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Robust entanglement-based magnetic field sensor beyond the standard quantum limit
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2Department of Physics, Waseda University, Tokyo 169-8555, Japan

Recently, there have been significant developments in entanglement-based quantum metrology.
However, entanglement is fragile against experimental imperfections, and quantum sensing to beat
the standard quantum limit in scaling has not yet been achieved in realistic systems. Here, we
show that it is possible to overcome such restrictions so that one can sense a magnetic field with
an accuracy beyond the standard quantum limit even under the effect of decoherence, by using a
realistic entangled state that can be easily created even with current technology. Our scheme could
pave the way for the realizations of practical entanglement-based magnetic field sensors.

PACS numbers: 03.67.-a, 03.75.Dg

Precise measurement of a weak magnetic field is one
of the important goals for sensing technologies [1–5].
Such measurement has potential applications in the field
of materials science, biology [1], and foundations of
physics [2, 3]. For the estimation of the magnetic field,
one usually prepares N degenerate electron spins as a
probe system [4, 5]. Since magnetic fields induce a finite
energy shift of the electron spins, the electron spins under
the effect of the magnetic fields acquire a relative phase
when the state contains a superposition. Therefore it is
possible to estimate the magnetic field exposed with the
electron spin by measuring the relative phase.

In quantum metrology [2, 3], when the probe composed
of N spins has no quantum correlations, the uncertainty
in the estimation scales as O(N− 1

2 ), the standard quan-
tum limit (SQL) [2, 3]. On the other hand, by preparing
the probe in an entangled states, the estimation uncer-
tainty can be in principle reduced to O(N−1), the Heisen-
berg limit [2, 3]. Hence, there have been many efforts
in both theory and experiment regarding entanglement-
based phase measurement [2, 3, 6–8]. Especially, there
are many theoretical studies about the effect of decoher-
ence [9–15]. It is known that, under the effect of Marko-
vian dephasing, the estimation uncertainty scales the
same as the SQL [9–12], which means that the entangle-
ment does not provide any advantages over the classical
strategy in scaling. However, it has been recently shown
that the phase measurement with the GHZ state can ac-
tually beat the SQL under the effect of some Markovian
noise [13] or non-Markovian dephasing [14, 15]. Espe-

cially, the estimation uncertainty scales as O(N− 3
4 ) un-

der the effect of non-Markovian dephasing [14, 15]. Since
the relevant noise in solid-state systems is usually non-
Markovian dephasing [16–24], this result opens a way to
realize practical entanglement-based metrology.

It is difficult to generate a large N -qubit GHZ state

∗These authors equally contributed to this paper.

because this usually requires N operations. Moreover,
individual access to each qubit is typically needed for the
creation of the GHZ state. Although there are reports of
small size GHZ states generated with current technol-
ogy [25–27], an experimental demonstration to create a
GHZ state in a scalable way has not yet been done. A
large entangled state is necessary to construct a quan-
tum sensor far beyond the accuracy of classical sensors,
and so it is crucial for realizing the entanglement-based
sensor to pursue the possibility of using other types of
entanglement that can be created in more efficient ways.

In this paper, we show a way to construct a robust
entanglement-based quantum field sensor where a large
entangled state can be created and read out even un-
der the effect of experimental imperfections. Specifically,
we investigate spin cat states and spin-squeezed states,
which can be created with current technology. There
have recently been many theoretical and experimental
studies for the generation of spin cat states [28, 29] and
spin squeezed states [7, 30, 31]. As explained below, we
can generate these states by “global operations” such as
the application of a microwave pulse to the ensemble and
a collective interaction. This means that the necessary
number of operations is constant to generate entangled
states of arbitrary size. Moreover, we show that our
quantum strategy beats the SQL in scaling even under
the effect of realistic decoherence.

