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Numerical studies of laminar-to-turbulent transition in a separation bubble subjected

to two free-stream turbulence levels (FST) have been performed using Large-Eddy

Simulation (LES). Separation of the laminar boundary layer occurs at a curvature

change over a plate with a semi-circular leading edge at Re = 3450 based on the

plate thickness and the uniform inlet velocity. A numerical trip is used to produce

the targeted free-stream turbulence levels and the decay of free-stream turbulence is

well predicted. A dynamic sub-grid-scale model is employed in the current study and

a good agreement has been obtained between the LES results and the experimental

data. Detailed analysis of the LES data has been carried out to investigate the primary

instability mechanism. The flow visualisations and spectral analysis of the separated

shear layer reveal that the 2D Kelvin-Helmholtz instability mode, well known to

occur at low FST levels, is bypassed at higher levels leading to earlier breakdown to

turbulence. C© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4816291]

I. INTRODUCTION

Laminar-to-turbulent transition in separated flows is a common feature in many practical en-

gineering flows. Transition plays a key role in aerodynamics and heat transfer characteristics of

many such flow systems. The location of transition onset, transition process, and the extent of region

within which transition takes place are crucial in engineering design and performance prediction

applications. Transition is a complex process whereby certain frequencies in the disturbance sig-

nal are selectively amplified by the unstable shear layer flow, behaving differently from case to

case according to the distributions of energy in the disturbance. Transition process starts with flow

instabilities and is strongly affected by a number of factors such as free-stream turbulence level,

streamwise pressure gradient, and wall roughness, etc.

Several numerical studies have considered separated boundary layer transition under vanishingly

low environmental disturbances (Spalart and Strelets,1 Yang and Voke,2 Abdalla and Yang,3, 4 and

McAuliffe and Yaras5). Direct Numerical Simulation (DNS) of Spalart and Strelets1 for a bubble

induced by an adverse pressure gradient over a flat plate under very low incoming disturbances

revealed a wavering behaviour of the separated shear layer gradually moving away from the wall

with formation of Kelvin-Helmholtz (KH) vortices. The KH vortices then rapidly developed into

3D structures and a sudden transition was reported. LES of Yang and Voke2 for a separated shear

layer on a flat plate with a semi-circular leading edge and LES of Abdalla and Yang3 on a flat plate

with a sharp leading edge proved vigorously for both cases that the free shear layer in the bubble

is inviscidly unstable via the KH mechanism. Similar mechanism was reported by McAuliffe and

Yaras5 who performed DNS of a separation bubble on a flat plate in adverse pressure gradient with

low incoming disturbances. Many experiments have been carried out to study separated boundary
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layer transition at low free-stream turbulence level. Burgmann et al.6 studied a transitional separation

bubble on the upper surface of an SD7003 airfoil using time-resolved and volumetric Particle Image

Velocimetry measurements. It was shown from their measurements that the temporal dynamics of

the vortex roll-up is initialized by the KH instability. McAuliffe and Yaras7 carried out a through

experimental study on the nature of transition in a separation bubble and manipulations of the

resultant breakdown to turbulence through passive means of control. Their results confirmed that the

Kelvin-Helmholtz instability is the dominant transition mechanism for all conditions. Satta et al.8

performed experimental studies of the transition and separation processes occurring along the suction

side boundary layer of a high-lift low pressure turbine profile under both steady and unsteady inflow

conditions. Under steady inflow condition, their results show that the beginning of boundary layer

transition occurs in correspondence of the separated shear layer, along the line of inflection points

in the velocity profiles, where the velocity fluctuations are larger due to the shear layer instability

taking place through the Kelvin-Helmholtz mechanism. Dahnert et al.9 drew conclusion that the

instability involved in the transition process of a separation bubble with low Reynolds number, low

free-stream turbulence, and steady main flow conditions is the inviscid Kelvin-Helmholtz instability

mode based on their detailed experimental work.

Under increased free-stream disturbances transition process and the flow structures involved are

known to be remarkably different. FST results in an earlier transition to turbulence and hence usually

a shorter separation bubble (Hillier and Cherry,10 Kalter and Fernholz,11 Yang and Abdalla,4 and

Castro and Haque12). McAuliffe and Yaras5 studied the effect of elevated FST (1.45% at separation)

on a laminar separated boundary layer due to an adverse pressure gradient over a flat plate. The

