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MODELLING CELL MOTILITY AND CHEMOTAXIS WITH EVOLVING SURFA CE
FINITE ELEMENTS

CHARLES M. ELLIOTT, BORN STINNER, AND CHANDRASEKHAR VENKATARAMAN

ABSTRACT. We present a mathematical and computational frameworkhfermodelling of cell motil-
ity. The cell membrane is represented by an evolving surfadth the movement of the cell determined
by the interaction of various forces that act normal to thdase. We consider external forces such as
those that may arise due to inhomogeneities in the mediumaapigssure that constrains the enclosed
volume, as well as internal forces that arise from the readatif the cells surface to stretching and bend-
ing. We also consider a protrusive force associated withaatien-diffusion system posed on the cell
membrane, with cell polarisation modelled by this surfagaction-diffusion system. The computational
method is based on an evolving surface finite element metfide: general method can account for the
large deformations that arise in cell motility and allows timulation of cell migration in three dimen-
sions. We illustrate applications of the proposed modglfiamework and numerical method by reporting
on numerical simulations of a model for eukaryotic chemistand a model for the persistent movement
of keratocytes in two and three space dimensions. Moviesi®fstimulated cells can be obtained from
http://homepages.warwick.ac.uk/ ~maskae/CV_Warwick/Chemotaxis.html

Keywords: cell motility, chemotaxis, surface finite elerteemeaction diffusion systems

1. INTRODUCTION

Modelling the directional motility of cells is of much imp@nce especially due to the central role
directed cell migration plays in several biological phemom such as embryonic development, cancer,
tissue development and immune respor@es [1]. Broadly smetie motile cycle of a cell consists of the
following processespolarisationwhere the cell develops a front and a back through the réalisitvn
of proteins and lipids within the celfrotrusionat the leading edge of the cell pushing the front of the
cell outwards andetraction of the rear of the cell towards the leading edae [2]. Althotlglhmain as-
pects of the motile cycle appear deceptively simple, abéurdetails are added to the modelling various
complexities arise. For example in the case of chemotaakamyotic cells, the molecular mechanisms
that govern gradient sensing and cell polarisation arkersitl fully understood|__[]3]. Furthermore, it is
difficult to quantify the forces associated with motilitycaanly recently has experimental progress been
made in this direction [4) 5]. Direct numerical simulatidicell motility necessitates the consideration of
deformable surface5l|[6, 7] or multi-phase flow model$[8,&htof which are computationally challen-
ging. Finally, the deformation of the cell surface is linkedhe dynamics of actin and other cell resident
proteins and these dynamics must be coupled in a consisgsnivith the evolution of the cell surface.

In this work we present a mathematical framework for the nimdeof cell motility and a numerical
method for the simulation of such models. The approach wpgs® uses ideas of existi?g models
but generalises these and extends the modelling to the-tlmeensional setting. It consists of partial
differential equations, specifically those of reactiofftdiion type, posed on the cell boundary coupled to
an evolution law for the cell membrane. Further we discuesrtblusion of external forces and illustrate
this with a phenomenological model for the interaction kestwa cell and obstacles. We present a numer-
ical method, based on evolving triangulated surfaces,abiasists of an evolving surface finite element
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method [Eb] for the approximation of the surface partialedéntial equation and a parameterised finite
element methocml] for the approximation of the surfacdigian law.

It is our hope that the parametric approach we employ will eenefficient than other standard
approaches such as phase field [6] or level set methods [12¢. r@asoning behind this statement is
that our methodology based on triangulated surfaces fat@sithe problem in one dimension less than
other approaches, in which the equations are discretise¢ldeiembedding space. See, for example,
[E@EEBEB] and references therein for further disarssi

We consider two specific models for cell motility. Firstly adel for eukaryotic chemotaxis. Aspects
of chemotaxis, such as changes in direction due to splistimtpiased generation of pseudopods as well as
response to a changing chemotactic sigI [17], are prasénis surface based model. We also present
simulations of pseudopod-driven migration of a cell in thdimensions. We next consider a surface
based model for the persistent migration of fish kerato¢yiessenting numerical simulations in two-
and three-dimensions. The surface based model is able toreape different shapes that characterise
migrating keratocytes and the correlation between aspéotand cell speeﬂllS].

A summary of the contributions of our study is as follows. Végide a rigorous mathematical frame-
work for the modelling of cell motility and chemotaxis in tveo three space dimensions, our modelling
includes both surface tension and bending rigidity withuwoé conservation and allows the inclusion of
external forces. We present a numerical method for the sitioul of the model. Equations for and on the
surface of the cell are discretised on a discrete surface effftacy of our methodology is illustrated by
computer simulations of pseudopod driven migration andipmt migration in three space dimensions
and the simulation of cell migration in the presence of otista

While a major part of this work is the investigation of modedl generalisations through numerical
simulation, especially with respect to cell motility in @&-dimensions, our intention is to present a gen-
eral modelling framework and numerical method that will imogentially useful methodology for exper-
imentalists and theoreticians alike in future studies dfroetility.

The remainder of our discussion proceeds as follow$Plwe present our general modelling frame-
work and our modelling assumptions. 48 we present a numerical method for the approximation of
surface evolution laws coupled to surface partial difféegrequations. Irffd we report the results of
numerical simulations of a model for chemotaxis.§Bhwe report the results of numerical simulations
of a surface based model for the persistent motion of cetls as fish keratocytes. i@ we discuss the
implications of our findings in the study of cell motility apdssible applications of our methodologies in
future studies. We provide the technical details of our nlodpand the numerical methods we employ
in the electronic supplementary material (ESM).

2. A SURFACE BASED MODEL FOR CELL POLARISATION AND MOVEMENT

We consider models for cell motility and chemotaxis thatsisinof a geometric evolution law for a
hypersurface representing the cell boundary coupled tata$pattern generator on the evolving surface
describing polarisation of the cell. The particular formtbé spatial patterning mechanism we shall
investigate is a Turing pattern generator i.e., a semalimeaction diffusion system (RDS). The use
of Turing type systems to model biological pattern formatuhenomena is widespread (see [19] for a
review) and recent numerical studies of Turing type systemsvolving surfaces show that while the
key features of Turing mechanisms persist, such as spantamattern formation and bifurcations due to
surface evolution, the geometry of the evolving surfacersgly influences the patterns expressed|[20, 21].
We stress, that our general modelling strategy and the rncahenethods we employ can be generalised
to other possible polarisation mechanisms such as graloleseid models or excitable network and wave
bas%j models all of which effectively couple surface phdifferential equations to a surface evolution
law [3].
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2.1. Geometric evolution model. The cell membrane is represented by an evolving hypersajrieith

the movement of the cell determined by the interaction ofousr forces that act normal to the cell
membrane. We consider external forces such as a protrusise dssociated with the RDS species and a
pressure that constrains the enclosed volume, as wellemaitforces that arise from the reaction of the
cells surface to stretching and bending. We use the follgviagnce balance on the membrane, where we
neglect the inertia of the membrane:

(21) 0:(fp'i‘]'—v+-7:Uisc+]:ewt+]:s+]:b)’/7

wherev denotes the outward pointing unit normal to the surféic&Ve account for the following force
contributions appearing in(2.1).

