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Abstract 

The contribution of sampling to the combined uncertainty of measurement is assessed using a 

combination of literature review and experimental determination of sampling variability in a range of 

foodstuffs in order to determine whether there is a consistent relationship between analyte level and 

proportion of variation attributable to sampling. Experimental determinations used the duplicate 

method, an economical method of assessing the relative contributions of sampling and analytical 

variability to the overall variance of results. The experimental work covered sampling of retail 

foodstuffs. 101 estimates of between-target, between-sampling,and within-sample variance were 

obtained. It is shown for the first time that sampling variance across the food sector appears to follow a 

Horwitz-like relationship sufficient to provide estimated between-sample standard deviation to within 

approximately an order of magnitude. The results from different methods of data processing for 

sampling uncertainty experiments are also compared. It is shown that for the data sets obtained 

experimentally in this study, log-transformation is of minor importance while the use of robust statistical 

methods can have greater but less predictable effects on estimated sampling variance.  
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Introduction 

The importance of measurement uncertainty for improving the reliability of compliance decisions in 

the food sector has been recognized internationally by Codex Alimentarius1. This recognition currently 

has only considered the uncertainty arising in the analytical part of the measurement process, but is now 

becoming clear that the sampling process is also part of the measurement process and often a larger 

source of uncertainty2. For analytical uncertainty there is a wealth of knowledge of values for a wide 

range of analytes in food and feed generated over at least ten years; for precision of test methods, the 

knowledge base goes back considerably further and has resulted in the identification of several useful 

relationships between analyte level and reproducibility standard deviation3,4 which are useful in setting 

criteria for analytical test method performance3,5 or for proficiency testing.6,7 For sampling uncertainty 

such a volume of information has not so far been available and it is not known whether any consistent 

relationships exist between, for example, analyte level and the proportion of variability due to sampling. 

This project therefore aimed to collate and extend the available data for sampling uncertainty across a 

wide range of food and feed materials, at various stages of their production, and for various analytes, 

with a view to identifying any consistent relationship that might assist in setting regulations or 

guidelines for future sampling strategies. 

The majority of the data presented here were assembled via a review of the available literature. This 

included data from previous research on cost-effective methods of characterising sampling uncertainty 

studies,8-11 together with a range of additional sources (see below). Much of the published data, 

however, focused on bulk sampling of a comparatively small range of commodities. To ensure that data 

on typical analytes in retail foods was included, a range of additional retail foods, selected to provide 

complementary data to that found in previous studies, were sampled and analysed.  

Historically, sampling variation1 has been characterised by large studies involving hundreds of 

observations. This was not feasible for the present work. Instead, advantage was taken of more cost-

effective methods. International guidance published by Eurachem on approaches to the estimation of 

measurement uncertainty arising from the sampling process provides a simple and comparatively 

economical approach to estimating sampling variation.12 This guidance was informed by prior research 

on simple methods for characterising sampling variation13-16 which has demonstrated that it is capable 

of characterising sampling variation with as few as eight sampling targets.16 

In addition, the project sought to compare different methods of processing the data obtained from these 

simple studies. Existing guidance provides a range of options, including classical and robust ANOVA, 

                                                      

1 We use ‘variation’ here for the general concept; we will use ‘variance’, ‘standard deviation’ and 

‘standard uncertainty’ for particular statistical parameters characterizing the variation 
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with sampling uncertainty expressed as a relative standard deviation. It has, however, been suggested 

that robust ANOVA is not always appropriate17 and, in addition, that log-transformation might be 

appropriate prior to analysis where the variation is known to be proportional to analyte level and the 

range of results is wide.18 In this work the experimental data were processed by a number of different 

methods in order to assess the differences between robust and classical variance analysis in the context 

of sampling uncertainty evaluation and to assess whether log-transformation had any material effect on 

results. 

In this paper, we first describe the initial literature review. We then discuss the results of experimental 

determinations of different retail products, with particular attention to the various calculation methods 

used. Finally, we review the accumulated data with a view to identifying any general trends. 

