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It is widely accepted that some of the most accurate Value-at-Risk (VaR) estimates are based on an appropri-

ately specified GARCH process. But when the forecast horizon is greater than the frequency of the GARCH

model, such predictions have typically required time-consuming simulations of the aggregated returns distri-

butions. This paper shows that fast, quasi-analytic GARCH VaR calculations can be based on new formulae for

the first four moments of aggregated GARCH returns. Our extensive empirical study compares the Cornish–

Fisher expansion with the Johnson SU distribution for fitting distributions to analytic moments of normal

and Student t, symmetric and asymmetric (GJR) GARCH processes to returns data on different financial as-

sets, for the purpose of deriving accurate GARCH VaR forecasts over multiple horizons and significance levels.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Since the 1996 Amendment to the Basel I Accord, Value-at-Risk

(VaR) has become the standard metric for financial risk assessment

and reporting, not only in the major banks that must now use VaR

forecasts as a basis for their assessment of market risk capital re-

serves, but also in asset management, hedge funds, mutual funds,

pension funds, corporate treasury and indeed in virtually every

large institution worldwide that has dealings in the financial markets.

As a result the academic literature on forecasting VaR is huge.1

Given the widely documented characteristics of financial asset

returns, quite complex dynamic models are needed for predicting

their distributions. A salient feature is their volatility clustering and gen-

eralised autoregressive conditional heteroscedastic (GARCH) models,

introduced by Engle (1982), Bollerslev (1986) and Taylor (1986),

have proved very successful in capturing this behaviour. Such models

can also partially explain why asset returns distributions are skewed

and leptokurtic. Some of the most influential academic research con-

cerns the use of GARCH processes to forecast VaR at the aggregate

(“top–down”) level, rather than utilizing standard (“bottom–up”) VaR

models for assessing a firm's market risk capital. A path-breaking

paper by Berkowitz and O'Brien (2002) utilizes aggregate profit and

loss data from six of the world's major banks to demonstrate a very

clearly superior accuracy in top–downGARCH-based VaR estimates rel-

ative to more traditional, bottom–up VaR estimates.2

An α% n-day VaR estimate is the loss that will not be exceeded,

with a (1 − α)% level of confidence, if the portfolio is left unmanaged

over a period of n days. When VaR is quoted as a percentage the cur-

rent portfolio value, it may therefore be derived from the α-quantile
of the n-period portfolio return distribution, as:

VaRn;α;t ¼ −F̂
−1
t;tþn αð Þ; or equivalently as ∫

−VaRn;α;t

−∞
f̂ t;tþn xð Þdx ¼ α ð1Þ

where F̂
−1
t;tþn is the time t forecast of the inverse distribution function

(also called quantile function) for the returns aggregated from time t
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2 Perignon and Smith (2010) note that historical simulation is the most widely-used

approach, based on a survey of major banks around the world. However, Alexander

and Sheedy (2008) demonstrate that historical simulation is highly inaccurate without

additional ‘filtering’—see, for example, Barone-Adesi, Bourgoin, & Giannopoulos,

(1998), and Barone-Adesi, Giannopoulos, & Vosper, (1999), where the historical VaR

methodology is augmented with a GARCH model. See also Boudoukh, Richardson,

and Whitelaw (1998), for an alternative filtering approach.
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to time t + n, and f̂ t;tþn is the corresponding density function. For the

purpose of VaR estimation the GARCH model is usually estimated using

daily data. However, for many empirical applications – and especially

for computing regulatory capital to cover market risks in banks, which

is typically based on a 10-day VaR estimate derived from daily data –

we are often interested in longer horizons. The problem is that for

n > 1 neither F̂ t;tþn nor F̂
−1
t;tþn is known in closed form (in a GARCH con-

text based on daily data) so they are obtained using simulations. This is in

accordance with Engle (2003), who argued in his Nobel lecture that sim-

ulations are required to predict the quantiles of the returns distribution

over a time horizon which is longer than the frequency of the model,

when aggregated returns are generated by a GARCH process. But simula-

tions are only asymptotically exact, so it can be very time consuming to

simulate aggregated GARCH returns distributions that allow VaR to be

forecast with a satisfactory degree of accuracy.

This computational burden has been an impediment to the adop-

tion of VaR models based on GARCH processes in practice. Further-

more, from an academic perspective, it has reduced the scope for

extensive out-of-sample tests of GARCH-based VaR forecasts.

Hence, the need arises for an alternativemethod of resolution that is

less time-consuming than simulation, while retaining the great advan-

tage of accurate GARCHmodelling. Given the frequent turmoil in finan-

cial markets and the pervasive use of the VaR metric throughout the

industry, the construction of fast, accurate and easily implemented

VaR forecasts is of significant practical and regulatory importance.

In this paper we forecast aggregated returns distributions using ana-

lytic formulae for the higher-order conditionalmoments of GARCHaggre-

gated returns. Given these moments we compare two VaR forecasts

obtained using two different methods to approximate the future returns

distribution. The importance of our paper is that it provides a means of

generating VaR forecasts based on generic, asymmetric GARCH processes

without recourse to time-consuming simulations, thus making the

GARCH VaRmethodologymore generally accessible for practical applica-

tions. We present some extensive empirical results of VaR forecasts over

different risk horizons and at different quantiles, and based on an

out-of-sample period that spans almost 13-years and includes the bank-

ing crisis as well as the current European crisis. Using the coverage tests

of Christoffersen (1998) we demonstrate that, even during crisis periods,

very accurate VaR forecasts can be generated for three broad market risk

factors: an equity index (S&P 500), a cross-currency pair (Euro/USD), and

a discount bond (3-month US Treasury bill). We also draw interesting

comparisons between our proposed methodology and two benchmark

methodologies: the first based on accurate but time consuming GARCH

simulations, the second based on the square root of time rule (SRTR)

often applied in practice for quantile (VaR) scaling.

The approach we propose is closely related to a stream of academ-

ic research on forecasting VaR. Zangari (1996) was the first to intro-

duce a parametric method for estimating VaR based on higher

moments, based on the Cornish–Fisher expansion. The Cornish–Fisher

expansion has subsequently been applied to quantile estimation by

Amenc, Martellini, and Vaissie (2003), Boudt, Peterson, and Croux

(2009), Favre and Galeano (2002), Gueyie and Amvella (2006), Mina

and Ulmer (1999), Qian (2006) and Simonato (2011). Amenc et al.

