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THE VALUATION OF CLEAN SPREAD OPTIONS: LINKING ELECTRICITY,

EMISSIONS AND FUELS

RENÉ CARMONA, MICHAEL COULON, AND DANIEL SCHWARZ

Abstract. The purpose of the paper is to present a new pricing method for clean spread options,
and to illustrate its main features on a set of numerical examples produced by a dedicated computer
code. The novelty of the approach is embedded in the use of a structural model as opposed to
reduced-form models which fail to capture properly the fundamental dependencies between the
economic factors entering the production process.

1. Introduction

Spread options are most often used in the commodity and energy markets to encapsulate the
profitability of a production process by comparing the price of a refined product to the costs of
production including, but not limited to, the prices of the inputs to the production process. When
the output commodity is electric power, such spread options are called spark spreads when the
electricity is produced from natural gas, and dark spreads when the electricity is produced from
coal. Both processes are the sources of GreenHouse Gas (GHG) emissions, in higher quantities for
the latter than the former. In this paper we concentrate on the production of electricity and CO2

emissions and the resulting dependence structure between prices.

Market mechanisms aimed at controlling CO2 emissions have been implemented throughout the
world, and whether they are mandatory or voluntary, cap-and-trade schemes have helped to put a
price on carbon in Europe, the US, and around the world. In the academic literature, equilibrium
models have been used to show what practitioners have known all along, namely that the price put
on CO2 by the regulation should be included in the costs of production to set the price of electricity
(cf. [8]).

Strings of spark spread options (options on the spread between the price of 1MWh of electricity
and the cost of the amount of natural gas needed to produce such a MWh) with maturities covering
a given period are most frequently used to value the optionality of a gas power plant which can be
run when it is profitable to do so (namely when the price of electricity is greater than the cost of
producing it), and shut down otherwise. In a nutshell, if an economic agent takes control on day t
of a gas power plant for a period [T1, T2], then for every day τ ∈ [T1, T2] of this period, he or she
can decide to run the power plant when Pτ > hgS

g
τ + K, booking a profit Pτ − hgS

g
τ − K for each

unit of power produced, and shut the plant down if Pτ ≤ hgS
g
τ + K. Here Pτ denotes the price

at which one unit (1 MWh) of power can be sold on day τ , Sg
τ the price of one unit of natural

gas (typically one MMBtu), hg the efficiency or heat rate of the plant (i.e. the number of units of
natural gas needed to produce one unit of electricity) and K the daily (fixed) costs of operations
and maintenance of the plant. Ignoring constraints such as ramp-up rates and start-up costs, this
scheduling is also automatically induced when generators bid at the level of their production costs
in the day-ahead auction for power. So in this somewhat oversimplified analysis of the optionality
of the plant, the value at time t of the control of the plant operation on day τ can be expressed as
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e−r(τ−t)E[(Pτ − hgS
g
τ − K)+|Ft], where as usual, the exponent + stands for the positive part, i.e.

x+ = x when x ≥ 0 and x+ = 0 otherwise, r for the constant interest rate used as discount factor
to compute present values of future cash flows, and Ft denotes the information available on day t
when the conditional expectation is actually computed. So the operational control (for example as
afforded by a tolling contract) of the plant over the period [T1, T2] could be valued on day t as

V PP
t =

T2
∑

τ=T1

e−r(τ−t)E[(Pτ − hgS
g
τ − K)+|Ft].

This rather simplistic way of valuing a power generation asset in the spirit of the theory of real
options, had far-reaching implications in the developments of the energy markets, and is the main
reason why spread options are of the utmost importance. However, such a valuation procedure is
flawed in the presence of emission regulation as the costs of production also have to include the
costs specific to the regulation. To be more specific, the day-τ potential profit (Pτ −hgS

g
τ −K)+ of

the spark spread has to be modified to (Pτ −hgS
g
τ − egAτ −K)+ in order to accommodate the cost

of the regulation. Here Aτ is the price of one allowance certificate worth one ton of CO2 equivalent,
and eg is the emission coefficient of the plant, namely the number of tons of CO2 emitted by the
plant during the production of one unit of electricity. Such a spread is often called a clean spread
to emphasize the fact that the externality is being paid for, and the real option approach to power
plant valuation leads to the following clean price

V CPP
t =

T2
∑

τ=T1

e−r(τ−t)E[(Pτ − hgS
g
τ − egAτ − K)+|Ft]

for the control of the plant over the period [T1, T2] in the presence of the regulation.

In order to price such cross-commodity derivatives, a joint model is clearly required for fuel prices,
electricity prices and carbon allowance prices. Various studies have analyzed the strong links
between these price series (cf. [16, 22]). Many reduced-form price models have been proposed for
electricity (cf. [4, 17] for a review) with a focus on capturing its stylized features such as seasonality,
high volatility, spikes, mean-reversion and fuel price correlation. On the other hand, many authors
have argued that these same features are better captured via a structural approach, modelling the
dynamics of underlying factors such as demand (load), capacity and fuel prices (early examples
include [3, 12, 26, 15]).

Similarly, for carbon emission allowances, exogenously specified processes that model prices directly
have been proposed by some (cf. [9]). Others have instead treated the emission process as the
exogenously specified underlying factor; in this case the allowance certificate becomes a derivative on
cumulative emissions (cf. [27, 13]). However, these models do not take into account the important
feedback from the allowance price to the rate at which emissions are produced in the electricity
sector — a feature, which is crucial for the justification of any implementation of a cap-and-trade
scheme. In a discrete-time framework this feedback mechanism has been addressed, for example in
[14] and [8]. In continuous-time the problem has been treated in [6] and [20], whereby the former
models the accumulation of emissions as a function of an exogenously specified electricity price
process, while the latter uses the bid stack mechanism to infer the emission rate.

The literature on spread options is extensive. In industry, Margrabe’s classical spread option
formula (cf. [24]) is still widely used, and has been extended by various authors (see [7] for an
overview) including to the three commodity case, as required for the pricing of clean spreads (cf.
[2]). [10] analyse the pricing of two-asset spread options in a multiscale stochastic volatility model.
For electricity markets, pricing formulae for dirty spreads based on structural models have been
proposed in [11], in which a closed-form formula is derived in the case of K = 0, and in [1], in
which semi-closed form formulae are derived for K 6= 0 at the expense of a fixed merit order.
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The original contributions of the paper are twofold. First, we express the value of clean spread op-
tions in a formulation where demand for power and fuel prices are the only factors whose stochastic
dynamics are given exogenously, and where the prices of power and emission allowances are derived
from a bid-stack based structural model and a forward backward stochastic differential system re-
spectively. The second contribution is the development of a numerical code for the computation of
the solution of the pricing problem. First we solve a 4+1 dimensional semilinear partial differential
equation to compute the price of an emission allowance, and then we use Monte Carlo techniques
to compute the price of the spread option. These computational tools are used to produce the
numerical results for the case studies presented in §6 of the paper for the purpose of illustrating
the impact of a carbon regulation on the price of spread options. In this final section we first
compare the price of spark and dark spread options in two different markets, one with no emission
regulation in place and the other governed by an increasingly strict cap-and-trade system. Second,
we analyze the impact that different merit order scenarios have on the option prices. Third, we
demonstrate the difference between the structural and the reduced-form approach by comparing the
option prices produced by our model with those produced by two candidate reduced-form models.
Fourth and last, we contrast two competing policy instruments: cap-and-trade, represented by the
model we propose, and a fixed carbon tax.

