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Abstract 

The 18 kDa translocator protein (TSPO) is a ubiquitous conserved outer mitochondrial 

membrane protein implicated in numerous cell and tissue functions, including steroid hormone 

biosynthesis, respiration, cell proliferation and apoptosis.  TSPO binds with high affinity to 

cholesterol and numerous compounds, is expressed at high levels in steroid-synthesizing tissues, 

and mediates cholesterol import into mitochondria, which is the rate-limiting step in steroid 

formation.  In humans, the rs6971 polymorphism on the TSPO gene leads to an amino acid 

substitution in the fifth transmembrane loop of the protein, which is where the cholesterol-binding 

domain of TSPO is located, and this polymorphism has been associated with anxiety-related 

disorders. However, recent knockout mouse models have provided inconsistent conclusions of 

whether TSPO is directly involved in steroid synthesis. In this report, we show that TSPO deletion 

mutations in rat and its corresponding rs6971 polymorphism in humans alters adrenocorticotropic 

hormone (ACTH)-induced plasma corticosteroid concentrations. Rat tissues examined show 

increased cholesteryl ester accumulation, and neurosteroid formation was abolished in 

homozygous rats. These results also support a role for TSPO ligands in diseases with steroid-

dependent stress and anxiety elements. 
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Introduction 

Translocator protein (18 kDa, TSPO) is a ubiquitous cholesterol-binding outer 

mitochondrial membrane protein containing five transmembrane domains. TSPO is expressed at 

high levels in steroid-synthesizing tissues such as the adrenal cortex. The adrenal cortex is the site 

of synthesis of glucocorticoid and mineralocorticoid steroid hormones, which are crucial for 

mammalian development, physiology, stress response, immune function, and brain function [1]. 

TSPO has been identified as a high-affinity binding protein for cholesterol and other compounds. 

TSPO ligands have been developed as potential therapeutic targets for neuropsychiatric and 

neurological diseases [2]. Although numerous pharmacological studies have implicated a role of 

TSPO in steroid hormone biosynthesis [1] and quantitative trait loci analysis in mice identified 

Tspo in a loci regulating lipid levels [3], recent data in mice suggest a controversial role of TSPO 

in this process [4-8]. Because of the discrepancies observed between various genetic models used 

to study TSPO in the mouse, we investigated the role of TSPO in the rat and humans.  

 

In the rat, we used zinc finger nuclease technology (ZFN) to perform Tspo-targeted genome 

editing and generated two lines, a null mutant lacking TSPO expression and a line expressing a 

truncated TSPO protein which lacks the 5th transmembrane domain, containing the cholesterol 

recognition amino acid consensus (CRAC) motif, which plays an essential role in the ability of 

this protein to bind cholesterol [9].  In humans, the presence of rs6971 polymorphism on the TSPO 

gene, which causes a non-conservative amino acid substitution, Ala147Thr, in the 5th 

transmembrane domain, results in altered binding affinity of TSPO for specific ligands [10]. TSPO 

polymorphism (Rs6971; Ala147Thr) has been also proposed to affect the hypothalamic-pituitary-

adrenal axis predisposing carriers to psychiatric disorders, e.g. bipolar disorders, depression, and 

anxiety [11-14], and affects the response of patients to anxiolytic TSPO drug ligands [15, 16]. 

Here, we show that both Tspo mutations in rat models lead to accumulation of esterified cholesterol 

and reduced response in adrenocorticotropic hormone (ACTH) –stimulation; and a TSPO 

polymorphism in humans attenuate ACTH-induced corticosteroid levels. Moreover, basal 

testosterone production was reduced and neurosteroid formation abolished in Tspo homozygous 

mutant rats. 
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Experimental Procedures 

Genome editing of the Tspo gene in rats by microinjecting embryos with optimized zinc 

finger nucleases (ZFNs) 

ZFNs were designed, assembled, and validated using the cell lines and CompoZr® knockout Zinc 

Finger Nuclease Technology according to the manufacturer’s instructions (CKOZFN64723; 

Sigma-Aldrich, Saint Louis, USA). Other ZFNs were manufactured using customer-directed 

design and validated using the same cell line as the CompoZr® Custom Zinc Finger Nucleases 

(CSTZFN; Sigma-Aldrich, Saint Louis, USA). The two plasmids encoding ZFNs were validated 

using the rat C6 cell line and the Surveyor Mutation Detection assay according to the 

manufacturer’s instructions (http://www.transgenomic.com). The corresponding mRNAs were 

microinjected into fertilized eggs of wild-type (WT) rat (Sprague Dawley® rat from Charles River 

Canada; Constant, Canada) at the Centre des Recherches du Centre Hospitalier Universitaire de 

Montreal, which generated the two founder rats, Rat5 and Rat7. Locus-specific PCR was 

performed to screen the founders using the following primer pairs: CKOZFN-F: 5′-

AGAGCATACTCTTGCCGTCG-3′ and CKOZFN-R: 5′-ACTCCTAAAGGGGTTGCAGG-3′ 

and COMPOZr-1kbF: 5′-CCTGGATATGCTGTGTCCCC-3′ and COMPOZr-1kbR: 5′-

TGATGGGTCATTTGTGCCCT-3′. Normal PCR reactions generated 362 bp for the WT and 273 

bp for the mutant, respectively, and 818 bp for WT and 652 bp for the mutant, respectively. The 

gene deletions were further confirmed using Sanger sequencing at the McGill University and 

Génome Québec Innovation Centre (Montreal, Canada). 

