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Abstract

Consider the following problem: given sets of unlabeledentstions, each set with known label
proportions, predict the labels of another set of obsesaati possibly with known label propor-
tions. This problem occurs in areas like e-commerce, psligspam filtering and improper content
detection. We present consistent estimators which cams#et the correct labels with high prob-
ability in a uniform convergence sense. Experiments shaivahr method works well in practice.

Keywords: unsupervised learning, Gaussian processes, classifi@twprediction, probabilistic
models, missing variables

1. Introduction

Different types of learning problems assume different problem settingaidervisedearning, we

are given sets of labeled instances. Another learning type aafisdpervisedearning focuses on
the setting where unlabeled instances are given. Recently, it has beerddhht unlabeled in-
stances when used in conjunction with a small amount of labeled instancediganamsiderable
learning performance improvement in comparison to using labeled instanoes &luis leads to a
semi-supervisetkarning setting.

x. A short version of this paper appeared in Quadrianto et al. (2008).

(©2009 Novi Quadrianto, Alex J. Smola, Bho S. Caetano and Quoc V. Le.
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Figure 1: Different types of learning problems (colors encode clasddab1(a) -supervised

learning : only labeled instances are given; 1(knsupervised learning > only un-
labeled instances are given; 1(cemi-supervised learning . both labeled and un-
labeled instances are given; 1(tBarning from proportions . at least as many data

aggregates (groups of data with their associated class label propostotigre are num-
ber of classes are given.

We are interested in a learning setting where groups of unlabeled instaiecgven. The
number of group is at least as many as number of classes. Each groujpjseehwith information
on class labeproportions We called this informative group as aggregate (see Figure 1 for an
illustration). This type of learning problem appears in areas like e-commeidegpspam filtering
and improper content detection, as we illustrate below.

Assume that an internet services company wants to increase its profit in@algésusly send-
ing out discount coupons will increase sales, but sending couponsstongers who would have
purchased the goods anyway decreases the margins. Alternativiatg fa send coupons to cus-
tomers who would only buy in case of a discount reduces overall salesvalild like to identify
the class of would-be customers who are most likely to change their purdbeaston when re-
ceiving a coupon. The problem is that there is no direct access to a saiwmeld-be customers.
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Typically only a sample of people who buy regardless of coupons (thosebaiight when there
was no discount) and a mixed sample (those who bought when there wasntljsa@uavailable.
The mixingproportionscan be reliably estimated using random assignment to control and treatment
groups. How can we use this information to determine the would-be customers?

Politicians face the same problem. They can rely on a set of alwaysafaleovoters who will
favor them regardless, plus a set of swing voters who will make theiridadiependent on what
the candidates offer. Since the candidate’s resources (finance, abititpke election promises,
campaign time) are limited, it is desirable for them to focus their attention on thatfghg demo-
graphic where they can achieve the largest gains. Previous electionseettydeveal the profile
of those who favor regardless, that is those who voted in favor wheredmpaign resources were
committed. Those who voted in favor where substantial resources wemmitied can be either
swing voters or always-favorable. So in a typical scenario there isparate sample of swing
voters.

Likewise, consider the problem of spam filtering. Data sets of spam ahg likeontain almost
pure spam (this is achieved e.g. by listing e-mails as spam bait), while usersemlbypically
contain a mix of spam and non-spam. We would like to use the inbox data to imgstagation
of spam. In many cases it is possible to estimateptiportionsof spam and non-spam in a user’s
inbox much more cheaply than the actual labels. We would like to use this informatiaregorize
e-mails into spam and non-spam.

Similarly, consider the problem of filtering images with “improper content”. Data sf such
images are readily accessible thanks to user feedback, and it is rekestmassume that this la-
beling is highly reliable. However the rest of images on the web (those ndethkie a far larger
data set, albeit without labels (after all, this is what we would like to estimate the faiogl§ hat
said, it is considerably cheaper to obtain a good estimate gfrdportionsof proper and improper
content in addition to having one data set of images being of likely improperrtontée would
like to obtain a classifier based on this information.

2. Problem Definition

In this paper, we present a method that makes use of the knowledge lqfriapertionsdirectly. As
motivated by the above examples, our method would be practically useful in mamgims such as
identifying potential customers, potential voters, spam e-mails and impropeesm@af also prove
bounds indicating that the estimates obtained are close to those from a fullydlabelsario.

Before defining the problem, we emphasize that the formal setting is more gerarahth
above examples might suggest. More specifically, we may not reguyriabel to be known, only
their proportions within each of the involved data sets. Also the general pnableot restricted to
the binary case but instead can deal with large numbers of classes. Finajssible to apply our
method to problems where thest label proportiongre unknown, too. This simple modification
allows us to use this technique whenever covariate shift via label biassisnire

Formally, in a learning from proportions setting, we are givesets of observation¥; =
{x‘l, ... ,x‘m } of respective sample sizes (calibrationset)=1,...,naswellasasef = {xi,...,Xm}
(test set). Moreover, we are given the fractiogsof labelsy € 9" (|97 < n) contained in each set
X. These fractions form a full (column) rank mixing matrixc R™<|?" with the constraint that
each row sums up to 1 and all entries are nonnegative. The marginabpitybga(y) of the test
setX may or may not be known. Note that the label dictionanéslo not need to be the same
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across all sets(definey” := U; 9) and we also allow forg, = 0 if needed. It is our goal to design
algorithms which are able to obtain conditional class probability estinzgs) solely based on
this information.

As an illustration, take the spam filtering example. We hdye- “mail in spam box” (only
spam) and$; = “mail in inbox” (spam mixed with non-spam). Also suppose that we may know
the proportion of spam vs non-spam in our inbox is 1:9. That means, W&:Kmy spam =
1.0, T4 non-spam= 0, T spam= 0.1 andm non-spam= 0.9. The test seX then may beX; itself, for
example. Thus, the marginal probability of the test set will simply jpg:= spam = 0.1, p(y =
non—spam = 0.9. The goal is to fing(spammail) in X. Note that, in general, our setting is dif-
ferent and more difficult than that of transduction. The latter requiressitdeae labeled instances
of all classesare given. In the spam filtering example, we have no pure non-spam iastanc

Key to our proposed solution is a conditional independence assumpgtioh,i|y. In other
words, we assume that tleenditional distribution ofx is independent of the index as long as
we know the label. This is a crucial assumption: after all, we want the distributions within each
class to be independent of which aggregate they can be found in. If ¢éhesnvot the case it would
be impossible to infer about the distribution on the test set from the (biasdédpulimns over the
aggregates.

3. Mean Operators

Our idea relies on uniform convergence properties of the expectatioatopand of corresponding
risk functionals (Altun and Smola, 2006; Dikdand Schapire, 2006). In doing so, we are able to
design estimators with the same performance guarantees in terms of uniforengamce as those
with full access to the label information.

At the heart of our reasoning lies the fact that many estimators rely on gatziong a convex
optimization problem. We begin our exposition by discussing how this strategyecamployed in
the context of exponential families. Subsequently we state convergeacangees and we discuss
how our method can be extended to other estimates such as Csiszar amaBigergences and
other function spaces.

