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Abstract

The nature of the electroweak phase transition in two-Higgs-doublet models is revisited
in light of the recent LHC results. A scan over an extensive region of their parameter space
is performed, showing that a strongly first-order phase transition favours a light neutral
scalar with SM-like properties, together with a heavy pseudo-scalar (mA0 & 400 GeV)
and a mass hierarchy in the scalar sector, mH± . mH0 < mA0 . We also investigate the
h0 → γγ decay channel and find that an enhancement in the branching ratio is allowed,
and in some cases even preferred, when a strongly first-order phase transition is required.
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1 Introduction

The baryon asymmetry of the Universe (BAU) is one of the few observables whose experi-
mental value cannot be accounted for within the Standard Model (SM). The model could
potentially contain all necessary ingredients for the dynamical generation of a baryonic
excess (namely C, CP and baryon number violation occurring out of thermodynamical
equilibrium [1]), since the rate of baryon-number violating processes in the SM in unsu-
pressed for temperatures above the electroweak (EW) scale [2]. However, the departure
from thermal equilibrium would have to come from a strong first-order electroweak phase
transition, and in the SM this would be satisfied only for a Higgs mass mh . mW [3, 4].
Moreover, the amount of CP violation in the SM also turns out to be insufficient for the
generation of the BAU (for recent reviews, see e.g. [5, 6, 7]).

The BAU is then a strong, empirically-based motivation to look for physics beyond
the SM, and focusing on the problem of the strength of the electroweak phase transition,
it may be natural to extend the scalar sector of the SM. The era of direct probe of scalars’
properties has just been inaugurated with the recent discovery of a spin-0 resonance of
mass mh ∼ 125 GeV at the LHC [8, 9], and even though this finding can be rightly
celebrated as another success of the SM, the properties of this resonance have not yet
been probed well enough to establish whether it behaves exactly as the SM scalar boson
or not. An extension of the SM scalar sector is thus not only allowed, but also testable
at present and in the near future, and may even come to be desirable, depending on the
upcoming results of ATLAS and CMS.

In this paper we study the nature of the electroweak phase transition in two-Higgs-
doublet models (2HDMs). These are very minimal scalar extensions of the SM, differing
from it only by the addition of an extra scalar SU(2)L doublet. Thus, apart from the
three Goldstone bosons and the usual Higgs field, the model contains a charged and two
additional neutral scalar particles, whose interactions with the Higgs result in new contri-
butions to its finite temperature effective potential that strengthen the phase transition.
Moreover, the model can also have additional sources of CP violation, either explicitly
in the scalar potential or spontaneously via a relative phase between the VEVs of the
doublets1. Thus, despite being a very minimal extension of the SM, 2HDMs have all that
is needed to boost the SM prediction of the BAU.

In fact, previous studies of baryogenesis in 2HDMs confirm that the model can predict
the measured value of the BAU in some simplified cases [11, 12], for specific regions of its
parameter space [13, 14, 15] and in the most general, CP-violating scenario [16]. A general
study of the dependence of the electroweak phase transition with the various parameters
of a 2HDM is however challenging, due to the high dimensionality of the parameter space
of the model — 14 free parameters in the most general case [16], reduced to 10 when a
softly broken Z2 symmetry is imposed.

The purpose of this work is precisely to shed some light on this issue, which remains
so far largely unexplored. We perform a random scan over an extensive region of the
parameter space looking for points with a strong first-order electroweak phase transition.
Our aim is then to establish the extent to which 2HDMs are viable models for baryogenesis,
and which regions of the parameter space are preferred for this purpose. Also, in light of
the recent experimental data from the LHC, we analyze the interplay between a strongly
first-order electroweak phase transition in 2HDMs and several properties of the light

1Spontaneous CP violation was the motivation for the introduction of 2HDMs by T. D. Lee [10].
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neutral scalar h0, such as the deviation of its coupling to weak gauge bosons (W and Z)
from the SM value and the behaviour of the decay channel h0 → γγ in these models.

Recently there has been considerable activity in linking LHC data with the electroweak
phase transition in extensions of the SM, for instance in the MSSM [17] or in singlet
models [18, 19]. Typically a tension is found between the requirement of a strong first-
order phase transition and a SM-like light Higgs. Here, on the contrary, we show that
a strong first-order phase transition favours a SM-like light Higgs in the framework of
2HDMs.

The paper is organized as follows: In Section 2 we review the general features of
the 2HDM, including a brief discussion of electroweak precision constraints, and describe
our method for obtaining the strength of the electroweak phase transition via the finite
temperature effective potential. Section 3 describes the details of our scan. In Section 4 we
discuss the constraints from flavour observables, present our analysis of the data sample
and confront the results with the latest data from LHC8. Our conclusions will be presented
in Section 5.