 

RT-PCR analysis 

Total RNAs of the rat adrenal glands and testis were extracted using TRIzol reagent (Invitrogen, 

Gaithersburg, USA). The first-strand cDNAs were synthesized with anchored oligo (dT)18 and 

random hexamer primer using the transcription first-strand cDNA synthesis kit (Roche Applied 

Science, Indianapolis, USA). Normal PCR reactions were performed using rat Tspo gene-specific 

primers (rTspo-R: 5'-CTGGGGCACACTGTATTCG-3' and rTspo-F: 5'-

TAGCTTTAAAGGCCCCATGC-3'). The standard size was 575 bp. The amplicons were 

sequenced at the McGill University and Génome Québec Innovation Centre to confirm the mRNA 

mutations. 
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Protein quantification and immunoblot analysis 

Protein was extracted from WT and mutant rat adrenal glands with T-PER™ tissue protein 

extraction reagent (Pierce). Tissue samples were homogenized with T-PER reagent on ice for 2x 

30 sec with 15 sec interval as manufacturer’s instruction (Thermo Scientific, Rockford, USA) 

centrifuged at 10,000 g for 5 min to pellet cellular debris, and the protein concentration in each 

supernatant was quantified using the Bradford method with bovine serum albumin as the standard. 

An equal amount of protein (20 g each) was mixed with sample buffer (240 mM Tris-HCl pH 

6.8, 8% SDS, 80% glycerol, 0.1% bromophenol blue, and 2 mM dithiothreitol) and subjected to 

SDS-PAGE using a 4–20% gradient gel (Invitrogen, Gaithersburg, USA). Separated proteins were 

electroblotted to nitrocellulose membranes, which were then blocked in 5% fat-free milk 

overnight, and incubated with primary antibody specific for TSPO (1:1,000) [9]. The TSPO knock-

out (KO) was further validated using commercial rabbit polyclonal anti-TSPO Ab (specific for rat 

TSPO; Abcam, ab154878; Cambridge, USA). The loading control was re-probed on the same 

membrane with anti-HPRT (Abcam, ab10479, Cambridge, USA). Blots were then incubated with 

horseradish peroxidase-conjugated secondary antibody (1:5,000), and developed with enhanced 

chemiluminescence (Amersham Biosciences, Piscataway, USA). 

 

Expression and purification of recombinant TSPO 

The pET15b vector containing WT or Ala147/Thr mutant mouse TSPO cDNA was transformed 

into the E. coli BL21(DE3) strain (Novagen, Madison, USA). Positive colonies were selected and 

grown briefly in two 10 mL pre-cultures, followed by a 500 mL culture for production of 

recombinant protein, which was induced by 1 mM isopropyl-1-thiol-β-D-galactopyranoside during 

the exponential growth phase. Cells were harvested by centrifugation at 5,000 g for 15 min using 

wash buffer containing 150 mM NaCl and 50 mM HEPES-Na pH 7.8. Lysates were obtained by 

sonication in an ice water bath for 3 × 30 s with 10-s rest intervals. Inclusion bodies were obtained 

by centrifugation at 5,000 g for 20 min and resuspended in wash buffer containing 1% SDS. The 

solution was centrifuged at 15,000 g to obtain solubilized inclusion bodies containing recombinant 

mouse WT or mutant TSPO. 

 The solubilized inclusion bodies were treated with 2 µL of benzonase (25 units per µL) and 

purified using a 1.2-mL Superflow Ni-NTA resin column (Qiagen, Chatsworth, USA) as described 

previously[17]. Briefly, the samples were passed through the prepared resin column, and washed 
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with wash buffer containing detergent and 5 mM imidazole. Recombinant mouse WT or mutant 

TSPO was obtained by eluting with buffer containing 300 mM imidazole. 

 

Reconstitution of recombinant TSPO into liposomes 

A stock solution of dimyristoyl phosphatidylcholine/dimyristoyl phosphatidylethanolamine 

(DMPC/DMPE, 9/1) (Avanti Polar Lipids, Birmingham, USA) was prepared and mixed with 

purified SDS-solubilized recombinant TSPO at a lipid-to-protein ratio of 5:1 (w/w) [18]. The 

obtained ternary complex was stirred for 15 min before adding small quantities of prepared Bio-

Beads SM2 at different time points to remove SDS from the sample and induce vesicle formation. 

This process was monitored spectrophotometrically at 550 nm absorbance [19]. Reconstituted 

TSPO proteoliposomes were subsequently obtained by removal of Bio-Beads from the sample. 

 

Electron microscopy 

Proteoliposome samples were applied to carbon-coated 200-mesh copper grids, negatively stained 

with 1% uranyl acetate, and air-dried. Proteoliposomes were observed with a transmission electron 

microscope (FEI Tecnai 12; FEI) operated at 120 kV, and images were collected with a CCD 

camera (AMT XR 80 C). 

