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Abstract 

 

We present a new three-dimensional template atlas of the anatomical subdivisions of the 

macaque brain, which is based on and aligned to the MRI dataset and histological sections 

of the Saleem and Logothetis atlas (Saleem and Logothetis, 2012). We describe the creation 

and validation of the atlas that, when registered with macaque structural or functional 

MRI scans, provides a straightforward means to estimate the boundaries between 

architectonic areas, either in a three-dimensional volume with different plane of sections, 

or on an inflated brain surface (cortical flat map). As such, this new template atlas is 

intended for use as a reference standard for macaque brain research. Atlases and templates 

are available as both volumes and surfaces in standard NIFTI and GIFTI formats. 
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Introduction 

 

 Neuroanatomical atlases are an essential aspect of studying the brain, its anatomical and 

functional organization, and connections. Conventional atlases, which have guided 

neuroscientists for more than 100 years, consist of drawings or photographs, typically from 

histological sections stained for cell bodies (Nissl and Golgi method), or myelin fibers (Ramón y 

Cajal 1899; Brodmann 1909; Kluver and Barrera 1953; See also Garey 1994). Classical 

anatomists have constructed atlases by magnifying such sections and drawing both major 

divisions of the brain as well as more subtle distinctions between brain regions based on 

cytoarchitectonic appearance or myelination that were evident upon staining (Brodmann 1909; 

Vogt and Vogt 1919; von Bonin and Bailey 1947). In the last few decades, neuroanatomical 

atlases have taken the form of large books of magnified photographs of stained sections 

combined with corresponding outline drawings that depict the precise stereotaxic coordinates of 

internal brain structures. 

 The human capacity to infer three-dimensional structure from a sequence of images is 

limited because of the challenges posed for understanding the topological layout of the brain 

using a series of two-dimensional sections. The cerebral cortex, for example, is a highly 

convoluted structure whose many folds result in nearby structures on a section to be located far 

away from one another in cortical space. It is thus often difficult to gain a perspective on the 

tiling of the cortical sheet by different functional areas by comparison with a conventional atlas. 

This problem is more severe when the angle of sectioning of a brain specimen (or block) does 

not precisely match the angle of sectioning in the reference atlas. To address these issues, 

investigators have previously taken the approach of physically flattening brain specimens, after 
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first separating the cortical mantle from the underlying white matter (Olavarria and Van Sluyters 

1985; Tootell and Silverman 1985; Hackett et al., 1998; Sincich et al., 2003). More modern 

approaches allow for the virtual extraction of cortical surfaces and volumetric brain components 

from digitized brain scans, which one can then manipulate and analyze on a computer (Drury et 

al., 1996; Van Essen et al., 2001). 

 Within the human functional imaging community, researchers have come to rely on 

standard methods to align individual brains into a common anatomical space. These registration 

methods can employ, for example, affine transformations that apply twelve parameters to 

reshape the large-scale geometry of the brain, or nonlinear methods that use thousands of 

parameters to locally optimize the correspondence between different types of scans or scans 

coming from different subjects. A common practice is to align subject-specific data to a common 

reference space such as Talairach or MNI space, defined by the geometry of a single template 

brain. Despite the inherent variability across subjects, this general approach has proven useful for 

comparison across subjects, scanning sequences, and laboratories. It also provides a means to 

identify the specific brain areas associated with functional MRI responses or anatomical features 

of interest. 

 Likewise, accurate registration to a three-dimensional anatomical standard is an 

important capability for neuroscientists using the macaque model, which relies increasingly on 

the use of MRI methods. Macaque researchers need to determine the areal location from both 

anatomical and functional MRI scans. For functional scans, this is important, for instance, when 

attempting to understand the correspondence between functionally defined areas (e.g. “face 

patches” [Tsao et al., 2008a, b]) and histological areal boundaries. For anatomical scans, areal 

information is critical for targeting sites for electrophysiological experiments, anatomical tracer 
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injections, or local pharmacological manipulations. Using a 2D atlas for this purpose typically 

requires comparing an MRI dataset with labeled histological sections from one plane (Wu et al., 

2000; Paxinos et al., 2009). The Saleem and Logothetis (2012) atlas offers three planes, with its 

areal boundaries initially identified in horizontal and coronal histology sections with different 

staining methods, and then interpolated into sagittal MRI sections in the same animal. However, 

what is really needed is a high quality 3D volumetric atlas that can be automatically computer-

registered to the 3-D anatomical or functional scan from any animal, and thus used to specify the 

areal designation relative to experimental locations of interest. At present, there exist several 

options for generating 3D macaque brain templates for mapping architectonic areas onto the 

macaque brain: 1) Surface based atlases, which are based on registering published parcellation 

schemes or neuroanatomical data onto a standard brain (Van Essen et al., 2012; Bezgin et al., 

2012; see also Rohlfing et al., 2012 and their Table 1 for the overview of some of the publicly 

available MRI based atlases of the non-human primate brain), 2) Probabilistic atlases, which 

rely on MRI-based parcellation but have the advantage of estimating areal boundaries based on 

population data (McLaren et al., 2009; Quallo et al., 2010; Frey et al., 2011; Woods et al., 2011), 

3) 2D histological datasets, which consist of stained, high-resolution histological sections and 

coarse labeling, but no detailed delineation of areal boundaries (Mikula et al., 2007; see 

http://brainmaps.org), 4) Slice based 3D atlases, in which 2D histological slices are converted 

into a 3D volumes without reference to the native MRI-based geometry (Chakravarty et al, 2009; 

Modha 2009), and  5)  Diffusion tensor MRI atlases based on multiple postmortem rhesus 

macaque brains (Calabrese et al., 2015).  

In the case of the Saleem and Logothetis atlas, the histological boundaries were carefully 

determined in two hemispheres of one experimental animal (D99), and from the outset the atlas 

http://brainmaps.org/index.php?action=viewslides&datid=151
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was registered to the same animal’s in vivo high-resolution anatomical MRI scan thus preserving 

the native geometry of the brain. Here we present a new high-resolution 3D template atlas based 

on the data from D99, including anatomical parcellation of cortical, and subcortical areas 

(claustrum, subregions of the basal ganglia, amygdala, and hippocampal formation). We 

demonstrate the general utility of this digital atlas by applying it to multiple subject macaque 

brains, and test its validity by comparing the areas estimated from the atlas to histological 

sections from the same subjects. In addition to the template atlas itself, we outline a number of 

steps involved in the conversion and digitization of the 2D atlas into 3D template form, and its 

application to projects that involve anatomical, functional, or connectional imaging. 

