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Abstract 

Hundreds of previously unidentified functional small peptides could exist in most genomes, 

but these sequences have been generally overlooked. The discovery of genes encoding 

small peptides with important functions in different organisms, has ignited the interest in 

these sequences, and led to an increasing amount of effort towards their identification. 

Here, we review the advances, both, computational, and biochemical, that are leading the 

way in the discovery of putatively functional smORFs, as well as the functional studies that 

have been carried out as a consequence of these searches. The evidence suggests that 

smORFs form a substantial part of our genomes, and that their encoded peptides could have 

important functions in a variety of cellular functions.  

 

  



Introduction 

Deciphering the genetic information encoded in a genome is one of the main challenges in 

Biology. A constant improvement of sequencing and bioinformatics techniques has greatly 

advanced our understanding of this information but has also revealed the extent of its 

complexity. The difficulties associated with accurately predicting and annotating Small Open 

Reading Frame genes (smORFs) perfectly illustrate this complexity and the challenges it 

poses.  

In the genome of most organisms there are hundreds of thousands of putative smORFs, 

consisting of a start-codon followed by in-frame codons and ending with a stop-codon [1-2]. 

Distinguishing translated and functional smORFs among this overwhelming and mostly 

spurious pool of sequences represents a major issue, which is particularly difficult to resolve 

since standard computational algorithms to identify coding sequences are generally not 

suited for small sequences [3-5].   Initially, short coding sequences (<100aa) were excluded 

from genome annotation pipelines [6], with the assumption that the majority of coding 

genes would code for larger proteins [7]. However, genes encoding small peptides have 

been identified in several organisms [8], like the tarsal-less/polished rice/millepattes gene, 

which codes for 11 aa-long peptides with important developmental functions in arthropods 

[9-12].  Such examples have led to the realisation that previously uncharacterised protein-

coding smORFs with promising biological functions could exist in most genomes, and an 

increasing amount of effort has been directed towards their identification. 

Here we will focus on the advances, both computational and biochemical that have been 

used to identify smORFs, and will present some of the different examples of smORFs which 

have been functionally characterised as a consequence of these studies.  



Altogether, there is evidence suggesting that smORFs form a substantial part of our 

genomes and that their encoded peptides could be involved in a variety of cellular 

functions.  Their characterisation could therefore lead to discoveries with important 

implications in cell biology and human health.  

 

Systematic searches for putative coding smORFs using computational approaches. 

Initial genome-wide searches for putative functional smORFs were conducted by 

bioinformatics methods designed to overcome the limitations of standard gene annotation 

algorithms. Generally, these methods were based on the analysis of sequence-composition 

frequencies (Figure 1A; see sORFfinder and CRITICA in BOX1), and/or on the evaluation of: 

a) the conservation of candidate smORF sequences in related species using pair-wise 

alignment-based tools (Figure 1B; BLAST [13]), and b) of their purifying selection 

(conservation of the aa relative to nt sequence) [14]. These initial studies identified several 

hundreds, and even thousands of putatively functional novel smORFs in the genomes of 

yeast, plants, flies, and mice [15-19], generally representing about 3-5% of the annotated 

genes in these organisms (Table 1). 

In order to identify conserved coding sequences, more recent methods based on multiple 

sequence alignments  incorporate  phylogenetic distances and a model of nucleotide 

substitution rates, in the case of PhastCons [20], or a model of codon substitution 

frequencies, in the case of phyloCSF ([21], both built upon known coding and no-coding 

sequences (see Box 1). As shown below, these methods have sometimes been used 



together with experimental methods in order to validate, or strengthen, the functionality of 

the smORFs identified as translated.  

 

Ribosome Profiling: a biochemical approach for genome-wide translation assessment of 

smORFs 

Next generation RNA sequencing (RNA-seq)  has allowed to identify entire transcriptomes 

[22] and led to the unexpected realisation  that a much higher than anticipated portion of 

the genome is transcribed (up to 85% in mammals [23] and 75% in flies [24]). A large 

proportion of these transcripts lack a “long” ORF of more than 100 aa, and have therefore  

been considered as long non-coding RNAs (LncRNAs), even though they otherwise resemble 

canonical mRNAs, having similar lengths, being transcribed by RNA-polymerase II, capped, 

poly-adenylated, and most even accumulating in the cytoplasm [25]. Although several 

LncRNAs have a well-established non-coding function [26], for the vast majority this remains 

unknown, making it plausible that some LncRNAs actually encode smORFs. 