2. The Bid Stack: Price Setting in Electricity Markets

In order to capture the dependency of electricity price on production costs and fundamental factors
in a realistic manner, we use a structural model in the spirit of those reviewed in the recent survey
of [5]. The premises of structural models for electricity prices depend upon an explicit construction
of the supply curve. Since electricity is sold at its marginal cost, the electricity spot price is given
by evaluating the supply function for the appropriate values of factors used to describe the costs
of production in the model.

In practice, electricity producers submit day-ahead bids to a central market operator, whose task
it is to allocate the production of electricity amongst them. Typically, firms’ bids have the form
of price-quantity pairs, with each pair comprising the amount of electricity the firm is willing to
produce, and the price at which the firm is willing to sell this quantity. Given the large number
of generators in most markets, it is common in structural models to approximate the resulting
step function of market bids by a continuous increasing curve. Firms’ bid levels are determined
by their costs of production. An important feature of our model, distinguishing it from most of
the commonly-used structural models, is the inclusion, as part of the production costs, of the costs
incurred because of the existence of emission regulation.

We assume that, when deciding which firms to call upon to produce electricity, the market operator
adheres to the merit order, a rule by which cheaper production units are called upon before more
expensive ones. For simplicity, operational and transmission constraints are not considered.

Assumption 1. The market operator arranges bids according to the merit order, in increasing
order of production costs.

The map resulting from ordering market supply in increasing order of electricity costs of production
is what is called the bid stack. As it is one of the important building blocks of our model, we define
it in a formal way for later convenience.

Definition 1. The bid stack is given by a measurable function

b : [0, x̄] × R × Rn ∋ (x, a, s) →֒ b(x, a, s) ∈ R,

with the property that for each fixed (a, s) ∈ R × Rn, the function [0, x̄] ∋ x →֒ b(x, a, s) is strictly
increasing.
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In this definition, x̄ ∈ R++ represents the market capacity (measured in MWh) and the variable x
the supply of electricity. The integer n ∈ N\{0} gives the number of economic factors (typically the
prices, in e say, of the fuels used in the production of electricity), and s ∈ Rn the numeric values
of these factors. Here and throughout the rest of the paper the cost of carbon emissions (measured
in e per metric ton of CO2) is denoted by a. So for a given allowance price, say a, and fuel prices,
say s, the market is able to supply x units of electricity at price level b = b(x, a, s) (measured in
e per MWh). In other words, b(x, a, s) represents the bid level of the marginal production unit in
the event that demand equals x.

The choice of a function b which captures the subtle dependence of the electricity price upon the
level of supply and the production costs, is far from trivial, and different approaches have been
considered in the literature, as reviewed recently by [5]. In §5.1 we extend the model proposed in
[11] to include the cost of carbon as part of the variable costs driving bid levels.

3. Risk-Neutral Pricing of Allowance Certificates

As the inclusion of the cost of emission regulation in the valuation of spread options is the main
thrust of the paper, we explain how emission allowances are priced in our model. The model we
introduce is close to [20]. However we extend the results found therein to allow the equilibrium
bids of generators to be stochastic and driven by fuel prices, a generalization that is vital for our
purpose.

We suppose that carbon emissions in the economy are subject to cap-and-trade regulation struc-
tured as follows: at the end of the compliance period, each registered firm needs to offset its
cumulative emissions with emission allowances or incur a penalty for each excess ton of CO2 not
covered by a redeemed allowance certificate. Initially, firms acquire allowance certificates through
free allocation, e.g. through National Allocation Plans (NAP) like in the initial phase of the Eu-
ropean Union (EU) Emissions Trading Scheme (ETS), or by purchasing them at auctions like in
the Regional Greenhouse Gas Initiative (RGGI) in the North East of the US. Allowances change
hands throughout the compliance period. Typically, a firm which thinks that its initial endowment
will not suffice to cover its emissions will buy allowances, while firms expecting a surplus will sell
them. Adding to these naturals, speculators enter the market providing liquidity. Allowances are
typically traded in the form of forward contracts and options. In this paper, we denote by At the
spot price of an allowance certificate maturing at the end of the compliance period. Because their
cost of carry is negligible, we treat them as financial products liquidly traded in a market without
frictions, and in which long and short positions can be taken.

In a competitive equilibrium, the level of cumulative emissions relative to the cap (i.e. the number
of allowance certificates issued by the regulation authority) determines whether — at the end of
the compliance period — firms will be subjected to a penalty payment and create a demand for
allowance certificates. See [8] for details. For this reason, allowance certificates should be regarded
as derivatives on the emissions accumulated throughout the trading period. This type of option
written on a non-tradable underlying interest is rather frequent in the energy markets: temperature
options are a case in point.

3.1. The Market Emission Rate. As evidenced by the above discussion, the rate at which CO2

is emitted in the atmosphere as a result of electricity production has to be another important
building block of our model. Clearly at any given time, this rate is a function of the amount of
electricity produced and because of their impact on the merit order, the variable costs of production,
including fuel prices, and notably, the carbon allowance price itself.

Definition 2. The market emission rate is given by a measurable function

µe : [0, x̄] × R × Rn ∋ (x, a, s) →֒ µe(x, a, s) ∈ R+,
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on which we will impose necessary technical assumptions later on.

With the definition above, for a given level of electricity supply and for given allowance and fuel
prices, µe = µe(x, a, s) represents the rate at which the market emits, measured in tons of CO2 per
hour. Cumulative emissions are then computed by integrating the market emission rate over time.
Since any increase in supply can only increase the emission rate, it is of course reasonable from a
modelling point of view, to expect µe to be increasing as a function of x. Similarly, as the cost of
carbon increases, the variable costs (and hence the bids) of pollution intensive generators increase
by more than those of environmentally friendlier ones. Dirtier technologies become relatively more
expensive and are likely to be scheduled further down in the merit order. As a result cleaner
technologies are brought online earlier and we expect µe to be decreasing as a function of a.

In §5.2 we propose a specific functional form for µe consistent with the bid stack model introduced
in §5.1.

3.2. The Pricing Problem. We shall use the following notation. For a fixed time horizon T ∈
R+, let (W 0

t ,Wt)t∈[0,T ] be1 a (n + 1)-dimensional standard Wiener process on a probability space

(Ω,F , P), F0 := (F0
t ) the filtration generated by W 0, FW := (FW

t ) the filtration generated by W ,
and F := F0 ∨ FW the market filtration. All relationships between random variables are to be
understood in the almost surely sense.

Consumers’ demand for electricity is given by an F0
t -adapted stochastic process (Dt) taking values

in [0, x̄]. In response to this demand, producers supply electricity, and we assume that demand
and supply are always in equilibrium, so that at any time t ∈ [0, T ] an amount Dt of electricity is
supplied. The prices of fuels are observed FW

t -adapted stochastic processes (St) taking values in
Rn and where St := (S1

t , . . . , Sn
t ). As we will see in §3.3, the price of an allowance certificate at

time t, say At, is now constructed as a Ft-adapted stochastic process solving a Forward Backward
Stochastic Differential Equation (FBSDE). The rate of emission µe(Dt, At, St) can then be evaluated
and the cumulative emissions computed by integrating over time, resulting in a Ft-adapted process
(Et).

