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Abstract 

Simvastatin has been shown to have anti-inflammatory effects that are independent of its 

serum cholesterol lowering action, but the mechanisms by which these anti-inflammatory 

effects are mediated have not been elucidated. To explore the mechanism involved, the effect 

of simvastatin on TLR signalling in primary human monocytes was investigated. A short pre-

treatment with simvastatin dose-dependently inhibited the production of TNF in response to 

TLR8 (but not TLRs 2, 4, or 5) activation. Statins are known inhibitors of the cholesterol 

biosynthetic pathway, but intriguingly TLR8 inhibition could not be reversed by addition of 

mevalonate or geranylgeranyl pyrophosphate; downstream products of cholesterol 

biosynthesis. TLR8 signalling was examined in HEK 293 cells stably expressing TLR8, 

where simvastatin inhibited IKKα/β phosphorylation and subsequent NF-B activation 

without affecting the pathway to AP-1. Since simvastatin has been reported to have anti-

inflammatory effects in RA patients and TLR8 signalling contributes to TNF production in 

human RA synovial tissue in culture, simvastatin was tested in these cultures. Simvastatin 

significantly inhibited the spontaneous release of TNF in this model which was not reversed 

by mevalonate. Together, these results demonstrate a hitherto unrecognized mechanism of 

simvastatin inhibition of TLR8 signalling that may in part explain its beneficial anti-

inflammatory effects. 
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INTRODUCTION 

Rheumatoid arthritis (RA) is a debilitating inflammatory disease that affects approximately 

1% of the population. It is characterized by autoimmune synovial inflammation with 

consequent destruction of cartilage and bone (1). The release of pro-inflammatory cytokines 

and matrix metalloproteinases by immune cells that infiltrate the synovial membrane is an 

important factor in the pathogenesis of RA, as demonstrated by the clinical effectiveness of 

anti-cytokine biologicals (antibodies/soluble receptors), in particular, those that target TNF 

(2, 3). A compounding problem associated with RA is an increased risk of cardiovascular 

mortality (4, 5). Consequently, HMG-CoA inhibitors (statins) that inhibit the production of 

mevalonate, thereby preventing the biosynthesis of cholesterol are often prescribed to RA 

patients. In addition to the lipid-lowering effects which are beneficial in the treatment of 

cardiovascular disease, statins also have anti-inflammatory actions, such as inhibition of NF-

B activity and consequent reduction in the production of pro-inflammatory cytokines (6, 7).  

This anti-inflammatory effect of statins has been reported to decrease clinical symptoms of 

disease in patients with RA (8-11) and have also been observed to have prophylactic and 

therapeutic efficacy in the collagen-induced arthritis mouse model (12). However, the precise 

mechanisms by which statins exert these effects have not yet been fully elucidated. 

 

Statins inhibit the production of mevalonate, the committed step in cholesterol biosynthesis, 

thereby preventing the production of cholesterol and its precursors. They not only reduce 

cholesterol synthesis, but also reduce mevalonate-derived molecules, such as the isoprenoid 

intermediates, farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP). The 

function of these isoprenoid intermediates is to induce protein prenylation i.e. addition of a 

prenyl group to C-terminal cysteine residues of proteins.  The functions of several 

intracellular signalling proteins such as Rac and Rho have been demonstrated to be controlled 
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by prenylation (13). Thus, it is possible that statins could mediate inflammatory pathways by 

blocking this process.  

 

The potential role of innate immunity in sustaining chronic inflammation in RA is now well 

recognised (14, 15). In particular, toll-like receptors (TLRs), a family of pattern recognition 

receptors of which there are ten in humans, have been implicated in the pathogenesis of RA 

(reviewed in (16)). Upon activation, TLRs initiate signalling cascades leading to the 

activation of transcription factors AP-1, NF-κB or IFN regulatory factors leading to the 

production of cytokines. These signalling pathways are initiated by the adaptor proteins 

myeloid differentiation primary response 88 (MyD88)(17, 18); MyD88 adaptor-like (Mal) 

protein (19); TIR domain-containing adaptor inducing IFN-β (TRIF) (20) and TRIF-related 

adaptor molecule (TRAM) (21). The main signalling pathway activated by most TLRs is the 

MyD88 dependent pathway that signals to the TRAF6 complex which includes IRAK1, 2 and 

4. This then activates TAK1-binding protein (TAB)1 and 2 and transforming growth factor 

beta-activated kinase (TAK)1, at which point the signal splits to activate the IKK complex 

consisting of IKKα, IKKβ and NEMO leading to NF-kB activation or to the mitogen-

activated protein kinases (MAPK) which activate downstream AP-1 (22) .   