(2003), Favre and Galeano (2002) and Gueyie and Amvella (2006) all

use the resulting VaR in a portfolio optimisation setting, while Qian

(2006) employs it in a risk-budgeting application. Mina and Ulmer

(1999) compare four alternative methods for constructing an approxi-

mate delta-gamma portfolio distribution, namely Johnson distributions,

Cornish–Fisher expansion, Fourier transforms (for the moment generat-

ing function) and partial Monte Carlo. Boudt et al. (2009) derive condi-

tional VaR (also called expected tail loss, ETL) as an application of the

Edgeworth expansion,while Simonato (2011) considers VaR and ETL de-

rived for Cornish–Fisher and Cram–Charlier expansions and for Johnson

distribution approximations, in the context of Merton's (1976) model.

We estimate the first four moments of aggregated returns for

GARCH processes using formulae derived for a generic GJR-GARCH(1,1)

model by Alexander, Lazar, and Stanescu (2011), formulae which are

similar but not identical to those derived by Wong and So (2003). We

prefer to use moments of the asymmetric GJR-GARCH(1,1) process

with a generic conditional distribution, instead of the AGARCH (p, q)

model considered by Wong and So (2003), because the former model

encompasses the majority of the GARCH models that are favoured in

the financial forecasting literature: see Awartani and Corradi (2005),

Asai and McAleer (2008) and many others.

The reminder of this paper is organised as follows: Section 2 pre-

sents the theoretical methodology that we shall implement for our

empirical results and explains how analytic formulae for the first

four moments of aggregated GARCH returns can be used to approxi-

mate VaR; Section 3 presents the data and empirical results; and

Section 4 concludes.

2. Analytic approximations for GARCH VaR

We construct quasi-analytic VaR estimates that capture the im-

portant characteristics of financial asset returns (i.e. their volatility

clustering and non-normal distributions) by applying established

moment-based approximation methods to analytic formulae for the

first four conditional moments of GARCH aggregated returns.

Consider the following generic GJR specification, introduced by

Glosten et al. (1993), for the generating process of a continuously

compounded portfolio return from time t − 1 to time t, denoted rt:

rt ¼ μ þ εt ; εt ¼ zth
1=2
t ; zt∼D 0;1ð Þ;

with3

ht ¼ ω þ αε
2
t−1 þ λε

2
t−1I

−
t−1 þ β ht−1;

where ht = V(rt|Ωt − 1) is the variance of the portfolio return, condi-

tional on the information set Ωt − 1 = {rt − j, j ≥ 1}. In this specifica-

tion the conditional mean equation is as simple as possible,

containing just a constant and an error on the right hand side.4 The

conditional variance equation falls into the class of asymmetric

GARCH models when λ ≠ 0 because it contains the indicator func-

tion It − 1
− , which equals 1 if εt− b 0 and zero otherwise. This way,

the response of the conditional volatility ht to errors differs according

to whether the error is positive or negative.

TheGARCHerror εt is a disturbance process and zt is a sequence of i.i.d.

zeromean unit variance randomvariableswith distributionD(0, 1). From

henceforthwe shall allowD(0, 1) to be either a standardnormal or a stan-

dardized Student t distribution, with degrees of freedom v estimated by

maximum likelihood along with the other GARCH model parameters.

The symmetric GARCH(1,1) model is obtained by setting λ = 0. Thus

we shall consider four different possibilities for the GARCH processes

that are most appropriate for different types of asset returns, namely

the normal and Student t GJR and GARCH(1,1) models.5

The steady-state variance h of the GARCH model corresponds to

setting ε2t ¼ ht ¼ h for all t, in which case the conditional variance

equation becomes

h ¼ ω 1−φð Þ−1
;

3 We employ the standard notation α for one of the parameters (reaction) of the

GARCH models; this should not be confused with the α notation for the VaR signifi-

cance level.
4 If there is significant autocorrelation in returns then one or more lagged returns

could also be included as explanatory variables. It is not standard to use exogenous ex-

planatory variables in the conditional mean because the focus of the GARCHmodel is to

capture the clustering in volatility that is present in many time series, especially finan-

cial time series such as portfolio returns.
5 While the methodology we present is set in the context of univariate GARCH

modelling, it could be extended to a multivariate setting that can be used for portfolio

optimization, but this is beyond the scope of the current paper.
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with φ ¼ α þ 1
2λþ β.6 Note that φ captures the convergence of

the conditional variance to the steady-state h following a shock to

the error term εt. The higher the value of φ, the greater the

variance-mediated dependence between one-period returns, and

the slower the convergence of the conditional variance to its

steady-state.

The n-period future aggregated returns generated by the model

above are:

Rt;n ¼
X

n

s¼1

rtþs:

It follows immediately from the linearity of the conditional expec-

tation operator that the conditional mean of these n-period returns is

nμ. However, expressions for the variance and higher moments of the

n-period return are more complex.

Denote the first four central moments of the n-period returns as

MR,n
(i) = Et[(Rt,n − nμ)i], for i = 1, …, 4. Alexander et al. (2011) derive

exact formulae for these central moments, and the corresponding

standardized moments in a more general set-up. The following spe-

cial case of these formulae applies for the normal and Student t GJR

models that we consider:

M
2ð Þ
R;n ¼ nh þ 1−φð Þ−1

1−φ
n� �

htþ1−h
� �

; ð2Þ

M
3ð Þ
R;n ¼ 3

X

n

s¼1

X

n−s

u¼1

Et εtþsε
2
tþsþu

� �

; ð3Þ

M
4ð Þ
R;n ¼ κz

X

n

s¼1

Et h
2
tþs

� �

þ 6
X

n

s¼1

X

n−s

u¼1

Et ε
2
tþsε

2
tþsþu

� �

þ 12
X

n

s¼1

X

n−s

u¼1

X

n−s−u

v¼1

Et εtþsεtþsþuε
2
tþsþuþv

� �

; ð4Þ

where κz denotes the kurtosis of D, i.e. κz = 3 for the standard normal

and κz ¼ 3 ν−2
ν−4ð Þ for the Student t.

The expression (2) for the variance consists of two terms: the first

term nh corresponds to the variance of n-period returns when one-

period returns are independent; the second term captures the increasing

variance ofn-period returnswhen there is variance-induceddependence

in the series of one-period returns, and this increases with both φ and n.

In other words, the variance of n-period returns increases both with the

dependence between one-period returns and the aggregation period.

