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The fractional Poisson process (FPP) is a counting process with independent and identically
distributed inter-event times following the Mittag-Leffler distribution. This process is very useful in
several fields of applied and theoretical physics including models for anomalous diffusion. Contrary
to the well-known Poisson process, the fractional Poisson process does not have stationary and
independent increments. It is not a Lévy process and it is not a Markov process. In this letter, we
present formulae for its finite-dimensional distribution functions, fully characterizing the process.
These exact analytical results are compared to Monte Carlo simulations.

From a loose mathematical point of view, counting pro-
cesses N(A) are stochastic processes that count the ran-
dom number of points in a set A. They are used in many
fields of physics and other applied sciences. In this let-
ter, we will consider one-dimensional real sets with the
physical meaning of time intervals. The points will be in-
coming events whose duration is much smaller than the
inter-event or inter-arrival waiting time. For instance,
counts from a Geiger-Müller counter can be described in
this way. The number of counts, N(∆t), in a given time
interval ∆t is known to follow the Poisson distribution

P(N(∆t) = n) = exp(−λ∆t)
(λ∆t)n

n!
, (1)

where λ is the constant rate of arrival of ionizing par-
ticles. Together with the assumption of independent
and stationary increments, Eq. (1) is sufficient to de-
fine the homogeneous Poisson process. Curiously, one
of the first occurrences of this process in the scientific
literature was connected to the number of casualties by
horse kicks in the Prussian army cavalry [1]. The Pois-
son process is strictly related to the exponential dis-
tribution. The inter-arrival times τi identically follow
the exponential distribution and are independent ran-
dom variables. This means that the Poisson process is
a prototypical renewal process. A justification for the
ubiquity of the Poisson process has to do with its rela-
tionship with the binomial distribution. Suppose that
the time interval of interest (t, t + ∆t) is divided into
n equally spaced sub-intervals. Further assume that a
counting event appears in such a sub-interval with prob-
ability p and does not appear with probability 1 − p.
Then, P(N(∆t) = k) = Bin(k; p, n) is a binomial distri-
bution of parameters p and n and the expected number
of events in the time interval is given by E[N(∆t)] = np.
If this expected number is kept constant for n → ∞,
the binomial distribution converges to the Poisson dis-
tribution of parameter λ = E[N(∆t)]/∆t, while, in the

meantime, p → 0. However, it can be shown that many
counting processes with non-stationary increments con-
verge to the Poisson process after a transient period. It
is sufficient to require that they are renewal process (i.e.
they have independent and identically distributed (iid)
inter-arrival times) and that E(τi) <∞. In other words,
many counting processes with non-independent and non-
stationary increments behave as the Poisson process if
observed long after the transient period.

In recent times, it has been shown that heavy-tailed
distributed inter-arrival times (for which E(τi) = ∞) do
play a role in many phenomena such as blinking nano-
dots [2, 3], human dynamics [4, 5] and the related inter-
trade times in financial markets [6, 7].

Among the counting processes with non-stationary in-
crements, the so-called fractional Poisson process [8],
Nβ(t), is particularly important because it is the thinning
limit of counting processes related to renewal processes
with power-law distributed inter-arrival times [9, 10].
Moreover, it can be used to approximate anomalous dif-
fusion ruled by space-time fractional diffusion equations
[9, 11–16]. It is a straightforward generalization of the
Poisson process defined as follows. Let {τi}∞i=1 be a se-
quence of independent and identically distributed posi-
tive random variables with the meaning of inter-arrival
times and let their common cumulative distribution func-
tion (cdf) be

Fτ (t) = P(τ ≤ t) = 1− Eβ(−tβ), (2)

where Eβ(−tβ) is the one-parameter Mittag-Leffler func-
tion, Eβ(z), defined in the complex plane as

Eβ(z) =

∞∑
n=0

zn

Γ(nβ + 1)
(3)

evaluated in the point z = −tβ and with the prescription
0 < β ≤ 1. In equation (3), Γ(·) is Euler’s Gamma
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function. The sequence of the epochs, {Tn}∞n=1, is given
by the sums of the inter-arrival times

Tn =

n∑
i=1

τi. (4)

The epochs represent the times in which events arrive
or occur. Let fτ (t) = dFτ (t)/dt denote the probability
density function (pdf) of the inter-arrival times, then the
probability density function of the n-th epoch is simply
given by the n-fold convolution of fτ (t), written as f∗nτ (t).
In Ref. [10], it is shown that

fTn(t) = f∗nτ (t) = β
tnβ−1

(n− 1)!
E

(n)
β (−tβ), (5)

where E
(n)
β (−tβ) is the n-th derivative of Eβ(z) evalu-

ated in z = −tβ . The counting process Nβ(t) counts the
number of epochs (events) up to time t, assuming that
T0 = 0 is an epoch as well, or, in other words, that the
process begins from a renewal point. This assumption
will be used all over this paper. Nβ(t) is given by