 

Radioligand binding assay and [3H]-PK 11195 autoradiography 

Reconstituted TSPO proteoliposomes at 1.02.0 μg/ml were used to perform PK 11195- and 

cholesterol-binding assays as described previously [18]. Bound [3H]-PK 11195 and [3H]-

cholesterol were quantified using liquid scintillation spectrometry. KD and Bmax values were 

obtained using saturation isotherm analyses with Prism 4 in GraphPad (La Jolla, CA, USA). 

 PK 11195 saturation binding assays were performed using WT and TSPO-knockout male and 

female rat adrenal protein extracts as described previously [20]. Protein levels were measured 

using the Bradford assay. Aliquots of 15 µg of protein were incubated in the presence of 0.115 

nM [3H]-PK 11195 (PerkinElmer, specific activity 84.0 Ci/mmol). Non-specific binding was 

determined using 10 M of unlabeled PK 11195 ligand (Sigma, St. Louis, MO, USA). Samples 

were filtered through Whatman GF/B filters (Brandel, Gaithersburg, MD). Radioactivity trapped 

on the filters was determined using liquid scintillation counting. Specific [3H]-PK 11195 binding 

http://topics.sciencedirect.com/topics/page/Radioactivity
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was analyzed using the iterative nonlinear curve-fitting program and the extra sum-of-squares F 

test in Prism 5 of GraphPad (La Jolla, CA). 

 For PK 11195 autoradiographic assays, adrenal sections were incubated with 1.2 nmol/L [3H]-

PK 11195 (PerkinElmer, Downers Grove, IL, USA) (specific activity 80.9 Ci/mmol) for 30 min at 

room temperature (22°C), in 50 mmol/L Tris-HCl pH 7.4. After incubation, the slides were washed 

three times for 3 min in ice-cold incubation buffer. Finally, the slides were rinsed once for 30 s 

with ice-cold distilled water, and dried overnight in a vacuum desiccator containing 

paraformaldehyde (PFA) powder. [3H]-PK 11195 binding was analyzed using digital 

autoradiography with a Beta-Imager 2000 (Biospace Lab, Paris, France). 

 

Oil Red O staining 

Tissue cryosections of both male and female adrenal glands were embedded in optimum cutting 

temperature medium, and then 6-μm cryosections were prepared at the histology core facility of 

the Goodman Cancer Research Centre at McGill University. For Oil Red O staining, tissue 

cryosections were washed twice with PBS and fixed with 4% PFA in PBS for 20 min. After 

removing PFA, lipids were stained with Oil Red O according to the manufacturer’s instructions 

(NovaUltraTM Oil Red O stain kit, IHC World, Ellicott City, USA). After repeated washing with 

distilled water, the tissues were counter-stained with Mayer’s hematoxylin solution for 2 min, 

rinsed with distilled water, and then mounted with aqueous slide mounting medium for 

visualization. 

 

Homology modeling and molecular docking analyses 

The putative 3D structure of rat TSPO and Rat7 TSPO were predicted via an automated 

comparative protein modeling server (Swiss-model; http://www.expasy.ch) with the optimized 

mode using the coordinates of the mouse TSPO NMR structure (PDB accession number: 2MGY), 

which is available from the Brookhaven Protein Database (PDB) [21, 22]. Molecular docking 

analyses were performed using AutoDock Vina [23]. The 3D coordinates of cholesterol were 

obtained from ChemSpider (http://www.chemspider.com). WT rTSPO was docked with 

cholesterol using whole protein as the grid-docking box, whereas Rat7-mutated TSPO was docked 

with cholesterol using the CRAC motif region as a smaller grid-docking box using the same input 

parameters used for WT rTSPO. 

http://www.chemspider.com/
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Hormone treatment, blood plasma sample collection, and measurement of circulating 

steroids 

We evaluated the activity of adrenal glands and testes by measuring the levels of circulating 

corticosterone and testosterone, respectively, in response to acute stimulation with human 

adrenocorticotropic hormone (ACTH) and chorionic gonadotropin (hCG). Brain steroid 

production was assessed by measuring allopregnanolone levels in the cortex. Blood was collected 

6 days before euthanasia via submandibular puncture, and plasma was extracted and stored at -

80°C until used. Samples were used to determine basal hormone levels before application of 

hormone challenge. Three days before euthanasia, mice were intraperitoneally injected with 10 IU 

of hCG (National Hormone and Peptide Program). After 1 h, blood was collected via 

submandibular puncture and plasma was separated and stored at -80°C until use. On the day of 

euthanasia, ACTH fragment 1–24 (Sigma Aldrich) was administered subcutaneously at a dose of 

500 ng/g body weight. After 1 h, rats were euthanized, and the adrenals and testes were removed 

and snap-frozen in liquid nitrogen or fixed in 4% PFA. Blood was collected by cardiac puncture, 

plasma was separated by centrifugation at 2000 g for 15 min, and stored at -80°C until further use. 

Plasma corticosterone levels were measured using radioimmunoassay (RIA) as described 

previously [6]. Enzyme-linked immunosorbent assay (ELISA) was used to measure testosterone 

(Cayman Chemicals, Ann Arbor, MI, USA) according to the manufacturer’s instructions. 

