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Primordial black holes (PBHs) are black holes which may have formed very early on during the
radiation dominated era in the early universe. We present here a method by which the large scale
perturbations in the density of primordial black holes may be used to place tight constraints on non-
gaussianity if PBHs account for dark matter (DM). The presence of local-type non-gaussianity is
known to have a significant effect on the abundance of primordial black holes, and modal coupling
from the observed CMB scale modes can significantly alter the number density of PBHs that
form within different regions of the universe, which appear as DM isocurvature modes. Using
the recent Planck constraints on isocurvature perturbations, we show that PBHs are excluded as
DM candidates for even very small local-type non-gaussianity, | fyz| ~ 0.001 and remarkably the
constraint on gy, is almost as strong. Even small non-gaussianity is excluded if DM is composed
of PBHs. If local non-Gaussianity is ever detected on CMB scales, the constraints on the fraction
of the universe collapsing into PBHs (which are massive enough to have not yet evaporated) will
become much tighter.
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Comparison with “Primordial black holes as biased tracers”

1 Introduction

Primordial black holes (PBHs) are black holes which theoretical arguments suggest might have
formed from the direct gravitational collapse of large density perturbations very shortly after the
end of inflation. PBHs may theoretically form with any mass, although their abundance is typically
well constrained by observations. Whilst PBHs with mass lower than 10'°g would have evaporated
by today (with the possible exception of Planck mass relics), more massive PBHs would still survive,
and represent a viable dark matter (DM) candidate.

Many efforts have been made to observe PBHs, and whilst they have not yet been seen, this
has led to many corresponding constraints on their abundance in different mass ranges [I]. The
econstraints typically assume that PBHs form at a single mass scale and are stated in terms of the
mass fraction of the universe going into PBHs at the time of formation, 5. There exists only a
narrow window in which PBHs of a single mass could make up the entirety of DM, with other scales
being excluded by observations. It is noted that there has been a recent claim that the tidal capture
of PBHs by neutron stars could be used to exclude the remaining window (apart from Planck mass
remnants) [2], but this has been refuted in [3 [4]. The results presented here can also be applied
if DM is composed of smaller PBHs which have all but evaporated by today leaving Planck mass
remnants which may make up DM [5]. Whilst this mass range is not explicitly considered, it is
certainly not ruled out by observations, and the results presented here are almost independent of
the PBH mass.



In order for a significant number of PBHs to form, the power spectrum on small scales needs to be
significantly larger than observed in the CMB - of order 1072 in the case of gaussian perturbations.
This is possible in many models of inflation, including the running mass model [6], axion inflation
[7], a waterfall transition during hybrid inflation [8, 9] [10], from passive density fluctuations [I1],
or in inflationary models with small field excursions but which are tuned to produce a large tensor-
to-scalar ratio on large scales [12]. See also [13| [14] [15], and a summary of various models which
can produce PBHs is presented in [16]. Alternatively, the constraint on the formation criteria can
be relaxed during a phase transition in the early universe, causing PBHs to form preferentially at
that mass scale [I7] - although such an effect will not be considered here.

PBHs have traditionally been used to investigate the early universe by placing a constraint on
the small scale power spectrum from the corresponding constraint on their abundance [18] [19] 20].
In this paper, large scale fluctuations in the PBH density caused by local-type non-gaussianity are
considered. If DM is composed entirely, or partially, of PBHs, these perturbations will be seen as
isocurvature modes in cold dark matter (CDM) - upon which there are tight constraints from the
recent Planck data release [21].

The isocurvature perturbations are formed in a highly non-linear manner in this model. PBHs
form shortly after horizon reentry during radiation domination, with an energy density exponen-
tially sensitive to the amplitude of the power spectrum. Observational constraints imply that at
most one region in a million collapsed into a PBH so the large scale radiation density is almost
unaffected, but if PBHs form DM then the amplitude of the DM perturbation is extremely sensitive
to the modal coupling. Using this mechanism, CDM (with zero pressure) is formed in a universe
which could have previously have been made up entirely of radiation and hence had no isocurva-
ture perturbation prior to PBH formation. Such an effect is impossible within linear perturbation
theory [22].

In a previous paper, the peak-background split was used to investigate the effect of modal
coupling on the constraints which can be placed on the small scale power spectrum [23]. In this
paper we use the same mechanism to investigate the extent to which modal coupling produces CDM
isocurvature modes and discuss the implications of such an effect. Even if the initial conditions are
adiabatic, which has been shown to be the case in single-field inflation, if there is modal coupling
then the conversion of radiation into CDM (by collapse into PBHs) can have different efficiencies in
different regions of the universe, which introduces isocurvature modes in the CMD after inflation
has ended.

Even single-field inflation generates a small value of fy; with magnitude comparable to the
spectral index [24] - which apparently could therefore rule out single-field inflation as a mechanism
to create PBH DM. However, it has been argued that this is a result of gauge choice [25, 26], and
that for our purposes the effective fxr = 0 in single-field inflation. It is therefore assumed in this
paper that fn7 can be arbitrarily close to zero.

Throughout, we will assume fy7 to be scale invariant whilst the power spectrum becomes
several orders of magnitude larger at small scales - which is likely to be unrealistic given a specific
model. However, this is a conservative approach, because if |fyz| were to become larger at some
small scale, it would not weaken the constraints derived here, but would be likely to strengthen
them. Even if the bispectrum was exactly zero when all three modes have sub CMB scales, the
modal coupling between the CMB and PBH scales would still effect the amplitude of the power
spectrum on PBH scales and the constraints which we derive would not be significantly weakened.
In such a case, the perturbations within a region smaller than we can probe on the CMB would be
Gaussian, but the variance would vary between different patches, in a way completely correlated
to the long wavelength perturbation.