A protrusive forcedepending on the densities of chemical species resideheanémbrane (c.f(2.9))
is denoted by

(2.2) F, = Fpla).

In the subsequent numerical simulations we make the phemalogical modelling assumption that the
force is proportional to the species densities and givefiliyt) = k, - a. The sign of the component
(kp): of the vectork, governs whether théth species promotes protrusion (positive) or retraction
(negative) of the cell membrane. Fdt,); > 0 such a force may model the protrusive force generated
by cross-linked filamentary actin in the vicinity of the seflurface whil€k,); < 0 could correspond
to the contraction force generated by actin bundles [22].

Experimental studies suggest that while the cell surfaee aray exhibit variability during movement
the enclosed volume is relatively constant ﬂE 23]. We taiefact into account as a hard constraint,
which means that the cell is able to immediately counteriraamall volume changes on the time
scale of the RDS and the boundary evolution. In the followegorresponding Lagrange multiplier
will be denoted byA € R. It can be interpreted as a pressure difference betweetroingnd exterior

of the cell. The corresponding force simply reads

Fo=A

Note that the Lagrange multiplieris spatially constant and therefore models a spatiallyounifforce
such that the enclosed volume is conserved.
We include aviscous forcehat opposes motion

(23) fvisc = —OJV,

wherew > 0 is a kinetic coefficient and is such thal’v = V', whereV is thematerial velocityof
the cell boundary (which we assume to be normal to the cell bnane). In the2d case adhesion and
de-adhesion may be modelled as an effective friction,a.torce, of the form[{213), proportional to the
local speed [24, 22]. In thad case the situation is more complicated and we intend totesasubject
in future work.

We write F.,; for any otherexternal normal forceacting on the cell boundary where we have inter-
action with the medium in mind. As a concrete example and @eoto illustrate the versatility of
the proposed approach for cell motility in the complicatadiesments encountered in vitro, {Z.1.3
we present a simple phenomenological model for the movewofertlls in the presence of obstacle
particles that the cell cannot invade but that it may puslobits way.

Resistance of the cell boundary to stretching may be incatpd by means of surface energpf the
form

(2.4) g:A@

whereks > 0 can be interpreted as a surface tension. The variation &réeefunctional is the mean
curvature (we refer tdﬂS] for details of a derivation), berthe force arising from the surface energy
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is given by
(2.5) Fs = —ksH,

whereH is the mean curvature af.
e The lipid bilayer forming the basic component of the cell nieames also resists bending. We consider
the established model of [26] for thending energy

(2.6) &y = @HQ,
r 2
wherek;, > 0 is the bending rigidity. The variation of the bending eneyglds the force contribution

1
2.7) Fo=hy (AFH+H|VFV|2 5H3),

whereVr andAr denote the surface gradient and Laplace-Beltrami operaspectively (ESM). We
refer to ] for a derivation.

Summing up the forces with their specific choices exceptHerexternal force we obtain the following
equation for the evolution of the cell boundary:

1
(28) WV = (kp -a — kéH + kb <A1"H + H |VFI/|2 — §H3) + )\ + ]:ewt> V.

The variational formulation of the evolution lafv (2.8), thiee use to construct a finite element discretisa-
tion, is given in the ESM.

2.2. Cell polarisation model. We consider an RDS posed onewplving surfac€T'(¢) }+o:

(2.9) 0°a+aVry) -V — DAppa = f(a) onI(t),t >0,

wherea = (ay,...,an)", m is the number of chemical species involvegddenotes the density of the
ith chemical specied/ is the material velocity of the surface (c.f.(2.3)),

(2.10) 0°a:=0a+V -Va,

is the material derivative with respect to the velocity D is a diagonal matrix of positive diffusion
coefficients andf (a) is the reaction. For details of the derivation we refer foaraple to lﬁb@l]. We
assume in the following that the evolving hypersurfaceaset! so that no boundary condition is required.
For the initial condition we write

(2.11) a(-,0) =a’(:) onT(0).
3. DISCRETISATION

Here we describe the numerical methods we shall employ atiproximation of models for cell
motility of the form described iff2. We keep the exposition relatively non-technical refegihe inter-
ested reader to the ESM for the technical details. We deedbplapproximation of the surface evolution
and the RDS by treating the RDS concentration explicitlyha surface update step. The numerical
method is based on approximating the surfatg with atriangulated surfacé;, (¢), which stems from
the method described in the seminal paper of DZiuk [28].

3.1.Definition (Triangulated surface)A triangulated surfac&’;, is a polygon or polyhedron faf = 2
or 3 respectively with linear edges far= 2 and planar faces fat = 3, such that

(31) Fh = USGThsa

where 7}, consists of a finite number of closed intervéds = 2) or a finite number of closed non-
degenerate trianglggl = 3). For the simulations on surfacéé = 3) we make use ofjuadratic tri-
angulated surfacesThat is a surface that consists of curvilinear triangleshe# which are the images
of a reference triangle under a quadratic map as illustriat&dgure[1. We will usel’;, to denote both
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FIGURE 1. (Online version in colour.) Snapshots of the triangolatiuring a simula-
tion of cell motility using a quadratic triangulated appiroation to a surface.

a triangulated surface and a quadratic triangulated seiifgerchangeably. So as no confusion arises,
we stress that for the approximation of smooth curves weidengiangulated (polygonal) discrete sur-
faces and for the approximation of smooth surfackes (3) we consider quadratic triangulated surfaces.
For details on triangulated surfaces, quadratic triartgdlaurfaces and approximation results we refer to
[10,/29,30] 31, 32].

The evolution law[(Z]8) is discretised using a surface figliéenent described in detail in the ESM. The
method is based on the parametric finite element methodstiothf order geometric evolution equations
derived in [33] and/[11]. Under the proposed method the margmf the nodes of the triangulation
satisfies the evolution law in the normal direction and idelsi a tangential velocity (that leaves the
evolution law unchanged) which gives highly desirable mgsiperties in practice. Figufe 2 illustrates
an example of the robustness of the proposed scheme in thexapption of large deformations over
schemes where nodes are moved solely in the normal direction

To solve the RDS posed on the evolving surface we employ aseifinite element method based on
the evolving surface finite element method [10] proposed biyband Elliot, where we account for the
tangential velocity induced by the surface update scheme.

