
Limits on primordial non-Gaussianity from Minkowski Functionals of the
WMAP temperature anisotropies
C Hikage, T Matsubara, P Coles, M Liguori, F K Hansen, S Matarrese

Publication date
01-09-2008

Licence
This work is made available under the Copyright not evaluated licence and should only be used in accordance
with that licence. For more information on the specific terms, consult the repository record for this item.

Citation for this work (American Psychological Association 7th edition)
Hikage, C., Matsubara, T., Coles, P., Liguori, M., Hansen, F. K., & Matarrese, S. (2008). Limits on primordial
non-Gaussianity from Minkowski Functionals of the WMAP temperature anisotropies (Version 1). University of
Sussex. https://hdl.handle.net/10779/uos.23395064.v1

Published in
Monthly Notices of the Royal Astronomical Society

Link to external publisher version
https://doi.org/10.1111/j.1365-2966.2008.13674.x

Copyright and reuse:
This work was downloaded from Sussex Research Open (SRO). This document is made available in line with publisher policy
and may differ from the published version. Please cite the published version where possible. Copyright and all moral rights to the
version of the paper presented here belong to the individual author(s) and/or other copyright owners unless otherwise stated. For
more information on this work, SRO or to report an issue, you can contact the repository administrators at sro@sussex.ac.uk.
Discover more of the University’s research at https://sussex.figshare.com/

https://rightsstatements.org/page/CNE/1.0/?language=en
https://doi.org/10.1111/j.1365-2966.2008.13674.x
mailto:sro@sussex.ac.uk
https://sussex.figshare.com/


Mon. Not. R. Astron. Soc. 389, 1439–1446 (2008) doi:10.1111/j.1365-2966.2008.13674.x

Limits on primordial non-Gaussianity from Minkowski Functionals

of the WMAP temperature anisotropies

C. Hikage,1,2� T. Matsubara,3 P. Coles,2 M. Liguori,4 F. K. Hansen5 and S. Matarrese6,7

1School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD
2School of Physics and Astronomy, Cardiff University, Queens Buildings, 5, The Parade, Cardiff CF24 3AA
3Department of Physics and Astrophysics, Nagoya University, Chikusa, Nagoya 464-8602, Japan
4Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge,
Wilberfoce Road, Cambridge CB3 0WA
5Institute of Theoretical Astrophysics, University of Oslo, PO Box 1029 Blindern, 0315 Oslo, Norway
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ABSTRACT

We present an analysis of the Minkowski Functionals (MFs) describing the Wilkinson
Microwave Anisotropy Probe (WMAP) 3-yr temperature maps to place limits on possible
levels of primordial non-Gaussianity. In particular, we apply perturbative formulae for the
MFs to give constraints on the usual non-linear coupling constant fNL. The theoretical predic-
tions are found to agree with the MFs of simulated cosmic microwave background (CMB)
maps including the full effects of radiative transfer. The agreement is also very good even
when the simulation maps include various observational artefacts, including the pixel window
function, beam smearing, inhomogeneous noise and the survey mask. We accordingly find
that these analytical formulae can be applied directly to observational measurements of fNL

without relying on non-Gaussian simulations. Considering the bin-to-bin covariance of the
MFs in WMAP in a chi-square analysis, we find that the primordial non-Gaussianity parameter
is constrained to lie in the range −70 < f NL < 91 [95 per cent confidence level (C.L.)] using
the Q + V + W co-added maps.

Key words: methods: analytical – methods: statistical – cosmic microwave background –
early Universe.

1 I N T RO D U C T I O N

The existence of non-Gaussianity in primordial density fields has the
potential to provide a unique observational probe that will enable
discrimination among wide variety of inflationary models of the
early Universe. Versions of the inflation scenario based on the idea
of a single slow-rolling scalar field predict levels of non-Gaussianity
too small to be observed. On the other hand, multi-field inflation
models and models with a non-standard kinetic term for the in-
flation may yield larger non-Gaussian effects which could in prin-
ciple be detected in current or next-generation observations (e.g.
Bartolo, Matarrese & Riotto 2002; Bernardeau & Uzan 2002; Lyth,
Ungarelli & Wands 2003; Alishahiha, Silverstein & Tong 2004;
Arkami-Hamed et al. 2004; Bartolo et al. 2004; Dvali, Gruzinov

�E-mail: chiaki.hikage@astro.cf.ac.uk

& Zaldarriaga 2004; Battefeld & Battefeld 2007; Chen, Richard &
Eugene 2007; Koyama et al. 2007).