Materials and methods 

 

 The starting point for the 3D reconstruction was the published Saleem and Logothetis 

atlas of the macaque brain (Saleem and Logothetis 2012). The architectonic subregions of 

different cortical and subcortical areas from each two dimensional drawings of the sections (2D-

atlas) were digitized into a 3D volume of labels. A surrogate anatomical MRI volume of better 

gray/white matter tissue contrast and higher spatial resolution was created by registering a high 

quality ex vivo MRI scan of a perfused brain to the original atlas space defined by the native 

geometry of the original MRI scan from the atlas. The 3D volume of labels was then processed 

with anatomically constrained interpolation to match the surrogate MRI volume, followed by 

manual editing to remove any residual mismatch and artifacts. Finally, the accuracy and usability 

of the 3D template atlas was demonstrated by applying the atlas data to a range of macaque 

brains of different sizes, and functional imaging data. The following sections outline these 

methodological aspects in the creation and testing of the atlas in greater detail. 
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Original 2D-atlas and MRI data  

 The atlas data set used in this study consists of 30 labeled sagittal slices of the left 

hemisphere of a male rhesus monkey (Macaca mulatta; case D99; 4 years old; weight 4.9 kg), 

and was obtained from the Saleem and Logothetis atlas (e.g., Fig. 1A; For complete set of all 30 

sagittal slices, see Chapter 5 in this atlas). These slices, spaced 1mm apart were converted into 

30 two-dimensional vectorised images with each region defined as a filled polygon of a different 

color (Fig. 1B). Canvas14 (ACD Systems, Inc.) .cvx file format was used to store those 

vectorised regions for each sagittal slice. The procedure for determination and coloration of each 

region is described in detail below. 

The original MRI data set consisted of a structural brain volume of the same subject, case 

D99. It was acquired using a Modified Driven Equilibrium with Fourier Transform (3D-MDEFT) 

method using 4.7 T scanner with a 40 cm diameter bore. The scan achieved an isotropic voxel 

resolution of 0.5 mm3 with dimensions of 256 X 256 X 240 voxels. This structural image was 

used as a basis for the construction of our 3D digital atlas (e.g., see Fig. 1A, left).  

 

Creation of an ex-vivo surrogate anatomical volume 

 A structural brain image of another macaque (case DB58, male, 5.95 kg, 4.5 year old) 

was obtained ex-vivo using a magnetisation transfer ratio (MTR) sequence, which gives a T1 like 

contrast with high spatial resolution (250 m isotropic), and a better signal to noise ratio (SNR > 

50) (Fig. 2B). The resulting volume was then non-linearly registered to the original anatomical 

T1 D99 volume from the Saleem and Logothetis atlas (Fig. 2A) using Ezys image registration 

software (Gruslys et al 2014). Normalized Mutual Information (NMI) was used as a similarity 

measure. NMI was evaluated and summed in both source and target coordinate systems while 
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constrained diffeomorphic forward and backward transformations were simultaneously 

optimized in order to avoid registration biases. This step effectively allowed us to extract the 

prior information about sharpness of cortical boundaries from the MTR image and use it to 

increase D99 sharpness without affecting its shape. We adopted this newly transformed volume 

as “Surrogate D99” (Fig. 2C) used for the atlas reconstruction described below. The very high 

spatial resolution of the surrogate brain, along with the excellent gray/white tissue contrast, 

render this MRI volume much more suitable to register with other brains than the original D99, 

while preserving the original geometry of D99 (see Suppl Fig. S1). The perfusion-fixation 

protocol, and other preparations for data acquisition and scanning of the ex-vivo brain are 

described in detail in the previous study (Reveley et al., 2015)  

 

Creation of 3D digital atlas template from 2D atlas 

 The conversion of a section-based atlas into a three-dimensional format with unique 

digital identifiers for each area involved a sequence of manual and automated processing steps.  

These steps are outlined here (see Fig. 3): 

(1) Manual filling of identified areas on each section.  Each named area from the 2D atlas 

was assigned a unique color label in vector-based CVX format. Then, based on this assignment, 

each area was filled in manually in each of the 30 sagittal slices of the target hemisphere using 

Canvas program (v14.0, ACD Systems, Inc.). The colored sagittal images were rasterized and 

stacked to create a coarse 3D volume of the brain (Fig. 3A). Because the initial gap between 

sections in the atlas was 1 mm, a simple interpolation would lead to a jagged and irregular 

representation of areal boundaries in both coronal and horizontal planes of sections (for e.g., see 
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coronal slices in Fig. 3A). To overcome this, we performed interpolation with the context of our 

very high-resolution surrogate anatomical volume, as described next. 

 (2) Affine and nonlinear section alignment.  Assembling the anatomical volume from 

colored diagrams began with optimizing alignment to the surrogate anatomy volume (Fig. 3B).  

This process involved affine transformation based on a combination of manual landmarks, 

followed by minor non-linear adjustments subject to a NMI cost function. This step produced a 

coarse map of areal boundaries in the frame of the surrogate volume. However, at this stage of 

processing the color labels were jagged and not restricted to the gray matter boundaries (e.g., 

arrows in Fig. 3B), largely due to the 1 mm spacing between sections in the original data. The 

next step thus involved interpolation and masking. 

 (3) Interpolation of colored maps within gray matter mask.  To create continuous labeling 

of areal colors that were restricted to the gray matter, we first extracted a mask of the gray matter 

from the high-resolution surrogate MRI volume and then performed a mask-constrained 

interpolation based upon the aligned colored sections from (2) above. During this procedure, 

cortical voxels lying outside of the gray matter mask were discarded, and unlabeled voxels 

within the gray matter were assigned a value based on their nearest 3D neighborhood (Manhattan 

distance was used as metric). This procedure led to a complete labeling of gray matter with no 

intrusion into white matter regions (compare Fig. 3C with 3B). However, following this step, 

close section-by-section inspection of the interpolated gray matter maps revealed that some 

labels did not adequately match the known anatomical boundaries. In some cases areal 

boundaries remained jagged or appeared as islands, whereas in others an area appeared to invade 

the wrong cortical space. Analysis revealed that these errors were not present in the originally 2D 

labeled diagrams and were thus an artifact introduced during the 3D construction. The next steps 
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were applied for the purpose of removing such artifacts and thus optimizing the accuracy of areal 

boundaries in the 3D volume. 

