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Abstract

We study a phenomenological model for the continuous double auction, whose aggregate order process is equivalent to
two independent M=M=1 queues. The continuous double auction defines a continuous-time random walk for trade prices.
The conditions for ergodicity of the auction are derived and, as a consequence, three possible regimes in the behavior of
prices and logarithmic returns are observed. In the ergodic regime, prices are unstable and one can observe a
heteroskedastic behavior in the logarithmic returns. On the contrary, non-ergodicity triggers stability of prices, even if two
different regimes can be seen.
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Introduction

The continuous double auction is the trading system used by most

regulated equity markets. The auction is called double as demand

and offer are collected in a book where orders to buy and to sell

are registered, and continuous because orders can be placed at any

instant in a given daily time window. The detailed rules for trading

may be different from one stock exchange to the other, but,

essentially, things work as follows. Traders can either place buy

orders (bids) or sell orders (asks) which are then registered in a book

for a particular stock traded in the exchange. The limit order is the

typical one. A bid limit order is specified by two numbers: the

quantity q
(T )
b that trader T wants to buy and the upper limit price

p
(T)
b she is willing to pay for a single share. An ask limit order is an

order to sell q(T)
a units of the share at a price not smaller than a

limit price p(T )
a selected by trader T . The couples (p

(T)
b ,q

(T)
b ) and

(p(T)
a ,q(T)

a ) are written in the book and ordered from the best bid to

the worst bid and from the best ask to the worst ask, respectively.

The best bid is the price pb~maxT[Ib
(p

(T)
b ), where Ib is the set of

traders placing bids, whereas the best ask is the price

pa~minT[Ia
(p(T)

a ), where Ia is the set of traders placing asks. At

every time t, one has that pa(t)wpb(t). Occasionally, a market order

may take place, when a trader accepts a best bid or best ask price

from the book, and the i-th trade occurs at the epoch ti. Stock

exchanges specify rules for the priorities of limit orders placed at

the same price and for execution of market orders with quantities

that are not totally available at the present best price. The

sequence of prices p(ti) at which trades take place at epochs ti is an

important process for understanding market dynamics. As detailed

below, one can describe this sequence in terms of a suitable

continuous-time random walk.

Model

In our model, following [1], prices assume N integer values

from 1 to N . A price can be regarded as a class where orders are

placed. This way of representing prices is a faithful representation

of what happens in real markets due to price discretization. The

only unrealistic feature is the presence of an upper limit to prices

which we keep to ensure partial analytical tractability. Note that

orders can be considered as objects to be classified by prices at

which they are placed (see [2] for a general discussion on the

problem of allocating objects to classes). We only consider two

kinds of orders, namely, limit orders and market orders.

As discussed above, limit orders can be of two types: limit bid

orders, i.e. orders to buy one share and limit ask orders, i.e. orders

to sell one share. Market orders are also of two types as either the

best limit bid order or the best limit ask order are accepted when a

transaction occurs. When a market order arrives, only one limit

order will be removed either from the best bid category or the best

ask category, provided that these categories contain at least one

order. In other words, we assume that all the orders are

characterized by quantities equal to one share. We shall further

assume that limit ask orders arrive following a Poisson process with

rate la and that limit bid orders arrive at a rate lb. These orders

are written in the book and they wait until a market order arrives.

Remember that the best limit bid orders, namely the limit bid

orders offered at the highest price are always strictly smaller than

the best limit ask orders, that is the limit ask orders offered at the

lowest price. Market orders to buy, accepting one of the best ask

orders, arrive in the market separated by exponentially distributed

waiting times with parameter mb, whereas market orders to sell

arrive with an exponential distribution of waiting times with

parameter ma. If the book is empty, or if the appropriate side of the
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book is empty, market orders are not executed. It is necessary to

