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Abstract In Hirschfeld (J Austral Math Soc 4(1):83–89, 1964), the existence of the
cubic surface which arises from a double-six over the finite field of order four was
considered. In Hirschfeld (Rend Mat Appl 26:115–152, 1967), the existence and the
properties of the cubic surfaces over the finite fields of odd and even order was dis-
cussed and classified over the fields of order seven, eight, nine. In this paper, cubic
surfaces with twenty-seven lines over the finite field of thirteen elements are classified.
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1 Introduction and preliminaries

Let PG(n, K ) be the n-dimensional projective space over a field K . When K = Fq ,
it is denoted by PG(n, q). The projective general linear group PGL(n+1, q) is the
group of projectivities of PG(n, q).
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38 A. Betten et al.

The projective plane PG(2, q) over Fq contains q2 + q + 1 points and q2 + q + 1
lines, [10]. There are q + 1 points on a line and q + 1 lines through a point. A
point P(Y ) = P(y0, y1, y2) is in PG(2, q) where y0, y1, y2 ∈ Fq and not all zero. In
PG(2, 13), there are 183 points and 183 lines; there are 14 points on every line and
14 lines passing through every point.

The space PG(3, q) contains q3 + q2 + q + 1 points and planes, as well as
(q2 + q + 1)(q2 + 1) lines. There are q2 + q + 1 lines through every point and
q+1 planes through a line. In PG(3, q), planes and lines are characterised as follows:
a subset �2 is a plane if and only if it has q2 + q + 1 points and meets every line; a
subset �1 is a line if and only if it has q + 1 points and meets every plane. A point
P(X) = P(x0, x1, x2, x3) is in PG(3, q) where x0, x1, x2, x3 ∈ Fq and not all zero.
In PG(3, 13), there are 2380 points and planes, and 31110 lines. Also, there are 183
lines passing through a point and 14 planes through a line.

A k-arc in PG(2, q) is a set of k points no three of which are collinear. When k
achieves its maximum value, a k-arc is an oval. For q odd, an oval is a (q+1)-arc,
and this is the set of rational points of a conic. For q even, an oval is a (q+2)-arc;
here, an oval may be constructed as a conic plus its nucleus, which is the intersection
of all its tangent lines. For q = 2h with h � 4, there exist other types of ovals.

In PG(n, K ), the variety V (F) is the set of points (x0, x1, . . . , xn) such that

F(x0, x1, . . . , xn) = 0

for the homogeneous polynomial F . In particular, a cubic surface F in PG(3, K ) is
the zero set of a homogeneous cubic equation in four variables over K :

F = V

(∑
ai jkl x

i
0x

j
1 x

k
2 x

l
3

)
,

where i, j, k, l ∈ {0, 1, 2, 3}, i+ j+k+l = 3, and ai jkl ∈ K . Therefore, to determine
a cubic surface, 19 conditions are required since there are 20 monomials of degree 3
in four variables.

Theorem 1.1 (Cayley and Salmon [4])Anon-singular cubic surface over the complex
field contains exactly twenty-seven lines.

Cayley stated that there is great difficulty in conceiving the complete figure formed
by the twenty-seven lines, indeed this can hardly be accomplished till a more perfect
notation is discovered”.

A long first list of enumerative properties of 27 lines, most of which are implicit in
Cayley’s paper, was systematically expounded by Steiner [13] in 1857.

In 1858, Schläfli found the required notation for the complete figure formed by
these 27 lines. The formulation for a double-six in Schläfli’s theorem is as follows.

Theorem 1.2 (Schläfli [12]) Given five skew lines a1, a2, a3, a4, a5 with a single
transversal b6 such that each set of four ai omitting aj has a unique further transversal
bj , then the five lines b1, b2, b3, b4, b5 also have a transversal a6. These twelve lines
form a double-six; that is, a double-six in PG(3, K ) is the set of 12 lines
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Classification of cubic surfaces with twenty-seven lines… 39

Table 1 Cubic surfaces with 27
lines for q � 11

q F e3 |G(F)| Type

4 F4 45 25, 920

7 F7 18 648 E

8 F8 13 192

9 F0
9 10 120 D

9 F1
9 9 216

11 F0
11 6 24

11 F1
11 10 120 D

a1 a2 a3 a4 a5 a6
b1 b2 b3 b4 b5 b6

(1)

such that each line only meets the five lines which are not in the same row or column.