Experimental 

Sampling was carried out by staff with experience in food survey sampling following available 

guidelines for trading standards enforcement. Sampling plans followed the duplicate method, using 

eight distinct sampling targets for each foodstuff studied with one exception, for which 10 materials 

were acquired. The use of eight sampling targets has been shown to provide a sufficiently reliable 

estimate of the sampling variance for comparison purposes.16 Sampling was from multiple retail 

outlets; where products were packaged and on shelving, each item was taken as far as possible at 

random. All the materials were analysed using standard methods of analysis for foodstuffs in an 

accredited laboratory using appropriate internal quality control methods.19 Table 1 lists the foodstuffs 

and analytes studied. 

Statistical analysis used two principal methods for comparison: classical analysis of variance 

(ANOVA) and Robust Analysis of Variance. Variance component estimates were also calculated 

using restricted maximum likelihood estimation (REML) as this is a recommended alternative to 

classical ANOVA, giving closely similar results for balanced data and generalising more easily in 

cases of imbalance.20 To assess the effect of log-transformation, classical ANOVA was also applied to 

log-transformed data. Classical ANOVA and REML estimation were carried out using the R 

statistical programming environment,21 version 2.9.2 or later; robust analysis of variance used the 

ROBAN package.22,23 

Literature survey of sampling uncertainty in food analysis 

Literature review covered a range of food and analytical journals and other publications extending to 

2010.  Twenty separate sources were identified, including references cited above8,9,12,15 and a further 

sixteen sources24-39. Table 2 (see Electronic Supplementary Information) summarises the range of 

foodstuffs, sampling methods and sampling variance estimation methods found. Seventeen products 

had been studies in wholesale, farm or factory environments; thirteen in retail. The majority of 
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products, including all the products studied in retail environments, had been studied by the duplicate 

method using 8-10 sampling targets. Wholesale products, largely studied by a group in the United 

States,32-39 had employed purpose-designed sampling schemes. One example12 had been modelled 

following a general scheme due to Gy40. In all, 21 products (some in more than one packaging or 

storage state) and 59 distinct analyte/product combinations were identified. Analytes included trace 

metals (primarily contaminants), proximates, pesticides and mycotoxins. Mycotoxins are well known 

to be important food contaminants, present at low levels and prone to high sampling variance, so 

many of the larger studies - though not the majority of analyte/product combinations - had focused on 

mycotoxins in granular products such as grain, nuts, or green coffee.  

Table 3 (see Electronic Supplementary Information) lists the data on sampling and analytical variation 

extracted from the literature. Analyte concentrations range from proximates in the high percentage 

range (for example, fat in butter) to low level contaminants at mass fractions of the order of 10-9 (parts 

per billion). The proportion of measurement variance (defined as the combination of sampling and 

analytical variances) attributed to sampling variability ranges from zero to approximately 70%. This 

was encouraging from the point of view of trend analysis, as it is likely that with such large ranges 

any consistent association between analyte concentration and proportion of variance due to sampling 

should be readily detectable. 

It is important to note that this data set is, by comparison with data sets on analytical variability in 

interlaboratory studies3 or proficiency testing schemes,6 neither large nor representative in the sense of 

random, representative selection from a larger population of all foods and analytes. The range of product 

and analyte types is broad considering the size of the data set, but it is clearly possible that 

product/analyte combinations known to be hard to sample are disproportionately represented in the set. 

For this reason, and to add to the number of different retail materials studied, a number of additional 

materials sampled from retail outlets were studied using the duplicate method. These studies are 

described below before returning to the consideration of trends in sampling variance. 

Experimental studies of uncertainty of sampling in retail products 

Sixteen product type/analyte combinations were studied to improve coverage of retail products. Each 

different analyte class was the subject of a separate sampling exercise, resulting in eight separate 

sampling exercises. Milk and lemonade provided materials with low expected sampling variability. 

Bread and lamb mince were expected to show moderate sampling variability for major components, 

and potentially high sampling variability for minor components. Metals (in bread) provided examples 

of some common nutritional elements rather than contaminants. Histamine in tuna (a spoilage indicator) 

was expected to show high product to product variation and moderate sample to sample variability. 

Alkaline phosphatase in milk was chosen to provide an unusual enzyme activity measurand, whilst 
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proximates (which include ash, protein, moisture, fat and dietary fibre in foods) provided further 

examples at comparatively high mass fraction.  

