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SUMMARY

Understanding how neural circuits transmit informa-
tion is technically challenging because the neural
code is contained in the activity of large numbers of
neurons and synapses. Here, we use genetically en-
coded reporters to image synaptic transmission
across a population of sensory neurons—bipolar
cells in the retina of live zebrafish. We demonstrate
that the luminance sensitivities of these synapses
varies over 10* with a log-normal distribution. About
half the synapses made by ON and OFF cells alter
their polarity of transmission as a function of lumi-
nance to generate a triphasic tuning curve with dis-
tinct maxima and minima. These nonlinear synapses
signal temporal contrast with greater sensitivity
than linear ones. Triphasic tuning curves increase
the dynamic range over which bipolar cells signal
light and improve the efficiency with which lumi-
nance information is transmitted. The most efficient
synapses signaled luminance using just 1 synaptic
vesicle per second per distinguishable gray level.

INTRODUCTION

The neural code transmitting information in the nervous system
is contained in the electrical activity of large numbers of neurons
and the secretory activity of many more synapses (Dayan and
Abbott, 2005). Understanding these codes is a formidable ex-
perimental challenge. Most population measurements of signals
in circuits have focused on somatic spikes, monitored directly
using electrophysiology or indirectly using optical techniques.
But the generation of spikes is determined by a much more
numerous, diverse, and plastic component of neural circuits—
synapses (Abbott and Regehr, 2004). How is information en-
coded across a population of synapses?

Sensory systems provide an excellent context in which to
study neural codes because the experimenter has control over
the information to be represented. An intensively studied ex-
ample is the retina, where a multielectrode array can be used
to record spiking activity across the population of ganglion cells
that deliver the results of visual processing to the brain (Meister
et al., 1995; Baccus, 2007; Gollisch and Meister, 2010). But we
still have only a rudimentary understanding of how this output
is generated by neurons and synapses within the retina. Take,
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for example, the most basic statistic of a visual stimulus—the
distribution of intensities (or luminances) that it contains. High-
lights and shadows within visual scenes can differ in intensity
by 4-5 log units (Rieke and Rudd, 2009; Pouli et al., 2010), and
the visual system of primates senses luminance over a similar
range (Ueno et al., 2004; Hamilton et al., 2007). Yet during the
day, light is converted into neural signals through an array of
cone photoreceptors with a dynamic range of only ~10? and
with uniform sensitivity to light (Naka and Rushton, 1966a;
Normann and Perlman, 1979; Schnapf et al., 1990). This discrep-
ancy raises two basic questions. How is the dynamic range of
luminance signaling increased after light has been converted
into an electrical signal? And, more broadly, how is information
about luminance encoded downstream of photoreceptors?

To investigate these questions we have used fluorescent
proteins that report synaptic activity. We focus on the second
stage of processing in the retina, where bipolar cells in the inner
plexiform layer (IPL) transmit to ganglion cells (Baccus, 2007;
Masland, 2001). To allow these measurements to be made in vivo
across the whole population of bipolar cells, we generated
zebrafish expressing sypHy—a fluorescent protein that reports
synaptic vesicle fusion (Granseth et al., 2006). Additionally, we
monitored the presynaptic calcium signal driving neurotrans-
mission using SyGCaMP2 (Dreosti et al., 2009, 2011). We find
that luminance information is transferred to the inner retina using
synapses that are tuned to intensities varying over 4-5 log units.
Strikingly, half the synapses in the ON and OFF pathways
signaled luminance through a triphasic intensity-response func-
tion with a distinct minimum and maximum. Using ideal observer
analysis (Smith and Dhingra, 2009; Geisler, 2011), we find that
this tuning curve doubles the efficiency with which individual
synapses use vesicles to signal luminance and also increases
their sensitivity to temporal fluctuations in intensity (i.e., con-
trast). These results demonstrate how the population of bipolar
cell synapses uses a combination of strategies to transfer infor-
mation about the luminance and contrast of a visual stimulus.

RESULTS

The Ribeye A Promoter Targets Expression to Ribbon
Synapses

Transmission of the visual signal to the inner retina was imaged
in live zebrafish by targeting sypHy and SyGCaMP2 to ribbon
synapses of bipolar cells (Figure 1A). To target expression of
these reporters to retinal bipolar cells we cloned the promoter
of the ribeye a gene (Wan et al., 2005). Ribeye is the major struc-
tural protein of the presynaptic ribbon that holds vesicles close
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to the active zone (Schmitz et al., 2000). In zebrafish, there are
two ribeye genes, a and b, but only a is expressed in retinal
bipolar cells. Figures 1B-1H show the expression of a
membrane-fused (mem)EGFP driven by 1.8 kb of the promoter
region upstream of the ribeye a ATG. Robust expression was
obtained in all ribbon synapses in the eye, vestibular organ,
lateral line, and pineal. In the retina, expression of sypHy under
the ribeye a promoter was localized to the pedicles of cones in
the OPL, and the synaptic terminals of bipolar cells distributed
through all layers of the IPL (Figure 1l). Expression of sypHy
was strong both in bipolar cells expressing PKC-a, which are
generally thought to be ON, and those negative for PKC-a,
generally thought to be OFF (Figure S1). Thus, the ribeye a
promoter efficiently drove expression across the complete pop-
ulation of bipolar cells in the zebrafish retina.

In Vivo Imaging of Synaptic Transmission across

a Population of Sensory Neurons

Aview of the IPL in which more than 100 terminals could be distin-
guished is shown in Figures 2A-2C, together with the change in
sypHy fluorescence generated by four presentations of full-field
amber light, each step increasing in intensity by a factor of 10
(see also Movie S1 available online). ON terminals became
brighter in response to light, reflecting the acceleration of vesicle
fusion, while OFF terminals became dimmer, reflecting a slowing
down of vesicle release and a net removal of pHluorin from the
surface by endocytosis (Lagnado et al., 1996). The relative
change in fluorescence over time for all these 100 terminals is
shown in the raster plot in Figure 2D. Some synapses generated
a response to the infrared laser at the beginning of an imaging
episode, but in most cases this response was small and complete
within 5-10 s (Figure S2). A strength of this approach is that signal
transfer could be monitored across hundreds of bipolar cell
terminals simultaneously, through all layers of the inner retina.
The spatial resolution was not, however, sufficient to monitor
signals at individual active zones within these terminals.