2 The model

2.1 General Properties of 2HDMs

In general the existence of two doublets coupling to the fermions opens an undesirable
window for FCNC’s at tree-level, since the most general fermionic Lagrangian will involve
terms of the form

LY ukawa = −QL (Γ1Φ1 + Γ2Φ2) qR + . . . (2.1)

and diagonalization of the quark mass matrix Mq = Γ1〈Φ1〉 + Γ2〈Φ2〉 does not imply
diagonalization of Γ1 and Γ2 separately. A very convenient way to deal with this problem2,
which is also most widely adopted in the literature, is to consider that each type of fermion
couples to one doublet only [24]. This can be achieved by imposing a Z2 symmetry on the
Lagrangian, under which the fields transform as Φ1 → −Φ1, dR → ±dR and lR → ±lR
(the other fields remaining invariant). By convention, up-type quarks always couple to Φ2

(so uR is even under Z2), but which doublet couples to leptons and down-type quarks may
vary. There are, accordingly, four such possibilities, and 2HDMs are often categorized,
according to this choice, as Type I, Type II, Type X and Type Y, as shown in Table 1.

uR dR eR
Type I + + +
Type II + − −
Type X + + −
Type Y + − +

Table 1: Z2 charge of fermions in the different 2HDM Types.

For the electroweak phase transition the particular type of model is irrelevant, since
only the top-quark coupling plays a significant role in these effects. Thus, for all our pur-

2Other ways include Minimal Flavour Violation [20, 21, 22] and general Yukawa alignment [23], to name a
few.
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poses the only difference between these models are the relevant experimental constraints,
resulting in different allowed regions of their parameter space (cf. Section 4.1).

The most general gauge-invariant and renormalizable potential that can be written
for two doublets under the previous conditions, allowing for a soft breaking of the Z2

symmetry, is

Vtree(Φ1,Φ2) =− µ2
1Φ

†
1Φ1 − µ2

2Φ
†
2Φ2 −

µ2

2

(

eiφΦ†
1Φ2 +H.c.

)

+

+
λ1

2

(

Φ†
1Φ1

)2

+
λ2

2

(

Φ†
2Φ2

)2

+ λ3

(

Φ†
1Φ1

)(

Φ†
2Φ2

)

+

+ λ4

(

Φ†
1Φ2

)(

Φ†
2Φ1

)

+
λ5

2

[

(

Φ†
1Φ2

)2

+H.c.

]

,

(2.2)

where we have used the freedom of field redefinitions to make λ5 real. The 2HDM scalar
potential, Eq. (2.2), can violate CP either explicitly, via the complex phase φ in the soft Z2

breaking term (Φ†
1Φ2+H.c.), or spontaneously, due to a relative phase between the VEVs

of the two doublets. For baryogenesis these extra sources of CP violation are crucial,
otherwise the predicted BAU will still be far below its measured value. Nevertheless,
since we are interested in the nature of the electroweak phase transition only, we will
restrict ourselves here to a CP conserving scalar sector to simplify the analysis, grounding
this assumption on previous experience that the phase φ does not influence the phase
transition substantially [15], but keeping in mind that this is just a first approach to the
problem, and that this limitation should be overcome in future studies.

The doublets and their VEVs at the so-called electroweak minimum can be written as

Φi =

(

ϕ+
i

hi + iηi

)

,

〈Φ1〉 =
(

0
v cos β

)

, 〈Φ2〉 =
(

0
v sin β

)

, (2.3)

with v = 246/
√
2 GeV. The parameter β, related to the ratio of the VEVs of the two

doublets, can be interpreted more physically and more conveniently in the following way.
From

Φ′
1 = cos β Φ1 + sinβ Φ2

Φ′
2 = − sin β Φ1 + cos β Φ2

=⇒ 〈Φ′
1〉 =

(

0
v

)

and 〈Φ′
2〉 = 0

it becomes clear that Φ′
1 behaves like the SM doublet, so its upper component must be

the charged Goldstone boson (G+), whereas the lower component contains the neutral
Goldstone (G0). Thus, β plays the role of a mixing angle between the charged mass
eigenstates (G+,H+), and also between the neutral CP-odd (G0, A0) ones. We likewise
define α to be the mixing angle between the lightest and heaviest CP-even fields, denoted
h0 and H0. The physical states are then

G+ = cos β ϕ+
1 + sin β ϕ+

2 (charged Goldstone),

H+ = − sin β ϕ+
1 + cos β ϕ+

2 (charged Higgs),

G0 = cos β η1 + sin β η2 (neutral Goldstone),

A0 = − sinβ η1 + cos β η2 (CP-odd Higgs),

h0 = cosα h1 + sinα h2 (lightest CP-even Higgs),

H0 = − sinα h1 + cosα h2 (heaviest CP-even Higgs).
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Note that our definition of α differs from the general 2HDM literature by an additive factor
of π/2. We find our choice more convenient, since the case when h0 = hSM corresponds
here to α = β. In general, however, the SM-like Higgs is an admixture of h0 and H0.
Note, moreover, that the separation between CP-even and CP-odd fields only makes sense
because there is no CP violation in the Higgs sector — otherwise these fields would all
mix among themselves, and the corresponding mixing angles would have to enter these
expressions. From this alone one can already appreciate how the assumption of a CP
conserving scalar sector simplifies the problem.

