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Abstract 
 

Objective: The APOE ε4 allele is an established risk factor for dementia, yet this genetic 

variant is associated with a mixed cognitive profile across the lifespan. This paper undertakes 

both a systematic and meta-analytic review of research investigating APOE-related 

differences in cognition in mid-adulthood, when detrimental effects of the allele may first be 

detectable. 

Method: 36 papers investigating the behavioural effects of APOE ε4 in mid-adulthood 

(defined as a mean sample age between 35-60 years) were reviewed. In addition, the effect of 

carrying an ε4 allele on individual cognitive domains was assessed in separate meta-analyses.  

Results: The average effect size of APOE ε4 status was non-significant across cognitive 

domains. Further consideration of genotype effects indicates preclinical effects of APOE ε4 

may be observable in memory and executive functioning. 

Conclusions: The cognitive profile of APOE ε4 carriers at mid-age remains elusive. Whilst 

there is support for comparable performance by ε4 and non-e4 carriers in the 5th decade, 

studies administering sensitive cognitive paradigms indicate a more nuanced profile of 

cognitive differences. Methodological issues in this field preclude strong conclusions, which 

future research must address, as well as considering the influence of further vulnerability 

factors on genotype effects.  

 

Keywords: Cognitive Aging, Middle-aged, Neuroimaging, Alzheimer Disease, Memory, 

Executive Function 
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Introduction 

Pathological cognitive ageing is an increasing problem worldwide, with 850,000 

cases of Alzheimer’s disease (AD) at present in the UK alone. With prevalence expected to 

double within the next 20 years (Alzheimer’s society, 2016), understanding the risk factors 

associated with dementia is crucial. The Apolipoprotein E (APOE) epsilon 4 (ε4) allele is the 

leading genetic risk factor for late-onset Alzheimer’s disease (Corder et al., 1993; Farrer et 

al., 1997). This variant of the APOE gene constitutes one of the three APOE alleles (ε2, ε3 

and ε4), present in approximately 25% of the population (Mahley, 1988).  

 

Systematic reviews of studies including healthy older adults support an association 

between possession of an ε4 allele and cognitive impairment in ageing more generally (Small, 

Rosnick, Fratiglioni, & Bäckman, 2004; Wisdom, Callahan, & Hawkins, 2011), although not 

all studies are consistent in reporting this effect (Bunce et al., 2014; Bunce, Kivipelto, & 

Wahlin, 2004; Caselli et al., 2014).  The association between ε4 and healthy cognitive ageing 

suggests the effects of this variant are not solely linked to neuropathology, and so a 

dimensional approach is needed to consider the overlap between healthy and pathological 

ageing (Walhovd, Fjell, & Espeseth, 2014). Potentially accounting for inconsistency within 

the older-adult literature, meta-analyses of study effect sizes suggest APOE-related 

differences are small and limited to certain classes of cognitive task, including global 

cognition, episodic memory, perceptual speed and executive function (EF) (Small et al., 2004; 

Wisdom et al., 2011). Age and gene-dose are also implicated as important moderators of ε4 

effects (Small et al., 2004). These factors are important for how we approach understanding 

APOE genotype differences.  

 

Curiously, the detrimental effects of APOE ε4 are not consistent across the lifespan, 

muddying attempts to explain the causality of this risk factor for decline. In naturalistic 

research, ε4 carriers (henceforth ε4+) were reported to have higher IQ and greater educational 

achievement than ε4 non-carriers (henceforth ε4-) (Hubacek et al., 2001; Yu, Lin, Chen, 
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Hong, & Tsai, 2000). This led to the hypothesis that ε4+ may show cognitive advantages 

earlier in life, with performance advantages similarly being demonstrated in some (Alexander 

et al., 2007; Han et al., 2007; Schultz et al., 2008), although not all (Bunce et al., 2014; 

Bunce, Anstey, Burns, Christensen, & Easteal, 2011; Jorm et al., 2007) studies assessing 

genotype differences with neuropsychological batteries. Importantly, no steps have been 

taken to explore the potential moderating effects of early-life IQ and education on the 

trajectory of cognitive ageing in ε4+ through longitudinal research.   