Examples of sypHy signals from individual ON and OFF termi-
nals are shown in Figures 2E and 2F, measured in response to
a series of light steps increasing in intensity by 0.5 log units.
These traces illustrate three unexpected properties of signal
transmission that we analyze in this paper. First, individual termi-
nals exhibited a striking variability in their sensitivity to light.
Second, in some terminals, the relation between response
amplitude and light intensity was not monotonic, but passed
through a maximum. Third, in some terminals the response to
a dim light was of the opposite polarity to that of a brighter light
(arrowed in Figures 2E and 2F).

To investigate the transmission of luminance signals quantita-
tively, we calculated the rate of vesicle release taking into
account the fact that sypHy signals are dependent on both
exocytosis, occurring with a variable rate keyo(t), and endocy-
tosis, occurring with rate-constant kengo (Figure 3A). The abso-
lute release rate at any time point, Vexo(t), was calculated as:

dF

Vexo(t) =a gt

+ (Kenao * (F(t) — b)) (Equation 1)
where F(t) is the actual total fluorescence measured over the

terminal, and a and b are constants dependent on the total

number of vesicles in the terminal and the fraction of these
that are unquenched on the surface. The derivation of this
relation is described in the Experimental Procedures. The rate
constant kengo has been measured in isolated bipolar cells
using the capacitance technique and is ~0.1 s~' during main-
tained activity (von Gersdorff and Matthews, 1994; Neves and
Lagnado, 1999). We found that Kengo Was also ~0.1 s~ in vivo,
as measured from the decline in the sypHy signal when exocy-
tosis was minimized (Figure 3B). Calculation of constants
a and b required the following: the cross-sectional area of the
terminal within an optical section ~2 um thick (obtained by
underfilling the back aperture of the objective); the average
density of vesicles in a bipolar cell terminal, which was esti-
mated as ~1,050 per pm® from electron micrographs (Fig-
ure 3A), and an estimate of the sypHy surface fraction (cimin),
which was measured by acid quenching the pHluorin on the
surface membrane (Figures 3C and S3 and Experimental
Procedures).

The dynamic range of signaling through ON and OFF channels
was similar. Switching on a bright light from a dark-adapted state
accelerated vesicle release to an average peak rate of ~65 vesi-
cles s"in ON terminals, while switching this light off accelerated
release to ~75 vesicles s~ in OFF terminals (Figure 3D). Termi-
nals of bipolar cells in zebrafish contain an average of about 6
ribbons (unpublished observations), so these measurements
converts to release rates of ~12 vesicles s~' per synaptic
contact. These estimates are similar to measurements of the
transient component of exocytosis from ON bipolar cells esti-
mated by analysis of noise in postsynaptic ganglion cells (~17
vesicles s~ per contact; Freed, 2000b). Notably, the synaptic
output from both ON and OFF terminals recovered partially
from these peak rates with time constants of ~3-7 s (Figure 3D),
reflecting adaptation to luminance.

Variations in Luminance Sensitivity across a Population
of Synaptic Terminals

The conversion of sypHy signals to rates of vesicle release is
shown for light steps of three different intensities in Figure 4A
(ON terminals) and Figure 4B (OFF). These records were ob-
tained by averaging over the two populations, irrespective of
sensitivity. The variation within each population is illustrated by
the individual examples in Figures 2E and 2F and by averaging
responses from the 20% of terminals at the two extremes of
the sensitivity distribution, as shown in Figures 4C and 4D. For
both ON and OFF cells, we only analyzed the initial response
at light onset, measured from a dark-adapted state. The inten-
sity-response relations of each of these four subsets of synapses
is shown in Figures 4E and 4F. A good description was obtained
using the Hill equation:

Ih
R=R —_—

where sensitivity is quantified as the intensity producing the half-
maximal response (l1,2), and the Hill coefficient (h) is the power
law describing how the response grows at low intensities.

For cones, his ~1 and |y, is constant across the whole pop-
ulation when measured at the optimal wavelength (Baylor et al.,

(Equation 2)
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Figure 1. The Zebrafish ribeye a (ctbp2) Promoter Drives Expression in Neurons Containing Ribbon Synapses

(A) Imaging synaptic reporters in the retina of live zebrafish using a two-photon microscope. Full-field stimuli were applied through a light guide.

(B and C) A stable transgenic fish expressing membrane targeted EGFP (memEGFP) under control of 1.8 kb of the genomic sequence upstream of the ribeye a
gene (Tg(—1.8ctbp2:memEGFP)imb). At 4 dpf, all sensory organs known to express ribbon synapses were labeled, including the retina, the inner ear
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Figure 2. In Vivo Imaging of Synaptic Transmission in the Retina
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(A) Field of view showing sypHy expression in synaptic terminals of bipolar cells in the IPL of a fish at 10 dpf.
(B) ROIs from the same field highlighted in different colors. When viewed at highest resolution, numbers mark ON terminals and red numbers OFF. Nonresponding

terminals numbered in white.

(C) Difference images highlighting the change in sypHy fluorescence in response to steps of light. Attenuation of the light source is shown in log units (ND 4 to

ND 1). Darker areas show OFF terminals; brighter areas are ON.

(D) Raster plot showing the relative change in fluorescence (AF/F) for each ROIs marked in (B). The intensity of the stimulus was increased in steps of 1 log unit,

with a maximum intensity of 5.5 x 10° photons/um?/s.

(E) Responses of five individual ON terminals to light steps increasing in intensity by 0.5 log units. Darker hues indicate more sensitive terminals. The black arrows

highlight some examples of switches in response polarity.
(F) Responses of five individual OFF terminals (see also Figure S2).

1987; Normann and Perlman, 1979). The synaptic output of
cones and voltage responses in the soma of bipolar cells also
display a Hill coefficient around 1 (Choi et al., 2005; Euler and
Masland, 2000). But in synapses of bipolar cells, both h and
l1/2 varied widely. The distribution of h is shown by the histo-
grams in Figure 5A. Two components can be seen: a sharp
peak at h below about 1.5, and a much more widely distributed

component at h greater than about 2.0. Supralinearity, which we
defined as h > 2, was observed in 66% of OFF and 62% of ON
terminals. In other words, some terminals signaled luminance
almost in an all-or-none manner. Individual examples of this
behavior are shown in Figures 2E (ON) and F (OFF) and Figures
S5A and S5B. Thresholding in the synaptic output of bipolar cells
is not easily explained by the idea that these are graded neurons

(white asterisk), the pineal gland (bold arrow), and the neuromasts (arrow heads). (B) Side view, (C) top view of the fish head. Additionally EGFP expression can be

seen in the optic nerve and the optic tectum (black asterisk).