Theorem 1.3 ([9]) A double-six lies on a unique cubic surface F with 15 further
lines ci j given by the intersection of [ai , bj ] and [aj , bi ], where [ai , bj ] is the plane
containing ai and bj .

The main related problems are stated in [9].

(i) When does a double-six exist over Fq?
(ii) What are the particular properties of cubic surfaces over Fq?
(iii) Classify the cubic surfaces with twenty-seven lines over Fq .

The first two problems are answered in [9].

Theorem 1.4 ([8]) A necessary and sufficient condition for the existence of a double-
six, and so of a cubic surface with 27 lines, is the existence in a plane over the same
field of a plane 6-arc not on a conic. This occurs when q �= 2, 3, 5.

In [7] and [8], the smallest cases, namely, F4,F7,F8,F9, are resolved. Sadeh [11]
constructed the cubic surfaces in PG(3, 11) and gave their groups of projectivities.

A point is an Eckardt point if it lies on exactly three lines of the cubic surface F.
Let G(F) be the group of projectivities which fixes the cubic surface F [6], and let

e3 be the total number of Eckardt points of F. In Table 1, a summary for 4 � q � 11
is given.

A surface which is projectively equivalent to one with equation

x30 + x31 + x32 + x33 = 0

is an equianharmonic surface, and denoted by E.
A surface which is projectively equivalent to one with equation

x30 + x31 + x32 + x33 − (x0 + x1 + x2 + x3)
3 = 0

is a diagonal surface, and denoted by D.
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40 A. Betten et al.

In this paper, the projective classification of cubic surfaces F with 27 lines in
PG(3, 13) is done by classifying the 6-arcs not lying on a conic in the plane; projec-
tively distinct arcs do not necessarily represent projectively distinct surfaces. Complete
arcs in PG(2, 13) were classified by Ali [1].

2 Structure of the cubic surface

Here, F denotes a non-singular cubic surface with twenty-seven lines, [2]. Consider
F with 27 lines of the form ai , bi , ci j , where i, j ∈ {1, 2, 3, 4, 5, 6}, with the 12 lines
ai , bi in the form of a double-six (1), and ci j = [ai , bj ] ∩ [aj , bi ]. Let i, j, k, l ∈
{1, 2, 3, 4, 5, 6}. Each line of F meets 10 others; that is,

ai meets bj , cik, where i �= j, k;
bi meets aj , cik, where i �= j, k;
ci j meets ai , aj , bi , bj , ckl , wherek, l �= i, j.

The 27 lines form 36 double-sixes: D, 15 Di j , 20 Di jk . Here,

D a1 a2 a3 a4 a5 a6
b1 b2 b3 b4 b5 b6

D12 a1 b1 c23 c24 c25 c26
a2 b2 c13 c14 c15 c16

D123 a1 a2 a3 c56 c46 c45
c23 c13 c12 b4 b5 b6.

Lemma 2.1 ([9]) LetF be a non-singular cubic surface, let P be a point of the surface
and let πP (F) denote the tangent plane at P.

(i) If P is on no line of F, then πP (F) meets F in an irreducible cubic with a double
point at P.

(ii) If P is on exactly one line of F, then πP (F) meets F in the line plus a conic
through P.

(iii) If P is on exactly two lines of F, then πP (F)meets F these two lines plus another
line forming a triangle.

(iv) If P is on exactly three lines of F, then πP (F) meets F in these three concurrent
lines.

In cases (iii) and (iv) of Lemma 2.1, πP (F) is a tritangent plane since, in (iii), it is the
tangent plane at each vertex of the triangle and, in case (iv), it is the tangent plane at
the coincident points.

Through each line there are five tritangent planes; therefore, there are 45 = 27×5/3
tritangent planes altogether, namely,

30 aibj ci j
15 ci j cklcmn .
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Classification of cubic surfaces with twenty-seven lines… 41

In case (iv) of Lemma 2.1, P is an Eckardt point. The number of Eckardt points is
an isomorphism invariant of cubic surfaces. In some cases, cubic surfaces are char-
acterised by their number of Eckardt points. For example, a cubic surface with 10
Eckardt points is a diagonal surface and a cubic surface with 18 Eckardt points is an
equianharmonic surface. An Eckardt point may be of two types:

Ei j = ai ∩ bj ∩ ci j ,

Ei j,kl,mn = ci j ∩ ckl ∩ cmn .