Entanglement as a resource– Let us define a spin coher-
ent state, a spin-squeezed state, and a spin cat state. The
spin coherent state is defined as |z,N〉 = 1

(1+|z|2)N/2 (|g〉+
z|e〉)⊗N , where |g〉(|e〉) is the eigenstate of σz with an
eigenvalue −1(+1) and z is a complex number [32].
By preparing a spin ensemble in a spin coherent state
and letting it evolve by a one-axis (two-axis) twisting
Hamiltonian [32], we obtain a one-axis (two-axis) twisted

spin squeezed state as |OAT〉 = e−iχJ
2
z |z,N〉, |z| = 1,

(|TAT〉 = eχ(J
2
+−J2

−

)|0, N〉) where χ denotes a real num-

ber, Jz = 1
2

∑N
i=1 σz,i denotes a collective angular mo-

mentum operator for the spin ensemble, and J± =

http://arxiv.org/abs/1412.3887v1
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FIG. 1: (Color Online). Schematic diagram of our system.
Long-lived memory qubits are coupled with a central control
qubit. These qubits are manipulated by microwave pulses.

∑N
i=1 σ̂± is a collective ladder operator. A spin cat state

is defined as |SC〉 = 1√
2
(|0, N〉+|z,N〉) forN ≫ 1. Quan-

tum sensing with spin cat states or spin squeezed states
can beat the SQL without decoherence [33–35].
System– Suppose that a short-lived and controllable

qubit is collectively coupled to N long-lived qubits as de-
scribed in the Fig. 1. We call the former a control qubit
and the latter memory qubits. The memory qubits are
used as a probe for the magnetic field while the control
qubit is used to generate entanglement between the mem-
ory qubits and to read out the phase information acquired
in the memory qubits. The Hamiltonian is described as

H = Hc +Hm +H
(1)
I +H

(2)
I

Hc =
ωc

2
σ(c)
z +

λc
2
σ̂(c)
x cos(wt+ φ),

Hm = ωmJ
(m)
z + λmĴx cos(wt + φ)

H
(1)
I = g1σ

(c)
z J (m)

z , H
(2)
I = g2(σ

(c)
+ J

(m)
− + σ

(c)
− J

(m)
+ ),

where σ
(c)
x and σ

(c)
z denote Pauli operators acting on the

control qubit, J
(m)
x and J

(m)
z denote collective angular

momentum operators acting on the memory qubits, σ
(c)
±

(J
(m)
± ) is a ladder operator acting on the control (mem-

ory) qubit, ωc (ωm) denotes the energy of the control
(memory) qubit, w denotes the microwave frequency, φ
denotes the microwave phase, g1 (g2) is a coupling con-
stant, and λc (λm) denotes the Rabi frequency of the con-
trol (memory) qubit. We assume that with this system
we can (i) implement a projective measurement on the
control qubit, (ii) tune the resonant frequency of the con-
trol qubit, (iii) switch the interaction Hamiltonian from

H
(1)
I to H

(2)
I (and vice versa), (iv) prepare the ground

state of this system, and (v) change the Rabi frequency
and microwave phase in an arbitrary timing.
One of the experimental realizations of our setup is a

hybrid system of a superconducting flux qubit and neg-
atively charged Nitrogen-vacancy (NV) centers [36–38].
The superconducting flux qubit has excellent controlla-
bility for single qubit rotation, frequency control, and
projective measurement [22, 39]. On the other hand, the
NV centers [40] typically have a long coherence time of

hundreds of microseconds [41]. Since the collective cou-
pling between the flux qubit and NV centres has been
experimentally demonstrated [37, 38], this is one of the
promising systems to realize our theoretical proposal.
Magnetic field sensing– We introduce our setup for

estimating a magnetic field. To include realistic im-
perfections, we consider the effect of independent non-
Markovian dephasing while the memory qubits are ex-
posed to the magnetic field. First, the memory qubits are
prepared in an entangled state such as a spin cat state or
spin-squeezed state |ψ〉. Second, the target magnetic field
ω is embedded as ρt = e−iωtJ~nE⊗N (|ψ〉〈ψ|)eiωtJ~n , where
~n is a three dimensional real vector with unit length and
E⊗N denotes an independent non-Markovian dephasing.
The action of E is defined as