 

A meta-analytic review found no conclusive support for an ε4+ advantage in younger 

years (Ihle, Bunce, & Kliegel, 2012); however, the authors acknowledge conclusions may 

stem from the predominant inclusion of studies using quick to administer behavioural 

assessments. Such assessments are typically used for detecting clinically relevant cognitive 

differences rather than the subtle changes expected in young healthy adults. When 

considering evidence from research paradigms designed to sensitively index select cognitive 

processes, ε4+ advantages have been reported. Young ε4+ showed behavioural advantages 

compared to ε4- on a delayed episodic memory measure (Mondadori et al., 2007). 

Furthermore, Marchant, King, Tabet, & Rusted (2010) demonstrated an ε4+ advantage in 18-

30 year olds across a number of domains including prospective memory, decision-making and 

sustained attention. Advantages in sustained attention were replicated in a further study 

(Rusted et al., 2013), which also reported ε4+ advantages in covert attention (Rusted et al., 

2013). In addition, ε4+ show EF advantages up until age 50 (Taylor et al., 2016). While 

carrying an ε4 allele might promote cognitive advantages in youth, it is important to 

understand how early differences cumulatively impact on the ageing trajectory of ε4+.   

 

This review attempts to unravel the development of APOE ε4 cognitive effects by 

considering studies recruiting healthy mid-age volunteers. Mid-adulthood, as well as being 

influenced by the cumulative impact of APOE ε4 in younger years, may represent a stage 

when the detrimental effects of carrying this gene are first appearing. Additionally, mid-
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adulthood represents a period of emergence for further risk factors for dementia (e.g. 

declining vascular health), which may modulate the trajectory of cognitive ageing. By 

studying the impact of risk factors for cognitive decline during mid-adulthood, there is the 

potential to facilitate the early identification and prevention of cognitive decline. In 

combination, these motivations emphasise the theoretical interest of studying the effects of 

APOE ε4 at mid-age.  

 

Here, we present a systematic review of research investigating APOE differences in 

mid-adulthood, including studies administering neuropsychological assessment measures, 

process-specific paradigms, and those assessing change in cognition over time. In addition, 

ε4+ differences in individual cognitive domains are subject to a meta-analytic review. 

 

 

Methods 

 

Selection of studies 

 

This review was conducted in accordance with the Helsinki declaration.  A literature 

search of 3 databases (PsychInfo, Web of Science and Scopus) was conducted, using search 

terms including ‘APOE’, ‘Apolipoprotein’, ‘cognitive’, ‘cognition’, and ‘performance’ 1.  The 

search was limited to articles published post-1993 as this was when the link between APOE 

and detrimental cognitive ageing was first identified (Corder et al., 1993). Articles referenced 

by included papers were also considered if they aligned with the search criteria of this review. 

The last update for the search was conducted in July 2016.  An overview of the search 

procedure is given in Figure 1. 

																																																								
1 The exact search terms were as follows: (Apolipoprotein E OR apoe OR Apoliopoprotein-E) AND 
(Cognition OR Behaviour OR Memory OR Performance OR Executive OR Attention OR Mid-age OR 
Adult OR Mid-adulthood). These key words must be found in the title or abstract of identified papers. 
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Eligibility criteria 

 

Studies were included in the review if they met the following criteria: (1) The study 

included volunteers grouped by APOE genotype, enabling the comparison of ε4+ to an ε4- 

group. (2) The mean age of volunteers in the study falls between 35-60 years. If no mean was 

available, the entire age range included must fall within 35-60 years. (3) The study included 

cognitively healthy adult volunteers. Studies including clinical groups, for example diagnosed 

with dementia, neural trauma or a psychiatric condition were excluded. (4) At least one 

objective measure of cognition must be included. (5) The study was published in English. In 

some cases, studies overlapped in reporting cognitive performance of the same sample, and so 

some papers were omitted from the review (e.g. Caselli, Chen, Lee, Alexander, & Reiman, 

2008; Zuelsdorff et al., 2013).  