There are at most 30 of the first type and 15 of the second type.
Any two tritangent planes having no line of a cubic surface F in common are

uniquely associated with a third in such a way that the nine lines of F in these three
planes form another set of three similarly associated planes: the two trihedra form
a trihedral pair. For example, let two tritangent planes V (F1) and V (F2) be made
up of a1, b2, c12 and a3, b4, c34 with no common line. They are uniquely associated
with a third tritangent plane V (F3) containing c14, c23, c56. These nine lines of the
cubic surface give two trihedra. The first trihedron consist of three planes given by
{V (F1), V (F2), V (F3)} and second by {V (G1), V (G2), V (G3)}. Such a pair of tri-
hedra is called a Steiner trihedral pair. It is customary to arrange the nine lines of
intersection of the planes in a trihedral pair in the form of an array, such as this one:

T12,34 a1 b2 c12 F1
b4 a3 c34 F2
c14 c23 c56 F3
G1 G2 G3

Here, the rows represent for the planes of type Fi and the columns represent the planes
of type Gi . This particular trihedral pair is denoted T12,34.

The 45 tritangent planes form 120 = 45×32/12 trihedral pairs which come in
three types:

20×T123 c23 b3 a2
a3 c13 b1
b2 a1 c12

90×T12,34 a1 b2 c12
b4 a3 c34
c14 c23 c56

10×T123,456 c14 c25 c36
c26 c34 c15
c35 c16 c24.

Theorem 2.2 ([9]) Let the planes of a trihedral pair belonging to cubic surface F be
given by V (F1), V (F2), V (F3) and V (G1), V (G2), V (G3). Then the cubic surface
can be written as
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42 A. Betten et al.

F = V (F1F2F3 + λG1G2G3)

for some λ in Fq\{0}.
The cubic surface can be created by any of the 120 trihedral pairs. In this paper,
trihedral pairs are used to classify the cubic surfaces over a particular finite field. A
trihedral pair is special if the three planes of one trihedron meet in a line, which is
the line on which the three Eckardt points from the other trihedron are collinear. The
existence of Eckardt points and their collinearities gives the set of special trihedral
pairs.

Lemma 2.3 ([9]) Any two Eckardt points not on the same line of F are collinear with
a third Eckardt point.

The possible collinearities are as follows:

40 Ei j E jk Eki

180 Ei j Ekl Eil, jk,rs

20 Ei j,kl,mn Eil,kn, jm Ein, jk,ml .

3 Techniques

Cubic surfaces in three-dimensional projective space are the blow-up of six points
in the plane. To see this, the Clebsch map from the cubic surface onto a plane is
considered.

Theorem 3.1 (Clebsch [5]) A general cubic surface is the image of a birational map
from a projective plane given by the linear system of cubics through six points.

Let F be a cubic surface given by V (F1F2F3+G1G2G3), for some linear forms
Fi ,Gj . A point P(X) = P(x0, x1, x2, x3) is on F if and only if

∣∣∣∣∣∣
0 F1 G3
G1 0 F2
F3 G2 0

∣∣∣∣∣∣ = 0,

that is, there exists P(Y ) = P(y0, y1, y2) such that the following system has a non-
trivial unique solution:

y1G1(X) + y2F3(X) = 0,
y0F1(X) + y2G2(X) = 0,
y0G3(X) + y1F2(X) = 0.

Since Fi andGi are linear forms in the four variables x0, x1, x2, x3, solving the system
for the xi gives

x0 :x1 :x2 :x3 = h0(y0, y1, y2) :h1(y0, y1, y2) :h2(y0, y1, y2) :h3(y0, y1, y2),
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Classification of cubic surfaces with twenty-seven lines… 43

where each V (hi ) determines a cubic curve in the plane. Therefore, there is a mapping
� from the surface onto the plane thatmaps plane sections ofF to cubic curves through
the set S of six points, where S = V (h0, h1, h2, h3), [9, Section 20.4].

Let S = {P1, P2, P3, P4, P5, P6} be a 6-arc not on a conic in PG(2, q), let Pi Pj be
the line through Pi and Pj , and letCj be the conic through the five points of S\{Pj }. Let
F be the corresponding cubic surface with twenty-seven lines in PG(3, q). Consider
Clebsch’s mapping � of F to the plane:

� : F → PG(2, q).

It takes the q + 1 points of the line ai of F in PG(3, q) to Pi ∈ PG(2, q). So there is a
set of six points forming a 6-arc not on a conic under �. Each of the remaining points
of F is mapped to a separate point of the plane. The points of the line bi map to the
points of the conic Ci , and the points of the line ci j map to the points of the line Pi Pj :

ai� = Pi ,

bi� = Ci ,

ci j� = Pi Pj .