We also describe, in the ESM, a framework for the inclusiostothastic external signals into the
model. In particular for the subsequent simulations of abt@ixis we include a signal that is modelled
by independent stochastic differential equations poseshoh element (interval or triangle) which we
approximate using the Euler-Maruyama method.

3.2. Software. The numerical methods were implemented using the adaptite &lement toolboAL-
BERTA [34] and the linear systems were solved udifgFPACK [35], a direct solver for sparse linear
systems.

4. MODELLING PSEUDOPOD DRIVEN CHEMOTAXIS

We investigate a model for eukaryotic chemotaxis originploposed by Meinhardt [36]. The ori-
ginal model was posed at the discrete level and consistethoéa species RDS with a spatially varying
local activator, a spatially varying local inhibitor and pasially constant global inhibitor. Meinhardt
proposed that such a model could account for the polarisatfichemotactic cells and the subsequent
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(a) Movement in normal direction only

(b) Tangential redistribution scheme

FIGURE 2. (Online version in colour.) Snapshots of the mesh dunviggimulations
of cell motility using a scheme that moves the nodes onlyémtbrmal direction and the
scheme that includes a tangential velocity. The large deditions result in meshes that
are not suitable for computation with the former approactessitating a remeshing
step while with the latter approach the mesh quality remgéwd throughout.

relocation and splitting of activator peaks in responsehtanging external signals. He did not however
consider the mechanical aspects of the evolution of thenwethbrane. Neilson et all [7] investigated a
continuous form of the model where the three species wergpalially dependent, approximating the
model equations with a surface finite element method for th& Bpproximation and a level set method
for the surface update. They have conducted detailed casgparof their simulations using a level set
method with experimentﬁb?] as well as some preliminarggtigations into robust computational meth-
ods, specifically short time simulations using a surfacedfialement method [16]. All their modelling
and simulation was conductedd, the model we consider extends the previous work by inangabie
dimension, accounting for the bending energy and modetibgiacles.

In the original model posed by Meinhardt, the spatial inchej@mace of the global inhibitor is used
in the derivation of of the model. Since the global inhibit®ispatially constant, its concentration can
be obtained by averaging, i.e., the use of a non-local tehm rfiean value of the local activator). We
therefore consider the following transformation of Meirdts model from the spatially discrete fixed
surface setting, to a continuous evolving surface:

(Tl 5)(“%/‘12 bl)
0% + a1V .V — DA +
a1+ a1 Vr(t) 1870((t)a1 7<(53 a3)(1 sla%) —nax |,
1

a9 = a1,
(“4-1) L@ e
0%asz + a3Vp(t) -V — D3Ap(t)a3 = v(bsa; —r3zaz), onT(t),t>0
a(-,0) =a’(-) onT,.

Here ther;, s; andb;’s are material parametergjs a scaling parameter that governs the overall timescale
of the reaction rate and the tersz, t) models both the underlying noise from the external media and
a noisy chemotactic signal. The term involving the chemategignal feeds multiplicatively into the
autocatalytic term in the activator equation. Weak sigmaésamplified due to autocatalysis, thus the
model provides a mechanism for gradient sensing of smathotectic gradients. The RDS is coupled
to the surface evolution law solely through the activataraamtration:; which promotes protrusion of
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Reaction kinetic parameters

Dy Ds ol 1 T3 51 s3 by b3

1.0 7.0 25x10* 2x1072 13x107% 1x107* 0.2 0.1 5x1073
TABLE 1. Parameter values for numerical experiments of the moremk two-
dimensional cells with the Meinhardt kinet[csl4.1.

the cell membrane. Adopting the notation§k the contribution of the RDS species to the evolution law
(c.f. (2.2)) reads
(42) fp = k}p ca = (kp)lal.

In fact the activator and inhibitor are in phase and this spotential drawback of the Meinhardt model as
it presents no obvious mechanism for coupling surface aaraons to retraction of the cell membrane.
One can show that the model{#.1) is equivalent to the modhslidered by Neilson et al., if the diffusivity
of the global inhibitor in the Neilson model is sufficientbrge relative to the diffusivity of the other two
species@S].

We model the stochastic tersiz, ) in (4.1) as the sum of an underlying noise tefttz) due to, say,
heterogeneity in the medium and a tefh(x) that models the cells sensing of the chemotactic signal,
i.e.,s(z,t) := (R'(x) + n'(x)). The underlying noise term (present in all the simulatiza)sfies the
following Ornstein-Uhlenbeck (mean-reversion) stocltgstocess

(4.3) dnt = —ntdt+2x107*dW?,

whereWW! denotes the Wiener process. We discretise in space by assyrisi constant over each finite
element and the Euler Maruyama method is used to approxiimasolution numerically (for details see
the ESM).

4.1. Results. For the results on curves we took the unit circle as the irstieady state and used the
reaction kinetic parameter values given in Tdllle 1. Therpatar values are those Meinhardt used in his
original study rescaled such that the diffusivity of theiatbr is 1.0, the only parameter we have tuned
is the saturation of the activator concentrationwhich is smaller to account for dilution in the activator
concentration due to domain growth. For all the simulatiomgurves we used the same equidistributed
initial mesh with 1024 degrees of freedom (further refinenakh not change the solutions qualitatively)
and a timestep of0—°. The CPU times of all the calculations on curves is in the oodeninutes, for
example the two simulations reported in Figule 3 had CPUdiaigust over 2000 seconds.

