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MODELLING CELL MOTILITY AND CHEMOTAXIS WITH EVOLVING SURFA CE
FINITE ELEMENTS: SUPPLEMENTARY MATERIAL

CHARLES M. ELLIOTT, BDRN STINNER, AND CHANDRASEKHAR VENKATARAMAN

1. NOTATION AND PRELIMINARIES

Here we define our notation and some basic facts and idexfiitin differential geometry. For further
details and proofs of the results we state we refer to the bgdRo Carmo |ﬂl]. Throughout denotes
a closed smooth orienteti— 1 dimensional hypersurface iR¢, d = 2, 3, with outward pointing unit
normalv. Forx € T" we will make the slight abuse of notation and denoteriyoth the pointe in T’
and the identity magr : I' — I" : Ir(x) = «. Given a functiom defined in a neighbourhood of the
tangential or surface gradientpfdenoted by is defined as

(1.2) Vrn:=Vn—-Vn- v,

whereV denotes the Cartesian gradientRd. The Laplace-Beltrami operatar is defined as the
tangential divergence of the tangential gradient, i.e.,

(12) AF77 = VF . (VFU) .
The mean curvatur®l of I" with respect to the normal is defined as
(1.3) H:=Vr- v.

Note that by this definition the mean curvature is the sum efgttincipal curvatures and differs from
the more common definition by a factgf~. Note also that our sign convention is such that the unit
sphere hapositivemean curvature ii is the unit outer normal. A fundamental identity that undiesp
the numerical method is the following relationship betwdenlLaplace-Beltrami of the identity map and
the mean curvature vector

1.4) Arx = —Hv.

Another identity we shall make use of when approximatindkrgorder geometric flows on surfaces is
for a smooth vector valued function

(1.5) /FVp-n:/FHn-u.

Here and throughout, fof € RY, Vrf € R**?is such tha{Vrf),, = [Vrfil;,5,j = 1,...,d.
Applying the above identity withy = ®v, where® € H' (I'(¢))**? is an arbitrary test function, gives

(1.6) /vau@:—/Fu-(vp-q>)+/FHu-q>u.

Here and throughout, fob € R¥*¢, Vi - & € R? is such thafVr - @], = Vp - ®;,i = 1,...,d. The
expressior[{116) is employed in our approximation of ther\yyaiten map on discrete evolving surfaces.
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2. VARIATIONAL FORMULATION

Here we discuss the variational formulation of the surfacgwgion law and the corresponding finite
element discretisation. We start with the following rematthich we employ in our approximations of
cell motility in 2d:

2.1.Remark (Weingarten map on a closed curvé&pr the casel = 2, i.e.,I" a closed curve, we have
that|Vrr|* = H2. Thus the surface evolution law and the corresponding nigaleschemes simplify
considerably as we do not have to directly compute an appration of the Weingarten map.

The discretisation with surface finite elements requireapropriate variational formulation of both
the membrane evolution equation but also the surface oeadiffusion system (RDS). For the latter one
we propose to proceed as in [2]: Foe 1,...,m, finda; € H'(T'(t)) such that

d o
(2.2) —/ a;x + D;Vr@ai - Vrgx = / a;0%x + fila)x Vx e HY(T'(t))
dt Jre () I (t) (t)

The variational formulation of the membrane equation cesigb a variational formulation of the
identity (1.4) which will serve to compute the mean curvaton the evolving polyhedral surface or curve
and a variational formulation based on the idenfity](1.8)tf@ computation of the Weingarten map on
an evolving polyhedral surface (c.f. Remarkl2.1): Find H'(T'(t))* andH € H'(T'(¢)) such that

/ VF(t)'/'@:*/ V'Vr<t)'<1>+/ (Hv) - (®v)
r() () r(t)

1
/ ((%:13 -vx + kva(t)H “Vrmx — kyH |VFV|2 X + —kag)( + kSH)
() 2
(2.2)
= / (Ax +Ep - ax + Fearx)
T(t)

(Hv - x = Vi@ : Vrpx) =0,
r(t)

forall y € HY(I'(¢)),x € HYT'(t))?,® € H'(I'(t))**3. Here for simplicity we have assumed the
viscous surface evolution law (c.f. main text) is nondinienalised such that = 1.

3. NUMERICAL METHOD

For the interested reader we provide a detailed technicadrigidion of the numerical methods we
employ. Discretising the time interv@, T'] into a partition of NV (possibly variable) subintervalg, <
ty--- <ty =T, wedenote by, :==t,, —tm_1,m € (1,..., N) the timestep. The method we employ
is based on parameterising the surf&¢et! := T',(¢,,11) overT';*. We define the following surface
finite element spaces:

3.1.Definition (Piecewise linear surface finite element spacg&yen a triangulated surfadg, we define
the following space of piecewise line@f functions
(3.2) V(Tp) :={x € C(Tyn) : x|s islinearVs € F,}.
Given a triangulated surfad®,, a quadratic triangulated surfaEg is defined as
(3.2) ' = Use g, 8,
where there exists a homeomorphiSmfh — I'}, such that

e for eachs € 7, thereis & € .7, with s = Gg(3),
e G is a polynomial of degree 2 on eagle 7,
e G leaves vertices unchanged.
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3.2. Definition (Isoparametric quadratic surface finite element spaGéjen a quadratic triangulated
surfacel’;, we define the following space of piecewise liné&r functions