KH instability observed in their low-disturbance case (0.1% FST at separation) was bypassed at the

higher FST where streamwise streaks appeared upstream of separation in the laminar boundary layer

leading to production of turbulent spots in the separated shear layer. Bypass mode has also been

observed in a few experiments on separation bubbles (Volino and Bohl13 and Volino14), however in

all cases separation took place after relatively long streamwise development of the attached boundary

layer which had a big impact on the transition in the following separated free shear layer. In cases

where separation is due to the leading edge geometry and the boundary layer separates immediately

or very shortly after the leading edge, transition may be different. Yang and Abdalla4, 15 investigated

the effect of 2% FST at the sharp leading edge of a flat plate and observed that transition process

started earlier with a reduction of 14% in the mean bubble length compared against the very low

FST case of Abdalla and Yang.3 Nevertheless, 2D KH rolls were still observable and the primary

instability was shown to be the same (the KH mechanism) as in the low FST case. However, it

is quite possible if the levels of FST are increased much further than 2% transition process in a

separated boundary layer with the separation point fixed due to the leading edge geometry may take

a quite different route, i.e., KH instability stage may be bypassed, similar to the so called “bypass

transition” in attached boundary layer flows without the intervention of viscous Tollmien–Schlichting

(TS) instability waves, i.e., TS instability is bypassed and the transition is more rapid.

This paper will address this particular issue and investigate the primary instability of a separated

boundary layer under 5.6% FST on a flat plate with a semi-circular leading edge, the so called

ERCOFTAC (European Research Community on Flow, Turbulence and Combustion) T3L test cases

where experimental data are available for mean turbulent quantities.

II. FLOW CONFIGURATION

A separated boundary layer transition on a flat plate with a semi-circular leading edge

(Figure 1) of radius R = 5 mm is examined under different free-stream velocity and turbulence

intensities. Figure 1 shows the sketch of the experiment with the location marked where free-stream

turbulence level is measured. Four different turbulence grid configurations at three inlet velocities

2.5, 5.0, and 10.0 m/s were used resulting in FST levels from 0.2% (no turbulence grid), 0.65%,

2.3%, and 5.6%. Although limited in providing near wall data, these experimental data have been

the benchmark for assessing various numerical models of transitional flow, due to the simple geo-

metric configuration and hence possibility of accurate measurements. Two cases with different FST

levels at the leading edge have been simulated in the current study at Re = 3450 based on the plate
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FIG. 1. Sketch of the experimental setup.

thickness (0.01 m) and the uniform inlet velocity (U0 = 5.0 m/s), one with FST levels nearly zero

(0.2%) denoted as Low-Turbulence-Level case (LTL-case) and one with FST = 5.6% denoted as

Enhanced-Turbulence-Level case (ETL-case).

The flow geometry and computational grid are shown in Figure 2. LES domain extends 12D

upstream and 16D downstream from the plate leading edge, 8.5D away from the plate in the free

stream, and 8D in the spanwise direction (D = 10 mm is the plate thickness, and co-ordinate origin

located at the stagnation point). Using the multi-block functionality, the domain is divided into

14 blocks with a grid resolution of (nx, ny, nz) = (310, 140, 64) for the outer region and a refined

C-grid (420, 60, 64) around the plate covering the close wall region and the free shear layer region

of the separation bubble, a total of 4.39 × 106 mesh points. Based on the friction velocity at x/D

= 10, which is far downstream from the separation bubble and well within the reattached turbulent

boundary layer, y+ of the nearest cell to the wall is about 0.4, the streamwise mesh sizes vary from

�x+ = 3 to 55 and �z+ is 24.

The inflow velocity U0 is constant aligned with the plate and applied at x = −12D upstream.

To mimic the low turbulence level (<0.2%) of the experiment in the LTL-case, small random

disturbances (white noise) are imposed on the mean velocity components at the inflow as (u′, v′, w′)

= U0 · A (r1, r2, r3), where A is the disturbance level (0.02 in current study) and r1, r2, r3 are

components of a 3D random vector. For the ETL-case, a numerical trip is applied at x = −10D

upstream, where at each computational time step the solution is perturbed in a plane parallel to the

inflow in the same manner as described above, but additionally, 1/2 of the disturbance magnitude is

imposed upstream I − 1 and downstream I + 1 of tripping plane and to adjacent points J ± 1 and K ±

1, where I, J, and K are the grid indices in x, y, and z directions. Also 1/4 of the disturbance magnitude

is imposed at next level points, i.e., J ± 2 and K ± 2, increasing the coherence of disturbance. The

disturbance level (A = 0.7) was adjusted so that the experimental turbulence intensity of Tu =

5.6% at the leading edge is achieved. A convective outlet boundary condition is used ensuring the

convection of the flow through the outlet plane. Periodic boundary condition is used in the spanwise

direction. At lateral boundaries free-slip condition is applied and no-slip wall condition is applied

at the plate surface.