 (4) Assignment of cortical boundaries based on radial paths.  Due to the various 

inaccuracies encountered when delineating the original label set on 2D slices, labels do not 

match perfectly when those slices are merged into a 3D volume (Fig. 3A). We reasoned that the 

quality of the dataset can be improved by exploiting prior information about qualitative 

properties that cortical regions should satisfy. Namely we assume that all cells distributed along 

"radial" paths should belong to the same cortical region. We call paths "radial" if they go along 

thickness of cortex connecting both cortical surfaces while intersecting with those surfaces at 

right angles. Radial paths should be straight lines connecting cortical surfaces in the regions 

where cortex is perfectly flat or in the regions where sulci and gyri share the same radius of 

curvature; in this case radial paths would also be the shortest paths connecting cortical surfaces. 

Still, paths are allowed to be curved in the regions where centers of curvatures of pial and WM 

surfaces are different, but the curvature has to be as small as possible (Fig 3De), as straight lines 

may not be able to be normal to both cortical surfaces at once (Fig 3Db). Please note that we 

cannot simply define radial paths to be always straight and normal to one of the cortical surfaces 

as we would not cover all cortical volume (Fig 3Dd) or would intersect and hence cover some 

regions multiple times (Fig 3Dc) which would make enforcement of the same label identifier 

along the path ill-defined. It could also be argued that choosing one of the cortical surfaces as 

"special" is not be a very elegant solution, as this might introduce different biases in the regions 

of sulci and gyri.  

 We designed an algorithm to find radial paths to be symmetric in its treatment of both 

cortical surfaces while producing a set of non-intersecting paths densely covering all cortical 
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volume (See next paragraph for more detailed description). We also designed another algorithm, 

which made sure that all points lying on any given path were assigned the same (most frequent) 

label. This helped us to avoid the incorrect situation that different layers of the same cortical 

columns would be assigned to different cortical areas while also significantly increasing 

smoothness of cortical region boundaries (Fig 3C). 

 We used non-intersecting radial paths within the cortical thickness connecting pial and 

white matter surfaces that allowed us to constrain areal assignments within the high-resolution 

gray matter mask. This procedure ensured that cortical boundaries always followed a radial 

direction through the cortex. This process began with an assignment of a vector defining path 

direction on every point of the grey matter volume. Vectors were assigned such that paths 

produced by integrating (following) vector directions at each point connected pial and WM 

surfaces without forming any loops or path intersections (e.g the vector field was constructed to 

be curl-free and divergence-free anywhere but on the cortical surfaces). Vectors can be 

interpreted as defining fluid velocity at each point and paths can be interpreted as streak lines 

connecting cortical surfaces. One simple way allowing us to find a vector field satisfying all the 

desired properties was to solve Laplace's equation by setting boundary conditions as +1 and -1 

on both cortical surfaces (Fig 3De). Laplace's equation was solved on a finite grid with one point 

per voxel. A gradient of the resulting potential produced a vector field, and integrating the vector 

field produced paths densely covering all of the grey matter and satisfying all the desired 

properties, namely: intersecting both cortical surfaces at right angles, densely covering all 

cortical volume, forming no loops, not intersecting each other, producing straight paths where 

cortical surfaces are flat and straight radial paths where the cortical surfaces share the same 

center of curvature. Each path was assigned a region identifier by majority voting of the voxels 
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that any given path crossed. Each point in a cortical 3D space was allocated a region identifier 

defined by the only path that crossed that point. As voxels are of a finite size, region identifiers 

for each voxel were estimated by a majority voting of all the points inside. Further details about 

these procedures can be found in Gruslys A, Development and Applications of GPU Based 

Medical Image Registration, PhD Thesis, University of Cambridge, 2014.  

 In summary, this method allowed us to ensure that all voxels within any given cortical 

column were assigned the same region label. 

 (5) Removal of residual islands and fine labeling.  In the final step it was necessary to 

remove a small number of isolated clusters or “islands” of areal labels that were spatially 

separated from the main area. The existence of such islands reflects, in part, the inherent 

difficulty in assigning strict areal boundaries based on cytoarchitectonic, and, in part, residual 

errors associated with the processing steps above. We removed these islands if they were less 

than one quarter the size of the parent region by filling them in according to the neighboring 

areal assignments. Following these steps, the labeled surrogate brain (Fig. 3E-F) exhibited 

complete labeling of region restricted to the cortex, with clear, radial divisions between adjacent 

cortical areas.  

 (6) Final delineation, verification, and mirroring of architectonic areas. Following the 

above steps of construction, interpolation, masking, and artifact correction, the 3D dataset was 

integrated into the AFNI (Analysis of Functional NeuroImages; Cox, 1996), and SUMA (Surface 

Mapper; Saad et al., 2012) software packages and saved in GIFTI and NIFTI formats, 

respectively. The dataset was then subject to a series of manual verification and correction of 

areal extent and architectonic borders of different areas in comparison with the original atlas 
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sections from Saleem and Logothetis atlas (2012). These manual corrections were made on the 

right side of the brain and were mirrored to create a symmetric brain. We applied an additional 

novel smoothing algorithm to find the mode within a local spherical neighborhood, in this case 

0.5 mm. Some regions with exceptionally fine features, like the lenticular bridges of the striatum, 

did not survive modal smoothing. In these cases - claustrum, striatum and several hippocampal 

structures, the datasets were manually modified to maintain their three dimensional integrity and 

smoothness. The accuracy of the reconstruction method was then verified by comparing the 

resliced volume to the original section diagrams. This 3D digital volume (Fig. 4) is presently 

available in the AFNI and SUMA analysis packages to register and apply to the brains of other 

individual macaques, in order to serve as a guide for any of a number of research applications for 

which accurate knowledge of areal boundaries is desirable (e.g. see Fig. 5 in Results). 

