cells change direction via splitting and de-
cay of pseudopods with one pseudopod splitting and persisting while the other decays. This leads to the
characteristic linear motion over short times interspersed with sharp changes in direction corresponding
to a pseudopod splitting/decay event, similar to that observed by Neilson et al. [7]. Under surface tension
evolution the cells maintain a characteristic shape (two pseudopods at the front of the cell with a valley
between them), while the introduction of bending rigidity generates a greater variety of cell shapes and
the cell no longer has a characteristic shape with varied banana like shapes evident (the cell shapes re-
semble those in the simulations presented in Figure 5). Fromthe simulations we observe that the diluting
effect of protrusion plays an important role in destabilising activator peaks and pseudopod splitting. By
this we refer to the fact that the formation of an activator peak results in protrusion of the cell membrane
which in turn leads locally to an decrease in activator density (as protrusion may be viewed as volumetric
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Parameter Value Physical interpretation

r0 1 Initial radius of cell sets a length scale of4µm.
(kp)1 1.5− 2 Coefficient of protrusive forcing term implies a timescale of ∼ 1800s.
D1 1.0 Implies a diffusivity of2.22× 10−3µms−1.
D3 7.0 Implies a diffusivity of1.55× 10−2µms−1.
ks ∼ 25 Assuming a surface tension of1pN this sets a kinetic scale for the simulations.
kb 3 Implies a bending rigidity of approximately1.92pNµm2.

TABLE 2. Physically relevant parameter values for simulations oncurves.

expansion). As the local maxima corresponding to the activator peak is reduced most at the tip of the
peak, where protrusion is largest, this has the effect of increasing the propensity of activator peaks and
hence pseudopods to split.

We may proceed to estimate some of the parameter values usingavailable experimental data, which is
readily available for dictyostelium cells [2]. The typicalradius of cell cross sections is4µm which sets
the length scale for the computations. The maximum actin polymerisation velocity (which is related to
the nondimensional parameter(kp)1) is approximately0.1ms−1, thus the value of(kp)1 together with
the maximum density ofa1 in the simulations (approx. 30) sets the timescale for the simulations. Typical
values of the surface tension are10pN/µm, assuming a cell height of0.1µm this sets a kinetic scale
for the simulation. The remaining physically relevant parameters may thus be estimated and are given in
Table 2. Note that the timescale we refer to in Table 2 corresponds to one unit of computational time.
The length of the simulations in Figure 3 is one computational time unit or thirty minutes in actual time
and corresponds to roughly 20 pseudopod lifetimes (Each change in direction in Figure 3 represents a
pseudopod splitting/decay event), thus the timescale of anindividual pseudopod is around ninety seconds.

We note that other choices of the material parameters, specifically weaker surface tension, gives cells
with more elongated shapes, larger protrusions and cell bodies which appear less rounded.

4.1.2. Migration in the presence of a chemoattractant.We now include a chemoattractant in the model.
We use the stochastic receptor model proposed by Neilson et al. [7] to model the noisy chemotactic
signalling. For completeness we state the essential details. At time t ∈ (0, T ] they model the cells
sensing of the chemotactic signalRt with an Ornstein-Uhlenbeck stochastic process of the form

(4.4) dRt = θ(µ−Rt) d t+ σ dW t,

whereW t denotes the Wiener process,µ(x, t) models the strength of the chemotactic signal,θ(x, t)
the rate of reversion to the meanµ andσ(x, t) the variance. The meanµ is local and prescribed by the
model, while the rate of reversion to the mean and variance are local too as they are chosen such that
θ = 1/(1 − µ) andσ = cµ1/2 (for details see [7,§6.2.2]). To compare with [7,§6.2.5], we model the
signal such that if a chemoattractant is present the meanµ varies from the base signal strength (at the
back of the cell) of0.5 to 0.5 + ρ at the front, whereρ > 0 represents the signal strength. For a given
signal directionds the position of the rear of the cellxr is such thatxr · ds = minΓ(x · ds). We have
also conducted experiments whereµ = exp(−c|x− xc|), wherexc denotes the location of a static point
source of chemoattractant and observe similar results. We discretise (in space) by assuming the meanµ
is constant over each finite element, and henceθ andσ are also constant on each finite element.

