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MODELLING CELL MOTILITY AND CHEMOTAXIS WITH EVOLVING SURFA CE
FINITE ELEMENTS: SUPPLEMENTARY MATERIAL

CHARLES M. ELLIOTT, BJÖRN STINNER, AND CHANDRASEKHAR VENKATARAMAN

1. NOTATION AND PRELIMINARIES

Here we define our notation and some basic facts and identities from differential geometry. For further
details and proofs of the results we state we refer to the bookby Do Carmo [1]. ThroughoutΓ denotes
a closed smooth orientedd − 1 dimensional hypersurface inRd, d = 2, 3, with outwardpointing unit
normalν. For x ∈ Γ we will make the slight abuse of notation and denote byx both the pointx in Γ
and the identity mapIΓ : Γ → Γ : IΓ(x) = x. Given a functionη defined in a neighbourhood ofΓ, the
tangential or surface gradient ofη denoted by∇Γ is defined as

(1.1) ∇Γη := ∇η −∇η · νν,

where∇ denotes the Cartesian gradient inR
d. The Laplace-Beltrami operator∆Γ is defined as the

tangential divergence of the tangential gradient, i.e.,

(1.2) ∆Γη := ∇Γ · (∇Γη) .

The mean curvatureH of Γ with respect to the normalν is defined as

(1.3) H := ∇Γ · ν.

Note that by this definition the mean curvature is the sum of the principal curvatures and differs from
the more common definition by a factor1

d−1 . Note also that our sign convention is such that the unit
sphere haspositivemean curvature ifν is the unit outer normal. A fundamental identity that underpins
the numerical method is the following relationship betweenthe Laplace-Beltrami of the identity map and
the mean curvature vector

(1.4) ∆Γx = −Hν.

Another identity we shall make use of when approximating higher order geometric flows on surfaces is
for a smooth vector valued functionη

(1.5)
∫

Γ

∇Γ · η =

∫

Γ

Hη · ν.

Here and throughout, forf ∈ R
d, ∇Γf ∈ R

d×d is such that(∇Γf)ij = [∇Γfi]j , i, j = 1, . . . , d.

Applying the above identity withη = Φν, whereΦ ∈ H1(Γ(t))d×d is an arbitrary test function, gives

(1.6)
∫

Γ

∇Γν · Φ = −

∫

Γ

ν · (∇Γ · Φ) +

∫

Γ

Hν · Φν.

Here and throughout, forΦ ∈ R
d×d, ∇Γ · Φ ∈ R

d is such that[∇Γ · Φ]i = ∇Γ · Φi, i = 1, . . . , d. The
expression (1.6) is employed in our approximation of the Weingarten map on discrete evolving surfaces.
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2. VARIATIONAL FORMULATION

Here we discuss the variational formulation of the surface evolution law and the corresponding finite
element discretisation. We start with the following remarkwhich we employ in our approximations of
cell motility in 2d:

2.1.Remark (Weingarten map on a closed curve). For the cased = 2, i.e.,Γ a closed curve, we have
that |∇Γν|

2
= H2. Thus the surface evolution law and the corresponding numerical schemes simplify

considerably as we do not have to directly compute an approximation of the Weingarten map.

The discretisation with surface finite elements requires anappropriate variational formulation of both
the membrane evolution equation but also the surface reaction-diffusion system (RDS). For the latter one
we propose to proceed as in [2]: Fori = 1, . . . , m, find ai ∈ H1(Γ(t)) such that

(2.1)
d

d t

∫

Γ(t)

aiχ +

∫

Γ(t)

Di∇Γ(t)ai · ∇Γ(t)χ =

∫

Γ(t)

ai∂
•χ +

∫

Γ(t)

fi(a)χ ∀χ ∈ H1(Γ(t))

The variational formulation of the membrane equation couples to a variational formulation of the
identity (1.4) which will serve to compute the mean curvature on the evolving polyhedral surface or curve
and a variational formulation based on the identity (1.6) for the computation of the Weingarten map on
an evolving polyhedral surface (c.f. Remark 2.1): Findx ∈ H1(Γ(t))3 andH ∈ H1(Γ(t)) such that

∫

Γ(t)

∇Γ(t)ν · Φ = −

∫

Γ(t)

ν · ∇Γ(t) · Φ +

∫

Γ(t)

(Hν) · (Φν)

∫

Γ(t)

(

∂tx · νχ + kb∇Γ(t)H · ∇Γ(t)χ − kbH |∇Γν|
2
χ +

1

2
kbH

3χ + ksH
)

=

∫

Γ(t)

(λχ + kp · aχ + Fextχ)

∫

Γ(t)

(

Hν · χ −∇Γ(t)x : ∇Γ(t)χ
)

= 0,

(2.2)

for all χ ∈ H1(Γ(t)), χ ∈ H1(Γ(t))3, Φ ∈ H1(Γ(t))3×3. Here for simplicity we have assumed the
viscous surface evolution law (c.f. main text) is nondimensionalised such thatω = 1.