In this paper, we focus on the local parametrization of primordial
non-Gaussianity by including quadratic corrections to the curvature
perturbation during the matter era (e.g. Komatsu & Spergel 2001):

� = φ + fNL(φ2 − 〈φ2〉), (1)

where φ represents an auxiliary random-Gaussian field and fNL char-
acterizes the amplitude of the non-linear contribution to the overall
perturbation. This local form is motivated by the simple slow-rolling
single scalar inflation scenario and other models, including curva-
ton models (for an alternative parametrization of fNL, see Creminelli
et al. 2007a). Current observations are not sufficiently sensitive to
detect the wavelength dependence of fNL, so a constant fNL provides
a reasonable parametrization of the level of non-Gaussianity.

The analysis of the angular bi-spectrum for the Wilkinson
Microwave Anisotropy Probe (WMAP) 3-yr data provides a con-
straint on fNL to lie between −54 and 114 at the 95 per cent
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confidence level (C.L.) (Komatsu et al. 2003; Spergel et al. 2007).
Creminelli et al. (2007a) obtain more stringent constraint −36 <

f NL < 100. On the other hand, Yadav & Wandelt (2007) recently re-
ported a detection of primordial non-Gaussianity at greater than 99.5
per cent significance. Further detailed analyses of non-Gaussianity
are clearly necessary in order to reconcile and understand the vari-
ous constraints and claimed detections.

Different approaches to the study of non-Gaussianity exploit dif-
ferent statistical properties and will be sensitive to different aspects
of the behaviour of the pattern being tested. In general, there is no
unique statistic to describe the non-Gaussian nature of a sample in a
complete manner. A given method may have strong discriminatory
power for one particular form of non-Gaussianity, but this is not
necessarily the case for all possible alternative distributions. Test-
ing non-Gaussianity therefore requires a battery of complementary
techniques rather than a single approach. It is particularly important
to use different statistical approaches in the context of primordial
non-Gaussianity, because the physical mechanism responsible re-
mains unknown. Furthermore, in the real world, issues including
survey masks and inhomogeneous noise have to be taken into con-
sideration. Different statistics may be sensitive to different system-
atics and foreground artefacts, so that complementary analysis using
different statistics is essential for a robust detection. Analyses using
different statistical methods are useful to validate or refute basic the-
oretical models and constrain model parameters more accurately.
The most commonly used statistic for non-Gaussian analysis is
the bispectrum (or even trispectrum) which focuses on information
contained within three-point (or four-point) correlations. Other ap-
proaches represented by Minkowski Functionals (MFs) and genus
statistics (one of MFs) utilize information concerning the integrated
morphology and topology of the density structure, and are depen-
dent on all order of correlation functions. Their robustness and
generality therefore make them ideal complements to standard cor-
relation analyses.

In this analysis, we focus on the local model of primordial
non-Gaussianity characterized by fNL in equation (1). Creminelli,
Senatore & Zaldarriaga (2007b) show that the bispectrum is the
optimal statistics in the estimation of fNL and then other statistics
(e.g. trispectrum) are useless even if there are different foreground
contaminations. This is, however, only the case when the local
model exactly describes the real universe. Other forms of non-
Gaussianity, different from the one purely characterized by fNL,
which may exist in a real observation, could make the fit of the
theoretical estimation as a function of fNL to the observation worse
and also influence the estimation of fNL among different statistics.
Different statistical approaches are, therefore, still useful to test the
assumed model of primordial non-Gaussianity and also possible
observational systematics by checking if they have a reasonable
goodness of the fit to observations and thus give a consistent limit
on fNL compared to that from the bispectrum.

In this paper, we present a measurement of primordial non-
Gaussianity from the MFs of the WMAP 3-yr temperature maps.
We apply perturbative formulae recently derived by Hikage,
Komatsu & Matsubara (2006) to do the comparison with observa-
tions; previous analyses rely on non-Gaussian simulations (Komatsu
et al. 2003; Spergel et al. 2007). The agreement of the theoretical
predictions with non-Gaussian simulations has already been estab-
lished in the Sachs–Wolfe limit (Hikage et al. 2006). In this paper,
we apply non-Gaussian simulations based on full radiative transfer
computations and then demonstrate that the analytical predictions
accurately reproduce the simulation results. Gott et al. (2007) al-
ready derived an analytical formula for the genus statistic in the

Sachs–Wolfe approximation to compare with WMAP data. Our anal-
ysis takes more detailed physics into account and is consequently
more accurately applicable to a wider range of scales.