3.1 Exponential Families

Denote byX the space of observations and fEtbe the space of labels. Moreover, gk y) :
X x Y — H be a feature map into a Reproducing Kernel Hilbert Space (RKHSyith kernel
k((x,y),(X,¥)). In this case we may state conditional exponential models via

P(yIx,8) = exp((@(x.y),6) —g(6]x)) with g(8]x) =log ) exp(@(x.y),6),
yey

where the normalization is called the log-partition function, often referred to as the cumulant
generating function. Note that while in general there is no needyfdo be discrete, we make
this simplifying assumption in order to be able to reconstruct the class probabifite@srely. For
{(x,yi)} drawn iid from a distributiorp(x,y) on X x 9" the conditional log-likelihood is given by

3

m

0gp(Y|X,8) = 3 [1904.).0) ~ (0] = (i 0) = 3 g(6lx).
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where the empirical mean in feature spage is defined as in Table 2. In order to avoid overfitting
one commonly maximizes the log-likelihood penalized by a ppi@). This means that we need to
solve the following optimization problem

0" = argemin[— log{p(Y|X,6)p(8)}]. 1)
For instance, for a Gaussian prior éni.e. for
—logp(8) = A ||B]|*+ const,

we have
i 2
0" :argemin[zlg@rm—m<uXY,e>+Me|| . 2)
i=

The problem is that in our setting we do not know the lalgglso the sufficient statistigsy cannot

be computed exactly. Note, though that the only place where the labels engstithation process

is via the meanuyy. Our strategy is to exploit the fact that this quantity, however, is statistically
well behaved and converges under relatively mild technical conditioamm‘%) to its expected
value

by = Exy)~pixy) (@6 V)],

as will be shown in Theorem 3. Our goal therefore will be to estinpgjeand use it as a proxy
for pxy, and only then solve (2) with the estimatpgy instead ofuxy. We will discuss explicit
convergence guarantees in Section 5 after describing how to compute the peeatooin detail.

3.2 Estimating the Mean Operator

In order to obtairb* we would needlxy, which is impossible to compute exactly, since we do not
haveY. However, we know thalyy converges tqyy. Hence, if we are able to approximaig then
this, in turn, will be a good estimate fouy.

Our quest is therefore as follows: expregg as a linear combination over expectations with
respect to the distributions on the data s¢is..., X, (wheren > |97]). Secondly, show that the
expectations of the distributions having generated the Xets$®li,y], see Table 2), can be ap-
proximated by empirical meangsfli,y], see Table 2). Finally, we need to combine both steps to
provide guarantees fquy.

It will turn out that in certain cases some of the algebra can be sidestapgedticular when-
ever we may be able to identify several sets with each other (e.g. the t&sissete of the calibra-
tion data set%;) or whenevexp(x,y) factorizes intop(x) @ ¢(y). We will discuss these simplifica-
tions in Section 4.

3.2.1 MEAN OPERATOR

Sincepyy is a linear operator mappingx,y) into a Hilbert Space we may expapg, via

Hxy = E(x,y)wp(x,y) [(p(xv Y)} = Z p(y)EXNp(X|y) [(p(xa Y)] = z p(y)uglassly’ y])
yey yey
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it set of observations$ = {x,..., %}
number of observations

test set of observation¥ = {Xq,...,Xm}
test set of labelsY = {y1,...,Ym}
number of observations in the test Xet
proportion of label in seti

@(x,y) | map from(x,y) to a Hilbert Space

3 <x3x

Table 1: Notations used in the paper.

Expectations with respect to the model:
Wy = Exy)~pxy) [9(x,y)]

K9S, Y] 1= Exepixiy) [0, Y)]
uiet[LyJ] E() p(x||)[(p( }/)]
Lgasgy] E (x)~p(xiy) [W(X)]

el = E( x)~p(xji) [P(X)]
Expectations with respect to data:

Hxy :—mZ 10(%, i)
(2) Y] i T 0kY) (known)

(1b) U?(e i] : erx. l]J( ) (known)
Estimates:

(2) a)(ilass — (T[TT[)_lTIT p_§,<et

(3a) Ay = Syer PR TyY]

(3b) Ay = Syer PY)O(Y) @ 52y]
(4) 0* solution of (2) forpxy = fixy-

Table 2: Major quantities of interest in the paper. Numbers on the left reptrése order in which
the corresponding quantity is computed in the algorithm (letters denote the \@frihiet
algorithm: ‘a’ for general feature magx,y) and ‘b’ for factorizing feature mag(x,y) =
Y(X) @ ¢(y)). Lowercase subscripts refer to model expectations, uppercaseiptsbace
sample averages.

where the shorthangZ@sJy,y] is defined in Table 2. This means that if we were able to compute
1S9y, y] we would be able to “reassemblgyy from its individual components. We now show that
ueasgy y] can be estimated directly.

Our conditional independence assumptiptx|y,i) = p(x|y), yields the following:

= PXIY;i)p(yli) = Z POY)TS ©)
y

In the above equation, we form a mixing matrowith the elementgy, = p(y|i). This allows us to
define the following means

W0,y = = Expi) [O(X, y’ z Trlyuxlass[)’ay,
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Algorithm 1
Input data set, {X;}, probabilitiesrs, andp(y)
fori=1tonandy € 9 do
Compute empirical meansli,y]
end for
Computeuglass: (T[TT[)_:LT[T p_§(et
Computetky = Fyeo PY)FESTy,Y]
Solve the minimization problem

m
6 = argeminlzlg(em) —m{fixy,8) +A|/6]®

Return 6.

Note that in order to compuig®li,y'] we donot need any label information with respecty(x|i).

It is simply the expectation af(-,y') on the distribution of bag However, since we have at least
|| of those equations and we assumed thhas full column rank, they allow us to solve a linear
system of equations and compégsJy, y] from p£€li, y] for all i. In shorthand we may use

Hs(et: T[u)c(lassand henc&)c(lass: (T[TT[)flT[Tpf(et (4)

to computeuS®y,y] for all y € 9. With some slight abuse of notation we ha¥gss and et
represent thenatricesof termspS@sJy, y'] andpseli, y'] respectively. There will be as many matrices
as the dimensions a@f(x,y), thus (4) has to be solved separately for each dimensi@Xof).

Obviously we cannot computgl®i,y] explicitly, since we only havesamplesfrom p(x|i).
However the same convergence results governing the convergepge tf [y, also hold for the
convergence of§ei, y'] to p5eli,y']. Hence we may use the empirical averggi,y] as the esti-
mate forp$Ji,y'] and from that find an estimate fpgy.

3.2.2 BG PICTURE

Overall, our strategy is as follows: use empirical means on the Xagsapproximate expectations
with respect to the bag distribution. Use the latter to compute expectations with respegiven
label, and finally, use the means conditional on the label distribution to giptawmhich is a good
proxy for uxy (see Algorithm 1), i.e.