4.1.1. Random migrationFigure[3 shows the centroid trajectories of 5 cells migatinder two dif-
ferent geometric evolutions, surface tension evolution € 25,k, = 0, (k,); = 1.5) and combined
surface tension - elastic evolutioh(= 23, k, = 3, (k,)1 = 2), with no chemotactic signal and different
realisations of the noise term. In both cases, the cellgllyitpolarise and then migrate, with roughly
two pseudopods at the front of the cell at any given time. Téis change direction via splitting and de-
cay of pseudopods with one pseudopod splitting and pergisthile the other decays. This leads to the
characteristic linear motion over short times interspetgigh sharp changes in direction corresponding
to a pseudopod splitting/decay event, similar to that okeskby Neilson et aID?]. Under surface tension
evolution the cells maintain a characteristic shape (tweugepods at the front of the cell with a valley
between them), while the introduction of bending rigidigngrates a greater variety of cell shapes and
the cell no longer has a characteristic shape with varie@datike shapes evident (the cell shapes re-
semble those in the simulations presented in Figlire 5). Fnersimulations we observe that the diluting
effect of protrusion plays an important role in destahilisactivator peaks and pseudopod splitting. By
this we refer to the fact that the formation of an activatalpeesults in protrusion of the cell membrane
which in turn leads locally to an decrease in activator dgrias protrusion may be viewed as volumetric
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Parameter Value Physical interpretation

ro 1 Initial radius of cell sets a length scaleqim.
(kp) 1.5 — 2 Coefficient of protrusive forcing term implies a timescale~01800s.
Dy 1.0 Implies a diffusivity 0f2.22 x 10=3ums~1.
Ds 7.0  Implies a diffusivity of1.55 x 10~ 2ums 1.
ks ~ 25  Assuming a surface tension 0N this sets a kinetic scale for the simulations.
ky 3 Implies a bending rigidity of approximately92p N ym?.

TABLE 2. Physically relevant parameter values for simulationswwes.

expansion). As the local maxima corresponding to the aoctiaeak is reduced most at the tip of the
peak, where protrusion is largest, this has the effect akmging the propensity of activator peaks and
hence pseudopods to split.

We may proceed to estimate some of the parameter valuesasiigble experimental data, which is
readily available for dictyostelium cells| [2]. The typiaaldius of cell cross sections 4g:m which sets
the length scale for the computations. The maximum actigrpetisation velocity (which is related to
the nondimensional paramet@r,)) is approximately).1ms~!, thus the value ofk,); together with
the maximum density af; in the simulations (approx. 30) sets the timescale for timeikitions. Typical
values of the surface tension arépN/um, assuming a cell height df.1m this sets a kinetic scale
for the simulation. The remaining physically relevant paeders may thus be estimated and are given in
Table[2. Note that the timescale we refer to in Tdble 2 comedp to one unit of computational time.
The length of the simulations in Figuré 3 is one computafitimee unit or thirty minutes in actual time
and corresponds to roughly 20 pseudopod lifetimes (Eachgehin direction in Figurgl3 represents a
pseudopod splitting/decay event), thus the timescale ofdividual pseudopod is around ninety seconds.

We note that other choices of the material parameters, fagalyi weaker surface tension, gives cells
with more elongated shapes, larger protrusions and celebathich appear less rounded.

4.1.2. Migration in the presence of a chemoattractaki¥e now include a chemoattractant in the model.
We use the stochastic receptor model proposed by Neilsoh @]ao model the noisy chemotactic
signalling. For completeness we state the essential getéit timet € (0,7] they model the cells
sensing of the chemotactic signal with an Ornstein-Uhlenbeck stochastic process of the form

(4.4) dR' =0(u — R dt +odW?,

where W denotes the Wiener process,x,t) models the strength of the chemotactic sigiidi, ¢)
the rate of reversion to the meamando (x, ¢) the variance. The meanis local and prescribed by the
model, while the rate of reversion to the mean and varianedomal too as they are chosen such that
9 =1/(1 — p) ando = cul/? (for details seel[7§6.2.2]). To compare witH [746.2.5], we model the
signal such that if a chemoattractant is present the meaaries from the base signal strength (at the
back of the cell) 0.5 to 0.5 + p at the front, whergy > 0 represents the signal strength. For a given
signal directiond, the position of the rear of the cetl, is such thate, - ds = minr(x - ds). We have
also conducted experiments where= exp(—c|x — x.|), wherez. denotes the location of a static point
source of chemoattractant and observe similar results. i¥éeedise (in space) by assuming the mgan
is constant over each finite element, and hehaado are also constant on each finite element.
Figure[4 shows the trajectories of the centroids of 5 cellgrating leftwards in a linear chemotactic
gradient of varying strength under conserved surfacedarssiolution s = 25, k, = 0, (k)1 = 1.5).
The results are similar under the other geometric evolwtmrsideredX; = 22, ky, = 3, (kp)1 = 2) and
are not illustrated. The migration of the cells with only these signal and the signal strength set to zero
is reported in Figure 5(a). We observe no clear directiorefigsence similar to the migration observed in
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(a) Spider plots of cell centroid trajectories over the(b) Spider plots of cell centroid trajectories over the

interval [0, 1.], under conserved surface tension evolinterval [0, 1.], under a combination of surface tension

ution, for parameter values see TdDle 1 and the text. and elastic evolution, for parameter values see Tdble 1
and the text.

FIGURE 3. (Online version in colour.) Centroid trajectories of Hisenigrating in the
absence of a chemoattractant under different geometriatemo laws. In both cases
we see motion in a straight line for short times punctuateshayp changes in direction
corresponding to pseudopod splitting/decay.

the absence of a chemoattractant. As the signal strengthrisased (at a signal strength of 0.04 around
8% of the base signal) the cells start to exhibit a clear dioeeti preference and successfully navigate up
the chemotactic gradient. In Taljle 3 we report on chemotagiasures of 100 cells migrating under the

6 different signal strengths shown in Figlile 4. We state Weeame value over the 100 simulations (for

each signal strength) of the following quantities all eedd att = 0.5:

e The chemotactic index (Cl), defined as the cosine of the dnefiween a line connecting the present
position of the cell centroid to the starting point and a litr@ctly up the chemotactic gradient [39].

e The persistence length (PL) of the centroid trajectory euntlandy directions. The persistence length
is taken to be the displacement in the chosen direction €li/fny the total length of the trajectory of
the cell centroid [40].

e The squared displacement of the cell centroid from itsahfibsition.

e The speed of the cell.