(D) In a fish at 7 dpf, EGFP expression is driven in hair cells of the inner ear (side view) and maculae (not shown).

(E and F) EGFP expression in the pineal gland and a neuromast, respectively (side view; 7 dpf).

(G) In the retina, the ribeye a promoter drove expression of memEGFP in photoreceptors and bipolar cells.

(H) Labeled photoreceptors in the outer nuclear layer (ONL), their terminals in the outer plexiform layer (OPL), cell bodies of bipolar cells in the inner nuclear layer
(

(

INL), and their terminals in the inner plexiform layer (IPL).

1) Expression of sypHy localized to terminals in the OPL and IPL in the stable Tg(—1.8ctbp2:sypHy)imb line used in this study (see also Figure S1).

Neuron 73, 758-773, February 23, 2012 ©2012 Elsevier Inc. 761
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Figure 3. Calculating the Rate of Vesicle Release from sypHy Signals

(A) Electron micrographs indicate that there are about 15,000 vesicles in an average bipolar cell terminal (background). The number of unquenched sypHy
molecules on the surface depends on both the rate of exocytosis and the rate of endocytosis (foreground).

(B) Estimating the rate of endocytosis in vivo: comparison of the sypHy signal in response to a bright step of light (ND 1) averaged from a population of 95 ON
terminals (green) and 272 OFF terminals (red). In OFF terminals, the sypHy signal decayed exponentially with = ~10 s (black line). In ON terminals, the signal
decayed at the same rate when the light step was turned off. In both channels, acceleration of vesicle release generated a sypHy signal that rose at a constant
average rate for the first 2 s (black lines).

(C) Estimation of the sypHy surface fraction (amin) by acid quenching. First, responses to a step of bright light (ND 1) were measured in ON and OFF terminals at pH
7.4. Then, sypHy molecules on the surface in darkness were quenched with a solution at pH 3.2. The difference between the minimum fluorescence at pH 7.4 and
pH 3.2 reflects quenching of the surface fraction (dashed lines). Traces averaged from 10 fish. o, averaged 0.8% in ON and OFF terminals (see also Figure S3).
(D) Upper traces: average fluorescence response of ON (green) and OFF (red) terminals to a 40 s light step (ND 1). The response and recovery phases could both
be described as double-exponential functions (smooth lines). Lower traces: a comparison is shown of the conversion of the fluorescence response to rates of
vesicle release, Vexo(t), using the raw sypHy signal (noisy trace) and the fitted traces that minimize noise. Thick black bars in upper graph show the values of Fr,
used for this calculation, as described in Experimental Procedures.

that simply respond to linear synaptic inputs and is more likely to
reflect active conductances within the synaptic terminals (Bur-
rone and Lagnado, 1997; Baden et al., 2011).

The value of 4,5 across the population of bipolar cells varied
over 4 log units and the distribution had a characteristic shape
for both ON and OFF channels—normal on a log scale (Figures
5B and 5C). Strikingly, a number of studies have found that the

762 Neuron 73, 758-773, February 23, 2012 ©2012 Elsevier Inc.

distribution of luminance in natural scenes is also log normal
(Richards, 1982; Brady and Field, 2000; Geisler, 2008). Although
the shape of these distributions appears relatively constant, the
width varies: a scene in bright sunlight containing deep shadows
might contain luminances varying across 4-5 log units (Pouli
et al., 2010; Rieke and Rudd, 2009). The population of bipolar
cells can, however, transmit luminance information to the inner
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Figure 4. Variations in the Intensity-Response Relation of Different Synaptic Terminals

(A) Upper trace, average fluorescence response of ON terminals to light steps of three different intensities. Smooth lines show the description of these responses
by a series of double exponential fits. Lower trace, conversion of the upper signal to rates of vesicle release using both original and fitted traces.

(B) The rate of vesicle release in OFF terminals calculated in the same way.

(C) Averaged response from the 20% most sensitive ON terminals (dark green) and the 20% least sensitive (light green).

(D) Averaged response from the 20% most sensitive OFF terminals (dark red) and the 20% least sensitive (light red).

(E) Peak release rate at light onset as a function of the relative intensity could be described using a Hill function. Dark green: averages of the 33% most sensitive
ON terminals (n =35, |1, =2.7 X 1074 h= 2.8). Light green: 33% least sensitive terminals (n =37, |4/, = 1.7 X 1072, h= 0.9). Dashed arrows show ly,. Error bars
are SEM.

(F) Hill function it to the intensity-response relation of two subsets of OFF terminals: the 33% most sensitive (dark red; n = 65, Iy, = 1.1 x 1074, h =2.4) and 33%
least sensitive (light red; n = 58, |1, = 5.7 x 1073, h = 5.1).
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Figure 5. Nonlinearities and Sensitivity across the Population of
Bipolar Cell Terminals

(A) The distribution of Hill coefficients (h) across individual synaptic terminals.
ON (green, n = 536), OFF (red, n = 1,218). Both distributions show a distinct
population with h < 1.5 (termed “linear”), and a second population with h > 2.0
(“nonlinear”). The fitted function is the sum of two Gaussians.
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retina across synaptic terminals with sensitivities that are distrib-
uted widely enough to encode scenes with these high dynamic
ranges. The log-normal distribution of sensitivities also suggests
that more synapses will be matched to the luminance values
most prevalent in the image falling on the retina.

Triphasic Tuning Curves and Switches in Polarity

The tuning curve of a sensory neuron is a key determinant of the
information that it can transmit about a stimulus. Several theoret-
ical studies have suggested that sharper tuning curves within
individual neurons can improve the overall efficiency of popula-
tion codes, in part because the finest discrimination occurs
over the range of stimulus strengths that most rapidly alter the
neurons response (Brunel and Nadal, 1998; Pouget et al.,
1999; Seriés et al., 2004; Butts and Goldman, 2006). Tuning
curves similar to Hill functions or Gaussians can only provide
this advantage at the cost of signaling over a narrower range of
stimulus strengths, but we found a subset of bipolar cell
synapses in which the dynamic range of signaling was increased
by an unexpected mechanism: switching the polarity of the
exocytic response as a function of luminance. Examples of
sypHy signals from such terminals are shown in Figure 6A (ON)
and Figure 6B (OFF): the response to a dim light was of the oppo-
site polarity to the larger response to a brighter light.