Figure 4 shows the trajectories of the centroids of 5 cells migrating leftwards in a linear chemotactic
gradient of varying strength under conserved surface tension evolution (ks = 25, kb = 0, (kp)1 = 1.5).
The results are similar under the other geometric evolutionconsidered (ks = 22, kb = 3, (kp)1 = 2) and
are not illustrated. The migration of the cells with only thebase signal and the signal strength set to zero
is reported in Figure 5(a). We observe no clear directional preference similar to the migration observed in
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(a) Spider plots of cell centroid trajectories over the
interval [0, 1.], under conserved surface tension evol-
ution, for parameter values see Table 1 and the text.

(b) Spider plots of cell centroid trajectories over the
interval [0, 1.], under a combination of surface tension
and elastic evolution, for parameter values see Table 1
and the text.

FIGURE 3. (Online version in colour.) Centroid trajectories of 5 cells migrating in the
absence of a chemoattractant under different geometric evolution laws. In both cases
we see motion in a straight line for short times punctuated bysharp changes in direction
corresponding to pseudopod splitting/decay.

the absence of a chemoattractant. As the signal strength is increased (at a signal strength of 0.04 around
8% of the base signal) the cells start to exhibit a clear directional preference and successfully navigate up
the chemotactic gradient. In Table 3 we report on chemotaxismeasures of 100 cells migrating under the
6 different signal strengths shown in Figure 4. We state the average value over the 100 simulations (for
each signal strength) of the following quantities all evaluated att = 0.5:

• The chemotactic index (CI), defined as the cosine of the anglebetween a line connecting the present
position of the cell centroid to the starting point and a linedirectly up the chemotactic gradient [39].

• The persistence length (PL) of the centroid trajectory in thex andy directions. The persistence length
is taken to be the displacement in the chosen direction divided by the total length of the trajectory of
the cell centroid [40].

• The squared displacement of the cell centroid from its initial position.
• The speed of the cell.

The data suggests that as the strength of the chemotactic signal is increased the cells exhibit greater
propensity for persistent migration up the chemical gradient with chemotactic indices similar to those
observed experimentally in the case of Dictyostelium cells[39, 0.71-0.94]. The persistence length in thex
direction (up the chemotactic gradient) also increases with the signal strength while the persistence length
in they direction is reduced. We also note increasing the signal strength leads to larger displacements.
The results suggest that for values ofρ ≥ 0.06 the cell is able to migrate successfully up the chemical
gradient with all the reported statistics converging to similar means for further increases in the signal
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Signal strength CI PL (x) PL (y)

0 N/A 0.4336 (0.2346) 0.4601 (0.2442)
0.02 0.7196 (0.2877) 0.4938 (0.2188) 0.3418 (0.1999)
0.04 0.9423 (0.0742) 0.6968 (0.1177) 0.2005 (0.1163)
0.06 0.9888 (0.0133) 0.8510 (0.0511) 0.1088 (0.0685)
0.08 0.9860 (0.0120) 0.8490 (0.0350) 0.1288 (0.0676)
0.1 0.9898 (0.0141) 0.8489 (0.0272) 0.0987 (0.0734)

Signal strength Squared displacement (arb) Speed (arb) Speed (µm/s)

0 37.052 (14.5937) 20.056 (1.9781) 0.0445
0.02 34.430 (13.5045) 19.799 (2.8624) 0.0440
0.04 44.655 (11.9692) 20.077 (2.8633) 0.0446
0.06 66.011 (10.3248) 21.156 (1.9327) 0.0470
0.08 66.491 (6.8996) 21.524 (1.9714) 0.0478
0.1 67.387 (8.8005) 21.435 (2.1560) 0.0476

TABLE 3. Mean and standard deviation (in parentheses) of chemotaxis measures at
t = 0.5 for 100 cells migrating as in Figure 4.

strength. The (physical) cell speeds are similar to those observed in migrating leukocytes [41, Tab. 1] and
Dictyostelium cells [39] (in both cases reported inµm/min).