The condition that Eq. (2.3) be indeed a minimum can be used to trade µ1 and µ2 for
v and tan β via

µ2
1 = v2

(

λ1 cos
2 β + λ345 sin

2 β
)

−M2 sin2 β,

µ2
2 = v2

(

λ2 sin
2 β + λ345 cos

2 β
)

−M2 cos2 β,
(2.4)

where M2 ≡ µ2/ sin(2β) and λ345 ≡ λ3 + λ4 + λ5. The parameter M plays the role of a
natural scale for the masses of the additional scalars, while hSM scales with v as usual.
From the diagonalization of the mass matrix we also see that the quartic couplings can
be written in terms of the physical parameters as

λ1 =
1

2v2 cos2 β

(

m2
h0 cos

2 α+m2
H0 sin

2 α−M2 sin2 β
)

,

λ2 =
1

2v2 sin2 β

(

m2
h0 sin

2 α+m2
H0 cos

2 α−M2 cos2 β
)

,

λ3 =
1

2v2 sin(2β)

[

(

2m2
H± −M2

)

sin(2β)−
(

m2
H0 −m2

h0

)

sin(2α)
]

,

λ4 + λ5 =
1

v2
(

M2 −m2
H±

)

,

λ4 − λ5 =
1

v2
(

m2
A0 −m2

H±

)

.

(2.5)

These relations allow us to use as input parameters of the model the physical quantities
of the theory, namely the masses (mh0 , mH0 , mA0 , mH±) and the mixing angles (β, α), as
well as the only remaining free dimensionful parameter of the potential, the µ parameter.

2.2 Electroweak Precision Constraints

The existence of additional scalar particles running in the loops causes the gauge bosons’
two-point functions to receive corrections relative to their SM values, so-called “oblique”
corrections. As a consequence, some combinations of gauge boson masses and their cou-
plings, whose experimental values are known to agree with the SM prediction to great
accuracy, get extra contributions from the new physics introduced. It then becomes a
challenge for the model to predict a deviation that remains within the precision of the
experimental measurement. The best example is provided by the ρ parameter,

ρ =
m2

W

m2
Z cos2 θW

,

which is intimately related to the electroweak symmetry breaking sector of the theory,
and whose value is known to agree with the SM prediction to better than 0.4% at 2σ [25].
Because they contain only scalar doublets, 2HDMs predict ρ = 1 at tree-level (as in
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the SM). At loop level, however, there are extra contributions with respect to the SM
ones3 [26], and one has

∆ρ2HDM =
1

32π2v2
[

FH±,A0 + sin2(β − α)(FH± ,h0 − FA0,h0)

+ cos2(β − α)
(

FH±,H0 − FA0,H0

)

+3 sin2(β − α)
(

FZ,H0 − FZ,h0 − FW,H0 + FW,h0

)]

,

(2.6)

with

Fx,y =
m2

x +m2
y

2
−

m2
xm

2
y

m2
x −m2

y

ln

(

m2
x

m2
y

)

. (2.7)

The condition that ρ ∼ ρSM ≈ 1 is satisfied only if there is an approximate mass degen-
eracy between the charged and one of the neutral scalars, which is related to the limit in
which custodial symmetry is recovered [27].

The ρ parameter is only an instance of observables that receive oblique corrections
in 2HDMs. For a general extension of the SM preserving the SU(2)L × U(1)Y gauge
structure, these corrections can be parametrized by the Peskin-Takeuchi parameters S, T
and U [28] and some higher-order extensions of them [29]. Nevertheless it turns out that
for 2HDMs only ∆ρ ≡ ρ − 1 ≡ αEMT is relevant, since the experimental bounds on the
remaining parameters are hardly violated [27, 30].

Another important electroweak precision constraint, unrelated to the oblique parame-
ters above, comes from Z → bb̄ decays [31, 32]. We checked explicitly that this constraint
is milder than the one coming from B0− B̄0 mixing, which we will take into account later
(cf. section 4.1).