Shortly prior to the release of this paper, Tada and Yokoyama [27] released a paper discussing



a similar effect and the use of PBHs as biased tracers. We confirm their results and extend
the calculation to account for the non-gaussianity parameter gyr as well as fyp, the effect of
intermediate modes (between the CMB- and PBH-scales), and make use of the more recent results
from the Planck 2015 data release. Because all surviving PBHs necessarily behave as at least
a subdominant DM component today, we also show how the allowed fraction of PBHs can be
constrained more tightly than previously realised, under the presence of even small non-Gaussianity.
The layout of this paper is as follows: in section 2, the calculation of the PBH abundance,
in both the gaussian and non-gaussian case, is reviewed. In section 3, modal coupling and how
the peak-background split may be used to investigate its effects on PBH abundance is discussed.
In section 4, the calculation is applied to the formation of CDM isocurvature modes and place
constraints on the non-gaussianity parameters in the case of PBH DM, and the calculation is
extended to include simultaneous fnr and gy, intermediate modes, and the case where PBHs
only make up a portion of the DM. We conclude with a summary of our arguments in section 6.

2 Calculating the abundance of PBHs

The abundance of PBHs is normally stated in terms of 3: the energy fraction of the universe
going into PBHs at the time of formation. The standard calculation used in the literature uses
a Press-Schechter approach, although it has been shown that, for a gaussian distribution, this
matches well when the theory of peaks is used. It has been argued that the density contrast, rather
than the curvature perturbation, should be used - although an approximation using the curvature
perturbation works very well if care is taken to exclude super-horizon modes from the calculation,
and this simplifies the calculation greatly. In this section, we will briefly review the calculation, as
well as the main sources of error, for both gaussian and non-gaussian cases.

When a perturbation reenters the horizon, if its amplitude exceeds a certain threshold, or
critical, value, then gravitational forces will overcome pressure forces and the region will collapse
to form a primordial black hole. There has been extensive research to calculate the threshold value
28] 29, [30, BTl B2 B33], which is typically stated in terms of the density contrast. The critical
value of the density perturbation is believed to be 0. ~ 0.45. However, in this paper the curvature
perturbation is used, and the corresponding critical value is (. ~ 1 - within the range found by [34],
and is consistent with using the density contrast [35].

The main source of uncertainty in the critical value is due to the unknown shape of primordial
perturbations - and this is the largest source of error in the calculation of the abundance. However,
whilst the effect on the calculated value of the abundance is large, the effect of this uncertainty on
derived parameters is relatively small. For example, an error of @10% in the threshold value results
in an error of several orders of magnitude in the calculated S but only an error of @10% in the
constraint on the power spectrum [36] [37]. In this paper, because our results depend only on the
relative abundance of PBHs in different regions of the universe, the conclusions are not sensitive to
small changes in the threshold value.

Using a Press-Schechter approach, the mass fraction of the universe going into PBHs at the
time of formation is given by integrating over the probability density function (PDF),

Bz/P@%. (1)

Ce



In the case of a gaussian distribution, the probability density function is

1 ¢
P(() = exp | ——= |, 2
= gz (-307) )
Where o2 is the variance of perturbation amplitude at the PBH forming scale. 3 can therefore be
written in terms of the complimentary error,

Ge
[ = erfc < . 3
o3 3)
Expanding using the large-x limit of erfc(z), gives
20° G
B =~ g exp <—202> . (4)

This is valid only if the distribution is gaussian, and because PBHs form in the extreme positive
tail of the PDF, their abundance is very sensitive to any non-gaussianity, which we discuss below.

2.1 Calculating the abundance of PBHs in the presence of non-gaussianity

In the local model of non-gaussianity, the curvature perturbation is given by
3 9
C:CG+ngL (¢¢ —0o?) +%9NLC2:+-'- = h(Ca), (5)
where o2 is the variance of the gaussian variable (g, and is subtracted to ensure the expectation
value of ( is zero.

The calculation of the abundance of PBHs is most easily performed by calculating the values
of (¢ which correspond the critical value, (., and integrating over the corresponding regions of the
gaussian PDF of (s - the reader is directed to [36], 37] for a full derivation. For example, let us
consider the case where gy, and higher order terms are zero:

3
C=Co+cfvr (G —0?) =h(Ca). (6)
h~1(.) therefore has two solutions, given by

—5+ \/25 + 60(.fnr + 36¢2f3 02

het = hi'(Ce) =
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and for negative fnr,
ht
[ 2 &
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et (9)
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Furthermore, if we make the assumption that fy is small, fyr < 1, which we will show is justified
in the case that DM is composed of PBHs (and is further verified by the findings of [27]), the above
expressions can be simplified further. In the expression of 3 for positive and negative fnr, the
first term inside the brackets dominates, and 5 can be written in terms of one complimentary error

function,
¢2
oo f oo ()

—1
— el"fC hc—l— (10)
\/50
202 (het)?
~,|———exp| — .
7T(h;&)2 P 202
Deriving an analytic expression as shown here is not a necessary step, but it is a useful approxima-
tion, and we will later use this result to derive an analytic expression for bias factor and amplitude
of isocurvature modes in the PBH density.
Although it is not shown here, the same calculation can be performed for the local model of non-

gaussianity containing gy, - the interested reader is again directed to [36l 37] for a full discussion
of the calculation. In the case where only a cubic and linear term are considered