KL Y) — 10T,y — HEeSTy, Y] — ey — bixy-

For the first and last step in the chain we can invoke uniform conveegesstilts. The remaining
two steps in the chain follow from linear algebra. As we shall see, wheneser #ine considerably
more bags than classes we can exploit the overdetermined system to ootagdvio reduce the
overall estimation error and use a rescaled version of (4).

4. Special Cases

In some cases the calculations described in Algorithm 1 can be carried ouefficiently. They
arise whenever the matrix has special structure or whenever the test set and one of the training
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sets coincide. Moreover, we may encounter situations where the fractiobsexf/ations in the test
set are unknown and we would like, nonetheless, to find a good proxy o

4.1 Minimal Number of Sets

Assuming thaty’| = n and thatrt has full rank it follows thagm'm~in" = 1. Hence we can
obtain the proxy fopiy more directly vigu'2sS= rr-1pget

4.2 Testing on One of the Calibration Sets

Note that there is no need for requiring that the teskdat different from one of the calibration sets
(vide example in Problem Definition). In particular, when= X; the uncertainty in the estimate of
KUxy can be greatly reduced provided that the estimatgpfas given in (4) contains a large fraction
of the mean of at least one of the classes. We will discuss this situation in moreadetailt comes
to binary classification since there the advantages will be most obvious.

4.3 Special Feature Map

Whenever the feature magx,y) factorizes intod(x) @ ¢(y) we can simplify calculation of the
means considerably. More specifically, instead of estimadfig’| - n) parameters we only require
calculation ofO(n) terms. The reason for this is that we may pull the dependengyaart of the
expectations. Defining$@gy], uli], andpseli] as in Table 2 allows us to simplify

iy = Y pY)O(Y) ® F*Ty] wherel§**°= (' m) ' pit (5)
yey

Here the last equation is understood to apply to the vector of mgaas(u[1],...,Hn]) andpx ac-
cordingly. A significant advantage of (5) is that we only need to perfom averaging operations
rather tharO(n-|9|). Obviously the cost of computingt' 1) ~1mt" remains unchanged but the latter
is negligible compared to the operations in Hilbert Space. Notaljthgtc RP denotes an arbitrary
feature representation of the inputs, which in many cases can be defined impi@itlykernel
function. As the joint feature maq(x,y) factorizes intap(x) ® ¢(y), we can write the inner prod-
uct in the joint representation &9(x,y), (X, y)) = (W(X),W(X)) (d(y),d(Y)) = k(x, X )k(y,y'). In
general, the kernel function on inputs and labels can be different. Spdyifior a label diag-
onal kernelk(y,y) = &(y,y), the standard winner-takes-all multiclass classification is recovered
(Tsochantaridis et al., 2005). With this setting, the input feafu(pg can be defined implicitly via
a kernel function by invoking the Representer Theorem §&adpf and Smola, 2002).

4.4 Binary Classification

One may show (Hofmann et al., 2006) that the feature @fayy) takes on a particularly appealing
form of @(x,y) = y@(x) wherey € {+1}. This follows since we can always re-calibragx,y),8)
by an offset independent gfsuch thatp(x, 1) + @(x,—1) = 0.

If we moreover assume thXi only contains class 1 ang, = X contains a mixture of classes
with labels 1 and-1 with proportionsp(1) =: p and p(—1) = 1 — p respectively, we obtain the

mixing matrix
[32%] - [ 4 2]
P 1_p P 1 .

1-p 1-p
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Plugging this into (5) yields

Poor = PHEAL = (L) | £5HEL + 2He12)
= 2pK11] - 112, ©)

Consequently, taking a simple weighted difference between the average® cets, e.g. one set
containing spam whereas the other one containing an unlabeled mix of sgamrmspam, allows
one to obtain the sufficient statistics needed for estimation.

4.5 Overdetermined Systems

Assume that we have significantly more bagban class labelg)y’|, possibly with varying numbers

of observationsn; per bag. In this case it would make sense to find a weighting of the bags stich th
those which are largest and most relevant for the test set are giveighestdegree of importance.
Instead of stating the problem as one of solving a linear system we now regtatené of solving

an approximation problem. To simplify notation we assume that the feature map fastamgz that
@(x,y) = W(X) @ ¢(y). A weighted linear combination of the squared discrepancy between the class
means and the set means is given by

2

; (7)

n
minimizeZvvi
i=

class
Hx

T — S Tk

yey

wherew; are some previously chosen weights which reflect the importance of eachiygagally
1

we might choosev; = O(m, 2) to reflect the fact that convergence between empirical means and

expectations scales WitD(m*%). Before we discuss specific methods for choosing a weighting, let
us review the statistical properties of the estimator.

Remark 1 (Underdetermined Systems)Similarly, when we have less bags n than class lajpé|s
we can state the problem as one of solving a regularized least squarelepr as follows

2
+AQ(F*y Yy € 7).

n
minimize
uglass i

For example, we can leR(LS?SYy|Vy € ) = Fyeo [[HE2TY] — Sy + l]Hz. This makes sense
whenever different labels have related me

5T~ S TSy
yey

5. Convergence Bounds

The obvious question is how wallky manages to approximatgy and secondly, how badly any
error in estimatinguy would affect the overall quality of the solution. We approach this problem
as follows: first we state the uniform convergence propertiggefand similar empirical operators
relative topy. Secondly, we apply those bounds to the cases discussed above, diygulgErshow
that the approximate minimizer of the log-posterior has a bounded deviationfh@anwe would
have obtained by knowingxy exactly. Much of the reasoning follows the ideas of Altun and Smola
(2006).
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5.1 Uniform Convergence for Mean Operators

An important tool in studying uniform convergence properties of randanables are Rademacher
averages (Ledoux and Talagrand, 1991; Mendelson, 2002). drkeayeeded to state the key results
in our context.

Definition 2 (Rademacher Averages)Let X be a domain and p a distribution aki and assume

that X := {x1,...,xm} is drawn iid from p. Moreover, letf be a class of function& — R.

Furthermore denote bg; Rademacher random variables, ifet1} valued with zero mean. The
1 m

Rademacher average is
mi;Oif(Xi) ] .

This quantity measures the flexibility of the function cl&ss-in our case linear functions ip(x, y).
Altun and Smola (2006) state the following result:

Rn(¥F,p) := ExEg [sup
feF

Theorem 3 (Convergence of Empirical Means)Denote byp: X — B a map into a Banach space
‘B, denote byB* its dual space and lef the class of linear functions o with boundedB* norm
by 1. Let R> 0 such that for all fe F we have|f(x)| < R. Moreover, assume that X is an m-
sample drawn from p o. For € > 0 we have that with probability at leagt— exp(—£°m/2R?)
the following holds:

Iix — kx|l g < 2Rm(F, p) + €.
For k > 0 we only have a failure probability df — exp(—?m/R?).

Theorem 4 (Bartlett and Mendelson 2002)WheneverB is a Reproducing Kernel Hilbert Space
1
with kernel Kx,x') the Rademacher average can be bounded from abovg @y R< m-2 [Ex[K(X,X)]]2.