Absorbance was measured at 420 nm using the VICTOR™ X5 Multilabel Plate Reader 

(PerkinElmer, Inc., Waltham, MA, USA). The identity and levels of measured testosterone and 

corticosterone in the blood were confirmed by liquid chromatography-mass spectrometry (LC-

MS) using an AB Sciex 5600 triple-TOF/MS, time of flight mass spectrometer system fitted with 

a ‘Turbo-V’ ionization source and run in Full Scan (50 to 800 u), positive ion mode.  Aliquots of 

plasma were extracted using liquid/liquid extraction with methyl-tertiary butyl ether.  Dried 

extracts were reconstituted in 15 µl of 10% acetonitrile in water.  A 10 µl volume was injected into 

the LC/MS system.  Testosterone (m/z 289) (general retention time, tR, 3.50 min.) and 

Corticosterone (m/z 347) (tR 3.07 min.) were chromatographically separated with a linear gradient 

on a Shimadzu Nexera XR HPLC system.  The analytical column was a Thermo HyPurity C18 

(30mm X 2.1 mm ID, 3.0 µm) column.  A binary liquid mobile phase was utilized consisting of 
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(A) 0.1% formic acid in water and (B) 0.1% formic acid in acetonitrile.  The flow rate was 500 

µL/min, the injection volume was 10 µL and the total run time was 10 min. 

 Allopregnanolone levels in brain cortex homogenates were measured after extraction by 

ultrahigh performance liquid chromatography (UHPLC)-triple quadrupole mass spectrometry 

(QQQ) using a Thermo-Scientific TSQ Quantiva Triple Quadrupole Mass Spectrometer with a 

heated electrospray ionization source (HESI) and a Thermo-Scientific UltiMate™ 3000 UHPLC 

system (UltiMate™ 3000 RS autosampler with cooled tray holder). The relative steroid amounts 

were estimated from reference standards in solution (allopregnanolone and a d4-allopregnanolone 

as the internal standards at 10.0 ng/mL for each analyte). 

 

Genotype-dependent response to ACTH treatment in humans 

To assess the functional significance of rs6971 (A147T) in humans we evaluated basal and ACTH-

challenged cortisol production in healthy male volunteers aged 18-40 years old. The clinical trial 

was approved by the Central London REC 4 ethics committee (10/H0715/45). Exclusion criteria 

used included history of disease affecting the hypothalamic pituitary disease (including mood 

disorders), recreational or prescription drug use (including contraception), and abnormal sleep 

patterns. Subjects were genotyped at the rs6971 polymorphism using a Taqman SNP Genotyping 

Assay (ThermoFisher Scientific, Waltham, MA, USA), into A147 (wildtype), A147T 

(heterozygote) or T147 (homozygote/mutant). 30 male subjects were studied, 10 wildtype (31.1 

years, SD 6.5), 10 A147T subjects (25.4 years, SD 6.9), and 10 147T subjects (28.5 years SD 7.1). 

Subjects were instructed to avoid alcohol and strenuous exercise the day before the study, and 

avoid all food and drink (but for water) from midnight the night before the study. A venous cannula 

was placed and 2mL of blood drawn into tubes containing a rapid clot activator, every 15 minutes 

from 0900-1100 inclusive. A commercially available ACTH analogue (Synacthen, Mallinckrodt 

Pharmaceuticals, Staines-Upon-Thames, Surrey, UK) was then administered intravenously 

(250µg) and blood was drawn in the same way subsequently for a further 90 minutes. This clinical 

study design was chosen because of a theoretical risk that the acute anxiety of cannulation with a 

wide bore needle might alter plasma cortisol, and if so this response could be TSPO genotype-

dependent. Hence, we allowed for a 2 hour recovery period from cannulation to ACTH 

administration. Serum cortisol was measured using the Architect system™ delayed one-step 

immunoassay” (Abbott Laboratories, Abbott Park, IL, USA). Analysis of cortisol concentrations 
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were performed using linear models with gamma errors, as initial exploratory analyses suggested 

that the usual assumption of normality did not apply to the cortisol concentration data. Tests of 

trend across genotypes were based on linear contrast coefficients within the linear models (SAS 

Version 9.3, Cary, NC, USA). 

 

Results 

Rat Tspo has been knocked out via embryo microinjections of zinc-finger nucleases 

To assess the role of TSPO in vivo, we performed Tspo-targeted genome editing in rats by 

microinjecting embryos with optimized and customized zinc-finger nucleases designed for 

targeted gene knockout and specific genome editing (Fig. S1A and B). We generated the following 

two mutant rat lines: Rat5 with an 89-bp deletion flanking the exon 3/intron 3 junction, and Rat7 

with a 164-bp deletion (including Ala147) in the fifth transmembrane loop and the CRAC motif 

within exon 4 (Fig. 1A1D). Approximately 5760% of the injected fertilized eggs were 

successfully transferred, but only 3.5% of these resulted in live animals, indicating that the mRNAs 

and/or knockout Tspo have a toxic/lethal effect in oocytes (Fig. 1E). Rat5 homozygotes (HO) 

carried an 89-bp deletion (described above), which resulted in Tspo mRNA transcripts with 

varying lengths that were not translated (no TSPO protein expression) (Fig. 1F, G, and J; Fig. 