Corollary 3.2 In PG(3, q), a cubic surface with 27 lines has q2 + 7q + 1 points.

Proof From above, there are q2+ q + 1− 6+ 6(q + 1) = q2+ 7q + 1 points on F. ��
Note 3.3 In PG(3, q), the number of points on the 27 lines of a cubic surface is
27(q − 4) + e3.

Let V (F1) be the plane section of the corresponding cubic surface F consisting of
ci j , ckl , cmn and V ( f1) be the cubic curve in PG(2, q) which is made up of three lines
namely Pi Pj , Pk Pl , Pm Pn . Then

V (F1)� = V ( f1).

Also, the image of the B-point (i j, kl,mn), the intersection of three bisecants of S, is
the Eckardt point of the form Ei j,kl,mn , since it is the intersection of ci j , ckl , cmn .

Let V (F2) be the plane section of the corresponding cubic surface F consisting of
ai , b j , ci j , let V ( f2) be the cubic curve in PG(2, q) which is made up of a conic Cj

and a tangent line Pi Pj . Then

V (F2)� = V ( f2).

Also, if there exists a tangent line Pi Pj touching Cj at Pi , Eckardt points of the form
Ei j exist since it is the intersection of the ai , b j , ci j .

In this paper, the method explained in [3] has been used to classify the sets of six
points in PG(2, q), no three collinear, not all on a conic. Some notation needs to be
introduced.

Let Y denote the object to be classified, let X be the class of sub-objects, and let
G be the group which acts on the finite sets X and Y. Let R be a relation between X
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44 A. Betten et al.

and Y; also, G acts on R. The orbits of G on Y are isomorphism classes of Y. Assume
that the orbits of G on X are classified and the relation R is a G-invariant. With this
method, the objects Y can be classified by the classification of the sub-objects X.

Let P1, . . . , Pm be the representatives for the orbits of G on X; so

X =
⋃

i=1,...,m

OrbG(Pi ).

Let Q1, . . . , Qn be the representatives for orbits of G on Y; so

Y =
⋃

j=1,...,n

OrbG(Qj ).

For Pi ∈ X, let the up-set of Pi be

Up(Pi ) = {(Pi ,Y ) : Y ∈ Y, (Pi ,Y ) ∈ R}.

For Qj , let the down-set of Qj be

Down(Qj ) = {(X, Qj ) : X ∈ X, (X, Qj ) ∈ R}.

Let Ti,k be representatives of the orbits of StabG(Pi ) on Up(Pi ); so

Up(Pi ) =
⋃

k=1,...,ki

Ti,k,

where k = 1, . . . , ki and Ti,k = OrbStabG (Pi )(Ti,k). Let S j,l be representatives of the
orbits of StabG(Qj ) on Down(Qj ); so

Down(Qj ) =
⋃

l=1,...,lj

S j,l ,

where l = 1, . . . , lj and S j,l = OrbStabG (Qj )(Sj,l).

Lemma 3.4 ([3]) There is a bijection between the set of orbits {Ti,k : i = 1, . . . ,m,

k = 1, . . . , ki } and the set of orbits {S j,l : j = 1, . . . , n, l = 1, . . . , lj }.

4 Algorithms

Two algorithms are now described: the arc-lifting algorithm and the classification
algorithm.
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Classification of cubic surfaces with twenty-seven lines… 45

4.1 Arc-lifting algorithm

This algorithm is used for the construction of the cubic surface with twenty-seven
lines in PG(3, q) arising from a 6-arc not on a conic in PG(2, q).

The algorithm’s input is

S = 6-arc not on a conic in PG(2, q)

and the algorithm’s output is

F = a cubic surface with twenty-seven lines in PG(3, q)

associated to the blowing-up of S.

The algorithm proceeds in four stages.
At the first stage, for a given 6-arc S not on a conic, the plane cubic curves through

S are found. At the second stage, the Clebsch map is used to obtain the equations of
the tritangent planes corresponding to the cubic surface F.

At the third stage, the possible arrangements of 120 trihedral pairs are found
which yield eighteen conditions to determine the cubic surface. At the last stage,
the nineteenth condition gives the parameter λ that determines the equation of the
corresponding non-singular cubic surface.