Our approximation error can be bounded as follows. From the triangleatiggwe have:

0xy — xy || < [[Pxy — bxyll + [y — bixy || -

For the second term we may employ Theorem 3 directly. To bound the firstrtetenthat by
linearity

€= [xy — Iy = z p(y) [(nTn)flnTé}yya (8)
y 9,
where we define the “matrix” of coefficients
fi,y] =wliy] — ity %)

In the more general case of overdetermined systems we have

e=Y p(y) [(HTWH)_lTITWQ} »
: :
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Now note that alE[i,y] also satisfy the conditions of Theorem 3 since the ¥gtre drawn iid
from the distributiong(x|i) respectively. We may bound each term individually in this fashion and
subsequently apply the union bound to ensure that dffy’| components satisfy the constraints.
Hence each of the terms needs to satisfy the constraint with probabiity/In|9’|) to obtain an
overall bound with probability + &. To obtain bounds we would need to bound the linear operator
mappinge into €.

Note that this statement can be improved since all egfong] andg[j,y'] fori # j are indepen-
dent of each other simply by the fact that each Magias sampled independently from the other.
We will discuss this in the context of choosing a practically useful valud' dielow.

5.2 Special Cases

A closed form solution in the general case is not particularly useful sindepénds heavily on
the kernelk, the mixing proportionst and the class probabilities on the test set. However, for a
number of special cases it is possible to provide more detailed explicit andlystly:the situation
where@(x,y) = Y(X) ® ¢(y) and secondly, the binary classification setting whgbey) = yy(x)
andX; = X, where much tighter bounds are available.

5.3 Special Feature Map with Full Rank

Here we only need to deal withrather than witn x | 9’| empirical estimates, i.@5¢7i] vs. 587, Y.
Hence (8) and (9) specialize to

o= 3 o) 3 o) [(n'm ] el

&[i] == ki) — 5]
Assume that with high probability eadii] satisfies||€[i]|] < ¢; (we will deal with the explicit

constantg; later). Moreover, assume for simplicity thgt| = n and thatrthas full rank (otherwise
we need to follow through on our expansion us{mg 1)t instead ofrr1). This implies that

lel> = ;@m@m x yzy pOY) p(Y)K(y,Y) [T, [Ty,

< Y ‘ [Trl]TKy’pnfl’ , (10)
]

ij
whereK){’yF,’ =k(y,y)p(y)p(Y). Combining several bounds we have the following theorem:

Theorem 5 Assume that we have n sets of observatigrg ¥ize m each of which drawn from dis-
tributions with probabilitiest, of observing data with label y. Moreover, assume tiiéx k), (X,y')) =
K(x,X)k(y,y) > 0 where Kx,x) < 1and Ky,y) < 1. Finally, assume that r |X|. In this case the
mean operator gy can be estimated by with probability at leastl — & with precision

) e 1)

[ §
sy — vl < |2+ V/Iog((n1)/8)| x |m 2+ |5 my *m;
1]
Proof We begin our argument by noting that both fpix,y) and for @(x) the corresponding
Rademacher averag&, for functions of RKHS norm bounded by 1 is bounded rby%. This

is a consequence of all kernels being bounded by 1 in Theorem K arid
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Next note that in Theorem 3 we may $&t= 1, since for|| f|| < 1 andk((x,y), (x,y)) <1 and
k(x,x) < 1 it follows from the Cauchy Schwartz inequality tHatx)| < 1. Solvingd < exp—me?

for € yieldse < m~z [2+ \/Iog(l/é)} .
Finally, note that we have+ 1 deviations which we need to bound: one betwpgn and
Uy, andn for each of theg[i] respectively. Dividing the failure probability into n+ 1 cases

yields bounds of the fornm~z |2+ log((n+1)/8)| and % 2+ /log((n+1)/8)| respec-
m

tively. Plugging all error terms into (10) and summing over terms yields the cladrsabstituting
this back into the triangle inequality proves the claim. |

5.4 Binary Classification

Next we consider the special case of binary classification wKgee X. Using (6) we see that the
corresponding estimator is given by

Pixy = 2ppc (1] — CT2).

Sincelixy shares a significant fraction of terms witRy we are able to obtain tighter bounds as
follows:

Theorem 6 With probabilityl — & (for 1 > & > 0) the following bound holds:

_1 _1
[Py — kvl < 2p [2+ \/Iog(Z/é)] [ml 2 +m+2] ,

where m is the number of observations with=y1 in X,.

Proof Denote byy[X,] andp[X_] the averages over the subsets<gfwith positive and negative
labels respectively. By construction we have that

Mxy = PUX¢] — (1 — p)p[X_]
fixy = 2015 11) — pUIX; ] — (1= P)U[X_].

Taking the difference yields@5e11] — p[X, ]]. To prove the claim note that we may use Theorem 3
both for || SE11] — Expxy=1) [W(X)]|| and for ||u[X,] — Ex-pxy=1) [W(X)]||. Taking the union bound
and summing over terms proves the claim. |

The bounds we provided show thaty"converges at the same ratgug aspxy does, assuming that
the sizes of the seb§ increase at the same rateXas
5.5 Overdetermined Systems

Given the optimal value of weighting/, the class mean can be reconstructed as a solution of a
weighted least square problem in (7) and this minimizer is given by

I:lglass: (T[TWT[)flT[TW &etwherew = diag(w, ..., W,) andw; > 0.

It is easy to see that whenever= || and 1t has full rank there is only one possible solution
regardless of the choice W. For overdetermined systems the choic&\bmay greatly affect the
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quality of the solution and it is therefore desirable to choose a weighting which masrthe error
in estimatinguyxy.

In choosing a weighting, we may take advantage of the fact that the €filoase independent
for all i. This follows from the fact that all bags are drawn independently df etter. Moreover,
we know thatE|g]i]] = O for alli. Finally we make the assumption thay,y') = d(y,Y), that is, that
the kernel in the labels is diagonal. In this situation our analysis is greatly simplifcedia have:

e= Y o(y)® p(y)(m'Wm~triwe
y

and hencét e = i_ﬁlgE 617w [ w1 20y,

Using the assumption thEt[H ]l } O(m 1) we may find a suitable scale of the weight vectors
by minimizing

ZZ W o (" w 1 r) (12)

with respect to the diagonal matri%/. Note that the optimal value oV dependsboth on the
mixtures of the bags; andon the propensity of each clapéy). That is, being able to well estimate
a class which hardly occurs at all is of limited value.

5.6 Stability Bounds

To complete our reasoning we need to show that our bounds translate indmigpes in terms of the
minimizer of the log-posterior. In other words, estimates using the correct jygars. its estimate

iy do not differ by a significant amount. For this purpose we make use of Altdrsarola (2006,

Lemma 17).