S1C). Rat7 HO carried a 164-bp deletion within exon 4, which results in truncated mRNA 

transcripts as observed from RT-PCR analysis, but the anti-TSPO antibody used in immunoblots 

did not detect the proposed mutant protein (Fig. 1H, I, and J; Fig. S1D; Fig. S2A and B). Rat5 and 

Rat7 did not display significantly aberrant phenotypes or exhibit specific binding of the classical 

TSPO ligand [3H]-PK 11195 as assessed by autoradiography (Fig. 2A–D; Fig. S3A–D) and 

radioligand-binding assays in adrenal tissues (Fig. 2E). We further confirmed that no TSPO 

immunoreactive protein was detected in HO Rat5 adrenal gland using immunofluorescence 

analysis using both confocal and epifluorescence imaging (Fig. 2F and 2G).  

 

Rats carrying Tspo deletion mutations show disturbed neutral lipid accumulation and no or 

reduced response to ACTH treatment 

Cholesterol-enriched lipid droplets in steroidogenic cells, the source of free cholesterol used for 

steroid formation, are visualized and quantified using Oil Red O staining (ORO). Both Rat5 and 

Rat7 displayed increased the neutral lipid accumulation in both adrenal and testis as determined 
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by ORO, indicating that there is a disturbance in free/esterified cholesterol homeostasis from 

inefficiently metabolized esterified cholesterol in the absence of intact TSPO (Fig. 3A – J), 

possibly because free cholesterol was not used for steroid synthesis. Although there were no 

significant differences in basal circulating corticosterone levels between the wild-type (WT), 

heterozygote (HE), and homozygous (HO) groups, the HO genotypes in both Rat5 and Rat7 

failed/attenuated to produce corticosterone in response to ACTH treatment (Fig. 4A and B). This 

could be attributed to mislocated cholesterol binding and/or misfolded truncated protein (Fig. 

S4AE). Similar accumulation of neutral lipids occurs in female adrenal glands, and other 

steroidogenic tissues such as ovary and testis, where the ORO staining in female tissues shows 

remarkable differences between the WT and. HO (Fig. 2I–L; Fig. S5A–L). Basal testosterone 

production and brain allopregnanolone levels were significantly reduced in Rat5 and Rat7, 

respectively (Fig. 4CE). 

 

Ala147/Thr substituation results in reduced affinity of TSPO for cholesterol  

In vitro reconstitution experiments using recombinant rodent WT and mutant Ala147/Thr in 

proteoliposomes showed that both proteins, as predicted, bind the TSPO ligand [3H]-PK 11195 

with similar affinities with no significant difference [24-26]. The mouse TSPO was used herein 

because it is 96% homologous to the rat TSPO and we have extensively studied this protein. The 

quality of the proeolipososmes produced using WT and mutant Ala147/Thr TSPO was the same 

as assessed by elctron microcopy (Fig. 5A and 5B). However, the cholesterol affinity for Thr147 

TSPO was 6-fold lower than for Ala147 TSPO and the comparison of binding curve fittings is 

statistically significant (p < 0.05, F test), indicating that the Ala147/Thr polymorphism affects 

cholesterol binding to mitochondrial TSPO and its import needed for steroid biosynthesis (Fig. 5). 

 

Humans carrying rs6971 (Ala147/Thr) polymorphism show reduced response to ACTH 

treatment 

To assess the functional significance of the rs6971 (Ala147/Thr) polymorphism in humans, we 

analyzed TSPO protein expression in the well-established hormone-responsive steroid-producing 

human adrenocortical cell line H295R, and evaluated basal and ACTH-challenged cortisol 

production in healthy male volunteers [27]. H295R cells contain immunoreactive18 kDa TSPO 

protein (Fig. 6A), confirming previous findings that these cells expressed Tspo mRNA that human 
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adrenal cortex tissue contains high levels of immunoreactive TSPO shown by 

immunohistochemistry [28, 29], and disproving a report that these cells do not express TSPO [5]. 

We observed that the increase in ACTH-induced plasma cortisol levels was genotype-dependent 

(Fig. 6BD). Subjects were genotyped at the rs6971 polymorphism as Ala147/Ala (AA), 

Ala147/Thr (AT), or Thr147/Thr (TT). We did not observe any genotype-related changes in the 

09:00 AM plasma cortisol level (Fig. 6B; p=0.063, linear trend test). However, a gene-dose effect 

was observed in plasma cortisol level immediately before ACTH administration at 11:00 AM 

(TT>AT>AA; p=0.029; Fig. 6C). The ACTH-induced increase in plasma cortisol level also 

exhibited a gene-dose effect (AA>AT>TT; p=0.023; Fig. 6D). The mechanism mediating these 

results may be partly due to the reduction in TSPO-cholesterol binding affinity, and thus steroid 

formation, as shown by both the in vitro reconstitution experiments using recombinant mutant 

Ala147/Thr TSPO and in vivo using the HO mutant Rat5 and Rat7 models. 