(

a b
c d

)

E→
(

a e−(Γtt)
2

b

e−(Γtt)
2

c d

)

, (1)

in a basis diagonalizing ~n · ~σ where Γt denotes a time
dependent decoherence rate. This time dependent deco-
herence rate is known to be scaled as Γt = O(t0) for a
small t [16–24]. Hence, we define γ = limt→0 Γt.
To calculate the precision with which our scheme can

measure a magnetic field, we use the quantum Fisher
information F (ρt), which does not depend on the mag-
netic field ω in the above setup. Here, if we read
out the field from an expectation value of an observ-
able A, Eρt(A) [42], the inequality F (ρt) · Varρt(A) ≥
∣

∣

∣

∣

∂
∂ωEρt(A)

∣

∣

∣

∣

2

holds for any ω [43, 44], where Varρt(A) is

the variance of A. From this we can find the estima-

tion uncertainty of ω to be δω =
√

1
µ

√
Varρt (A)

| ∂
∂ωEρt (A)| where

µ is the number of measurement data points. We will
approximate the number of measurement data points as
µ ≃ T/t, where T is a total measurement time. This as-
sumption is valid when the coherence time of the memory
qubits is much longer than any other times for operations.
Entanglement sensor with spin cat states– We show a

new way to prepare the memory qubits in a spin cat state.

By selecting H
(1)
I as the interaction Hamiltonian, the

state of the memory qubits (control qubit) can change the
resonant frequency of the control qubit (memory qubits)
from ωc (ωm) to ωc + 2g1Jz (ωm + g1σz). We can use
these properties to make the spin cat state. First, we
prepare a ground state for the memory qubit and a su-
perposition of the controller qubit 1√

2
(|g〉c+ |e〉c)|0, N〉m.

This superposition can be made by applying a π
2 pulse

with a frequency of ωc − g1N on a ground state of the
control qubit. Next, we perform a selective pulse with
a frequency of ωm − g1 to rotate the memory qubits, so
that we obtain 1√

2
|g〉c|z,N〉m + 1√

2
|e〉c|0, N〉m. Finally,

we can perform a selective π pulse with a frequency of
ωc − g1N on the controller qubit and obtain a spin cat
state |g〉c 1√

2
(|0, N〉m + |z,N〉m).



3

Let us now describe how to read out the phase in-
duced by a target magnetic field from the spin cat state.
We expose the sensor to the magnetic field for a time t,
and the spin cat state acquires a relative phase ωt such
that |g〉c 1√

2
(|0, N〉m + |ze−iωt, N〉m) due to the interac-

tion with the magnetic field. To readout this phase, we
apply two selective pulses, and perform a projective mea-
surement on the control qubit. The first selective π pulse
(with a frequency of ωc − g1N) is applied on the control
qubit, giving 1√

2
|e〉c|0, N〉m + 1√

2
|g〉c|ze−iωt, N〉m. The

second selective pulse (with the frequency of ωm + g1) is
applied on the memory qubits, giving 1√

2
|e〉c|z,N〉m +

1√
2
|g〉c|ze−iωt, N〉m. If we perform a projective measure-

ment about σy on the control qubit, the probability to
obtain a measurement result of σy = +1 is given by P+ =
1
2+

1
2 Im[〈z|ze−iωt〉] ≃ 1

2− 1
2

|z|2
1+|z|2Nωt forNωt≪ 1. Thus

we can estimate the phase from the measurement. Note
that this measurement can be approximated as a projec-
tive measurement onto |Φ0〉 = 1√

2
(|0, N〉m + i|z,N〉m).