 

Interestingly, statins have previously been demonstrated to modulate TLR2 and 4 signalling 

and expression (23, 24), making TLRs good candidates for the anti-inflammatory mechanism 

of statins in RA. In an attempt to gain a further understanding of the mechanism by which 

statins may be beneficial from an immumodulatory perspective, the effect of simvastatin on 

TLR signalling in primary human monocytes and in human rheumatoid synovial membrane 

cell cultures that spontaneously produce inflammatory cytokines were investigated.  
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MATERIALS AND METHODS 

Reagents 

 Cell culture reagents used were penicillin-streptomycin, RPMI 1640, and DMEM obtained 

from Lonza (Wokingham, UK) and fetal calf serum (FCS) from Sigma (Dorset, UK). The 

TLR ligands used were chloroform-extracted Escherichia coli, lipopolysaccharide (LPS) and 

resiquimod (R-848) from Invivogen (Toulouse, France). Flagellin (purified) and Pam3Cys-

Ser(Lys)4·3HCl (Pam3) were from Alexis (Enzo Life Sciences, Exeter, UK). Simvastatin and 

geranylgeranyl- pyrophosphate (GGPP) were purchased from Sigma.  

 

Cell culture 

RA synovial membrane cells were isolated from patients undergoing joint replacement 

surgery as previously described (25, 26). Immediately after isolation, cells were cultured at 1 

× 10
5
 cells/well in 96-well tissue culture plates (Falcon) in RPMI 1640 containing 5% (v/v) 

FBS and 100 U/ml penicillin-streptomycin. All RA patients gave written informed consent 

and the study was approved by the Riverside Research Ethics Committee REC number: 

07/H0706/81. Primary human monocytes were isolated from single donor plateletphoresis 

residues obtained from the North London Blood Transfusion Centre (United Kingdom) by 

Ficoll-Hypaque centrifugation after peripheral blood mononuclear cells (PBMC) isolation 

using lympholyte gradients (27) . The use of peripheral blood mononuclear cells was 

approved by the Brighton and Sussex Medical School Research Goverance and Ethics 

Committee. Cells were cultured in RPMI medium 1640 with 25 mM Hepes and 2 mM l-

glutamine supplemented with 5% heat-inactivated fetal calf serum and 100 units/ml of 

penicillin/streptomycin at 37°C. HEK-Blue hTLR8 cells (Invivogen) were routinely cultured 

in DMEM (Sigma) supplemented with 10% fetal bovine serum and 100 U/mL penicillin-
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streptomycin. These cells stably express human TLR8 and an inducible secreted embryonic 

alkaline phosphatase (SEAP) reporter gene driven by an NF-B/Ap-1 promoter. Upon 

activation of TLR8, SEAP is secreted into the cell supernatant and is detected using 

QUANTI-Blue (Invivogen), a medium that turns purple/blue in the presence of SEAP.  

 

Plasmids 

The NF-B reporter plasmid, pGNL6 (a generous gift from Dr. David Gould, Queen Mary, 

University of London), consists of six repeats of the NF-B site upstream of a minimal CMV 

promoter controlling expression of firefly luciferase (28). The prenylation reporter system 

was based on the lentiviral vector constructed by Chinault et al. (29), except that two separate 

plasmids were constructed for use in transient transfections rather than lentiviral delivery. 