A method known as ribosome profiling (or Ribo-seq; Figure 1C) [27], consisting in 

sequencing nuclease-protected mRNA fragments (or footprints) bound by translating 

ribosomes (stabilized with an elongation inhibitor like cychlohexamide (CHX), allows to  

quantitatively and qualitatively measure the translation of these transcriptomes [28].  

Different ribosome profiling studies, in a wide variety of species [29-40] have found that 

translation occurs in an almost pervasive fashion, detecting ribosome footprints in LncRNAs, 

in the untranslated regions (UTRs) of annotated transcripts, either upstream (uORFs) or 



downstream (dORFs) of the CDS, and even overlapping the CDS of canonical mRNAs, with 

the vast majority of these corresponding to short ORFs (Table 1, and Table S1).  

However there is some ambiguity with this method, since a ribosome bound fragment (RBF) 

read does not always strictly equate to an actively translated RNA fragment; a fragment of 

similar size could be obtained by a scanning ribosome, or other RNA-binding proteins [28]. 

Ribo-seq  studies therefore employ different experimental or computational strategies to 

identify more accurately actively translated regions, involving the use of different metrics, 

such as RBF coverage, translation efficiency (TE: the ratio of RBFs / total mRNA reads), 

ribosomal release score (RRS), or codon phasing (see BOX1, [2]). Translation inhibitors, such 

as harringtonine (HR), which generates a pile-up of RBFs at the start codon, have also been 

used to identify translation initiation sites in actively translated ORFs [30]. Some of these 

studies have focused exclusively on the identification of translated smORFs in fruit flies [32], 

zebrafish [31], yeast [36], and mice [41].   

In Drosophila, Aspden et al.[32] incorporated polysomal fractionation before ribo-seq to 

isolate cytoplasmic RNAs bound by 2-6 ribosomes and therefore actively translated, rather 

than those being scanned by single non-productive ribosomes or other RNA-binding 

proteins, this also enriched for RNAs encoding short ORFs (6 ribosomes being the maximum 

number that could fit in a 300 nt ORF). Using stringent RFB density and coverage thresholds, 

they corroborated the translation of 83% of the annotated smORFs transcribed in 

Drosophila S2 cells (228 out of 274), and found 2,708 and 313 novel translated smORFs in 

5’UTRs and LncRNAs (Figure 2). Annotated smORFs, were found to be longer (~80 aa 

median) and with similar levels of “functionality” as canonical coding genes (conservation, 

aa usage and secondary structures) whereas the smORFs detected in 5’UTRs and lncRNAs, 



were shorter (~20aa media length), and lacked the functional signatures observed in longer 

smORFs. However, some of these 5’UTR and LncRNA smORFs could be detected in epitope 

tagging experiments, displaying a similar sub-cellular localisation as canonical proteins, 

suggesting that some of them may encode functional peptides. 

Bazzini et al. [31] performed Ribo-seq in zebrafish embryos, using ORFscore (See Box 1), a 

method which quantifies the 3-codon periodicity of the distribution of RBFs relative to the 

predicted ORF (phasing), a feature consistent with those ORFs being actively translated. 

Using this method, they validated the translation of 302 (52%) previously annotated 

smORFs, and identified 190 novel smORFs in previously uncharacterised transcripts and 

LncRNAs, as well as 311 uORFs and 93 ORFs in 3’UTRs (Figure 2; Table 1). In parallel,  63 

novel smORFs were found using a conservation-based computational pipeline (micPDP) (see 

Box 1) in a catalogue of non-coding transcripts, 23 of them were also deemed translated by 

Ribo-seq, representing a pool of peptides highly likely to be translated and functional in 

zebrafish.  