Observational effects (including antenna beam pattern, inhomo-
geneous noise and the survey mask) could be other sources of
confusion. From a comparison with simulations including these ob-
servational issues, we find that the observational systematics are
negligible to estimate the primordial non-Gaussianity from WMAP
data directly using our method.

This paper is organized as follows. In Section 2, the WMAP
3-yr data studied here are briefly introduced. In Section 3, we test
whether the perturbative formulae well describe the MFs for the
non-Gaussian simulation maps even including the various observa-
tional effects mentioned above. In Section 4, we show the MFs for
WMAP 3-yr temperature maps compared with theoretical formulae
and give constraints on fNL. Section 5 is devoted to a summary and
the conclusions.

2 WMAP 3 - Y R DATA

The cosmic microwave background (CMB) temperature maps de-
rived from the WMAP observation are pixelized in HEALPIX format
with the total number of pixels npix = 12N2

side (Górski et al. 2005).
In our analysis, we use the maps for Q, V and W frequency bands
with Nside = 512. The linearly co-added maps are constructed using
an inverse weight of the pixel-noise variance σ 2

0 /N̄obs, where σ 0

denotes the pixel noise for each differential assembly (DA) given
in Bennett et al. (2003) and N̄obs represents the full-sky average
of the effective number of observations per each pixel. We adopt
two maps with different combinations of frequency bands: V and W
(written as ‘V + W’) and Q, V and W (written as ‘Q + V + W’).
The co-added maps are masked with the Kp0 galaxy mask including
point-source mask provided by Bennett et al. (2003), which leaves
76.8 per cent of the sky available for the data analysis.

In comparison with WMAP observations to give constraint on
fNL in Section 4, a � cold dark matter (CDM) cosmology is as-
sumed with the cosmological parameters at the maximum like-
lihood peak from the WMAP 3-yr data only fit (Spergel et al.
2007): �b = 0.04309, �CDM = 0.211, �� = 0.74591, H0 =
71.227 km s−1 Mpc−1, τ = 0.08982 and ns = 0.95537. The ampli-
tude of the primordial fluctuations has been normalized by the first
acoustic peak of the temperature power spectrum, l(l + 1)Cl/(2π ) =
5617.05(μK)2 at l = 220 (Hinshaw et al. 2007).

3 P E RT U R BAT I V E F O R M U L A E V E R S U S

NON-GAUSSI AN SI MULATI ONS

3.1 Perturbative formulae of MFs for CMB with primordial

non-Gaussianity

The topology of random fluctuation fields is generally studied us-
ing their excursion sets, i.e. regions where the field exceeds some
threshold level. In a two-dimensional random field such as a CMB
temperature map, three MFs are defined: the fraction of area V0

exceeding the threshold, the total circumference V1 of all the entire
excursion set and the corresponding Euler Characteristic V2 (Coles
1988). We measure MFs for CMB temperature maps as a function
of the threshold density ν, defined as the temperature fluctuation
�T/T normalized by its standard deviation σ 0 ≡ 〈(�T/T)2〉1/2.
Based on the general formalism of perturbation theory for MFs

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 389, 1439–1446

 at Sussex L
anguage Institute on A

pril 28, 2013
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


Primordial non-Gaussianity from WMAP 1441

(Matsubara 2003), Hikage et al. (2006) derived perturbative formu-
lae of the MFs as a function of the non-linear coupling parameter
fNL (equation 1).