III. COMPUTATIONAL DETAILS

An in-house LES code is used; details of the mathematical formulation and numerical methods

can be found in Pokora et al.16 LES equations are derived by implicit spatial filtering of Navier-

Stokes equations. A dynamic sub-grid-scale (SGS) model based on Germano et al.17 and Lilly18 is

implemented where the model coefficient C is obtained as described in Yang and Voke.2 Co-located
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FIG. 2. Computational domain and mesh.

arrangement of flow variables on a curvilinear coordinate system is used with the standard Rhie-Chow

pressure smoothing. The 2nd order central differencing scheme is used for spatial discretization. For

time discretization, a single stage backwards Euler scheme has been found to be computationally

more efficient to use. This is justified by small time step used in the present LES (�t = 5.0

× 10−6 s) and hence no noticeable impact on the accuracy.

The simulation ran for 10 flow-through times to allow the flow to become well established and

reach a statistically stationary state. The averaged results were gathered over further 50 flow-through

times with samples taken every 10 steps and averaged over spanwise direction too.

IV. RESULTS

For the ETL-case, it is crucial to generate the targeted FST level which decays at the right rate.

Figure 3 shows the decay rate of FST intensity and it can be seen clearly that a reasonably good

agreement has been obtained between the LES prediction and the experimental data at y/D = 4.0

although the LES results show a continuous decay further downstream while the measured FST

seems to be constant, not decaying anymore which is unusual. The difference was initially thought

to be due to the fact that further downstream experimental data are available only at a lower vertical
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FIG. 3. Decay of free-stream turbulence intensity for ETL-case (5.6% at leading edge), soling line: y/D = 4.0; dashed line:

y/D = 1.5.

location of y/D = 1.5, but plotting the LES results at the same vertical location of y/D = 1.5 (dashed

line) confirms that this is not the case as the LES results still show a continuous decay which seems

to be logical. Nevertheless at the leading edge the LES results match the targeted experimental FST

level of 5.6% very well, indicating that the numerical trip applied upstream is a successful technique

for generating the required FST at the leading edge.

A. Mean variables

For the LTL-case, Figures 4 and 5 show the simulated mean streamwise velocity and rms of

fluctuations, respectively. Mean and rms values are normalized by the inlet velocity (U0). Wall-

normal direction is normalized by the mean reattachment length l. A good agreement has been

obtained between the current predicted profiles with the experimental data and LES of Yang and

Voke2 at seven streamwise stations. There is hardly any difference between the current LES results

and the LES results of Yang and Voke2 in terms of the mean velocity predictions while for the rms the

present LES results have a slightly better overall agreement with the experimental data, especially

at the 5th location where the current predictions follow the experimental data much more closely

although at the 6th location the peak value is better predicted by Yang and Voke.2 However, at the

last location further away from the wall the current predictions are much better than the results by

FIG. 4. Mean streamwise velocity at seven streamwise stations (LTL-case), left to right: x/l = 0.22, 0.44, 0.66, 1.09, 1.27,

1.64, and 2.55. Present LES (dashed), LES of Yang and Voke2 (solid line), and experimental data (symbols).
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FIG. 5. rms streamwise velocity fluctuation u′ at seven streamwise stations (LTL-case), left to right: x/l = 0.22, 0.44, 0.66,

1.09, 1.27, 1.64, and 2.55. Present LES (dashed), LES of Yang and Voke2 (solid line), and experimental data (symbols).

Yang and Voke.2 It is also interesting to note that the present rms results show double peaks inside

the separation bubble at the 2nd and 3rd locations, especially apparent at the 3rd location whereas the

LES results of Yang and Voke2 only show one peak. Unfortunately the measurements could not be

done very close to the wall inside the bubble so that the first peak near the wall cannot be confirmed

by the experimental data. The measured mean bubble length (2.75D) is slightly over-predicted by

about 8.9% in the current study while it is under-predicted by about 6% in the previous study on a

staggered grid by Yang and Voke.2

From the above comparison and discussion it is evident that the accuracy of predictions using

the co-located grid is as good as that using the staggered grid, or even slightly better for the separated

boundary layer transition over a flat plate with a semi-circular leading edge. This is consistent with

the previous studies for steady flow calculations (Miller and Schmidt,19 Peric et al.,20 and Melaaen21)

and unsteady flow calculations by Zang et al.22 The main possible reason for the current slightly

better predictions using the co-located grid than the predictions by Yang and Voke2 on the staggered

is due to better grid resolutions in both x and y directions in important flow regions such as the near

wall region, the free shear layer region in the bubble, the blend point region, and the reattachment

point region. It may be partly because of a larger computational domain being used so that the inflow

and outflow boundaries are further away and hence have smaller influence on the results.