Lemma 7 Denote by f a convex function ol and let uft € #. Moreover letA > 0. Finally
denote byo*, € A the minimizer of

L(8,1) := (8) — (11.6)+A6]*

with respect t® and 8* the minimizer of (8, 1) respectively. In this case the following inequality
holds:

16" — 6| <A |u—p- (12)

This means that a good estimate fdmmediately translates into a good estimate for the minimizer
of the approximate log-posterior. This leads to the following bound on themisknizer.

Corollary 8 The deviation betweedi, as defined in (1) ané*, the m|n|m|zer of the approximate
log-posterior usingixy rather than |y, is bounded by On~ I yim ).

Finally, we may use Altun and Smola (2006, Theorem 16) to obtain bounds oru#ieypf o
when considering how well it minimizes thle negative log-posterior. Using the bound

(8" —L (0" < |6 0|2l

yields the following bound for the log-posterior:
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Corollary 9 The minimize®* of the approximate log-posterior usiifiggy rather than xy incurs a
penalty of at mosk 2 ||fixy — pixy||%.

5.7 Stability Bounds under Perturbation

Denote 1c {1}171 as the vector of all ones andcd{0}”" as the vector of all zeros. Létbe the
perturbation matrix such that the perturbed mixing mafris related to the original mixing matrix
Ttby ft= 11+ A. Note that the perturbed mixing matristill needs to have non-negative entries and
each row sums up to i1l = 1. The stochasticity constraint on the perturbed mixing matrix imposes
special structure on the perturbation matrix, i.e. each row of perturbation matrbsomsup to 0,
A1=0. Letd* be the minimizer of (2) with meanyy approximated via mixing matrir. Similarly,
define®* for fixy with mixing matrixft. We would like to bound the distandf®* — 8*|| between

the minimizers. Our perturbation bound relies on Lemma 7 and on the fact thatntsoand the
errors made in computing an (pseudo-) inverse of a matrix:

Lemma 10 (Stability of Inverses) For any matrix nornj|.|| and full rank matricestandrti+A, the
error between the inverses afand 1+ A is bounded by

e~ () < e e )2 .

Proof We use the following identityr * — (1t+A) 1 = (114-A) ~*Arr L. The identity can be shown
by left multiplying both sides of equation wittrt+ A). Finally, by submultiplicative property of a
matrix norm, the inequalityj e tA(mt+A) 2| < ||| [|A]] || (+4) 71| follows. u

Theorem 11 (Stability of Pseudo-Inverses: Wedin 1973}or any unitarily invariant matrix norm
||.]| and full column rank matriceg andrt+ A, the error between the pseudo-inversesahdm+A
is bounded by

70" = (e )T < 170 [ TE-2) g A,

where p denotes a scalar constant depending on the matrix fjofig), denotes the spectral norm
of a matrix, and the pseudo-inversé defined agt := (1t )~ 1t’.

Proof See Wedin (1973, Theorem 4.1) for a proof. |

Remark 12 For full rank matrices, the constant term p in Theorem 11 is equal to urigrdiess
of the matrix norm considered (Wedin, 1973).

First, we would like to bound the difference betweg® andjixy, i.e. €y := [ixy — fixy. For the
special feature map with full rank, this translates to

€= Z p(y) __id)(y) @ [t =t et
lepll? —Z<u T [ TP Y| .
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Lemma 13 Define KP:=V,Vy ;. With the spectral nornj. |, and a full rank mixing matrixt
the following bound holds:

1

v = P oo < Vsl 1T g 18 | e-2) 2 o, [ L) ] NCE)
]

Proof We first upper bound(rrt — f-1) TK¥P(rr ! — 7 1)]” by

|t —fr ) TKYP(rt — )| - We factorizeK¥P asV,/,Vy, sinceK¥P is a positive (semi-)
definite matrix. The elemen( =k(y,Y)p(y)p(y') is obtained by multiplying a kerné{(y,y’)
with a rank-one kernel/(y,y') = p(y) p(y') wherep is a positive function. This conformal trans-
formation preserves the positive (semi-) definitenesKydf (Schdlkopf and Smola, 2002). Thus,
| = F ) TP =T 8, < [Myp(rT? =T Hllow <

(1Nl [1(TC = T3 | ) < [INGp)
follows directly from Lemma 10.

2

500 [T | g 18l go || (TE4+2) 2| .]©- The last inequality

Corollary 14 Define K'P:=V,[ )\ . With the spectral nornj. |, and a full column rank mixing
matrix 11, the following bound holds:

l

Py — Pixy llge < V2([Vyspl cti]) ] : (14)

I 18 4 8T [
1,]

Proof Similar to Lemma 13 with the constant facioin Theorem 11 equals t¢/2 for a spectral
norm. [ |

Combining Lemma 13 for the full rank mixing matrix case (or Corollary 14 for thiectlumn
rank mixing matrix case) with Lemma 7, we are ready to state the stability boundpertierbation:

Lemma 15 (Stability Bound under Perturbation) The distancees between the two minimizers,
6* and6*, is bounded by

gs <A 1| fixy — fixv |l -

It is clear from (13) and (14) that the stability of our algorithm under pbgtion will depend on
the size of the perturbation and on the behavior of the (pseudo-) invetke perturbed mixing
matrix. Note that by the triangle inequality, the distance in (12) can be decothps§é* — 6*|| <

| —8¢|| + [|6* — &*|| and the second term in RHS vanishes whenever the size of perturhdtion
zero.

6. Extensions

We describe two types of extensions on our proposed estimator: functioaspnd unknown label
proportions on the test sets. We will discuss both of them in turn.
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6.1 Function Spaces

Note that our analysis so far focused on a specific setting, namely maximwsteripri analysis in
exponential families. While this is a common and popular setting, the derivatioty au@ means
restricted to this. We have the entire class of (conditional) models describettlyahd Smola
(2006) and Dutk and Schapire (2006) at our disposition. They are characterized via

mini’gnize—H (p) subject to||E.p [¢(2)] — || < €.

Here p is a distribution,H is an entropy-like quantity defined on the space of distributions, and
@(2) is some evaluation map into a Banach space. This means that the optimization prablem c
be viewed as an approximate maximum entropy estimation problem, where we ddorceeex-

act moment matching gf but rather allowe slack. In both Altun and Smola (2006) and Dkid
and Schapire (2006) the emphasis layumconditionaldensity models: the dual of the above op-
timization problem. In particular, it follows that féd being the Shannon-Boltzmann entropy, the
dual optimization problem is the maximum a posteriori estimation problem, which is wahatav
solving here.

In the conditional casqy denotes the collection of probabilitiggy|x;) and the operator
Ezpl@(2)] = %z{‘;l Eyipwyix) [@(Xi,Y)] is the conditional expectation operator on the set of obser-
vations. Finally,u= %z{‘;l(p(xi,yi), that is, it describes the empirical observations. We have two
design parameters:

6.1.1 FUNCTION SPACE

Depending on which Banach Space norm we may choose to measure idgtoddyetween and
its expectation with respect in terms of e.g. thé, norm, the/, norm or the/., norm. The latter
leads to sparse coding and convex combinations. This means that instebdhgf ao optimization
problem of the form of (2) we would minimize expression of the form

m
i=

wherep > 1 andB* is the Banach space of the natural paraméteshich is dual to the spac@
associated with the evaluation function@(s,y). The most popular choice f@®* is ¢; which leads
to sparse coding (Candes and Tao, 2005; Chen et al., 1995).