The third and fourth moments (3) and (4) depend on complex (but

still closed-form) expressions for the conditional co-dependences of the

errors and squared and cubed errors.7 Because we only consider a sym-

metric error distributionD, the thirdmoment of the aggregated returnde-

pends only on the co-dependence between the error at some time t + s

and its square at time t + s + u. However, the fourth moment contains

more complex error co-dependence terms, in addition to a term which

depends on the kurtosis of D. The skewness TR,n and kurtosis KR,n follow

immediately, on dividing Eq. (3) by (MR,n
(2))−3/2 and (MR,n

(2))−2 respectively.

We now present analytic approximations for Eq. (1) based on

the first four moments of aggregated GARCH returns and two quite

well-established approximation methods—namely the Cornish–Fisher

expansion and the Johnson SU distribution.8 These distributions,

which have never before been applied in the GARCH framework,

allow analytic approximations for GARCH VaR to be derived purely in

terms of the estimated GARCH model parameters.

The expression for the Cornish–Fisher VaR as a function of the first

four standardized moments of the n-day aggregated returns is:

VaR
CF
n;α;t ¼ − zα þ

TR;n
6

z
2
α−1

� �

þ
KR;n−3

� �

24
zα z

2
α−3

� �

−
T2R;n
36

zα 2z
2
α−5

� �

2

4

3

5

ffiffiffiffiffiffiffiffiffiffi

M
2ð Þ
R;n

q

−M̃
1ð Þ

R;n

ð5Þ

where zα = Φ−1(α) is the lower α-quantile of the standard normal

distribution. The Cornish–Fisher approximation is popular in empirical

applications mainly due to its speed and relative simplicity. While

expected to perform well in the vicinity of the normal, it has a number

of well-documented disadvantages: increasing the order of the approx-

imation does not necessarily improve its error, the resulting quantile

function is not necessarilymonotonic as a function of the tail probability,

and the approximation error increases at extreme quantiles.9

The other approximation method we use here, the Johnson SU dis-

tribution, differs from the Cornish–Fisher approach in that it is a prop-

er distribution rather than an expansion. A random variable x is said

to follow a Johnson SU distribution if10:

x ¼ ξþ λ sinh
z−γ

δ

� �

ð6Þ

where z is a standard normal variable. Tuenter (2001) developed a very

fast algorithm for the estimation of the four parameters δ, γ, λ and ξ. Spe-
cifically, using Tuenter's (2001) algorithm, we are matching the first four

conditionalmoments of then-period aggregatedGARCHreturns (detailed

above) to the corresponding moments of a Johnson SU distribution. Al-

though flexible, the main disadvantage of this approach is that a Johnson

SU distribution is not guaranteed to exist for any set of mean, variance,

skewness and (positive) excess kurtosis. Using Eq. (6), one can immedi-

ately write the expression for the Johnson SU VaR as:

VaR
JSU
n;α;t ¼ −λ sinh

zα−γ

δ

� �

−ξ: ð7Þ

3. Empirical methodology and results

The performance of our proposed VaR methodology is tested using

equity index (S&P 500), foreign exchange (Euro/USD) and interest rate

(3-month Treasury bill) daily data. These three series represent three

major market risk types (equity, foreign exchange and interest rate

risk, respectively) and within each class they represent themost impor-

tant risk factors in terms of volumes of exposures. The three data sets

used in this application were obtained from Datastream and each com-

prise over 20 years of daily data, from 1st January 1990 to 31st October

2012.11 Fig. 1 plots the daily log returns for the equity and exchange rate

data and the daily changes in the interest rate.12

Table 1 presents the sample statistics of the empirical uncondi-

tional distribution of returns. In accordance with stylized facts on

daily financial returns, the mean of every series is not statistically

different from zero and the unconditional volatility is highest for equity

and lowest for interest rates. The skewness is negative and low (in abso-

lute value) but significant for all three series, so that extreme negative

returns are more likely than extreme positive returns of the same

6 Of course, this expression for the steady-state variance only holds when φ ∈ (0, 1);

otherwise it is not defined. Also, for asymmetric distributions D(0, 1) replace 1
2 by the dis-

tribution function evaluated at zero.
7 Expressions for these are given in Appendix 1 of this paper.
8 See Cornish and Fisher (1937) and Fisher and Cornish (1960) for pioneering re-

sults, Hill and Davis (1968) for a generalization, and Wallace (1958) and Jaschke

(2002) for discussions of the properties of the Cornish–Fisher approximation. The

leptokurtic SU distribution was proposed by Johnson (1949); see also Bowman and

Shenton (1983).

9 See Jaschke (2002) and Wallace (1958).
10 Here we follow the notation of Tuenter (2001) for the four parameters of the Johnson

SU distribution. However, parameters λ and γ of the distribution should not be confused

with the GJR-GARCH parameter λ or the constant γ used in Section 2.
11 The Euro was introduced only in 1999, so prior to this the ECU/USD exchange rate

is used.
12 First differences in fixed maturity interest rates are the equivalent of log returns on

corresponding bonds.
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magnitude, while the excess kurtosis is always positive and highly sig-

nificant, suggesting that the unconditional distributions of the series

have more probability mass in the tails than the normal distribution.

We notice that the interest rate sample exhibits the most signifi-

cant departures from normality, while the Euro/USD series is the clos-

est to normality amongst the three we analyse.13

Four different GARCH models, namely the baseline GARCH(1,1) and

the asymmetric GJR, each with normal and Student t error distributions,

are estimated for each of the three time series.14 The estimation is

conducted in a rolling window format, where a window of ten years of

daily data (window size approximately 2500 observations) is rolled

daily for almost thirteen years. The resulting time series of model pa-

rameters are subsequently used to estimate the first four conditional

moments of aggregated returns based on the analytic formulae from

Section 2, from 3rd January 2000 to 31st October 2012, for three time

horizons: n = 5, 10, 20 working days, respectively. For the symmetric

models – the normal and Student t GARCH(1,1) – the skewness is zero

by construction. However, the asymmetric specifications – the normal

and Student t GJR – lead to non-zero skewness estimates. All four

models yield positive excess kurtosis for all horizons and all time series.

We evaluate the accuracy of the proposed VaR estimates over 5, 10

and 20-day risk horizons15 using the now standard coverage tests of

Christoffersen (1998).16 We combine the four different GARCH

models with two approximation methods, the Johnson SU distribu-

tion and the Cornish–Fisher expansion, and derive the VaR estimates

for each GARCH model, and for each approximation method, and for

α = 10%, 5%, 1% and 0.1%.