The MFs are separately written with the amplitude and the func-
tion of ν as follows:

Vk(ν) = Akvk(ν). (2)

The amplitude Ak , which is determined only by the angular power
spectrum Cl , is given by

Ak = 1

(2π )(k+1)/2

ω2

ω2−kωk

(
σ1√
2σ0

)k

, (3)

σ 2
j ≡ 1

4π

∑
l

(2l + 1) [l(l + 1)]j ClW
2
l , (4)

where ωk ≡ πk/2/
(k/2 + 1) gives ω0 = 1, ω1 = 2, ω2 = π , and Wl

represents the smoothing kernel determined by the pixel and beam
window functions and any additional smoothing (e.g. a Gaussian
kernel). In weakly non-Gaussian fields, the function vk(ν) can be
divided into the Gaussian term v

(G)
k and the non-Gaussian term at

lowest order �vk:

vk(ν) = v
(G)
k (ν) + �vk(ν, fNL). (5)

Each term has the following form:

v
(G)
k = e−ν2/2Hk−1(ν), (6)

�vk(ν, fNL) = e−ν2/2

{[
1

6
S(0)Hk+2(ν) + k

3
S(1)Hk(ν)

+ k(k − 1)

6
S(2)Hk−2(ν)

]
σ0 + O(σ 2

0 )

}
, (7)

where Hn(ν) represent the nth Hermite polynomials and the skew-
ness parameters S(k) are given in equations (27–29) of Hikage et al.
(2006). The amplitude Ak (equation 3) is not directly relevant to
non-Gaussianity but is dependent on the shape of Cl . We therefore
concentrate on the non-Gaussian term �vk hereafter. The quantity
�vk is the same as the relative difference of MFs, which are plotted
in fig. 2 in Hikage et al. (2006), except for its normalization factor;
in this paper the difference of MFs is normalized by Ak (3), while
the maximum value of MFs for Gaussian fields is used in Hikage
et al. (2006).

3.2 Comparison with non-Gaussian simulations

The above analytical formulae have already been found to accurately
match the MFs for non-Gaussian maps in the Sachs–Wolfe limit
(appendix C in Hikage et al. 2006). Here, we test them against non-
Gaussian simulations including the full radiative transfer function
(Liguori, Matarrese & Moscardini 2003; Liguori et al. 2007). As
we mentioned in the Introduction, actual observations of CMB also
involve different effects that may produce other confusions: the
pixel window function, beam smearing, the inhomogeneous noise,
survey mask and so on. We include these observational effects into
the simulations to check whether they could have a systematic effect
on our topological measures.

The cosmology in the non-Gaussian simulations is based on
�CDM, but the cosmological parameters have slightly different
values from WMAP 3-yr best fit; �b = 0.05, �CDM = 0.25, �� =
0.7, H0 = 65 km s−1 Mpc−1, τ = 0 and ns = 1. The amplitude of

primordial fluctuations is, however, set to be the same as WMAP
3-yr best-fitting value l(l + 1)Cl/(2π ) = 5617.05(μK)2.

Observational effects related to WMAP data are included as fol-
lows. First, we convolve the original simulation maps with the
Q + V + W co-added beam transfer function with inverse weight
of the full-sky averaged pixel-noise variance in each DA. Next, we
add independent Gaussian noise realizations following the noise
pattern co-added with the same weight. The simulation map is then
masked with the Kp0 galaxy mask. Finally, we smooth the sim-
ulation maps using a Gaussian filter with a smoothing scale of
θ s,

Wl = exp

[
−1

2
l(l + 1)θ 2

s

]
. (8)

The MFs are sensitive to the resolution (or smoothing) scale of a
density field, and thereby we can obtain a variety of information
from density fields using different levels of smoothing. The in-
formation extracted from varying smoothing scales is nevertheless
limited because they are all derived from the same original field;
the smoothed fields are not independent. Here we focus on the field
smoothed by three different smoothing scales 10, 20 and 40 arcmin,
where the limit on fNL is sufficiently converged. To remove the ef-
fect of the survey mask near the boundary of the mask, we only use
the pixels more than 2θ s away from the boundary. The sky fraction
used in the analysis for each smoothing scale is 41 per cent for
θ s = 40 arcmin, 62 per cent for θ s = 20 arcmin and 73 per cent for
θ s = 10 arcmin.

The MFs for the measured CMB temperature anisotropy are com-
puted from the integral of the curvature of iso-temperature contour
lengths (the details are given in appendix A.1. of Hikage et al.
2006). The binning range of ν is set to be −3.6 to 3.6 with 18
equally spaced bins of ν per each MF. This binning way produces
well-converged results irrespective of other choices of the range of
ν and the number of bins.