In yeast, 1,088 previously uncharacterised transcripts associated with poly-ribosomes 

(supporting their translation) were found [36]. Ribo-seq identified 185 of these as having 

sufficient footprint coverage, and TE scores to support smORF translation. Furthermore, 61 

out of 80 transcripts from this pool, showed a codon triplet phasing bias to a single frame, 

suggesting their translation. Finally, 39 of these translated smORFs also showed varying 

extents of conservation among divergent yeast species, implying that they could be 

functional (Table 1). 

Crappe et al.[41], combined a computational smORF search with Ribo-seq data to identify 

potentially coding smORFs in the mouse genome. A systematic search for potential coding 



smORFs, conserved across mammalian species, was performed using sORFinder [16] and 

PhastCons (Box 1). Subsequently, a Support Vector Machine (SVM) learning algorithm, 

trained with sets of putatively non-coding and coding sequences, was used to classify the 

predicted smORFs, leading to the identification of some 40,000 smORFs with high coding 

probability in intergenic regions and LncRNAs. Independently , they re-analysed available 

ribosome profiling data from a mouse embryonic cell line [30], to identify translated 

smORFs (passing a coverage threshold, and showing a pile-up at their start codon when 

treated with HR). They identified 528 intergenic smORFs and 226 smORFs in LncRNAs, of 

these 401 and 89, respectively, were also found in the computational pipeline, representing 

a pool of smORFs likely to encode functional peptides (Table 1).  

This study highlights the discrepancy in numbers that can exist between computational 

predictions and experimental detection. Part of this discrepancy could be explained by a 

possible high false positive rate in the bioinformatic pipeline, which could be due, for 

example, to the presence of conserved elements such as transposons, pseudogenes, and 

simple repeats [42]. It could also be explained by the fact that computational pipelines can 

search whole genomes for putative smORFs, whereas only the smORFs within transcripts 

expressed above a certain threshold in specific cells or tissues studied will be tested in Ribo-

seq (or HPLC-MS) experiments.  

Lee et al.[33]used a similar method, treating human and mouse cell lines with 

lactimidomycin (LTM), another initiation phase inhibitor. In this study they identified 227 

annotated Human smORFs as translated (out of 694 annotated smORFs in ENSEMBL), as 

well as 288 ORFs in LncRNAs and 1,194 uORFs (most of them <100 aa long) (Figure 2; Table 

1).  



Altogether these studies show that thousands of smORFs are translated in eukaryotic 

genomes, with a substantial portion showing conservation and coding potential features, 

suggesting that a large repertoire of functional, yet uncharacterized peptides could exist in 

these organisms. 

 

Detection of smORF peptides by mass spectrometry 

The high-performance Liquid chromatography Mass-spectrometry (HPLC-MS) proteomics  

approach [43] has also been adapted to identify small peptides, mainly, by modifying the 

protocols for data analysis: instead of comparing candidate peptide spectrum matches 

(PSMs) to databases of annotated proteins, these are compared to databases generated de 

novo, based on all the possible translations of a given transcriptome (Figure 1D). 

Furthermore, standard proteomics require protein sequences to be supported by multiple 

PSMs. Because smORFs are too short to fit more than one PSM, this single PSM is usually 

required to pass the most stringent criteria in order to be unambiguously assigned to that 

smORF, potentially leading to a higher rate of false negatives.       

Slavoff et al.[44] developed a peptidomics strategy, also applying specific experimental 

optimizations:  inhibiting proteolysis, arguing that the proteolytic fragments of canonical 

proteins greatly increases the complexity of the peptidome and deteriorates the signal to 

noise ratio when it comes to identifying short peptides (themselves more susceptible to 

protease degradation), and using electrostatic-repulsion hydrophilic interaction 

chromatography (ERLIC) prior to HPLC-MS. They identified 86 novel peptides in human cells: 

33 of them mapping to alternative CDS’ in annotated transcripts (corresponding to uORFs, 



dORFs, and smORFs overlapping annotated CDS’), 8 mapping to LncRNAs, and 49 of them 

mapping to previously un-annotated transcripts (Table 1).  