 (7) Establishment of 3D Atlas coordinate system.  Based on its utility for MRI navigation, 

the 3D atlas coordinate system was defined to have its origin (0,0,0) at the anterior commissure 

(AC). A simple affine transformation can be used to transform coordinates between this AC 

coordinate system, which is convenient for neuroimaging, and the stereotaxic ear bar zero (EBZ) 

coordinate system of the original sections in the Saleem and Logothetis atlas (Fig. 4F). In both 

AC and EBZ based coordinate systems, all horizontal slices were aligned parallel to the 

horizontal plane passing through the interaural line and infraorbital ridge, and coronal slices were 

aligned orthogonal (perpendicular) to horizontal plane. Note that in contrast with other templates 

(e.g., Calabrese et al., 2015), the AC and posterior commissure (PC) was not used here to define 

the slicing angle. 

Anatomical and functional MR scanning of test cases in this study 
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 High contrast anatomical scans. In six normal, and healthy animals (age: 1.2 to 14.8 

years; weighing between 2.55 to 5.5 k.g.), MR anatomical images were acquired in a 4.7 T 

horizontal scanner (Bruker Biospec 47/40) using a modified driven equilibrium Fourier 

transform (MDEFT) method. The monkey was anesthetized with isoflurane and placed into the 

scanner in a sphinx position with its head secured in a holding frame. A single loop circular coil 

with a diameter of 14 to 16.5 cm was placed on top of the animal’s head. The whole-brain 

MDEFT images were acquired in a 3D volume with a field of view 96 x 96 x 70 mm3, and 0.5 

mm isotropic voxel size. The read-out had an 11 ms repetition time, a 4.1 ms echo time, and a 

11.6 degree flip angle. The MDEFT preparation had a 1240 ms pre-inversion time, and a 960 ms 

post-inversion time for optimized T1 contrast at 4.7 T. Each 3D volume took 25.5 min to acquire 

without averaging. Most of the scans were acquired with 2 averages and took 51 min.  These 

cases were illustrated in Fig. 5. Similar anatomical scans were obtained in two other cases 

illustrated in Figs. 6 and 7. 

 Awake functional scans. In one monkey, we carried out awake functional scanning in 

repeated sessions. The contrast agent MION (magnetic iron oxide nanoparticles) was injected 

into the saphenous vein prior to each session. The animal was shown alternating blocks of faces 

and scrambled faces, with the results shown registered to the 3D atlas in Fig. 8. Further 

methodological detail about the functional MR scanning is provided in Russ and Leopold (2015). 

All procedures were approved by the Animal Care and Use Committee of the United States 

National Institutes of Health (NIH), National Institutes of Mental Health, and followed NIH 

guidelines. 

Creation of flat map registered to test case 



 15 

 The flattened cortical surfaces were created using a combination of AFNI (Cox 1996) and 

Caret software (Van Essen et al., 2001).  Specifically, the animal’s high resolution anatomical 

MRI was skull stripped and then the image intensities were normalized using the AFNI software 

suite. The resulting anatomical files were then imported into Caret software, where a set of 

surfaces was created from a white matter mask. The white matter mask was created by first using 

the automated gray/white delineation tools in Caret, and then manual fixing any errors in white 

matter selection in all three planes of sections.  The white matter mask from each hemisphere 

was then used to create a set of surface maps and a flattened cortical surface following the 

procedures outlined in Van Essen et al. (2001).  The surface maps and their related anatomical 

volumes were then exported back into AFNI, where the digital D99 atlas was registered to the 

exported volume.  

 

Results  

Registering identified areas from 3D atlas to range of test subjects 

 The 3D atlas is of great use in its application to projects that involve anatomical, 

functional, or connectional imaging. In particular, it is of immediate value to register the 3D atlas 

to a given macaque subject’s brain in order to determine the areal location of fMRI responses, 

spatial distribution of labeled neurons or terminals in different cortical areas after the anatomical 

tracer injections, or electrophysiology recording sites. While less complex than in the human, the 

macaque cerebral cortex has a number of sulci that might pose difficulties for registration. As 

macaque brains vary to some extent in their sulcal patterns, one test of the utility of the present 

atlas is whether it can be registered to a range of different macaque subjects. To this end, we 

developed a novel macaque processing pipeline within AFNI and SUMA to optimally register 
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the atlas to T1 MRI images of individual macaque brains (see below). This procedure involved a 

sequence of affine and nonlinear registration steps. An initial affine step gave an approximate 

scaling and rotation to the template. The affinely warped subject brain was gradually warped to 

the template by progressively smaller nonlinear warps. This procedure resulted in the subject 

brain data in register with the D99 template space. By inverting the combination of affine and 

nonlinear transformations, the atlas segmentation was warped to each subject's original native 

space. The results of this pipeline are shown in Fig. 5 for six monkeys of different genders, ages, 

and sizes. While determining the precise matching between the determined areas and the 

histologically determined regions of all six animals is a large project that is beyond the scope of 

the present report, these results demonstrate that a straightforward affine and nonlinear warping 

is sufficient to provide atlas-based estimates of areal boundaries on macaque subjects in vivo.  

 

Validating 3D areal registration: comparison to the printed atlas 

 A major component of validating the accuracy of the 3D atlas involved the comparison of 

its slices with the original Saleem and Logothetis atlas (Figure 6A-C). In this example, we first 

registered the MRI volume of the subject MQ to the 3D digital atlas (A), or vice-versa (B), and 

then compared the selected slices from these volumes to corresponding original atlas sections (C).  