The data suggests that as the strength of the chemotaatial $gyincreased the cells exhibit greater
propensity for persistent migration up the chemical gnaiveith chemotactic indices similar to those
observed experimentally in the case of Dictyostelium 0.71-0.94]. The persistence length in the
direction (up the chemotactic gradient) also increasdsthvé signal strength while the persistence length
in they direction is reduced. We also note increasing the signahgth leads to larger displacements.
The results suggest that for valuespof 0.06 the cell is able to migrate successfully up the chemical
gradient with all the reported statistics converging toilsimmeans for further increases in the signal
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Signal strength Cl PLxf) PL ()
0 N/A 0.4336 (0.2346) 0.4601 (0.2442)
0.02 0.7196 (0.2877) 0.4938(0.2188) 0.3418(0.1999)
0.04 0.9423 (0.0742) 0.6968 (0.1177) 0.2005 (0.1163)
0.06 0.9888 (0.0133) 0.8510(0.0511) 0.1088 (0.0685)
0.08 0.9860 (0.0120) 0.8490 (0.0350) 0.1288 (0.0676)
0.1 0.9898 (0.0141) 0.8489 (0.0272) 0.0987 (0.0734)
Signal strength  Squared displacement (arb) Speed (arb) edSpe./s)
0 37.052 (14.5937) 20.056 (1.9781) 0.0445
0.02 34.430 (13.5045) 19.799 (2.8624) 0.0440
0.04 44.655 (11.9692) 20.077 (2.8633) 0.0446
0.06 66.011(10.3248) 21.156 (1.9327) 0.0470
0.08 66.491 (6.8996) 21.524 (1.9714) 0.0478
0.1 67.387 (8.8005) 21.435(2.1560) 0.0476

TABLE 3. Mean and standard deviation (in parentheses) of chemateasures at
t = 0.5 for 100 cells migrating as in Figuke 4.

strength. The (physical) cell speeds are similar to thosemied in migrating Ieukocytdﬂ41, Tab. 1] and
Dictyostelium ceIIs|E|9] (in both cases reported.im /min).

We now investigate the ability of this model to capture thaitstof a cell to respond to a changing
chemotactic signal. We use the same stochastic receptcelrfaxdhe chemotactic signalling but now
we change the direction of the signal at various stages irewoéution. Figure$ 5() ar{d 5{b) show
snapshots of the cells shaded by activator concentratideruime two different geometric evolutions
(ks = 25,ky, = 0, (kp)1 = L.bandks = 22, k, = 3, (kp)1 = 2) in response to a changing chemotactic
signal. Initially we include only the base signal with nqige., the signal strength is set to zero. At
the times in the evolution at which the arrows appear in theé&gve change the direction of the signal,
with signal strengthy = 0.1, to the direction indicated by the arrows. We see that undér feometric
evolutions the cell successfully responds to the chandgmasexhibiting a clear directional preference
for movementin the direction of higher chemoattractantemtration. As a final example of response to
a changing signal, we consider the case where the signatidindgs changed by 180 degrees. The results
of such a simulation are shown in Figlile 6. We observe thesoeltessfully responds to the change in
signal direction and does so via turning gradually througf degrees. This corresponds to so called
“hops” (consecutive right/right or left/left splitting gfseudopods) that are an important mechanism for
the reorientation of Dictyostelium cells moving in a diieatmore than 90 degrees off the chemotactic
gradientl@Z, Fig. 4]. Under this model, we have howeverfdrusot observed the formation dé novo
pseudopods towards the direction of increasing chematdtrg which are another significant mechanism
for major directional correction’s [42].

4.1.3. Migration in the presence of obstacled/e now include an external force in the evolution law
which arises from a model for the migration of cells throudgietd of obstacles. We model the obstacle
particles as rigid spherical bodies. The obstacle-cedirattion is described by a phenomenological
repulsive force that points in the directiomrmalto the cell membrane with no tangential component.
Unlike the models proposed by Hecht et all [43] and GrimA fhd]obstacles and the cell both move due
to mechanical interactions.
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(@) p=0.0 (b) p = 0.02 (©) p=0.04

(d) p=0.06 (e) p=0.08 ) p=0.1

FIGURE 4. (Online version in colour.) Centroid trajectories of Sl€enigrating left-
wards in the presence of a linear chemoattractant gradisferuconserved surface
tension evolution with varying signal strengi) (

Let N, € N denote the number of obstacles with centfes; } >, and radii{r;}2°,. For the force
acting on a point € I'(¢) on the cell boundary due to the interaction with obstaele postulate

fi

|mi 7(13| — T

(4.5) Fo,i =max (0, (r;(1 +¢) — |m; — x|)) (m; —x) - (—v))

wheref; > 0 is a material coefficient and> 0 is a thickness parameter: the force is zero if the distance
between the cell membrane and the obstacle boundary isritlgmye=r;. The force becomes infinite as
this distance approaches zero and then dominates any otbesfon the cell membrane, thus preventing
intersection of the cell and the obstacle. The externakfating on the cell boundary is given by

N,
(46) ]:ewt = Z]:O,i
i=1

For the obstacle particles we postulate a viscous motionttzay where the reaction forces from the
cell boundary-F; , and obstacle-obstacle interactions are taken into accévspostulate

4.7) wing =— | FiowdS+Y Fii.
r® i

Here, thew; > 0 are positive kinetic coefficients related to the mass of #migle, the first term on the
right hand side modelling the cell-obstacle interaction is

fi

|mi 7(13| —T;

(4.8) FiovdS = /Fmax (0, (ri(1 +¢€) — |m; —x])) (m; — x) - v) vdsS,

I'(t)
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/i (b) Chemotactic motion of a cell under a com-
( ) bination of surface tension and elastic evolution
with volume conservation, for parameter values
see Tabl¢]l and text. Cell outlines shown every
.075 units of computational time over the interval

[0,1.725].

(a) Chemotactic motion of a cell under con-
served surface tension evolution, for para-
meter values see Talflé 1 and text. Cell out-
lines shown everyl units of computational
time over the intervalo, 1.8].

FIGURE 5. (Online version in colour.) Response to a changing chaatiatsignal.
Initially there is no signal with arrows indicating the tirmewhich a signal is introduced
and the signal direction. Note the two figures are not on thgesscale and the cells
have the same enclosed volume.

FIGURE 6. (Online version in colour.) Response to a changing chaatiatsignal.
In this example the direction of the chemotactic signal ianded by 180 degrees.
We observe that the cell turns through 180 degrees and sfcltgsesponds to the
changing signal, migrating up the new chemotactic gradieell outlines shown every
0.1 units of computational time over the inter{@l1].
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Reaction kinetic parameters

Dy Ds v r1 T3 51 s3 by bs

10 70 5x10* 2x1072 13x1073% 1x107* 0.2 0.1 5x1073
TABLE 4. Parameter values for numerical experiments of the mowremiethree-
dimensional cells with the Meinhardt kinet[csl4.1.

Parameter Value Physical interpretation

ro 1 Initial radius of cell sets a length scale bfl 7um.
(kp)1 0.5  Coefficient of protrusive forcing term implies a timescale-0230s.
Dy 10 Implies a diffusivity 0f5.95 x 10~ 2um?s~1.
Dy 70 Implies a diffusivity of4.17 x 10~ tum?s~1.
ks ~ 25 Assuming a surface tension tdpN/um, sets kinetic scale.