All of the materials were sampled using the duplicate method, duplicate samples being taken randomly 

from shelving with the exception of lamb mince, for which duplicate samples were collected on two 

different days that were equally likely to be selected, given the sampling protocol. Analysis used 

standard methods and as far as possible was undertaken under repeatability conditions. The results on 

the raw data are given in Table 4; the corresponding results from the log-transformed data are presented 

as Table 4a.  REML gave essentially identical results to the classical ANOVA calculations for the 

balanced data sets in this study and the REML results are not reported. To obtain the means and standard 

deviations in  Table 4a, the conversions in equation 1 were used: 

 lnexp xx     and  

   1exp2exp 2

ln

2

lnln  ssxs   (eq 1) 

where lnx  is the mean of the log-transformed data ln(X) and sln the appropriate standard deviation 

calculated from the log-transformed data (this calculation is based on the known variance of a lognormal 

distribution with known mean and standard deviation of the logarithm; for small relative standard 

deviation prior to log transform, the standard deviation approaches   lnexp sx ).  

To compare the effect of log-transformation, Figure 1 shows box plots of the ratio of the respective 

RSDs calculated using raw data and using log-transformed data. In these plots, if there were no effect 

the individual box plots would centre at 1.0; values above 1.0 indicate that the standard deviation from 

log-transformed data is lower than that calculated from raw data. With the exception of three apparent 

outliers, the plots indicate a slight decrease of approximately 8% in estimated standard deviation when 

taking logs.  Considering that the typical confidence intervals for standard deviations estimated with 

between 7 and 16 degrees of freedom, as for the balanced nested design used in the 8-target duplicate 

method, extends above and below the estimate by a factor of at least two, an 8% bias is unlikely to have 

any important effect. It is, of course, important not to over-generalise; in this data set the range of mean 

values for each product type is rarely as large as a factor of two itself, leading to a comparatively small 

change in estimated standard deviation on log-transformation. Were the mean values for different 

targets within each data set considerably more dispersed, the effect of a proportional standard deviation 

would be more important and log-transformation more strongly recommended. Considering the 

relatively small effect in this data set, together with the fact that much of the literature data in Table 3 

did not apply any transformation before estimating sampling uncertainties, we chose to retain the 

standard deviation estimates obtained from the raw data for the purpose of the present review. 

Figure 2 compares robust versus classical treatment for this data set by showing the ratio of robust to 

classical estimate for each of the three standard deviations estimates in each of the 16 product/analyte 
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combinations. It is clear that while the between-target standard deviation and the analytical standard 

deviation are relatively stable, with a slight tendency towards lower robust estimates, the sampling 

variability estimates can change considerably and in either direction on application of robust ANOVA. 

This range of values has different causes for each individual data set.  For example, for magnesium in 

bread, one pair of analytical replicates shows an unusually high difference, inflating the estimated 

analytical variance and (because the calculation involves subtraction of ANOVA mean squares) 

reducing the sampling variance estimate. Robust analysis downweights the outlying replicate pair, 

resulting in a reduction in estimated analytical variance and a more important increase in estimated 

sampling variance. For vitamin C in infant formula milk, there were no compelling outlying analytical 

duplicates, but the data set included one material with generally high vitamin C (ca 15 mg/100 ml 

compared to the robust mean of 12 mg/100 ml) which additionally included the largest between-sample 

and between-analysis differences. The effect of robust analysis in this case was to reduce both the 

between-target and sampling variance estimates, leaving the analytical variance largely unchanged.  

It follows that there is no simple generalisation that can be made about the merits or otherwise of robust 

analysis; the most appropriate approach depends in part on the particular features of the data set and the 

principal aim of the analysis. For example, analysis aimed at characterising a central majority of 

variation or likely to suffer from analytical outliers would choose robust analysis; a study aimed at 

establishing the complete range of variation observed would use classical analysis or modelling that 

took account of any known distribution properties. For this survey, we chose to retain both estimates 

for graphical review and to use the robust estimates for any numerical comparisons, again in part 

because at least some of the prior work summarised here also employed robust estimates. 