Since we do not present a calibration of the model to any particular electricity or emissions mar-
ket, we avoid the difficulties of estimating market prices of risk (see for example [17] and [5] for
discussions of some possible ways to approach this thorny issue), and instead choose to specify the
dynamics of the processes (Dt) and (St) directly under a risk-neutral measure Q ∼ P chosen by the
market for pricing purposes. In practice, various alternative approaches to parameter estimation
and calibration could be used to identify a risk-neutral measure which is consistent with liquidly
traded products such as power and fuel forward contracts, thereby also estimating the magnitude
of risk premia. However, our focus here is on the overall nature of energy price correlations, their
structural origins and their important impact on spread option prices, rather than carrying out a
study of any one market. For this reason, we also ignore any questions of market incompleteness
(ie, the uniqueness of Q), transaction costs, illiquidity, inelasticity of demand (and also any risk
that demand could ever exceed supply, for example causing a black-out), and finally the role of
non power sector emissions. While interesting details of the markets, we argue that the inclusion
of such effects should not cause any substantial change to the important qualitative conclusions
drawn from the model in §6.

3.3. An FBSDE for the Allowance Price. We assume that at time t = 0, demand for electricity
is known. Thereafter, it evolves according to an Itô diffusion. Specifically, for t ∈ [0, T ], demand

1To simplify the presentation, from now on, we drop the subscript t ∈ [0, T ], which specifies the time interval on
which a stochastic process is defined.
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for electricity Dt is the unique strong solution of a stochastic differential equation of the form

(1) dDt = µd(t,Dt)dt + σd(Dt)dW̃ 0
t , D0 = d0 ∈ (0, x̄),

where (W̃ 0
t ) is an F0

t -adapted Q-Brownian motion. The time dependence of the drift allows us to
capture the seasonality observed in electricity demand, and the resulting seasonality in prices.

Similarly to demand, the prices of the fuels used in the production process satisfy a system of
stochastic differential equations written in vector form as follows:

(2) dSt = µs(St)dt + σs(St)dW̃t, S0 = s0 ∈ Rn, t ∈ [0, T ],

where (W̃t) is an FW
t -adapted Q-Brownian motion. We note that in some cases it may be appro-

priate to also include time-dependence in the drift or volatility above, in order to capture seasonal
patterns in some fuels such as natural gas.

Cumulative emissions are measured from the beginning of the compliance period at time t = 0, so
that E0 = 0. Subsequently, they are determined by integrating over the market emission rate µe

introduced in Definition 2. So assuming that the price At of an allowance certificate is known, the
cumulative emissions process is represented by an absolutely continuous process; i.e. for t ∈ [0, T ],

(3) dEt = µe(Dt, At, St)dt, E0 = 0.

Note that with this definition the process (Et) is non-decreasing, which makes intuitive sense
considering that it represents a cumulative quantity.

To complete the formulation of the pricing model, it remains to characterize the allowance certificate
price process (At)t∈[0,T ]. If our model is to apply to a one compliance period scheme, in a competitive
equilibrium, at the end of the compliance period t = T , its value is given by a deterministic function
of the cumulative emissions:

(4) AT = φ(ET ),

where φ : R →֒ R is bounded, measurable and non-decreasing. Usually φ(·) := πI[Γ,∞)(·), where
π ∈ R+ denotes the penalty paid in the event of non-compliance and Γ ∈ R+ the cap chosen by
the regulator as the aggregate allocation of certificates. See [8] for details. Since the discounted
allowance price is a martingale under Q, it is equal to the conditional expectation of its terminal
value, i.e.

(5) At = exp (−r(T − t)) EQ [φ(ET )| Ft] , for t ∈ [0, T ],

which implies in particular that the allowance price process (At) is bounded. Since the filtration
(Ft) is being generated by the Wiener process, it is a consequence of the Martingale Representation
Theorem (cf. [21]) that the allowance price can be represented as an Itô integral with respect to

the Brownian motion (W̃ 0
t , W̃t). It follows that

(6) dAt = rAtdt + Z0
t dW̃ 0

t + Zt · dW̃t, for t ∈ [0, T ],

for some Ft-adapted, square integrable process (Z0
t , Zt).

Combining equations (1), (2), (3), (4) and (6), the pricing problem can be reformulated as the
solution of the FBSDE

(7)























dDt = µd(t,Dt)dt + σd(Dt)dW̃ 0
t , D0 = d0 ∈ (0, x̄),

dSt = µs(St)dt + σs(St)dW̃t, S0 = s0 ∈ Rn,

dEt = µe(Dt, At, St)dt, E0 = 0,

dAt = rAtdt + Z0
t dW̃ 0

t + Zt · dW̃t, AT = φ(ET ).

Notice that the first two equations are standard stochastic differential equations (in the forward
direction of time) which do not depend upon the cumulative emissions and the allowance price.
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We will choose their coefficients so that existence and uniqueness of solutions hold. Also, for the
sake of convenience, we implicitly assume that the function µe, whose first argument was originally
restricted to the interval [0, x], is defined on the whole R×R×Rn by setting µe(x, a, s) = µe(0, a, s)
for x < 0 and µe(x, a, s) = µe(x, a, s) for x > x. Finally, we make the following assumptions on the
coefficients of (7):

Assumption 2. The functions µd : [0, T ] × [0, x̄] →֒ R, σd : [0, x̄] →֒ R, µs : Rn →֒ Rn, σs : Rn →֒
Rn × Rn are such that the first two equations in (7) have a unique strong solution.

3.4. Existence of a Solution to the Allowance Pricing Problem.

Theorem 1. If Assumption 3.2 holds, the function µe giving the emission rate is Lipschitz with
respect to the variable a uniformly in x and s, and µe(x, 0, s) is uniformly bounded in x and s,
and the function φ giving the terminal condition is bounded, non-decreasing and Lipschitz, then the
FBSDE (7) has a unique square integrable solution.

Proof. Let (Dt) and (St) represent the strong solutions of the first two equations of (7) whose
existence is guaranteed by Assumption 3.2. These equations being decoupled from the remaining
ones, the latter can be treated as a FBSDE with random coefficients and one-dimensional forward
and backward components. We claim that existence and uniqueness hold because of Theorem 7.1
of Ma et al. (2011). 2 Strictly speaking, we cannot apply directly Theorem 7.1 of Ma et al.
(2011) because our Wiener process is (n+1)-dimensional. However, a close look at the proof shows
that what is really needed is to prove the well-posedness of what the authors call the characteristic
BSDE, and the boundedness of its solution and the solutions of the dominating Ordinary Differential
Equations (ODE). In the present situation, these equations are rather simple due to the fact that
(Et) has bounded variation, and as a consequence, its volatility vanishes. The two dominating ODEs
can be solved explicitly and one can check that the solutions are bounded by inspection. Moreover,
the function φ giving the terminal condition being uniformly Lipschitz, the characteristic BSDE
is one-dimensional, though driven by a multi-dimensional Brownian motion, its terminal condition
is bounded, and Kobylanskis comparison results (see the original contribution Kobylanski (2000))
can be used to conclude the proof. �

The above result is proven for a terminal condition given by a smooth function φ. However, as
already mentioned earlier, competitive equilibrium arguments for single compliance period models
suggest that the function φ should be singular. See for example Carmona, R., Fehr, F., Hinz,
J., and Porchet, A. (2010). Indeed, in the event of non-compliance, that is, when the cumulative
emissions strictly exceed the cap at the end of the compliance period, i.e. when ET > Γ, the
penalty and the allowance certificate are perfect substitutes; therefore, they ought to have the
same monetary value and one should have AT = λ which suggests φ(e) = π whenever e > Γ.
Similarly, in the event of compliance, that is, when the cumulative emissions are strictly below the
cap, there will be spare certificates in the market; these certificates will be in zero demand and
will therefore expire worthless, so in this case, AT = 0 which suggests φ(e) = 0 whenever e < Γ.
This economic interpretation of the function φ giving the terminal condition gives the whole story
when the event {ET = Γ} has zero probability since we do not have to worry about the definition
of φ(e) when e = Γ. Hence the importance of knowing if the random variable ET is continuous
(e.g. has a density). Again, see an early discussion of this property in Carmona, R., Fehr, F., Hinz,
J., and Porchet, A. (2010), and a systematic analysis in Carmona, Delarue, Espinosa and Touzi
(2012), and Carmona and Delarue (2012). We conjecture that a proof in the spirit of the one given
in Carmona and Delarue (2012) should work in the setting of this paper as long as µe is strictly
decreasing in a, providing existence and uniqueness of a solution of the FBSDE when the binary

2We thank Francois Delarue for suggesting this approach.
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terminal condition is weakened. Furthermore, Carmona and Delarue also proved that, still under
strict monotonicity of µe, the aggregate emissions are equal to the cap with positive probability
at the end of the compliance period. This shows that the competitive equilibrium argument given
earlier is enough to specify a unique emission process (Et) and a unique price process (At) for the
allowance, even though the terminal price of an allowance AT at the end of the compliance period
cannot be prescribed ex ante on a set of scenarios of positive probability. We suspect that this is
also the case in the present situation.

Note added in proof : The conjectured existence and uniqueness of a solution to the FBSDE (7) in
our setting was recently proved in Schwarz (2012).

4. Valuing Clean Spread Options

In this section we consider the problem of spread option pricing as described in the introduction.
Whether the goal is to value a physical asset or to manage the risk associated with financial
positions, one needs to compute the price of a European call option on the difference between the
price of electricity and the costs of production for a particular power plant. The costs that we take
into account are the fixed operation and maintenance costs, the cost of the fuel needed to generate
one MWh of electricity and the cost of the ensuing emissions. Letting the Ft-adapted process (Pt)
denote the spot price of electricity, and recasting the informal discussion in the introduction with
the notation we chose to allow for several input fuels, a clean spread option with maturity τ ∈ [0, T ]
is characterized by the payoff

(

Pτ − hiS
i
τ − eiAτ − K

)+
,

where K represents the value of the fixed operation and maintenance costs, hi ∈ R++ and ei ∈
R++ denote the specific heat and emission rates of the power plant under consideration, and
Si ∈ {S1, . . . , Sn} is the price at time τ of the fuel used in the production of electricity. In the
special case when Si is the price of coal (gas) the option is known as a clean dark (spark) spread
option.

Since we are pricing by expectation, the value V i
t of the clean spread is given by the conditional

expectation under the pricing measure of the discounted payoff; i.e.

V i
t = exp(−r(τ − t))EQ

[

(

Pτ − hiS
i
τ − eiAτ − K

)+
|Ft

]

, for t ∈ [0, τ ].

5. A Concrete Two-Fuel Model

We now turn to the special case of two fuels, coal and gas, which differ significantly in their level
of emissions per MWh of power generated.

5.1. The Bid Stack. Our bid stack model is a slight variation of the one we proposed in [11].
Here we extend it to include the cost of emissions as part of the variable costs driving firms’ bids.

We assume that the coal and gas generators have aggregate capacities x̄c and x̄g respectively, so
that the market capacity is x̄ = x̄c + x̄g, and their bid levels are given by linear functions of the
allowance price and the price of the fuel used for the generation of electricity. We denote these bid
functions by bc and bg respectively. The coefficients appearing in these linear functions correspond
to the marginal emission rate (measured in ton equivalent of CO2 per MWh) and the heat rate
(measured in MMBtu per MWh) of the technology in question. Specifically, for i ∈ {c, g}, we
assume that

(8) bi(x, a, s) := ei(x)a + hi(x)s, for (x, a, s) ∈ [0, x̄i] × R × R,
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where the marginal emission rate ei and the heat rate hi are given by

ei(x) := êi exp (mix)

hi(x) := ĥi exp (mix)
, for x ∈ [0, x̄i].

Here êi, ĥi, mi are strictly positive constants. We allow the marginal emission rate and the heat
rate of each technology to vary to reflect differences in efficiencies within the fleet of coal and gas
generators. Less efficient plants with higher heat rates have correspondingly higher emission rates.
We assume that for each technology the ratio hi/ei is fixed, a reasonable approximation which
implies that the emissions rate of any coal (gas) plant is simply a fixed multiple of the quantity of
coal (gas) burned.

Proposition 1. With bc and bg as above and I = {c, g}, the market bid stack b is given by

b(x, a, s) =



















(

êia + ĥisi

)

exp (mix) , if bi(x, a, si) ≤ bj(0, a, sj) for i, j ∈ I, i 6= j,
(

êia + ĥisi

)

exp (mi(x − x̄j)) , if bi(x − x̄j, a, si) > bj(0, a, sj) for i, j ∈ I, i 6= j,

∏

i∈I

(

êia + ĥisi

)βi

exp (γx) , otherwise

for (x, a, s) ∈ [0, x̄] × R × R2, where βi =
mM\{i}

mc+mg
and γ =

mcmg

mc+mg
.

Proof. The proof is a straightforward extension of Corollary 1 in [11]. �

5.2. The Emission Stack. In order to determine the rate at which the market emits we need to
know which generators are supplying electricity at any time. By the merit order assumption the
market operator calls upon firms in increasing order of their bid levels. Therefore, given electricity,
allowance and fuel prices (p, a, s) ∈ R × R × R2, for i ∈ {c, g}, the set of active generators of fuel
type i is given by {x ∈ [0, x̄i] : bi(x, a, s) ≤ p}.

Proposition 2. Assuming that the market bid stack is of the form specified in Proposition 1, the
market emission rate µe is given by

(9) µe(x, a, s) :=
∑

i∈{c,g}

êi

mi

(

exp
(

mib̂
−1
i (b(x, a, s), a, si)

)

− 1
)

for (x, a, s) ∈ [0, x̄] × R × R2, where for i ∈ {c, g} we define

b̂−1
i (p, a, si) := 0 ∨

(

x̄i ∧
1

mi
log

(

p

êia + ĥisi

))

,

for (p, a, s) ∈ R × R × R2, and as usual, a ∧ b = min(a, b) and a ∨ b = max(a, b).

Proof. The market emission rate follows from integrating the marginal emission rate ei for each
technology over the corresponding set of active generators and then summing the two. Given the
monotonicity of bi in x and its range [0, x̄i], the function b̂−1

i describes the quantity of electricity
supplied by fuel i ∈ {c, g}, and hence the required upper limit of integration. �

5.3. Specifying the Exogenous Stochastic Factors.
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ĥc êc mc x̄c ĥg êg mg x̄g x̄
3 0.9 0.00005 12000 7 0.4 0.00003 18000 30000

Table 1. Parameters relating to the bid stack and the emission stack.