We calculate the uncertainty of the estimation with
the spin cat state under the effect of dephasing when the
applied field is aligned to ~n = (0, 0, 1). If the memory
qubits are prepared in a spin coherent state |z,N〉, the
mixed state after the dephasing is described by

ρ̃ = Nz

[

|g〉〈g|+ z̃∗|g〉〈e|+ z̃|e〉〈g|+ |z|2|e〉〈e|
]⊗N

(2)

where z̃ = zeiωt−(Γtt)
2

with Nz = (1 + |z|2)−N . For the
spin cat state, we find

ρt ∝ |0〉〈0|+ ρ̃+Nd [|z̃〉〈0|+ |0〉〈z̃|] , (3)

where Nd = (1 + |z|2e−2(Γtt)
2

)N/2/(1 + |z|2)N/2. Then,
by choosing the estimator to be A = |Φ0〉〈Φ0|, we obtain
δω ≃ 1+|z|2

Nt|z|2
√

t
T for Nωt≪ 1 and N(Γtt)

2 ≪ 1. In order

to satisfy the condition N(Γtt)
2 ≪ 1, we choose t = s

γ
√
N

(where s denotes a small number ) and obtain

δω ≃ 1 + |z|2
|z|2

√

γ

sT
N− 3

4 . (4)

This beats the SQL in scaling as long as |z| = O(N0).
Phase measurement with a cat state has been discussed

in optics [45–47]. However, the optical cat state is fragile
against photon loss [10–12], which may provide a limi-
tation for the practical application of the spin cat state
in optics. On the other hand, in solid-state systems, the
main decoherence is non-Markovian dephasing [16–24],
and this fact makes the magnetic field sensor with the
spin cat state quite robust against experimental imper-
fections, as described above. So, unlike the conventional
expectations in the field of optics, we have succeeded in
showing that the spin cat state would provide us with
quantum advantage to beat the SQL in scaling.
Entanglement sensor with spin squeezed states– There

are many protocols to generate a spin squeezed state by

−5

−4

−3

−2

−1

0

ln δω(105)

0 lnN(105)2 4 6 8 10

SQL!

HL!

SC!

OAT!

FIG. 2: (Color Online). Scalings of the estimation uncertainty
δω with respect to the particle number of memory qubits.
Black and blue lines denotes the scalings of the SQL and
Heisenberg limit, respectively. The estimation uncertainty
with spin cat states varies in the yellow area, depending on the
value of |z|. Here, we set |z| ∼ Nk(k ≤ 0) and

√

γ/(sT ) = 1
in Eq. (4). The red line denotes the best scaling of δω with
spin cat states or the two-axis twisted spin squeezed states un-
der the effect of non-Markovian dephasing. The green line de-
notes the scaling of δω with the one-axis twisted spin squeezed
states under the effect of non-Markovian dephasing.

global operations [28, 30]. For example, one-axis twisted
spin squeezed states are generated by using the flip-flop

type interaction defined by H
(2)
I [28], which provides us

with the ability to squeeze the memory qubits via the
collective interaction with the control qubit. Although it
is experimentally more difficult to generate the two-axis
twisted state, one can in principle generate this state by
successive application of one-axis twisting and microwave
pulses to memory qubits [48–50].
A quantum state |ψ〉 is called spin squeezed [4, 5] if

the following inequality holds:

ξ2W := min
~r : ~r·~m=0

N ·Varψ(J~r)
[Eψ(J~m)]2

< 1, (5)

where ~m is a mean spin vector defined by
(Eψ(Jx),Eψ(Jy),Eψ(Jz)). This definition is derived
from a sensitivity to measure the phase without decoher-
ence when a collective angular momentum operator is an
estimator. Note that for the spin coherent state ξ2W = 1,

while for the one-axis twisted state ξ2W = O(N− 2
3 ) < 1.

