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Abstract 

Visual processing starts in the retina. Within only two synaptic layers, a large number of 

parallel information channels emerge, each encoding a highly processed feature like edges 

or the direction of motion. Much of this functional diversity arises in the inner plexiform layer, 

where inhibitory amacrine cells modulate the excitatory signal of bipolar and ganglion cells. 

Studies investigating individual amacrine cell circuits like the starburst or A17 circuit have 

demonstrated that single types can possess specific morphological and functional 

adaptations to convey a particular function in one or a small number of inner retinal circuits. 

However, the interconnected and often stereotypical network formed by different types of 

amacrine cells across the inner plexiform layer prompts that they should be also involved in 

more general computations. In line with this notion, different recent studies systematically 

analysing inner retinal signalling at a population level provide evidence that general functions 

of the ensemble of amacrine cells across types are critical for establishing universal 

principles of retinal computation like parallel processing or motion anticipation. Combining 

recent advances in the development of indicators for imaging inhibition with large-scale 

morphological and genetic classifications will help to further our understanding of how single 

AC circuits act together to help decomposing the visual scene into parallel information 

channels. In this review, we aim to summarise the current state-of-the-art in our 

understanding of how general features of amacrine cell inhibition lead to general features of 

computation. 
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Inhibitory amacrine cells shape visual information processing in the inner retina 

The vertebrate retina is an established model system in neuroscience for sensory information 

processing. It decomposes the visual input into parallel channels, each selective for a 

specific feature like motion, contrast or edges (Wässle, 2004; Masland, 2012a). Already at 

the first synapse, signals from single photoreceptors (PRs) are split into more than a dozen 

bipolar cell (BC) types (Euler et al., 2014), which relay the information to more than 30 output 

channels formed by the retinal ganglion cells (RGC) (Robles et al., 2014; Sanes and 

Masland, 2015; Baden et al., 2016). Most computations towards retinal feature extraction are 

implemented in the second synaptic layer – the inner plexiform layer (IPL) (Gollisch and 

Meister, 2010). Here, at least 30 types of inhibitory amacrine cell (AC) form intricate 

connections with BCs and RGCs (Vaney, 1990) to shape and gate the excitatory pathways of 

the inner retina. The modulatory role of ACs is key for generating the functional diversity 

present in the retinal output (Masland, 2012b). While a handful of individual AC circuits have 

been studied at great detail, it is not clear how representative their functions are for the great 

majority of ACs and surprisingly little is known about more general computational principles 

that ACs as a whole impart on the retinal network. Here, we summarise current knowledge 

about how ACs contribute to information processing in the retina and speculate about more 

universal roles of AC function. 

Alongside RGCs, ACs are the most diverse class of retinal neurons and they differ even 

more greatly in size and morphology than RGCs (Vaney, 1990; MacNeil and Masland, 1998; 

Masland, 2012b). Two major groups can be distinguished: “Small-field” types mainly signal 

vertically across synaptic layers of the IPL and are classically thought to modulate visual 

signalling locally over a small region of the visual field. In contrast, “wide-field” ACs 

predominantly transfer information laterally within single IPL strata and can span up to 

several millimetres of the retinal surface (Fig. 1a), thereby shaping visual information 

processing at a larger spatial scale. Although some wide-field ACs possess axons for fast 

signal transmission across large distances, most types use their dendrites as both input and 

output structures (Euler and Denk, 2001). In mammals, small-field ACs mainly release 

glycine as neurotransmitter (Menger et al., 1998), whereas wide-field types release GABA 

(Fig. 1b) (Pourcho and Goebel, 1983). Additionally, many ACs co-release a second 

neurotransmitter (e.g. glutamate (Lee et al., 2014)) or neuromodulator (e.g. nitric oxide 

(Vielma et al., 2011)). ACs provide type-specific inhibitory inputs to BC axon terminals 

(“presynaptic inhibitory inputs”) and RGC dendrites (“postsynaptic inhibitory inputs”) as well 

as to other ACs (“serial inhibitory inputs”) (Fig. 1c) (Eggers and Lukasiewicz, 2011; Zhang 

and McCall, 2012). 