We examined the tuning curves of linear and nonlinear
synapses more closely by normalizing the relation measured in
individual terminals to |1, and then averaging within the linear
and nonlinear classes (Euler and Masland, 2000). The response
of nonlinear ON synapses did not saturate as light intensity
increased but passed through a minimum (transition from phase
one to two) and then a maximum (transition from phase two to
three) before reaching a steady state (Figure 6C). The response
of nonlinear OFF synapses was roughly an inversion of this tri-
phasic shape (Figure 6D). A good empirical description of tripha-
sic tuning curves could be obtained by considering them as the
sum of two components, which we termed “intrinsic” (black
traces in Figures 6E and 6F), and “antagonistic” (blue traces).
The expression fitted to these curves is

In(N\?] .
o (%) |

(Equation 3)

7

th
VeXO:A+Int( ! ) +Antag

I +1 aV2r ex
0

where I' is the intensity normalized to |1, A is an offset, Int is
a scaling factor for the “intrinsic” component described by
a Hill function, Antag is the scaling factor for the “antagonistic”
component, described by the cumulative density function of
alog-normal distribution, and V/2¢ is the width of that distribution

(B) Distribution of |,, across a complete sample of ON (green) and OFF (red)
terminals from 178 experiments. The fitted curves are log-normal functions
with the shape exp[—(In(//lp)/20)?].

(C) Distribution of 14, across the complete sample of ON and OFF terminals
(n=1,754). lo, the peak of the distribution, occurs at a relative intensity of 1.47 +
0.39 x 1073, equivalent to 8.1 x 10 photons pm~2s~". In comparison, the
threshold for activation of cones is about 102 photons pm 2 s~ (Schnapf et al.,
1990). The width of the distribution v/2¢ was 4.2 + 0.4 log units. There was ho
correlation between |4, and h (see also Figure S4).
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sypHy
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Figure 6. Linear and Nonlinear Tuning
Curves Encoding Luminance

(A) SypHy responses from two ON terminals eli-
cited by a series of light steps increasing in
intensity by one log unit. Lower intensities caused
a decrease in vesicle release. The right hand ex-
ample shows suppression of release at the highest
intensity, where there is a rebound burst of ex-
ocytosis at light offset (i.e., an OFF response;
black arrow).

(B) Responses from two OFF terminals. Lower
intensities caused an increase in vesicle release.
(C) The average shape of the intensity-response
function for ON terminals. Linear (thin line) and
nonlinear (bold) were averaged separately after
normalizing the relation measured in each terminal

to the intensity producing the half-maximal
response, I'. The function fitted to both curves is of
the form
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in log units. The value of ¢ varied between 3.0 and 4.5 log units
and was therefore similar to the distribution of sensitivities
across the population of terminals shown in Figure 5C. The
growth of the antagonistic component in parallel with the number
of bipolar cells activated suggests that this signal may originate
from neighboring bipolar cells that are progressively recruited as
the light intensity increases. After normalization and averaging,
a much weaker antagonistic component could also be detected
in the “linear” group of synaptic terminals (Figures 6A and 6B,
thin fitted traces).

We are not aware that tuning functions with a triphasic form
have been described before in a sensory neuron. A switch in
the polarity of the synaptic output of bipolar cells is especially
surprising because the electrical response in the soma is deter-
mined by the type of glutamate receptor sensing transmitter
release from photoreceptors: a metabotropic receptorin ON cells
and an ionotropic receptor in OFFs (Masland, 2001). We therefore
investigated synaptic tuning curves in bipolar cells by imaging
a second variable reflecting signal transmission—the calcium
signal driving neurotransmitter release. These experiments
were carried out using a line of transgenic zebrafish expressing
SyGCaMP2 (Dreosti et al., 2009). Use of the ribeye promoter
described in Figure 1 allowed us to localize expression of
SyGCaMP2 to ribbon synapses. Figure 6G shows examples of
responses from individual ON and OFF bipolar cell terminals
stimulated with steps of light over the same intensity range
used in experiments employing sypHy. The top two traces
provide examples of sustained ON cells that generate transient
OFF responses at the highest luminance tested (arrowed);
the next trace is an OFF cell in which the tuning curve passes
through a maximum, and the bottom trace is an example of an
OFF cell that generates ON responses at the lowest intensities
(arrowed).

Collected results using SyGCaMP2 are shown in Figures 6H and
6land are expanded onin Figures S4, S5C, and S5D (using 100 ON
synaptic terminals and 39 OFF). These tuning curves were con-
structed using the same general approach applied to sypHy
measurements, except that the response was quantified as the
initial rate of change of SyGCaMP2 fluorescence normalized to
the baseline. The tuning curves of linear (49%) and nonlinear
(51%) terminals were described well by Equation 3, with shape
parameters ¢ and h very similar to those estimated by assessing
the exocytic response using sypHy (cf. Figures 6C and 6D).

Nonlinear Synapses Transmit Luminance Information
More Efficiently

How do the “linear” and “nonlinear” tuning curves affect the en-
coding of a sensory stimulus? A useful way to frame this question
is to ask how many different levels of luminance (N.) might be
discriminated by observing the output of the bipolar cell terminal,
taking into account the variability inherent in the process of
synaptic transmission (Jackman et al., 2009; Smith and Dhingra,
2009). At many synapses, including ribbon synapses of bipolar
cells, vesicle release follows Poisson statistics, with a variance
equal to the mean (Katz and Miledi, 1972; Laughlin, 1989; Freed,
2000a, 2000b). The discriminability, d’, of two stimulus values
differing by 3s will depend on the signal-to-noise ratio (SNR)
(Geisler, 2011) as
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d =vVSNR (Equation 4)

A convenient way to calculate d’ across the whole tuning curve
is from the Fisher Information, Ig, a quantity that places a limit on
the best estimate of a stimulus that can be extracted from the
response of a neuron using any unbiased decoding scheme
(Dayan and Abbott, 2005). If the response varies according to
Poisson statistics, Ir can be calculated from the derivative of
the tuning curve f(s):

2
Ie :W (Equation 5)
and
d' =06s+/Ig(s). (Equation 6)

The overall performance of the neuron can then be quantified
by integrating d’ over s to estimate the number of different stim-
ulus values that can be resolved (Barlow et al., 1987; Smith and
Dhingra, 2009):

If'(s)?
N, = as.
/ , V)

We used this approach to calculate the number of changes in
luminance (N.) or gray levels that could be distinguished from
the synaptic output if vesicles were counted over a time window
of 200 ms, roughly equivalent to the integration time of a bipolar
cell (Ashmore and Falk, 1980). A given rate of vesicle release did
not necessarily map onto a single luminance value because tuning
curves were not monotonic, but this does not invalidate the
approach for estimating the number of distinguishable gray levels
because the calculation is based on discriminating one level of
luminance from another rather than estimating the absolute value
(Barlow etal., 1987). On average, a single linear ON terminal distin-
guished ~5.5 gray levels, while a nonlinear terminal distinguished
~10 (Figure 7A). In the OFF channel, a single linear terminal distin-
guished ~5.5 gray levels, while a nonlinear terminal distinguished
~14 (Figure 7B). Thus, nonlinear synapses were capable of de-
tecting 2 to 3 times as many gray levels as the linear class.