remark that order inter-arrival times are not exponentially

distributed in real markets [3] due to the non-stationary behavior

of humans [4]. However, to ensure analytical tractability, here we

assume that inter-arrival times are exponentially distributed. We

shall further assume that limit ask orders are uniformly placed in

the price classes from pbz1 to pbzn, where pb is the class of the

current best bids. Conversely, limit bid orders are uniformly

placed in the price classes from pa{n to pa{1, where pa is the

class of the current best asks. As mentioned above, the accessible

system states are limited by the condition pbvpa. When pa is

between 1 and n (pb between N{nz1 and N ), the bid

(respectively, ask) interval is restricted correspondingly. For

instance, if pa~1, no bids are possible. Finally, if no orders are

present in the book, the next bid, b, will be uniformly chosen in

p{nƒbƒp and the next ask, a in pƒaƒpzn, where p is the

price of the last trade. The specification of an initial price (which

can be interpreted as the opening auction price) is then sufficient

to start the auction. Figure 1 shows a state of this system and

illustrates the meaning of the various descriptions. Note that the

model outlined above is essentially the same as in [5] and [6]. In

terms of agent-based models, it is a zero intelligence agent-based model

[7]. However, our version does not suffer from using odd

mathematical objects such as uniform distributions over semi-

infinite intervals as in [5] and we do not assume that limit orders

arrive only at the best bid/ask prices as in [6]. Actually, in our case

limit orders arrive at prices that are different from the best bid/

ask. A preliminary discussion of our model was presented in [8].

The trade price process P(t) is a continuous-time random walk

that we wish to characterize as Cont and de Larrard did in

Sections 3 and 4 of [9]. However, they considered fixed bid-ask

spread equal to one tick, whereas in our case the bid-ask spread is

a random variable. Let Ti denote the epoch of the i-th trade; in

particular, we are interested in the behaviour of the following

random variable

Ri~log(P(Tiz1)=P(Ti)), ð1Þ

called the tick-by-tick logarithmic return, where log stands for the

natural logarithm. This is the usual variable used in statistical

finance and financial econometrics for the analysis of tick-by-tick

data [10]. It turns out that the behaviour of Ri crucially depends

on the presence or absence of statistical equilibrium in the supply

mechanism.

Main Results

Indeed, there are two main regimes in this model and they are

triggered by an ergodic transition. Let us denote by A(t) the total

number of limit ask orders and by B(t) the total number of limit

bid orders present in the book. By definition, these two random

processes are independent and they are M=M=1 queues with rates

la and mb and lb and ma, respectively [11]. M=M=1 queues are

the continuous-time equivalent of birth and death Markov chains.

The conditions for the existence of statistical equilibrium

(ergodicity) are given by the following inequalities

lavmb, ð2Þ

Figure 1. A state of the system. Limit bid orders are depicted by
circles whereas squares represent limit ask. Each order can be described
by a label. An individual description is a list showing, for each limit
order, whether it is a bid or an ask and to which category (price) it
b e l o n g s . H e r e , i t i s x1~(8,a), x2~(9,a), x3~(5,b), x4~(8,a),
x5~(4,b), x6~(5,b), x7~(5,b), x8~(3,b), x9~(7,a). A statistical de-
scription is a list that gives us the number of limit orders either of
bid or of ask type contained in each category. In this case it is
ya

1~ . . . ~ya
6~0, ya

7~1, ya
8~2, ya

9~1, ya
10~0 for ask orders and

yb
1~yb

2~0, yb
3~1, yb

4~1, yb
5~3, yb

6~ . . . ~yb
10~0 for bid orders. Final-

ly, a partition description is the number of categories (prices) with zero
limit ask or limit bid orders, one ask/bid limit order, etc.. In this case we

have za
0~7, za

1~2, za
2~1 for ask orders and zb

0~7, zb
1~2, zb

2~0, zb
3~1

for bid orders.
doi:10.1371/journal.pone.0088095.g001

Figure 2. Time series of prices and log-returns. Time series of prices and log-returns in a system of N~500 prices, length of interval for placing
orders n~5, with initial price p0~250 and number of simulated events t~105 . (a) ergodic case (r~0:8); (b) non-ergodic case for 1ƒrvn (r~1:2)
and (c) non-ergodic case for r§n (r~6).
doi:10.1371/journal.pone.0088095.g002
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and

lbvma: ð3Þ

The intuitive meaning of these conditions is as follows. If the rate

of arrival for limit orders is larger than the rate of market orders,

then the number of orders in the book eventually explodes.