Individual amacrine cell microcircuits 

A small number of specific AC circuits have been studied at great detail. One prominent 

example is the starburst AC, which provides the critical inhibition underlying direction-

selective responses of rodent and lagomorph RGCs (Vaney et al., 2012). Several 

mechanisms have been suggested to contribute to the computation of direction selectivity in 

starburst ACs, including different intrinsic mechanisms, such as active membrane 

conductances (Hausselt et al., 2007), and network interactions like reciprocal inhibition 

between neighbouring starburst ACs (Lee and Zhou, 2006; Münch and Werblin, 2006; 

Enciso et al., 2010; Ding et al., 2016)). Likely by combining these mechanisms, each main 

dendritic branch of a single starburst AC is differentially tuned to stimuli moving centrifugally 

from the soma (Euler et al., 2002). As such, individual starburst AC dendrites are a central 

computational unit within inner retinal circuits that extract the direction of object motion. 



Similarly, the A17 AC joins a morphological “setup” (the regular ~20 µm spacing of 

varicosities (Grimes et al., 2010)) with biophysical features, like the complement of 

expressed receptor types (Chávez et al., 2006; Grimes et al., 2009, 2015), such that each 

individual varicosity contains an independent “microcircuit” that provides highly local 

feedback. Hereby the cell provides synapse-specific gain control to individual rod BC axon 

terminals to modulate the sensitivity of the rod pathway. Further examples of well-studied AC 

types and circuits include the AII (Demb and Singer, 2012), A8 (Kolb and Nelson, 1981; Lee 

et al., 2015) and the glutamatergic AC (Lee et al., 2014; Tien et al., 2016) (for discussion of 

the role of glutamatergic outputs of ACs see (Baden and Euler, 2016)) as well as types of 

polyaxonal ACs (Baccus et al., 2008; Greschner et al., 2014; Murphy-Baum and Taylor, 

2015). One key feature that all of these AC types have in common is that they use highly 

specific morphological and functional adaptations to carry out specific computations in a 

single or at most a small number of inner retinal circuits. 

General amacrine cell functions  

The population of ACs across types forms a dense network connecting all strata of the IPL, 

suggesting that the activity in any one cell – at least in principle – might affect the activity in 

any other cell of the network. One striking example in support of this notion is that altering 

the activity in a single salamander BC in the absence of visual stimulation changes firing 

rates in RGCs of different types and across large distances via polysynaptic pathways 

involving ACs (Asari and Meister, 2014). Because of this across-type interconnectivity, ACs 

might interact beyond their individual microcircuits, possibly contributing in addition to 

general features of inner retinal computation. Indeed, the complex synaptic arrangements the 

population of ACs forms in the IPL include stereotypic and repeating connectivity motifs. For 

example, likely all BCs receive independent reciprocal and lateral inhibition from different AC 

types at the same specialised output structure (Vigh et al., 2011; Grimes, 2012; Tanaka and 

Tachibana, 2013), the dyad synapse (Dowling and Boycott, 1966; Raviola and Dacheux, 

1987). Similarly, RGCs consistently show an excess of inhibitory inputs compared to 

excitatory inputs across types and species and these inputs appear to be randomly 

distributed across the dendritic tree of individual RGCs (Freed and Sterling, 1988; Hitchcock, 

1989; Kolb and Nelson, 1993). In addition, ACs  form repeating and spatially extensive 

circuits via serial synaptic connections (Dowling and Boycott, 1966; Zhang et al., 2004) which 

shape the magnitude and timing of inhibition in the inner retina (Zhang et al., 1997; Roska et 

al., 1998; Eggers et al., 2007). One connectivity motif that is shared across all classes of 

inner retinal neurons – BCs (Molnar and Werblin, 2007; Rosa et al., 2016), ACs (Hsueh et 

al., 2008) and RGCs (Manookin et al., 2008; Cafaro and Rieke, 2013) – is crossover 

inhibition which connects the On and Off pathway via small-field ACs. Therefore, while type-

specific morphological adaptations give rise to highly specific functions (see above), it seems 

reasonable to suggest that general characteristics of inner retinal connectivity shared across 

the ensemble of AC types will lead to general features of computation. 