Trends in analytical and sampling uncertainty 

The combined literature and experimental data, comprising 101 estimates of sampling, analytical and 

between-target standard deviation, were then inspected with a view to identifying any trends, in 

sampling or analytical uncertainty, with concentration. Sample size was reported quite differently for 

different products - for example, kg, number of packages, number of individual lettuces etc. – and only 

one sample size was reported for each product. We were therefore unable to draw meaningful inferences 

about the effect of sample size on analytical uncertainty.  

Initial inspection of the analytical repeatability estimates showed a general increase in RSD with 

decreasing concentration as might be expected from Horwitz’ equation;3,4 this is illustrated in Figure 

3a). Figure 3b) shows a broadly similar picture on inspection of the sampling RSD (denoted RSDsam in 

the figures). Note that, unlike estimates of reproducibility standard deviation, estimates of uncertainty 

from sampling can be zero; these are omitted from the log-log plot.  

The best fit lines, omitting the classical estimates of standard deviation from Table 4, are given by 
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8176.0

an 0072.0 cs   (eq. 2) 

8099.0

sam 0128.0 cs   (eq. 3) 

For comparison, Figure 3a) and b) include the relevant Horwitz predictions.  For the analytical 

contribution (Figure 3a), the prediction is taken as 2/3 σH/c, where 

8495.0

H 02.0 c  (eq. 4) 

and c is the mass fraction of the analyte in question. The majority of analytical repeatability RSD data 

obtained in the present study fall near or slightly below the predicted repeatability RSD, though the 

Horwitz line is somewhat steeper than the fitted line, predicting slightly larger dispersion at higher 

concentration. Figure 3b) adds the Horwitz predicted SD, σH and a further line at  Again, there is 

appreciable scatter about the prediction, but the general picture is of the sampling RSD falling around 

1 - 2 times the Horwitz prediction. There is a clear tendency for sampling standard deviation to be 

slightly lower than RSDHOR at high concentrations (to the right of the plot) and higher at low 

concentrations; the fitted line is above 2σH for concentrations below 1 ppm 

Considerable caution should clearly be used if attempting to estimate sampling uncertainty from 

equation 3. The residual standard deviation around the prediction of equation 3 was 0.46, corresponding 

to an approximate factor of 100.462  10 possible error for prediction of an individual sampling standard 

deviation. Estimates from this relationship are therefore order-of-magnitude estimates only. Further, the 

data set remains comparatively small;  although inspection showed that no specific group of analytes or 

matrices dominates either the present data set or the trends found (for example, the 12 aflatoxins 

included in the data set follow the same trend as all other analytes), the data set is not guaranteed to be 

representative, which could lead to additional bias.  

An important additional question is whether the proportion of measurement variance attributable to 

sampling follows a consistent trend with concentration. Figure 4 shows the calculated values for 

proportion of measurement variance attributable to sampling as a function of concentration; it is 

immediately evident that although there is a tendency in this data set for very low estimated proportions 

attributable to sampling to appear only at mass fractions above 10-6, there no evidence of a useful trend. 

The proportions of measurement variance due to sampling cover almost the whole range from 0 to 1 

across essentially the whole mass fraction range from 10-6 to 1.0.  

Finally, Figure 5 shows the ratio of sampling standard deviation to analytical (repeatability) standard 

deviation by concentration. Again, there is little evidence of a trend; certainly not a trend useful for 

prediction. Figure 5 does, however, serve to underline the tendency for sampling to equal or exceed 

analytical variability: the greater part of the data set falls above the line denoting equal sampling and 

analytical standard deviation, and the mean ratio of sampling standard deviation to analytical standard 
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deviation is almost exactly 2.0. A predicted value for the ratio at a particular mass fraction can also be 

obtained from equations 2 and 3. 

Discussion 

The possibility of predicting sampling standard deviation in foodstuffs from a simple predictor such 

as mass fraction is of interest for regulatory agencies, such as the CODEX Alimentarius Commission, 

because it would offer the possibility of providing more general guidance on the number of sampling 

increments or individual portions taken when sampling, and would also inform sampling strategies. 

This is, indeed, the major impetus for much of the published work on sampling of mycotoxins in 

grains and nuts (see, for example, references 32-39). These extensive studies have generated 

predictive models for different bulk foodstuffs that have in turn enabled regulators to plan sampling 

strategies for specific foodstuffs; examples include the detailed sampling plans for aflatoxins in US 

FDA regulations41 and the sampling plans adopted in the EU for aflatoxins in nuts42. A generally 

applicable model would simplify planning and potentially simplify regulation. 