 

Discussion  

An early and necessary step in steroid biosynthesis is the conversion of cholesterol to 

pregnenolone by CYP11A1 in mitochondria. This reaction depends on the delivery of cholesterol 

from intracellular stores to mitochondria. A wealth of evidence implicates the cholesterol-binding 

TSPO as a mediator in this delivery [30]. However,, recent studies report that Tspo knockout in 

mice performed by removing exons 2 and 3 of the gene does not affect steroid synthesis [4, 5, 7], 

although steroidogenic cell-targeted TSPO deletion abolished the corticosterone response to 

ACTH and affected lipid homeostasis in both adrenal and testis [6]. Although one should have 

expected that removal of a gene or disruption or its expression, both resulting in lack of protein 

production, should have the same physiological effects, it seems that the responses are different 

and distinct compensation mechanisms are activated [31].  Thus, it is likely that mice can produce 

steroids in the absence of TSPO through an alternative pathway. The presence of such a mechanism 

is supported by the fact that TSPO is extremely conserved in nature and ubiquitously present across 

phylla and species and there is extensive literature demonstrating its role in mitochondrial function 

of various tissues and steroid formation, an activity initiated in the mitochondria of steroidogenic 

cells. 

 Because of the discrepancies observed between various genetic models used to study TSPO 

in the mouse, e.g. gene deletion versus exon removal, global gene deletion versus tissue specific 
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removal, we investigated the role of TSPO in the rat. Rat models have several advantages over 

mouse models and other organisms because of their well characterized physiology and their 

extensive use in the development of novel therapeutic entities [32]. Using zinc finger nuclease 

technology, we generated two Tspo global KO rat models, Rat5 and Rat7, both with TSPO deletion 

mutations, lacking the 18 kDa TSPO protein and the ability to bind the TSPO diagnostic ligand 

PK 11195 [33]. Our goal was to both disrupt TSPO expression (Rat5) and remove the fifth 

transmembrane loop region that includes the CRAC domain, including Ala147, responsible for 

cholesterol binding (Rat7) [9]. Rat5 and Rat7 did not display significantly aberrant phenotypes, 

suggesting that a compensatory mechanism may have replaced some of the functions of TSPO in 

these two lines. 

 Cholesterol for steroidogenesis is stored in the cholesteryl-ester-enriched lipid droplets in 

steroidogenic cells [34, 35]. Sustainable steroidogenesis depends upon the availability of 

intracellular free cholesterol, a major part of which is provided by de-esterification of cholesterol 

esters in lipid droplets.  Thus, in steroid synthesizing cells the levels of esterified cholesterol are 

an important morphological characteristic reflecting the use of free cholesterol for steroid 

biosynthesis [36-39]. Both rat lines carrying a Tspo deletion mutation - displayed increased neutral 

lipid accumulation in both adrenal, ovary and testis as determined by ORO staining, indicating that 

esterified cholesterol was inefficiently metabolized in the absence of intact TSPO. In agreement 

with the increased neutral lipid accumulation, in both rat lines the response to ACTH was absent 

or attenuated in homozygotes. Similar findings, increased neutral lipid accumulation coupled with 

impaired ACTH-induced steroid production, were reported following the targeted disruption of 

aldosterone synthase, STAR, CYP11A1 and TSPO in mice [6, 40-42].  In the case of TSPO, the 

disturbance of lipid homeostasis was reported in a Tspo conditional KO mouse model created using 

adrenal gland and/or testis specific Nr5a1-Cre mouse line [6]. 

 Although the two TSPO mutant rat lines showed a non-detectable phenotype, in addition 

to the lack of a response to ACTH, we observed reduced circulating testosterone levels and no 

allopregnanolone in the brain cortex.  The reduced testosterone levels were to be expected, because 

we also noted increased ORO staining in testis. We were unable to detect the neurosteroid 

allopregnanolone in Rat7 brain cortex. Although this was predictable given the role of TSPO in 

neurosteroid formation, we would have expected a neurological/behavioral phenotype to 

accompany this reduction considering the reported role of allopregnanolone in development and 
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brain function [43, 44]. However, at present, we have not undertaken behavioral tests and we have 

not exposed the animals to various stressors.  Moreover, we have not examined other areas of the 

brain for their ability to form allopregnanolone or other neurosteroids.   

In vitro reconstitution experiments showed a significantly reduced cholesterol affinity for 

Thr147 relative to that of Ala147 recombinant mouse TSPO, suggesting that altered cholesterol 

affinity, and thus reduced mitochondrial cholesterol import, may mediate the effects on cortisol 

production.  Here, we demonstrated that the fifth transmembrane loop of TSPO, that includes Ala 

147 and the CRAC domain, is critical for ACTH-induced corticosteroid formation in the rat.  

Consistent with this, healthy male volunteers carrying the rare allele of the rs6971 polymorphism 

that affects the fifth transmembrane loop (Thr147 TSPO) [10] displayed reduced plasma cortisol 

rate of formation in response to ACTH challenge compared with healthy volunteers carrying the 

common allele (Ala147). Furthermore, heterozygote volunteers had an intermediate response 

implying a gene dose effect. In human, Ala147/Thr polymorphism within the fifth transmembrane 

loop disrupts hormonal regulation of corticosteroid synthesis, which may be partly explained by 

the reduction in cholesterol binding affinity for Thr147 TSPO. These data are supported by recent 

structural studies on TSPO from Rhodobacter sphaeroides [45].  

Taken together, the results presented herein support the role of TSPO in hormone-

stimulated steroid biosynthesis and the role of TSPO ligands in diseases withsteroid-dependent 

stress and anxiety components [2, 46, 47]. Further experimental studies on the TSPO ligand-

binding domain(s) will advance therapeutic drug discovery for human diseases associated with 

altered steroid and neurosteroid synthesis [1, 2]. 
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Figure Legends 

Figure 1. Genome editing of the rat Tspo locus using the CompoZr® optimized/customized 

knockout zinc-finger nuclease (CKOZFN) technology.  