 

Papers were included in the meta-analytic review if sufficient statistical data was 

provided for calculating the standardised effect size of carrying an ε4 allele on cognitive 

performance (mean, standard deviation (sd)) compared to an ε4- group. Study outcomes were 

included if task performance could be summarised by a measure of accuracy. Authors were 

contacted where insufficient data was provided.  

 

[INSERT FIGURE 1] 

Organisation of studies 

 

36 studies met criteria for being included in this review, 23 of which were included in 

the meta-analysis. Separate meta-analyses were completed for performance in 7 cognitive 

domains (global cognition, memory, executive abilities, verbal fluency, language, visuospatial 
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processing and processing speed). For the narrative review, studies were considered more 

broadly as those using neuropsychological assessment measures, those that administered more 

detailed research paradigms and longitudinal assessments. 

 

 

Statistical analysis 

 

For the outcome of each task included in the meta-analytic review, Hedge’s d was 

calculated as the difference in mean performance between ε4+ and ε4-, divided by the pooled 

sd. The unbiased estimate (Hedge’s g) was used in the analysis, with a positive effect size 

indicating stronger performance by the ε4+ group. In studies reporting multiple performance 

outcomes per cognitive domain, effect sizes were averaged across tasks (Borenstein, Hedges, 

Higgins, & Rothstein, 2009; De Costa, 2009) to prevent the overall effect size for any 

cognitive domain being over-biased by one sample. Multiple effect sizes were included when 

studies included more than one sample of ε4 + and ε4- grouped by another variable such as 

ethnicity or age (e.g. Blair et al., 2005; Shin et al., 2014). For each domain, a random-effects 

meta-analysis was completed. Tests of homogeneity were completed for each domain (QT, and 

I2) to check the validity of the model. A significant Q statistic indicates a non-homogenous 

distribution of effect sizes. The I2 was used to further validate this statistic, as it is not 

dependent on the number of studies included. Where heterogeneity was detected, data was 

screened for outliers based on the standardised weight of residuals and the difference 

excluding a study made to heterogeneity. 

 

Results 

 

Table 1 presents a summary of cross-sectional studies included in this review, 

including details of the sample demographics and cognitive tasks administered. A further 
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summary of the studies included in each meta-analysis and the associated effect sizes are 

shown in Table 2.  

 

[INSERT TABLE 1] 

[INSERT TABLE 2] 

 

Meta-analyses 

 

A summary of the results from each meta-analytic model is provided in Table 3.  

Forest plots demonstrating the distribution of effect sizes per domain are shown in Figure 2. 

 

Global 

 

A meta-analysis of effect sizes from 9 studies assessing global cognition found 

carrying an ε4 allele had a non-significant effect on performance, d=.03, p>.05. Tests for 

homogeneity indicated moderate heterogeneity in the individual studies’ effect sizes, 

Q(8)=15.88, p=.044, I2=48.36%. Data was screened for outliers, with a sample aged 55-64 

years (Shin et al., 2014) identified as substantially increasing heterogeneity. With this effect 

size removed, carrying an ε4 allele had a positive effect on global cognitive performance in 

mid-adulthood, with the effect size approaching significance, d=.09, p=.066 (Q(7)=5.20, 

p>.05, I2=0%). 

 

Memory 

 

Effect sizes from 20 studies were included in a meta-analysis of APOE ε4 effects on 

memory; ε4+ status had a non-significant effect on performance (d=-.01, p>.05). Again, there 

was moderate heterogeneity in the sample of effect sizes, Q(19)=48.38, p<.001, I2=10%. 
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After screening for outliers the effect size from Levy et al., (2004) was removed, but the 

average effect size remained non-significant (d=-.01, p>.05)(Q(18)=17.40, p>.05, I2=0%).  