2.3 Finite Temperature Effective Potential

To study the phase transition we consider the scalar potential of the model at finite
temperature, which we approximate at 1-loop order, including daisy resummations [33].
The zero-temperature 1-loop corrections to the potential have the form

Vloop =
∑

i

ni

64π2
m4

i

(

ln
m2

i

v2
− 1

2

)

, (2.8)

with i indexing the particles summed over and ni their numbers of degrees of freedom.
Among the fermions we take only the top-quark into account (nt = −12). The other
fermions can be neglected due to their small masses. Among the bosons we sum over
W± (nW = 6), Z0 (nZ = 3), and the scalars. The renormalization scale is taken to be
v = 246/

√
2 GeV.

Counter-terms (VCT ) are added so that the zero-temperature 1-loop potential pre-
serves the position of the minimum and the masses of the scalar particles. Care must
be taken at this step, since in Landau gauge the contribution to the scalar masses due
to intermediate Goldstone bosons running in the loop must be taken into account, and
these will be infrared divergent if the total momentum in the loop vanishes. This means
that renormalizing the scalar masses at p2 = 0 external momentum is not a well-defined
procedure. An alternative for renormalizing the Higgs mass on-shell has been developed

3In the SM, custodial symmetry is violated by U(1) hypercharge gauge interactions and Yukawa couplings,
but is preserved by the scalar potential.
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in Ref. [14]. Here we choose to adopt the more straightforward approach of imposing
an IR cutoff at m2

IR = m2
h0 , which gives a good approximation to the exact procedure of

on-shell renormalization, as argued in [16].
The 1-loop thermal corrections to the effective potential are given by [34]

Vthermal =
T 4

2π2

∑

i

ni

∫ ∞

0

x2ln
(

1∓ e−
√

x2+m2

i
/T 2

)

dx, (2.9)

where the sign inside the logarithm is − for bosons and + for fermions. However, evaluat-
ing this integral numerically is computationally expensive, and it is therefore convenient
to introduce an approximate function for it. At high temperatures, Eq. (2.9) can be
approximated by

V HT
thermal ≈ T 4

∑

B

nB

[

−π2

90
+

1

24

(mB

T

)2

− 1

12π

(mB

T

)3

− 1

64π2

(mB

T

)4

ln
m2

B

cBT 2

]

+ T 4
∑

F

nF

[

−7π2

720
+

1

48

(mF

T

)2

+
1

64π2

(mF

T

)4

ln
m2

F

cFT 2

]
(2.10)

with cF = π2exp
(

3
2
− 2γ

)

and cB = 16cF , whereas at low temperatures

V LT
thermal ≈ −T 4

∑

i=B,F

ni

( mi

2πT

)3/2
exp

(

−mi

T

)

(

1 +
15

8

T

mi

)

. (2.11)

We thus define our approximate 1-loop thermal correction to the effective potential VT

to coincide with V HT for m/T < 1.8 and with V LT for m/T > 4.5, being a smooth
interpolation of these in the region in between such that its first derivative is continuous
everywhere. Our approximation deviates from the original integral (Eq. (2.9)) by no more
than 4%, and for most field values the deviation is actually much smaller.

Finally, we also consider thermal corrections to the scalar masses coming from the
resummation of daisy diagrams [33]. Taking these into account, the mass matrix be-
comes [16]

(MT )ij =
1

2

∂2

∂φi∂φj

(

Vtree +
T 2

24

∑

i

nim
2
i

)

. (2.12)

The thermally corrected masses are then the eigenvalues of MT , and these are the masses
that need to be plugged into Vloop and VT . The final potential is then

V = Vtree + Vloop + VCT + VT . (2.13)

3 Parameter Scan

As already mentioned, the parameters we scan over are the physical ones, namely β, α
and the scalar masses, together with the µ parameter. Eqs. (2.4) and (2.5) are then used
to get the respective parameters of the potential. We take the mass of the lightest CP-
even Higgs, h0, to be mh0 = 125 GeV, i.e. we consider this to be the particle recently
discovered at the LHC. The other parameters are scanned uniformly over the following
ranges:
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0.4 ≤ tan β ≤ 10,
−π

2
< α ≤ π

2
,

0 GeV ≤ µ ≤ 1 TeV,
100 GeV ≤ mA0 , mH± ≤ 1 TeV,

150 GeV ≤ mH0 ≤ 1 TeV.

From these randomly generated points in the parameter space, we exclude those that
do not pass the EW precision tests at 2σ [25] or the condition4 λ1−5 < 4π. Next, we check
if the EW minimum is at least metastable5 by randomly searching for other minima in a
region of 1 TeV radius around it. If any other minimum is found to be deeper than the
EW one, the point is discarded. Note, in particular, that we do not impose the conditions
that the tree-level potential be bounded from below — what matters, after all, is the loop
corrected potential. If all these tests are passed, the point is said to be physical, and we
proceed to evaluate the phase transition.