We obtain the normalized MFs (equation 3) with the amplitude
Ak computed from Cl of each realization. Then, the residuals of the
normalized MFs from Gaussian predictions �ṽα are calculated at
each bin of α, which denote a threshold value ν, a kind of MF k,
and a smoothing scale parametrized with θ s or Nside. Even when the
MFs of Gaussian realizations are computed, however, the function
�ṽα are not exactly equal to 0 due to the effect of pixelization,
survey mask and other numerical artefacts. We therefore measure
the deviations from the average of the measurements over Gaussian
realizations and subtract them as

�vα = �ṽα − [�ṽα]Gaussian,mean. (9)

In Fig. 1, we compare the analytical predictions of variance,
skewness and MFs with the measurements from the simulations for
f NL = 100. The simulated results are the average over 200 real-
izations and the error bars represent the error for the average (the
sample variance divided by the square root of 200). The averaged
measurements for Gaussian CMB maps are subtracted from those
for non-Gaussian maps in the simulated plots including variance and
skewness as well as MFs (see equation 9). In the plots, we adopt the
Gaussian maps which are generated from the same realizations of
linear potential fields (φ in equation 1) as the non-Gaussian CMB
maps. The sample variances, represented by the error bars, are can-
celled very well in such plots so one can focus on the systematic
effect of primordial non-Gaussianity. The analytical formulae are
found to agree with the simulations extremely well even including
all observational effects. This indicates that we can measure fNL
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1442 C. Hikage et al.

Figure 1. Comparison between the analytical predictions (lines) and the numerical estimations averaged over 200 realizations of non-Gaussian simulation
maps (symbols) for f NL = 100. Upper-left: variances σ 0 and σ 1 (equation 4). Upper-right: skewness parameters S(a) (a = 0, 1 and 2) in the equation (7).
Middle: MFs for non-Gaussian fields, Vk (equation 2). Lower: the difference ratio of MFs �vk (equation 7). CMB maps are smoothed with a Gaussian kernel
Wl = exp [− l(l + 1)θ2

s /2] where θ s denotes the smoothing scale. The fully radiative transfer function is considered for both the theoretical predictions and the
simulations. The simulations also include the various observational effects for WMAP 3-yr Q + V + W co-added map; pixel window function, beam smearing,
inhomogeneous noise pattern and Kp0 cut. The error bars represent the errors for the averaged simulation results over 200 realizations (the sample variance
divided by the square root of 200).

from direct comparison of the analytical formulae with observa-
tions without having to worry excessively about the presence of
such systematics. We also check that both the artificial systematics
[�ṽα]Gaussian,mean and covariance matrix are not strongly dependent
on the details of cosmology. These results are encouraging, but
not unexpected: being based on integrated properties, the MFs are
expected to be robust to such effects.

4 C O N S T R A I N T S O N P R I M O R D I A L

NON-GAUSSI ANI TY FROM WMAP 3 - Y R DATA

4.1 Covariance matrix for MFs

We have adopted a maximum likelihood method to estimate the
best-fitting value of fNL and its associated uncertainty. In ‘nearly
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Primordial non-Gaussianity from WMAP 1443

Gaussian’ fields, the distribution functions of �vα are well de-
scribed as multi-variate Gaussians. The likelihood function of fNL is,
therefore, simply proportional to exp (−χ 2(f NL)/2) where χ 2(f NL)
is computed using the theoretical formulae (equation 7) as

χ 2(fNL) =
∑
αα′

[
�v(obs)

α − �v(theory)
α (fNL)

]
�−1

αα′

×
[
�v

(obs)
α′ − �v

(theory)
α′ (fNL)

]
, (10)

where α and α′ denote the binning number of threshold values ν,
different kinds of MF k and smoothing scale parametrized with θ s

or Nside. The full covariance matrix �αα′ is required because MFs
are strongly correlated between different ν, different kinds of MF
and also different Nside or θ s. We estimate the covariance matrix
of MFs from 1000 Gaussian simulation maps including the pixel
and beam window function, Kp0 survey mask and inhomogeneous
noise for WMAP 3-yr maps.

The MFs contain information about fluctuations at different
scales, so the results depend on the choice of window function.
Here, two different types of window functions are adopted (in ad-
dition to the beam window functions). One is a Gaussian window
function with the scale characterized by θ s (which is chosen to be
sufficiently large compared with the pixel size). The other is just the
pixel window function in HEALPIX format with a scale characterized
by Nside. The multi-pole components with l higher than 2Nside are
cut because they suffer from serious aliasing effects.