One “classical” example of such a general computation is the establishment of the 

antagonistic centre-surround organisation of BC and RGC receptive fields (e.g. (Kuffler, 

1953)). The inhibitory surround of individual cells is largely generated in the inner retina by 

lateral inhibition provided by wide-field ACs (Flores-Herr et al., 2001; Ichinose and 

Lukasiewicz, 2005; Buldyrev and Taylor, 2013; Protti et al., 2014) (but see e.g. (Naka and 

Nye, 1971; Marchiafava, 1978)). However, numbers alone dictate that the surround of each 

of the ~14 BC and >30 RGC types cannot be created by an exclusive “partner AC” – there 

simply are not enough AC types in the retina. Instead, the inhibitory surround is likely at least 



partially independent from each cell’s individual micro-circuitry and instead emerges from 

general principles of inner retinal organisation. 

Investigating general functional features of amacrine cells 

Understanding how these general AC functions arise within the retinal network requires the 

systematic recording of light-evoked activity in many different retinal neurons under the same 

experimental condition (e.g. adaptational state, visual stimulation protocol) in the intact tissue 

preparation (i.e. the whole-mounted retina or, if possible, in vivo), where long-range inhibitory 

connections are preserved. For example, Johnston and Lagnado (Johnston and Lagnado, 

2015) performed electrical single cell recordings of different RGC types in the whole-

mounted goldfish retina to study the underlying mechanism of motion anticipation. Here, the 

visual system compensates for the temporal delay in phototransduction cascade and 

downstream signal transmission to accurately estimate the position of a moving object. This 

fundamental property of the retinal output occurs in the majority of RGC types and across 

species (Berry et al., 1999; Schwartz et al., 2007). In this study, they found that feedforward 

inhibition from ACs is critical for anticipating moving stimuli and locate this computation to the 

dendritic tree of individual RGCs. Since this mechanism applies to different RGC types which 

receive inhibitory inputs from different AC types, this study reveals a general function of the 

population of ACs. Similarly, Asari and Meister (Asari and Meister, 2012) investigated global 

principles of signal transmission in the inner retina by intracellularly manipulating single BCs 

in the whole-mounted salamander retina and simultaneously recording the spiking activity of 

many surrounding RGCs. They showed that AC function is critical for diversifying the signal 

properties (e.g. kinetic, adaptation) of different types of BC and RGC – another universal role 

of ACs.  

To further investigate how inhibition from ACs shapes the visual signal in the inner retina in a 

general manner, one would ideally get closer to the critical site of AC interactions and 

monitor the activity in the cellular compartments that directly receive the inhibitory inputs. 

These include the axon terminals of BCs as well as dendritic processes of both ACs and 

RGCs. Here, optical population imaging of neuronal activity comes to shine. In contrast to 

electrical somatic recordings, which typically give only a limited representation of what 

happens in individual neuronal compartments distal to the recording site like axon terminals 

(Oltedal et al., 2006) or dendrites (Poleg-Polsky and Diamond, 2011), an optical imaging 

approach permits to record the activity of many sub-cellular structures in parallel at 

micrometer-resolution. Moreover, genetic targeting in combination with the spatial resolution 

provided by the imaging system allows unambiguous identification of the origin of the 

recorded signals (e.g. (Duebel et al., 2006; Odermatt et al., 2012; Yonehara et al., 2013)). 