This we do by increasing the temperature by small steps and following the minimum
of the potential (starting from the EW minimum at zero temperature), until the potential
at this minimum overcomes its value at the origin, or a certain maximum temperature is
reached above which we do not expect to get a significant number of points with strong
phase transition. Here we take Tstep = 6 GeV and Tmax = 300 GeV, and we find that less
than 0.5% of the points with a strong phase transition have Tc > 200 GeV. For greater
precision, if a phase transition is found we repeat the process with Tstep = 1 GeV, starting
from the last minimum found to be below the origin.

The critical point is taken to be the last one for which the minimum lied below the
origin, and the strength of the phase transition is then calculated as the ratio between
the norm of the VEV and the temperature at this point6,

ξ =
vc
Tc

.

The phase transition is considered to be strong if ξ > 1. This ensures that a baryon
number generated during the phase transition is not washed out afterwards [40]. A point
in the parameter space for which this condition is satisfied will be called a “strong PT
point”.

Of course, there is the possibility that we are overcounting the number of strong PT
points by choosing Tstep = 1 GeV and not smaller. To estimate how often that will
be the case, we also calculate the phase transition strength at the next step, i.e. at
T = Tc + 1 GeV. If ξ(Tc) > 1 but ξ(Tc + 1 GeV) < 1 then this may actually not be a
strong PT point, even though we consider it to be. We find that in our case this occurs
for no more than 5% of the sample.

Out of the approximately 6.3× 106 points initially scanned, about 81% are discarded
already from EW precision tests. This huge waste of points is due to the complete ran-
domness of our scan, in particular due to its picking the masses of all scalar particles inde-
pendently. Indeed, as mentioned above, only points with an approximate mass degeneracy

4Here, perturbativity is imposed at the electroweak scale v (as in [35]). Alternatively, one can impose
perturbativity all the way up to the cut-off scale of the model [36].

5We use the word “metastable” meaning metastability with a long life time.
6Note that this ratio, even though being used as a standard measure of the strength of the electroweak phase

transition, suffers from problems related to gauge invariance [34, 37]. An appropriate, gauge invariant definition
of the ξ parameter that measures the strength of the electroweak phase transition has been given in [37, 38]
(see also [39]).
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Total EW precision λi < 4π Metastability Strong PT
Absolute 6.3× 106 1.2× 106 1.4× 105 2.6× 104 4.3× 103

Relative 100% 19.1% 2.3% 0.41% 0.069%

Table 2: Number of points of the initial sample that survive after each step of tests.

are expected to pass the ρ parameter test. A natural criterion for this approximation is
that mH± lie in an interval of size about v around the mass of some other scalar, in which
case only a fraction of v/(900 GeV) ∼ 19% of points are expected to survive7, in good
agreement with our actual findings.

Yet another 17% of the initial sample is discarded due to the couplings being larger
than the bound required by perturbativity, and this also stems from the random nature
of our scan. Indeed, since v and µ are the only free dimensionful parameters of the model,
they act as natural scales for the scalar masses, and the role of the quartic couplings is,
roughly speaking, to regulate the deviation of these masses from these base values as well
as their splitting among themselves — cf. Eq. (2.5). These couplings are thus expected to
be numerically large in a scan where the values of µ, tan β and the masses are all chosen
independently.

Among the surviving points, about 18% pass the metastability test. Hence, only 0.41%
of the initial sample are physical points which are tested for phase transition. Nevetheless,
because the total number of points scanned was about 6.3× 106, the number of physical
points is still about 2.6× 104. Finally, about 16.5% of these physical points have a strong
phase transition, so we end up with about 4.3 × 103 points, which is large enough to
provide significant statistics concerning the general behaviour of the electroweak phase
transition with respect to the input parameters, as will be shown in Section 4.

Table 2 summarizes the discussion of this section.

4 Analysis and Results

4.1 Constraints from Flavour Physics

In performing our parameter scan we were able to avoid specifying the 2HDM-Type,
since both the physical constraints imposed (vacuum metastability, perturbativity and
electroweak precision constraints) and the dynamics of the phase transition do not depend
on the specific type of 2HDM under consideration.

However, a specific choice for the Yukawa couplings’ pattern has to be made in order
to confront the results of our scan with both constraints from flavour physics and LHC
data. Focusing at this stage on flavour observables, for 2HDMs (with a Z2-symmetry at
most softly broken) with parameters in our range of scan, the only relevant constraints
come from B̄ → Xsγ decays and B0 − B̄0 mixing [41]. Because leptons play no role in
these effects, these constraints are the same for Types I and X and for Types II and Y
(cf. Table 1), which means we can consider these pairs as indistinguishable.

Constraints from B0 − B̄0 mixing are type-independent and exclude very low values
of tan β. As for B̄ → Xsγ decay constraints, they affect Type I/X models by restricting
lower values of tan β even more severely, whereas in Type II/Y they imply a lower bound

7The 900 GeV in the denominator being the range of the scan over mH± .
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for the mass of the charged scalar [42],

mH± ≥ 360 GeV at 95% CL.