¢= CG+ gNLCG h(Ca), (11)

then h~'((.) has up to three possible solutions, depending on the value of gny and (.. However,
assuming that gy, is small, gy, < 1, which again will be shown later, the expression is dominated
by one erfc function as in equation (I0), with a different expression for h=*(¢.). To first order in
gNL

99Nt

-1 .
=G =5 (12)

3 Modal coupling and the peak-background split

It has previously been shown [35] that curvature perturbation modes which are a long way outside
the horizon at the time of PBH formation have little effect on whether a PBH forms. This is due to
the suppression of large scale density modes by a factor k2 relative to the curvature perturbation.
In radiation domination:

oty = AL (%)Qam - (%)2«@, (13)

where w = 1/3 is the equation of state, and (aH)~' is the horizon scale at the time of PBH
formation. However, long wavelength modes can have an indirect effect on the abundance of PBHs,
B, due to modal coupling from non-gaussianity. A long wavelength mode can affect both the
amplitude and distribution of the small scale perturbations which may form PBHs. In figure [l we
show how the coupling of long- and short-wavelength modes can affect the number of PBHs forming
in different regions of the universe. At the peak of the long wavelength mode, the amplitude of the
small scale mode is increased, forming more PBHs, whilst the opposite occurs at the trough.
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Figure 1: The top plot shows an example of a universe containing only two modes. As an example
of modal coupling, the amplitude of the short wavelength mode is a function of the long wavelength
mode - the amplitude of the short-wavelngth mode is larger at the peak of the long-wavelength
mode. At the time when short-wavelength mode enters the horizon, and PBHs at that scale form,
the long-wavelength mode is not yet visible and will not affect whether a PBH forms or not. The
bottom plot shows the same universe, but with the long wavelength mode subtracted, enabling ¢
to be used a formation criterion for PBHs. The dashed red line shows the formation threshold
for PBHs - regions where the curvature perturbation is greater than the formation threshold will
collapse to form a PBH. The black circles represent areas which will collapse to form a PBH. It can
be seen that a relatively small change in the amplitude of the small scale mode can have a large
impact on the number of PBHs forming in a region.

How modal coupling can affect the constraints on the power spectrum at small scales from PBHs
has been investigated [23], although it was assumed that all the modes involved were sub-CMB and
potentially had a large amplitude. In this paper, we will go beyond previous work and study the
case where the large-scale modes are observable in the CMB and hence very small. Despite the their
small amplitude, we show that these perturbations have a remarkably large effect on observations.
In this section, we will briefly review the calculation using the peak-background split to investigate
modal coupling due to the local non-gaussianity parameters fy; and gyr, and in the following
section, apply this to the abundance of PBHs and the creation of isocurvature modes.

3.1 Quadratic non-gaussianity, fy

We will take the model of local non-gaussianity, in terms of the curvature perturbation (, to be
described by

C= o+ 2hne (G - %) = hiCe), (14

where (g is a gaussian variable. It is necessary to subtract o2 = (Cé) so that the background
(average) value of ¢ remains zero. We will now employ the peak-background split, and write the
gaussian component as the sum of a long-(background) and short-(peak) wavelength component,

¢=q+ Cs- (15)



Equation (I4]) then becomes:

=@+ 6+ o (GG = (G +6)%). (16)

However, terms which depend only on the long-wavelength mode do not affect PBH formation, and
should not be considered when determining the abundance of PBHs. We therefore subtract those
terms, leaving:

¢= (1 + ngL<l> Gt % (G5 —02)- (17)

We can now rewrite the expression in terms of new variables, f@, o and fNL, and calculate the
abundance of PBHs (8 as described in section 2, as a function of the long wavelength mode, (;.

(e = (1 + ngLCl> Cs)
o= (1 + ngLCl> os, (18)

. 6 -2
Ine = <1 + ngL<l> INL-
Equation (I7) can then be written in a form analogous to equation (I4),
- 3. o -
¢ =G+ v (@ —5%) = h(Co). (19)

Therefore, both the amplitude and distribution of the small-scale perturbations are affected. In
order to calculate the abundance of PBHs, the variables in equation (I8]) can then be inserted into

equation ([I0).
3.2 Cubic non-gaussianity, gy,

Here, we will follow the same steps as for fyr, to show how the presence of a cubic term causes
modal coupling. For this section, we will assume fy; = 0, and { to be given by

9
(=(c+ %QNng- (20)
Again, using the peak-background split, one obtains:
B 27 9 27 9 9 3
¢= <1 + 259NLC1 > Gs+ <259NLC1> G+ <259NL> G+ O(Q), (21)

where again, the terms dependant only on (; are neglected because they don’t have a significant
effect on PBH formation. The above expression can then be rewritten in terms of new variables
Ca» 0, fnr and gni, given by

~ 27
e = (1 + 2_59NL<l2> Cs)

) o7

o= (1 + %QNLQ > Os,

. 9 27 -2
= (= 1+ =— 2

fnL <59NLC1> ( + 259NLC1> ,

_ 27 L\ 7°
gnrp =gnrp |1+ %QNLCI .