Several recent studies drew on the opportunities provided by an optical approach to address 

general features of inner retinal function (e.g. characterisation of BC and RGC function in 

mouse and zebrafish (Dreosti et al., 2009; Odermatt et al., 2012; Baden et al., 2013, 2016; 

Borghuis et al., 2013a; Nikolaev et al., 2013; Rosa et al., 2016)). Importantly, the diversity of 

available indicators (Lin and Schnitzer, 2016) selective for different neuronal events allows to 

not only record neuronal activity per se but a specific biological process. For example, since 

the development of the glutamate indicator iGluSnFR (Marvin et al., 2013), it is now possible 

to record light-evoked glutamate release from BC axon terminals throughout the IPL 

(Borghuis et al., 2013b). Unlike presynaptic calcium, glutamate release directly corresponds 

to the output of BCs, not only accounting for presynaptic inhibition (e.g. (Borghuis et al., 

2014)) but also any release dynamics of BC ribbon synapses (Burrone and Lagnado, 2000; 

Cho and von Gersdorff, 2012; Nikolaev et al., 2013). Another example relevant for studying 



ACs are chloride indicators. They allow monitoring changes in the intracellular chloride 

concentration (e.g. (Duebel et al., 2006)) which can be directly linked to inhibitory inputs and 

therefore represent a promising tool for unravelling AC function in BC axon terminals and AC 

and RGC dendrites.  

Evidence for a universal role of amacrine cells 

A recent study (Rosa et al., 2016) used in vivo population imaging of calcium signals in 

zebrafish BC axon terminals to investigate the role of crossover inhibition on temporal 

signalling in the inner retina. Electrophysiological studies had shown before that crossover 

inhibition is involved in a variety of functions (Werblin, 2010), such as the compensation of 

synaptic rectification (Molnar et al., 2009). The large dataset of calcium responses across 

different strata of the IPL in combination with pharmacological manipulations allowed the 

authors to identify a novel, systematic effect of crossover inhibition on frequency tuning of 

BCs: While crossover inhibition shifts band-pass synapses into low-pass and therefore 

generates the sustained Off channel in the inner retina, it suppresses contrast responses in 

On BC terminals.  

Recently, Franke and co-workers (Franke et al., 2016) systematically recorded glutamate 

release of >13,000 BC axon terminals across the whole IPL to investigate how AC circuits 

help to decompose the visual scene into the parallel channels carried by the BCs in mouse. 

By applying light stimuli of different spatial scales, they compared centre (“local”) responses 

– dominated by the excitatory input from photoreceptors – with centre-surround (“full-field”) 

responses – additionally including the inhibitory inputs from ACs. The authors found that the 

functional diversity among BCs critically relies on inhibitory inputs from ACs: While local 

responses are highly similar across BC types of the same response polarity (Fig. 2a), 

additional surround stimulation significantly increases the functional differences 

(decorrelates) between BCs (Fig. 2b). Already before, several studies demonstrated the 

effect of axonal inhibition provided by ACs for modulating temporal and spatial properties of 

BCs (Eggers et al., 2007; Purgert and Lukasiewicz, 2015). However, so far the importance of 

these axonal inputs for diversifying BC responses was underestimated compared to dendritic 

mechanisms like the expression of specific glutamate receptors (DeVries et al., 2006; 

Lindstrom et al., 2014). By using pharmacological manipulations they showed that 

GABAergic wide-field ACs provide the decorrelating inhibition to BC axon terminals. In 

contrast, glycinergic small-field ACs mainly shape BC function indirectly by gating the 

spatially extensive GABAergic network, challenging the classical view that small-field ACs 

are predominantly involved in local signal processing. Together these findings suggest that 

the two major groups of AC of the mouse retina act together to set the ratio of excitation and 

inhibition. This cooperative action increases functional diversity in the inner retina. The study 

also demonstrates a general and AC group-specific effect of GABAergic and glycinergic ACs 

across different BC types and IPL strata. Since ACs also provide inhibition to RGCs, there 

might be an additional step of signal decorrelation at the level of RGC dendrites (see (Asari 

and Meister, 2012)).  

Amacrine cell function – specific or general? 