The evidence from the present review, however, is that while there does appear to be a general trend 

in sampling standard deviation with analyte concentration, the sampling standard deviation for 

individual products can differ considerably; perhaps by up to a factor of 10 from the predicted values. 

While this might be improved via studies of, for example, the effect of processing, it follows that for 

critical analytes and products, where it is important to have more than an order-of-magnitude 

estimate, it remains necessary to evaluate sampling uncertainties on a case-by-case basis.  

The particular form of the trend found in this study is of a Horwitz-type relationship, that is, a 

relatively simple power curve relating dispersion to concentration. Broadly similar models have been 

used to predict sampling dispersion in particular products; for example the sampling variance for 

aflatoxin in dried figs has been modelled as (590/ns)2.219c1.433, where ns is the number of figs 

included in the sample.43 It is not clear why such a model might apply to sampling variance; it does 

not appear to follow naturally from sampling theory. However, the form may simply be a matter of 

choice; with relatively large residuals around the fitted log-log model, a range of possible smooth 

models could be considered and a linear fit is the simplest of these.  

It is also of some interest that the analytical standard deviation is, from equations 3 and 4, close to a 

factor of two smaller than the sampling standard deviation. Again, the reason for this is unclear. 

However, it would be good practice to ensure that analytical variance is small compared to sampling 

variance. A common recommendation is to ensure that a measurement standard deviation is smaller 

than a sampling standard deviation by a factor of two or more; for example, Ramsey et. al. 

recommended that analytical variance be less than 20% of sampling variance for geochemical 

analysis, at which point the ratio of sampling to analytical standard deviation is 2. The observed ratio 

may therefore be unrelated to any natural limitation; it may simply be an outcome of ‘sufficient’ 
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method development, as suggested by Thompson,45 in which measurement methods are developed to 

the point of acceptable precision and not beyond.  

Conclusions 

Experimental data were processed by different combinations of classical or robust analysis and using 

raw or log-transformed data in order to assess the effect on the resulting estimates of sampling and 

analytical standard deviation. It was found that for this data set, in which the range of values for a 

given analyte/material combination was rarely large, log-transformation resulted in only a modest 

reduction in variance estimates that is inconsequential by comparison to the expected variability of the 

estimates. For similar applications - that is, where similar products with similar analyte levels are 

examined to establish an approximate sampling variance - it therefore seems reasonably safe to use 

raw data without transforms; for data with large ranges, however, appropriate transformation or 

modelling that takes explicit account of any known distribution properties should be considered. 

The effect of robust analysis versus classical analysis was most important for the estimated sampling 

standard deviation, which was found to vary appreciably and in either direction on applying robust 

analysis depending on the particular features of the data set. It follows that no clear generalisation can 

be made based on the present study; rather, the choice of robust over classical estimates depends on 

the particular intent of a study and on the likely behaviour of the analytical methods used. 

The principal question for this study is whether sampling variation can be predicted usefully from 

simple dependencies on concentration. The accumulated data set from the literature review and 

additional experimental studies has been inspected for evidence of trends in uncertainty from 

sampling. There is a clear indication of an increasing trend in uncertainty from sampling, expressed as 

a relative standard deviation, as the analyte level falls; fitting a linear log-log relationship led to the 

relation 
8099.0

sam 0128.0 cs   (c being the mass fraction of analyte), though with very considerable 

variation about the fitted line. There was no useful predictive trend in the proportion of variance 

attributable to sampling variation. 
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Tables 

 

Table 1: Summary of products and analytes evaluated experimentally in this report 

Product Analyte No. Samples 

Tuna Histamine 8 

Milk Alkaline Phosphatase (ALP) 8 

Lemonade Sorbic Acid 10 

Bread Metals: Ca, Cu, Fe, Mg, Na, Zn  8 

Bread Fibre 8 

Infant formula milk Vitamin C 8 

Bread Vitamin B1 8 

Mince Ash, Protein, Moisture, Fat 8 
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Table 4: Experimental variance components using classical and robust ANOVA 