Discriminability can always be improved by counting more
vesicles, for instance by increasing the release rate. But in prac-
tice the design of neural circuits is constrained by the need to
encode and transmit information in an energy-efficient manner
(Attwell and Gibb, 2005; Laughlin, 2001). The retina devotes
considerable resources to transmitting the visual signal to the
IPL: synaptic terminals of bipolar cells occupy a sizeable fraction
of the retinal volume (Figure 1H) and contain large numbers of
vesicles and mitochondria. How efficiently do different bipolar
cells use these resources to encode luminance? To investigate
this question, we quantified the cost of signaling luminance by
dividing the average rate of vesicle release, (Vexo), during normal
activity by the total number of distinguishable gray levels (N).

< Vexo >
NL

(Equation 7)

Cost =

(Equation 8)

To calculate (Vexo), We assumed that bipolar cells randomly
sample a log-normal distribution of luminances mirroring the
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(A) The tuning curves of ON terminals showing the average number of vesicles released over a 0.2 s time window (green line, left axis), and the number of gray
levels distinguishable by counting vesicles over this interval using an ideal observer model (black line, right axis). Thin lines are the linear synapses, and bold lines

nonlinear.
(B) A similar comparison for OFF terminals.

(C and D) Predicted contrast sensitivity functions derived from the luminance tuning curves of ON terminals in (A) and OFF terminals in (B).

distribution of sensitivities in Figure 5C. If the probability density
function of luminance is f(l),

<Vexo> = <Vexo(l) X f(l)) (Equation 9)

The mean rate of vesicle release through linear ON terminals
was 15.5 vesicles s, so the average cost of encoding lumi-
nance was 2.51 vesicle s~' per gray level in an observation
time of 200 ms. Nonlinear ON terminals operated at an average
cost of 1.09 vesicle s~ per gray level distinguished, demon-
strating that the improvement in performance did not come at
the expense of more vesicles (Figure 7A). In the OFF channel,
nonlinear synapses were 2.5 times as efficient as linear ones.

Nonlinear Synapses Are More Sensitive to Contrast
Although some ganglion cells primarily signal the mean lumi-
nance of a stimulus, many more also respond to fluctuations in
intensity around this mean (contrast) (Baccus, 2007; Demb,
2008; Masland, 2005). To investigate how the luminance tuning
curves of bipolar cell synapses affected the signaling of temporal
contrast we began with an analysis based on an ideal observer
model, in a manner similar to Choi et al. (2005). If vesicles are
released according to Poisson statistics, a change in luminance
from s4 to s, will be detected with SNR:

f(s1) —1(s2)
f(S1) + f(Sg)

SNR = (Equation 10)

From the tuning curves in Figures 7A and 7B, we calculated
for each value of s; the nearest value of s, generating a response
detectable with a SNR > 1. This threshold contrast will be
|(s1 — so)|/s1, and the contrast sensitivity will be the inverse of
this value. Figure 7C plots the average contrast sensitivity of linear
and nonlinear ON terminals as a function of the mean luminance,
s4. Increments and decrements in light intensity are detected with
different sensitivities, but for simplicity Figure 7C plots the
maximum of the two measures. Three general predictions can
be made. First, contrast sensitivity will be strongly dependent
on the mean luminance at which it is measured, and will be at
a maximum when the luminance tuning curve is steepest i.e., at
11,2 (cf. Figure 7A). Second, nonlinear terminals will display a higher
maximum contrast sensitivity than the linear class, again because
their luminance tuning curves are steeper. A third prediction can
be made by comparing the calculated contrast sensitivities of
ON terminals (Figure 7C) with OFFs (Figure 7D): OFF terminals
will, on average, be more sensitive to contrast than ON terminals.

These three predictions were tested experimentally and were
all found to hold. By imaging sypHy, the initial exocytic response
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A Figure 8. Nonlinear Synapses Display
Higher Contrast Sensitivity
(A) Assessing contrast sensitivity at different mean

luminances. Contrast steps varied between 20%
and 100% (5 Hz square wave) and mean lumi-
nances increased in steps of one log unit. Traces
averaged from 360 ON terminals and 450 OFF.

(B) Average contrast-response functions of ON
terminals, measured at different mean lumi-

= 100'0 nances. Curves are fits of the Hill equation with
& 0.0 Al ]] an ﬂ " il HJI Al values of C1/, as follows: 1= 1072, Cy,, =39 + 13%;
@ : 1 =102 (bold trace), C1/» = 34% = 10%; | = 107",
10° , ‘ - ‘ Cijz = 64% £ 7% | = 10°, Gy = 74% + 8%.
= it r T =" T T T T T T T T T T (C) Average contrast-response functions of
] 300 600 900 1200 OFF terminals, measured at different mean lumi-
Time (s) nances. Curves are fits of the Hill equation with
the following parameters: | = 1073, Cio=72% =
Contrast responses at: C : 6%; | = 1072 (bold trace), Cq,, = 68% = 2%; | =
8 . 1210" SOﬁContrast_resgonsesar, 10" Corom71% + 3%: | = 10°. Co » = 83% + 17%
3 e 1=10 IS » L2 0+ 970, » L1z o+ ©.
: ::gz . L E 10:: 3 (D and E) Average contrast-response functions in
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204, 210 terminal, contrast steps were applied at the mean
light intensity closest to |,.. (D) ON terminals. Fits
of the Hill equation with Cq, = 76% + 8% linear
(thin line) and Cq,2 = 54% + 7% (nonlinear, bold
line). (E) OFF terminals. Fits of the Hill equation
with Cy/2 = 75% + 9% (linear, thin line) and C4/, =
20% = 4% (nonlinear, bold line).
(F) The relation between C4,2 and the Hill coeffi-
T 1 1 ' 1 FT T T =7 %1 cient describing luminance tuning in ON terminals
0 20 40 60 80 100 0 20 40 60 80 100 (n = 560). These points are superimposed on the
Contrast (%) E Contrast (%) distribution of Hill coefficients describing lumi-
nance tuning in the same population of terminals
(cf. Figure 5A). C4,2 was systematically lower in
nonlinear terminals.
(G) A similar comparison for OFF terminals (n =
890). C4,, was systematically lower in nonlinear
terminals. Error bars are SEM (see also Figure S6).
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sensitivities |4,» is also shown in Figure S6B. This correlation can
be understood in terms of the results in Figure 7: an individual
terminal is expected to exhibit its maximal contrast sensitivity
at I/, so contrast sensitivity averaged across the whole popula-
tion should parallel the distribution of |4/, (Figure 5C).