Figures 6 and 7 present comparison between the current predicted mean streamwise velocity

and rms of fluctuations with the experimental data for the ETL-case (Yang and Voke only carried

out study for the LTL-case). An excellent agreement has been obtained between the predicted mean

profiles and the experimental data at all streamwise locations except the last station where the mean

profile is slightly over-predicted. According to the prediction there is about 40% reduction in mean

bubble size (both in length and height) for the ETL-case which is consistent with previous studies.

The predicted rms of streamwise fluctuations compare very well with the experimental data in terms

of both peak values and their locations. There is a slight under-prediction at two streamwise locations

but overall a good agreement has been obtained. Since �z+ is 24 which is much bigger than the

minimum �x+ and �y+, a grid refinement has been carried out in the spanwise direction (increased

from 64 nodes to 100 nodes) and the peak rms values obtained with the refined mesh are slightly

closer to the experimental data as shown in Figure 8.

B. Transition process

Isosurfaces of instantaneous spanwise vorticity are presented in Figure 9 for both the LTL-case

and the ETL-case at three different times, showing the transition process. The laminar boundary

layer starts developing from the mean stagnation point, and then separates at the blend point due to
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FIG. 6. Mean streamwise velocity at different streamwise stations (ETL-case), present LES (solid lines), and experimental

data (symbols).

the curvature change, leading to unstable free shear layer formed in the separation bubble. It can be

seen that for the LTL-case, initially a steady free shear layer develops associated with formation of

two-dimensional spanwise vortices; the free shear layer becomes unstable at about x/D = 2.1 via

an inviscid instability, Kelvin-Helmholtz instability as shown in the study by Yang and Voke.2 Any

small disturbances present grow downstream causing the deformation and distortion of the initial

two-dimensional spanwise vortices. Further downstream those two-dimensional vortices become

more distorted/deformed, and roll up leading to the formation of streamwise vortices associated with

significant three-dimensional motions, eventually breaking down at about the reattachment point

and developing rapidly into a turbulent layer downstream.

For the ETL-case, as shown in Figure 9, disturbances in the free shear layer have larger

amplitudes much earlier at about x/D = 0.8 due to disturbances from free-stream turbulence.

Furthermore, it can be seen that the flow in the attached thin boundary layer prior to separation

is quite smooth, indicating that it is still laminar boundary layer but is already disturbed to some

extent. Careful observation reveals that the spanwise vorticity in the ETL-case is distorted/deformed

very early on and the attached thin laminar boundary layer prior to separation is not quite two-

dimensional as some kind of streaky-like structures are visible. There is an increasing amount of

evidence (Schlatter et al.,23 Watmuff et al.,24 and Brandt and Henningson25) that streaky streamwise-

oriented structures confined in the laminar boundary layer are the embryo for the so called “bypass”

transition in attached boundary layer flows.

To clarify what is happening in the boundary layer developing from the stagnation point to

the blend point where separation occurs and further downstream, the growth of maximum turbulent
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FIG. 7. rms streamwise velocity fluctuation u′ at different streamwise stations (ETL-case), present LES (solid lines), and

experimental data (symbols).

kinetic energy (kmax, the spanwise averaged peak value of k profile along the wall normal direction

in the boundary layer and free shear layer) is presented in Figure 10. It can be seen clearly that kmax

is non-zero before separation for the ETL-case, decreasing slightly in the attached thin boundary

layer since the flow accelerates along the semi-circular leading edge but starting to grow very rapidly

after separation and reaching the peak in the separation bubble at about x/D = 1.1. While for the

FIG. 8. rms streamwise velocity fluctuation u′ at different streamwise stations (ETL-case), coarser grid (solid lines), refined

grid (dotted lines), and experimental data (symbols).
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FIG. 9. Isosurfaces of instantaneous spanwise vorticity at three different time; (a) ETL-case and (b) LTL-case.

LTL-case kmax is zero in the attached thin boundary layer and starts to grow at about x/D = 1, well

after the separation at a very low rate until at about x/D = 1.8, where kmax grows very rapidly at a

much higher rate, reaching the peak at about x/D = 3.2. The maximum turbulence energy profiles

along the plate clearly show that for the ETL-case the attached thin boundary layer is receptive to

the free stream turbulence before separation, carrying a small amount of turbulent kinetic energy

at separation which grows very rapidly after the separation, leading to much earlier transition and

breakdown to turbulent flow.