(22)
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Figure 2: An example of a power spectrum containing a narrow peak. N represents number of e-
folds, with smaller scales represented by larger V. The power spectrum is small on most scales with
a spectral index of ng = 0.96, compatible with observations of the cosmic microwave background
(CMB) and large scale structure (LSS). The narrow peak in the power spectrum corresponds to
the scale at which will PBHs form.

Equation (20]) can then be rewritten as

C=lo+ 3 (@ -3) + il (23)
An expression for the abundance of PBHs in a given region of the universe, B, can then be derived
as shown in section 2.

In this section, it has been shown that long wavelength modes can affect the amplitude of local
small scale perturbations and the non-gaussianity parameters, and in the next section the effect of
this on the abundance of PBHs within a given region will be discussed.

4 The isocurvature modes of PBH DM on CMB scales

The abundance of PBHs in a region of the universe can be affected significantly by large-scale
curvature perturbation modes in different regions of the universe. If PBHs make up DM, then
these differences in the abundance of PBHs will appear as fluctuations in the density of DM. In the
presence of loacl-type non-gaussianity, the fluctuations in the DM can be significantly greater than
the curvature perturbations responsible for producing them - and tight constraints can therefore
be placed on the non-gaussianity parameters if this is the case from the isocurvature constraints
from Planck.
We will define the difference in the abundance of PBHs at the time of formation, dg, as

_b-F8
/8 )

where 3 and /3 are the perturbed and background values of the PBH abundance at the time of
formation respectively. If the large-scale curvature perturbation ¢ is small, it can be related to dz
by a constant factor b (referred to the scale dependant bias in [27]),

dg = bQ, (25)

35 (24)



where b is a function of the non-gaussianity parameters, the variance of the small-scale perturbations
and the critical value for PBH formation (.. The factor b therefore parameterises the bias of PBHs
to form in the presence of large-scale curvature perturbations.

In this section, we will consider the case where the power spectrum is very small on all scales,
except for a narrow region where there is a sharp spike - which is responsible for the production
of PBHs of a mass corresponding to this scald]. An example of such a power spectrum is given in
figure Bl We therefore ignore in this section the presence of perturbations of intermediate scales,
but extend the calculation in the following section to account for when there is a broad peak in the
power spectrum.

The abundance of PBHs at a later time on a comoving slicing will be affected by difference in
their density at the time of formation, as well as by the difference in expansion since the time of
formation - in denser regions of the universe, inflation ends and PBHs form slightly later, so even
if the PBH density is constant at the time of formation, the density will not be constant. To first
order in (, the density of PBHs can be expressed as

Qppr = (1+b¢ +3¢) QppH, (26)

where the 3¢ term is simply the adiabatic mode expected from the expansion of the universe, and
Qppp is the background density of PBHs. The b term therefore represents a deviation from the
expected amplitude of the mode if it was purely adiabatic - it is an isocurvature mode, which will
either either be fully correlated, or fully anti-correlated depending on the sign of fyr. If PBHs
make up a significant fraction of the DM content of the universe, the constraints on isocurvature
modes from Planck can then be used to constrain b - and therefore constrain the non-gaussianity
parameterﬂ. For simplicity in this paper, except section 5.2, we will assume that DM is entirely
composed of PBHs, and calculate corresponding constraints on the non-gaussianity parameters fyp,
and gnyz. On CMB scales, the constraints from Planck on isocurvature modes can be used [21]

1008, = 0.13 , fully corljelated (27)
0.08 , fully anti-correlated,
where D
iso — =0 . 28
Biao = o (28)

The fully correlated modes correspond to positive b, whilst fully anti-correlated corresponds to
negative b (and positive/negative fyr and gy respectively). The isocurvature power spectrum is
related to the curvature perturbation power spectrum as

Piso = b2PC7 (29)
and we therefore obtain constraints on b as
—0.028 < b < 0.036. (30)

This result will now be used to derive a result on the non-gaussianity parameters.

!The mass of a PBH is roughly equal to the horizon mass at the time of formation. See [35] for further discussion.
2Note that the reverse is also true - for a given value of the non-gaussianity parameters, an upper limit can be
placed on the amount of DM which is made of PBHs



4.1 Isocurvature modes from fy,

In section 2, an expression for the abundance of PBHs at the time of formation (3, was derived
in terms of the non-gaussianity parameter fyr, the variance of the gaussian component? o2, and
the critical value for collapse (. - equation (IQ), with h~! given by equation (7). However, this
calculation assumes there is no coupling to large scale modes (and is equivalent to the background
value, (3, if large-scale perturbations are small - as is the case here). In section 3 it was shown how
to account for the presence of a large scale modes - namely, by using the transformed variables fyr,
and & instead, given by equation ([I8]) - which calculates the perturbed abundance £3.

By combing equations (@), (), @), (I8) and (24), it is possible to derive an expression for dg
in terms of fyr, o5 (where the s subscript has been adopted to denote the small PBH scale), and

the critical value (.. Expanding the expression to first order in { gives the result

25+ 30Ce v, + 363 0% — 5/25 + 60C s + 363,02

5y =
3fn102\/25 + 60C fvr, + 36f3 07

and therefore b is given by

25+ 30Ce s + 363 ,0% — 5/25 + 60Cfivs, + 363,02
b— : (33)

3fn102\/25+ 60C fvr, + 363,07

or to first order in fnp,

6 2
b= - (1 + %) fNL- (34)

5 (o
As expected, a positive fnr, which boosts the power spectrum on small scales in areas of higher
density, produces a positive bias, and fully correlated isocurvature modes in PBH DM. Negative

fnr has the opposite effect, and produces fully anti-correlated isocurvature modes.