Method Product Analyte Units 
No. of 

Products 
s

product 
s

sample
 s

analytical
 Mean 

Anova Tuna Histamine μg/g 8 2.810 2.710 0.550 5.180 

Roban Tuna Histamine μg/g 8 1.450 2.310 0.510 4.540 

Anova Milk ALPNote 1 mU/ml 8 16.300 6.200 5.109 49.780 

Roban Milk ALPNote 1 mU/ml 8 16.100 7.260 5.060 48.770 

Anova Lemonade Sorbic ac μg/ml 10 34.180 2.120 3.000 145.290 

Roban Lemonade Sorbic ac μg/ml 10 38.760 2.000 2.750 145.290 

Anova Bread Ca mg/Kg 8 1011.020 780.910 67.060 2746.660 

Roban Bread Ca mg/Kg 8 1265.350 113.860 45.830 2728.560 

Anova Bread Cu mg/Kg 8 1.080 0.400 0.200 3.120 

Roban Bread Cu mg/Kg 8 1.240 0.330 0.190 3.120 

Anova Bread Fe mg/Kg 8 9.210 1.000 1.820 32.870 

Roban Bread Fe mg/Kg 8 9.390 1.480 1.430 32.640 

Anova Bread Mg mg/Kg 8 312.740 9.770 35.130 704.410 

Roban Bread Mg mg/Kg 8 354.530 26.550 13.920 704.420 

Anova Bread Na mg/Kg 8 1247.150 108.800 226.550 7026.660 

Roban Bread Na mg/Kg 8 983.910 199.840 128.330 7216.730 

Anova Bread Zn mg/Kg 8 9.980 0.530 0.880 20.150 

Roban Bread Zn mg/Kg 8 10.250 0.870 0.360 16.670 

Anova Bread Fibre g/100g 8 0.141 0.012 0.012 0.366 

Roban Bread Fibre g/100g 8 0.160 0.008 0.012 0.366 

Anova MilkNote 2  Vit C mg/100ml 8 1.340 0.610 0.720 11.960 

Roban MilkNote 2 Vit C mg/100ml 8 1.550 0.300 0.760 11.940 

Anova Bread Vit B1 μg/g 8 0.880 0.000 0.450 3.510 

Roban Bread Vit B1 μg/g 8 0.730 0.000 0.550 3.390 

Anova Mince Fat g/100g 8 6.575 3.744 0.533 10.949 

Roban Mince Fat g/100g 8 4.319 3.658 0.496 9.760 

Anova Mince Protein g/100g 8 1.330 0.000 1.581 19.842 

Roban Mince Protein g/100g 8 1.098 0.354 1.146 20.041 

Anova Mince Ash g/100g 8 0.0765 0.0672 0.0762 0.984 

Roban Mince Ash g/100g 8 0.0894 0.0000 0.0495 0.992 

Anova Mince Moisture g/100g 8 5.431 2.350 0.606 66.730 

Roban Mince Moisture g/100g 8 4.367 2.163 0.607 67.478 
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Note 1: ALP = alkaline phosphatase. 

Note 2: Infant formula milk 
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Table 4a: Experimental variance components using classical and robust ANOVA - via 