Tables 2–4 summarize the results of the likelihood ratio (LR) tests

for the unconditional coverage, independence and conditional cover-

age for log returns (or, in the case of Treasury bill rates, absolute

changes) aggregated over horizons of n = 5, 10 and 20 working days.

3.1. S&P 500

The results in Table 2 show that the model that performs best

across all horizons, significance levels and approximation methods

is the normal GJR, incurring the smallest number of rejections (and

sometimes only marginal rejections) in the coverage tests. The Stu-

dent t GJR also performs very well, especially when coupled with

13 We also note that all series are stationary (ADF test statistics are highly significant)

and exhibit ARCH effects (highly significant ARCH test statistics).
14 Based on the BIC and AIK information criteria, an AR(3) model was used to remove

the autocorrelation in the data for the 3-month Treasury bill sample, while for the S&P

500 sample an AR(2) suffices to remove all autocorrelation in the returns; in what fol-

lows, estimation and testing are based on the residuals from these regressions for the

two samples. No autocorrelation was found in the foreign exchange data.
15 To avoid using overlapping observations, as this would violate the independence as-

sumption for the indicator process in the unconditional coverage test, we use only every

n-th set of parameter/moments estimates, where n is either 5, 10 or 20 working days.
16 These tests are described in Appendix 2. See also Kupiec (1995) for earlier related

results and Sarma, Thomas, and Shah (2003) for a critical discussion of the methodol-

ogy as well as an empirical implementation.

01/1990 01/1992 01/1994 01/2006 01/1998 01/2000 01/2002 01/2004 01/2006 01/2008 01/2010 01/2012
−0.15

−0.1

−0.05

0

0.05

0.1

0.15
(a) S&P 500 returns

01/1990 01/1992 01/1994 01/1996 01/1998 01/2000 01/2002 01/2004 01/2006 01/2008 01/2010 01/2012

−0.05

0

0.05
(b) Euro/USD returns 

01/1990 01/1992 01/1994 01/1996 01/1998 01/2000 01/2002 01/2004 01/2006 01/2008 01/2010 01/2012

−0.01

0

0.01
(c) 3−month Treasury bill daily changes

Fig. 1. Returns. The equity and exchange rate daily returns are computed as the first differences in the log of the S&P 500 index values and Euro/USD exchange rates, respectively. The in-

terest rate daily changes are computed as first differences in interest rate values. All returns (daily changes) are computed over the period 1st January 1990 to 31st October 2012.

Table 1

Summary statistics. The summary statistics are of the equity and exchange rate daily

log returns, and of the daily changes in interest rates from 1st January 1990 to 31st

October 2012. Asterisks denote significance at 10% (*), 5% (**) and 1% (***). The stan-

dard error of the sample mean is equal to the (sample) standard deviation, divided

by the square root of the sample size. The standard errors are approximately (6/T)1/2

and (24/T)1/2 for the sample skewness and excess kurtosis, respectively, where T is

the sample size. We used 252 risk days per year to annualize the standard deviation

into volatility. ADF is the Augmented Dickey Fuller test statistic. ARCH test is Engle's

test for ARCH effects.

S&P 500 Euro/USD 3-Month Treasury bill

Mean 0.0233% −0.0002% −0.0013%

Maximum 10.96% 3.84% 0.76%

Minimum −9.47% −4.62% −0.81%

Volatility 18.32% 10.03% 0.84%

Skewness −0.2295*** −0.0915*** −0.62662***

Excess kurtosis 8.8602*** 2.4270*** 41.28672***

ADF −81.9684*** −75.4894*** −15.0652***

ARCH test 262.8835*** 35.2867*** 282.6141***

39C. Alexander et al. / International Review of Financial Analysis 30 (2013) 36–45
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the Cornish–Fisher approximation. Also, none of the models is

rejected in the independence test for this sample, across all horizons

and significance levels. For the 5- and 10-day horizons, we notice

that while there are inter-model differences in terms of the test re-

sults obtained for different GARCH specifications, the results obtained

by combining the same GARCH model with different approximation

methods are either very similar (for the normal models) or slightly

better with the Johnson SU approximation in most cases. Actually,

the only GARCH model which yields better results when coupled

with the Cornish–Fisher approximation than with the Johnson SU is

the Student t GJR. At the 20-day horizon, results are similar across

all GARCH models and approximation methods, with good perfor-

mance at the lower significance levels, but rejections in the coverage

tests for higher significance levels. Bearing in mind that these are

out-of-sample results we can argue that our methodology is indeed

accurate.

3.2. Euro/USD

The Euro/USD sample displays the least significant non-normality

features, and the results in Table 3 are even better for this sample.

Again, none of the normal models are rejected in the independence

test, across all horizons and significance levels, while the Student

t models are only rejected in the independence test for the 10%

10-day VaR. Overall, the normal models perform slightly better than

the Student t models, and the Johnson SU distribution is the margin-

ally better approximation of the two.

3.3. 3-Month Treasury bill

Interest rates tend to remain stable for a period of time and then

move in discrete jumps. Hence, the 3-month Treasury bill sample is

the one exhibiting the most pronounced non-normalities. Despite

this, the results for this sample in Table 4 indicate that our methodol-

ogy still performs well; however, out of the three samples we analyse,

this is the only one for which the models incur a number of rejections

in the independence tests.17 For the 20-day horizon we find that the

normal GARCH(1,1) and normal GJR produce no rejections in the cov-

erage tests across all significance levels and approximation methods;

for the 5- and 10-day horizons, no model performs perfectly.

17 We also note that for this sample the degrees of freedom parameter for the Student

t models is constrained (v = 6) in order to ensure that the kurtosis exists and is finite.

Table 2

Coverage tests for the S&P 500 index. Christoffersen's (1998) likelihood ratio tests for correct conditional coverage for the S&P 500 returns at horizons n = 5, 10 and 20 working

days. Rejections of the null – of correct coverage – are marked with (*), (**) and (***) for the 10%, 5% and 1% significance levels, respectively. Empty entries indicate that no

exceedances were recorded.