 

Executive abilities 

 

Effect sizes from 12 studies were included in a meta-analysis of APOE ε4 effects on 

executive skills. ε4+ status did not significantly influence performance (d=-.03, p>.05). There 

was no significant heterogeneity in this collection of effect sizes, Q(11)=8.60, p>.05, I2=0%. 

 

Verbal fluency 

 

10 studies contributed effect sizes to a meta-analysis of ε4+ effects on fluency 

performance. The average effect of APOE genotype was non-significant (d=.02, p>.05). 

There was no significant heterogeneity in this sample of effect sizes, Q(9)=8.17, p>.05, 

I2=21.25%. 

 

Language 

 

Effect sizes from 8 studies were included in a meta-analysis which found no 

significant effect of carrying an ε4 allele on language performance (d=.00, p>.05). There was 

no significant heterogeneity in this sample of effect sizes, Q(7)=6.81, p>.05, I2=26.65%. 

 

Visuospatial 

 

Effect sizes from 5 studies were included in the meta-analysis. There was no 

significant effect of carrying an ε4 allele on visuospatial performance (d=-.01, p>.05), with 

non-significant heterogeneity reported in the sample of effect sizes, Q(4)=2.78, p>.05, 

I2=11.96%. 
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Processing speed 

 

Seven studies contributed effect sizes to a meta-analysis of genotype differences in 

processing speed. The average effect of carrying an ε4 allele was non-significant (d=-.01, 

p>.05). There was no significant heterogeneity in this sample of effect sizes, Q(6)=7.15, 

p>.05, I2=0%. 

[Insert Table 3] 

[Insert Figure 2] 

 

Systematic review 

 

Neuropsychological Assessment  

 

The majority of studies examining the effect of APOE ε4 in mid-adulthood have 

chosen to administer a compilation of neuropsychological assessment measures. These studies 

report limited effects of APOE ε4 in mid-adulthood (e.g. Jorm et al., 2007; Marioni et al., 

2016; Sager, Hermann, & La Rue, 2005; Shin et al., 2014; Zhao et al., 2005). Indeed, in a 

large community-based sample, the effect of APOE status was non-significant in both mid-

adulthood (40-44 years), as well as groups aged 20-24 years and 60-64 years (Jorm et al., 

2007), leading authors to conclude there are no preclinical effects of APOE genotype on 

cognition. Of interest, however, other studies suggest sample age is a key determinant in the 

expression of preclinical APOE ε4 effects. Age x APOE interactions were found both for 

scores on the Korean MMSE (Shin et al., 2014), and performance on measures of declarative 

memory and processing speed (Marioni et al., 2016). In both studies, detrimental effects of 

ε4+ status emerged when analyses isolated volunteers aged in the latter half of the 5th decade 

(55+ years and 60+ years respectively).  
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Mid-age studies investigating APOE differences across a broad range of 

neuropsychological measures typically observe ε4+ effects, when present, within a select 

domain. For example, in the research of Sager et al. (2005) ε4+ selectively showed worse 

performance on visuospatial processing tasks, driven by decrements on block design 

performance. In contrast, detrimental effects of ε4+ status were limited to female participants 

on tasks probing memory and semantic fluency (Zhao et al., 2005), whereas ε4+ advantages 

were reported in verbal fluency and language across the adult lifespan by Marioni et al., 

(2016). While the selectivity of effects agrees with reports of genotype effects in older 

adulthood (Small et al., 2004; Wisdom et al., 2011), failure to identify a consistent pattern of 

ε4 effects within a cognitive domain in mid-adulthood makes interpretation difficult.  