What is the functional significance of the diverse population of ACs? Does every AC type 

have an isolated and specific function in one distinct circuit? Conversely, does every AC 

circuit contribute to more general effects of inner retinal computation? The truth probably lies 

somewhere in the middle. Clearly, at least some AC types have developed highly specific 

morphological and functional adaptations to perform particular computations (e.g. starburst 



or A17 AC, see above). Despite these selective adaptations, the functions of individual AC 

types may still combine to serve a common goal. There is a rapidly growing body of literature 

(e.g. (Asari and Meister, 2012; Johnston and Lagnado, 2015; Franke et al., 2016; Rosa et al., 

2016) arguing that general functions of ACs across types are critical for establishing 

universal principles of retinal signalling like parallel processing or motion anticipation. 

Future directions 

To get a better understanding how individual and general AC functions are organised will 

require a comprehensive characterisation of morphological and functional aspects of ACs, 

both at high resolution as well as the population level. In particular, for verifying the concept 

of a general mode of action of ACs it will be important to explore to what extent general 

computations performed by the population of ACs are independent of individual AC types. 

This might for example be achieved by deactivating single genetically defined AC 

populations. Here, transcriptional analysis (Macosko et al., 2015)  in combination with large-

scale electron microscopy (EM) datasets (e.g. (Helmstaedter et al., 2013)) will serve to 

identify the number of AC types and make them more accessible for targeted genetic 

manipulations. In parallel, advances in the development of sensors for imaging inhibition 

(e.g. (Paredes et al., 2016)) promise to provide a more direct approach for studying the role 

and integration of inhibitory inputs in inner retinal circuits at sub-cellular resolution in the near 

future. However, doing these types of experiments in a single species (like the mouse) may 

prove to be insufficient. After all, the degree of generality of AC function might vary for 

different species. To therefore truly probe to what extent general AC actions are a universal 

feature of inner retinal signalling it will be critical to compare results across species. Taken 

together, combining these different approaches will provide new insights into how the single 

AC circuits act together to shape information processing in the early visual system in a 

general manner. 

Figure legends 

Figure 1 | Organisation of the amacrine cell network in the inner retina. a, In the retina, 

photoreceptors (PRs, purple) transduce the visual input into an electrical signal and feed into 

bipolar cells (BCs, green) which provide input to the retina´s output neurons, the retinal 

ganglion cells (RGCs, blue). This vertical excitatory pathway is extensively modulated by 

inhibitory amacrine cells (ACs) in the inner retina. Here, wide-field ACs (red) mainly transfer 

information laterally within individual synaptic layers, while small-field ACs (orange) 

predominantly mediate vertical signalling across synaptic layers. Arrows indicate main signal 

flow. HC: Horizontal cells (yellow). b, ACs form a complex and dense synaptic network in the 

inner plexiform layer. In mammals, wide-field ACs use GABA as neurotransmitter (brown 

vesicles), while small-field ACs use glycine (yellow vesicles). Bipolar cells use glutamate 

(grey vesicles). c, ACs provide inhibitory inputs to BC axon terminals (presynaptic inhibitory 

inputs), RGC dendrites (postsynaptic inhibitory inputs) as well as to other ACs (serial 

inhibitory inputs). 

Figure 2 | Example of a general function of amacrine cells. a, A local stimulus (100 µm 

diameter, yellow) mainly activates retinal pathways directly beneath the stimulus including 

PRs and BCs as well as small-field ACs. The glutamatergic output of individual BCs in 

response to such a local light step (left) and contrast flicker (right), is nearly independent of 

the specific BC type recorded from (of the same polarity) – here exemplarily shown for two 

On (CBC9 and CBC6) and Off (CBC1 and CBC3a) BC types, (Franke et al., 2016). The last 



row of traces represents an overlay of the previous two rows. Colour intensity used to 

indicate expected stimulus-driven activity level of individual neurons. b, Full-field stimulation 

(600 µm diameter) additionally recruits wide-field ACs which provide inhibitory GABAergic 

inputs to BC axon terminals and AC dendrites. This lateral inhibition decorrelates the BC 

responses, thereby increasing the functional diversity across BC types (Franke et al., 2016). 

Because the response diversification is observed for all BC types, which receive inputs from 

different AC types, this effect illustrates an example of a general role of AC in inner retinal 

signalling. 
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