The Demand Process. We posit that under Q, the process (Dt) satisfies for t ∈ [0, T ] the stochastic
differential equation

dDt = −η
(

Dt − D̄(t)
)

dt +
√

2ησ̂Dt (x̄ − Dt)dW̃t, D0 = d0 ∈ (0, x̄),

where [0, T ] ∋ t →֒ D̄(t) ∈ (0, x̄) is a deterministic function giving the level of mean reversion of the
demand and η, σ̂ ∈ R++ are constants. With this definition (Dt) is a Jacobi diffusion process; it
has a linear, mean-reverting drift component and degenerates on the boundary. Moreover, subject
to min(D̄(t), x̄ − D̄(t)) ≥ x̄σ̂, for t ∈ [0, T ], the process remains within the interval (0, x̄) at all
times (cf. [18]). To capture the seasonal character of demand, we choose a function D̄(t) of the
form:

D̄(t) := ϕ0 + ϕ1 sin(2πϑt),

where the coefficients will be chosen below.

The Fuel Price Processes. We assume that the prices of coal (Sc
t ) and gas (Sg

t ) follow correlated
exponential (or geometric) Ornstein Uhlenbeck processes under the measure Q; i.e., for i ∈ {c, g}
and t ∈ [0, T ],

dSi
t = −ηi

(

log Si
t − s̄i −

σ̂2
i

2ηi

)

Si
tdt + σ̂iS

i
tdW̃ i

t , Si
0 = si

0 ∈ R++,

where d 〈W c,W g〉t = ρdt.

6. Numerical Analysis

We now turn to the detailed analysis of the model we propose. For this purpose we consider a
number of case studies in §6.2 to §6.5. To produce the following results we used the numerical
schemes explained in Appendix A and Appendix B.

6.1. Choice of Parameters. The tables in this section summarise the parameters used for the
numerical analysis of our model that follows below. We refer to the parameters specified in Tables
1 - 5 as the ‘base case’ and indicate whenever we depart from this choice. Note that our parameter
choices do not correspond to a particular electricity market, but that all values are within a realistic
realm.

Table 1 summarises the parameters specifying the bid curves. We consider a medium sized electric-
ity market served by coal and gas generators and with gas being the dominant technology. For the
marginal emission rates, Table 1 implies that ec ∈ [0.9, 1.64] and eg ∈ [0.4, 0.69] (both measured in
tCO2 per MWh), so that all gas plants are ‘cleaner’ than all coal plants. For the heat rates, we
observe that hc ∈ [3, 5.5] and hg ∈ [7, 12] (both measured in MMBtu per MWh). Using (9) now
with Dt = x̄, for 0 ≤ t ≤ T , and the assumption that there are 8760 production hours in the year,
we find, denoting the maximum cumulative emissions by ē, that ē = 2.13 × 108.

Table 2 contains the parameters for the demand process (Dt). We model periodicities on an annual
and a weekly time scale and the chosen rate of mean reversion assumes that demand reverts to its
(time-dependent) mean over the course of one week.
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η ϕ0 ϕ1 ϑ σ̂ d0

50 21000 3000 1 0.1 21000

Table 2. Parameters relating to the demand process.

ηc s̄c σ̂c sc
0 ηg s̄g σ̂g sg

0 ρ
1.5 2 0.5 exp(2) 1.5 2 0.5 exp(2) 0.3

Table 3. Parameters relating to the fuel price processes.

π Γ T r
100 1.4×108 1 0.05

Table 4. Parameters relating to the cap-and-trade scheme.

High Eff. Coal Low Eff. Coal High Eff. Gas Low Eff. Gas
hc ec hc ec hg eg hg eg

3.5 1.05 5.0 1.5 7.5 0.43 11.5 0.66

Table 5. Parameters relating to the spread options.

In Table 3 we summarise the parameters that specify the behavior of the prices of coal and gas.
Both are chosen to be slowly mean-reverting, at least in comparison to demand. To ease analysis,
we assume that all parameters are identical for the two fuels, including mean price levels, both
measured in MMBtu.3

Table 4 defines the cap-and-trade scheme that we assume to be in place. The duration of the
compliance period T is measured in years and we set the cap at 70% of the upper bound ē for the
cumulative emissions, in order to incentivise a reduction in emissions. This choice of parameters
results in A0 being approximately equal to π/2, a value for which there is significant initial overlap
between gas and coal bids in the stack. Furthermore, the parameters imply a bid stack structure
such that at mean levels of coal and gas prices, At = 0 pushes all coal bids below gas bids, while
for At = π almost all coal bids are above all gas bids.

Finally, in Table 5 we specify the four spread option contracts used in the base case scenario to
represent high and low efficiency coal plants, and high and low efficency gas plants (Note that low
efficiency means dirtier and corresponds to high hi and ei and vice versa).

We now consider a series of case studies to investigate various features of the model’s results in
turn. As the model captures many different factors and effects, this allows us to isolate some of the
most important implications. In Case Study I, we investigate the impact on coal and gas plants of
different efficiencies of creating an increasingly strict carbon emissions market. In Case Study II,
we assess the impact on these plants of changes in initial fuel prices. In Case Study III, we compare
spread option prices in our model with two simple reduced-form approaches for At, which allows
us to better understand the role of key model features such as bid stack driven abatement. Finally

3We note that gas and coal prices are typically quoted in different units, and can often differ by a factor of
ten or more. However, in our analysis, as we are not fitting to data, coal and gas only play the role of common
representative fuel types (and other possibilities include lignite, oil, etc.). Therefore, our parameter choices reflect
typical characteristics of energy price behaviour, not specifics. Much more importantly for our analysis, we require
that one fuel be significantly ‘cleaner’ than the other, and that the relative price levels allow for merit order changes
driven by the cap-and-trade market.
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Figure 1. Cap strictness analysis for high efficiency coal (top left), low efficiency
coal (top right), high efficiency gas (bottom left) and low efficiency gas (bottom
right): spark and dark spread option values plotted against maturity, for varying
levels of the cap Γ. Note that the five equally-spaced cap values from 1.8 × 108 to
1.0 × 108 tons of CO2 imply initial allowance prices of $5, $28, $52, $80, and $94.

in Case Study IV, we consider the overall impact of cap-and-trade markets in the electricity sector,
by comparing them with a well-known alternative, a fixed carbon tax.

6.2. Case Study I: Impact of the Emission Market. The first effect that we are interested in
studying in the model is the impact of the cap-and-trade market on clean spread option prices, for
increasingly strict levels of the cap Γ. At one extreme (when the cap is so generous that At ≈ 0, for
all t ∈ [0, T ]), results correspond to the case of a market without a cap and trade system, while at
the other extreme (when the cap is so strict that At ≈ π exp(−r(T − t)), for all t ∈ [0, T ]), there is
essentially a very high carbon tax which tends to push most coal generators above gas generators
in the stack. It is intuitively clear that higher carbon prices typically lead to higher spark spread
option prices and lower dark spread option prices, thus favouring gas plants over coal plants, but
the relationships can be more involved as we vary between low and high efficiency plants.