Cornish–Fisher VaR Johnson SU VaR

Signif. level Coverage test Normal Student t Normal Student t Normal Student t Normal Student t

GARCH(1,1) GARCH(1,1) GJR GJR GARCH(1,1) GARCH(1,1) GJR GJR

n = 5

0.1% LRuc 7.6708*** 1.7251 4.3566** 0.1431 7.6708*** 1.7251 4.3566** 4.3566**

LRind 0.0000 0.0000 0.0000 0.0006 0.0000 0.0000 0.0000 0.0000

LRcc 7.6708** 1.7251 4.3566 0.1437 7.6708** 1.7251 4.3566 4.3566

1% LRuc 7.7331*** 3.4618* 2.3614 0.2478 7.7331*** 6.1596** 2.3614 0.7341

LRind 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

LRcc 7.7331** 3.4618 2.3614 0.2478 7.7331** 6.1596** 2.3614 0.7341

5% LRuc 6.7466*** 9.3901*** 1.7027 2.1626 6.7466*** 9.3901*** 1.7027 3.2338*

LRind 0.5809 0.2479 2.0985 1.9634 0.5809 0.2479 2.0985 1.4762

LRcc 7.3274** 9.6380*** 3.8012 4.1261 7.3274** 9.6380*** 3.8012 4.7100*

10% LRuc 3.1629* 8.8539*** 0.8362 3.6102* 3.1629* 5.6746** 0.8362 3.6102*

LRind 1.2284 1.3423 0.8800 0.6485 1.2284 1.3054 0.8800 0.6485

LRcc 4.3913 10.1963*** 1.7161 4.2587 4.3913 6.9800** 1.7161 4.2587

n = 10

0.1% LRuc 7.8768*** 3.8454** 3.8454** 3.8454** 12.5717*** 0.8666 3.8454** 3.8454**

LRind 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

LRcc 7.8768** 3.8454 3.8454 3.8454 12.5717*** 0.8666 3.8454 3.8454

1% LRuc 8.7881*** 6.6546*** 3.1021* 1.7471 6.6200** 6.6546*** 3.1021* 3.1021*

LRind 1.1116 1.4504 2.3509 0.0000 0.0000 1.4504 2.3509 2.3509

LRcc 9.8997*** 8.1050** 5.4530* 1.7471 6.6200** 8.1050** 5.4530* 5.4530*

5% LRuc 3.8456** 3.8456** 1.1088 1.6508 2.2499 3.8456** 1.1088 1.6508

LRind 0.0093 0.0093 0.0978 0.1796 0.1149 0.0093 0.0978 0.1796

LRcc 3.8549 3.8549 1.2066 1.8304 2.3647 3.8549 1.2066 1.8304

10% LRuc 1.0334 3.5063* 0.0571 0.7083 0.0840 2.3525 0.0571 0.7083

LRind 0.5372 0.3846 0.5126 0.0151 0.0343 0.1671 0.5126 0.0151

LRcc 1.5707 3.8908 0.5697 0.7233 0.1183 2.5195 0.5697 0.7233

n = 20

0.1% LRuc 1.9277 – – – 1.9277 – – –

LRind 0.0022 – – – 0.0022 – – –

LRcc 1.9300 – – – 1.9300 – – –

1% LRuc 2.3893 0.0660 0.3090 0.3090 2.3893 0.8817 0.3090 0.0660

LRind 0.0000 0.0000 0.0023 0.0022 0.0000 0.0000 0.0023 0.0000

LRcc 2.3893 0.0660 0.3113 0.3112 2.3893 0.8817 0.3113 0.0660

5% LRuc 12.6694*** 12.6694*** 3.4470* 5.9849** 12.6694*** 12.6694*** 3.4470* 5.9849**

LRind 0.1530 0.1530 0.4494 0.0932 0.1530 0.1530 0.4494 0.0932

LRcc 12.8224*** 12.8224*** 3.8964 6.0781** 12.8224*** 12.8224*** 3.8964 6.0781**

10% LRuc 7.3698*** 8.6167*** 5.1363** 7.3698*** 7.3698*** 8.6167*** 5.1363** 7.3698***

LRind 1.1768 1.5816 1.9375 2.6874 1.1768 1.5816 1.9375 2.6874

LRcc 8.5466** 10.1983*** 7.0738** 10.0572*** 8.5466** 10.1983*** 7.0738** 10.0572***
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3.4. Comparisons with other GARCH VaR methodologies

3.4.1. Comparisons with the square root of time rule

In a GARCH model, one-step ahead returns have distribution D

(i.e. the conditional error distribution), hence, in the GARCH set-up

introduced in Section 2, 1-day VaR, for any significance level α, is
given by:

VaR1;α;t ¼ −
ffiffiffiffiffiffiffiffiffi

htþ1

q

D
−1

αð Þ þ μ

� �

where D−1 is the inverse distribution (or quantile) function of the

error distribution D and ht + 1 is the one-step ahead variance forecast.

The square root of time rule (SRTR), often used in practice for the

scaling of quantiles (or VaR estimates),18 implies:

VaRh;α;t ¼
ffiffiffi

h
p

VaR1;α;t :

The results obtained in the Christoffersen tests for the VaR esti-

mates based on the normal GARCH(1,1) model and the square root

of time rule are reported in Table 5. The sample used is the same as

before, ranging from 1st January 1990 to 31st October 2012, where

a window of ten years of daily data (window size approximately

2500 observations) is rolled daily for almost thirteen years. By com-

paring the results from Table 5 with the corresponding results from

Tables 2–4 (columns 3 and 7), we notice that the superiority of our

proposed methodology is most apparent for the 3-month Treasury

Bill rate sample. Indeed, by comparing the results in Table 4, columns

3 and 7, we notice that our proposed methodology is only once

rejected in the tests for unconditional coverage (for the 10-day 0.1%

VaR), while for the same sample the VaR estimates based on the

SRTR incur six additional rejections in the unconditional coverage

tests (Table 5, column 5).

3.4.2. Comparisons with simulated GARCH VaR

Since the true distribution function is not known in analytical

form, the GARCH VaR for horizons longer than the frequency of the

model is obtained via simulations, which are (asymptotically) accu-

rate. Hence, for a large enough number of simulations we expect

the simulated VaR to be a good estimate of the true quantile, and

thus a good measure to compare our quasi-analytical, faster VaR

estimates. Therefore we selected 150 days (and corresponding esti-

mation windows) from a low volatility period (January to August

18 For an interesting and detailed examination of the accuracy of the SRTR for

quantile scaling, see Wang, Yeh, and Cheng (2011).