We now investigate the ability of this model to capture the ability of a cell to respond to a changing
chemotactic signal. We use the same stochastic receptor model for the chemotactic signalling but now
we change the direction of the signal at various stages in theevolution. Figures 5(a) and 5(b) show
snapshots of the cells shaded by activator concentration under the two different geometric evolutions
(ks = 25, kb = 0, (kp)1 = 1.5 andks = 22, kb = 3, (kp)1 = 2) in response to a changing chemotactic
signal. Initially we include only the base signal with noise, i.e., the signal strength is set to zero. At
the times in the evolution at which the arrows appear in the figure we change the direction of the signal,
with signal strengthρ = 0.1, to the direction indicated by the arrows. We see that under both geometric
evolutions the cell successfully responds to the changing signal exhibiting a clear directional preference
for movement in the direction of higher chemoattractant concentration. As a final example of response to
a changing signal, we consider the case where the signal direction is changed by 180 degrees. The results
of such a simulation are shown in Figure 6. We observe the cellsuccessfully responds to the change in
signal direction and does so via turning gradually through 180 degrees. This corresponds to so called
“hops” (consecutive right/right or left/left splitting ofpseudopods) that are an important mechanism for
the reorientation of Dictyostelium cells moving in a direction more than 90 degrees off the chemotactic
gradient [42, Fig. 4]. Under this model, we have however thusfar not observed the formation ofde novo
pseudopods towards the direction of increasing chemoattractant, which are another significant mechanism
for major directional corrections [42].

4.1.3. Migration in the presence of obstacles.We now include an external force in the evolution law
which arises from a model for the migration of cells through afield of obstacles. We model the obstacle
particles as rigid spherical bodies. The obstacle-cell interaction is described by a phenomenological
repulsive force that points in the directionnormal to the cell membrane with no tangential component.
Unlike the models proposed by Hecht et al. [43] and Grima [44]the obstacles and the cell both move due
to mechanical interactions.
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(a) ρ = 0.0 (b) ρ = 0.02 (c) ρ = 0.04

(d) ρ = 0.06 (e) ρ = 0.08 (f) ρ = 0.1

FIGURE 4. (Online version in colour.) Centroid trajectories of 5 cells migrating left-
wards in the presence of a linear chemoattractant gradient under conserved surface
tension evolution with varying signal strength (ρ).

Let No ∈ N denote the number of obstacles with centres{mi}
No

i=1 and radii{ri}
No

i=1. For the force
acting on a pointx ∈ Γ(t) on the cell boundary due to the interaction with obstaclei we postulate

(4.5) Fo,i = max (0, (ri(1 + ǫ)− |mi − x|)) ((mi − x) · (−ν))
fi

|mi − x| − ri

wherefi > 0 is a material coefficient andε > 0 is a thickness parameter: the force is zero if the distance
between the cell membrane and the obstacle boundary is bigger thanεri. The force becomes infinite as
this distance approaches zero and then dominates any other forces on the cell membrane, thus preventing
intersection of the cell and the obstacle. The external force acting on the cell boundary is given by

(4.6) Fext =

No
∑

i=1

Fo,i

For the obstacle particles we postulate a viscous motion law, too, where the reaction forces from the
cell boundary−Fi,o and obstacle-obstacle interactions are taken into account. We postulate

(4.7) ωiṁi = −

∫

Γ(t)

Fi,oνdS +
∑

j 6=i

Fj,i.

Here, theωi > 0 are positive kinetic coefficients related to the mass of the particle, the first term on the
right hand side modelling the cell-obstacle interaction is

(4.8)
∫

Γ(t)

Fi,oνdS =

∫

Γ

max (0, (ri(1 + ǫ)− |mi − x|)) ((mi − x) · ν)
fi

|mi − x| − ri
νdS,
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(a) Chemotactic motion of a cell under con-
served surface tension evolution, for para-
meter values see Table 1 and text. Cell out-
lines shown every.1 units of computational
time over the interval[0, 1.8].

(b) Chemotactic motion of a cell under a com-
bination of surface tension and elastic evolution
with volume conservation, for parameter values
see Table 1 and text. Cell outlines shown every
.075 units of computational time over the interval
[0, 1.725].

FIGURE 5. (Online version in colour.) Response to a changing chemotactic signal.
Initially there is no signal with arrows indicating the timeat which a signal is introduced
and the signal direction. Note the two figures are not on the same scale and the cells
have the same enclosed volume.