The sequences coding for the Gal4BD-VP16-GFP-CDC42tail was amplified from the 

lentiviral vector previously described (29) using the primers 5’ 

ctaggctagcgatgaagctactgtcttctatcgaa 3’ and 5’ctaggcggccgc tcatagcagcacacacctgcggct 3’, and 

ligated into pcDNA6 (Life Technologies, Paisley, UK) using NheI and NotI restriction 

enzymes. The sequences coding for 5 copies of Gal4 upstream of firefly luciferase was 

amplified from the lentiviral vector described above using primers 5’ ctag ggtacc 

agatccagtttggttacgacggat 3’ and 5’ ctaggctagcggtggctttaccaacagtaccgga 3’, and ligated into 

pGL2-Basic (Promega, Southampton, UK) using restriction sites for KpnI and NheI. All 

constructs were verified by sequencing. The Renilla luciferase plasmid (pRL-SV40; 

Promega) was used to normalize for transfection efficiency in all experiments. 

 

Transient transfection of HEK-Blue hTLR8 cells 

Transient transfections were performed using 25 kDa linear polyethylenimine (PEI) 

(purchased from Polysciences Inc. PA, USA). Stock solutions of PEI were prepared in water 
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at a concentration of 1 mg/ml, and the pH adjusted to 7.0. The transfection conditions were as 

previously described(30). Briefly, cells were plated at a density of 4 x 10
5
 cells/well in 96-

well plates and transfected with a total of 0.5 g of DNA per well. The transfection complex 

was formed at a DNA:PEI ratio of 1:3 in OPTI-MEM (Life Technologies, Paisley, UK), with 

a 30 minute incubation at room temperature prior to addition to the cells.  Culture media was 

replaced 24 h later with 100 µL of fresh DMEM containing 5 µg/mL of R-848 and cultured 

for a further 24 h before collecting supernatants or assaying luciferase activity in cell lysates.  

 

Western blotting 

Primary human monocytes or HEK-Blue TLR8 cells were preincubated with simvastatin for 

30 min before stimulation with 2 or 5 µg/mL of R-848 respectively for 30 min. Cells were 

lysed by the addition of 100 μl of SDS sample buffer. Extracts were separated on 12% or 

10% SDS-PAGE gels, and proteins were transferred to nitrocellulose membrane. Membranes 

were blocked in 5% BSA in Tris-buffered saline containing 0.1% Tween 20 (TBST) and 

probed with antibodies recognizing phosphorylated forms of p38, TAK-1 or IKKα/β, or anti-

GAPDH as a loading control (all from Cell Signalling Technologies). Membranes were then 

incubated with anti-rabbit-IgG-horseradish peroxidase conjugate (Sigma), followed by 

detection with advanced chemiluminescence (ECL) reagents (GE Healthcare, Amersham, 

UK) and exposed to autoradiography using Hyperfilm (GE Healthcare). Films were 

developed using an AGFA Curix 60 developer (Agfa Healthcare, Middlesex, UK).  

 

ELISA 

Sandwich ELISAs were used to measure TNF and IP-10 (BD, Oxford, UK) according to the 

manufacturer’s recommendations. Standards were purchased from Peprotech (London, UK). 
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Optical density was read on a spectrophotometric ELISA plate reader (BioTek) and analyzed 

using Gen5 software V2.6.  

 

Assays 

Firefly and Renilla luciferase activities were assayed in cell lysates using the Steady-Glo 

Luciferase Assay System (Promega) and Renilla Luciferase Assay System (Promega) 

respectively according to the manufacturer’s instructions.  Luminesence was measured using 

a BioTek plate reader. SEAP activity was measured in cell culture supernatants using Quanti-

Blue reagent (Invivogen) according to the manufacturer’s instructions. Measurements were 

taken at 630 nm. Cell viability was assessed by MTT assay(31) (Sigma).  

 

Statistical methods 

Mean, SD, SEM, and statistical significance were calculated using GraphPad version 3 

(GraphPad Software). For statistical analysis, a one-tailed t test of paired data was used with 

a 95% confidence interval or a Wilcoxon matched-pairs two-tailed signed ranks test.  
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RESULTS 

Simvastatin inhibits TLR8 signalling in primary human monocytes and is not reversed 

by treatment with GGPP 

It has previously been suggested that the anti-inflammatory effects of simvastatin could be 

mediated by inhibition of TLR signalling. Therefore, the release of TNF from primary human 

monocytes pre-incubated with 10 µg/mL of simvastatin for 30 min prior to stimulation for 