(3.3) Va(Th) :={x € C(T'},) : x|s is quadratici/s € 7, }.
(X3) "
. . x| ,
malised weighted (by element area) sum of the normals oeepdich of elements shared by a single
vertex for surfaces [3].

for curves and the nor-

We will also make use of the discrete surface normal definedlas=

3.3.Problem (Discrete curve evolution)Our method to approximate the solution fo {2.2), for the case
of ' a closed curve (c.f., Remalk®.1), is: for=0,...,N — 1, given X}, € (V*)?, H € V" and

ap € (V™ find X} e (V)2 H"'! € V™ such that

(3.4)

1 n n n n 1 n n n
/Fn ( (Xthl — Xh) vV Xn+ kaFth-’_l . VFzXh - 5]% (Hh )2 Hh+1Xh + ksHh+1Xh>
h

Tn+1
/F

/ (HP vy, — VF;LLXZH : Vrexy) =0,
r

n
h

()\mrl +ky-ay +Fl VZ)Xh

n
h

forall x, € V7, x;, € (V)2

3.4.Problem (Discrete surface evolutionDur method to approximate the solution[fa{2.2), for the case
of I' a closed surface, is: for = 0,...,N — 1, given X}, € (V3)3 H' € V3 anda} € (V5)™, first
find Q}; € (V)33 such that

(3.5) Qo) = / (H;LLVZ(I)}LI/Z - VZVF;; .q)h) vV, € (V§)3X3,
ry ry

then findX ™' € (V3)3, H! € V3 such that

Tn+1

(3.6) _ /Fn

/F" (H,?HVZ X — VF;;XZH : szxh) =0,
h

forall x, € V3, x;, € (V5)3.

We use a Newton method which is described in detail by Bonim.eﬂ] and Elliott and StinneE[S]
to determine the Lagrange multipligaf*! such that the volume enclosed by the surface is conserved to
a desired tolerance.

We use the identity{114) to compute an initial value for theam curvaturé?; € V° as the solution
of

(3.7) /Hh'/(})LXh:/ Vr, X)X
o 9

h

1
/1“" < (X5 = X3) vioxn + ke Vrg H ™ Voo — b [ QR HG oo + ksHﬁHXh)
h

Ky
(= S CHR 0+ X + k- @l i+ +F L Vi)

forall x;, € (V™).
When modelling cell movementin three-dimensions we useagalaptivity, specifically.-refinement,
to reduce the computational cost of the method. Our adaptra¢egy seeks to refine (bisect) elements
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of the triangulation in regions with large curvature or iétmesh-size exceeds a certain tolerance. The
strategy which is based on the adaptive strategy employé&dlioyt and Stinnerﬁb] is to mark an element
for refinement if either
(3.8) h; > Nu or h > Ny,

Iy
where h; denotes the element mash-size (maximum edge lengths the mean of the discrete ap-
proximati0n|Q’,}|2 to the shape operator on the element (an approximation teutimeof squares of the
principal curvatures)Ny and N, are user defined parameters. We mark elements for coarsgheng
inverse of refinement) according to the following

(3.9) h; < % and h < My,
Iy

where My < Ny and M, < N, are user defined parameters. For more details on mesh agaptio
coarsening, refinement and bisection we referlto [6].

The proposed schemes for the approximation of the surfadaten law induce a tangential velocity
to the discrete surface evolution, while the material vigyoaf the continuous surface is geometric (i.e,
has zero tangential component). Defining the tangentiapoomant of the discrete surface velocity
(3.10) T (X5 - X5 - (X - X v
we arrive at the following discrete problem for the surfad@3Rupdate which accounts for the induced
tangential velocity and is based on the evolving surfacéefielement methodﬂ[Z].

1
Tn

3.5. Problem (Discrete RDS approximationDur method to approximate the solution o {2.1) is: for
n=20,...,N — 1, given the discrete surfacéy, FZ“, the tangential velocity of the parameterisation
T} andaj € (V*,orVy)™, fori = 1,...mfind (aj*!), € V" or Vi*! for d = 2,3 respectively
such that

(3.11)

1
e (— (@)X = Ve (@), TR) DV (07, wlx?i“)

1 n n n n
- / ( (@) + ﬁ-(ah)xh),
e Tn+1

forall ;™' € V*+or Vit and allx? € V" or V3 for d = 2, 3 respectively.

3.6. Modelling noisy signalling due to heterogeneities in the ndia and the presence of a chemoat-
tractant. When modelling chemotaxis, we assume that receptors orelleesurface sense concentra-
tions of a chemoattractant. This signal is inherently naiigg to the heterogeneous nature of the media
in which cells migrate. We model this noisy signalling with @rnstein-Uhlenbeck proceﬁ [7] of the
following form

(3.12) dX'=0(p—X"Hdt+odW?',
wherelWt denotes the Wiener process ahg, o are the rate of reversion to the mean, the mean and the
variance respectively.

3.7. The Euler-Maruyama method for the approximation of Ornstein-Uhlenbeck processesWe
approximate[(3.12) by assuming the signal is constant ih fiaite element and use an Euler-Maruyama
method [[_B] to approximate the SDE in each element. The mdthasl follows, for alls € .7, given an
initial valueY?, find Y., n = 1,..., N such that

(3.13) YIH = VP 4 1 (02 (2 — Y1) 4 07+ (7o) Prandn
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where randn is a realisation of a normally distributed randariable with mean 0 and variance 1.
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