Before applying these ideas to the observational data, we check if
our method based on χ 2 analysis is valid using simulations with pri-
mordial non-Gaussianity. We apply the non-Gaussian simulations
to check that the likelihood function using equation (10) reproduces
a valid probability distribution of the true value f (true)

NL . Here, we con-
sider that the likelihood function of f (true)

NL in each realization follows
a Gaussian distribution around the best-fitting value f (best)

NL as

P (f (true)
NL |f (best)

NL ) = 1√
2πσfNL

exp

⎡
⎣−1

2

(
f

(true)
NL − f

(best)
NL

σfNL

)2
⎤
⎦ (11)

σfNL =
[∑

αα′

∂Vα

∂fNL
(�−1)αα′

∂Vα′

∂fNL

]−1/2

, (12)

where the binning number α represents a threshold ν for kth MF at
a given scale Nside (or θ s if the Gaussian smoothing is added) and
the covariance matrix �αα′ is numerically estimated from Gaussian
simulations. The function ∂Vα/∂f NL is independent of fNL (see
equation 7) and thus the uncertainty σfNL is independent of fNL.
According to Bayes’ theorem, f (best)

NL should distribute around f (true)
NL

in the same way:

P (f (best)
NL |f (true)

NL ) = P (f (true)
NL |f (best)

NL ). (13)

We estimate the distribution function of f (best)
NL from 200 non-

Gaussian CMB simulated maps at a given f (true)
NL and then compare

with equation (11). The simulated maps include observational ef-
fects represented by pixel and beam window functions, noise and
Kp0 survey cut for WMAP 3-yr data. Fig. 2 shows the theoretical
predictions of P(f (best)

NL | f (true)
NL ) at f (true)

NL = 0 (solid) and 100 (dotted).
From the MFs for the combined maps at Gaussian smoothing scales
θ s = 20 and 10 arcmin where the uncertainty is σfNL = 44. The
histograms show the distribution of f (best)

NL from 200 (non-)Gaussian
realizations. The averages of the best-fitting values of fNL from the
simulations are, respectively, 0 ± 44 (for f (true)

NL = 0) and 101 ± 46
(for f (true)

NL = 100). The simulations reproduce the theoretical predic-

Figure 2. The distribution function of the best-fitting value of fNL us-
ing WMAP 3-yr mock simulation maps (histogram). We use 200 realiza-
tions of Gaussian simulations (solid) and non-Gaussian simulations with
f (true)

NL = 100 (dotted), respectively. The best-fitting values are obtained by fit-
ting the analytical formulae (equation 7) to all of the MFs for the simulations
at θ s = 10 and 20 arcmin combined. For comparison, we plot the likelihood
function of fNL at f (true)

NL = 0 and 100 with σfNL = 44 (equation 11), which
is the expected uncertainty of fNL from all of the MFs for CMB maps at
θ s = 10 and 20 arcmin combined.

tions of the likelihood function very well. Our method is thus well
established to give constraints on fNL from WMAP 3-yr map.

4.2 Constraints on fNL from MFs for WMAP 3-Yr temperature

anisotropy

The three MFs for the CMB temperature maps from WMAP 3-yr
data are, respectively, plotted with symbols in each column of Fig. 3
(three left-hand columns for the ‘Q + V + W’ map and three right-
hand columns for the ‘V + W’ map). In each column, the top panel
shows the MF Vk at a representative scale (θ s = 20 arcmin) and
the lower three panels illustrate �vk at different θ s = 10, 20 and
40 arcmin. The perturbative formulae with the best-fitting value of
fNL to each observed MF are plotted with lines. The best-fitting
values and 1σ uncertainty are written in the left-bottom side of each
panel. In top panels, all of the amplitude of observed MFs is found
to be smaller than the theoretical estimations. This comes from the
deficit of the observed power at low l which generates the larger
amplitude of MFs determined by σ 1/σ 0 (equation 3), as pointed
out by Gott et al. (2007). Fig. 4 shows the same plot but for the
MFs with the pixel window function only. The top panel shows the
MF at Nside = 128 and the lower three panels illustrate �vk for
Nside = 256, 128 and 64. It is interesting that all MFs at Nside = 64
have large positive values of fNL, though the significance is less than
2σ .