18h with ligands specific for TLRs 2 (Pam3), 4 (LPS) 5 (flagellin) and 7/8 (R-848) was 

measured. Simvastatin had no effect on TNF secretion in response to stimulation of TLRs 2, 

4 or 5 but did result in a decrease in TNF produced in response to R-848 (Fig. 1A), with no 

effect on cell viability as shown by MTT assay (Fig. 1B). This effect was assumed to be due 

to inhibition of TLR8, rather than TLR7, signalling as it has previously been demonstrated 

that monocytes do not produce TNF in response to TLR7 ligands(32). To investigate the 

mechanism by which simvastatin inhibits R-848-induced TNF secretion, a downstream 

product of the cholesterol pathway, GGPP, was added to the cultures together with 

simvastatin in an attempt to reverse this effect. Treatment with simvastatin dose-dependently 

inhibited TNF secretion from primary human monocytes, but could not be reversed by 

addition of 10 µM GGPP (Fig. 1C). Similar results were found in experiments where 

mevalonate (also downstream of HMG-Co inhibition) rather than GGPP, was added to the 

monocytes (Fig. 1D).  

 

Simvastatin-mediated inhibition of TLR8 signalling in HEK-Blue TLR8 cells is 

independent of the cholesterol pathway 

In order to model these responses in a more genetically tractable system, we also tested the 

effect of simvastatin on TLR8 signalling in HEK-Blue TLR8 cells that stably express both 

TLR8 and an AP-1/NF-B SEAP reporter. These cells constitutively express human TLR8 



10 
 

and also have the advantage that NF-B/AP-1 activation can be measured via the Quanti-

Blue assay. Treatment of HEK-Blue TLR8 cells with simvastatin dose-dependently inhibited 

activation of NF-B in response to treatment with R-848, which could not be reversed by 

addition of 10 µM GGPP (Fig. 2A), with no effect on cell viability (Fig. 2B). 

 

GGPP can reverse the effects of simvastatin on prenylation, but not the effects of 

simvastatin on inhibition of TLR8 signalling 

To confirm that the GGPP used in these experiments was functional and could reverse the 

effects of simvastatin treatment a prenylation reporter system was constructed, based on one 

previously described (29). The system is based on transient transfection of 2 plasmids: one 

coding for a chimeric Gal4-VP16-GFP transcription factor with a prenylation motif (the 

cdc42 tail) and a second plasmid coding for 5 Gal4 DNA-binding sites upstream of the gene 

for firefly luciferase. Once prenylated, the recombinant cdc42 tail associates with cell 

membranes, thereby preventing it’s translocation into the nucleus via the intrinsic nuclear 

localization sequences within the Gal4 DNA–binding domain. However, in the absence (or 

inhibition) of prenylation, the unprenylated chimeric transactivator can accumulate in the 

nucleoplasm, where it can drive the expression of firefly luciferase (Fig 3A). The reporter 

system was tested by transfection of both plasmids into HEK-Blue-TLR8 cells, followed by 

treatment with 10 µg/mL simvastatin -/+ 10 µM GGPP. As expected, treatment with 

simvastatin dramatically increased luciferase expression, and the addition of GGPP reversed 

this effect completely (Fig. 3B). As GGPP did not reverse the inhibition of TLR8 signalling 

in HEK Blue TLR8 cells, the effect of simvastatin -/+ GGPP on prenylation was tested in 

these cells. Simvastatin blocked prenylation at all concentrations tested, while 10 µM GGPP 

reversed this effect of simvastatin (Fig. 3C), but not the effects on NF-B activation as 

already shown in Fig. 2A.  
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Simvastatin-mediated inhibition of TLR8 signalling is independent of AP-1 activation 

To investigate the possible mechanisms by which simvastatin inhibits TLR8 signalling, 

experiments were performed to determine if activation of both NF-B and AP-1 transcription 

factors were inhibited by simvastatin as the SEAP reporter would not discriminate between 

them. Stimulation of HEK-Blue TLR8 cells with R-848 induces the production of SEAP via 

activation of both of these transcription factors. Hence, the effect of simvastatin on activation 

of NF-B alone, using a reporter plasmid coding for the firefly luciferase gene downstream 

of 6 NF-B binding sites, was tested. Transient transfection of HEK-Blue TLR8 cells with 

the NF-B reporter plasmid was followed by stimulation with R-848 -/+ simvastatin. 