This method was tested against other workflows [45], leading to two important 

observations: first, the use of ERLIC fractionation greatly increases the number of peptides 

detected (~10 fold) and second, there is an important lack of overlap between the peptides 

identified by different workflows, and even by different technical repeats, highlighting the 

stochastic nature of this technique, and the requirement of several repeats to achieve an 

optimal sampling saturation of the peptidome. In total, they analysed 3 different cell lines 

and a tumor sample, and identified a total of 311 short peptides, of which 237 are novel, 

with ~80% of them mapping to previously unannotated transcripts (Table 1), and the rest to 

alternative CDS within annotated transcripts with a similar distribution, in UTRs and 

overlapping CDS’, as found by Slavoff et al.[44]. 

 Another study, identified 1,259 novel peptides [46], by matching the spectra of different 

HPLC-MS data-sets (16 in total, covering a range of different human samples) to a custom 

database of predicted ORFs within annotated transcripts (mapping to UTRs and overlapping 

CDS’), suggesting that the translation of these “alternative” smORFs could be a wide-spread 

phenomenon. Interestingly, the majority of these peptides were identified in plasma and 

serum samples (1,118 / 1,259), implying that they could be secreted, although the reason or 

mechanism leading to this remains unknown (Table S1). Again, given the stochastic nature 

of this technique, this seemingly high number of identified novel peptides could be 

explained, in part, to the large number of samples analysed in this study. 

Some of the Ribo-seq-based studies covered above have used HPLC-MS in order to validate 

their results (Table 1). In general, previously annotated smORFs tend to be more abundantly 



detected by HPLC-MS than uORFs or LncRNA smORFs; in Aspden et al.[32] and Bazzini et 

al.[31] detected almost a third of the 228 and 302 annotated translated smORFs, but 

Aspden et al.[32] failed to identify any peptide from LncRNAs or uORFs, and Bazzini et al. 

[31] only identified 3 and 17, respectively. Similarly, only a handful of peptides 

corresponding to uORFs and LncRNas have been detected by HPLC-MS in studies that 

detected hundreds by Ribo-seq in humans (Figure 2; Table 1). These results clearly highlight 

a difference of sensitivity between these methods, and could also be in agreement with the 

segregation of these smORFs into two different functional classes, as observed by Aspden et 

al.[32], with smaller uORF and LncRNA ORFs showing lower conservation features and being 

less likely to be translated into functional peptides than longer annotated smORFs. These 

results could also be explained by the stochastic nature of the peptidomics method 

observed by Slavoff et al.[44], with the peptides from LncRNAs or uORFs being generally 

smaller, and therefore probably less stable, less abundant, and having lower chances of 

being detected. In that sense, detection by peptidomics could be considered as a convincing 

proof of translation, and as an indication of probable function, but the opposite is not 

necessarily true (Figure 2). Also, it is important to point out that these studies did not use 

the extensively optimized protocols (with proteolysis free conditions, ERLIC fractionation, 

and multiple technical repeats), which may have improved the detection of these smaller 

peptides. 

 

Computational and biochemical strategies unravel novel smORF peptide functions 

Although these computational and biochemical approaches have identified hundreds of 

translated and conserved smORFs, previous systematic functional studies (based on random 



mutagenesis) in different organisms, have failed to find them. This disparity could be 

explained by the lower probability of mutagens to target a small ORF in comparison to 

larger canonical ones. In addition, and as exemplified by several of the examples covered 

below, these small peptides may act as regulators of cellular processes requiring a very 

specific and in-depth phenotypic analysis, in order to detect mutants. As a result, only a 

handful of smORFs, found serendipitously, had been functionally characterised prior to 

these extensive smORF searches [8]. 

However, these genome-wide smORF searches have aided the functional characterisation of 

smORFs by identification of putative candidates. Following their bioinformatic prediction, 

some studies have carried out high-throughput smORF functional screens in yeast, [15] and 

in plants [47], and found dozens of functional smORFs, with several being essential (Table 

1).    