In order to investigate the constraints on the non-gaussianity parameters, it is necessary to
estimate values for the other parameters involved, and how these would affect the constraints. The
variance of the small scale perturbations and the critical value.

e First, (. is considered: there is significant error in the exact value of the threshold value, due
to uncertainty in the shape of the primordial perturbation which collapse to form PBHs. Most
recent simulations have calculated the critical value in terms of the density contrast, finding
dc =~ 0.4. This is consistent with the calculation here if the critical value of the curvature
perturbation is related by a factor %, meaning (. &~ 1, which is consistent with the range of
values found in figure [34]. Figure Bl shows how the factor b depends on the critical value for
different values of fnr,.

30 is related to the power spectrum as follows [38]

2 4
Pe=o0"+ <§> (4fRr +6gnz) o' In(kL) + <§> (27¢%1) 0 In(kL)?, (31)
where the higher order terms from gnyr have also been included, and In(kL) is a factor of around unity. Note that,
since the non-gaussianity parameters are found to be very small, the higher order terms will not have a significant
impact, and to a good approximation P¢ = o

4The second expression for b corresponds to equation (14) in [27]. The more complicated expression, equation (33)),
is because a gaussian distribution on small scales has not been assumed. The differences between the 2 calculations

are discussed in Appendix B.
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Figure 3: The plots above show the effects of a different threshold (. on the PBH bias b arising from
an fyr term. A larger value of (. suggests a larger bias factor. The left plot shows the effect for
negative fyr and the right plot for positive fyr. The dotted black lines represent the constrains on
b from the constraints on isocurvature modes from Planck. |fnr| = 8 x 107* is typically excluded
whilst | fyr| = 4 x 107% is typically allowed. To generate these plots the value o = 0.15 has been
used.

e To calculate oy, it is necessary to first calculate the value of 8 for which PBHs are otherwise
unconstrained by observations and could be DM. The range of mass scales in which PBHs
can form a significant fraction of DM is roughly 10'7g < Mppy < 10**g [1]. The constraint
on (3 from the abundance of DM in this range are given by [19]

Mppu 1/2
Farb < 1014g )

where f)/ is the fraction of the horizon mass which ends up inside the PBHH, and Mppy is the
mass of the PBH. Assuming DM to be made up entirely of PBHs of a single mass scale within
this range, 3 can therefore range from 8 < 10716 to 8 < 107!, Assuming the most optimistic
and pessimistic values for 5 and (., o, is calculated to lie in the range 0.1 < o4 < 0.2 for close
to gaussian perturbations [36]. Figure [l displays how b changes with oy.

f<2x1071 ( (35)

<, would lead to tighter con-
straints on fy, whilst a smaller critical value (. leads to tighter constraints on fyr. Because a
larger value of (. implies a larger value of oy, these effects virtually cancel out - and the results
presented below are therefore not sensitive to uncertainty in (..

Assuming PBH form at a single mass scale, the weakest constraint on fyr comes from consid-
ering the mass of the largest PBHs which could make up DM, which is taken to be Mppg = 10%°g,
for which 8~ 107, If DM is made entirely of PBHs, the constraints on fy, are therefore

Smaller values of the variance of the small scale perturbations, o2

—4x107" < fnp <5 x 1074 (36)

The results are not significantly different for PBHs of different mass. For example, for Mpgy =
10%°g the constraints on fyy, are

—3x1071 < fyp <4 x 1074 (37)

5 far is a factor of order unity, which is neglected as it has very little effect on the calculated value of 0.
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Figure 4: The effects of a different 0 on the PBH bias b arising from an fy term are investigated.
A larger value of o suggests a smaller bias factor. The left plot shows the effect for negative fyp,
and the right plot for positive fyr. The dotted black lines represent the constrains on b from
the constraints on isocurvature modes from Planck. |fyr| =7 x 107* is typically excluded whilst
|fne| =4 x 107% is typically allowed. To generate these plots the value (. = 1 has been used.

4.2 Isocurvature modes from gy,

In addition to fnpr, it is interesting to consider isocurvature modes arising from gy and place
constraints, or whether the effects of modal coupling from gy could cancel the effects from fuy.
The effect of higher order terms are beyond the scope of this paper.
The same derivation can be followed as that for fyr, leading to an expression for b to first order
in gyg
27 (02 - &) (2 + &)
2502(,

Again, as expected, positive gy, corresponds to fully correlated isocurvature modes, and negative
gn1 corresponds to fully anti-correlated isocurvature modes. The PBH bias factor b is again a
function of the non-gaussianity parameter gy, the variance of the small scale perturbations o2,
and the formation threshold (.. The dependance of b on (. and oy is shown in figures [0 and
respectively.