 

Results within the domain of memory offer the clearest profile of cognitive 

differences in ε4+, with several studies associating possession of an ε4 allele with poorer 

memory performance (Caselli et al., 1999; Flory, Manuck, Ferrell, Ryan, & Muldoon, 2000; 

Goveas et al., 2013; Levy et al., 2004; Schultz et al., 2008). Attempts have been made to link 

differential memory performance with neural differences. In adults aged 44-65 years, ε4+ 

showed a trend of worse performance on the Rey Auditory Verbal Learning Test (AVLT) 

(Goveas et al., 2013). Performance on this task correlated with observed reductions in the 

functional connectivity of medial temporal lobe (MTL) circuits, as well as differential 

connectivity of the default mode network (Li et al., 2014; Goveas et al., 2013), offering a 

possible neurobiological basis of genotype differences. In addition, two studies report an 

altered BOLD response in ε4+ during episodic memory tasks, despite no detectable genotype 

difference in behavioural performance (Trachtenberg et al., 2012; Xu et al., 2009). Although 

this raises the question of how neural activations relate to cognition, identifying the neural 

basis of APOE differences will further mechanistic explanations of how APOE ε4 influences 

cognitive ageing.  
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Research has started to explore how carrying an APOE ε4 allele interacts with 

environmental factors in influencing performance on neuropsychological measures. Education 

was found to interact with APOE status in a cohort of adults aged 45-54 years, in that only 

ε4+ with no formal education showed cognitive advantages on a measure of global cognition 

compared to their ε4- peers (Shin et al., 2014). In contrast, APOE, education and socio-

economic status were reported to independently affect cognition (Zhao et al., 2005).  

 

Considering cardiovascular health factors, an APOE x Blood Pressure interaction has 

been reported for cognition in mid-adulthood. Although there was no main effect of APOE 

status or systolic blood pressure on performance across 3 cognitive domains; episodic 

memory, visual memory or EF, in ε4+ only, high blood pressure was associated with worse 

episodic memory performance (Oberlin et al., 2015). High blood pressure was also found to 

enhance the negative association of APOE ε4 with processing speed and working memory 

(WM), as well as reduced white matter integrity in frontal regions (Bender & Raz, 2012). In 

both studies, the relationship between blood pressure and cognition was absent in the ε4- 

group, suggesting cardiovascular health factors may exaggerate cognitive effects in ε4+.   

 

 

Behavioural paradigms 

 

Paradigms designed to detect subtle differences in cognition have predominantly been 

used to explore the sensitivity of executive abilities, including WM and attention, to APOE 

effects in mid-adulthood.  

 

On a measure of covert attention, there was a non-significant effect of APOE 

genotype on overall performance, and on the ability to benefit from valid cues in mid-

adulthood (Greenwood, Sunderland, Friz, & Parasuraman, 2000). ε4+, however, showed 

increased response time costs following an invalid cue, relative to ε4- peers, interpreted as a 
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deficit in attentional disengagement. In contrast, a more recent study reported equivalent 

performance between genotype groups on this task (Evans et al., 2013; Evans, Dowell, Tabet, 

Tofts, King & Rusted, 2014). Control of visual attention was explored in an attentional 

scaling task (Greenwood et al., 2000; Greenwood, Lambert, Sunderland & Parasuraman, 

2005a). The dynamic scaling task measures the ability to constrict one’s attentional spotlight 

in response to top-down information cueing the spatial location of a target stimulus. ε4+ did 

not show the same benefit as their ε4- peers in response times following more precise cues. 

 

Executive attention was explored in a cross-sectional comparison of mid-age (aged 

43-58) and young adults (aged 18-30) (Evans et al., 2013; 2014). On a measure of sustained 

attention, a trend of higher accuracy, coupled with slower reaction times, was found in mid-

age ε4+ relative to their ε4- peers. When compared to the data from the young group, the mid-

age ε4+ group showed exaggerated age-related slowing. In comparison, a second study found 

no effect of APOE genotype on a similar task in adults aged 50+ (M=59 years) (Greenwood et 

al., 2000). A comparable pattern of results was seen on a prospective memory task, probing 

attentional monitoring and switching between goals. ε4+ demonstrated greater accuracy but 

slower response times on the prospective memory paradigm, suggestive of a speed-accuracy 

trade-off (Evans et al., 2013; 2014). Corresponding functional activations during this task 

indicated greater recruitment of frontal regions, but reduced recruitment of parietal and 

extrastriate visual regions in ε4+ relative to their ε4- peers. Specifically, left inferior frontal 

gyrus activity correlated with prospective memory accuracy in ε4+ only, consistent with an 

early compensatory shift towards reliance on more frontal systems. 