We consider the field sensitivity of spin squeezed states
under the effect of non-Markovian dephasing. In our
setup, to obtain the phase information acquired in the
memory qubits during the exposure to the magnetic field,
we read out an expectation value of a specific collective

angular momentum operator J
(m)
~r via the application of

the resonant microwave pulse on the memory qubits, the

interaction Hamiltonian H
(1)
I , and a projective measure-

ment on the control qubit. To use the spin squeezed state
for the sensing, we need to choose (i) an angular momen-
tum operator for the estimator and (ii) the sensing di-
rection. For (i), in order to avoid quantum fluctuations
during the measurement process, we choose the vector ~r
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to give the minimal variance of a collective angular op-
erator for the entangled state |ψ〉. For (ii), we choose

the sensing direction to maximize the variance of J
(m)
~n

for the entangled state |ψ〉. This is because the quan-
tum Fisher information is proportional to the variance of

J
(m)
~n without the effect of decoherence. From these, we

can calculate the estimation uncertainty:

δω =

√

Varψ(J~r) +N(e2(Γtt)2 − 1)/4 + ∆1 +∆2

T t[Eψ(J~m)]2
, (6)

with ∆1 ≤ 0 and ∆2 = a(tan(ωt) + b)2. Here, a (b) is
positive (real) and independent of ω [51].
Next, we evaluate an upper bound for δω. First,

from equation (6), we have δω ≤ f(t) with ωt satisfy-

ing Varψ(J~r) +N(e2(Γtt)
2 − 1)/4 ≥ ∆2, where

f(t) =

√

2{Varψ(J~r) +N(e2(Γtt)2 − 1)/4}
T t[Eψ(J~m)]2

. (7)

Then, by setting the exposure time t as t = αN−s1 with
α ≥ 0 and s1 ≥ 0, in the large N limit (short time limit)
the upper bound of δω is simplified to

f(αN−s1) =

√

Ns1

αT

2Varψ(J~r) + βγ2N−2s1+1

[Eψ(J~m)]2
, (8)

with β positive and independent of N .
Finally, we determine the scaling of f(N). Notice that,

since Eψ(J~m) (Varψ(J~r)) is the first (second) moment of
the collective angular operator, we can set its order as
Eψ(J~m) = O(Ns2 ) (Varψ(J~r) = O(Ns3)) with 0 ≤ s2 ≤ 1
(0 ≤ s3 ≤ 2 ). Then, we have

f(N) =











O(N
s1+s3

2
−s2) for s3 > 1,

O(N
1−s1

2
−s2) for s1 < (1− s3)/2,

O(N
s1+s3

2
−s2) for s1 ≥ (1− s3)/2.

(9)

The smallest scaling of f(N) is obtained when s3 ≤ 1
and s1 = (1− s3)/2, and the uncertainty of estimation is

bounded by δω ≤ O(N−s2+ 1+s3
4 ). Especially, the expec-

tation value of the mean-spin-directed collective angular
operator is usually proportional to the particle number,

i.e., s2 = 1. Then, we have δω ≤ O(N
−3+s3

4 ). This means
that the smaller the variance of an estimator is, the more
precisely we can estimate the magnetic field. Moreover,
whenever the variance of an estimator is smaller than
the particle number, i.e., s3 < 1, we can beat the SQL in
scaling even under non-Markovian dephasing.
Let us give examples of spin squeezed states that beat

the SQL in scaling. When the memory qubits are pre-
pared in the one-axis twisted state, we have Eψ(J~m) =

O(N1) and Varψ(J~r) = O(N
1
3 ) [32], and the uncer-

tainty is bounded by δω ≤ O(N− 2
3 ). Another exam-

ple is a two-axis twisted state. For this state, we have

Eψ(J~m) = O(N1) and Varψ(J~r) = O(N0) [32], and thus

an uncertainty δω ≤ O(N− 3
4 ) is achieved.

Although there are established techniques to generate
spin squeezed states, the accepted belief has been that
one cannot beat the SQL with the spin squeezed state
under decoherence [30]. In particular, previous authors
have estimated the effect of Markovian dephasing and
shown that the sensitivity of the spin squeezed sensor
is the same as the SQL [52]. However, we have found
that, under the effect of non-Markovian dephasing—the
dominant source of decoherence in solid state systems—
the spin squeezed state can measure a magnetic field with
a sensitivity which beats the SQL in scaling.