We see again that smaller values of o5 would lead to tighter constraints on gy, whilst a smaller
(. leads to tighter constraints on gy7. However, unlike the case with fyr, the constraint which
can be placed on gy depends on the value of (., although only by a factor of O(10%). The results
presented below are the weakest constraints, corresponding to a low formation threshold, for PBHs

of mass 10%°g

b= — INL. (38)

—6x107 < gy <7 x 1071 (39)

Notice that these constraints are very comparable to those on fyr, see (37). The fyr term has
an effect of O(107°) on the small-scale power spectrum, whilst the gy, term only has an effect of
O(1071%), and therefore, naively, the constraints on gyz, would be expected to be roughly 5 orders
of magnitude weaker than fyr. However, a gy term also has an effect on the small scale fNL,
as seen in equation (@), of O(107?), and because the abundance of PBHs is extremely sensitive
to non-gaussianity, this causes significant isocurvature modes in the PBH DM. In the case where
¢ =107% and gyr = 1073, then fNL ~ 1078. Such a small fNL nonetheless creates a perturbation
in the PBH density of O(107%), which represents an isocurvature mode of around 10% of ¢ - which is
excluded by Planck. Because the abundance of PBHs £ is sensitive to higher order non-gaussianity
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Figure 5: The plots above show the effects of a different threshold (. on the PBH bias b arising from
a gyr term. A larger value of (. suggests a larger bias factor. As the expression for b, equation
[B8), is anti-symmetric under a change of sign of gy, the results for negative and positive gy, are
shown on one plot - but with different constraints on the amplitude of |b|, represented by the dotted
black lines. |gnr| = 8 x 107% is typically excluded whilst |gnz| = 4 x 107 is typically allowed. To
generate these plots the value o = 0.15 has been used.

parameters [37], isocurvature modes are expected to rule out significant non-gaussianity at higher
orders as well - although a quantitative calculation is beyond the scope of this paper. Higher order
non-gaussianity parameters are considered briefly in section 5.4.

5 Further consideration of constraints from isocurvature modes

In section 4, constraints were placed separately on fy7 and gy separately, assuming that DM was
entirely composed of primordial black holes. In this section, the calculation is extended to account
for more general models.

5.1 Isocurvature modes from fy; and gy,

The presence of non-zero non-gaussianity parameters has been shown to create significant isocur-
vature modes, which has led to very tight constraints on these parameters under the assumption
that DM is composed entirely of PBHs. The calculation is now extended to account for non-zero
fnr and gy simultaneously - for example, it is possible that the effect of a large positive fnr and
large negative gy can cancel out, leaving a very small isocurvature mode.

Because the non-gaussianity parameters may now become quite large, the full numeric calcu-
lation for the PBH abundance is used to derive a value for the PBH bias b, for example by using
equations (®)) or (@) rather than the much simpler equation (I0]).

Figure[d shows the values of gy, that are permitted for different values of fy, for PBHs of mass
Mppp = 10?°g. Whilst large values of fxr, and gn7, are allowed, there needs to be significant fine
tuning to ensure that the resultant isocurvature modes are not excluded by the Planck results - gy,
needs to have the correct value to O(0.1%). We note that there is some uncertainty in the value of
gn L required for a given fn due to the uncertainty in the formation threshold (. - although this
does not affect the conclusion that large non-gaussianity parameters are not allowed unless very
very finely tuned. This conclusion is expected to remain true for higher-order terms [37].
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Figure 6: This plot shows the effects of a different ¢ on the PBH bias b arising from a gy term.
A smaller value of o suggests a larger bias factor. As the expression for b, equation (B8], is anti-
symmetric under a change of sign of gnp, the results for negative and positive gy, are shown on one
plot - but with different constraints on the amplitude of |b|, represented by the dotted black lines.
lgnr| = 7 x 107 is typically excluded whilst |gnz| = 4 x 107 is typically allowed. To generate
these plots the value (. = 1 has been used. This range of ¢ is used because it is approximately
the range of values required to generate the correct number of PBHs to form DM (assuming that
perturbations are close to gaussian).

5.2 Fractional primordial black hole DM

So far, it has been assumed that DM is made entirely of PBHs. The calculation is now extended to
account for the fact that PBHs may only make up a small fraction of DM, and this is parameterised
by rppm, the ratio of PBH density to DM density.

Q
rPRBH = QPBH. (40)
DM
In this case, the density of DM is described by
Qpar = (1 + rpeab +3¢) Qpur, (41)

and the relative amplitude of the isocurvature modes is now given by rpppb. Therefore, from the
Planck constraints on isocurvature modes instead give constraints on the factor rppgb,

—0.028 < rppgb < 0.036. (42)

The constraints which can be placed on the non-gaussianity parameters therefore depend upon
the PBH DM fraction, rppy. Figure B shows the allowed values of fyr, gnr and rppy if the PBH
mass is Mppy = 10%g.

e Large rppp: if PBHs make up a large fraction of DM then very tight constraints can be
placed on the non-gaussianity parameters, fxr, gy < O(1072).

e Small rppy: if PBHs make up a small fraction of DM, rpgy < 0.1, then the constraints
on fnr and gy weaken significantly. However, the non-gaussianity parameters only become
larger than 1 if rppy < O(1073). In the case where rppy is very small, the non-gaussianity
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Figure 7: The constraints on simultaneous fyy and gy are displayed. The right plot simply
displays the central region of the plot on the left. The solid lines represent an upper limit from
fully correlated isocurvature modes, whilst the dotted lines represent a lower limit from fully anti-
correlated isocurvature modes. There is some uncertainty in the value of gy, given a value of fyr
due to uncertainty in the critical value (. - the blue lines are obtained using (. = 0.8, and the red
lines are obtained using (. = 1.2. It can nonetheless be seen that large fn or gnr are excluded
unless very finely tuned. The shaded regions between the lines can be considered as 20 contour
plots from the Planck constraints.

parameters can become large and it is crucial to account for the effect of a non-gaussian
distribution on the PBH forming scale, as done in this paper - as seen by the strong asymmetry
for positive and negative fyr.