Figures 1 and 2 show how the data of our scan are distributed in the (mH± , tan β)
plane, as well as the exclusion curves from B̄ → Xsγ and B0 − B̄0 mixing for Types I/X
and II/Y. The most severe cut occurs for Types II/Y, where only 34% of our original
data sample survives, while 65% of our data sample passes the flavour constraints for
Types I/X.

1

2

3

4

5

6

7

8

9

10

100 200 300 400 500 600 700 800 900 1000

ta
n
β

mH± [GeV ]

Type I/X

Figure 1: Scatter plot in tan β×mH± showing the exclusion regions from B̄ → Xsγ (red/dashed) and
B0− B̄0 mixing (black/full) for Types I/X. Blue/dark-grey points are physical, while green/light-grey
ones have a strong phase transition.

4.2 Confronting the EW Phase Transition with LHC Data

We now analyze our data sample and show the regions of the parameter space in 2HDMs
that favour a strongly first-order EW phase transition. At the same time, we will confront
those regions with the recent data from the 7 and 8 TeV run of LHC (see [36, 43, 44, 45,
46, 47, 48, 49] for recent analyses of 2HDMs in the context of LHC results). The results
will be presented as histograms with the number of physical (blue/dark-grey) and strong
PT (green/light-grey) points as a function of a given parameter (the green/light-grey
bars will always be rescaled by a factor of 2, for convenience). More important than the
actual distribution shown in these histograms, which will depend heavily on the particular
scanning method we choose, is the ratio

Pξ>1 ≡
# strong PT points

# physical points
,

9
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Figure 2: Scatter plot in tan β×mH± showing the exclusion regions from B̄ → Xsγ (red/dashed) and
B0−B̄0 mixing (black/full) for Types II/Y. Blue/dark-grey points are physical, while green/light-grey
ones have a strong phase transition.

indicating the probability of having a strong phase transition (PT) as a function of the
parameter under consideration. This quantity will be plotted in solid lines. Still, the
actual distribution of the counting rates is important, especially because Pξ>1 becomes a
less precise indicative of that probability, the smaller the number of physical points in a
given range.

Before jumping into the data analysis itself, a brief discussion on the scale structure of
the model shall prove very enlightening. Note that the full Lagrangian of the electroweak
theory with two scalar doublets contains three dimensionful parameters, namely µ1, µ2

and µ. The values of these parameters, therefore, determine the energy scale of the
resulting theory. In particular, the position of the minimum of the potential scales as

v2 ∼ µ2
1 + µ2

2 +
µ2

sin(2β)
,

as can be seen from Eq. (2.4), so we expect µ1, µ2, µ ∼ 102 GeV. Of course, in practice
one can fix v and take µ arbitrarily, tuning the remaining parameters so that Eq. (2.4) is
satisfied, thus guaranteeing the existence of a minimum at the desired scale. But it turns
out that, if µ ≫ v, this minimum will be so unnatural that the potential will generally
end up with a second, deeper one at O(µ), and the artificially created minimum will not
be metastable.

The same reasoning also leads to a preferred sin(2β) ∼ 1 (and the larger µ is, the
more so), implying tan β ∼ 1. This can also be seen from the fact that µ1 increases with
tan β, whereas µ2 goes roughly as (tan β)−1. Since we expect that µ1 ∼ µ2 ∼ v, then
tan β cannot be neither too large nor too small, and in turn tan β ∼ 1 is favoured.
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4.2.1 Dependence on µ, tanβ and α

The expectations outlined above are confirmed by the plots in Fig. 3. The lower bound
of mH± ≥ 360 GeV in Types II/Y is reflected in a preference for larger values of µ, which
in turn results in a sharpening of the peak around tan β ≈ 1. On the other hand, the
constraints on Types I/X disfavour low values of tan β, so the peak is slightly displaced
towards tan β ≈ 2. Large values of tan β are also disfavoured by our choice of scanning
over the physical parameters, rather than over the couplings. This is because λ1 and λ3

grow with tan β (cf. Eq. (2.5)), so for large tan β the perturbativity requirement will only
be satisfied if the other parameters are tuned to counter-balance this growth, which will
rarely be the case when they are scanned randomly.

From Fig. 3 we note, moreover, that tan β ≈ 1 is even more favoured by the requirement
of a strong phase transition8. This is an excellent result from the baryogenesis perspective,
since the effective CP violation coming from 2HDMs decreases with tan β, so that the net
baryon number generated is expected to be suppressed as nB ∼ (tan β)−2 [50]. If it were
the case that a strong phase transition preferred larger values of tan β, then it would be
harder to generate a baryon asymmetry since an increase of the phase transition strength
would cause a suppression of CP violation and vice-versa. But the very opposite occurs,
and 2HDMs prefer the situation that is most favourable for baryogenesis.