Table 3

Coverage tests for the Euro/USD exchange rate. Christoffersen's (1998) likelihood ratio tests for correct conditional coverage for the Euro/dollar returns at horizons n = 5, 10 and 20

working days. Rejections of the null – of correct coverage – are marked with (*), (**) and (***) for the 10%, 5% and 1% significance levels, respectively. Empty entries indicate that no

exceedances were recorded.

Cornish–Fisher VaR Johnson SU VaR

Signif. level Coverage test Normal Student t Normal Student t Normal Student t Normal Student t

GARCH(1,1) GARCH(1,1) GJR GJR GARCH(1,1) GARCH(1,1) GJR GJR

n = 5

0.1% LRuc – – – – – – – –

LRind – – – – – – – –

LRcc – – – – – – – –

1% LRuc 4.5692** 4.5692** 4.5692** 4.5692** 4.5692** 4.5692** 4.5692** 4.5692**

LRind 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

LRcc 4.5692 4.5692 4.5692 4.5692 4.5692 4.5692 4.5692 4.5692

5% LRuc 0.0113 0.0795 0.0051 0.0113 0.0113 0.0795 0.0051 0.0795

LRind 0.0288 0.6334 0.9535 0.7844 0.0288 0.6334 0.9535 0.6334

LRcc 0.0401 0.7129 0.9586 0.7957 0.0401 0.7129 0.9586 0.7129

10% LRuc 0.1680 3.1629* 0.1680 3.6102* 0.1680 1.9909 0.1680 1.9909

LRind 0.0517 0.1421 0.0517 0.4024 0.0517 0.4195 0.0517 0.4195

LRcc 0.2196 3.3050 0.2196 4.0126 0.2196 2.4104 0.2196 2.4104

n = 10

0.1% LRuc – – – – – – – –

LRind – – – – – – – –

LRcc – – – – – – – –

1% LRuc 0.7331 0.0342 0.7331 0.0342 0.7331 0.1279 0.7331 0.0342

LRind 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

LRcc 0.7331 0.0342 0.7331 0.0342 0.7331 0.1279 0.7331 0.0342

5% LRuc 0.9080 0.4683 0.9080 0.4683 0.9080 0.4683 0.9080 0.4683

LRind 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

LRcc 0.9080 0.4683 0.9080 0.4683 0.9080 0.4683 0.9080 0.4683

10% LRuc 0.0030 1.0334 0.0030 0.7083 0.0030 0.7083 0.0030 0.7083

LRind 1.0025 6.7323*** 2.3680 5.2553** 1.0025 5.2553** 2.3680 5.2553**

LRcc 1.0056 7.7657** 2.3710 5.9636* 1.0056 5.9636* 2.3710 5.9636*

n = 20

0.1% LRuc – – – – – – – –

LRind – – – – – – – –

LRcc – – – – – – – –

1% LRuc 0.8817 0.8817 0.8817 0.8817 0.8817 2.3893 0.8817 2.3893

LRind 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

LRcc 0.8817 0.8817 0.8817 0.8817 0.8817 2.3893 0.8817 2.3893

5% LRuc 4.6426** 4.6426** 4.6426** 4.6426** 4.6426** 4.6426** 4.6426** 4.6426**

LRind 0.1219 0.1219 0.1219 0.1219 0.1219 0.1219 0.1219 0.1219

LRcc 4.7645* 4.7645* 4.7645* 4.7645* 4.7645* 4.7645* 4.7645* 4.7645*

10% LRuc 1.2059 2.4784 1.2059 2.4784 1.2059 2.4784 1.2059 2.4784

LRind 0.8031 1.2469 0.8031 1.2469 0.8031 1.2469 0.8031 1.2469

LRcc 2.0090 3.7253 2.0090 3.7253 2.0090 3.7253 2.0090 3.7253
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2006) and 150 days (and corresponding estimation windows) from a

high volatility period (August 2008 to March 2009) for which we also

computed the simulated GARCH VaR, for a 5-day horizon, using simula-

tions from thenormalGARCH(1,1). Fig. 2 plots the percentage differences

between the Cornish–Fisher VaR and the corresponding simulated

VaR for the normal GARCH(1,1) model. The percentage differences

are computed as (Cornish–Fisher VaR − Simulated VaR) / Simulated

VaR, where the VaRs are obtained for four different significance levels:

α = 0.1%, 1%, 5% and 10%. The corresponding average percentage differ-

ences are 0.50%, 0.06%, 0.08% and−0.23%, for the four significance levels,

respectively.

To give an example of the speed of our methodology relative to

Monte Carlo simulation, on a PC with Intel i5-650 (dual core) and

4Gb RAM using Excel 2010 VBA, the time recorded for computing

the Student t GJR-GARCH VaR estimates for a 10-day horizon using

our quasi-analytic methodology was only 0.254 s. By comparison, to

compute the 10-day VaR based on 10,000 Monte Carlo simulation

took 13 s. That is, our methodology is at least 50 times faster than

the standard simulation-based VaR estimation and the computation

time ratio would be greater for VaR computations over longer hori-

zons. Moreover, 10,000 is typically regarded as the minimum number

of simulations to be used for a passable degree of accuracy, and the

time would be extrapolated linearly as the number of simulations in-

creases. Therefore, the methodology we propose appears to yield re-

sults which are very similar to the asymptotically accurate but time

consuming method based on GARCH simulations.

4. Conclusions

This paper demonstrates empirically that quasi-analytic GARCH

VaR forecasts can be accurately constructed using analytic formulae

for higher moments of aggregated GARCH returns. The great accuracy

of our results for all time-horizons and significance levels that we

considered shows that time-consuming simulations are no longer

needed for GARCH VaR forecasting.

Based on their occurrence in the related literature and on the fea-

sibility of obtaining fast, analytic formulae for the associated VaRs, we

selected two alternative moment-based approximation methods,

namely the Cornish–Fisher expansion and the Johnson SU distribu-

tion. A comprehensive testing exercise used very long time series of

financial returns representing three major sources of market risk,

namely equity (S&P 500), foreign exchange (Euro/USD) and interest

Table 4

Coverage tests for the 3-month Treasury bill. Christoffersen's (1998) likelihood ratio tests for correct conditional coverage for the changes in the 3-month Treasury bill rate at ho-

rizons n = 5, 10 and 20 working days. Rejections of the null – of correct coverage – are marked with (*), (**) and (***) for the 10%, 5% and 1% significance levels, respectively. Empty

entries indicate that no exceedances were recorded.