TABLE 5. Physically relevant parameter values for simulation mfration of a cell in
three dimensions.

and theF; ; is the force from particlg exerted on particlé for which we postulate
i
M — 170
|mi—mj|—(7‘i+7“j)( )
where thef;; = f;; > 0 are material coefficients. Note that in the absence of tHethelinitial location
of the obstacles is such that the sum of the forggs yields zero so that the particles do not move.

Moreover we have the following balance of forces exertedheycell on the obstacles and forces on the
cell membrane due to the obstacles

. N,
/ (Fout) + 3 / (-Fu)+ S 7| 0.
r i=1 \’T i

Figure$Y anfl8 show a series of snapshots of cell migrationgh a field of obstacles, with parameter
values as in Tablgl 1 and the two previously considered geaneeblutions. Our numerical experience
suggests that under the simple model of cell obstacle ictierss we have employed, the increase in
computational time, even with a large number of obstaclesn the case of no obstacles is negligible.
We include the forcing terms in the evolution law for the cakkmbrane and the obstacle centres given
by (4.8)—(4.9), with parameter values= 0.1, f; = f;; = 100 for all ¢, j andw; = r;/100. We observe
that the cell successfully migrates through the field of atists maintaining the characteristic shape as it
deflects the obstacles. Our numerical experiments sudgshis behaviour is sensitive to the parameter
values chosen in the repulsive potential{4.5). In paréicuf we set the kinetic coefficient related to the
mass of the obstacles; c.f., (4.8) to be comparable in magnitude to the kinetic ficieht related to
the mass of the cell (1 by assumption), which means the dbstathibit more strongly the protrusion
of pseudopods, then pseudopod splitting no longer occutshancell exhibits persistent motion in the
direction of an obstacle (not reported).

(49) fj,i = max (0,(1+€)(7’1‘+7’j) — |m1 7mj|)

4.1.4. Migration of cells in three space dimensiondle now present results for the motion of three-
dimensional cells in the absence of a chemoattractant. @eth® unit sphere as the initial steady state
and used the reaction kinetic parameter values given ireBblVe selected a timestepidf—> and used
the adaptive strategy described in the ESM with paraméYers= 0.5, N, = 0.75, My = 0.25 and
Mj, = 0.5. We considered an evolution law of the foim (2.8) with parterss, = 25,k, = 0, (k)1 =
0.5. As in Table2, we give a physical interpretation of the pastenvalues in Tablgl5, assuming the
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FIGURE 7. (Online version in colour.) Undirected migration (i.ejgration in the
absence of a chemoattractant) in the presence of obstdcéeseadl under conserved
surface tension evolution, for parameter values see Tabiel 1ext.

radius of the spherical cell at restlisl 7um. The model for the random signalling was the same as the
model used in the two-dimensional case. Snapshots of thewrédce shaded by activator concentration
are reported in Figufg 9. We see qualitatively similar béhawvto the case of curves with protrusion of
activator peaks leading to pseudopod formation and theofelse cell retracting behind the pseudopods.
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FIGURE 8. (Online version in colour.) Undirected migration in theegence of
obstacles of a cell under a combination of conserved sutéarston and elastic evolu-
tion, for parameter values see Table 1 and text.
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We also observe pseudopod splitting as the cell changestidinevia biased generation and retraction
of existing pseudopods. The simulation is considerablyeehiallenging than the curve case considered
previously and the total CPU time of the simulation was jusgr®7 hours.

(at=0 (b) t =0.09 (c) t =0.015

9

(d) t =0.025 (e) t =0.035 (f) t =0.055

» D

(g) t=0.075 (h) t =0.085 (i) t =0.09

() t =0.095 (k) t=0.1

FIGURE 9. (Online version in colour.) Migration in the absence ohamoattractant
of a three-dimensional cell under conserved surface tarsiolution, for parameter
values see Tabld 4 and text.

5. MODELLING THE PERSISTENT MOTION OF KERATOCYTES

We present a model based on the general modelling framevesdkithed irf2 that seeks to capture the
persistent motion of fish keratocytes. The cells deforndigpinto a temporally persistent shape and once
in this shape move at a constant speed without changes ttiditeKeren et al/[18] conduct an analysis
of the shapes taken by moving keratocyte cells and propdsgadesphenomenological model to account
for the observed movement and cell shapes. Their resulggestithat the steady state shapes of the cell
are broadly described by two modes and that cell shape,fi&adlgi the aspect ratio (length/width), is
strongly correlated with the speed of motion. They also eraththe actin distribution within the cell.
Branched actin filaments promoting protrusion are conegdrat the fast moving front and retraction
promoting actin bundles are concentrated at the rear. Haelgistate appears stable to perturbations and
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Reaction kinetic parameters Surface evolution parameters

Dy Dy v k1 ks Ky (kp)  (kp)2

0.5 50 10 0.1 2 2 -2 1
TABLE 6. Parameter values for numerical experiments of keragatydvement with
the RDS[G.0).

if movement of the cell is disrupted the cell rapidly regaissprevious shape and speed of movement,
usually moving in a new direction.

The observed behaviour of spontaneous polarisation argequint development of a steady state
stable to perturbations, suggests a Turing type mecharispled to a surface evolution law could accur-
ately capture the observed dynamics. Shao etal. [22] ceresica membrane subject to surface tension,
bending rigidity, and forcing with volume conservation.€orcing strength was dependent on the con-
centrations of a two component RDS posed in the bulk of tHe Teey present computational results, for
two-dimensional cells with weak volume conservation (ecéd via penalisation), based on a phase field
method. Ziebert et aID[G] present a model for keratocyteenmant, again based on a phase field method,
where they couple the surface evolution to a vector fieldsbeks to describe the polarisation of the actin
network. Studies suggest that branched filamentary actinaatin bundles are concentrated primarily
near the cell membrane near areas of protrusion and retnacspectively, while away from the cell
surface the actin is in a remodelling phase between thatasfdired and bundled actin [18] 45| 46]. This
suggests a surface model where the pattern formation ocesirs on the cell membrane itself may be
appropriate. We propose thetivator-depletedubstrate moddﬂ?]:

0%aq + a1VF(t) -V — DiAra; =~ (kl —a1 + a%ag) ,
(51) 0%as + GQVF(t) -V — DyAras = v (k/’g — a%ag) , on F(t),ﬁ > 0,

a(-,0) =a’(-) onTy.