Table 1 lists the best-fitting values and the 1σ uncertainty of fNL

for each MF and their combined values at different sets of Gaussian
smoothing scales θ s. The 1σ uncertainty of fNL is estimated from the
range of fNL with �χ 2 = χ 2 − χ 2

min ≤ 1. The minimum of chi-square
χmin and the goodness-of-fit Pχ2>χ2

min
are listed for each fit. The

results for the pixel window function only are shown in Table 2. The
goodness-of-fit values are reasonable for all the fits, which means
that the simple form of the primordial non-Gaussianity (equation 1)
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1444 C. Hikage et al.

Figure 3. Comparison between MFs for WMAP 3-yr temperature maps (symbols) and the analytical formulae with the best-fitting value of fNL for each MF
(lines). The MFs are calculated from the Q + V + W co-added map (left-hand side) and the V + W map (right-hand side). Top panels show the MFs Vk(k = 0,
1 and 2) at θ s = 20 arcmin, and other panels illustrate �vk (equation 7) at θ s = 10, 20 and 40 arcmin, respectively. Error bars denote the standard deviation of
MFs at each bin of ν computed from 1000 Gaussian realizations including the WMAP 3-yr noise distribution, Kp0 mask and pixel and beam window function.
The systematics due to the pixelization effect are estimated from the Gaussian realizations and are subtracted from the observed MFs (see equation 9).

Figure 4. Same as Fig. 3 but for different Nside = 256, 128 and 64 without Gaussian smoothing.

well describes the behaviour of the observed MFs. In other words,
present observations are too uncertain to allow the extraction of any
further information about primordial non-Gaussianity (e.g. scale
dependence of fNL). The constraint −70 < f NL < 91 at 95 per cent
C.L. is obtained from all MFs for the Q + V + W co-added map
at combined different Gaussian smoothing scales of 10, 20 and
40 arcmin. A similar constraint is obtained from the MFs with
pixel-window only as −84 < f NL < 105. The results from Q + V +
W co-added map are consistent with the previous ones (Creminelli
et al. 2007a; Spergel et al. 2007).

There is some friction (but not disagreement) between our results
and those by Yadav & Wandelt (2007); our V + W analysis finds

f NL = −22 ± 43 whereas they find f NL = 87 ± 30. Moreover,
our averaged fNL decreases from Q + V + W to V + W whereas
their fNL increases. This is very interesting because there is the
possibility that, for example, foregrounds and point sources might
be biasing one of the two results. Yadav & Wandelt (2007) show
in their analysis that these effects do not seem to contaminate the
primordial bispectrum measurement significantly. It will be then
important to check their effect on the MFs statistics in order to
verify if this can explain the differences between the two results.
However, the observed discrepancies already show how analysing
non-Gaussianity using different statistics can provide additional
interesting information.
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Table 1. The constraints on fNL from MFs for WMAP 3-yr co-added maps, Q + V + W and V + W, at different Gaussian smoothing scales θ s (arcmin) of 40,
20 and 10 and their combination. For the calculation of their constraints, the maximum likelihood method is employed with the analytical formulae (equation 7)
and the covariance matrix of MFs estimated from 1000 Gaussian realizations. The range of ν is set from −3.6 to 3.6 with the binning number per each MF of
18. The goodness-of-fit of the analytical formulae is represented by the minimum values of χ2 value, χ2

min, and the probability with χ2 larger than χ2
min.

Q + V + W V + W
θ s (arcmin) MF d.o.f. χ2

min(Pχ2>χ2
min

) fNL χ2
min(Pχ2>χ2

min
) fNL

40 V0 17 19.2 (0.32) 429 ± 310 23.7 (0.13) 465 ± 305
40 V1 17 12.9 (0.75) −20 ± 82 16.7 (0.48) −28 ± 83
40 V2 17 8.2 (0.96) −50 ± 109 7.6 (0.97) −83 ± 109
40 All 53 46.8 (0.71) 7 ± 76 48.8 (0.64) −14 ± 77

20 V0 17 20.8 (0.24) 93 ± 198 20.7 (0.24) 105 ± 191
20 V1 17 14.0 (0.66) −29 ± 62 12.6 (0.76) −42 ± 63
20 V2 17 13.9 (0.67) 9 ± 62 10.9 (0.86) −4 ± 62
20 All 53 47.9 (0.67) −32 ± 48 49.4 (0.61) −53 ± 49