Activation of NF-B was dose-dependently inhibited by simvastatin (Fig. 4A). The effect of 

simvastatin on the activation of AP-1 was explored by analysis of phosphorylation of p38 by 

Western blotting.  Stimulation of HEK-Blue TLR8 cells with R-848 resulted in a marked 

increase in the level of intracellular phosphorylated p38 and this increase was not affected by 

simvastatin (Fig. 4B). These results were confirmed in primary human monocytes (Fig. 4C). 

Investigation of the NF-B activation pathway in primary human monocytes revealed that 

treatment of monocytes with R-848 resulted in a marked increase in phosphorylated IKKα/β, 

which was inhibited by simvastatin and not reversed by GGPP (Fig. 4C and D).  To further 

elucidate the mechanism by which simvastatin inhibited phosphorylation of IKKα/β, 

activation of TGF-β-activated kinase-1 (TAK-1) was analysed by western blot in primary 

human monocytes as this lies upstream of both p38 and IKKα/β. Treatment of human 

monocytes with R-848 resulted in phosphorylation of TAK-1, but again, this was not affected 

by simvastatin (Fig. 4C).  

 

Simvastatin inhibits spontaneous TNF production from human RA synovial membrane 

cultures 
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Synovial membrane cultures isolated from human RA joints spontaneously secrete cytokines. 

The importance of TLR8 in the production of TNF from these cultures has previously been 

demonstrated (32), so we hypothesized that simvastatin may also have anti-inflammatory 

effects in this system. Therefore, rheumatoid synovial membrane cells harvested from 

elective joint replacement surgery were cultured with increasing concentrations of 

simvastatin for 24h and the secretion of TNF was measured. Incubation with 20 µg/mL of 

simvastatin significantly reduced (∗∗, p < 0.01; and ∗, p < 0.05) the concentrations of these 

molecules in the cell supernatants (Fig. 5A). The effect of simvastatin was dose-dependent 

and was not reversed by addition of mevalonate to the cultures (Fig. 5B).  Cell viability was 

measured by MTT assay at the end of the 24h incubation in each experiment and showed no 

difference in cell viability between any of the experimental conditions (Fig. 5C).   

 

DISCUSSION 

This study increases the understanding of the anti-inflammatory mechanism of simvastatin by 

demonstrating an inhibitory effect on TLR8 signalling in primary human monocytes. This 

effect of simvastatin on TLR8 signalling is to our knowledge, entirely novel. Anti-

inflammatory actions of statins that are independent of the reduction in cholesterol have been 

known for some time, such as inhibition of oxidative stress induced NF-B activation (6, 33), 

leukocyte adhesion (34, 35) and cell proliferation/apoptosis (36, 37)  (38).  Some of these  

anti-inflammatory effects have been attributed to an alteration of protein prenylation. 

Blocking the cholesterol synthesis pathway prevents the downstream synthesis of isoprenoid 

intermediates such as FPP and GGPP, which can be incorporated into proteins via covalent 

attachment to conserved cysteine residues in a process known as protein prenylation (13). 

RhoA prenylation in particular has been shown to be important in activation of NF-B and 
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secretion of pro-inflammatory cytokines from TNF activated rheumatoid synoviocytes (39) 

and TLR2 activated monocytes from RA patients (23).  

 

The inhibition of TLR signalling by simvastatin observed was unexpected in that it was not 

reversible by mevalonate or GGPP and was specific to TLR8. Instead the mechanism 

appeared to be through inhibition of downstream IKK phosphorylation and consequently NF-

kB activation. However, phosphorylation of p38 MAPK that leads to AP-1 activation was 

unaffected. TAK1 acts upstream of both IKKβ and p38 (40) and was clearly phosphorylated 

upon treatment of monocytes with R-848. However, this was not inhibited by simvastatin 

suggesting that simvastatin may act either directly on the IKK complex or via another 

upstream molecule necessary for IKK phosphorylation. Interestingly, TLR8-mediated 

phosphorylation of IKK has previously been suggested to be independent of TAK1 instead 

being phosphorylated by mitogen-activated protein kinase kinase kinase 3 (MEKK3) (41). 