Nβ(t) = max{n : Tn ≤ t}. (6)

In Ref. [9], the fractional Poisson distribution is derived
and it is given by

P(Nβ(t) = n) =
tβn

n!
E

(n)
β (−tβ). (7)

Eq. (7) coincides with the Poisson distribution of param-
eter λ = 1 for β = 1. In principle, equations (3) and
(7) can be directly used to derive the fractional Poisson
distribution, but convergence of the series is slow. Fortu-
nately, in a recent paper, Beghin and Orsingher proved
that

E
(n)
β (−tβ) =

n!

tβn

∫ ∞
0

FSβ (t;u)

[
exp(−u)un−1

(n− 1)!
− exp(−u)un

n!

]
du,

(8)

where FSβ (t;u) is the cdf of a stable random variable
Sβ(ν, γ, δ) with index β, skewness parameter ν = 1, scale
parameter γ = (u cosπβ/2)1/β and location δ = 0 [17].
The integral in equation (8) can be evaluated numerically
and Fig. 11 shows P(Nβ(t) = n) for three different val-
ues of β. The Monte Carlo simulation of the fractional
Poisson process is based on the algorithm presented in
equation (20) of Ref. [14].

As a consequence of Kolmogorov’s extension theorem,
in order to fully characterize the stochastic process Nβ(t),
one has to derive its finite dimensional distributions. A
further requirement on the process’ paths uniquely deter-
mines the process, namely that they are right-continuous
step functions with left limits [18]. The finite-dimensional
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Figure 1: P (Nβ(T1) = n1) as function of n1 for three different
values of β. The crosses are estimations obtained from 105

Monte Carlo samples and the lines are given to guide the eye.
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Figure 2: (Color online) Pictorial illustration of the random
variables used in the text. The light blue dots represent the
observation points t1, t2 and t3. The red squares are the
epochs T0 = 0, T1, . . . , T5. The conditional residual life-time
is the time elapsed between ti and the next epoch Tni+1. It
depends on previous values of ni, this is the number of events
between 0 and ti, with the event at t = T0 = 0 not considered.
Here, we have n1 = 1, n2 = 2 and n3 = 4. All the equations
in this paper can be derived by analyzing this figure.
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distributions are the multivariate probability distribution
functions P(Nβ(t1) = n1, Nβ(t2) = n2, . . . , Nβ(tk) = nk)
with t1 < t2 < . . . < tk and n1 ≤ n2 ≤ . . . ≤ nk.
We have already given the formula for the one-point
functions in Eq. (7). The general finite dimensional
distribution can be computed observing that the event
{Nβ(t1) = n1, Nβ(t2) = n2, . . . , Nβ(tk) = nk} is equiva-
lent to {0 < Tn1 < t1, Tn1+1 > t1, t1 < Tn2 < t2, Tn2+1 >
t2, . . . , tk−1 < Tnk < tk, Tnk+1 > tk}. Therefore, we find

P(Nβ(t1) = n1, Nβ(t2) = n2, . . . , Nβ(tk) = nk) =

P(0 < Tn1 < t1, Tn1+1 > t1, t1 < Tn2 < t2, Tn2+1 > t2,

. . . , tk−1 < Tnk < tk, Tnk+1 > tk) =∫ t1

0

du1f
∗n1
τ (u1)

∫ ∞
t1−u1

du2fτ (u2)∫ t2−u1−u2

t1−u1−u2

du3f
∗(n2−n1−1)
τ (u3)

∫ ∞
t2−u1−u2−u3

du4fτ (u4)

. . .

∫ tk−
∑2k−2
i=1 ui

tk−1−
∑2k−2
i=1 ui

du2k−1f
∗(nk−nk−1−1)
τ (u2k−1)[

1− Fτ

(
tk −

2k−1∑
i=1

ui

)]
. (9)

For instance, the two point function is given by

P(Nβ(t1) = n1, Nβ(t2) = n2) =

P(0 < Tn1
< t1, Tn1+1 > t1, t1 < Tn2

< t2, Tn2+1 > t2) =∫ t1

0

du1f
∗n1
τ (u1)

∫ ∞
t1−u1

du2fτ (u2)∫ t2−u1−u2

t1−u1−u2

du3f
∗(n2−n1−1)
τ (u3)