It is also worth pointing out that, for µ & 1 TeV, one can barely find a point that yields
a physically acceptable theory, i.e. with a metastable EW minimum. This explicitates
that fine-tuning is needed if a light scalar is embedded in a theory with a large mass scale.

Another interesting result concerns the mixing angle α that regulates the couplings of
the CP-even neutral scalars to the fermions. In our scan we assume the lightest of these
scalars, h0, to be the bosonic resonance recently found at LHC. The current experimental
data can not confirm yet whether this discovered particle behaves as the SM Higgs, but
its decay rates seem to roughly agree with the SM predictions. Thus, α ≈ β seems to be
experimentally preferred. In fact, the LHC measurement of the coupling of h0 to W and
Z bosons imposes the constraint (see for example [51])

cos(α− β) > 0.7 at 95%C.L.

Fig. 4 shows that this is also the preferred behaviour in 2HDMs, and even more so
when we require a strongly first-order phase transition. This is even more pronounced in
Type II/Y models, as a consequence of their favouring larger masses. Finally, we can see
that for strong phase transitions there is a slight preference for α . β, which means the
couplings of h0 (compared to hSM ) to up-type quarks are slightly enhanced (and a slightly
enhanced production cross section at LHC for h0 w.r.t hSM is then preferred). The way
this affects down-type quarks and leptons depends on the particular 2HDM type one is
dealing with, and this will play a role when we look at the branching ratios for h0 → γγ.

4.2.2 Masses and couplings

As for the influence of the masses on the phase transition, the results show four tendencies
that are independent of the model type considered: (i) mH± is hardly influential; (ii)
mH0 ≈ 200 GeV; (iii) mA0 > mH0 & mH± is a preferred hierarchy; (iv) mA0 & 400 GeV.
These assertions are supported by Fig. 5, where only the model-independent constraint

8The highly oscillatory behaviour of Pξ>1 for tanβ ' 5, particularly for Types II/X, is a consequence of the
low luminosity in this region, mostly due to the tuning refered to in the previous paragraph.
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Figure 3: Counting rates for physical (blue/dark) and strong phase transition (green/light) points,
and their ratio, as a function of µ (top) and tan β (bottom) for Types I/X (left) and II/Y (right).
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Figure 4: Counting rates for physical (blue/dark) and strong phase transition (green/light) points,
and their ratio, as a function of β − α for Types I/X (left) and Types II/Y (right).

from B0 − B̄0 mixing is taken into account, so that the plots reflect a general behaviour
of phase transitions in 2HDMs.

The preference for large mA0 indicates that the most relevant couplings for the dy-
namics of the phase transition are λ4 and λ5, and that they tend to be large. This is
confirmed in Fig. 6. Since λ5 regulates the splitting between M and mA0 , it is preferred
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Figure 5: Counting rates and ratio for points subject only to type-independent constraints from
B0 − B̄0 mixing. (a) mH± hardly influences the phase transition. (b) Preference for mH0 ≈ 200
GeV; (c–e) Strong phase transitions prefer a scalar mass hierarchy mA0 > mH0 & mH± . (f) Large
pseudo-scalar masses, mA0 & 400 GeV, are also favoured.

to be big (in modulus) in both Types I/X and II/Y. As for λ4, its general behaviour is
more dependent on the specific model type, due to the large lower bound on mH± that
exists in Types II/Y, while Types I/X favour mH± ≈ v. However, when the requirement
of a strongly first-order phase transition comes into play, both types of model favour large,
positive values for λ4, reflecting the preferred hierarchy mA0 > mH± . All these observa-
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tions confirm the expectation that a strong phase transition requires, in general, at least
some of the couplings in the model to be large.
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Figure 6: Counting rates for physical (blue/dark) and strong phase transition (green/light) points,
and their ratio, as a function of λ4 (top) and λ5 (bottom) in Types I/X (left) and Types II/Y (right).

We see from Fig. 6 that the couplings often approach the perturbativity limit we
impose, which might cause some concern as to the validity of our loop expansion in
these regions. To be on the safe side, one could take an even smaller upper limit, say
λi <

√
4π 9, and from Fig. 6 we see that we would still have plenty of points with a strong

phase transition. Our conclusions above would also still hold, only with an upper limit of
approximately 500− 600 GeV for the masses.