In Figure 1, we compare spread option prices corresponding to different efficiency generators (i.e.,
to different hi, ei in the spread payoff) as a function of maturity τ . ‘High’ and ‘low’ efficiency
plant indicates values of hi, ei chosen to be near the lowest and highest respectively in the stack,
as given by Table 5. Within each of the four subplots, the five lines correspond to five different
values of the cap Γ, ranging from very lenient to very strict. We immediately observe in Figure 1
the seasonality in spread prices caused by the seasonality in power demand. This is most striking
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Figure 2. Power Plant Value (sum of spreads over τ) versus sg
0 for low efficiency

(left) and high efficiency (right). ‘High A’ corresponds to Γ = 1 × 108, ‘mid A’ to
Γ = 1.4 × 108 (base case) and ‘low A’ to Γ = 1.8 × 108, with corresponding values
A0 = 94, A0 = 52, A0 = 5

for the low efficiency cases (high hi, ei), as such plants would rarely be used in shoulder months,
particularly in the case of gas. For low efficiency plants, the relationship with cap level (and
corresponding initial allowance price) is as one would expect: a stricter cap greatly increases the
value of gas plants and greatly decreases the value of the dirtier coal plants. This is also true
for high efficiency gas plants, although the price difference (in percentage terms) for different Γ is
less, since these are effectively ‘in-the-money’ options, unlike those discussed above. However, the
analysis becomes more complicated for high efficiency coal plants, which tend to be chosen to run
in most market conditions, irrespective of emission markets. Interestingly, we find that for these
options the relationship with Γ (and hence A0) can be non-monotonic under certain conditions,
particularly for high levels of demand, when the price is set near the very top of the stack. In
such cases a stricter cap provides extra benefit for the cleaner coal plants via higher power prices
(typically set by the dirtier coal plants on the margin) which outweighs the disadvantage of coal
plants being replaced by gas plants in the merit order.

6.3. Case Study II: Impact of Fuel Price Changes. Notice that in Table 3, the initial con-
ditions of both gas and coal have been set to be equal to their long term median levels. We now
consider the case of the gas price sg

0 being either above or below its long term level, thus inducing a
change in the initial merit order. Given the record low prices of under $2 recently witnessed in the
US natural gas market (due primarily to shale gas discoveries), it is natural to ask how such fuel
price variations affect our spread option results. Note, however, that since ηc = ηg = 1.5 (implying
a typical mean reversion time of 8 months), by the end of the trading period, the simulated fuel
price distributions will again be centred near their mean reversion levels. Thus in this case study,
we capture a temporary, not permanent, shift in fuel prices.

In Figure 2, we plot the value of coal and gas power plants, as given by the sum of spread options
of all maturities τ ∈ [0, T ]. In the first plot, we consider low efficiency (high hi and ei) plants, while
in the second we consider high efficiencies. The latter are much more likely to operate each day
and to generate profits, and are hence much more valuable than the former. However, they also
show different relationships with sg

0, as illustrated for several different cap levels Γ (like in Case
Study I above) which correspond to high, low or medium (base case) values of A0.

4 Firstly, for
low efficiency plants (left plot), we observe that the gas plant value is typically decreasing in sg

0, as

4In the first plot, the cases ‘coal - low A’ and ‘gas - high A’ would produce values much higher than the other
cases, and hence we instead choose ‘coal - mid A’ and ‘gas - mid A’ in order to illustrate the effects on a single plot.
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σa ρac ρag σe ρec ρeg

0.6 -0.2 0.4 0.006 -0.2 0.2

Table 6. Parameters for reduced-form comparisons, treating At and Et as GBMs.

we expect, since higher gas prices tend to push the bids from gas above those from coal, meaning
there is less chance that the gas plant will be used for electricity generation. Similarly, coal plant
values are typically increasing in sg

0, as more coal plants will be used. Note however, that for some
cases, the curves flatten out, as no more merit order changes are possible. This is particularly true
for the coal plant when A0 is very high (and hence once gas drops below a certain point, the coal
plant is almost certainly going to remain more expensive to run than all gas plants) and for the
gas plant when A0 is very low (and hence once coal increases above a certain point, the gas plant
is almost certainly going to remain more expensive to run than all coal plants).

We now turn our attention to the high efficiency case (right plot), meaning the relatively cheap
and clean plants for each technology. As expected, coal benefits from low values of A0 (ie, a lenient
cap) and gas from high values of A0 (ie, a strict cap). On the other hand, the relationship with sg

0
is now increasing for all cases plotted except that of a gas plant with high A0. While it may seem
surprising that for low values of A0 (or medium though not plotted), the gas plant value increases
with sg

0, this is quite intuitive when one considers that the range of bids from gas generators widens
as sg

0 increases, implying that the efficient plants can make a larger profit when the inefficient
plants set the power price. Indeed, as demand is quite high on average, and gas is 60 percent of the
market, it is likely that these efficient gas plants will almost always be ‘in-the-money’ even if coal
is lower in the stack. Only in the case that coal is typically above gas and now marginal (i.e. the
high A0 case) is the value of the gas plant decreasing in sg

0 since the plant’s profit margins shrink
as gas and coal bids converge.

6.4. Case Study III: Comparison with Reduced-Form. The second analysis we consider is
to compare the results of our structural model for the allowance price, with two other simpler
models, both of which belong to the class of ‘reduced-form’ models. The first of these treats the
allowance price itself as a simple Geometric Brownian Motion (with drift r under Q), and hence Aτ

is lognormal at spread maturity, like Sc
τ and Sg

τ . The second comparison treats the emission process
as a Geometric Brownian Motion (GBM), and retains the digital terminal condition AT = πI{ET ≥Γ}.
As the drift of (Et) is then simply a constant (chosen to match the initial value A0 in the full model),
there is no feedback from (At) to (Et), or in other words, no abatement induced by the allowance
price. For any time t, At is then given in closed-form by a formula resembling the Black-Scholes
digital option price. In order to fully specify the two reduced-form models, we need to choose
a volatility parameter σa or σe for each of the GBMs, as well as correlations ρac, ρag or ρec, ρeg

with the Brownian Motions driving the other exogenous factors, coal and gas prices. All of these
parameters are chosen to approximately match the levels of volatility and correlation produced by
simulations in the full structural model, and are given in Table 6. Finally, note that in all three
models that we compare, the power price is given by the same bid stack function as usual, so our
aim is to isolate and evaluate the effect of our more sophisticated framework for the allowance
price, in comparison to simpler approaches. The cap throughout is Γ = 1.4 × 108, the base case.

Figure 3 reveals that the difference between the reduced form models and the full structural model
is relatively small for high efficiency gas and coal plants which are typically ‘in-the-money’. In
contrast a larger gap appears for low efficiency cases, where the reduced form models significantly
overprice spread options relative to the stack model. In particular, the case of lognormal emissions
produces much higher prices, especially for dark spreads. The intuition is as follows. In the full
model, the bid stack structure automatically leads to lower emissions when the allowance price is
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Figure 3. Model comparison against reduced-form: Spark and dark spread option
values for varying heat rates, emission rates and maturities.

high, and higher emissions when the allowance price is low, producing a mean-reversion-like effect
on the cumulative emissions, keeping the process moving roughly towards the cap, with the final
outcome (compliance or not) in many simulations only becoming clear very close to maturity. In
contrast, if Et is a GBM, much of the uncertainty is often resolved early in the trading period, with
At then sticking near zero or π for much of the period. In such cases, there is a much larger benefit
for deep OTM options (low efficiency plants), for which the tails of the allowance price distribution
provide great value either for coal (when the price is near zero) or for gas (when the price is near
the penalty). We observe that in some of the subplots (particularly low efficiency coal), this extra
benefit is indeed realized in the full model, but only very near the end of the trading period when
the volatility of (At) often spikes, and the process either rises or falls sharply. In contrast, for
the other reduced-form model with lognormally distributed allowance price, the volatility of the
allowance price is constant throughout and (At) never moves rapidly towards zero or the penalty.
However, the overall link with fuel and power prices is much weaker when simply using correlated
Brownian Motions, which serves to widen the spread distribution in most cases relative to the full
structural model. This result is somewhat similar to the observation in [11] that a stack model
generally produces lower spread option prices than Margrabe’s formula for correlated lognormals.