[1− Fτ (t2 − u1 − u2 − u3)] . (10)

Let us focus on the two-point case for the sake of
illustration. As Nβ(t) is a counting process, one has
P(Nβ(t1) = n1, Nβ(t2) = n2) = P(Nβ(t1) = n1, Nβ(t2)−
Nβ(t1) = n2−n1) and, as a consequence of the definition
of conditional probability

P(Nβ(t1) = n1, Nβ(t2)−Nβ(t1) = n2 − n1) =

P(Nβ(t2)−Nβ(t1) = n2 − n1|Nβ(t1) = n1)×
× P(Nβ(t1) = n1). (11)

For β = 1, when the fractional Poisson process coincides
with the standard Poisson process, the increments are iid
random variables and one has

P(N1(t2)−N1(t1) = n2 − n1|N1(t1) = n1) =

P(N1(t2)−N1(t1) = n2 − n1) =

exp(−(t2 − t1))
(t2 − t1)(n2−n1)

(n2 − n1)!
. (12)

On the contrary, for 0 < β < 1, the increment Nβ(t2) −
Nβ(t1) and Nβ(t1) are not independent. Note that
Nβ(t1) can be seen as an increment as Nβ(0) = 0 by
definition. However from Eq. (11), the conditional prob-
ability of having n2 − n1 epochs in the interval (t1, t2)
conditional on the observation of n1 epochs in the interval
(0, t1) can be written as a ratio of two finite dimensional
distribution:

P(Nβ(t2)−Nβ(t1) = n2 − n1|Nβ(t1) = n1) =

P(Nβ(t1) = n1, Nβ(t2) = n2)

P(Nβ(t1) = n1)
. (13)

This probability can be evaluated by means of an alter-
native method, more appealing for a direct and practical
understanding of the dependence structure. Let

Yn1

def
= [Tn1+1 − t1|Nβ(t1) = n1] (14)

denote the residual lifetime at time t1 (that is the time to
the next epoch or renewal) conditional on Nβ(t1) = n1 .
With reference to Fig. 2, one can see that the conditional
probability P(Nβ(t2)−Nβ(t1) = n2−n1|Nβ(t1) = n1) is
given by the following convolution integral for n2−n1 ≥ 1

P(Nβ(t2)−Nβ(t1) = n2 − n1|Nβ(t1) = n1) =∫ t2−t1

0

P(Nβ(t2 − t1 − y) = n2 − n1 − 1)fYn1
(y) dy,

(15)

where fYn1
(t) is the pdf of Yn1 . In the case n2 − n1 = 0,

one has

P(Nβ(t2)−Nβ(t1) = 0|Nβ(t1) = n1) = 1− FYn1
(t2 − t1)

(16)
where FYn1

(y) is the cdf of Yn1
. The distribution of the

conditional residual lifetime Yn1
can be evaluated in sev-

eral ways. For instance, one can notice that it can be
decomposed as follows

Yn1 = τ̃n1+1 + Un1 (17)

where Un1 is defined as

Un1

def
= [Tn1

|Nβ(t1) = n1], (18)

and is the position of the last epoch before t1 conditional
on Nβ(t1) = n1, and

τ̃n1+1
def
= [τn1+1 − t1|Tn1+1 > t1] (19)

is the difference between τn1+1 and t1 conditional on
Tn1+1 > t1. The pdf of Un1

is given by the following
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chain of equalities

fUn1
(t)dt =P(Tn1

∈ dt|Nβ(t1) = n1)

=P(Tn1 ∈ dt|Tn1 < t1, Tn1 + τn1+1 > t1)

=P(Tn1 ∈ dt|Tn1 < t1, τn1+1 > t1 − Tn1)

?
=
P(Tn1

∈ dt)
∫∞
t1−t P(τn1+1 ∈ dw)

P(Tn1
< t1, τn1+1 > t1 − Tn1

)

∗
=

f∗n1
τ (t)[1− Fτ (t1 − t)]dt∫ t1

0
duf∗n1

τ (u)[1− Fτ (t1 − u)]
,

(20)

where we used the independence between Tn1
and τn1+1

(?) and fTn1
(x) = f∗n1

τ (x) (∗). The pdf of τ̃n1+1 is

fτ̃n1+1(t|Un1)dt =P(τn1+1 − t1 ∈ dt|Tn1+1 > t1)

=
P(τn1+1 ∈ dt+ t1)

P(τn1+1 > t1 − Un1
)

=
fτ (t+ t1)dt

1− Fτ (t1 − Un1)
.