6.1.2 BNTROPY AND REGULARITY

Depending on the choice of entropy and divergence functionals we oht@nge of diverse estima-
tors. For instance, if we were to choose theormalizedentropy instead of the entropy, we would
obtain algorithms more akin to boosting. We may also use Csiszar and Bregmarnyedaes. The
key point is that our reasoning of estimatipgy based on an aggregate of samples with unknown
labels but known label proportions is still applicable.

6.2 Unknown Test Label Proportions

In many practical applications we may not actually know the label proportioriseotest set. For
instance, when deploying the algorithm to assess the spam in a user’s mailbwiX wet know
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what the fraction would be. Nor is it likely that the user would be willing or ablé¢rastworthy
enough to provide a reliable estimate. This means that we need to estimate thpciqgns in
addition to the class meap§?ss

We may use a fairly straightforward simplification of the covariate shift céime@rocedure of
Huang et al. (2007) in this context. The basic idea is to exploit the fact tae¢ the magp(x) —
H[p(X)] = Ex[W(X)] is injective for characteristic kernels (Sriperumbudur et al., 2008).nipkes
of such a characteristic kernel is Gaussian RBF, LaplacianBand-splines. This means that as
long as the conditional distributior¥x|y) are different for different choices gfwe will be able
to recover the test label proportions by the simple procedure of minimizing ttendésbetween
up] andy, ayu[p(x|y)]. While we may not have access to the true expectations we are still able to
estimatg.$sJy] for all y € 9. This leads to the optimization problem

2

1 m
minimize | = S p(x)— S ay$29y] (15)
‘ mizi yezy o
subject tooy > 0 and Z ay=1.

yey

Here the sum is taken over the elements of the test set, thatiX. Very similar bounds to those
by Huang et al. (2007) can be obtained and they are omitted for the shkevitfy as the reasoning
is essentially identical.

Note that obviously (15) may be usedparatelyfrom the previous discussion, that is, when the
training proportions are known but the test proportions are not. Howeeelelieve that the most
significant benefit is obtained in using both methods in conjunction since mantigal situations
exhibit both problems simultaneously.

7. Related Work and Alternatives

While being highly relevant in practice, the problem has not seen as much atteptiesearchers
as one would expect. Some of the few works which cover a related sagetiiose by Chen et al.
(2006) and Musicant et al. (2007), and biad¢k and de Freitas (2005). We hope that our work will
stimulate research in this area as relevant problems are fairly widespread.

7.1 Transduction

In transduction one attempts to solve a related problem: the pakeomsthe test set are known,
usually also some label proportions on the test set are known but obvibesigtual labels on the
test set ar@mot known. One way of tackling this problem is to perform transduction by eifgra
proportionality constraint on the unlabeled data, e.g. via a Gaussian Procekel (Grtner et al.,
2006; Mann and McCallum, 2007).

At first glance these methods might seem applicable for our problem udthesquire that we
have at least some labeled instancealbtlassesat our disposition which need to be drawn in an
unbiased fashion. This is clearly not the case in our setting. That said, élipessible to use our
setting in the context of transduction, that is, to replace the unknown pi€éon the test set by the
empirical estimate on the training set. Such strategies lead to satisfactorynmeentsyr on par with
(albeit not exceeding) existing transduction approaches.
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7.2 Self Consistent Proportions

Kiick and de Freitas (2005) introduced a more informative variant of theybimaltiple-instance
learning, in which groups of instances are given along with estimates ofabioih of positively-
labeled instances per group. The authors build a fully generative motted pfocess which deter-
mines the assignment of observations to individual bags. Such a predsdilely to perform well
when a large number of bags is present.

In order to deal with the estimation of the missing variables a MCMC sampling preeesiur
used. While Kick and de Freitas (2005) describe the approach only for a binabjgono it could
be extended easily to multiclass settings.

In a similar vein, Chen et al. (2006) and Musicant et al. (2007) also w&df-@onsistent ap-
proach where the conditional class estimates need to match the observedComsgquently it
shares the same similar drawbacks, since we typically only have as many cleissas.

7.3 Conditional Probabilities

A seemingly valid alternative approach is to try building a classifiergigfx) and subsequently
recalibrating the probabilities to obtapty|x), e.g. viap(y|i). At first sight this may appear promis-
ing since this method is easily implemented by most discriminative methods. The idea wduold b
reconstrucp(y|x) by

P(YIX) = Ty p(i[X).

However, this is not a useful estimator in our setting for a simple reasonuitressthe conditional
independencg LL x| i, which obviously does not hold. Instead, we have the property thak| y,

that is, the distribution ovex for a given class label does not depend on the bag. This mismatch in
the probabilistic model can lead to disastrous estimates as the following simple exaumspies:

Example 1 Assume thait,9 = {1,2} and that gy = 1jx=1) = p(y = 2|x=2) = 1. In other
words, the estimation problem is solvable since the classes are well sahakteeover, assume
thatTtis given by

| 05—-¢ 05+¢

=1 05 05 for0<e<x 1

Tt

Here, [i|X) is useless for estimating yx), since we will only exceed random guessing by at most
On the other hand, it is easily possible to obtain a good estimategdgby our proposed procedure.

The reason for this failure can be found in the following expansion
P(YIX) = p(yx,i)p(ilx) # > p(yli)p(i[x) sincep(y|x,i) # p(yli). (16)
| |

The problem with (16) is that the estimator does not really attempt to compute thabgitytp(y|x),
which we are interested in but instead, it attempts to discern which mixture distripittbe ob-
servatiorx most likely originated from. For this to work we would need good probability estisnate
as thebasisof reweighting. Our approach tackles the problem at the source by rextaiipthe
sufficient statistics directly.
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7.4 Reduction to Binary

For binary classification and real-valued classification scores we may tesorather straightfor-
ward heuristic: build a classifier which is able to distinguish between theXsetisd X, and subse-
guently threshold labels such that the appropriate fraction of observatidhsimd X, matches the
proper labels. The intuition is that since the bXgsandX, do contain some information about how
the two classes differ, we should be able to use this information to distinguishdretiféerent
class labels.

It is likely that one might be able to obtain a proper reduction bound in this cortexvever,
extensions to multi-class are highly nontrivial. It also turns out that even ibitiegy case this
method, while overall fairly competitive, is inferior to our approach.

7.5 Density Estimation

One way of obtaining(x|i) is to carry out density estimation. While, in principle, this approach is
flawed because of the incorrect conditional independence assumptiarssttitiead to acceptable
results whenever each of the bags contains one majority class. This alidesbtain

p(xly) =3 [1T ], p(X]i).