 

Genotype effects were explored using a selection of cognitive paradigms designed to 

probe the 3 components of executive function identified by Miyake et al. (2000): inhibition, 

switching and updating in WM (Velichkovsky, Roschina, & Selezneva, 2015). No genotype 

differences were recorded on either an anti-saccade inhibition measure, or two WM 

paradigms (n-back test, the operation span task).  A non-significant effect of APOE ε4 status 
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on n-back performance has previously been reported in middle-aged adults (Chen et al., 2013; 

Yan, Wu, Chao, Chen, & Tseng, 2015). Both studies, however, reported a differential pattern 

of neural change in ε4+, with this group showing an absence of neural activation increases in 

correspondence to greater WM load (Chen et al., 2013; Yan et al., 2015). This was interpreted 

as ε4+ maximally recruiting processing resources at a lower level of load, which cannot be 

further increased under greater demands. Hence, it may be that on more demanding tasks, 

significant effects of carrying an ε4 allele may be observable. On the switching paradigm 

administered by Velichovsky et al., (2015), ε4+ showed significantly larger switching costs 

than their ε4- counterparts.  

 

Greenwood et al., (2005a) assessed spatial WM in adults, aged 41-85. Relative to ε4-, 

only homozygous ε4+ displayed a disadvantage on spatial WM tasks, driven by performance 

on trials placing the greatest load on spatial WM. In a further study of spatial WM, no 

genotype difference was seen in mid-age adults (Greenwood, Espeseth, Lin, Reinvang, & 

Parasuraman, 2014) 

 

Longitudinal assessments 

 

Several studies have explored how cognition changes longitudinally as a function of 

APOE genotype. Schultz et al. (2008) compared the cognitive test performance of army 

cadets in the 6th decade of life, to their scores on the same measure at age 20, and found ε4+ 

showed greater decline. Across a period of 6 years, relatively limited effects of APOE 

genotype were reported across a selection of cognitive domains (Zhao et al., 2005), with only 

semantic fluency being negatively associated with ε4+ status in females aged 40-49; this 

study reported no genotype differences in a slightly older sample (aged 50-59). 

 

The dominant focus of  longitudinal research has been establishing if ε4+ show a 

differential rate of memory change over time. Several studies suggest that ε4+ show 
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significantly greater memory decline from mid-adulthood (Caselli et al., 2009; Kozauer, 

Mielke, Chan, Rebok, & Lyketsos, 2008), with this effect isolated to delayed memory in two 

studies (Greenwood, Sunderland, Putnam, Levy, & Parasuraman, 2005b; Greenwood et al., 

2014). Performance change across an average of 3.8 years was investigated for measures of 

memory (Jochemsen, Muller, van der Graaf, & Geerlings, 2012), with participants stratified 

by age. Of interest, it was found ε4+ aged 47-57 years showed improvements in recall 

performance, whilst ε4+ aged 58-67 years showed significant decline by the follow-up 

assessment. How change in memory is influenced by the interaction between APOE 

genotype, ethnicity and cardiovascular health has also been explored over a 6 year interval 

(Blair et al., 2005). Negative associations between ε4+ and memory change were small and 

limited to Caucasian adults. There was no interaction between cardiovascular health factors 

(diabetes, hypercholesterolemia, hypertension), APOE genotype and memory change. 

 

Two papers found a non-significant effect of APOE genotype on change in executive 

abilities over time (Greenwood et al., 2014; Jochemsen et al., 2012). There is support, 

however, for the ε4 allele being associated with greater decline in processing speed (Blair et 

al., 2005; Caselli et al., 2011). In a group of Caucasian adults, ε4+ also diagnosed with 

hypercholesterolemia or diabetes showed increased decline on the digit-symbol substitution 

measure of processing speed (Blair et al., 2005). No APOE x Hypertension interaction was 

found for change in processing speed. Verbal fluency scores were maintained in both the 

Caucasian and Afro-American groups included in Blair et al. (2005). 