This alternate pathway of IKK activation by TLR8 may explain why no effect of simvastatin 

was observed on TLR2, 4 or 5 induced TNF production in monocytes in this study.  

 

Conversely, there have been reports of modulation of TLR2 and TLR4 by simvastatin. In 

monocytes from RA patients, simvastatin inhibited activation of NF-B and secretion of TNF 

and IL-1β in response to TLR2 stimulation (23). In monocytes from healthy donors, 

simvastatin has also been shown to inhibit the expression of TLR4 (24). However, these 

differences may be explained by the methodologies used, in particular, in the length of 

exposure to simvastatin prior to stimulation. A short 30 min incubation with simvastatin prior 

to adding TLR ligands was used in this study, whereas the other studies used a 24h pre-

incubation (23, 24). Interestingly the effects of simvastatin shown in both of these studies 
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were reversible with mevalonate and/or GGPP suggesting a possible reduction of prenylation 

of TLR signalling molecules with a longer pre-incubation period. 

 

TLRs are suggested to contribute to the maintenance of inflammation in RA. In previous 

studies we had identified a role for TLRs, and in particular TLR8, in the production of 

spontaneous TNF in human RA synovial membrane cultures (32, 42). In agreement with a 

pathogenic role for TLR8 in RA, a recent study observed that expression of human TLR8 in 

transgenic mice resulted in increased susceptibility to collagen-induced arthritis (43). This 

same study also reported increased expression of TLR8 in the blood of patients with systemic 

arthritis (43). As simvastatin is suggested to be anti-inflammatory in RA (44) and was 

observed to inhibit TLR8 signalling in monocytes in this study, the effect of simvastatin on 

the production of TNF from human RA synovial cultures was investigated. 

 

Treatment of human RA synovial cultures with simvastatin significantly decreased the 

spontaneous production of TNF which was refractory to mevalonate treatment, as had been 

observed for TLR8 induced TNF production in monocytes. This suggested that it was not due 

to effects on other TLRs such as TLR2 and TLR4 which can be reversed with mevalonate. 

This anti-inflammatory effect in the RA synovial membrane cultures is consistent with 

previous studies showing beneficial effects of statins in RA (45) and suggest that the effects 

of statins on lowering joint pain and swelling (44, 46) may be due, at least in part, to the 

inhibition of TNF released from synovial tissue. TNF is known to be a key cytokine driving 

chronic inflammation in RA as has been demonstrated by the clinical success of anti-TNF 

biological therapies (47). This reduction in TNF may in part be due to inhibition of TLR8, 

however in RA patients, long term simvastatin use may have multiple effects that together 

generate the clinical benefits observed, such as the reduction of expression and function of 
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other TLRs, decreased cell proliferation and a reduction in inflammation initiated by other 

pathways (8-11, 44). 

 

CONCLUSION 

Together, these data provide new insights into the intracellular signalling pathways 

downstream of TLR8 activation. The precise mechanism by which phosphorylation of IKK in 

response to TLR8 stimulation is inhibited by simvastatin remains to be fully elucidated. 

However, the data builds upon our existing knowledge of the anti-inflammatory effects of 

simvastatin and suggests a possible mechanism by which simvastatin contributes to a 

reduction in disease activity in RA. 
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Figure Legends 

Figure 1. Simvastatin inhibits TLR8, but not TLRs 2, 4 or 5 signalling and is not 

reversed by GGPP in primary human monocytes. (A) Cells were incubated with 10 

g/mL simvastatin for 30 min, then stimulated with 10 ng/mL Pam3, 100 ng/mL LPS, 2 

g/mL R-848 or 10 ng/mL flagellin for 16 h. Supernatants were analysed for TNF. Data 

pooled from 4 separate donors is shown as a percentage of the appropriate maximal response 

(* p< 0.0001). (B) Cell viability was measured by MTT assay. Data are pooled from 4 

separate donors as a percentage of the appropriate maximal response. (C) Primary human 

monocytes were cultured in the presence of 10 g/mL simvastatin ± 10 M GGPP for 30 min 

prior to stimulation with 2 g/mL R-848. Supernatants were analysed for TNF production. 