However, in this case, prices will be able to fluctuate only among a

few values. When the rate of market orders is larger than the rate

of limit orders, the number of orders in the book remains finite and

prices are free to fluctuate over the whole available range. In the

ergodic regime, the invariant (and equilibrium) distributions of

A(t) and B(t) are given by two geometric distributions

P(A~a)~
la

mb

� �a

1{
la

mb

� �
, ð4Þ

and

P(B~b)~
lb

ma

� �b

1{
lb

ma

� �
: ð5Þ

Given the independence between A(t) and B(t), the joint

probability density is

P(A~a,B~b)~
la

mb

� �a

1{
la

mb

� �
lb

ma

� �b

1{
lb

ma

� �
, ð6Þ

from which one can find the probability of finding an empty book

P(A~0,B~0)~ 1{
la

mb

� �
1{

lb

ma

� �
: ð7Þ

For our further analysis, we shall focus on the case of a

symmetric auction, assuming la~lb~l and ma~mb~m and we

shall consider the ratio r~l=m as the basic order parameter of the

model. In fact, there is no reason for a random auction to be

unbalanced towards selling or buying. As discussed above, if rv1,

we are in the ergodic regime, whereas for r§1, we are in a regime

where the orders accumulate and A(t),B(t)??, for t??. The

two regimes give rise to two radically different behaviours for the

tick-by-tick log-returns (1). This is qualitatively shown in Fig. 2,

where we report the behavior of prices and log-returns in a Monte

Carlo simulation for r~0:8 (Fig. 2 (a)), r~1:2 (Fig. 2 (b)) and for

r~6 (Fig. 2 (c)). One can see by eye that, in the ergodic regime,

high and low log-returns are clustered, whereas, in the non-ergodic

one, such a volatility clustering does not occur. Fig. 2 (a) clarifies

the origin of clustering. When the price is lower, log-returns are

higher and the price process has the persistence behavior typical of

random walks which immediately leads to clusters of low and high

volatility as the price slowly moves up and down, respectively. The

comparison between Fig. 2 (b) and Fig. 2 (c) shows that there are

two sub-regimes in the non-ergodic case. If 1ƒrvn, even if A(t)
and B(t) diverge, the limit orders belonging to the best bid and the

best ask can be removed by market orders and prices can fluctuate

among a set, whereas if r§n, then after a transient, the number of

limit orders belonging to the best bid and the best ask diverges and

prices can only fluctuate between two values. In this condition, the

price process becomes a random telegraph process. This behavior

is justified by the fact that the process of the number of orders at

the best bid price (respectively, best ask) can be coupled with the

state of an M=M=1 queue with arrival rate lb=n (la=n) and service

rate ma (mb); this is so because limit orders, upon arrival, distribute

uniformly over the n best prices. If lb=(man)~r=n§1, then the

number of orders at the best bid price converges to infinity, as

t??, meaning that all trades will occur at the price where the

bids accumulate. If lb=(man)~r=nv1, then the queue of the best

bids eventually empties with probability one, meaning that there is

a positive probability that the trading price changes. However, if

we are in the region
1

n
ƒ

lb

man
~

r

n
v1, then we know that

A(t),B(t)??, as t??. This means that the queue of the bids

at some price will eventually never empty, which means that trades

at lower prices will never occur. By symmetry, the same argument

holds for asks.

Figure 3. Mean values and error bars. Mean values and error bars of the standard deviation (a), kurtosis (b) of log-returns and the first-lag
autocorrelation of absolute log-returns (c) as functions of the parameter r, estimated from 1000 Monte Carlo simulations.
doi:10.1371/journal.pone.0088095.g003

Table 1. Descriptive statistics of log-returns.

r~0:1 r~0:8 r~1 r~1:2 r~6

mean {3:30:10{6 {7:47:10{7 {2:07:10{7 {1:92:10{9 {3:29:10{9

st. dev. 0.092 0.078 0.018 0.008 0.003

skewness 0.896 0.287 20.034 3:44:10{4 {3:80:10{7

kurtosis 227.089 277.33 116.679 3.373 2.004

c1 0.515 0.538 0.304 0.164 1:06:10{5

Descriptive statistics of log-returns and the autocorrelation coefficient at the
first lag of absolute log-returns (c1) for different r, made on 1000 runs of

simulation of 106 events.
doi:10.1371/journal.pone.0088095.t001
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The transition between regimes can be detected studying the

moments of log-returns. In Table 1, we give the descriptive

statistics for log-returns, including mean, standard deviation,

skewness and kurtosis as well as the autocorrelation coefficient at

the first lag of absolute log-returns, c1, for different values of the

parameter r. These statistics are computed on 1000 simulation

runs with 106 events.