FIGURE 6. (Online version in colour.) Response to a changing chemotactic signal.
In this example the direction of the chemotactic signal is changed by 180 degrees.
We observe that the cell turns through 180 degrees and successfully responds to the
changing signal, migrating up the new chemotactic gradient. Cell outlines shown every
0.1 units of computational time over the interval[0, 1].
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Reaction kinetic parameters

D1 D3 γ r1 r3 s1 s3 b1 b3
10 70 5× 104 2× 10−2 13× 10−3 1× 10−4 0.2 0.1 5× 10−3

TABLE 4. Parameter values for numerical experiments of the movement of three-
dimensional cells with the Meinhardt kinetics 4.1.

Parameter Value Physical interpretation

r0 1 Initial radius of cell sets a length scale of1.17µm.
(kp)1 0.5 Coefficient of protrusive forcing term implies a timescale of ∼ 230s.
D1 10 Implies a diffusivity of5.95× 10−2µm2s−1.
D2 70 Implies a diffusivity of4.17× 10−1µm2s−1.
ks ∼ 25 Assuming a surface tension of10pN/µm, sets kinetic scale.

TABLE 5. Physically relevant parameter values for simulation of migration of a cell in
three dimensions.

and theFj,i is the force from particlej exerted on particlei for which we postulate

(4.9) Fj,i = max (0, (1 + ǫ)(ri + rj)− |mi −mj |)
fji

|mi −mj | − (ri + rj)

(

mi −mj

)

where thefji = fij > 0 are material coefficients. Note that in the absence of the cell, the initial location
of the obstacles is such that the sum of the forcesFj,i yields zero so that the particles do not move.
Moreover we have the following balance of forces exerted by the cell on the obstacles and forces on the
cell membrane due to the obstacles

∫

Γ

(

Fextν
)

+

No
∑

i=1





∫

Γ

(

−Fi,oν
)

+
∑

j 6=i

Fj,i



 = 0.

Figures 7 and 8 show a series of snapshots of cell migration through a field of obstacles, with parameter
values as in Table 1 and the two previously considered geometric evolutions. Our numerical experience
suggests that under the simple model of cell obstacle interactions we have employed, the increase in
computational time, even with a large number of obstacles, from the case of no obstacles is negligible.
We include the forcing terms in the evolution law for the cellmembrane and the obstacle centres given
by (4.6)—(4.9), with parameter valuesǫ = 0.1, fi = fij = 100 for all i, j andωi = ri/100. We observe
that the cell successfully migrates through the field of obstacles maintaining the characteristic shape as it
deflects the obstacles. Our numerical experiments suggest that this behaviour is sensitive to the parameter
values chosen in the repulsive potential (4.5). In particular, if we set the kinetic coefficient related to the
mass of the obstaclesωi c.f., (4.8) to be comparable in magnitude to the kinetic coefficient related to
the mass of the cell (1 by assumption), which means the obstacles inhibit more strongly the protrusion
of pseudopods, then pseudopod splitting no longer occurs and the cell exhibits persistent motion in the
direction of an obstacle (not reported).

4.1.4. Migration of cells in three space dimensions.We now present results for the motion of three-
dimensional cells in the absence of a chemoattractant. We took the unit sphere as the initial steady state
and used the reaction kinetic parameter values given in Table 4. We selected a timestep of10−5 and used
the adaptive strategy described in the ESM with parametersNH = 0.5, Nh = 0.75,MH = 0.25 and
Mh = 0.5. We considered an evolution law of the form (2.8) with parametersks = 25, kb = 0, (kp)1 =
0.5. As in Table 2, we give a physical interpretation of the parameter values in Table 5, assuming the
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(a) t = 0 (b) t = 0.15 (c) t = 0.25

(d) t = 0.375 (e) t = 0.5 (f) t = 0.625

(g) t = 0.75 (h) t = 0.875 (i) t = 1

FIGURE 7. (Online version in colour.) Undirected migration (i.e.,migration in the
absence of a chemoattractant) in the presence of obstacles of a cell under conserved
surface tension evolution, for parameter values see Table 1and text.

radius of the spherical cell at rest is1.17µm. The model for the random signalling was the same as the
model used in the two-dimensional case. Snapshots of the cell surface shaded by activator concentration
are reported in Figure 9. We see qualitatively similar behaviour to the case of curves with protrusion of
activator peaks leading to pseudopod formation and the restof the cell retracting behind the pseudopods.
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(a) t = 0 (b) t = 0.15 (c) t = 0.25

