

Sussex Research

A thermal boundary control method for a flexible thin disk rotating over critical and supercritical speeds

Yong-Chen Pei, Chris Chatwin, Ling He, Wen-Zuo Li

Publication date

07-01-2017

Licence

This work is made available under the Copyright not evaluated licence and should only be used in accordance with that licence. For more information on the specific terms, consult the repository record for this item.

Document Version

Accepted version

Citation for this work (American Psychological Association 7th edition)

Pei, Y.-C., Chatwin, C., He, L., & Li, W.-Z. (2017). *A thermal boundary control method for a flexible thin disk rotating over critical and supercritical speeds* (Version 1). University of Sussex. https://hdl.handle.net/10779/uos.23428652.v1

Published in

Meccanica

Link to external publisher version

https://doi.org/10.1007/s11012-016-0418-y

Copyright and reuse:

This work was downloaded from Sussex Research Open (SRO). This document is made available in line with publisher policy and may differ from the published version. Please cite the published version where possible. Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners unless otherwise stated. For more information on this work, SRO or to report an issue, you can contact the repository administrators at sro@sussex.ac.uk. Discover more of the University's research at https://sussex.figshare.com/

Parameters	Disk mode	Current work (Hz)	ANSYS Workbench (Hz)
	(0,0)	34.0345	33.798
	(0,1)	50.5412	50.412
Disk rotating	(0,2)	109.7484	109.76
speed $\Omega=0$ rpm	(0,3)	207.2632	207.18
	(0,4)	336.1603	335.87
Shaft temperature	(1,0)	373.3374	373.07
increment $\Theta_D=20$ K	(1,1)	410.6060	410.12
	(0,5)	494.7116	494.11
	(1,2)	531.5171	530.62
	(0,0)	55.4631	55.054
	(0,1)	113.6046	113.39
Disk rotating	(0,2)	213.0075	213.07
speed Ω =6000 rpm	(0,3)	331.9636	331.99
	(1,0)	400.9092	400.36
Shaft temperature	(1,1)	452.7148	452.13
increment Θ_D =60 K	(0,4)	472.9953	472.85
	(1,2)	604.6028	603.31
	(0,5)	639.0490	638.61

Table 1 Numerical model validation using the natural frequency for a free rotating disk