Subject MQ was selected because histological data from this animal was also available, as 

described in the next section.  As expected, the registration of subject MQ to the digital atlas 

(original native space) led to areal labeling that closely resembled that in the Saleem and 

Logothetis atlas (compare the right hemisphere in A and C).  In the case that the digital atlas was 

registered to the brain of subject MQ, thus retaining that native geometry obtained during the 

MRI of MQ, the areas again matched closely (compare B and C). It should be noted that in order 
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to align the MRI with the histological sections described in the next section, we slightly rotated 

the volume of MQ in the dorsoventral plane around the mediolateral axis.  As a result, there is an 

expected difference in dorsal and ventral regions, reflecting the cutting angle of the histological 

slice, which was not strictly on the coronal plane. Dorsally, this angle results in a shift relative to 

the border between anterior and posterior cingulate gyrus (e.g., subregions of area 23 in A but 24’ 

in B). Ventrally, the angle results in a shift relative to the border between anterior and posterior 

TE in the inferotemporal cortex (e.g., area TEad in A but both areas TEad / TEpd in B). These 

cortical regions are indicated by red stars in both A and B. Finally, we note that in Fig. 6B the 

digital atlas is registered to subject’s original native space, which is desirable for many 

applications, thus the precise sulcal geometry of the slices appear somewhat different from those 

in the atlas (i.e. in contrast to Fig. 6A and C).  

Validating 3D areal registration: comparison to histological sections 

 In two subjects, we demonstrated accurate matching of brain areas determined by MRI 

registration with those identified using the cytoarchitectonic analysis of histological sections 

from the same brains (Fig. 7). Here the D99 digital template atlas was registered to the T1 MRI 

volume of two individual brains (cases MQ and BASS), which were different from the cases 

used in Figure 5. We matched cortical and subcortical areas in the coronal slices of registered 

brain volumes (Fig. 7, arrows in E-H) with the corresponding histology sections, stained for 

either neurofilament protein (SMI-32 staining) or the Nissl substance (Fig. 7 M-T). The 

architectonic features of these selected areas were previously identified in both staining methods 

described here (Saleem et al., 2007; Saleem and Logothetis, 2012; Scott et al., 2015). Sections 

stained for SMI-32 reveal different laminar distribution of pyramidal neurons in cortical areas, 

and subcortical regions of the macaque monkey (Hof et al., 2004; Saleem and Logothetis 2012). 
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Atlas labeling of the primary auditory area A1, medial auditory belt area RM, medial temporal 

pole area TGdd, medial temporal lobe regions (entorhinal and CA1 regions of the hippocampus), 

and certain subcortical structures, including subregions of the basal ganglia (SN and STN), and 

caudal hypothalamic area, the mammillary bodies (MB) (Fig. 7, M-T) closely matched the areas 

we identified histologically in our previous study (Saleem and Logothetis, 2012; Scott et al., 

2015, for e.g., see their Fig. 3F, I, Q).  

We also demonstrated the general utility of registering 3D atlas to the experimental (fMRI) 

data in an additional test subject (Fig. 8), described in the following section. 

 

Applications for functional MR imaging 

 The most pressing application of the 3D template atlas derived from the Saleem and 

Logothetis atlas is likely to be the systematic identification of areas associated with fMRI 

activation patterns. Of particular interest is the spatial relationship between the histologically 

identified cortical areas catalogued in the atlas and functionally defined regions associated with a 

particular stimulus or task. An example of this application can be seen in Fig. 8, which uses the 

3D digital template atlas (D99) to study the anatomical location and extents of face patches. The 

fMRI-defined face patches were in this case derived by contrasting the responses to intact versus 

scrambled faces presented in a block design. Here we focus on the anatomical location of the 

anterior lateral (AL) and middle fundus (MF) face patches in the temporal cortex (Fig. 8A), as 

defined by Tsao et al. (2003). A direct comparison of the functional map with the digital atlas 

sections (Fig. 8B), and then to inflated or flattened cortical surface (Fig. 8C), demonstrates that 

the MF face patches occupy a restricted longitudinal position of a cytoarchitectonically-defined 

area IPa at the fundus of the STS, whereas the AL face patch occupies a broader region 
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straddling the boundary between areas TEm and TEad at the ventral lip of the superior temporal 

sulcus (STS) (Fig. 8B-D).  In addition, one can see the ML face patch in TEm, the PL face patch 

in TEO (or PITd), and the small AF face patch straddles the border between IPa and TEa (Fig. 

8C).  The activity visible in area V4 is a consequence of the specific contrast used here (intact vs. 

scrambled faces). 

 

Implementation and Distribution 

 Atlases and templates are available as both volumes and surfaces in standard NIFTI and 

GIFTI formats. While this 3D digital atlas can be used in different image registration and 

analysis software packages, here we use the AFNI program with its advanced atlas features for 

purposes of demonstration. 

The 3D template volume and atlas are now available for download through the AFNI and 

SUMA website, at http://afni.nimh.nih.gov/pub/dist/atlases/macaque.  The atlas is integrated into 

the most recent versions of AFNI and SUMA, making for straightforward identification of areal 

identity in any macaque subject registered to the template and for the individual macaque subject 

in its own native space by the inverse transformations. As in our example macaques, standard 

alignment programs within AFNI can be used to align macaque subjects to the D99 template 

space. A script has been made available at the same link above. The script includes several steps: 

First it implements affine alignment to the D99 template followed by a nonlinear alignment, and 

then it inverts the combination of both the affine and nonlinear transformations to transform the 

atlas segmentation into the original native space of the data. Because the atlas segmentation is 

provided within the header of the dataset, the AFNI and SUMA software can provide on-the-fly 

labeling information about each individual macaque to the user via its “whereami” interface. 

http://afni.nimh.nih.gov/pub/dist/atlases/macaque
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This functionality can be accessible through the AFNI GUI or scripted through the command line 

interface. Within the AFNI program, the whereami interface provides further information for the 

equivalent coordinate in the book version of the Saleem-Logothetis atlas. The book version uses 

an ear-bar zero (EBZ) coordinate origin while the distributed template uses an AC (anterior 

commissure) as the coordinate for the origin. By using a simple affine transformation that 

defines the shift between the two coordinate systems, the corresponding book EBZ and the 

dataset’s AC-based locations are determined on-the-fly.  

 Surfaces generated for the template and atlas regions can be viewed within SUMA. Atlas 

region surfaces, generated using SUMA's IsoSurface program, are distributed with the atlas. 

Interprocess communications between AFNI and SUMA enable surfaces and volumes to be 

linked together; clicking on a volume or a surface will update the crosshair in the other viewer 

with a concomitant change in the labeling information in the whereami and image viewers. The 

SUMA software can show each of the region surfaces with each surface individually controllable 

for transparency and mesh display. This capability allows for more of a fly-through type of 

control where regions can be "peeled" away to reveal underlying regions. 