To compare the contrast sensitivities of linear and nonlinear
terminals, we made measurements at five different mean lumi-
nances spanning 4 log units (Figure 8A). However, for each
terminal we only used responses to contrast measured at
a mean luminance closest to its own value of |/,. In ON termi-
nals, the contrast generating the half-maximal response, Cy/2,
was 76% * 8% in the linear group, and 54% + 7% in the
nonlinear group (Figure 8D). In OFF terminals, Cq, was 75% =+
9% in the linear group, and 20% + 4% in the nonlinear (Figure 8E).
Thus, nonlinear OFF terminals were the most sensitive to
temporal contrast. The modeling in Figures 7C and 7D explains
this observation on the basis of nonlinear OFF terminals display-
ing the steepest luminance tuning curve, and this idea is sup-
ported by the results in Figures 8F and 8G: C4,, was lowest
(i.e., contrast-sensitivity highest) in nonlinear terminals with Hill
coefficients greater than 1.5. Together, the results in Figures 7
and 8 demonstrate how a detailed description of the luminance
tuning curve also helps us understand retinal signaling under
natural conditions, when the visual stimulus involves fluctuations
around a recent mean.

DISCUSSION

Imaging synaptic vesicle fusion has allowed us to make an in vivo
survey of the visual signal as it is transmitted to the inner retina
through the population of bipolar cells. Two properties that
varied across these synapses affected the transmission of infor-
mation about the luminance and contrast of a visual stimulus.
First, the luminance sensitivities of individual terminals varied
across 4 log units, with a log-normal distribution similar to that
observed in natural scenes. As a result, the sensitivity of synaptic
transmission to a fluctuating stimulus depended on the mean
luminance around which this fluctuation occurred relative to
the luminance sensitivity of the terminal. Second, about half
the synapses employed a triphasic tuning curve in which the
largest deflection was a strongly supralinear function of lumi-
nance. These unusual tuning curves provided for a high degree
of discriminability over a narrow range of luminances and an
increased sensitivity to temporal contrast. Triphasic tuning
curves also increased the dynamic range over which bipolar cells
signal light and improved the efficiency with which luminance
information is transmitted: the most efficient terminals used an
average of just 1 synaptic vesicle per second per distinguishable
gray level.

Variations in Luminance Tuning across a Population

of Synapses

The young fish we used in this study (9-12 dpf) have a retina
strongly dominated by cones, reflecting the delayed develop-
ment of rods (Raymond et al., 1995; Fadool, 2003). Variations
in luminance sensitivity are therefore unlikely to reflect mixed
rod and cone input. How, then, does this wide variation in lumi-
nance sensitivities arise? Bipolar cells are morphologically and

functionally diverse (Masland, 2001; Connaughton et al., 2004),
and our current understanding of their function suggests a
number of possible mechanisms. First, different bipolar cells
sum synaptic signals from varying numbers of cones, depending
on the size of their dendritic trees. Second, bipolar cells vary in
their spectral sensitivities, and the amber stimulus we used in
this study will preferentially stimulate red cones. Third, the effi-
ciency with which these synaptic currents spread from dendrites
to the synaptic terminal might vary, depending on the resistance
of the soma, axon and terminal. Fourth, the change in membrane
potential within the synaptic compartment might vary according
to the local membrane resistance, either due to variations in the
complement of intrinsic conductances, or because of variations
in the strength of GABAergic feedback from amacrine cells.
Here, we have measured the intensity-response function and
distribution of sensitivities from a dark-adapted state. It will be
interesting to assess how coding through the population of
synapses alters as the retina adapts to different mean light levels
(Rieke and Rudd, 2009). The log-normal distribution of lumi-
nance values in natural scenes does not vary between sunrise
and sunset (Richards, 1982; Pouli et al., 2010), so it might be pre-
dicted that the distribution of synapse sensitivities will be
constant in shape but vary in width and shift between different
luminance ranges. The relative efficiencies of signaling through
ON and OFF channels might then be expected to alter as the
mean rate of vesicle release through these two channels change.

Linear and Nonlinear Synapses

Tuning curves in sensory neurons are usually monotonic (as in
photoreceptors encoding luminance; Schnapf et al., 1990) or
Gaussian (as in neurons encoding orientation in the visual cortex;
Seriés et al., 2004). The triphasic tuning curves observed in
about half the bipolar cell terminals were therefore unexpected,
but they are consistent with the ERG of primates, where the
b-wave, primarily reflecting the response of ON bipolar cells,
goes through a maximum termed the “photopic hill” (Ueno
et al., 2004).

In many species, it is possible to differentiate linear and
nonlinear ganglion cells according to their responses to stimuli
varying in time and/or space (Hochstein and Shapley, 1976;
Victor et al., 1977). Where do these nonlinearities arise? Cones
providing the input to the retinal circuit display relatively simple
tuning to luminance: approximately linear for low intensities
and then saturating monotonically (Naka and Rushton, 1966b;
Normann and Perlman, 1979; Baylor et al., 1987). The next neural
compartment in which the visual signal has been recorded is the
soma of bipolar cells. Using slices of mouse retina, Euler and
Masland (2000) recorded voltage responses in rod bipolar cells
and found that the luminance-response curve was linear (Hill
coefficient 1.07). Also using mice, Field and Rieke (2002) and
Sampath and Rieke (2004) found a weak supralinearity in the
light-evoked current recorded in voltage-clamped rod bipolar
cells (Hill coefficient 1.5) but no significant nonlinearity in OFF
bipolar cells receiving inputs from cones. We have now assayed
the visual signal a little further downstream, in the synaptic
compartment of the bipolar cell, where we find strong nonlinear-
ities and even switches in signal polarity. The contrast with elec-
trophysiological measurements in mice might be explained by
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functional differences between mammals and fish, but it may
also be that the signal transmitted by bipolar cells is not as-
sessed adequately by measuring electrical signals in the soma.