6.5. Case Study IV: Cap-and-Trade vs. Carbon Tax. Finally, we wish to investigate the
implications of the model for cap-and-trade systems, as compared with fixed carbon taxes. This
question has been much debated by policy makers as well as academics, and can be roughly sum-
marized as fixing quantity versus fixing price. In [8], several different designs for cap-and-trade
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Figure 4. Cap-and-trade vs. carbon tax: power sector profits versus time for the
‘base case’ (left); total profits over one year for equally-spaced cap values from 1×108

to 1.95 × 108 tons of CO2 (right).

systems are compared to a carbon tax, using criteria such as cost to society and windfall profits to
power generators. Here we follow a related approach by analyzing the power sector as a whole, but
we build on our previous case studies by using spread option prices as a starting point. Firstly, we
observe that the total expected discounted profits of the power sector are equal to the value of all
the power plants implied by the bid stack structure, which in turn equals a portfolio of (or integral
over) sums of spread option prices with varying hi and ei. Therefore, for each simulation over the
period [0, T ], total profits (total revenues minus total costs) are5

Total Profits =
∑

τ∈[0,T ]

(

PτDτ −

∫ Dτ

0
b(x,Aτ , Sτ )dx

)

=
∑

τ∈[0,T ]

∫ x̄

0
(Pτ − b(x,Aτ , Sτ ))+ dx

=
∑

τ∈[0,T ]

(
∫ x̄c

0
(Pτ − hc(x)Sc

τ − ec(x)Aτ )+ dx +

∫ x̄g

0
(Pτ − hg(x)Sg

τ − eg(x)Aτ )+ dx

)

,

where the second line follows from the fact that the events {Pτ ≥ b(x,Aτ , Sτ )} and {Dτ ≥ x} are
equal.

Hence, instead of picking particular coal and gas plants with efficiencies specified by the parameters
in Table 5, we now integrate power plant value over all the efficiencies of plants in the stack, as
defined by the parameters in Table 1. In the case of the carbon tax, we simply force At = A0 exp(rt)
for all t ∈ [0, T ], including the exponential function in order to match the mean of the process in
the cap-and-trade model. This is equivalent to setting the volatility σa equal to zero in the GBM
model for the allowance price in Case Study III.

In Figure 4, we first plot the expected total market profits in the base case as a function of time. It
is interesting to observe that two important effects occur, pulling the profits in opposite directions,
but varying in strength over the trading period. In particular, although the profits must be equal

5Note that we do not consider here additional issues such as whether allowances are auctioned or freely allocated
to generators. Instead, we assume that allowances are bought on the market by generators as and when they need
them.
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at time zero, a gap quickly appears in the early part of the trading period, with expected profits to
power generators significantly higher under a carbon tax than cap-and-trade. However, as maturity
approaches, the gap narrows and the order reverses over the final days, as cap-and-trade generates
higher expected profits. We reason as follows: firstly, as A0 = 52 in the base case, the bids of
coal and gas begin the period at very similar levels, a state which generally keeps profits low, since
the variance of electricity prices is low and the profit margins of both coal and gas generators are
quite low. As time progresses and fuel prices move, the coal and gas bids will tend to drift apart
in most simulations, for example with gas sometimes moving above coal, say. However, in our
structural model for the cap-and-trade scheme, in such a case the higher emissions will induce a
higher allowance price, and in turn a feedback effect due to the coupling in (7), which acts to keep
coal and gas bids closer together. A similar argument can be made for the case of gas bids tending
to move below coal bids but then being counteracted by lower allowance prices. Again we see that
the power market structure induces mean reversion on (Et), which in this scenario (of an mid-range
cap level) corresponds to keeping coal and gas bids close together. On the other hand, under a
carbon tax with fixed (or deterministic) allowance price, there is of course no feedback mechanism
(no price-sensitive abatement), and bids tend to wander apart. However, as the end of the trading
period approaches, in the cap-and-trade system the allowance price eventually gets pulled to either
zero or π, which will separate the bids in one way or the other, either leading to very large profits
for coal plants (if AT = 0) or for gas plants (if AT = π). This is a similar effect to that discussed
when comparing with a lognormal allowance price in Case Study III, as neither a carbon tax nor
a lognormal allowance price model sees the extra volatility near maturity caused by the terminal
condition.

Finally, in the second plot of Figure 4, we consider how these conclusions change if the cap is made
stricter or more lenient. Instead of plotting against maturity, we consider the total profits of the
power sector over the entire period [0, T ]. Firstly, we observe that under both forms of emission
regulation, power sector profits are lowest if the cap is chosen close to base case, under which the
bids from coal and gas generators are more tightly clustered together. Secondly, it is important to
notice that the conclusion in the previous discussion that a carbon tax provides more profits to the
power sector does not hold for all scenarios of the cap. In particular, for either very high or very low
values of the cap, the cap-and-trade scheme provides more profits than a tax. The explanation here
is that for the automatic abatement mechanism in the stack to have its largest impact (keeping bids
together, and emissions heading towards the cap), there needs to be significant uncertainty at time
zero as to whether the cap will be reached. The feedback mechanism of a cap-and-trade system
then allows this uncertainty to be prolonged through the period. On the other hand, for an overly
strict or overly lenient cap (or similarly for a merit order which does not allow for much abatement),
the second effect discussed above dominates over the first. In other words, the terminal condition
which guarantees large profits to either coal or gas at maturity begins to take precedence earlier
in the trading period, instead of just before maturity as in the base case. Although in practice
there are many other details to consider when comparing different forms of emission legislation, our
stylized single-period model sheds some light on the differences between cap-and-trade and carbon
tax, as well as the clear importance of choosing an appropriate cap level.

7. Conclusion

As policy makers debate the future of global carbon emission legislation, the existing cap-and-trade
schemes around the world have already significantly impacted the dynamics of electricity prices
and the valuation of real assets, such as power plants, particularly under the well-known European
Union Emissions Trading Scheme. Together with the recent volatile behaviour of all energy prices
(e.g., gas, coal, oil), the introduction of carbon markets has increased the risk of changes in the
merit order of fuel types, known to be a crucial factor in the price setting mechanism of electricity
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markets. In the US, the recent sharp drop in natural gas prices is already causing changes in
the merit order, which would be further magnified by any new emission regulation, such as the
upcoming cap-and-trade market in California. Such considerations are vital for describing the
complex dependence structure between electricity, its input fuels, and emission allowances, and
thus highly relevant for both market participants and policy makers designing emission trading
schemes. In this paper, we derived the equilibrium carbon allowance price as the solution of an
FBSDE, in which feedback from allowance price on market emission rates is linked to the electricity
stack structure. The resulting model specifies simultaneously both electricity and allowance price
dynamics as a function of fuel prices, demand and accumulated emissions; in this way, it captures
consistently the highly state-dependent correlations between all the energy prices, which would
not be achievable in a typical reduced-form approach. We used a PDE representation for the
solution of the pricing FBSDE and implemented a finite difference scheme to solve for the price of
carbon allowances. Finally we compared our model for allowance prices with other reduced-form
approaches and analysed its important implications on price behaviour, spread option pricing and
the valuation of physical assets in electricity markets covered by emission regulation. The four
case studies illustrated the many important considerations needed to understand the complex joint
dynamics of electricity, emissions and fuels, as well as the additional insight that can be provided
by our structural approach.