(d) t = 0.375 (e) t = 0.5 (f) t = 0.6

(g) t = 0.75 (h) t = 0.875 (i) t = 1

FIGURE 8. (Online version in colour.) Undirected migration in the presence of
obstacles of a cell under a combination of conserved surfacetension and elastic evolu-
tion, for parameter values see Table 1 and text.
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We also observe pseudopod splitting as the cell changes direction via biased generation and retraction
of existing pseudopods. The simulation is considerably more challenging than the curve case considered
previously and the total CPU time of the simulation was just over 27 hours.

(a) t = 0 (b) t = 0.09 (c) t = 0.015

(d) t = 0.025 (e) t = 0.035 (f) t = 0.055

(g) t = 0.075 (h) t = 0.085 (i) t = 0.09

(j) t = 0.095 (k) t = 0.1

FIGURE 9. (Online version in colour.) Migration in the absence of a chemoattractant
of a three-dimensional cell under conserved surface tension evolution, for parameter
values see Table 4 and text.

5. MODELLING THE PERSISTENT MOTION OF KERATOCYTES

We present a model based on the general modelling framework described in§2 that seeks to capture the
persistent motion of fish keratocytes. The cells deform rapidly into a temporally persistent shape and once
in this shape move at a constant speed without changes in direction. Keren et al. [18] conduct an analysis
of the shapes taken by moving keratocyte cells and propose a simple phenomenological model to account
for the observed movement and cell shapes. Their results suggest that the steady state shapes of the cell
are broadly described by two modes and that cell shape, specifically the aspect ratio (length/width), is
strongly correlated with the speed of motion. They also examined the actin distribution within the cell.
Branched actin filaments promoting protrusion are concentrated at the fast moving front and retraction
promoting actin bundles are concentrated at the rear. The steady state appears stable to perturbations and
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Reaction kinetic parameters Surface evolution parameters

D1 D2 γ k1 ks kb (kp)1 (kp)2
0.5 50 10 0.1 2 2 −2 1

TABLE 6. Parameter values for numerical experiments of keratocyte movement with
the RDS (5.1).

if movement of the cell is disrupted the cell rapidly regainsits previous shape and speed of movement,
usually moving in a new direction.

The observed behaviour of spontaneous polarisation and subsequent development of a steady state
stable to perturbations, suggests a Turing type mechanism coupled to a surface evolution law could accur-
ately capture the observed dynamics. Shao et al. [22] considered a membrane subject to surface tension,
bending rigidity, and forcing with volume conservation. The forcing strength was dependent on the con-
centrations of a two component RDS posed in the bulk of the cell. They present computational results, for
two-dimensional cells with weak volume conservation (enforced via penalisation), based on a phase field
method. Ziebert et al. [6] present a model for keratocyte movement, again based on a phase field method,
where they couple the surface evolution to a vector field thatseeks to describe the polarisation of the actin
network. Studies suggest that branched filamentary actin and actin bundles are concentrated primarily
near the cell membrane near areas of protrusion and retraction respectively, while away from the cell
surface the actin is in a remodelling phase between that of branched and bundled actin [18, 45, 46]. This
suggests a surface model where the pattern formation process occurs on the cell membrane itself may be
appropriate. We propose theactivator-depletedsubstrate model [47]:

∂•a1 + a1∇Γ(t) · V −D1∆Γa1 = γ
(

k1 − a1 + a21a2
)

,

∂•a2 + a2∇Γ(t) · V −D2∆Γa2 = γ
(

k2 − a21a2
)

, onΓ(t), t > 0,

a(·, 0) = a0(·) onΓ0.