Other studies have focused on a more in-depth characterisation of specific smORFs. One 

example is the Sarcolamban (Scl) gene [48], previously annotated as a non-coding gene [49], 

but identified by a bioinformatics approach as a potential functional smORF in Drosophila 

(Table 1;[17]). Scl encodes for two 28 and 29aa transmembrane related-micropeptides 

which act as inhibitors of SERCA calcium pump and regulate heart muscle contraction 

(Figure 2A;[48]). Importantly, these peptides appear to be functional homologues to the 

vertebrate Sarcolipin and Phospholamban peptides, thereby uncovering an ancestral family 

of smORFs conserved from insects to humans [48]. More recently, another member of this 

family, Myoregulin (46 aa) [50], and a novel small peptide, DWORF (34 aa) [51] with an 

antagonistic function (since it enhances the activity of SERCA), have both been identified in 

mice from previously non-coding annotated transcripts. Toghether with Sln and Pln, (and Scl 



in flies) these peptides contribute to the smORF-based regulatory repertoire that regulates 

calcium dynamics and seemingly participate in conferring different muscles with specific 

contractility properties [50]. 

Another example is the toddler/apela gene, which was identified in a ribo-seq-based search 

for novel signalling peptides in zebrafish (Table 1;[52]). The apela gene encodes a secreted 

58 aa peptide, that binds to the Apelin receptor and promotes cell mobility during 

gastrulation [52]. This novel peptide also shows a great extent of conservation across 

vertebrates.  

Similarly, the Drosophila hemotin (hemo) gene was identified as a putative functional smORF 

by a computational study [17], and subsequently, its translation supported by ribosome 

profiling and proteomics studies [32, 53](Table 1). hemo is expressed in hemocytes 

(Drosophila macrophages) where it regulates endosomal maturation, and phagocytosis, by 

inhibiting the activity of phosphotidyl-inositol kinases through an interaction with 14-3-3z 

(Figure 2B;[54]). Interestingly, this regulatory mechanism also appears to have been 

conserved across evolution as the vertebrate Stannin (Snn), a factor involved in 

organometallic cytotoxicity [55], is the functional Hemo homologue in flies and mouse 

macrophages [54]. 

In humans, the MRI-2 peptide, which was shown to stimulate double-strand break repair 

through a direct interaction with the DNA end binding protein Ku (Figure 2C;[56]), was 

functionally characterised because it appeared as translated in a HPLC-MS screen for novel 

short peptides (Table 1;[44]).  



These examples highlight the contribution of these bioinformatic and experimental 

approaches in the identification of functional smORFs. They also strengthen our view about 

the complexity and biological relevance of these peptides, which can regulate a diversity of 

cellular processes, with their function being conserved, in some cases, across vast 

evolutionary distances. Overall, their study can certainly have important implications in cell 

biology, and even in human medical research[57]. 

 

Concluding remarks and future perspectives 

In this review, we have shown that there is extensive evidence supporting the translation of 

substantial numbers of smORFs in a variety of organisms. This evidence is likely to increase 

as new methods and metrics are developed to analyse ribo-seq data more robustly in order 

to identify bona fide translated regions (BOX 2). For example, Ingolia et al.[58] recently 

developed a metric, based on assessing the distribution of RPF lengths (Fragment Length 

Organisation Similarity Score or FLOSS) which can accurately distinguish between reads 

protected by the translation-engaged 80s ribosomal conformation, from reads obtained 

from the protection of other non-translating ribosomal conformations (40s and 60s), or 

other RNA-binding proteins. Other groups have used classification algorithms, such as the 

random forest-based Translated ORF classifier (TOC) [29, 52], the logistic regression-based 

ORF-rater [59], or the SVM-based RibORF [60], which integrate different Ribo-seq metrics, 

and their profiles on known coding and non-coding regions, to identify translated ORFs.  All 

these studies support the translation of hundreds of novel small peptides encoded in 

transcripts previously thought to be non-coding and as uORFs, in vertebrates. 