3. NUMERICAL METHOD

For the interested reader we provide a detailed technical description of the numerical methods we
employ. Discretising the time interval[0, T ] into a partition ofN (possibly variable) subintervals,0 <

t1 · · · < tN = T , we denote byτm := tm − tm−1, m ∈ (1, . . . , N) the timestep. The method we employ
is based on parameterising the surfaceΓm+1

h := Γh(tm+1) overΓm
h . We define the following surface

finite element spaces:

3.1.Definition (Piecewise linear surface finite element space). Given a triangulated surfaceΓh we define
the following space of piecewise linearC0 functions

(3.1) V(Γh) := {χ ∈ C(Γh) : χ|s is linear∀s ∈ Th}.

Given a triangulated surfacẽΓh, a quadratic triangulated surfaceΓh is defined as

(3.2) Γh = ∪s∈Th
s,

where there exists a homeomorphismG : Γ̃h → Γh such that

• for eachs ∈ Th there is ãs ∈ T̃h with s = G(s̃),
• G is a polynomial of degree 2 on eachs̃ ∈ T̃h,
• G leaves vertices unchanged.



MODELLING CELL MOTILITY AND CHEMOTAXIS WITH EVOLVING SURFA CE FINITE ELEMENTS: SUPPLEMENTARY MATERIAL3

3.2. Definition (Isoparametric quadratic surface finite element space). Given a quadratic triangulated
surfaceΓh we define the following space of piecewise linearC0 functions

(3.3) V2(Γh) := {χ ∈ C(Γh) : χ|s is quadratic∀s ∈ Th}.

We will also make use of the discrete surface normal defined asνn
h :=

(Xn

h
)⊥

|Xn

h|
for curves and the nor-

malised weighted (by element area) sum of the normals over the patch of elements shared by a single
vertex for surfaces [3].

3.3.Problem (Discrete curve evolution). Our method to approximate the solution to (2.2), for the case
of Γ a closed curve (c.f., Remark 2.1), is: forn = 0, . . . , N − 1, givenXn

h ∈ (Vn)2, Hn
h ∈ V

n and
an

h ∈ (Vn)m, find Xn+1
h ∈ (Vn)2, Hn+1

h ∈ V
n such that

∫

Γn

h

(

1

τn+1

(

Xn+1
h − Xn

h

)

νn
hχh + kb∇Γn

h
Hn+1

h · ∇Γn

h
χh −

1

2
kb (Hn

h )2 Hn+1
h χh + ksH

n+1
h χh

)

=

∫

Γn

h

(

λn+1 + kp · am
h + Fn

ext · ν
n
h

)

χh

∫

Γn

h

(

Hn+1
h νn

h · χh −∇Γn

h
Xn+1

h : ∇Γn

h
χh

)

= 0,

(3.4)

for all χh ∈ V
n, χh ∈ (Vn)2.

3.4.Problem (Discrete surface evolution). Our method to approximate the solution to (2.2), for the case
of Γ a closed surface, is: forn = 0, . . . , N − 1, givenXn

h ∈ (Vn
2 )3, Hn

h ∈ V
n
2 andan

h ∈ (Vn
2 )m, first

find Qn
h ∈ (Vn

2 )3×3 such that

(3.5)
∫

Γn

h

Qn
hΦh =

∫

Γn

h

(

Hn
h νn

hΦhνn
h − νn

h∇Γn

h
· Φh

)

∀Φh ∈ (Vn
2 )3×3,

then findXn+1
h ∈ (Vn

2 )3, Hn+1
h ∈ V

n
2 such that

∫

Γn

h

(

1

τn+1

(

Xn+1
h − Xn

h

)

νn
hχh + kb∇Γn

h
Hn+1

h · ∇Γn

h
χh − kb |Q

n
h |

2
Hn+1

h χh + ksH
n+1
h χh

)

=

∫

Γn

h

(

−
kb

2
(Hn

h )3χh + λn+1χh + kp · a
m
h χh + +Fn

ext · ν
n
hχh

)

∫

Γn

h

(

Hn+1
h νn

h · χh −∇Γn

h
Xn+1

h : ∇Γn

h
χh

)

= 0,

(3.6)

for all χh ∈ V
n
2 , χh ∈ (Vn

2 )3.