(A) A diagram of the ZFN-optimized target region in the rat Tspo exon 3 region. The expected 

CKOZFN targeting area is indicated as a blue line. Three ZFN domains (ZF1, ZF2, and ZF3) 

linked to the Fokl nuclease (Fok1) domain on each side of the expected target area are indicated 

to form a ZFN homodimer binding to DNA. The 89-bp deletion in Rat5 is indicated in red. An 

intron sequence was introduced into the new mRNA, indicated by the first “GT,” and insertions 

were confirmed by sequencing (Fig. S1c). The indicated primers (CKOZFN-F and CKOZFN-R) 

were used for founder identification and genotype screening. 

(B) Sequencing confirmation of rat Tspo locus modification from the Rat5 founder. The 96-bp 

deletion disrupts the exon 3-intron 3 junction; the exon sequence is shown in capital letters, and 

the intron sequence is shown in lower-case letters. 

(C) Diagram of the CRAC-specific deletion by CompoZr® Custom ZFN technology within rat 

Tspo exon 4. The expected targeted area is indicated in blue as the CRAC; the actual deletion in 

Rat7 is indicated in red within exon 4 (166 bp were deleted within exon 4). The indicated primers 

(COMPOZr-1kbF and COMPOZr-1kbR) were used for founder and genotype screening. 

(D) Sequencing analysis confirmed that the rat Tspo locus was modified in the Rat7 founder. The 

166-bp deletion within exon 4 was expected to generate a truncated exon 4. The TGA stop codon 

is highlighted in red. 

(E) Summary of the fertilized eggs injected with ZFN mRNAs, transferred at metaphase I, and the 

rare founders that were obtained. TSPO13, Rat5 with exon 3-intron 3 disruption (two founders 

obtained) and with a larger deletion (one founder obtained, not shown); TSPO17, Rat7 with a 

CRAC-specific deletion (one founder obtained). 

(F) Agarose gel image of the typical PCR reaction products used for genotype screening of Rat5 

with Tspo locus modification. WT, 362 bp; HE, two bands (362 bp/273 bp); HO, 273 bp. 

(G) RT-PCR analysis of Rat5 vs. WT rat adrenal glands was used to detect mutated mRNA species. 

Red arrow, Rat5 mutated Tspo mRNA (the intron sequence was introduced and resulted in a 

transcript 10 bp shorter than WT Tspo mRNA or transcripts of increasing length up to the full 

intron sequence fused with exon 4). The 575-bp WT Tspo mRNA is indicated. The corresponding 

rat genotypes are indicated. 
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(H) Agarose gel image of typical PCR reaction products used for genotype screening of Rat7 with 

a mutated Tspo predicted to lack the CRAC domain. WT, 818 bp; HE, 818 bp; HO, 654 bp; n.s., 

non-specific band. 

(I) RT-PCR of the Rat7 vs. WT rat adrenal glands was used to detect mutated mRNA species. Red 

arrow, mutated Rat7 Tspo mRNAs with a deletion in exon 4 were 411 bp, whereas WT Tspo 

mRNA species were 575 bp. The corresponding rat genotype (WT, HE, or HO) is indicated. 

(J) Immunoblot analysis of proteins extracted from homogenized adrenal gland tissues of Rat5 

(left panel) and Rat7 (right panel). The rat genotype (WT, HE, HO), TSPO, hypoxanthine 

phosphoribosyltransferase (HPRT; loading control), and the protein ladder (kDa) are indicated. 

 

Figure 2. Effect of genome editing of rat Tspo on the PK 11195 binding and 

immunofluorescence staining. 

(A and B) Representative optical bright-field images were used as controls to show the 

morphology of adrenal sections used for the binding assay. 

(C and D) Autoradiographic localization of PK 11195 in the adrenal glands from WT, Rat5, and 

Rat7. (C) Autoradiographic images of tissue incubation with 1.2 nmol/L [3H]-PK 11195 in 50 

mmol/L Tris-HCl pH 7.4 for 30 min at room temperature (22°C). [3H]-PK 11195 binding was 

analyzed by digital autoradiography using a Beta-Imager 2000 (Biospace Lab, Paris, France). 

Binding intensities are presented in false color using the ImageJ look-up table “royal.” (D) 

Autoradiographic images of tissue incubation as in C but additionally with cold PK 11195 to show 

non-specific binding. 

(E) Saturation isotherm of [3H]-PK 11195-specific binding studies using 15 µg of protein extracted 

from adrenal glands of WT1, WT2, and TSPO knockout Rat5-1 and Rat5-2. The KD and Bmax of 

PK 11195 binding to WT1 adrenal protein extract was 3.84±1.62 and 84.95±11.86, respectively, 

and for WT2 adrenal protein extract was 3.04±0.96 and 60.40±5.67, respectively. 

(F and G) Immunofluorescence staining (IF) of cryosections of Rat5 adrenal gland using rabbit 

polyclonal anti-TSPO Ab (NP155). Images were obtained using laser scanning confocal 

microscopy (A) and epifluorescence imaging using an inverted microscope (B). The rat genotype 

(WT, HE, and HO) is indicated. Scale bar=100 m. 