4.2.3 h0 → γγ

In 2HDMs the h0 → γγ decay can deviate from its SM counterpart due to a difference
in the h0 couplings to W± and fermions, as well as to the existence of an extra charged
particle mediating the process, namely H±. The latter can either enhance or suppress
the contribution of the former, and we find that this behaviour is determined mainly by
β−α, with an enhancement favoured by α ≈ β. Fig. 7 shows the decay width of h0 → γγ

9A more thorough treatment of perturbativity in 2HDMs has been presented in Ref. [52], showing that this
upper limit may already be too conservative.
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normalized to the SM rate [53, 54],

Rγγ ≡ Γ2HDM (h0 → γγ)

ΓSM (h0 → γγ)
.

As expected, there is a peak around the unit value in the counting rate distributions due
to the preference for a SM-like h0, i.e. α ≈ β. This is even more pronounced in Types II/Y
(cf. Fig. 4). Furthermore, a strong phase transition scenario favours α ≈ β even more
sharply, thus favouring an enhancement in the h0 → γγ width from H± contributions in
the loop, as seen in the lines for Pξ>1.
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Figure 7: Number of physical (blue/dark) and strong phase transition (green/light) points as a
function of the h0 → γγ decay width (normalized to its SM value) for Types I/X (left) and
Types II/Y (right).

In Fig. 8 we show the behaviour of the branching ratio for this decay channel in Types I
and II (normalized to their SM values). For the total decay width of h0 we consider the
bb̄, ττ, gg, WW, ZZ and γγ channels, whose widths are computed from their SM values,
taking into account only the leading-order corrections due to the change in their couplings
to h0, except in the γγ case, where we consider the contribution from the additional par-
ticles propagating in the loop, as just discussed. The dependence on the specific model
type enters in Γ(h0 → bb̄) and Γ(h0 → ττ), which in Types I and II get corrected by a
factor of

Type I:
sinα

sin β
, Type II:

cosα

cos β
.

Also note that, because of the ττ channel, Types I and X and Types II and Y can no
longer be treated as indistinguishable. However, because the SM branching ratio to bb̄
largely dominates over the ττ one, the conclusions drawn here essentially hold for Types
X and Y as well.

We have previously seen that a strong phase transition favours α . β. This means
that in Type I the bb̄ and ττ decays are enhanced, and, as a consequence, the preference
for an enhanced h0 → γγ width is counterbalanced by an simultaneous enhancement in
the Higgs’ total width, so that there is an overall preference for BR(h0 → γγ) ≈ 1. The
very opposite happens in Type II, where not only an enhanced γγ width is favoured, but
also the total width is suppressed, thus increasing the branching ratio for this channel.
We nevertheless emphasize that in both cases a slight enhancement in the γγ channel is
viable in a strongly first-order phase transition scenario.
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Figure 8: Number of physical (blue/dark) and strong phase transition (green/light) points as a
function of the branching ratios for h0 → γγ (normalized to their SM values) for Types I/X (left) and
Types II/X (right).

5 Conclusions

Our scan over a wide range of the 2HDM’s parameter space shows that these models are
robust candidates for accomodating a strongly first-order electroweak phase transition
in light of the recent LHC results. In particular, a strong phase transition scenario is
favoured if the lightest scalar of the model behaves like the SM Higgs, as is indeed the
case of the recently observed resonance. Put another way, the discovery of such SM-like
scalar constrains the parameter space of 2HDMs to regions that favour strongly first-order
phase transitions.

The main results from our analysis are that a strongly first-order phase transition
prefers: (a) tan β ≈ 1, which is excellent from the baryogenesis perspective, as the baryon
asymmetry generated in the model is suppressed with nB ∼ (tan β)−2; (b) α ≈ β (with a
slight tendency for α < β), in very good agreement with the results from the 7 and 8 TeV
runs of LHC; (c) a mass hierarchy in the scalar sector, mH± . mH0 < mA0 ; (d) a rather
heavy pseudo-scalar, mA0 & 400 GeV, this being in fact the most influential parameter
on the dynamics of the phase transition.

We also find that, in Type II (and also Type Y) models with a strongly first-order
phase transition, an enhancement in the digamma branching ratio of the lightest neutral
scalar is preferred. In Type I (and Type X) models the opposite occurs, and the tendency
is for a suppression of this branching ratio.

It is important to point out that apart from the requirement of a strongly first-order
electroweak phase transition, for baryogenesis the wall velocity of the expanding bubbles
vw plays an important role. Using the analysis from [55] we expect in the present case
a wall velocity vw ∼ 0.2 for mildly strong phase transitions (ξ & 1), as the extra scalar
degrees of freedom tend to slow down the bubble walls compared to the SM case, which
favours the electroweak baryogenesis scenario in 2HDMs. In contrast, for very strong phase
transitions the wall velocity may be significantly larger (but even in this case electroweak
baryogenesis may be possible, see [56]).

Finally, it would now be interesting to examine whether, and how, our results for the
strong phase transition can help bring 2HDMs closer to being tested in the next run of
the LHC. First steps in this direction have already been taken [48, 57].
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