Discussion 

The present macaque digital template atlas, derived from the Saleem and Logothetis atlas, 

is one of several digital monkey atlases that have been created in recent years (McLaren et al., 

2009; Modha 2009; Woods et al., 2011; Quallo et al., 2010; Frey et al., 2011; Van Essen et al., 

2012; Bezgin et al., 2012). In the following paragraphs, we briefly compare among atlases, 

highlighting advantages of the present offering. 

  

D99 digital atlas versus other atlases 
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Perhaps the most important unique feature of the present atlas is the strict adherence to an MRI 

scan from the same brain. In the two-dimensional atlas, this aspect was critical for maintaining 

the native in vivo geometry of the brain during the establishment of areal boundaries based on 

histological sections. The printed atlas thus provided a 3-D stereotaxic coordinate system that 

was accurately shaped by the anatomical MRI volume of the original brain. This unique feature 

of the Saleem and Logothetis atlas is perhaps even more important in the transformation to the 

digital template atlas here. In this case, the well-specified geometry of the original animal allows 

one to accurately register areal boundaries onto other macaque brains. Moreover, this is done in a 

straightforward manner using widely available tools of whole-brain MRI registration. 

Furthermore, the present digital template atlas replaces the original anatomical volume with a 

high resolution, high contrast surrogate anatomical volume that has itself been registered 

carefully to the in vivo MRI volume of the brain used to construct the original Saleem and 

Logothetis atlas (Fig. 2). Preserving the known geometry of this brain has enabled the best 

possible estimation of histological divisions in the high quality surrogate. The surrogate, in turn, 

can then be used to determine the areal boundaries in experimental animals, using widely 

available tools that use affine and non-affine warping between MRI volumes (Chakravarty 2009).  

The transformation derived from this warping, when then applied to the 3D digital atlas volume, 

allows for as accurate as possible labeling cytoarchitectonic areas in the brains of individual 

animals.  

 This feature extends the work of previous digital atlases, such as that of Frey et al. (2011) 

based on the Paxinos macaque atlas (Paxinos et al., 2009). In the construction of that atlas, areal 

boundaries were first delineated on coronal MRI slices using histological data that was linearly 

and nonlinearly transformed to match a composite volume of 25 rhesus and cynomolgous 



 22 

macaque brains (see also Chakravarty et al, 2008, 2009). The introduction of this new template 

atlas and space, the latter termed the Montreal Neurological Institute space for the macaque 

(henceforth “macaque MNI space”) was an important step forward and offers an excellent 

estimate of areal boundaries given that the data were from different animals. In another approach, 

Modha (Modha 2009) applied a mathematical vector method to convert 151 macaque 

histological slices from the same atlas (Paxinos et al., 2009) into a volume, and ultimately into a 

surface atlas. While useful for some applications, this vector approach does not attempt to 

preserve the native geometry of the brain, thus the registration accuracy of the resulting 

volumetric or surface atlas will be always in question. The present digital atlas avoids the step of 

geometrically transforming the cytoarchitectonic information from histological sections to match 

the layout of a different animal’s brain, which can introduce errors that are difficult to evaluate. 

Instead, the postmortem tissue sections were carefully block-face aligned to the MR image prior 

to analysis (Saleem and Logothetis 2012; chapter 1). As a result, the alignment accuracy between 

areal boundaries and gross anatomical features is optimized in the present case.   

 In another approach, McLaren et al (McLaren et al, 2009) used population-averaged 

anatomical MRI volume that was registered with the Saleem and Logothetis atlas. This step 

allowed for investigators to register their own data into the geometry of the animal from which 

the cytoarchitectonic data was originally evaluated. This type of registration then allows for a 

comparison of positions in the brain, relative to gross anatomical features, to be compared with 

the printed atlas. In theory, the reverse transformation to this space also permits precise 

determination of stereotaxic coordinates for individual monkeys, compensating for intersubject 

variation. However, the creation of such a template did not offer a digitized rendition of cortical 

areal boundaries, thus determining the identity of an area always required comparison with the 
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printed atlas. In contrast, the present digital atlas template allows for the areal specifications, 

themselves in a 3D volume similar to the anatomical MRI itself, to be warped onto any macaque 

data set using a transformation obtained from any of a large number of MRI processing packages.  

Thus the areal label can be brought to the raw data, or the raw data to the template atlas, in 

neither case requiring consultation of the printed sections. 

 In addition, the present digital template atlas offers a substrate for template-based group 

analysis, for example using the surface map derived from the surrogate volume. At present, 

electrophysiological and fMRI studies in the monkey have only minimally taken the approach of 

combining data on a common template (see Janssens et al., 2014). Defining an area-labeled 

template space based on the geometry of animal used for the Saleem and Logothetis offers one 

means for combining macaque experimental data into a common and well-annotated space. The 

only requirement is the acquisition of an anatomical volume, which can be used to transform data 

into the common template volume or surface. This 3D digital template atlas can also be 

integrated with the macaque connectome atlas (Saleem et al., 2015a, b) in AFNI and SUMA 

interface, which allow users to navigate the atlas with connectional data interactively in 3D, and 

integrate the information directly with their anatomical and functional imaging results in surface 

modes. 

 

Generalization and validation  

 The compilation of any brain atlas, which includes the assignment of boundaries and 

names to individual areas, is an inherently imperfect endeavor whose main goal is to provide a 

common anatomical framework for a range of research projects and data. In the present case, the 

innovation rests on the creation of 3D digital macaque atlas whose anatomical borders were, 
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from the outset, created based on MR-registered histological sections. This digital version of the 

Saleem and Logothetis atlas is based on the precise histological borders from one particular 

monkey (D99), which because of the initial registration to the MRI from the same animal can be 

represented on the brain of any experimental animal. Other MRI atlases, including probabilistic 

(McLaren et al., 2009; Quallo et al., 2010; Bezgin et al., 2012; Janssens et al., 2014), and 

surface-based (Van Essen et al., 2012) atlases, generally determine areal boundaries using 

different methods, and may therefore draw different conclusions regarding subdivisions, large-

scale organization, and nomenclature. It is important that efforts to identify and summarize the 

brain’s structural and functional organization continue to evolve.  