We first present results for curves, with material and RD&um@ters given in Tablg 6. We considered
an initially circular cell with radius 1 centred at the orgiThe initial condition for the RDS was taken
as the linearly stable steady state= k1 + ko, a9 = k2/(al)? with a symmetry breaking perturbation
of the formmax(1 x 10~*x1,0) added to the initial condition of the, species. The specific form
of the initial condition leads to cells that migrate only rdpthex axis (we verified that the choice of
other initial conditions only changed the direction of thewement). The hypothesis of Keren et al. is
that variability in the actin dynamics is the major factovgming the observed variations in shape and
speed. To investigate this hypothesis, we propose that;tkpecies in the RD$(3.1) corresponds to the
density of retraction promoting actin bundles while éhespecies corresponds to the density of protrusion
promoting actin filaments, which is similar to the model ddesed in @]. We can model variable actin
dynamics by changing the constdnt which can be interpreted as the growth rate of actin filaments
Increasingk: leads to higher concentrations @f relative toa; and thus should lead to faster moving
cells with stronger forcing at the front.

In all the simulations on curves we used an initially equrtisited mesh with 1024 degrees of freedom
and a fixed timestep a0 ~3. The CPU times were on the order of seconds with a typicallsition taking
approximately 200 seconds. Figufes Ip(a)[and 10(b) showlifferent values of., the initial position
of the cells at time 0 and the cell positions and surface RD&eatrations at time 5 (by which time
all the cells have reached a steady state with constant sgmektime independent RDS concentrations).
We see faster cell speeds and larger aspect ratios for sertealues oks, similar to the models where
the RDS is posed in the bulﬂZZ]. The shapes of the cells atigtetate also resemble those observed
experimentally|i_;|.|8]. In particular we see the rounded “D&gét in the right most cell corresponding to
k2 = 0.6 and the much more elongated “canoe” shape in the left most@eksponding td, = 1.8.
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Parameter Value Physical interpretation

ro 1 Initial radius of cell sets a length scaleqim.

(kp)2 1 Coefficient of protrusive forcing term implies a timescafe-045s.
D, 0.5 Implies the diffusivity of actin bundles af.44 x 10~2ms~!.
Dy 50 Implies the diffusivity of actin filaments of.44pms—".
ko .6 — 1.8 Implies an actin filament growth rate ©f33 x 1072 — 4 x 1072571,
ks 2 Assuming a surface tension of N sets the kinetic scale.
kp 2 Implies a bending rigidity of approximatelpN jim?2.

TABLE 7. Physically relevant parameter values for simulationevbkocyte movement
in two-dimensions.

2.00 [ \A\"O‘O
I

0.00800 4.03

0 000CQCOQO O

(a) Activator @) concentrations

0.400 0.800

N

0.137 1.14

JOO0OO0O0 QO

(b) Substratedz) concentrations

FIGURE 10. (Online version in colour.) Initial position (at= 0 right hand cell)
and persistent keratocyte like migration of cells {at 5). The parametek, =
0.6,0.8,1.0,1.2,1.4,1.6, 1.8 reading from right to left for the 7 polarised (left hand)
cells (c.f. [5:1)) with the remaining parameters given ibl&g&.

We report on the aspect ratibR = (\2/\;)'/2, as considered inl[6], where foe= 1,2, \; is as follows
(the \;'s are the eigenvalues of the diagofat 2 variance matrix of the cells centroid):

N = — /(xZ - xf)sl/ids,
3Jr

wherez{ is theith coordinate of the cells centroid. We also report on thealien from reflection
symmetry of the migrating cells as considered in [6]. Thimsasured by the following quantities (the
nonzero components of the skewness tensor of the celloi@staled by a constant factor):

1 1/3
m = (Z /(xl - x§)4y1ds> (A1 + Xo) "2,
T

1 1/3
No = (5 /(acl — x'f)Q(xg — x§)2ulds> (M + )\2)71/2.
r

Figure11 shows plots of the speed of the cell centroids amdspect ratio of the cells both against time.
We clearly see the positive relationship between aspeict aad cell speed evident in the experimental
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FIGURE 11. (Online version in colour.) The speed of the cell centeid aspect ratio
both vs. time of the cells shown in Figurel10. We observe atipesielationship
between aspect ratio and speed.
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FIGURE 12. (Online version in colour.) Asymmetry measures vs. tohéhe cells
shown in Figur€ 0. We observe larger deviations from réflactymmetry in the cells

travelling at slower speeds. As the cells attain persistkapes the values converge to

a steady state.

19

studies. In physical units the range of the speed at steatlyaft the cells shown in Figurel10(s1 78 to
0.445ums~. Both the speed and aspect ratios are similar to those adisanthe experimental results
reported in|L_;L|8, Figure 4b]. Figukell2 shows values of theramsgtry measures against time. We see that
the cells travelling at slower speed exhibit larger dewiadifrom reflection symmetry. This is in contrast
to the results obtained under the model considered in [6,4igvheren, does increase as the speed of
the cells decreases b is positively correlated with speed. We note that for the fine® simulations

ko = 0.6 and0.8, - is negatively correlated with speed. As an ellipse satisfies= 17, = 0, it is

not clear that the faster moving cells with larger aspedsabut more elliptical profiles, should exhibit
larger deviations from reflection symmetry. We also obs#raeafter a brief initial stage in which all the
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reported values oscillate, the values converge to a stdaty &s the cells travel in a persistent fashion
with a fixed shape and a constant speed.

2,50 \\\\\\5\'0‘0\\\\\\\
0.105 6.88

(a) Activator @) concentrations

0.400 0600

0.229 0.603

9000 O “

(b) Substratedz) concentrations

FIGURE 13. (Online version in colour.) Initial position (at= 0 right hand cell)
and persistent keratocyte like migration of cells {a& 5). The parametek, =
0.6,0.7,0.8,0.9, 1.0 reading from right to left for the 5 polarised (left hand)Is€k.f.
(5.1)), for the remaining parameter values see Table 8.

Surface Area

Time
k2:0.8 . k2=0.9_k2=1.0

FIGURE 14. (Online version in colour.) The speed of the cell centend cell surface
area both vs. time of the cells shown in Figliré 13. We obsepasitive relationship
between surface area and speed.

We also report on simulations of three-dimensional kegggomotion. We took the unit sphere as
the initial cell shape, the same initial conditions for the&Rconcentrations as in the curve case, a fixed
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Reaction kinetic parameters Surface evolution parameterédaptive strategy parameters
Dy Dy v k1 ks ky  (kp) (kp)2 Ng N, Mg My,
1 100 20 0.1 1 1 =07 .35 ) 1 .25 R5)
TABLE 8. Parameter values for numerical experiments of threesdgional keratocyte
movement with the RD$(5.1) and surface evolutionlaw 2.8.