 

Longitudinal measures (Greenwood et al., 2014) revealed no genotype difference 

across trials with relatively low WM demand. On trials incorporating a mismatch between 

encoded and target stimuli, and hence placing greater demand on WM resources, however, 

performance of ε4+ improved over 3 years, whilst performance of the ε4- group remained 

stable. The observed practice effects in ε4+ were interpreted by the authors to represent 
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compensatory mechanisms during mid-adulthood, and as a result of the increased cognitive 

effort in this group, some ε4+ benefits were still observed. 

 

Discussion  

 

This review highlights the inconsistencies reported for APOE ε4 effects on cognition 

in mid-adulthood. Synthesising the results through meta-analyses, the effect of carrying an ε4 

allele was non-significant across the 7 cognitive domains examined (global cognition, 

memory, executive ability, verbal fluency, language, visuospatial processing, and processing 

speed). Closer inspection of individual studies, however, indicates ε4+ effects may emerge 

under certain conditions, and when probed with measures designed to maximise sensitivity.  

 

The results of the meta-analyses offer limited support for ε4+ showing cognitive 

differences in mid-adulthood; performance of ε4+ and ε4- appears equivalent until the end of 

the 5th decade. This is not inconsistent with the antagonistic pleiotropy position whereby the 

ε4 allele has opposing effects on fitness across the lifespan (Han & Bondi, 2008), with mid-

adulthood as a transition point between ε4+ behavioural advantages in youth switching to 

disadvantages in older adulthood. 

 

When considering individual studies in more detail, the age range of participants is a 

likely factor in the inconsistency between study outcomes. Critically, existing research lacks a 

precise and consistent definition of mid-adulthood, reflected in the diverse and often broad 

age ranges of volunteers participating in the research reviewed here (see Table 1). For 

example, mid-adulthood was defined as 24-69 years in one study (Flory et al., 2000) and 41-

85 years in another (Greenwood et al., 2005a). To draw conclusions of genotype effects at 

any precise window of the lifespan is difficult with such large age inclusion criteria, and the 

disparity in age groups may relate to the inconsistency of results presented. In cases where 

samples were stratified by age, Age x APOE interactions were reported, indicating emergence 
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of the detrimental effects of APOE ε4 in the latter half of the 5th decade (Jochemsen et al., 

2012; Marioni et al., 2016; Shin et al., 2014).  This highlights the importance of controlling 

for age. Age was not included as a moderator in the current meta-analyses due to the small 

number of studies in each domain, but this is certainly an important avenue for future 

research.  

 

A key question for this review was whether process-specific cognitive measures show 

sensitivity to APOE genotype effects in mid-adulthood. Although the results of the meta-

analyses failed to report a robust effect of ε4+ status on memory, looking across studies there 

is a relatively consistent pattern of emerging decrements in ε4+ performance (11/20 studies). 

Detrimental effects of ε4+ status on memory were also supported by longitudinal studies, 

suggesting this genotype group shows an accelerated trajectory of memory decline (Caselli et 

al., 2009; Greenwood et al., 2005; Greenwood et al., 2014; Kozauer et al., 2008). The 

sensitivity of memory to the effects of APOE ε4 from mid-adulthood is further supported by 

imaging evidence of genotype differences in MTL regions, implicating this region as a neural 

basis for behavioural changes (Goveas et al., 2013; Li et al., 2014). Memory is over-

represented in studies probing the effects of APOE, and with more careful consideration of 

other cognitive domains, other effects may emerge. 