Summary– Spin cat states and spin squeezed states
are considered to be experimentally feasible entangled
states, because one can create these via global opera-
tions without individual control of qubits. We firstly
analyze the sensitivity of a quantum sensor using such
entanglement in the presence of general non-Markovian
phase noise. We show that, by using these entangled
states, one can sense the magnetic field with an accuracy
far beyond the classical sensor even under the effect of
realistic decoherence. Our results pave the way for the
practical implementation of magnetic field sensors that
can exploit entanglement to operate below the limits of
classical physics. T.T thanks H. Nakazato and K. Yuasa
for discussion. This work was supported in part by Com-
missioned Research of NICT.
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and R. Hanson, Science 330, 60 (2010).

[18] P. L. Stanwix, L. M. Pham, J. R. Maze, D. Le Sage, T. K.
Yeung, P. Cappellaro, P. R. Hemmer, A. Yacoby, M. D.
Lukin and R. L. Walsworth, Phys. Rev. B 82, 201201(R)
(2010).

[19] J. R. Maze, J. M. Taylor and M. D. Lukin, Phys. Rev. B
78, 094303 (2008).

[20] K. Kakuyanagi, T. Meno, S. Saito, H. Nakano, K. Semba,
H. Takayanagi, F. Deppe and A. Shnirman, Phys. Rev.
Lett. 98, 047004 (2007).

[21] F. Yoshihara, K. Harrabi, A. O. Niskanen, Y. Nakamura
and J. S. Tsai, Phys. Rev. Lett. 97, 167001 (2006).

[22] J. Bylander, S. Gustavsson, F. Yan, F. Yoshihara, K.
Harrabi, G. Fitch, D. G. Cory, Y. Nakamura, J. Tsai
and W. D. Oliver, Nature Phys., 7, 565 (2011).

[23] E. Paladino, L. Faoro, G. Falci, and R. Fazio, Phys. Rev.
Lett. 88, 228304 (2002).

[24] B. E. Kane, Nature 393, 133 (1998).
[25] D. Leibfried, M. D. Barrett, T. Schaetz, J. Britton, J.

Chiaverini, W. M. Itano, J. D. Jost, C. Langer and D. J.
Wineland, Science 304, 1476 (2004).

[26] T. Monz, P. Schindler, J. T. Barreiro, M. Chwalla, D.
Nigg, W. A. Coish, M. Harlander, W. Hänsel, M. Hen-
nrich and R. Blatt, Phys. Rev. Lett. 106, 130506 (2011).

[27] R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E.
Jeffrey, T. C. White, J. Mutus, A. G. Fowler, B. Camp-
bell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, C.
Neill, P. O’Malley, P. Roushan, A. Vainsencher, J. Wen-
ner, A. N. Korotkov, A. N. Cleland and J. M. Martinis,
Nature 508, 500 (2014).

[28] S. Dooley and T. P. Spiller, Phys. Rev. A 90, 012320
(2014).

[29] S. Dooley, J. Joo, T. Proctor and T. P. Spiller,
arXiv:1406.6036.

[30] J. Ma, X. G. Wang, C. P. Sun, and F. Nori, Phys. Rep.
509, 89 (2011).

[31] K. Hammerer, A. S. Sørensen and E. S. Polzik, Rev. Mod.
Phys. 82, 1041 (2010).

[32] M. Kitagawa and M. Ueda, Phys. Rev. A 47, 5138 (1993).
[33] Take Γt = 0 in Eq. (1). Then, our results produce a well

known fact that the scaling of the estimation uncertainty
without noise effects is O(N−1) for spin cat and two-

axis twisted states, while it is O(N−
5
6 ) for the one-axis

twisted state. For details of the estimation uncertainty of
spin cat states without noise effects, see Refs. [34, 35].