(5.1)

We first present results for curves, with material and RDS parameters given in Table 6. We considered
an initially circular cell with radius 1 centred at the origin. The initial condition for the RDS was taken
as the linearly stable steady statea01 = k1 + k2, a

0
2 = k2/(a

0
1)

2 with a symmetry breaking perturbation
of the formmax(1 × 10−4x1, 0) added to the initial condition of thea2 species. The specific form
of the initial condition leads to cells that migrate only along thex axis (we verified that the choice of
other initial conditions only changed the direction of the movement). The hypothesis of Keren et al. is
that variability in the actin dynamics is the major factor governing the observed variations in shape and
speed. To investigate this hypothesis, we propose that thea1 species in the RDS (5.1) corresponds to the
density of retraction promoting actin bundles while thea2 species corresponds to the density of protrusion
promoting actin filaments, which is similar to the model considered in [22]. We can model variable actin
dynamics by changing the constantk2 which can be interpreted as the growth rate of actin filaments.
Increasingk2 leads to higher concentrations ofa2 relative toa1 and thus should lead to faster moving
cells with stronger forcing at the front.

In all the simulations on curves we used an initially equidistributed mesh with 1024 degrees of freedom
and a fixed timestep of10−3. The CPU times were on the order of seconds with a typical simulation taking
approximately 200 seconds. Figures 10(a) and 10(b) show, for different values ofk2, the initial position
of the cells at time 0 and the cell positions and surface RDS concentrations at time 5 (by which time
all the cells have reached a steady state with constant speedand time independent RDS concentrations).
We see faster cell speeds and larger aspect ratios for increased values ofk2, similar to the models where
the RDS is posed in the bulk [22]. The shapes of the cells at steady state also resemble those observed
experimentally [18]. In particular we see the rounded “D” shape in the right most cell corresponding to
k2 = 0.6 and the much more elongated “canoe” shape in the left most cell corresponding tok2 = 1.8.
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Parameter Value Physical interpretation

r0 1 Initial radius of cell sets a length scale of4µm.
(kp)2 1 Coefficient of protrusive forcing term implies a timescale of ∼ 45s.
D1 0.5 Implies the diffusivity of actin bundles of4.44× 10−2µms−1.
D2 50 Implies the diffusivity of actin filaments of4.44µms−1.
k2 .6− 1.8 Implies an actin filament growth rate of1.33× 10−2 − 4× 10−2s−1.
ks 2 Assuming a surface tension of1pN sets the kinetic scale.
kb 2 Implies a bending rigidity of approximately16pNµm2.
TABLE 7. Physically relevant parameter values for simulation of keratocyte movement
in two-dimensions.

(a) Activator (a1) concentrations

(b) Substrate (a2) concentrations

FIGURE 10. (Online version in colour.) Initial position (att = 0 right hand cell)
and persistent keratocyte like migration of cells (att = 5). The parameterk2 =
0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8 reading from right to left for the 7 polarised (left hand)
cells (c.f. (5.1)) with the remaining parameters given in Table 6.

We report on the aspect ratioAR = (λ2/λ1)
1/2, as considered in [6], where fori = 1, 2, λi is as follows

(theλi’s are the eigenvalues of the diagonal2× 2 variance matrix of the cells centroid):

λi =
1

3

∫

Γ

(xi − xc
i )

3νids,

wherexc
i is the ith coordinate of the cells centroid. We also report on the deviation from reflection

symmetry of the migrating cells as considered in [6]. This ismeasured by the following quantities (the
nonzero components of the skewness tensor of the cells centroid scaled by a constant factor):

η1 =

(

1

4

∫

Γ

(x1 − xc
1)

4ν1ds

)1/3

(λ1 + λ2)
−1/2,

η2 =

(

1

2

∫

Γ

(x1 − xc
1)

2(x2 − xc
2)

2ν1ds

)1/3

(λ1 + λ2)
−1/2.

Figure 11 shows plots of the speed of the cell centroids and the aspect ratio of the cells both against time.
We clearly see the positive relationship between aspect ratio and cell speed evident in the experimental
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FIGURE 11. (Online version in colour.) The speed of the cell centroid and aspect ratio
both vs. time of the cells shown in Figure 10. We observe a positive relationship
between aspect ratio and speed.
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FIGURE 12. (Online version in colour.) Asymmetry measures vs. timeof the cells
shown in Figure 10. We observe larger deviations from reflection symmetry in the cells
travelling at slower speeds. As the cells attain persistentshapes the values converge to
a steady state.