 

It is important to consider that many of the study outcomes included in the meta-

analyses were based on neuropsychological assessment performance. It may be that the 

preclinical effects of APOE ε4 are too subtle for detection with neuropsychological measures, 

more commonly used for the detection of clinically relevant symptoms. In support of this, 

studies using computerized paradigms designed to target specific cognitive processes report 

APOE ε4 differences in mid-adulthood within the domains of EF, attention and WM (Evans 

et al., 2013, 2014; Greenwood et al.,, 2000; 2005; 2014; Velichkovsky et al., 2015). These 

domains have also been linked to ε4+ cognitive advantages in early adulthood (Marchant et 

al., 2010; Rusted et al., 2013; Taylor et al., 2016), and so may show early sensitivity to 
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genotype effects. Future research should focus on specific cognitive processes in order to 

establish the pattern of age-related change more clearly. Identifying replicable cognitive 

markers of those at heightened risk of poor cognitive ageing would make a substantial 

contribution to the development of early intervention strategies, independently and in 

association with the study of biomarkers and additional risk factors for dementia. 

 

An additional methodological issue is the role of individual differences in moderating 

the effects of APOE. Several studies attempt to control for differences in ethnicity, education, 

socio-economic status (SES), and health factors; however, these factors are not uniformly 

included. Investigation of how these factors interact with APOE ε4 to alter the initial stages of 

ageing is limited to date. Although methodological shortcomings contribute to the 

inconsistency of findings, it is important to recognise that mid-age itself will play an 

important role.  Mid-age brings with it other risk factors for poor cognitive ageing (e.g. 

hypertension, high cholesterol and diabetes (Atzmon et al., 2002; Köhler et al., 2014; van 

Exel et al., 2002; Whitmer, Sidney, Selby, Johnston, & Yaffe, 2005), and interactions 

between vascular health, APOE and cognition are reported (de Frias, Schaie, & Willis, 2014; 

Peila et al., 2001; Puttonen, Elovainio, Kivimäki, Lehtimäki, & Keltikangas-Järvinen, 2003; 

Zade et al., 2010). Current behavioural research is neither considering the potential modifying 

effects of wider risk factors nor adequately controlling for them, though they undoubtedly 

contribute to the cognitive ageing trajectory (Herrup, 2010). One account for the role of 

APOE ε4 in cognitive ageing is that this allele represents a genetic susceptibility, increasing 

vulnerability to both detrimental and protective factors in cognitive ageing (Wirth, 

Villeneuve, La Joie, Marks, & Jagust, 2014). Mid-adulthood represents a period of the 

lifespan where ε4+ are particularly susceptible to cognitive insults and benefits, and this 

underlines the need to consider the cognitive profile of ε4+ in relation to other potential 

modulators for cognitive health when establishing the preclinical effects of this gene. 

 

Conclusions 
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It remains difficult to untangle the effects of APOE ε4 on cognition in mid-adulthood; 

methodological issues including imprecise criteria for age of volunteers and differential 

sensitivity of the measures used make it hard to form concrete conclusions. Results reviewed 

here suggest the cognitive performance of ε4+ in mid-adulthood is broadly comparable with 

their ε4- counterparts. Subtle differences in memory and executive abilities are reported, 

however, where more sensitive measures of cognition are used, suggestive of the beginnings 

of a differential ageing trajectory in ε4+. Future research should focus on administering 

cognitive paradigms specifically chosen for their ability to sensitively measure the more 

nuanced processes in each particular domain, rather than relying on assessment measures 

more traditional of clinical settings. Since mid-age is a time when the trajectory of cognitive 

ageing will be influenced by multiple factors, these must also be incorporated when 

modelling the effects of APOE ε4 across the lifespan. Through the consideration of these 

factors in future study design reliable cognitive markers for exposing accelerated cognitive 

ageing in mid-adulthood may be developed.  
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Figure Captions 

Figure 1. Flow chart of study selection process for review of APOE effects in mid-adulthood.  

 

Figure 2. Forest plots of weighted effect sizes by cognitive domain. For each study, effect size 
is reported as Hedge’s d [95% CI], where a positive effect size represents greater 
performance by the ε4+ group. 
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