It remains challenging, however, to identify which among this ever-growing set of Ribo-seq-

supported translated smORFs encode functional peptides, from those representing 

“translational noise”, or acting as translation-dependent regulatory sequences. Abundant 

evidence supports the role of uORFs as translational regulators, exerting this function 

through their engagement of ribosomes [61-63], inferring this is the main, canonical 

function of uORFs. Similarly, it has been suggested that smORFs within LncRNAs, or 

overlapping annotated coding mRNAs, could function mainly as regulators of transcript 

stability, by engaging the non-sense mediated decay (NMD) pathway [64-65] . Nonetheless, 

as shown above, several smORF-encoded peptides with important functions have been 

identified in previously non-coding RNAs proving that these sequences can certainly encode 

functional peptides [10, 48, 50-52, 54]. There are even examples of canonical non-coding 

RNAs, such as pri-miRNAs [66] and ribosomal RNAs [67-69], encoding biologically active 

peptides with well characterised functions. Similarly some uORFs have been shown to exert 

their regulatory function through their encoded peptides, with this regulation depending on 

their aa sequence [70], and being able to occur in trans [71-74].   

To assess the functional potential of smORFs, some studies have used an integrative 

approach to take advantage of the extensive RNA-seq, Ribo-seq, and HPLC-MS datasets 

available, to assess the translation, conservation, and coding potential of smORFs in several 

organisms. Mackoviak et al.[75] identified, computationally, a total of 2,002 novel putatively 

functional smORFs in 5 different organisms, based on their conservation patterns (obtained, 

briefly, with an SVM-based classifier, taking into account ORF conservation in multiple 

alignments, and PhyloCSF and PhastCons scores).  These peptides map mostly to UTRs and 

LncRNAs, show little homology to known proteins, and are shorter than annotated smORFs, 



also having different aa sequence properties [75]. Interestingly these smORFs have Ribo-seq 

ORFscore values that are higher than non-coding controls, but lower than annotated 

smORFs. Similarly, Ruiz-Orera et al.[76] found that, in several species, smORFs in lncRNAs 

have intermediate Ribo-seq and conservation features, which resemble those of newly 

evolved peptides. These results are, overall, reminiscent to those of Aspden et al. [32] in 

Drosophila, reinforcing the idea of functionally distinct classes of smORFs.  

Although these studies provide valuable information regarding the functional potential of 

smORFs, they remain elusive about their specific functions. These systematic smORF 

searches have the ultimate aim of advancing genome annotations, which ultimately entails 

the attribution of specific functions to these newly detected smORFs, and this functional 

characterisation certainly poses the next challenge towards which an increased amount of 

efforts should be directed. Advances in gene editing technologies such as CRIPSR, which 

allow to relatively quickly generate specific mutants in most organisms [77], and the 

development of more sensitive phenotypical screens and biochemical assays to accurately 

assess peptide functions[57], will help to start filling this void of functional information in 

the genome.   
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Figure 1. Bioinformatic and biochemical approaches for the prediction of putative function 

smORFs. 

Bioinformatic approaches: A- Nucleotide composition analyses of primary smORF sequences 

(tarsal-less 1A ORF;yellow), such as codon composition or hexamere nucleotide frequencies, 

are able to determine their coding potential, since the nucleotide frequencies of functional 

protein-coding ORFs are not random, due to a biased codon usage. B- Functional protein-

coding sequences are under evolutionary constrains. Identification of smORF in closely 

related species allows to assess whether nucleotide changes are constrained to maintain the 

aa sequence (Ka/Ks). Furthermore, phylogenetic analyses of smORF homologues predict 

conserved motifs, or protein domains, which can be further used to identify distant 

homologues, as shown by the phylogenetic tree of Sarcolamban family. 

Biochemical approaches: C- Ribosome profiling is based on sequencing of nuclease 

protected-ribosome bound RNA fragments (footprints), and allows a qualitative and 

quantitative genome-wide assessment of translation. Separation of polysomal fractions (red 

rectangle), enables the isolation of actively translated smORF transcripts (Poly-Ribo-Seq), 

and in combination with Ribo-seq, has detected translated smORFs. D- Mass spectrometry 

(MS) has detected smORF-encoded products from a digested protein sample by matching 

experimental spectra to predicted spectra from a reference/custom protein-database.  
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Figure 2. Different classes of smORFs detected by Ribo-seq and HPLC-MS in Humans, 

Zebrafish and fruit flies. 