Cornish–Fisher VaR Johnson SU VaR

Signif level Coverage test Normal Student t Normal Student t Normal Student t Normal Student t

GARCH(1,1) GARCH(1,1) GJR GJR GARCH(1,1) GARCH(1,1) GJR GJR

n = 5

0.1% LRuc 1.7251 1.7251 1.7251 1.7251 1.7251 4.3566 1.7251 1.7251

LRind 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

LRcc 1.7251 1.7251 1.7251 1.7251 1.7251 4.3566 1.7251 1.7251

1% LRuc 0.0152 0.0152 0.4675 0.0724 0.0152 0.2478 0.4675 0.0152

LRind 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

LRcc 0.0152 0.0152 0.4675 0.0724 0.0152 0.2478 0.4675 0.0152

5% LRuc 1.2948 1.7027 0.0626 0.6397 1.2948 1.7027 0.0795 1.2948

LRind 13.1609*** 12.3616*** 5.7291** 14.8694*** 13.1609*** 12.3616*** 7.0142*** 13.1609***

LRcc 14.4556*** 14.0643*** 5.7917* 15.5092*** 14.4556*** 14.0643*** 7.0937** 14.4556***

10% LRuc 2.4494 0.0007 6.4537** 0.0107 2.8970* 0.5746 6.4537** 1.0492

LRind 13.6205*** 17.6564*** 7.6601*** 15.7522*** 11.5822*** 20.3874*** 7.6601*** 19.1786***

LRcc 16.0699*** 17.6570*** 14.1138*** 15.7629*** 14.4791*** 20.9620*** 14.1138*** 20.2278***

n = 10

0.1% LRuc 3.8454** 3.8454** 0.8666 3.8454** 3.8454** 3.8454** 3.8454** 3.8454**

LRind 0.0000 0.0000 0.0011 0.0000 0.0000 0.0000 0.0000 0.0000

LRcc 3.8454 3.8454 0.8677 3.8454 3.8454 3.8454 3.8454 3.8454

1% LRuc 0.7331 1.7471 0.6261 0.7331 0.7331 1.7471 0.0342 0.7331

LRind 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

LRcc 0.7331 1.7471 0.6261 0.7331 0.7331 1.7471 0.0342 0.7331

5% LRuc 1.5079 0.4683 4.4102** 0.4683 1.5079 0.4683 3.2423* 0.4683

LRind 0.5992 2.3845 0.0000 2.3845 0.5992 2.3845 0.0000 2.3845

LRcc 2.1071 2.8527 4.4102 2.8527 2.1071 2.8527 3.2423 2.8527

10% LRuc 0.3746 0.2376 2.4937 0.0030 1.9084 0.3746 4.7821 0.3746

LRind 9.0732*** 19.1907*** 10.7328*** 19.7387*** 6.5143** 20.1835*** 6.6066** 12.3606***

LRcc 9.4478*** 19.4284*** 13.2265*** 19.7418*** 8.4227** 20.5581*** 11.3887*** 12.7352***

n = 20

0.1% LRuc 1.9277 1.9277 – 1.9277 1.9277 1.9277 1.9277 1.9277

LRind 0.0022 0.0022 – 0.0022 0.0022 0.0022 0.0022 0.0022

LRcc 1.9300 1.9300 – 1.9300 1.9300 1.9300 1.9300 1.9300

1% LRuc 0.3090 2.3893 0.3090 2.3893 2.3893 4.4145** 0.0660 2.3893

LRind 0.0022 0.0000 0.0022 0.0000 0.0000 0.0000 0.0000 0.0000

LRcc 0.3112 2.3893 0.3112 2.3893 2.3893 4.4145 0.0660 2.3893

5% LRuc 0.0606 0.3450 0.7394 0.0115 0.0606 0.3450 0.2259 0.0606

LRind 0.4756 2.4559 0.0000 0.7818 0.4756 2.4559 1.1876 0.4756

LRcc 0.5362 2.8009 0.7394 0.7933 0.5362 2.8009 1.4135 0.5362

10% LRuc 0.1280 0.7312 0.0244 0.7312 0.4753 0.3701 2.3542 0.1280

LRind 2.2221 5.4431** 0.1550 5.4431** 2.2221 6.5278** 0.1052 7.7423***

LRcc 2.3502 6.1743** 0.1794 6.1743** 2.6975 6.8979** 2.4593 7.8703**
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rate risk (3-month Treasury bill). We applied the Cornish–Fisher ex-

pansion and the Johnson SU distribution to four different GARCH

specifications (normal and Student t GARCH(1,1) and GJR) to test

and compare eight alternative VaR models. VaR was estimated at

four significance levels (0.1%, 1%, 5%, and 10%) and for time horizons

of 5, 10 and 20 days.

Our quasi-analytic GARCH VaR estimation is at least 50 times faster

than the standard simulation-based estimation procedure and our esti-

mates are very accurate. We test the accuracy of our methodology for

VaR estimation using the likelihood ratio tests for conditional coverage,

proposed by Christoffersen (1998). The Johnson SU distribution per-

forms marginally better than the Cornish–Fisher expansion overall. Yet

none of the tests are rejected very often. When they are it is generally

due to inappropriate unconditional coverage and rarely (and almost ex-

clusively for the interest rate sample only) due to rejections in the inde-

pendence tests. In fact, especially at higher confidence levels, themodels

often yield no consecutive violations. Our results are evenmore remark-

able when we consider that the analysis is entirely out-of-sample and

that the testing period (2000–2012) contains several years of excessive-

ly turbulent financial markets.

Appendix 1

Define the following constants:γ ¼ φ2 þ κz−1ð Þ α þ 1

2
λ

� �2
þ 1

4κzλ
2;

a ¼ ω2 þ 2ωφh
� �

1−γð Þ−1; b ¼ 2ωφ htþ1−h
� �

φ−γð Þ−1; and c ¼

λ ∫
0

z¼−∞
z3f zð Þdz; where f is the density function of D(0, 1), and for the

two standard cases for D that we consider:

∫
0

z¼−∞
z
3
f zð Þdz ¼

−
ffiffiffi

2

π

r

for D 0;1ð Þ ¼ N 0;1ð Þ; standard

− 2
ffiffiffi

π
p ν−2ð Þ3=2

ν−1ð Þ ν−3ð Þ
Γ ν þ 1

2

� �

Γ ν
2ð Þ for D 0;1ð Þ ¼ standardized

8

>

>

>

<

>

>

>

:

ð8Þ
Then, for the GARCH model given in Section 2 we have:

1. Et htþs

� �

¼ h þ φ
s−1

htþ1−h
� �

;

Table 5

Coverage tests for normal GARCH(1,1) VaR measures using the square root of time rule.