We use a Newton method which is described in detail by Bonito et al. [4] and Elliott and Stinner [5]
to determine the Lagrange multiplierλn+1 such that the volume enclosed by the surface is conserved to
a desired tolerance.

We use the identity (1.4) to compute an initial value for the mean curvatureH0
h ∈ V

0 as the solution
of

(3.7)
∫

Γ0
h

Hhν0
hχh =

∫

Γ0
h

∇Γh
X0

hχh,

for all χh ∈ (Vn)d.
When modelling cell movement in three-dimensions we use spatial adaptivity, specificallyh-refinement,

to reduce the computational cost of the method. Our adaptivestrategy seeks to refine (bisect) elements
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of the triangulation in regions with large curvature or if the mesh-size exceeds a certain tolerance. The
strategy which is based on the adaptive strategy employed byElliott and Stinner [5] is to mark an element
for refinement if either

(3.8) hi >
NH

IH

or h > Nh,

wherehi denotes the element mash-size (maximum edge length),Ih is the mean of the discrete ap-
proximation|Qn

h|
2 to the shape operator on the element (an approximation to thesum of squares of the

principal curvatures),NH andNh are user defined parameters. We mark elements for coarsening(the
inverse of refinement) according to the following

(3.9) hi <
MH

IH

and h < Mh,

whereMH < NH andMh < Nh are user defined parameters. For more details on mesh adaption,
coarsening, refinement and bisection we refer to [6].

The proposed schemes for the approximation of the surface evolution law induce a tangential velocity
to the discrete surface evolution, while the material velocity of the continuous surface is geometric (i.e,
has zero tangential component). Defining the tangential component of the discrete surface velocity

(3.10) T n
h :=

1

τn

(

Xn
h − Xn−1

h

)

−
1

τn

(

Xn
h − Xn−1

h

)

· νn
hνn

h,

we arrive at the following discrete problem for the surface RDS update which accounts for the induced
tangential velocity and is based on the evolving surface finite element method [2].

3.5. Problem (Discrete RDS approximation). Our method to approximate the solution to (2.1) is: for
n = 0, . . . , N − 1, given the discrete surfacesΓn

h, Γn+1
h , the tangential velocity of the parameterisation

T n
h andan

h ∈ (Vn, or V
n
2 )m, for i = 1, . . .m find

(

an+1
h

)

i
∈ V

n+1, or V
n+1
2 for d = 2, 3 respectively

such that

∫

Γn+1

h

(

1

τn+1

(

an+1
h

)

i
χn+1

h −∇Γn+1

h

·
((

an+1
h

)

i
T n

h

)

χn+1
h +Di∇Γn+1

h

(

an+1
h

)

i
∇Γn+1

h

χn+1
h

)

=

∫

Γn

h

(

1

τn+1
(an

h)iχ
n
h + fi(a

n
h)χn

h

)

,

(3.11)

for all χn+1
h ∈ V

n+1 or V
n+1
2 and allχn

h ∈ V
n or V

n
2 for d = 2, 3 respectively.

3.6. Modelling noisy signalling due to heterogeneities in the media and the presence of a chemoat-
tractant. When modelling chemotaxis, we assume that receptors on the cells surface sense concentra-
tions of a chemoattractant. This signal is inherently noisydue to the heterogeneous nature of the media
in which cells migrate. We model this noisy signalling with an Ornstein-Uhlenbeck process [7] of the
following form

(3.12) d Xt = θ(µ − Xt) d t + σ d W t,

whereW t denotes the Wiener process andθ, µ, σ are the rate of reversion to the mean, the mean and the
variance respectively.

3.7. The Euler-Maruyama method for the approximation of Ornstein-Uhlenbeck processes.We
approximate (3.12) by assuming the signal is constant in each finite element and use an Euler-Maruyama
method [8] to approximate the SDE in each element. The methodis as follows, for alls ∈ Th, given an
initial valueY 0

s , find Y n
s , n = 1, . . . , N such that

(3.13) Y n+1
s = Y n

s + τn+1(θ
n
s (µn

s − Y n
s )) + σn+1

s (τn+1)
0.5randn,
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where randn is a realisation of a normally distributed random variable with mean 0 and variance 1.
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