 A thorough validation of this 3D atlas, such as estimating the architectonic boundaries 

between different areas for a population of macaque brains, is beyond the scope of the present 

report as it would be an enormous project. Nonetheless, we performed three analyses that 

indicate that the correspondence to experimental macaque subjects is generally good and useful. 

In the first analysis, we showed that the MRI registration procedure could be smoothly applied to 

subjects of different genders and brain sizes, thus it is possible to estimate the histological 

boundaries in any monkey subject (Fig. 5).  In the second analysis, we showed labeling a test 

subject’s brain using this approach yielded labeled slices that closely matched those of the 

printed atlas (Figure 6).  Correspondence was high both for sagittal sections (used to create the 

3D atlas) as well as horizontal and coronal sections (matching the D99 histological data).  In the 

third analysis, we showed a good match between areas in a new monkey subject’s labeled using 

the 3D digital atlas with histological sections obtained from the same animal (Figure 7).  

Architectonic versus functional maps 
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There are multiple methods and approaches to determine areal positions across the cortical 

surface. The areal boundaries defined in a cytoarchitectonic atlas have historically been the most 

important reference scheme for identifying and naming brain regions of interest.  Functional 

mapping, such as that achieved through fMRI localizers, is another approach. While the two 

methods correspond closely in some cases, such as in the early retinotopically-organized visual 

areas, they can be taken as largely independent measures in others, with each giving rise to its 

own nomenclature. For example, face patches such as AL are defined and named according to 

location of their fMRI functional contrast, and this functional mapping offers a useful and 

reliable set of reference locations in the frontal and inferotemporal cortex (Tsao et al., 2003; 

2008a, b). Both measures are closely related to the brain’s functional anatomy and thus their 

relationship is important for understanding the complex relationship between structure and 

function. Thus, while cytoarchitectonic boundaries are likely to remain the principal source of 

areal definitions in the brain, the capacity to fluidly superimpose function on such maps is of 

great value for the future. In the case of a labeled digital template MRI volume, the capacity to 

reslice, inflate, or flatten the digital brain, as shown in Fig. 8D, allows for the cytoarchitectonic 

boundaries to be easily estimated on individual subjects, thus permitting a systematic 

investigation of the relationship between the two measures of brain organization. 

To summarize, we have created a new high-quality MRI template and corresponding digital 

atlas. The atlas provides a readily usable standard for region definition while the template 

provides a standard reference and space. This standard space allows for macaque research to be 

reported on a common basis across research sites and across macaques. Additionally, the atlas 

allows for automated analysis against a set of standard region locations. The current atlas, 
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template MRI datasets, surfaces and user scripts for aligning individual subjects to this template 

are publicly available in the following link.  http://afni.nimh.nih.gov/pub/dist/atlases/macaque 

It should be noted that this atlas should not be altered without prior approval from the 

senior author of this work. 
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Figure Legends 

 

Figure 1. Original 2D atlas and MRI data of rhesus macaque brain. (A) An example of 

two-dimensional sagittal slice with delineated cortical and subcortical areas, obtained from 

sagittal dataset of 30 one mm interval sections in Saleem and Logothetis (2012) atlas. The 
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corresponding in-vivo MRI slice, and the abbreviation list of delineated areas in the sagittal 

section is also shown on the left. The dorsal view of the rendered brain image on the top right 

indicates the mediolateral location of this sagittal slice, which is located 7 mm lateral from the 

midline. (B) Examples of vectorized atlas sections. The 30 sagittal sections were then converted 

into vectorised images with each region marked as filled polygon of a different color using 

Canvas program (.cvx file format). These 30 slices were stacked and created 3D volume of the 

brain using “surrogate D99 brain”, aligned to original MRI dataset, and sequence of manual and 

automated processing steps as shown in figures 2 and 3. 

Figure 2.  Ex-vivo surrogate anatomical volume. The structural image of another monkey 

(DB58 T1) with high spatial resolution (250 um isotropic) was obtained ex-vivo using 

magnetisation transfer ratio sequence (B), and was non-linearly registered to the original T1 D99 

from the Saleem and Logothetis atlas (A). We used this newly transformed volume (“Surrogate 

D99; C) for atlas reconstruction as shown in figure 3. Note the correspondence of sulci and gyri 

in both original D99 and Surrogate D99 (white arrows in A and C) but see different sulcal 

patterns in DB58 T1 (gray arrows in B). 

Figure 3. Creation of the 3D digital template atlas from 2D atlas sections. (A) 3D volume 

of the brain with delineation of cortical areas, created from 30 colored sagittal images. Note the 

rasterized or coarse appearance of section in other (coronal) plane of sections. (B) The coarse 

map of the areal boundaries was registered with the surrogate volume using affine transformation 

and non-linear adjustments. Note that the color labels were jagged and not restricted to the gray 

matter boundaries (see arrows). (C) Interpolation of colored maps within the gray matter mask, 

obtained from high-resolution surrogate MRI volume. Note the complete labeling of gray matter 

with no intrusion into adjacent white matter regions (see arrows) but some labels did not 
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adequately match the known anatomical boundaries. (D) Assignment of cortical boundaries 

based on radial paths (see the methods for more detail). (E, F) The labeled surrogate brain with 

complete labeling of region restricted to the cortex, with clear, radial divisions between 

neighboring cortical areas (compare final map in F with the initial rasterised map in A). 

Following the construction of atlas as shown in A-F, the 3D dataset was integrated into AFNI 

and SUMA interface (see figure 4), where the manual correction of areal extent and architectonic 

borders of different regions were done in comparison with the original sections from Saleem and 

Logothetis atlas. 

Figure 4. 3D digital template atlas in AFNI and SUMA interface. Areal delineations of 

different cortical and subcortical areas in sagittal, horizontal, and coronal plane of sections (A-C), 

and on the 3D brain surface (D), which is based on the Saleem and Logothetis atlas (E), 

displayed in AFNI/SUMA window. The two different stereotaxic coordinates of current location 

(cross hairs; e.g., area 45a), one with reference to anterior commissure (AC), and other with 

reference to Ear Bar Zero in Saleem and Logothetis atlas are also indicated in AFNI “whereami” 

window (see “Focus point” in F). 