The above discussion has indicated that for the ETL-case a kind of “bypass” transition may have

taken place, i.e., the KH instability is bypassed. To further investigate if this is indeed the case the

procedure presented by Yang and Voke2 is followed here. For an incompressible free shear layer

the criterion for the KH instability to occur is 0 < Kh < 1.2788 (Chandrasekhar26), where K is the

wave number and h is the shear layer thickness. Figure 11 shows the streamwise velocity spectra for

the LTL-case. The spectral analysis for other components of velocity and pressure over a wide region

FIG. 10. Development of the maximum turbulent kinetic energy; LTL-case (solid line) and ETL-case (dashed line).
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FIG. 11. Power spectrum of streamwise velocity fluctuation u′ at x/l = 0.9 and y/l = 0.02 (LTL-case).

of separated shear layer returns very similar frequency content. A clear peak region is observed with

the average characteristic frequency f = 0.86U0/l (l is the mean bubble length) which is close to the

value previously predicted by Yang and Voke2 and the measured characteristic frequency. The Kh

value in the current study is also very close to that of Yang and Voke,2 confirming that the instability

mechanism at work is through the KH instability mode. However, for the ETL-case, only a mild

peak region could be observed at about x/l = 0.085 and y/l = 0.023 with the average characteristic

frequency f = 1.56U0/l as shown in Figure 12. The wave speed c is equal to the velocity at the critical

layer, i.e., the streamwise velocity at the inflection point (x/l = 0.085 and y/l = 0.026), which is

0.59U0 so that the wave number K = 2π f/c = 16.61/l. The shear layer thickness at this streamwise

location (x/l = 0.085) is roughly about h = 0.089l and hence Kh = 1.48 which does not satisfy the

KH instability criterion (0 < Kh < 1.2788). Therefore, the primary KH instability observed under

low free-stream turbulence is bypassed at the high free-stream turbulence level of 5.6% examined

in the current study.

The bypass transition scenario proposed above for the ETL-case can be further confirmed by

studying the flow structures visualized using isosurfaces of the Q-criterion (as shown in Figure 13).

Q-criterion is one of the most effevtive means to visualize flow structures and is defined as follows:

Q =
1

2

(

�i j�i j − Si j Si j

)

, �i j =
1

2

(

∂ui

∂x j

−
∂u j

∂xi

)

, Si j =
1

2

(

∂ui

∂x j

+
∂u j

∂xi

)

.

FIG. 12. Power spectrum of streamwise velocity fluctuation u′ at x/l = 0.085 and y/l = 0.023 (ETL-case).
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FIG. 13. Top and perspective views of the Q-criterion isosurfaces; (a) LTL-case and (b) ETL-case.

For the LTL-case the spanwise oriented quasi-2D KH rolls are clearly visible at the early stage

of the bubble and then become distorted/deformed due to three-dimensional motion setting in as a

result of a possible secondary instability. A kind of 3D structures similar to the so called hairpin

vortices form further downstream and eventually breakdown to turbulence at about or just after the

reattachment. However, for the ETL-case those spanwise oriented quasi-2D KH rolls are not visible

anymore and spanwise irregularity appears at the early stage of the bubble in the separated shear

layer leading to the formation 3D hairpin like structures, bypassing the stage where the quasi-2D

KH rolls exist, leading to a much earlier breakdown to turbulenece compared against the LTL-case.

V. CONCLUSION

LES study of a transitional separated boundary layer over a flat plate with a semi-circular leading

edge at two free-stream turbulence levels (<0.2% and 5.6% at leading edge) has been presented.

The predicted mean quantities for both cases compare well with the experimental data and the entire

transition process leading to breakdown to turbulence has been elucidated and visualized using the

LES data for both cases.

For the LTL-case the free shear layer formed in the separation bubble is inviscidly unstable via

the Kelvin-Helmholtz instability mechanism, consistent with many previous studies. However, for

the ETL-case (5.6% FST level) the instability analysis shows that the criterion for the KH instability

to occur is not satisfied anymore. There is already disturbances in the attached thin boundary layer

before separation and the disturbances grow very rapidly immediately after separation, leading to

very rapid transition. This is further confirmed by visualizing the transition process using isosurfaces

of the Q-criterion which shows that the transition process is quite different for the ETL-case compared

against the LTL-case. The early stage where the KH instability occurs in the LTL-case is bypassed

in the ETL-case, similar to the “bypass transition” process in attached boundary layers where TS

instability stage is bypassed. It can be concluded that for the separated boundary layer flow in
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the present study a kind of “bypass transition” occurs under 5.6% FST level and the 2D primary

instability of the free shear layer via the Kelvin-Helmholtz instability mechanism observed at lower

free-stream disturbances is bypassed.
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