Appendix A. Numerical Solution of the FBSDE

A.1. Candidate Pricing PDE. In Theorem 1 we addressed the existence and uniqueness of a
solution to the FBSDE (7). Given the Markov nature of the equation, we conjecture that there exists
a deterministic function α : [0, T ]× [0, x̄]×R++× [0, ē] →֒ [0, π], such that At = α(t,Dt, Et, S

c
t , S

g
t ),

and sufficiently smooth to be a classical solution to the semilinear PDE

Lα + Nα = 0, on UT(10)

α = φ(e), on {t = T} × U,(11)

where U := (0, x̄)×R++×R++×(0, ē) and UT := [0, T )×U and the operators L and N are defined
by

L :=
∂

∂t
+

1

2
σd(d)2

∂2
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1

2
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+ µg(sg)
∂
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− r

and N := µe(d, ·, (sc, sg))
∂
∂e

. As previously, we specify for our purposes that φ(e) = πI[Γ,∞)(e), for
e ∈ R.

With regards to the problem (10) the question arises at which parts of the boundary we need to
specify boundary conditions and, given the original stochastic problem (7), of what form these
conditions should be. To answer the former question we consider the Fichera function f at points
of the boundary where one or more of the diffusion coefficients disappear (cf. [25]). Defining
n := (nd, nc, ng, ne) to be the inward normal vector to the boundary, Fichera’s function for the
operator (N + L) reads

(12) f(t, d, sc, sg, e) :=
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ng + µene, on ∂UT .
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At points of the boundary where f ≥ 0 the direction of information propagation is outward and
we do not need to specify any boundary conditions; at points where f < 0 information is inward
flowing and boundary conditions have to be specified. We evaluate (12) for the choice of coefficients
presented in §5.3.

Considering the parts of the boundary corresponding to d = 0 and d = x̄, we find that f ≥ 0 if and
only if min(D̄(t), x̄ − D̄(t)) ≥ x̄σ̂, which is the same condition prescribed in §5.3 to guarantee that
the Jacobi diffusion stays within the interval (0, x̄). At points of the boundary corresponding to
e = 0, we find that f ≥ 0 always. On the part of the boundary on which e = ē, f < 0 except at the
point (d, ·, ·, e) = (0, ·, ·, ē), where f = 0, an ambiguity which could be resolved by smoothing the
domain. Similarly, we find that f ≥ 0 on parts of the boundary where sc = 0 or sg = 0. Therefore,
no boundary conditions are necessary except when e = ē, where we prescribe

(13) α = exp(−r(T − t))π, on UT |e=ē.

In addition we need to specify an asymptotic condition for large values of sc and sg. We choose to
consider solutions that, for i ∈ {c, g}, satisfy

(14)
∂α

∂si

∼ 0, on UT |si→∞.

A.2. An Implicit - Explicit Finite Difference Scheme. We approximate the domain ŪT by
a finite grid spanning [0, T ] × [0, x̄] × [0, s̄c] × [0, s̄g] × [0, ē]. For the discretization we choose mesh
widths ∆d, ∆sc, ∆sg, ∆e and a time step ∆t. The discrete mesh points (tk, dm, sci

, sgj
, en) are

then defined by

tk := k∆t, dm := m∆d,

sci
:= i∆sc, sgj

:= j∆sg, en := n∆e.

The finite difference scheme we employ produces approximations αk
m,i,j,n, which are assumed to

converge to the true solution α as the mesh width tends to zero.

Since the partial differential equation (10) is posed backwards in time with a terminal condition,
we choose a backward finite difference for the time derivative. In order to achieve better stability
properties we make the part of the scheme relating to the linear operator L implicit; the part
relating to the operator N is made explicit in order to handle the nonlinearity.

In the e-direction we are approximating a conservation law PDE with discontinuous terminal con-
dition. (For an in depth discussion of numerical schemes for this type of equation see [23]) The
first derivative in the s-direction, relating to the nonlinear part of the partial differential equation,
is discretised against the drift direction using a one-sided upwind difference. Because characteristic
information is propagating in the direction of decreasing e, this one-sided difference is also used to
calculate the value of the approximation on the part of the boundary corresponding to e = 0. At
the part of the boundary corresponding to e = ē we apply the condition (13).

In the d-direction the equation is elliptic everywhere except on the boundary, where it degenerates.
Therefore, we expect the convection coefficient to be much larger than the diffusion coefficient
near the boundaries. In order to keep the discrete maximum principle we again use a one-sided
upwind difference for the first order derivative. Thereby we have to pay attention that due to the
mean-reverting nature of (Dt) the direction of information propagation and therefore the upwind
direction changes as the sign of µd changes. The same upwind difference is also used to calulate
the value of the approximation at the boundaries d = 0 and d = x̄. To discretize the second order
derivative we use central differences.

The sc and sg-direction are treated similarly to the d-direction. We use one-sided upwind differences
for the first order derivatives, thereby taking care of the boundaries corresponding to sc = 0 and
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sg = 0. The second order derivatives are discretized using central differences. At the boundary
corresponding to sc = s̄c and sg = s̄g we apply the asymptotic condition (14) as a boundary
condition.

With smooth boundary data, on a smooth domain, the scheme described above can be expected to
exhibit first order convergence. In our setting, we expect the discontinuous terminal condition to
have adverse effects on the convergence rate. We refer the interested reader to [20] for a numerical
estimation and a detailed analysis of the convergence rate of the numerical scheme described in
this section, as applied to a very similar case.6

Appendix B. Numerical Calculation of Spread Prices

B.1. Time Discretisation of SDEs. Let (Dk, S
c
k, S

g
k , Ek, Ak) denote the discrete time approx-

imation to the FBSDE solution (Dt, S
c
t , S

g
t , Et, At) on the time grid 0 < ∆t < 2∆t < . . . <

nk∆t = τ . At each time step we calculate Ak by interpolating the discrete approximation αk
m,i,j,n

at (Dk, S
c
k, S

g
k , Ek), beginning with the initial values D0 = d0, S

c
0 = sc

0, S
g
0 = sg

0, E0 = 0. The
approximations (Dk, S

c
k, S

g
k , Ek) are obtained using a simple Euler scheme (cf. [19]) for the forward

components of (7). The discretized version of (Dt) is forced to be instantaneously reflecting at
the boundaries Dk = 0 and Dk = x̄; similarly, the discretized versions of (Sc

t ) and (Sg
t ) are made

instantaneously reflecting at Sc
k = 0 and Sg

k = 0.

B.2. Monte Carlo Calculation of Option Prices. Using this discretization we simulate nmc

paths and, as usual, for t ∈ [0, τ), calculate the mean spark spread price V̂ j
t , given by

V̂ j
t := exp(−r(τ − t))

1
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,

where the index i refers to the simulation scenario and j ∈ {c, g}. The corresponding standard
error σ̂v is obtained by

σ̂v :=
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