Data are representative of 5 separate experiments using 5 different donors. (D) Primary 

human monocytes were cultured in the presence of 0 or 10 µg/mL of simvastatin ± 1 µM of 

mevalonate for 30 min prior to stimulation with R-848. Supernatants were analysed for TNF 

production. Data are representative of 4 separate experiments using 4 different donors. 

 

Figure 2. Simvastatin inhibits TLR 8 signalling in HEK Blue TLR8 cells which is not 

reversed by treatment with GGPP. (A) HEK Blue TLR8 cells (which stably express TLR8 

and a reporter gene expressing a secreted embryonic alkaline phosphatase (SEAP) under the 

control of a NF-B/AP-1 inducible promoter) were cultured for 30 min in the presence of 10 

g/mL simvastatin ± 10 M GGPP, before stimulation with 5 g/mL R-848 for 16 h. 

Supernatants were analysed for SEAP activity using the Quanti-Blue assay and (B) cell 

viability was measured by MTT assay. Data are representative of 3 independent experiments. 

 

Figure 3. Inhibition of TLR8 signalling by simvastatin is independent of the prenylation 

pathway. (A) Schematic showing the principle of the bioluminescence reporter for detection 
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of inhibition of protein prenylation in cells. HEK Blue TLR8 cells were transfected with a 

plasmid coding for a Gal4-VP16-GFP transcription factor bearing a prenylation 

(geranylgeranylation) site from Cdc42 at its C-terminus (Gal4-VP16-GFP-Cdc42tail). This 

drives transcription of firefly luciferase (F Luc) from a second transfected plasmid under the 

control of a synthetic promoter containing 5 Gal4 DNA–binding sites. When prenylated, the 

Gal4-VP16-GFPCdc42tail associates with membranes, reducing its ability to drive firefly 

luciferase (F Luc) expression. (B) Inhibition of prenylation by 10 g/mL simvastatin for 30 

min prevents association of Gal4-VP16-GFP-Cdc42tail with membranes, allowing the 

transactivator to accumulate in the nucleoplasm and augment reporter expression. The 

presence of 10 M GGPP fully reverses the effect of simvastatin. (C) Prenylation is inhibited 

by 10 g/mL simvastatin and reversed by 10 M GGPP in HEK Blue TLR8 cells treated with 

5 g/mL of R-848 for 16h.   

 

Figure 4. Inhibitory effects of simvastatin on TLR8 signalling are mediated by 

inhibition of NF-B, but not AP-1. (A) Inhibition of NF-B-induced luciferase production 

in in HEK Blue TLR8 cells in response to 16 hour incubation with 5µg/ml R-848 after a 30 

min incubation with simvastatin. (B) HEK Blue TLR8 cells were treated with 10 µg/mL 

simvastatin for 30 min ± 10 M GGPP prior to treatment with 5 g/mL R-848 for 16 h. Cell 

lysates were examined for phosphorylation of p38 by Western blotting. (C) Primary human 

monocytes were treated with 10 µg/mL simvastatin ± 10 M GGPP for 30 min prior to 

treatment with 2µg/ml R-848 for 16 h. Cell lysates were examined for phosphorylation of 

p38, IKKα/β and TAK-1 by Western blotting. GAPDH was used as a loading control. These 

blots are representative of 3 independent experiments. (D) Densitometric analysis of Western 

blots for phosphorylated IKKα/β.  Data are expressed as arbitrary units and are the mean ±SE 

(n = 3). *P<0.05 vs. R-848 treated samples by Student’s t-test for paired data. 
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Figure 5. Simvastatin inhibits spontaneous TNF production from RA synovial 

membrane cultures which is not reversed by mevalonate. (A) RA synovial membrane 

cells were cultured in medium alone or medium containing 20 µg/mL simvastatin 

(**p<0.0001). Data are shown from 7 RA patient samples from separate donors.  (B) RA 

synovial membrane cells were cultured for 24 h in the presence of simvastatin ± 1 µM 

mevalonate. Supernatants were analysed for TNF. (C) Effects of simvastatin ± 1mM 

mevalonate on cell viability were measured by MTT assay. Data shown in B and C are from 

triplicate cultures shown as the mean ±SD and are representative of three separate 

experiments in unrelated donors. 
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