Figure 3 shows standard deviation, kurtosis and c1 in more

detail, namely mean values and error bars are given for these three

quantities estimated from 1000 runs. One can see that these

quantities increase in the non-ergodic case.

Our findings can be compared with those presented in a recent

study of financial stylized facts [12], where authors find that higher

rate of limit orders stabilizes the market by decreasing the standard

deviation of returns. In Fig. 4, we plot the sample autocorrelation

for the tick-by-tick absolute log-return series for r~0:8, r~1:2
and for r~6. A slow decay of the ACF in ergodic case, showing

long range-memory as well as heteroskedasticity, reminds the

stylized facts found in financial data. One can see that this decay is

much faster if r increases.

In Fig. 5, we plot the complementary cumulative distribution of

kurtosis values (Fig. 5 (a)) and of c1 (Fig. 5 (b)) for 1000 simulations

and for different values of r in order to corroborate the

observation made above: there is a jump in the kurtosis of

logarithmic returns as well as a jump in the first-lag autocorre-

lation of absolute log-returns as r moves from values larger than 1
to values smaller than 1.

Conclusions

In summary, in this paper we have shown that a symmetric

continuous double auction model has three regimes depending on

the value of the parameter r. If 0vrv1, we are in the ergodic

regime and prices are free to fluctuate over the full available price

range. In this regime, some of the so-called stylised facts of finance

appear, such as the heteroskedasticity of log-returns as shown in

Fig. 4 (a). However, this particular behaviour is simply due to the

persistence of the price process which is stronger when the

parameter n is smaller. An eye inspection of Fig. 2 (a) shows that

volatility clustering is caused by the fact that when the price is

small (close to zero), returns are larger than when the price is large

(close to N ). If n is small, the probability of large price jumps is

zero and the trade price remains close to its current value for some

time. For r§1, we have the transition to a non-ergodic regime

which stabilizes prices; they are no longer allowed to freely

fluctuate over all the available price range. However, there is a

further transition. If 1ƒrvn, where n is the size of the allowed

range for limit orders, prices can still fluctuate within a limited

range. If r§n, then prices will eventually fluctuate between two

values. If one sets n~1, this transition disappears. In fact, if n~1,

in the non-ergodic regime, limit orders accumulate only at the best

Figure 5. Empirical complementary cumulative distribution functions. Empirical complementary cumulative distribution functions of the
kurtosis of logarithmic returns (a) and the autocorrelation at the first-lag of absolute log-returns (b) for different values of r.
doi:10.1371/journal.pone.0088095.g005

Figure 4. Sample autocorrelation functions for the absolute log-returns. (a) ergodic case (r~0:8); (b) non-ergodic case for 1ƒrvn (r~1:2)
and (c) non-ergodic case for r§n (r~6).
doi:10.1371/journal.pone.0088095.g004
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bid and best ask value. Even if this further transition is a feature

of our simplified model, the distinction between the ergodic and

non-ergodic regimes is relevant for real equity markets. A

consequence of these results is that too frequent order removals

may lead to price instability. Our educated guess, which will be the

subject of further research, is that real markets live in the non-

ergodic regime, but not too far from the threshold.

Methods

Monte Carlo simulations
Monte Carlo simulations of the auction model were performed

with a MATLABHcode that is included in File S1. There are two

functions: cda.m and order.m. cda.m is a plain simulation of the

auction following the description in section Model. It calls the

function order.m that generates the flow of orders according to the

described distributions.

Theory
All the theoretical results presented here are corollaries of

theorems on M=M=1 queues from queueing theory [11]. The

notation M=M=1 means Markovian arrival process, Markovian

server process and 1 server and it is due to Kendall [13].

Supporting Information

File S1 Supporting information.

(PDF)
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