As rppy becomes very small, fyr, can become large and positive, but is still strongly restricted
to not be large and negative. This is partly due to the fine tuning of the small scale power spectrum
necessary to produce a small but not too large number of PBHs when fx is negative - even a very
small amount of modal coupling can mean that this fine tuning is disrupted in different regions
of the universe, causing large amounts of variation in the number density of PBHs forming. This
effect is not seen unless the non-gaussian distribution on small scales is accounted for. For gnr, the
constraints do not depend much on the sign of gy, and the small difference is due almost entirely
to the difference in constraints from Planck on fully, or fully anti-, correlated modes.

5.3 Intermediate modes

The intermediate scales in between the large scales visible in the CMB and the small scale at which
PBHs form have so far been ignored. This is a valid approximation if the power spectrum is small
at all scales except for a narrow peak at the PBH forming scale, as in figure 2l However, this may
not be the case if, for example, the power spectrum has a broad peak, as seen in figure[@ or becomes
blue at small scales. In this case, the abundance of PBHs, as well as the amplitude of isocurvature
modes, can be significantly affected by the presence of perturbations on these intermediate modes.

If the power spectrum of the intermediate modes is not small, they will have a significant effect
on the number of PBHs that form, as well as the isocurvature modes visible in PBH DM. This will
be investigated in a similar to the peak-background split, and the curvature perturbation is split
into short, intermediate, and long components:

(a=0C+G+G. (43)
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Figure 8: In the case where PBHs only make up a small fraction of the DM content of the universe,
parameterised by rpp, the constraints on fyr, and gyr can become significantly weaker. This is
due to the fact a large isocurvature mode in the PBH density would only translate into a small
isocurvature mode in the DM density. The plots above show the allowed values of fyr, and gy, for
different values of rpgy. Whilst the plots show the constraints for PBHs of mass Mppy = 10%°g,
the constraints are not very sensitive to the PBH mass.

The mass fraction of a given region of the universe going into PBHs is then calculated as before,
as a function of (; and (;, in addition to fyr, gnL, 0s and (.,

B=5Ga)- (44)

However, the intermediate modes are too small scale to be observed in the CMB, and should
therefore be averaged over:

5(G) = / B (G C) P(C)dG, (45)

where (3 is the value of 3 in different (intermediate-scale) regions of the universe, and P((;) is the
probability density function of (;, and is given by:
1 ¢?
PG) = — oo (500 ). (16)
2Pi(G7) i
In principle, <CZ-2>, can be obtained by integrating the power spectrum over the relevant range
of scales. However, since this is unknown and model dependant, it is parameterised here by 7.,
the ratio of the variance of intermediate modes ((?) to the variance of the short modes o2

(@) )

Tint = .
o3

The value of ((?) can become larger than o2 due to the fact that many scales can contribute to
(i, but only one scale contributes to (s. (¢(?) is calculated by integrating the power spectrum over
the range of scales considered to be intermediate

kmax
= [ Frn, (15)

kmin
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Figure 9: An example of a power spectrum containing a broad peak. In this paper, there are 3
difference scales: the large ”background” scales visible in the CMB, the small ”peak” PBH forming
scale (the exact scale of which depends on the mass PBH being considered), and the intermediate
scales between the background and the peak. In such a case, the intermediate modes can have an
effect on the PBH bias.

and can become large if the power spectrum is large over a significant range of this integration.
In contrast, the PBH scale perturbations (s are only composed of perturbations from one scald’.
Therefore, (Cf) can become significantly larger than o2 even though the power spectrum has its
largest value at the PBH scale. However, it is likely that in such a scenario, PBHs of multiple mass
scales would be produced, which is discussed later.

The amplitude of the isocurvature modes therefore depends on the non-gaussianity parameters,
the small scale power spectrum o2, the formation threshold (., and r;,;. A value for the PBH bias
b is then calculated numerically, figure displays b dependant on these variables. The effect of
intermediate modes on the amplitude of isocurvature modes is relatively small for small fyr or
gnr unless the variance of the intermediate scales is very large. The constraints on fy7 can be
weakened by a factor O(1), although the constraints on gy, are not significantly affected.

Note that a model where the power spectrum is large over a broad range of scales would likely
also produce PBHs with a large range of masses, and vice versa. This fact does not affect the
conclusions presented here, as the production of PBHs at all mass scales would be affected by bias
in a similar way. We have shown that intermediate modes can significantly affect the PBH bias,
although which modes are considered to be intermediate depends on the scale at which PBHs are
forming, and therefore on the mass of PBHs forming. The exact constraints depend on the form
of the power spectrum, and must therefore be calculated on a model by model basis, which goes
beyond the scope of this paper - although the constraints will not be weaker than fyr, gnz < 1073,

5.4 Higher Order terms

Whilst only the constraints on fy; and gnr have been calculated here, very tight constraints on
higher order non-gaussianity parameters are also expected. In the same way that a gy term has
a small but significant effect on fyr, equation (), higher order terms affect the previous term.

SFormally, o2 is given by integrating the power spectrum multiplied by a window function. However, provided
that the spectral index is close to 1, or alternatively there is a peak spanning approximately 1 e-fold at the PBH
scale, o2 is approximately equal to the power spectrum at that scale.
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Figure 10: The effect of intermediate modes on the PBH bias b is displayed for Mpgg = 10*°g.
The variance of the intermediate modes is parameterised by 7., the ratio of <§i2nt> to o2. The
effect is negligible unless r;,; becomes large, in which case the PBH bias arising from an fyr term
becomes significantly smaller, although has little effect for gnr..