Christoffersen's (1998) likelihood ratio tests for correct conditional coverage for the

returns on the S&P 500 and Euro/USD exchange rates and for the changes in the

3-month Treasury bill rate at horizons n = 5, 10 and 20 working days. Rejections of

the null – of correct coverage – are marked with (*), (**) and (***) for the 10%, 5%

and 1% significance levels, respectively. Empty entries indicate that no exceedances

were recorded.

Signif. level Coverage test S&P 500 Euro/USD 3-Month Treasury bill

n = 5

0.1% LRuc 15.7214*** – 7.6708***

LRind 0.0000 – 0.0000

LRcc 15.7214*** – 7.6708**

1% LRuc 7.7331*** 4.5833** 0.7341

LRind 0.0000 0.0000 0.0000

LRcc 7.7331** 4.5833 0.7341

5% LRuc 4.4997** 0.0095 0.0795

LRind 1.0646 2.6570 13.7492***

LRcc 5.5643* 2.6664 13.8286***

10% LRuc 1.0801 0.4226 6.4537**

LRind 0.3677 0.0195 7.6601***

LRcc 1.4478 0.4421 14.1138***

n = 10

0.1% LRuc 17.8223*** – 12.5938***

LRind 0.0000 – 0.0000

LRcc 17.8223*** – 12.5938***

1% LRuc 8.7881*** 0.7331 1.7471

LRind 1.1116 0.0000 0.0000

LRcc 9.8997*** 0.7331 1.7471

5% LRuc 3.0230* 0.9080 2.2810

LRind 0.0470 0.0000 0.8305

LRcc 3.0700 0.9080 3.1115

10% LRuc 0.0950 0.2376 5.7346**

LRind 0.0343 1.2780 1.8584

LRcc 0.1293 1.5156 7.5929**

n = 20

0.1% LRuc 1.9277 – 11.7470***

LRind 0.0022 – 0.0000

LRcc 1.9300 – 11.7470***

1% LRuc 2.3893 2.3893 4.4145**

LRind 0.0000 0.0000 0.0000

LRcc 2.3893 2.3893 4.4145

5% LRuc 7.4656*** 4.6426** 0.2259

LRind 0.0163 0.1219 1.1876

LRcc 7.4819** 4.7645* 1.4135

10% LRuc 3.2680* 0.7312 1.5523

LRind 1.1270 0.0942 1.3238

LRcc 4.3950 0.8254 2.8761
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Fig. 2. Percentage differences between the Cornish–Fisher and simulated normal GARCH(1,1) VaRs. Percentage differences are computed as (Cornish–Fisher VaR − Simulated

VaR) / Simulated VaR, where the VaRs are computed at four different significance levels: α = 0.1%, 1%, 5% and 10%, for 150 days (and corresponding estimation windows) from

a low volatility period (January to August 2006) and 150 days (and corresponding estimation windows) from a high volatility period (August 2008 to March 2009).
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Appendix 2. LR tests

To evaluate the accuracy of our quasi-analytic GARCH VaR we

apply the coverage (or ‘likelihood ratio’ (LR)) tests for VaR accuracy

introduced by Kupiec (1995) and extended by Christoffersen (1998)

and others. These are statistical tests based on VaR exceedances that

have become standard in the applied financial economics literature

and are now the most frequently used statistical tool for evaluating

the performance of VaR models. A VaR exceedance occurs when we

observe a loss that is more severe than predicted by the respective

VaR; in other words, the actual loss exceeds the corresponding

VaR forecast. A good VaR model is one that produces a percentage

of exceedances (out of the total number of observations in the

backtesting period) that is not statistically significant from the signif-

icance level (α) of the VaR. Given a backtesting sample of T

non-overlapping observations, Christoffersen's conditional coverage

LR test (LRcc; α) asserts that a good VaR model is one that produces

a series of indicator functions.

It;α

n o

T

t¼1
≡ I

Rtnb−VaRn;α;t

n o

T

t¼1

which are Bernoulli (α) i.i.d. He also proved that:

LRcc;α ¼ LRuc;α þ LRind;α

where LRuc; α tests for the correct unconditional coverage, given that

{It}t = 1
T is independent, while LRind; α tests for the independence of

this series, against the alternative of first order Markov dependence.

He also derives the following test statistics and their respective distri-

butions under the null to make the concepts operational:

LRuc;α ¼ −2 ln
1−α

1−πα

� �

n0;α α

πα

� �

n1;α
� �

∼χ2 1ð Þ

LRind;α ¼ −2 ln
1−π2;α

� �

n00;αþn10;α
π
n01;αþn11;α
2;α

1−π01;α

� �

n00;α
π
n01;α
01;α 1−π11;α

� �

n10;α
π
n11;α
11;α

0

@

1

A∼χ2 1ð Þ

LRcc;α ¼ LRuc;α þ LRind;α∼χ2 2ð Þ

where in an empirical implementation L̂Ruc;α , L̂Rind;α , and L̂Rcc;α are

obtained for:

n1;α ¼
X

T

t¼1

Î t;α ; n0;α ¼ T−n1;α ; π̂α ¼
n1;α

T
; nij;α ¼

X

T

t¼1

Ĵ ij;t;α

π̂01;α ¼
n01;α

n00;α þ n01;α

; π̂11;α ¼
n11;α

n10;α þ n11;α

þ;

π̂2;α ¼
n01;α þ n11;α

n00;α þ n10;α þ n01;α þ n11;α

Î t;α ¼ I rtnb−VâRn;α;t

� �

;

Ĵ ij;t;α ¼ I Î t−1;α ¼ i∩Î t;α ¼ j
� �

; i; j ¼ 0;1

where rtn are the sample realizations of the random variable Rtn.
19

LRuc;α is essentially a simple hypothesis test: the null hypothesis is

that the difference between the empirical exceedance rate and the

desired level α is zero. LRind;α on the other hand tests the null hypoth-

esis that the exceedances are i.i.d. against the alternative that they

exhibit some form of dependence (or clustering), in this case driven

by a first order Markov process. By also taking into account the clus-

tering of exceedances, as well as the number of times the VaR is

exceeded, LRcc;α is a joint test of correct coverage and independence

of exceedances, i.e. correct conditional coverage.
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