Figure 5. Registration of 3D atlas to various test subjects. Here D99 digital template atlas is 

registered with T1 MRI images of 6 individual brains of different age groups using a novel-

processing pipeline developed within AFNI and SUMA (see the text). (A) One of the sagittal 

slices from D99 digital atlas (+14 or +15 mm from the midline) with delineated cortical and 

subcortical areas. The corresponding slice is also indicated on the D99 rendered brain with MRI, 

created in software Mango. (C-H) Sagittal slices from six animals, with the D99 atlas registered 

to the MRI images of each animal in its own native space. Note the corresponding location of 

ventrolateral prefrontal region in the ventral bank of principal sulcus (area 46v; cross hair) in 
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D99 digital atlas and 6 other animals. Abbreviations: 46v, ventrolateral prefrontal area; cla, 

claustrum; F1, agranular frontal area F1 (or area 4); pu, putamen; TF, area TF of the 

parahippocampal cortex. 

Figure 6.   Comparison of architectonic areas in the registered MRI volumes with the 

corresponding sections in Saleem and Logothetis (2012) atlas.  (A, B) The coronal slices with 

delineated cortical and subcortical areas in subject MQ registered to digital atlas (D99) and 

digital atlas registered to subject MQ, respectively.  The coronal section in B is the same section 

as shown in Fig. 7F, which is digitally rotated in the dorsoventral plane around the mediolateral 

axis to match with the corresponding histology section from the same case illustrated in Fig. 7J. 

(C) Corresponding section drawing of the right hemisphere with delineated areas from Saleem 

and Logothetis atlas (see their Fig. 85, page 201). This slice is located 13 mm anterior to the ear 

bar zero.  Note that as expected, the labeled regions in A, where the subject MQ is registered to 

digital atlas (to its original native space) closely matched with regions in Saleem and Logothetis 

atlas (compare the cortical and subcortical areas in A and C). As noted above, the registered 

volume in B is slightly rotated to match with the corresponding histology section (see figure 7). 

This resulted in few mismatched cortical areas at the border between anterior and posterior 

cingulate gyrus (areas 23 and 24’) dorsally, and anterior and posterior TE in the inferotemporal 

cortex (areas TEad and TEpd) ventrally (compare red stars in A and B). See the result section for 

more detail. 

Figure 7 Registration of 3D atlas to different test subjects with histological confirmation of 

architectonic areas. In this example, the D99 digital template atlas is also registered with T1 

MRI volume of two individual brains that are different from the cases shown in Figure 5. (A-D) 

Selected coronal slices from in-vivo T1 weighted MRI volume of cases MQ and BASS. (E-H) 
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Digital atlas (D99) registered and overlaid on the MQ and BASS MRI volumes (same coronal 

slices as shown in A-D). (I-L) Corresponding histology sections of the left hemisphere in MQ 

and BASS (green rectangular boxes in A-D) stained immunohistochemically for the 

neurofilament protein, recognized by SMI-32 antibody (I-K), and Nissl staining (L). We digitally 

rotated both MRI and registered volumes to match with histology sections. Note the 

correspondence of sulci and gyri in both MRI/registered volume and histology sections. We also 

confirmed the spatial location and architectonic features of the selected cortical and subcortical 

areas in the registered slices (arrows in E-H; small boxes in 1st and 3rd column) with the 

corresponding histology sections as illustrated in M-T. (M-R) High-power photomicrographs 

showing the differential distribution of SMI-32 positive pyramidal neurons in the auditory (A1, 

RM), medial temporal lobe (EC, CA1), dorsal temporal pole (TGdd), and subcortical (STN, SN, 

and MB) areas. We also confirmed the spatial location, and architectonic features of auditory 

areas in case MQ (e.g., primary auditory area A1 and medial belt area RM) with reference to our 

previous study (see Scott et al., 2015, their Fig. 3F, I, Q). (S-T) High-power photomicrographs 

showing the architectonic features of the CA1 region of hippocampus, entorhinal cortex (EC), 

and adjacent areas in the Nissl stained section. 

Figure 8. Mapping fMRI results onto the digital atlas. (A) fMRI activation from a subject 

depicting the location of regions responsive to faces greater than scrambled faces. Activity is 

displayed over the subject’s high-resolution anatomical images and thresholded at t > 10. The top 

row shows the sagittal and coronal MR images displaying the location of the right anterior lateral 

(AL) face patch from the lower bank of the superior temporal sulcus (STS). Bottom row shows 

the sagittal and coronal MR images displaying the location of the right middle fundus (MF) face 

patch within the fundus of the STS. (B) Digital atlas (D99) registered and overlaid on the 
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subjects anatomical images. Each color represents the delineated cortical region in the atlas. The 

top and bottom rows indicate the location of the face patches (same as in A), with reference to 

architectonic areas. For example, AL face patch is located within the subregion of area TEm and 

MF is located within the subregion of area IPa. (C) fMRI activity from A projected on to the 

right hemisphere of the subject’s flatten cortical surface. White lines represent the areal 

boundaries of regions throughout the temporal lobe based on the areal map in D. The locations of 

the face patches depicted in A (AL, MF), and other face patches (AF, ML, PL) are also indicated 

in the map. Note that the anterior medial (AM) face patch at the border between TEad and TEav 

is not visible in this case. In addition, the activity visible in area V4 is a consequence of the 

specific contrast used here (intact vs. scrambled faces). (D) The digital atlas projected on to the 

same flattened surfaces as in C. Each color represents a different cortical region. Abbreviations: 

AF, anterior fundus; ML, middle lateral; PL, posterior lateral. For the abbreviation of different 

cortical areas in D, see Saleem and Logothetis (2012) atlas. 

Supple Fig. 1.  Examine the geometrical match between the surrogate brain volume and the 

original brain volume. Pial surface (red contour) and white matter surface (yellow contour) 

derived from the surrogate brain were overlaid on both the surrogate brain (A) and the original 

D99 brain (B) on two selected sagittal sections.  The surface contours fit to the tissue boundaries 

equally well on both brains.   
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