studies. In physical units the range of the speed at steady state of the cells shown in Figure 10 is0.178 to
0.445µms−1. Both the speed and aspect ratios are similar to those observed in the experimental results
reported in [18, Figure 4b]. Figure 12 shows values of the asymmetry measures against time. We see that
the cells travelling at slower speed exhibit larger deviations from reflection symmetry. This is in contrast
to the results obtained under the model considered in [6, Fig. 4], whereη1 does increase as the speed of
the cells decreases butη2 is positively correlated with speed. We note that for the first two simulations
k2 = 0.6 and0.8, η2 is negatively correlated with speed. As an ellipse satisfiesη1 = η2 = 0, it is
not clear that the faster moving cells with larger aspect ratios, but more elliptical profiles, should exhibit
larger deviations from reflection symmetry. We also observethat after a brief initial stage in which all the
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reported values oscillate, the values converge to a steady state as the cells travel in a persistent fashion
with a fixed shape and a constant speed.

(a) Activator (a1) concentrations

(b) Substrate (a2) concentrations

FIGURE 13. (Online version in colour.) Initial position (att = 0 right hand cell)
and persistent keratocyte like migration of cells (att = 5). The parameterk2 =
0.6, 0.7, 0.8, 0.9, 1.0 reading from right to left for the 5 polarised (left hand) cells (c.f.
(5.1)), for the remaining parameter values see Table 8.
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FIGURE 14. (Online version in colour.) The speed of the cell centroid and cell surface
area both vs. time of the cells shown in Figure 13. We observe apositive relationship
between surface area and speed.

We also report on simulations of three-dimensional keratocyte motion. We took the unit sphere as
the initial cell shape, the same initial conditions for the RDS concentrations as in the curve case, a fixed
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Reaction kinetic parameters Surface evolution parametersAdaptive strategy parameters

D1 D2 γ k1 ks kb (kp)1 (kp)2 NH Nh MH Mh

1 100 20 0.1 1 1 −0.7 .35 .5 1 .25 .5

TABLE 8. Parameter values for numerical experiments of three-dimensional keratocyte
movement with the RDS (5.1) and surface evolution law 2.8.

Parameter Value Physical interpretation

r0 1 Initial radius of cell sets a length scale of1.17µm.
(kp)2 .35 Coefficient of protrusive forcing term implies a timescale of ∼ 4s.
D1 1.0 Implies the diffusivity of actin bundles of0.342µm2s−1.
D2 100 Implies the diffusivity of actin filaments of34.2µm2s−1.
k2 .6− 1.0 Implies an actin filament growth rate of0.15× 10−1 − 0.25s−1.
ks 1 Assuming a surface tension of10pNµm−1, sets the kinetic scale.
kb 1 Implies a bending rigidity of approximately13.69pNµm.

TABLE 9. Physically relevant parameter values for simulation of keratocyte movement
in three-dimensions.

timestep of10−4 and remaining parameter values for both the surface evolution and adaptive strategy
as given in Table 8. The CPU times were on the order of minutes with a typical simulation taking
approximately 2000 seconds. Proceeding as in§4, we give physical interpretations of the parameter
values for curves and surfaces in Tables 7 and 9 respectively. Figures 13(a) and 13(b) show a similar
experiment to the one carried out for curves now on surfaces,specifically we report for different values of
k2, the initial position of the cells at time 0 and the cell positions and surface RDS concentrations at time
5 (by which time all the cells have reached a steady state withconstant speed and time independent RDS
concentrations). The gross behaviour is the same as the curve case, in that as the parameterk2 is increased
from 0.6 to 1 the cells move faster at steady state and appear more elongated. Figure 14 shows plots of
the speed of the cell centroids and the surface area of the cells both against time. We plot the surface
area as it is proportional to the two, roughly equal, aspect ratios in the(x, y) and(x, z) directions. We
observe the same positive relationship as in the curve case with both surface area and speed converging
to steady states. We have also verified that the aspect ratiosconverge to steady states with the aspect ratio
in the(y, z) direction approaching 1. Note for larger values ofk2 the cells developed a self intersection
which is inadmissible under our modelling as it would correspond to a change in topology in the physical
setting. Scenarios where one wishes to consider topological change, or respectively methods that avoid
topological change, are a subject of our current research.