A- Venn diagrams representing the number of smORFs detected by Ribo-seq (blue) or HPLC-

MS (pink), relative to the total number of transcripts encoding each class of smORF (yellow) 

in humans[33, 44], zebrafish [31]and fruit flies [32]. In these organisms, HPLC-MS detects 

very few peptides from LncRNAs and uORFs (0%-0.3%), compared to annotated smORFs (12-

33%), whereas Ribo-seq still detects a substantial amount of LncRNA smORFs and uORFs (3-

30%, compared to 30-80% annotated smORFs), highlighting the difference in sensitivity 

between these techniques. The number of transcribed uORFs (*) was inferred from the 

number of transcripts with uORFs identified in other studies, for humans [61] and  for 

zebrafish [29]; the number of peptides identified in humans by HPLC-MS (†) were obtained 

from Mackowiak et al.[75]  

B- The higher detection rates of annotated smORFs by HPLC-MS could be due to their higher 

levels of expression, and larger (and more stable) peptides, which also correlate with their 

closer resemblance to canonical proteins, in terms of functional signatures (protein domain 

content, conservation). Although these observations imply that annotated smORFs 

represent a functionally distinct class from LncRNA smORFs and uORFs, the identification of 

a growing number of biologically active peptides encoded in previously non-coding RNAs 

and uORFs (italics) proves that their functionality should not be systematically discarded.     
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Figure 3. Cellular functions of conserved smORF micropeptides. 

A- Muscle performance depends on intracellular levels of Ca2+ regulated by the Ryanodine 

receptors (RyR) and Sarcoendoplasmic reticulum (SER) calcium ATPase (SERCA) pump. A 

conserved family of smORF peptides bind SERCA inhibiting its activity.  Their members, 

Sarcolamban (Scl) in Drosophila and Sarcolipin (Sln) and Phospholamban (Pln) and 

Myoregulin (Mln) in vertebrates, display specific expression patterns. In addition, a new 

vertebrate smORF, DWORF, activates SERCA by competitively displacing SERCA inhibitors.  

 

B-The Hemotin (Hemo)/Stannin (Snn) family is necessary for regulation of phagocytosis in 

Drosophila and mouse macrophages. Trafficking of phagocytised particles depends on the 

phosphorylation states of phosphatidyl-inositol (PI). At early endosomes, PI is 

phosphorylated into PI(3)P by the PI3Kinase (PI3K68D). At late endosomes PI(3)P is 

phosphorylated into PI(3,5)P2, which leads to lysosome fusion (acidification) and 

degradation of cargo. Vesicle trafficking can be reversed by PI(3,5)P2 dephosphorylation by 

Myotubulurin phosphatases (Mtm). Therefore, maturation of phagocytized particles 

correlates positively with acidification and negatively with PI(3)P. The 88aa-Hemo/Snn 

peptides inhibit a 14-3-3ζ-mediated Pi368Dkinase activation.  

 

C- In humans, the MRI-2 peptide is involved in the non-homologous end joining (NHEJ) 

double-strand break (DSB) DNA repair. This 69aa-long peptide is recruited to the nucleus 

upon DSBs induction, where it binds Ku70/Ku80 heterodimers, and stimulates DNA ligation 

through NHEJ.  

 



Table 1. The Identification of putative functional smORFs using computational and 

experimental approaches, has led to their functional characterisation. 

 

 

 

 

 

  



BOX-1. Bioinformatic assessment of ORF-coding potential and translation. 

sORF finder: bioinformatic package to identify smORFs with high confident coding potential 

based on their similarity in nucleotide composition to bona fide coding genes by hidden 

Markov model. Potential coding sORFs are further tested for functionality by searching 

homologues and evolutionary constrains [16]. 

Coding Region Identification Tool Invoking Comparative Analysis (CRITICA): gene 

prediction algorithm, which intergrates a purifying selection analysis of pair-wise aligned 

homologous regions into a hexamere sequence composition-analysis [18]. 