10 V0 17 9.0 (0.94) 98 ± 154 9.4 (0.93) 86 ± 149
10 V1 17 11.8 (0.81) −7 ± 61 11.3 (0.84) 5 ± 67
10 V2 17 9.9 (0.91) 0 ± 57 7.9 (0.97) −31 ± 61
10 All 53 42.4 (0.85) −10 ± 46 52.7 (0.48) −25 ± 52

10, 20 & 40 V0 53 49.0 (0.63) 8 ± 74 55.5 (0.38) −20 ± 76
10, 20 & 40 V1 53 41.4 (0.88) −20 ± 55 44.2 (0.80) −23 ± 57
10, 20 & 40 V2 53 34.8 (0.98) 5 ± 52 28.3 (1.00) −19 ± 53
10, 20 & 40 All 161 148.4 (0.75) 11 ± 40 173.2 (0.24) −22 ± 43

Table 2. Same as Table 1 but for different Nside = 64, 128 and 256 without Gaussian smoothing.

Q + V + W V + W
Nside MF d.o.f. χ2

min(Pχ2>χ2
min

) fNL χ2
min(Pχ2>χ2

min
) fNL

64 V0 17 17.5 (0.42) 357 ± 260 18.7 (0.34) 400 ± 257
64 V1 17 18.7 (0.34) 133 ± 131 19.2 (0.32) 141 ± 132
64 V2 17 12.2 (0.79) 342 ± 186 8.3 (0.96) 344 ± 187
64 All 53 46.9 (0.71) 137 ± 122 44.1 (0.80) 104 ± 123

128 V0 17 25.0 (0.09) 130 ± 165 15.5 (0.56) 92 ± 160
128 V1 17 25.5 (0.08) −24 ± 73 19.7 (0.29) −44 ± 76
128 V2 17 14.1 (0.66) −58 ± 76 16.5 (0.49) −62 ± 77
128 All 53 55.8 (0.37) −10 ± 60 41.6 (0.87) −45 ± 62

256 V0 17 7.2 (0.98) 95 ± 139 13.1 (0.73) 87 ± 118
256 V1 17 8.7 (0.95) 32 ± 81 9.4 (0.93) 91 ± 98
256 V2 17 10.1 (0.90) 40 ± 71 9.4 (0.93) −30 ± 85
256 All 53 38.1 (0.94) 26 ± 60 41.0 (0.89) −13 ± 69

256, 128 & 64 V0 53 55.9 (0.37) −44 ± 109 54.5 (0.42) −21 ± 99
256, 128 & 64 V1 53 61.4 (0.20) −15 ± 63 55.2 (0.39) −20 ± 67
256, 128 & 64 V2 53 41.5 (0.87) −7 ± 60 41.2 (0.88) −51 ± 63
256, 128 &64 All 161 165.3 (0.39) 11 ± 47 152.4 (0.67) −48 ± 48

5 SU M M A RY A N D C O N C L U S I O N S

We have presented an analysis of MFs for WMAP 3-yr temperature
maps to limit the primordial non-Gaussianity characterized by the
non-linear coupling parameter fNL. To do this, we compared per-
turbative formulae for MFs of weakly non-Gaussian fields directly
with the observations. The analytical formulae are found to be in
excellent agreement with results from non-Gaussian simulations of
CMB maps including full radiative transfer effects. The agreement
is still very good when including systematic observational effects
including the Kp0 survey mask, pixel and beam window functions,
and inhomogeneous noise distribution for WMAP 3-yr data.

We have performed a χ 2 analysis to the comparison of the an-
alytical formulae with WMAP 3-yr data. The fits of the analytical

formulae to the observations are acceptable, and we thus obtain a
robust constraint of −70 < f NL < 91 at 95 per cent C.L. from the
Q + V + W co-added maps with Gaussian filter at different scales
10, 20 and 40 arcmin combined. The result is consistent with pre-
vious results (Creminelli et al. 2007a; Spergel et al. 2007; Yadav &
Wandelt 2007).

The behaviour of the results for the V + W maps raises some
interesting issues; our constraint is negatively shifted −108 < f NL

< 64 while Yadav & Wandelt (2007) find a more positive range
27 < f NL < 147. The difference between the two results should be
clearer in the near future survey represented by Planck. It is worth
investigating this result in further detail through a careful analysis
of foregrounds and point source effects. This will be the subject of
future work.
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