Neuronal signaling mechanisms consume significant amounts
of energy, and the efficient use of spikes and vesicles is one of
the constraints affecting the design of neural circuits and the co-
des they implement (Laughlin, 2001). Here, we have shown that
nonlinear synapses encode luminance more efficiently (Figures
7C and 7D) and also have higher sensitivity to contrast (Figure 8).
What then is the function of linear terminals? It is hard to answer
this question satisfactorily without an overview of how the linear
and nonlinear terminals compare in transferring other important
properties of a visual stimulus, such as the temporal frequencies
it contains. In this study we have only compared how the two
populations signal temporal contrast and find that together
they allow for detecting changes in contrast over a wide range.
The ideal observer model predicts that linear synapses will
have lower contrast sensitivities than those with triphasic lumi-
nance tuning curves (Figure 7), and experiments demonstrate
that linear synapses are capable of signaling changes in contrast
when the output of nonlinear synapses approaches saturation
(Figures 8D and 8E).

Nonlinear Synapses: Potential Mechanisms

Although the distinction between synapses that encode lumi-
nance linearly and nonlinearly was relatively clear (Figure 5A),
we do not know whether this reflects their connections to other
neurons in the IPL or a variation in their intrinsic properties. The
synaptic terminals of bipolar cells receive direct inhibitory feed-
back from amacrine cells, many of which have large dendritic
trees that integrate signals over a wide area of the retina (Mas-
land, 2001) and which have been shown to feedback onto bipolar
cell terminals to control output gain (Zaghloul et al., 2007). Such
wide-field amacrine cells might be expected to activate at lower
levels of luminance than individual bipolar cells and then
generate inhibitory signals that continue to grow as luminance
increases and more bipolar cells are activated. Models of the
glomerular circuitry in the olfactory bulb suggest that contrast
enhancement in mitral cells might occur by a similar mechanism:
a local inhibitory interneuron with higher sensitivity, causing the
mitral cell to be inhibited at low concentrations of odorant before
being stimulated at higher concentrations (Cleland and Sethupa-
thy, 2006).

One source of an intrinsic nonlinearity may be the voltage-
dependent calcium channels that control neurotransmitter
release, which can generate oscillatory voltage signals and
even spikes (Burrone and Lagnado, 1997; Protti et al., 2000;
Baden et al., 2011; Dreosti et al., 2011). Variations in the synaptic
machinery downstream of the calcium signal, such as the
calcium sensor that triggers vesicle fusion, might also exist.
For instance, while release from ribbon synapses of rod photore-
ceptors has a linear dependence on calcium (Thoreson et al.,
2004), the most rapid component of release from bipolar cell
synapses shows a power law dependence with exponent of
3-4 (Heidelberger et al., 1994; Burrone et al., 2002). Extrinsic
factors that might cause variations in tuning curves include the
degree of coupling between different terminals (Arai et al.,
2010) or inputs from amacrine cells (Baccus, 2007; Gollisch
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and Meister, 2010). The precise circuit mechanisms that underlie
linear and nonlinear transformations of the visual signal are still
unclear, but direct visualization of synaptic activity using sypHy
or SyGCaMP2 should provide a particularly direct way of testing
different models, especially when amacrine cells can also be
targeted (Dreosti and Lagnado, 2011).

EXPERIMENTAL PROCEDURES

Animals

Zebrafish (Danio rerio) were maintained according to Home Office regulations.
Fish were maintained as described by Nusslein-Volhard and Dahm (2002)
using a 14:10 hr light-dark cycle at 28°C. Fish were kept in E2 medium contain-
ing 1-phenyl-2-thiourea (200 uM) from 28 hr postfertilization to minimize
pigmentation. Transgenic animals were generated in a mixed genetic back-
ground from fish originally purchased from a local aquatic supplier (Scotsdales
line), using plasmids taking advantage of the I-Scel meganuclease coinjection
protocol (Thermes et al., 2002; Supplemental Information). Most imaging
was carried out on fish homozygous for the roy mutation (Ren et al., 2002)
because reduced numbers of iridophores facilitated imaging. SypHy fish
on a nonmutant background produced very similar results to those on a roy
background.

Multiphoton Imaging In Vivo

Zebrafish (9-12 dpf) were anesthetized by brief immersion in 0.016% Tricaine
in E2, immobilized in 2.5% low-melting-point agarose, and placed on a glass
coverslip with one eye pointing up. To prevent eye movement after recovering
from anesthesia, ocular muscles were paralyzed by nanoliter injections of
a-bungarotoxin (2 mg/ml) behind the eye. After mounting in a chamber, fish
were superfused with E2. Imaging was carried out using a custom-built two-
photon microscope equipped with a mode-locked titanium-sapphire laser
(Chameleon, Coherent) tuned to 915-920 nm and an Olympus LUMPIlanFI
40x water immersion objective (NA 0.8) (Figure 1A). Emission was captured
both by the objective and a substage oil condenser (Olympus, NA = 1.4),
through GFP emission filters (HQ 535/50, Chroma Technology) before detec-
tion with photomultiplier tubes (Hamamatsu). Laser scanning and image
acquisition were controlled using Scanlmage v. 3.0 (Pologruto et al., 2003).
Light stimuli were generated by an amber LED and 600/10 BP filter and deliv-
ered through a light guide placed close to the eye of the fish. Stimulation was
synchronized to image acquisition through Igor Pro v. 4.01 software. The mean
intensity of the stimulus was controlled by neutral density filters and modula-
tions around this mean by a custom-built LED driver which switched the driving
current at 10 kHz while adjusting the duty cycle. The unattenuated stimulus
was ~5.5 x 10° photons/um?/s, and a period of 40 s dark adaptation was inter-
leaved between each presentation of a stimulus. Data were obtained from
42 fish.