[34] H. Xiong, J. Ma, W. Liu and X. Wang, Quantum Inf.

Comput. 10, 498 (2010).
[35] S. Dooley, F. McCrossan, D. Harland, M. J. Everitt and

T. P. Spiller, Phys. Rev. A 87, 052323 (2013).
[36] D. Marcos, M. Wubs, J. M. Taylor, R. Aguado, M. D.

Lukin and A. S. Sørensen, Phys. Rev. Lett. 105, 210501
(2010).

[37] X. Zhu, S. Saito, A. Kemp, K. Kakuyanagi, S. Kari-
moto, H. Nakano, W. Munro, Y. Tokura, M. Everitt, K.
Nemoto, M. Kasu, N. Mizuochi and K. Semba, Nature
478, 221 (2011).

[38] S. Saito, X. Zhu, R. Amsüss, Y. Matsuzaki, K.
Kakuyanagi, T. Shimo-Oka, N. Mizuochi, K. Nemoto, W.

J. Munro and K. Semba, Phys. Rev. Lett. 111, 107008
(2013).

[39] J. Clarke and F. Wilhelm, Nature 453, 1031 (2007)
[40] An NV center is not a two-level system but a three-level

system because of the spin 1 structure. However, applying
magnetic field induces the Zeeman splitting to isolate a
two-level subsystem of the NV center so that we can treat
the NV center as an effective qubit.

[41] P. Maurer, G. Kucsko, C. Latta, L. Jiang, N. Yao, S.
Bennett, F. Pastawski, D. Hunger, N. Chisholm, M.
Markham, D. J. Twitchen, J. I. Cirac and M. D. Lukin,
Science 336, 1283 (2012).

[42] In this paper, the expectation value of an observable A
under a state ρ is written as Eρ(A) = tr(Aρ), while the
variance is written as Varρ(A) = tr(A2ρ) − Eρ(A)2. In
addition, if a state is a pure state (ρ = |ψ〉〈ψ|), we use
the following shorthand notations. Eψ(A) = tr(A|ψ〉〈ψ|)
and Varψ(A) = tr(A2|ψ〉〈ψ|) − Eψ(A)2.

[43] M. Hotta and M. Ozawa, Phys. Rev. A 70, 022327 (2004).
[44] W. Zhong, X. M. Lu, X. X. Jing and X. Wang, J. Phys.

A: Math. Theor. 47 385304 (2014).
[45] T. C. Ralph, Phys. Rev. A 65, 042313 (2002).
[46] J. Joo, W. J. Munro and T. P. Spiller, Phys. Rev. Lett.

107, 083601 (2011).
[47] P. A. Knott, T. J. Proctor, K. Nemoto, J. A. Dunning-

ham and W. J. Munro, Phys. Rev. A 90, 033846 (2014).
[48] Y. C. Liu, Z. F. Xu, G. R. Jin and L. You, Phys. Rev.

Lett. 107, 013601 (2011).
[49] C. Shen and L. M. Duan, Phys. Rev. A 87, 051801(R)

(2013).
[50] J. Zhang, X. Zhou, G. Guo and Z. Zhou, Rev. A 90,

013604 (2014).
[51] ∆1, a and b are given as follows. ∆1 =

−{Eψ(J~rJ~m + J~mJ~r)}
2/{4Varψ(J~m) + N(e2(Γtt)

2

− 1)},

a = Varψ(J~m) + N(e2(Γtt)
2

− 1)/4, and b =

{Eψ(J~rJ~m + J~mJ~r)}/{2Varψ(J~m) +N(e2(Γtt)
2

− 1)/2}.
[52] D. Ulam-Orgikh and M. Kitagawa, Phys. Rev. A 64,

052106 (2001).

http://arxiv.org/abs/1406.6036

	Proposed robust entanglement-based magnetic field sensor beyond the standard quantum limit