Because the mass fraction of the universe forming PBHs is extremely sensitive to non-gaussianity
parameters at higher orders [37], even very small changes to higher order non-gaussianity parameters
due to modal coupling creates significant creates significant perturbations in the PBH density at
large scales. As an example, we will consider a 5 order term in local-type non-gaussianity:

81
¢(=Ca+ @iNLCg- (49)

4th

Utilising the peak-background split gives a order term at small scales, hyp, given by

hyt = 3inLG. (50)

Inserting ¢; ~ 107° and iyz = 1073 gives ilNL ~ 1078, The modulation of the ENL by the long
wavelength mode (; then generates a perturbation in the density of PBHs forming, dg ~ 1076, In
the picture of PBH DM, this results in a fully-correlated isocurvature mode, with a bias factor of
b ~ 0.1 - which is excluded by Planck. Because it can be shown that high order terms have an effect
on the preceding term which is linear in (, tight constraints are expected on such non-gaussianity
parameters, only weakening slightly as higher order terms are considered.

6 Summary

The effect of modal oupling under the presence of non-gaussianity of the local type produces
significant isocurvature modes in the density of PBHs in the early universe. If PBHs make up a
significant fraction of DM, the constraints on isocurvature modes in cold DM from Planck can be
used to constrain the non-gaussianity parameters - in this paper we have considered fyr and gnp,
Using the constraints from Planck on isocurvature modes enables tight constraints to be placed on
fnr and gnr,

[fxel lgne| < O0(1072), (51)

unless fyr, and gy, have opposite signs and have been extremely finely tuned so that the effect from
each term cancels. Cases where the constraints could become weaker have also been considered: if
the power spectrum is large on scales between those visible in the CMB and the PBH forming scale,
or if DM is only partially composed of PBHs, finding that under these conditions the constraints
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weaken very slightly (unless PBHs make up a very tiny fraction of DM). Therefore, the detection of
significant numbers of PBHs would rule out significant local non-gaussianity, and vice versa. Our
constraints are almost independent of the PBH mass, and can also be applied to Planck mass relics
which may be left behind from the evaporation of small PBHs.

The production of isocurvature modes can therefore be used to constrain PBH forming models
which may otherwise be permitted. For example, we will consider here two models which may be
ruled out as mechanisms to produce PBH DM:

e Hybrid inflation: hybrid inflation typically predicts a non-zero fn, but there is some freedom
in the exact value. [39] predicts fy; ~ —1/N,, where N, is the number of e-folds between
horizon exit of some pivot scale and the end of horizon. Inflation is believed to have lasted at
least 50 — 60 e-folds, which would give fy; = O(1072) - several orders of magnitude higher
than allowed by the constraints presented here. [40] predicts that fyp can span a range
of values from 1072 to 10° - the entire range of which would be ruled out as a method of
producing PBH DM.

e The curvaton: the amount of non-gaussianity in the curvaton model depends on the density
parameter, €2, of the curvaton, x, at the time it decays into radiation: fyr = —5/4ifQ, =1
[41]. Although higher order local non-gaussianity terms are generated, it is unlikely that these
will generate small isocurvature perturbations to evade the constraints.

There are, however, limitations to the calculations carried out in this paper. Notably, we have
only considered local-type non-gaussianity, and throughout it has been assumed that fn and gy
are scale invariant. We have also only calculated the dependance of isocurvature modes on fyr,
and gy, and shown them to a roughly equivalent effect - with gy having only a marginally
smaller effect. Higher order terms are therefore also likely to have a similar effect on isocurvature
modes. We also note that it has recently been observed that sub-horizon perturbations at the time
of PBH formation have an effect on whether a perturbation will collapse to form a PBH or not
[42]. The expected amplitude of these sub-horizon modes would be affected by modal coupling -
and therefore affect the amount of PBHs forming, affecting the isocurvature modes. However, this
effect is expected to be negligible whilst the non-gaussianity parameters are very small.
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A Full expression for dg from a gy; term

For completeness, the full expression for dg arising from a g7 term is included - though this
expression is still only valid for small gnr. This expression would replace the simpler equation

E3).
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B Comparison with “Primordial black holes as biased tracers”

In their paper, ”Primordial black holes as biased tracers” [27], Tada and Yokoyama derive an
expression for the scale-dependant bias given by

2

8b(K) = 2rr M ) 5. (52)

S
This is equivalent to equation (B4)) in this paper. The factor of 3/5 difference is due to a different
definition of fxr, and the factor ./\/ll_l(k;) is a result of their use of the density contrast rather than
the curvature perturbation. The +1 in the brackets of equation (34]) is a small correction and can
be neglected. Therefore, the results for very small fny in the 2 papers are equivalent. In figure
[ the two expressions are compared. For |fxr| < O(1072) the two calculations match well, but
diverge rapidly for larger |fnr|.

It is therefore necessary to use the full calculation derived in this paper in situations where
fnr could become larger than 1072, Whilst such a large value of fyp, is generally excluded by the
constraints on isocurvature modes in the PBH DM scenario, it is relevant where higher order terms
are considered, or that PBHs form a sub-dominant component of DM.
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Figure 11: A comparison of the results derived in this paper with those derived in [27]. The solid
red line denotes the full expression for the PBH bias given by equation (33]), and the dashed blue
line represent the scale-dependant bias given by equation (14) in [27]. To make these plots, the
values o5 = 0.1 and (. = 1 have been used.
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