PhastCons: program that predicts conserved elements in multiple alignment sequences. It is 

based on a statistical hidden Markov phylogenetic model (phylo-HMM) that takes into 

account the probability of nucleotide substitutions at each site in a genome and how this 

probability changes from one site to the next [20]. 

PhyloCSF: comparative sequence method that analyses multiple alignments of nucleotide 

sequence using statistical comparison of phylogenetic codon models to ascertain the 

likelihood to be a conserved protein coding sequence [21]. 

Micropeptide detection pipeline (micPDP): method that evaluates the existence of 

purifying selection on aa sequence from codon nucleotide changes. This pipeline filters 

candidate alignments according to coverage and reading frame conservation and then 

PhyloCSF method is applied to assess their coding potential from codon substitutions in 

genome-wide multi-alignments [31]. 

ORFscore: translation-dependent metric that exploits the 3-nt step movement of translating 

ribosomes across the transcript. Therefore, the Ribo-seq reads in coding ORFs tend to show 

a tri-nucleotide codon periodicity on the frame of translation (phasing)[31]. This method 

requires a strict cut-off for the size of analysed RBFs (only precise size reads, usually 28-

29nt, are used), which could lead to a significant loss in read density. 

Ribosome Release Score (RRS): metric based on the releasing ability of ribosomes from the 

translating RNA after they encounter a stop codon. RRS is defined as the ratio between the 

total number of Ribo-seq reads in the ORF and the total number Ribo-seq reads in the 

subsequent 3’UTR, normalized respectively to the total length of their regions divided by the 

normalized number of RNA-seq reads in each region computed in the same fashion [78]. 

Fragment length organisation similarity score (FLOSS): this method relies on the difference 

of the fragment size distribution of the ribo-seq footprints in coding genes and non-coding 

RNAs. This metric scores the coding potential of ORFs according to their similarity of the 

length of protected footprints of known coding genes [58]. 

 



BOX-2. Evaluation of coding potential and translation of smORFs by computer learning 

classifiers.  

Coding Potential Calculator (CPC): bioinformatics tool that scores six sequences features to 

distinguish coding vs non-coding ORFs, three relate to the quality of the longest ORF (ORF 

size, Coverage, integrity) whereas the other three are based on sequence conservation using 

BLASTX (number of hits, quality of the hits, frame distribution of hits) that are incorporated 

in a Support Vector learning machine classifier. [79-80].  

Translated ORF Classifier (TOC): a Ribo-seq classifier based on a random Forest model that 

assess the coding potential of each ORF within a transcript based on 4 metrics: Translation 

Efficiency (ratio of the Ribo-seq reads/RNA-seq read within the ORF: Level of translation), 

Inside vs Outside (coverage inside ORF/coverage outside ORF; coverage is number of 

nucleotides having Ribo-seq reads/total number of nucleotides), Fraction Length (fraction of 

the transcript covered by ORF) and Disengagement score (DS) assess the release efficiency 

of the ribosome after a stop codon which is a characteristic of ribosome translating coding 

ORFs by measuring the Ribo-seq reads in the ORF/Ribo-seq reads downstream. [29]. Pauli et 

al.[52] improved TOC classifier by adding a “cover” metric (number of nucleotides of the 

ORF covered by Ribo-seq reads). 

ORF Regression Algorithm for Translational Evaluation of RPFs (ORF-RATER): this metric is 

able to identify and quantify translation in ORFs from Ribo-seq data by comparing the 

patterns of ribosome occupancy (initiation and termination peaks and elongation phase) to 

that of coding ORFs. ORF-RATER uses a linear regression model that allows the integration 

of multiple lines of evidence and evaluates each ORF according to the nearby context [59]. 

RibORF Classifier: a Ribo-seq Support Vector Machine classifier that defines active 

translation of ORFs according to the evaluation of phasing by using 5’ footprint off-set 

distances to the ribosome A-site, from canonical proteins, to identify 3nt periodicity, and 

uniformity of footprint distribution across codons by calculating the percentage of 

maximum entropy values [60].  

  



Supplementary Table 1: Number smORFs identified using computational, Ribo-seq and 

proteomics approaches in different organisms. 
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