To re-calibrate the probability estimates Bayes’ theorem is invoked to computieripogroba-
bilities. Since this approach involves density estimation it tends to fail fairly catstally for

high-dimensional data due to the curse of dimensionality. These probleratsammanifest in the
experiments.

8. Experiments

Data Sets: We use binary and three-class classification data sets from the UCI repbsitar the
LibSVM site? If separate training and test sets are available, we merge them beféwenpeg
nested 10-fold cross-validation. Since we need to generate as many splissssscwe limit
ourselves to three classes.

For the binary data sets we use half of the dataXoand the rest foX,. We also remove all
instances of class 2 froi¥,. That is, the conditional class probabilitiesXp match those from the
repository, whereas iK; their counterparts are deleted.

For three-class data sets we investigate two different partitions. Inrscehave use class 1
exclusively inXy, class 2 exclusively iXz, and a mix of all three classes weighted(By- p(1),0.6-
p(2),0.7- p(3)) to generates. In scenario B we use the following splits

€1-04-p(1) ¢1-0.2-p(2) c¢1-0.2-p(3)
C2-0.1-p(1) c2-0.2-p(2) c-0.1-p(3)
c3-0.5-p(1) c3-0.6-p(2) c3-0.7-p(3)

Here the constants, ¢, andcz are chosen such that the probabilities are properly normalized. As
before, X3 contains half of the data.

1. UCI can be found dtttp://archive.ics.uci.edu/ml/
2. LibSVM can be found atttp://www.csie.ntu.edu.tw/ ~ cjlin/libsvmtools/
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Model Selection: As stated, we carry out aested10-fold cross-validation procedure: 10-
fold cross-validation to assess the performance of the estimators; within ddch@efold cross-
validation is performed to find a suitable value for the parameters.

For supervised classification, i.e. discriminative sorting, such a procégiqrete straightfor-
ward because we can directly optimize for classification error. For kdamdity estimation (KDE),
we use the log-likelihood as our criterion.

Due to the high number of hyper-parameters (at least 8) in MCMC, it is diffioyperform
nested10-fold cross-validation. Instead, we choose bHestparameters from a simple 10-fold
crossvalidation run. In other words, we are giving the MCMC method arinadaantage over our
approach by reporting the best performance during the model selecticedprec

Finally, for the re-calibrated sufficient statistigsy"we use the estimate of the log-likelihood on
the validation set as the criterion for cross-validation, since no other quantityasiclassification
errors is readily available for estimation.

Algorithms:  For discriminative sorting we use an SVM with a Gaussian RBF kernel whose
width is set to the median distance between observation®li&qgdf, 1997); the regularization pa-
rameter is chosen by cross-validation. The same strategy applies for outretgdfror KDE, we
use Gaussian kernels. Cross-validation is performed over the kernel widthMCMC, 10000
samples are generated after a burn-in period of 10000 stk @hd de Freitas, 2005).

Optimization: Bundle methods (Smola et al., 2007; Teo et al., 2007) are used to solve the
optimization problem in Algorithm 1. For our regularized log-likelihood, the solvewerges te
precision inO(log(1/¢)) steps.

Results: The experimental results are summarized in Table 3. Our method outperfddias K
and discriminative sorting. In terms of computation, our approach is somewhat fficieng since
it only needs to deal with a smaller sample size (oXisather than the union of aX;). The training
time for our method is less than 2 minutes for all cases, whereas MCMC amgaviaikes 15 minutes
and maybe even much longer when the number of active kernels and/ovatizses are high. Note
that KDE fails on two data sets due to numerical problems (high dimensiondl data

Our method also performs well on multiclass data sets. As described in SectitimesqRiality
of our minimizer of the negative log-posterior depends on the mixing matrix asd@sthoticeable
in the reduction of performance for the dense mixing matrix (scenario B) in aisopato the
better conditioned sparse mixing matrix (scenario A). In other words, foorititionedrteven our
method has its limits, simply due to numerical considerations of effective sample size.

Unknown test label proportions: In this experiment, we use binary and three-class classifi-
cation data sets with the same split procedure as in the previous experimeve batect testing
examples by a biased procedure to introduce unknown test label progoriiordescribe our bi-
ased procedure, consider a random varigpfer each point in the pool of possible testing samples
where&; = 1 means thé-th sample is being included argg = 0 means the sample is discarded.
In our case, the biased procedure only depends on the yab&. P(§ = 1]y =1) = 0.5 and
P(§ = 1]y = —1) = 1.0 for binary problems an®(§ = 1)y =1) = 0.6, P({ = 1ly = 2) = 0.3,
andP(¢ = 1]y = 3) = 0.1 for three-class problems. We then estimate the test proportion by solv-
ing the quadratic program in (15) with interior point methods (or any otheressive optimization
procedure). Since we are interested particularly to assess the effexd/of our test proportion es-
timation method, in solving (15) we assume that we can comygtitdy] directly, i.e. the instances
are labeled. The mean square error rates of test proportions foekbirary and three-class data
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Data MM KDE DS MCMC | BA
ionosphere | 18.4+3.2 | 17.5+3.2 | 12.2+2.6 | 18.0+2.1 | 35.8
iris 10.0+3.6 | 16.8+3.4 | 15.4+1.1 | 21.1+3.6 | 29.9
optdigits 1.8+t0.5| 0.7£0.4| 9.8£1.2| 2.0+£0.4 | 49.1
pageblock 3.8£2.3| 7.142.8| 18.5:5.6 | 5.4+2.8 | 43.9
pima 27.5+3.0| 34.8:£0.6 | 34.4+1.7 | 23.8:1.8 | 34.8
tic 31.0+1.5| 34.6+0.5| 26.1+1.5| 31.3+2.5| 34.6
yeast 9.3t1.5| 6.5+1.3| 25.6+3.6 | 10.4-1.9 | 39.9
wine 7.4+3.0| 12.1+4.4 | 18.8-6.4 | 8.7+2.9| 40.3
wdbc 7.86+1.3| 59+1.2| 10.1+2.1| 15.5+1.3| 37.2
sonar 24.2+3.5| 35.2+3.5| 31.4+4.0 | 39.8+2.8 | 44.5
heart 30.0+4.0 | 38.14+3.8 | 28.4+-2.8 | 33.744.7 | 44.9

breastcancer 5.3+0.8 | 14.2£1.6| 3.5+1.3| 4.8+:2.0| 34.5
australian 17.0+:1.7 | 33.8:2.5| 15.8:2.9| 30.8:1.8 | 44.4
svmguide3 | 20.4+:0.9 | 27.2+1.3 | 25.5+1.5 | 24.2+0.8 | 23.7

adult 18.9+1.2 | 24.5+£1.3 | 22.1£1.4 | 18.7£1.2 | 24.6
cleveland 19.1£3.6 | 35.9+:4.5| 23.4-2.9 | 24.3+3.1 | 22.7
derm 49+1.4| 27426 | 4.7+£1.9| 14.2:2.8 | 30.5
musk 25.14+2.3| 28.7+2.6 | 22.2£1.8 | 19.6+:2.8 | 43.5