log transformNote 1 

Method Product Analyte Units 
No. of 

Products 
s

product 
s

sample
 s

analytical
 Mean 

Anova Tuna Histamine μg/g 8 2.159 2.150 0.555 4.217 

Roban Tuna Histamine μg/g 8 1.716 1.897 0.545 3.992 

Anova Milk ALPNote 2 mU/ml 8 15.586 7.291 4.363 47.024 

Roban Milk ALPNote 2 mU/ml 8 17.848 7.773 4.516 46.910 

Anova Lemonade Sorbic ac μg/ml 10 36.527 2.023 2.993 141.451 

Roban Lemonade Sorbic ac μg/ml 10 41.962 2.150 2.688 141.451 

Anova Bread Ca mg/Kg 8 1288.165 446.613 81.154 2491.722 

Roban Bread Ca mg/Kg 8 1560.309 113.310 46.366 2505.872 

Anova Bread Cu mg/Kg 8 1.254 0.342 0.228 2.905 

Roban Bread Cu mg/Kg 8 1.487 0.305 0.208 2.905 

Anova Bread Fe mg/Kg 8 9.802 1.210 1.580 31.661 

Roban Bread Fe mg/Kg 8 9.144 1.066 1.552 32.278 

Anova Bread Mg mg/Kg 8 360.034 16.764 21.325 640.612 

Roban Bread Mg mg/Kg 8 428.408 23.949 12.641 640.612 

Anova Bread Na mg/Kg 8 1457.713 101.369 205.456 6907.117 

Roban Bread Na mg/Kg 8 926.456 186.987 131.823 7188.053 

Anova Bread Zn mg/Kg 8 10.750 0.493 0.539 18.100 

Roban Bread Zn mg/Kg 8 12.847 0.638 0.365 18.100 

Anova Bread Fibre g/100g 8 0.172 0.007 0.011 0.338 

Roban Bread Fibre g/100g 8 0.202 0.008 0.012 0.339 

Anova MilkNote 1 Vit C mg/100ml 8 1.343 0.538 0.653 11.865 

Roban MilkNote 1 Vit C mg/100ml 8 1.565 0.378 0.733 11.865 

Anova Bread Vit B1 μg/g 8 0.831 0.000 0.501 3.394 

Roban Bread Vit B1 μg/g 8 0.764 0.000 0.501 3.329 

Anova Mince Fat g/100g 8 5.724 4.811 0.586 8.893 

Roban Mince Fat g/100g 8 4.522 5.478 0.604 8.758 

Anova Mince Protein g/100g 8 1.396 0.000 1.587 19.744 

Roban Mince Protein g/100g 8 1.043 0.356 1.213 19.982 

Anova Mince Ash g/100g 8 0.080 0.063 0.085 0.975 

Roban Mince Ash g/100g 8 0.088 0.000 0.048 0.986 

Anova Mince Moisture g/100g 8 5.738 2.381 0.636 66.489 
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Roban Mince Moisture g/100g 8 4.352 2.151 0.666 67.388 

Note 1: The results were obtained by log-transformation of the raw data, treatment by the ANOVA 

method indicated, and conversion to the concentration scale using equation 1. 

Note 2: ALP = alkaline phosphatase. 

Note 3: Infant formula milk 
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Figures 

 

Figure 1: Effect of log-transformation 

 

 

The figure shows the ratio of relative standard deviations for analysis, sampling and target-to-target 

(product) variation calculated using a) raw data and b) ROBAN. The ratio shown is for the raw data 

RSD divided by the RSD calculated from the log-transformed data. Values for which both RSDs were 

zero have been omitted; there were no cases in which log-transformation caused an estimated standard 

deviation to change from zero to a nonzero value or vice versa. 
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Figure 2: Robust estimates compared with classical estimates 

 

The figure shows the distribution of ratios of robust estimates to classical estimates of the respective 

standard deviations. One outlier arising from a classical sampling variance estimate of zero has been 

omitted. 
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Figure 3: Analytical and Sampling standard deviation vs concentration 
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The figure plots a) log10(san) vs log10(c); b) log10(ssam) vs log10(c); where s and c are standard deviation 

(in units of mass fraction) and mass fraction respectively. Filled circles are values drawn from the 

literature and summarised in Table 3; triangles are RSDs calculated from robust (ROBAN) estimates 

from Table 4 and crosses are classical ANOVA estimates from Table 4. The heavy solid line is the 

linear least squares regression fits to the literature and robust estimates. The dashed line is the Horwitz 

standard deviation; the light solid line twice the Horwitz standard deviation.  
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Figure 4: Proportion of variance due to sampling, by concentration 

 

The figure shows the proportion of measurement variance  2

an

2

sam

2

sam sss   attributable to sampling 

variance. For symbols see Figure 3. 
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Figure 5: sampling/analytical uncertainty ratio by concentration 

 

The figure shows the ratio RSDsam/RSDan plotted on a log scale. For symbols see Figure 3. The solid 

line is at a log ratio of 0 (representing equal sampling and analysis); the dashed line is at the 

calculated mean log ratio of 1.00, corresponding to a 2:1 ratio of sampling standard deviation to 

analytical standard deviation. 
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