 

Figure 3. Effect of TSPO deletion on the accumulation of esterified cholesterol in rat models. 
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(AJ) Oil Red O staining of adrenal glands from WT, HE, and HO rats. HO rats exhibited 

increased Oil Red O staining of neutral lipids, which reflected esterified cholesterol in the 

steroidogenic tissues. (AC) Male adrenal gland of Rat5; Scale bar=50 m. (DF) Male adrenal 

gland of Rat7; Scale bar=50 m. (GJ) Distribution of esterified cholesterol in Rat5 and Rat7 

testis. Esterified cholesterol was estimated using Oil Red O staining of testis from Rat5 (GH) 

and Rat7 (IJ). WT, HE, and HO rats are indicated, and the highlighted area is magnified below 

each panel. Lc, Leydig cell. Green arrows indicate lipid droplets; Scale bar=100 m. 

 

Figure 4. Measurement of steroid biosynthesis in rat models. 

(A and B) Circulating corticosterone levels in WT, HE, and HO Rat5 and Rat7 treated with and 

without ACTH. Plasma corticosterone levels from basal and ACTH-treated WT, HE, and HO Rat5 

(K); Mann-Whitney U-test; **p<0.01 (between ACTH-treated WT and HO; n=10–13 animals per 

group. Plasma corticosterone levels from basal and ACTH-treated WT, HE, and HO Rat7 (L); 

Mann-Whitney U-test; p=0.051 (between ACTH-treated WT and HO); n=1013 animals per 

group. 

(C and D) Circulating testosterone levels in Rat5 and allopregnanolone levels in Rat7 brains. 

Testosterone was measured using ELISA, and allopregnanolone was measured using LC-MS. (C) 

Basal testosterone levels in WT, HE, and HO from Rat5 (similar results were obtained in Rat7). 

Mann-Whitney U-test; *p<0.05, **p<0.01 (WT vs. HE or HO; n=56 animals per group). (D) 

Relative amounts of allopregnanolone in Rat7 (WT, HE, and HO) cortex (not measurable in HO). 

n.d., not detectable; Student’s t-test, n=4. (E) Allopregnanolone in wild-type, HE, and HO Rat7 

brains measured by UHPLC-QQQ mass spectrometry. Representative chromatography of the 

allopregnanolone measurements from each Rat7 genotype: WT, HE, and HO. The reference 

standard is indicated. 

 

Figure 5. Effect of TSPO polymorphism on PK 11195/cholesterol binding in vitro. 

Saturation isotherms of [3H]-PK 11195 and [3H]-cholesterol binding to reconstituted mouse TSPO 

WT and mutant (Ala/Thr) proteins. (A) [3H]-PK 11195 and [3H]-cholesterol specific binding 

studies were performed using 200 ng of mouse WT TSPO. Inset, electron micrographs of WT 

TSPO proteoliposomes stained with 2% uranyl acetate after SDS elimination using biobeads. (B) 

200 ng of mouse Ala147Thr mutant reconstituted TSPO was used to study specific binding with 
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[3H]-PK 11195 and [3H]-cholesterol. Inset, electron micrographs of mutant TSPO proteoliposomes 

stained with 2% uranyl acetate after SDS elimination using biobeads. [3H]-PK 11195 

concentrations varied from 0.115 nM; [3H]-cholesterol concentrations varied from 0.130 nM. 

Values shown represent the mean (SE) from three independent experiments. The extra sum-of-

squares F test was used to compare the fitting curves and the p values presented (p < 0.05 are 

statistically significant to reject the null hypothesis). 

 

Figure 6. Humans carrying rs6971 (Ala147/Thr) polymorphism show reduced response to 

ACTH treatment. 

(A) Western blot analysis of human TSPO expression in the human steroid-producing 

adrenocortical cell line H295R. TSPO recombinant protein in E. coli (EI, induced with IPTG; 

UI, uninduced cell lysate). The mouse Leydig cell line MA-10 was used as a positive control, and 

HPRT was used as a loading control. Biotinylated protein ladder marker sizes are labelled in kDa. 

(B) Plasma cortisol concentrations in healthy male volunteers at 09:00 AM, with AA (n=18), AT 

(n=16), and TT (n=11) polymorphisms. A gene-dose effect was not observed. AA, 304.9 (18.12) 

nmol/L; AT, 387.8 (24.4) nmol/L; TT, 365.6 (27.80) nmol/L (p=0.0629, linear trend test). Values 

shown represent the mean (SE). 

(C) Plasma cortisol concentrations immediately before ACTH administration (at 11:00 AM) in 

healthy male volunteers with AA (n=20), AT (n=16), and TT (n=11) polymorphisms. A gene-dose 

effect was observed. AA, 202.7 (16.7) nmol/L; AT, 244.5 (22.6) nmol/L; TT, 275.4 (30.6) nmol/L 

(*p=0.029, linear trend test). Values shown represent the mean (SE). 

(D) Fold-change in plasma cortisol concentration after ACTH administration (250 g, IV). A gene-

dose effect was observed (fold-change): AA (n=10) 2.75 (0.32); AT (n=10) 2.17 (0.25); TT (n=10) 

1.85 (0.22) (*p=0.023, linear trend test). Values shown represent the mean (SE). 
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