german 32.4+1.8 | 41.6+t2.9| 37.6£1.9| 32.0+0.6 | 32.0
covertype 371425 | 41.91.7 | 32.4+1.8 | 41.142.2 | 45.9

splice 25.2+2.0 | 35.5+1.5| 26.6+1.7 | 28.8-1.6 | 48.4
gisette 10.3:0.9 T 12.2+0.8 | 50.0+0.0 | 50.0
madelon 44.1+1.5 T 46.0+£2.0 | 49.6+0.2 | 50.0
cmc 37.5-1.4 | 43.8+0.7 | 45.14-2.3 | 46.9+2.6 | 49.9
bupa 48.5+2.9 | 50.8£5.1 | 40.3+4.9 | 50.4+0.8 | 49.7

protein A 43.3+0.4 | 48.9+0.9 N/A 65.5+1.7 | 60.6
protein B 46.940.3 | 55.2t1.5 N/A 66.1+-2.1 | 60.6

dna A 14.8+1.2 | 28.1+£0.6 N/A 39.8£2.6 | 41.6
dna B 31.3+1.3 | 30.4:0.7 N/A 41.5+0.1 | 41.6
senseit A 19.6+0.1 | 44.2+0.0 N/A T 44.2
senseit B 21.14+0.1 | 44.2+0.0 N/A T 44.2

Table 3: Classification error on UCI/LibSVM data sets. Errors are regpanteneant standard
error. The best result and those not significantly worse than it, aréidtitgd in boldface.
We use a one-sided paired t-test with 95% confidend& Mean Map (our method);
KDE Kernel Density EstimationDS Discriminative Sorting (only applicable for binary
classification)MCMCthe sampling methodA: Baseline, obtained by predicting the major
class. t: Program fails (too high dimensional data - &@¥). . Program fails (large data
sets - onlyMCME
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sets are presented in Table 4. The results show that our proportion estimatiood works reason-
ably well.

Overdetermined systems:Here we are interested to assess the performance of our estimator
with optimized weights when we have more data settsan class labelg)’| with varying number
of observationsn; per data set. We simulate the problem in binary settings with the following split
(n=8)

[ c1-0.25.
c2-0.15-
cz-0.05-
C4-0.05-
cs-0.05-
Cs-0.05-
c7-0.05-
Cg- 0.35.

c1-0.10-p
c2-0.10-p
c3-0.20-p
c4-0.10-p
c5-0.00-p
Cs-0.05-p
c7-0.15-p
cg-0.30-p

PR R R R R R
S N N e e N N
NNNNNNNN
S N N e e N N

© T ©T T T T T T
N N N N N N S

and the splitfi = 6) in three-class settings is as follows

c1-0.30-p
c2-0.10-p
c3-0.05-p

( c1-0.10-p

(

(
C4-0.05- p(

(

(

c;-0.10- p

) (2) ¢1-0.00-p
) (2) c2-0.20-p
) (2) c3-0.05-p
) €4-0.20-p(2) c4-0.05-p
Cs-0.00- p(1) (2) p
Cs-0.50- p(1) (2) p

Cs-0.10-
Cs-0.60-

We use BFGS to obtain the optimal weights of the minimization problem in (11). WerpedO-
fold cross validation with respect to the log-likelihood. The error rates asepted in Table 5. For
all cases except one, the estimator with optimized weights improves error ratparmeml with the
unweighted one.

Binary data sets

Data MSE Three-class data sets
australian | 0.00804£0.00275 Data MSE

breastcancer 0.0013%-0.00063 protein | 0.00296£0.00066

ggfr'; 8'88232&8'88?% dna | 0.00339:0.00075
: : it| 0.00072:0.00031

gisette 0.00331:0.00108 Sensel

wdbc 0.00319-0.00103

Table 4: Unknown test label proportion case. Square errors of estintatnigst proportions on
UCI/LibSVM data sets. The 10-run errors are reported in meatandard error.

Stability of Mixing Matrices: Lastly, we are interested to assess the performance of our pro-
posed method when the given mixing matrbare perturbed so that they do not exactly match
how the data is generated. We used binary classification data sets and tlegiperturbed mixing
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Binary data sets

Three-class data sets

Data unweighted | weighted
wdbc 23.29+2.68 | 14.22+1.79 Data | unweighted | weighted
australian | 34.44+4.03 | 29.58t3.71 protein | 57.46+0.02 | 57.46+0.02
svmguide3| 24.28+2.20 | 18.50+1.73 senseit| 28.25-2.60 | 23.510.78
gisette 8.7H+1.05 | 7.69t0.51 dna 20.014-1.26 | 16.80t+1.19
splice 33.43+1.65 | 21.12+2.59

Table 5: Overdetermined systems. Errors of weighted/unweighted estinatargerdetermined
systems on UCI/LibSVM data sets. The 10-fold cross validation errors portesl in
mean+ standard error. The numbers in boldface are significant with 95% coicfide
(one-sided paired t-test).

matrix as

1 0

i=T+A=
[P 1-p

—&1 €1
ol %)
We variecg; € {0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0} ande; € {0.0,0.1,0.3,0.5} and mea-
sured the performance as a function of the size of the perturbatierj|A||® = tr (ATA). Note that
unperturbed mixing matrix refer to the case{ef, &2} = {0,0}. The experiments are summarized
in Figure 2. The results suggest that for a reasonable size of pditurfaour method is stable.

9. Conclusion

In this paper we obtained a rather surprising result, namely that it is possibdasistently recon-
struct the labels of a data set if we can only obtain information about the pi@moof occurrence
of each class (in at least as many data aggregates as there are clags@sicular, we proved that
up to constants, our algorithm enjoys the same rates of convergencesdftonthethods which have
full access to all label information.

This finding has significant implications with regard to the amount of privacyrédd by sum-
mary statistics. In particular, it implies that whenever accurate summary stagistitand when-
ever the available individual statistics are highly dependent on the sumuhaaizdom variable we
will be able to perform inference on the summarized variable with a high dexjreonfidence. In
other words, some techniques used to anonymize observations, e.g. denmdeda, may not be
really safe (at least when it is possible to estimate the missing information, pramdedh data).

Recently Chiaia et al. (2007) applied a summarization technique to infer deugased on
the concentration of metabolites in the sewage of cities, suburbs or at ameveriinely grained
resolution. While this only provides aggregate information about the proportibdsug users,
such data, in combination with detailed demographic information might be used torperfore
detailed inference with regard to the propensity of individuals to use dedrsubstances. Itis in
these types of problem where our method could be applied straightfdyward
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Figure 2: Performance accuracy of binary classification data sets|{| = 2) as a function of
the amount of perturbation applied to the mixing matfi&||> = tr (ATA) with A = fi—
1. 2(a): Adult, 2(b): Australian and 2(c): Breastcancer data setsxis denote$|A|\2
as a function o€; € {0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0}. Color coded plots

denote||A||* as a function ot € {0.0,0.1,0.3,0.5}, for example red colored plot refers
to performance when only label proportions of the first set are pedurbe
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