(21)

From Eq. (17), one can write that

fYn1
(t) =

∫ t1

0

fτ̃n1+1
(t− u|u)fUn1

(u)du (22)

and this equation leads to

fYn1
(t) =

∫ t1
0
duf∗n1

τ (u)fτ (t+ t1 − u)∫ t1
0
duf∗n1

τ (u)[1− Fτ (t1 − u)]
(23)

that, together with Eq. (7), gives us the probability of
the conditional increments in Eq. (15). Notice that, for
n1 = 0, one has f∗0τ (u) = δ(u) and Eq. (23) reduces to
the familiar equation for the residual life-time pdf in the
absence of previous renewals

fY0(t) =
fτ (t+ t1)

1− Fτ (t1)
. (24)

This method can be applied to the general multidimen-
sional case. As in Eq. (11) we can write

P(Nβ(t1) = n1, . . . , Nβ(tk) = nk, Nβ(tk+1) = nk+1) =

P(Nβ(tk+1)−Nβ(tk) = nk+1 − nk|
Nβ(t1) = n1, . . . , Nβ(tk) = nk)×
× P(Nβ(t1) = n1, . . . , Nβ(tk) = nk) (25)

and the predictive probabilities can be evaluated as

P(Nβ(tk+1)−Nβ(tk) = nk+1 − nk| . . .
|Nβ(t1) = n1, . . . , Nβ(tk) = nk) =∫ tk+1−tk

0

P(Nβ(tk+1 − tk − y) = nk+1 − nk − 1)×

× fYn1,...,nk
(y)dy, (26)

where we defined

Yn1,...,nk
def
= [Tnk+1 − tk|Nβ(t1) = n1, . . . , Nβ(tk) = nk].

(27)
Again, we can use a decomposition of Yn1,...,nk

Yn1,...,nk = τ̃nk+1 + Unk , (28)

where

Unk
def
= [Tnk |Nβ(t1) = n1, . . . , Nβ(tk) = nk], (29)

and

τ̃nk+1
def
= [τnk+1 − tk|Tnk+1 > tk]. (30)

The difference with the two-point case is that Un1 =
[Tn1
|Nβ(t1) = n1] = [

∑n1

i=1 τi|Nβ(t1) = n1] must be re-
placed by

Unk = tk−1 + Yn1,...,nk−1
+

 nk∑
i=nk−1+1

τi|Nβ(tk) = nk

 .
(31)

The time between tk−1 and the next renewal epoch
is Yn1,...,nk−1

and it is independent from
∑nk
i=nk−1+1 τi.

Therefore, the convolution

q(n1, . . . , nk; t) = fYn1,...,nk−1
∗ f∗(nk−nk−1−1)

τ (t) (32)

replaces f∗n1
τ (t) in Eq. (20). This leads to

fUnk (z) =

q(n1, . . . , nk; t+ tk−1)[1− Fτ (tk − t)]∫ tk
tk−1

q(n1, . . . , nk;u+ tk−1)[1− Fτ (tk − u)]du
.

(33)

On the other hand, fτ̃nk+1
(t) has the same functional

form as fτ̃n1+1
(t) given in Eq. (21) with Unk replacing

Un1
. Therefore, Yn1,...,nk has the following pdf

fYn1,...,nk
(t) =∫ tk

tk−1
du q(n1, . . . , nk;u+ tk−1)fτ (t+ tk − u)∫ tk

tk−1
du q(n1, . . . , nk;u+ tk−1)[1− Fτ (t+ tk − u)]

.

(34)

In practice, the random variable Yn1,...,nk−1
carries the

memory of the observations made at times t1, . . . , tk−1;
the knowledge of fYn1,...,nk−1

allows the computation

of fYn1,...,nk
, and, via Eqs. (25) and (26), the k + 1-

dimensional distribution can be derived as well.
Figs. 3 and 4 compare the theoretical results of

Eqs. (20), (23) and (24) with those of a Monte Carlo
simulation based on the algorithm presented in equation
(20) of Ref. [14].
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Figure 3: (Color online) Pdf of the random variable Un1 as given in Eq. (20) (solid black lines) compared to Monte Carlo
simulations (colored step lines) for three values of β and two different values of t1. 107 different paths were simulated for each
value of β and the bin width is 0.05. Time is in arbitrary units.
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Figure 4: (Color online) Pdf of the random variable Yn1 as given in Eqs. (23) and (24) (solid black lines) compared to Monte
Carlo simulations (colored step lines) for three values of β and two different values of t1. 107 different paths were simulated for
each value of β and the bin width is 0.01. Time is in arbitrary units.
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