Parameter Value Physical interpretation

ro 1 Initial radius of cell sets a length scale bfl 7pm.

(kp)2 .35 Coefficient of protrusive forcing term implies a timescale-04s.
D, 1.0 Implies the diffusivity of actin bundles @f.342um?2s~".
Doy 100 Implies the diffusivity of actin filaments &f4.2um?s 1.
ko .6 — 1.0 Implies an actin filament growth rate 6f15 x 10! — 0.25s~ .
ks 1 Assuming a surface tension tip N um =1, sets the kinetic scale.
kp 1 Implies a bending rigidity of approximatelB.69p N um.

TABLE 9. Physically relevant parameter values for simulationeskocyte movement
in three-dimensions.

timestep ofl0~* and remaining parameter values for both the surface evol@hd adaptive strategy
as given in Tabl¢]8. The CPU times were on the order of minui#s avtypical simulation taking
approximately 2000 seconds. Proceeding agdinwe give physical interpretations of the parameter
values for curves and surfaces in Taliles 7 [dnd 9 respectiédyired 13(@) and 13(b) show a similar
experiment to the one carried out for curves now on surfagesgifically we report for different values of
ko, the initial position of the cells at time 0 and the cell pimgis and surface RDS concentrations at time
5 (by which time all the cells have reached a steady stateasitistant speed and time independent RDS
concentrations). The gross behaviour is the same as the case, in that as the paraméigis increased
from 0.6 to 1 the cells move faster at steady state and appear more edohdédgurd_I¥# shows plots of
the speed of the cell centroids and the surface area of tlelm®h against time. We plot the surface
area as it is proportional to the two, roughly equal, aspaids in the(z, y) and(x, z) directions. We
observe the same positive relationship as in the curve cikéuth surface area and speed converging
to steady states. We have also verified that the aspect catiwgrge to steady states with the aspect ratio
in the (y, z) direction approaching 1. Note for larger valueskefthe cells developed a self intersection
which is inadmissible under our modelling as it would cop@sd to a change in topology in the physical
setting. Scenarios where one wishes to consider topoliogfi@age, or respectively methods that avoid
topological change, are a subject of our current research.

6. CONCLUSION

In this work we have presented a computational frameworkfemodelling of cell motility. We pro-
pose a simple and consistent means of coupling cell movewigngradient sensing, polarisation using
surface PDEs and external forces. Our methods can be gesedrad the modelling of more complex
phenomena such as adhesion and crawling on a substratd-oelt@hteractions and we illustrate one
such generalisation with a concrete example of migratighérpresence of obstacles.

A contribution of our study is the description of a numericeathod for the simulation of cell move-
ment that can account for the large deformations that amisenulations of cell motility and that can be
applied to the study of three-dimensional cell migratiome Todel equations consist of PDEs for and
on surfaces and the numerical method seeks to approxinmese #guations on a discrete surface. Thus
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both the continuous and discrete problems are posed in amendion less than the underlying spatial di-
mension, which in the case of the discrete problem typicatyans fewer degrees of freedom are needed
than would be the case for embedded meth@ls@ ﬂDJ.SOIﬁcurves, our experience is that
the method maintains a mesh suitable for computation withmiuse of remeshing or adaptive mesh
refinement. For the simulations of cell migration in thrésensions we occasionally observed deterior-
ation in the mesh quality, even with the redistribution o trertices implicit in our numerical scheme,
necessitating spatial adaptivity. An area of our ongoisgaech is the investigation of numerical methods
robust to large deformations in the cell surface.

We consider a pseudopod centred model for chemotaxis similrm to that considered i _[37].
Unlike compass modelﬁbg], which are reasonable for cetls fiexible polarity where a large gradient
may induce pseudopods at any position on the cell membraaadppod centred moddE[l?] are suitable
for strongly polarised cells where pseudopods are gerteatdferentially at the front with directional
bias, due to a chemotactic gradient, restricted primacilgrhall changes in directioh [42]. The major
contributions and imports of our study are the inclusion efding rigidity, the inclusion of external
forces, the observation that the gross behaviour, of pseadisplitting, observed ir _[37] fo2d cells
persists imd simulations and that the model remains qualitatively ungea when one considers a two
component RDS, with a spatially constant global inhibitather than a three component RDS with a
biologically implausible non-local term. Our computatmethod based on surface finite elements
extends the method i _[16] and is an alternative to the leeehsethod considered inl[7.137]. The
simulations illustrate that the model is capable of repoiaiyiaspects of pseudopod-driven cell migration,
described in|_L_1|7], in both two and three space dimensionsréffert on many widely used chemotaxis
measures and observe values similar to experimental ciigers. We also note that the simulations
exhibit a dilution effect at the tip of a pseudopod where tial maxima corresponding to an activator
peak is reduced. This suggests experimental investigatithre relative importance of mechanical effects
of membrane protrusion on the distribution of cell residenateins is warranted.

We also investigated a model for the motion of fish keratacyt€he model appears to reproduce
some experimental observations of the shapes of motiled@tz cells and the experimental observation
of the correlation between cell shape and sp@d [18]. Thepatational model in|_L_1|8] reproduces the
velocity-aspect ratio relationship. However, unlike ousdeal, both polarisation and cell shapes are not
explicitly modelled, with a parabolic actin profile at theting edge assumed and the shape of the cell
rear neglected. Studies [6] ar@[ZZ] propose models whdegigation is modelled by equations in the
bulk of the cell which are coupled to an evolution law for thedl surface. The import of our study
is to show that a surface RDS coupled to a surface evolutiwrglges qualitatively similar results. A
further contribution is the use of surface finite elementiseathan the phase field method considered in
[Ia] and ]. This allows simulation ofd keratocyte migration which studies [6] a@[ZZ] both note is
computationally expensive with the phase field methodolwgy do observe minor differences from [6],
for example in the measures of deviation from reflection sytnyn

Our numerical experience suggests that some aspects ahicglition and chemotaxis can be cap-
tured by the Schnakenberg ROS{5.1). This RDS is considgsatnpler from a mathematical analysis
viewpoint than say the Meinhardt modgl{4.1). One can shawttie model is well posed on evolving
(planar) domains [48], which is an open question even on filedains for the Meinhardt model. As the
two components are out of phase the model lends itself ribttioathe case of a species that promotes
protrusion (e.g., actin) and another that promotes retna¢e.g., myosin).

In this work it is our intention to present a framework fordte modelling rather than suggest any
definitive models for cell migration. We hope that futuredsés will employ the framework we have set
out to refine existing models for cell motility and make pridins based on numerical simulations that
can be used to direct and inform experimental studies.
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