6. CONCLUSION

In this work we have presented a computational framework forthe modelling of cell motility. We pro-
pose a simple and consistent means of coupling cell movementwith gradient sensing, polarisation using
surface PDEs and external forces. Our methods can be generalised to the modelling of more complex
phenomena such as adhesion and crawling on a substrate or cell-cell interactions and we illustrate one
such generalisation with a concrete example of migration inthe presence of obstacles.

A contribution of our study is the description of a numericalmethod for the simulation of cell move-
ment that can account for the large deformations that arise in simulations of cell motility and that can be
applied to the study of three-dimensional cell migration. The model equations consist of PDEs for and
on surfaces and the numerical method seeks to approximate these equations on a discrete surface. Thus
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both the continuous and discrete problems are posed in one dimension less than the underlying spatial di-
mension, which in the case of the discrete problem typicallymeans fewer degrees of freedom are needed
than would be the case for embedded methods [10, 13, 14, 15, 16]. On curves, our experience is that
the method maintains a mesh suitable for computation without the use of remeshing or adaptive mesh
refinement. For the simulations of cell migration in three-dimensions we occasionally observed deterior-
ation in the mesh quality, even with the redistribution of the vertices implicit in our numerical scheme,
necessitating spatial adaptivity. An area of our ongoing research is the investigation of numerical methods
robust to large deformations in the cell surface.

We consider a pseudopod centred model for chemotaxis similar in form to that considered in [37].
Unlike compass models [39], which are reasonable for cells with flexible polarity where a large gradient
may induce pseudopods at any position on the cell membrane, pseudopod centred models [17] are suitable
for strongly polarised cells where pseudopods are generated preferentially at the front with directional
bias, due to a chemotactic gradient, restricted primarily to small changes in direction [42]. The major
contributions and imports of our study are the inclusion of bending rigidity, the inclusion of external
forces, the observation that the gross behaviour, of pseudopod splitting, observed in [37] for2d cells
persists in3d simulations and that the model remains qualitatively unchanged when one considers a two
component RDS, with a spatially constant global inhibitor,rather than a three component RDS with a
biologically implausible non-local term. Our computational method based on surface finite elements
extends the method in [16] and is an alternative to the level set method considered in [7, 37]. The
simulations illustrate that the model is capable of reproducing aspects of pseudopod-drivencell migration,
described in [17], in both two and three space dimensions. Wereport on many widely used chemotaxis
measures and observe values similar to experimental observations. We also note that the simulations
exhibit a dilution effect at the tip of a pseudopod where the local maxima corresponding to an activator
peak is reduced. This suggests experimental investigationof the relative importance of mechanical effects
of membrane protrusion on the distribution of cell residentproteins is warranted.

We also investigated a model for the motion of fish keratocytes. The model appears to reproduce
some experimental observations of the shapes of motile keratocyte cells and the experimental observation
of the correlation between cell shape and speed [18]. The computational model in [18] reproduces the
velocity-aspect ratio relationship. However, unlike our model, both polarisation and cell shapes are not
explicitly modelled, with a parabolic actin profile at the leading edge assumed and the shape of the cell
rear neglected. Studies [6] and [22] propose models where polarisation is modelled by equations in the
bulk of the cell which are coupled to an evolution law for the cell surface. The import of our study
is to show that a surface RDS coupled to a surface evolution law gives qualitatively similar results. A
further contribution is the use of surface finite elements rather than the phase field method considered in
[6] and [22]. This allows simulation of3d keratocyte migration which studies [6] and [22] both note is
computationally expensive with the phase field methodology. We do observe minor differences from [6],
for example in the measures of deviation from reflection symmetry.

Our numerical experience suggests that some aspects of cellmigration and chemotaxis can be cap-
tured by the Schnakenberg RDS (5.1). This RDS is considerably simpler from a mathematical analysis
viewpoint than say the Meinhardt model (4.1). One can show that the model is well posed on evolving
(planar) domains [48], which is an open question even on fixeddomains for the Meinhardt model. As the
two components are out of phase the model lends itself naturally to the case of a species that promotes
protrusion (e.g., actin) and another that promotes retraction (e.g., myosin).

In this work it is our intention to present a framework for future modelling rather than suggest any
definitive models for cell migration. We hope that future studies will employ the framework we have set
out to refine existing models for cell motility and make predictions based on numerical simulations that
can be used to direct and inform experimental studies.
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