Image Analysis
Movies were analyzed using SARFIA, a custom-written suite of macros
running in Igor Pro (Dorostkar et al., 2010). First, movies were registered to
correct small lateral movements but were rejected if the plane of focus altered
significantly. Next, images were transformed using a Laplace operator and
segmented by applying a threshold. The ability of this algorithm to define
ROls corresponding to individual terminals is shown in Figure 3 of Dorostkar
et al. (2010). The cross-sectional area of each ROl was measured and the
sypHy or SyGCaMP2 signals quantified as the average fluorescence per unit
area, after background subtraction. In some terminals, a small linear correction
for bleaching was applied, as shown in Figure S2. Terminals were only used for
analysis if the response to a step of bright light occurred with a SNR > 4 when
imaging at 4 Hz, or SNR > 2 when imaging at 8 Hz. Measurements using sypHy
were carried out on a total of 1021 ON and 1995 OFF terminals. Measurements
using SyGCaMP2 were carried out on a total of 60 ON and 132 OFF terminals.
Calculations of release rates involved differentiation of the sypHy signal
(Equation 1) resulting in an amplification of noise. We therefore calculated
the initial rate of release simply by fitting a line to the first 2 or 4 s of the
response to a step of light or contrast respectively. For ON terminals, the value



Neuron

Encoding Luminance and Contrast in Retina Synapses

of Fmin for each terminal was calculated in the dark, and for OFF terminals it
was calculated over the last 10 s of a 40 s step at ND 1 (see Figure 3D, top
graph).

To assess the degree to which the luminance tuning curves were linear, the
Hill equation was fit to the relation between luminance and the initial rate of
release at light onset. In many terminals, this function was triphasic, so we con-
strained the fitting procedure to operate between the minimum and maximum
of the major deflection of the tuning curve. In a second step, we checked the
fits to the Hill function by eye to ensure they gave us reasonable estimates for
l1/2 and the Hill coefficient.

Estimating the Rate of Exocytosis from sypHy Signals
To calculate the release rate in a bipolar cell terminal we begin with the
following relation:

aN,
d;ut =Vexo (t) -

Vendo (t) (Equation 11)

where Ngt is the number of vesicles fused to the terminal membrane and Veyo
and Vengo are the speeds of exocytosis and endocytosis, respectively.
Because

Vendo (t) =Kendo * Nuur(t), (Equation 12)
the speed of exocytosis is

dN, out
dt

Vexo (t) = + Kendo * Nout (t) (Equation 13)

where Kengo is the rate-constant of endocytosis, which has been measured to
be ~0.1 s~ during ongoing activity in isolated bipolar cells (Neves and Lag-
nado, 1999) and in vivo (Figure 3B). Fast endocytosis (~1 s) will not contribute
significantly to these estimates because it has a limited capacity and primarily
operates on vesicles released within the first tens of milliseconds of a large
calcium transient (Neves et al., 2001). Further, the fluorescence of the pHIluorin
is quenched with a time constant of 4-5 s only after endocytosis, reflecting the
time required for reacidification of the interior of the vesicle by the proton pump
(Granseth et al., 2006). Decay of the sypHy signal with a time constant of 4-5 s
was not observed (Figure 3B), consistent with the fast mode of retrieval being
very small compared to the much larger number of vesicles retrieved with
a time constant of 10 s.

We assume that vesicles are in one of two states; internalized and quenched
(with unitary fluorescence, F,q), and released and unquenched (F,,). A number
of studies using pHIluorin-based reporters have also demonstrated a standing
pool of unquenched reporter on the cell surface (Granseth et al., 2006), so the
total sypHy fluorescence F at time t was assumed to be the sum of these three
different sources of fluorescence, as follows:

F<t) = (Nout(t) 'Fvu) + ((Ntota/ - Nout<t>) 'qu) + (Ntoral'amin 'Fvu)

where anin is the fraction of vesicles “stuck” on the terminal membrane and not
involved in the vesicle cycling process, and Niot4 is the total number of vesicles
in the terminal. We estimated i, and Niota as described below.

Equation 14 can be arranged to

F(t) — (Ntoral'(qu + (amm'Fvu»)
Fvu - qu

(Equation 14)

Nout (t) = (Equation 15)

Because F,q = F,/20 (Sankaranarayanan et al., 2000), we can define

F(t) - (Ntotavaq) - (Ntuta/'amin'ZO'qu>

Nout(t) = 19-F s
vq

(Equation 16)

and as the terminal’s minimum fluorescence F,, (Figures 3C and 3D) is the
sum of the fluorescence of unquenched vesicles stuck on the outside
membrane and the remaining vesicles quenched in the cytoplasm of the
terminal assuming zero release

Frnin = <Ntotal'amin'20'qu) + (Ntotal'<1 - amin) 'qu)y (Equation 17)
we can calculate F,q from

me

Fog=r——"0 Equation 18
7 Ntora/'<19'amin+1) (Ea )

From Equations 13 and 16 we have

dNoye _dF 1
dt "~ dt 19:F4

(Equation 19)

which can be differentiated to obtain the relation stated in the main text:

dF
Vexo(t) =a|—-

ot + (Kenao * (F(t) — b))

(Equation 20)
where a=1/19-F,q and b = Niota * Fyg * (1+20° amin).-

Measurement of the sypHy Surface Fraction, o,in

In the absence of exocytosis, there are unquenched pHluorin molecules on the
surface membrane, equivalent to a fraction o, of all vesicles. This surface
fraction can be measured by quenching with acid (Granseth et al., 2006). For
ON terminals, the minimal surface fluorescence is reached in the dark, and
for OFF terminals, in bright light. These measurements were carried out in
intact zebrafish by changing the pH of the bathing medium from 7.4 to 3.2.
Averaged measurements are shown in Figure 3C. The surface fraction (otmin)
was then calculated as (AF/19.7)/Fgus.0. The relative fluorescence of an ON
terminal in darkness decreased to 0.84 during acid quenching of surface
pHIluorin, from which omin = 0.97%. The relative fluorescence of an OFF
terminal in bright light decreased to 0.91, from which o, = 0.51%. Because
the measuring error in these experiments was high, we used an average
value of omin = 0.8% for both ON and OFF terminals. We also estimated omn
in dissociated bipolar cells with giant synaptic terminals using epifluorescence
microscopy, as shown in Figure S3. The value we obtained omin = 1.7% was
somewhat higher than the value we obtained in vivo.

Estimating the Total Vesicle Pool (N;ctal)

The average density of vesicles in a bipolar cell terminal was calculated as
~1050 per um® using electron micrographs of retinal slices 80 nm thick
(Schmitt and Dowling, 1999; Figure 3A). Nyt Was then calculated for each
terminal by multiplying the density by the volume of the terminal (Tyo). Tvol
was not measured by full 3D reconstruction of each terminal, but by assuming
that the optical section we were imaging contained the center of the terminal,
which was shaped spherically. To minimize errors in this estimate, the
thickness of the optical section was increased to ~2.5 um by reducing the
numerical aperture of the IR beam used for multiphoton imaging. The average
diameter of a bipolar cell terminal in these images was about 3 um, which is
very similar to estimates made from electron micrographs.
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