Stage 1: Find the cubic curves through S = {P1, P2, P3, P4, P5, P6} in PG(2, q)

1. Calculate six different conics Cj through S\{Pj }, where j = 1, . . . , 6.
2. Calculate 15 different bisecants Pi Pj on the plane through each pair, where i, j =

1, . . . , 6.
3. Calculate 30 different cubic curves through S of the form Cj×Pi Pj .
4. Calculate 15 different cubic curves through S of the form Pi Pj×Pk Pl×Pm Pn .
5. Fix four linearly independent cubic curves as base curves, say

V ( f1) = V (C2×P1P2), V ( f2) = V (C3×P3P4),

V (g1) = V (C3×P1P3), V (g2) = V (C2×P2P4).

Stage 2: Find the tritangent planes of F in PG(3, q)

The tritangent plane aibj ci j is the image of the cubic curveCj×Pi Pj and the tritangent
plane ci j cklcmn is the image of the cubic curve Pi Pj×Pk Pl×Pm Pn .

Considering four base cubic plane curves, the four associated base tritangent planes
can be written as follows:

V (F1) → V ( f1) with V (F1) = [a1b2c12], V (F1) = V (x0);
V (F2) → V ( f2) with V (F2) = [a4b3c34], V (F2) = V (x1);
V (G1) → V (g1) with V (G1) = [a1b3c13], V (G1) = V (x2);
V (G2) → V (g2) with V (G2) = [a4b2c24], V (G2) = V (x3).
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Calculate the remaining 41 tritangent planes as linear combinations of x0, x1, x2, x3.

Stage 3: Find the trihedral pairs of F in PG(3, q)

Pick a trihedral pair related to four base tritangent planesV (F1), V (F2), V (G1), V (G2)

and four base cubic curves V ( f1), V ( f2), V (g1), V (g2), say T14,23:

a1 b2 c12 F1
b3 a4 c34 F2
c13 c24 c56 F3
G1 G2 G3

In stage two, 45 tritangent planes are already calculated as the linear combination of
x0, x1, x2, x3. Therefore, Fi and Gi are linear forms in the four coordinates. From
Theorem 2.2, it is known that every cubic surface can be written in 120 ways in the
form

F = V (F1F2F3+λG1G2G3). (2)

Stage 4: Find the equation of the cubic surface F in PG(3, q) with 27 lines

The parameter λ can be found as the following way. The Clebsch map is surjective;
that is, every point in PG(2, q) is an image of a point (or points) on the cubic surface
F as follows:

x0 :x1 :x2 :x3 = f1(y0, y1, y2) : f2(y0, y1, y2) :g1(y0, y1, y2) :g2(y0, y1, y2),

where V ( f1), V ( f2), V (g1), V (g2) are base cubic curves in the plane. Taking a point
(y0, y1, y2) not on the base cubic curves in PG(2, q), the point (x0, x1, x2, x3) is found
on F. The parameter λ is found by evaluating (x0, x1, x2, x3) in (2).

4.2 The classification algorithm

This algorithm is used for the classification of cubic surfaces with twenty-seven lines
in PG(3, q). The algorithm’s input is

projectively distinct 6-arcs S not on a conic in PG(2, q)

and the algorithm’s output is

projectively distinct cubic surfaces F with twenty-seven lines in PG(3, q).

The algorithm proceeds in five stages.
In the first stage, for each 6-arc the arc-lifting algorithm is used. In the second

stage, for each 6-arc we find the set of special trihedral pairs, say T. In the third stage,
we classify the set of six points in PG(3, 13). In the fourth stage, for each 6-arc we
find the automorphism group of the cubic surface F which acts on the set of special
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Classification of cubic surfaces with twenty-seven lines… 47

trihedral pairs, T. In the last stage, we check the projectivity between cubic surfaces
with the same number of Eckardt points and the isomorphic group of projectivities if
there exists one.

Stage 1: For each 6-arc, process the arc-lifting program

For each 6-arc, the corresponding cubic surface is constructed with its 27 lines, 45
tritangent planes and 120 trihedral pairs, giving a particular set T of trihedral pairs.

Stage 2: For each corresponding cubic surface, find the set of special trihedral pairs

In this stage, there are three steps as follows.

1. Find all possible Eckardt points. Here, Pi , Pj are the points from the related 6-arc
not on a conic and Cj is a conic through S\{Pj } where j = 1, . . . , 6 and Pi Pj ’s
are bisecants through 6-arc;
If Cj ∩ Pi Pj = {Pi } then
print “Ei j is an Eckardt point”;
if else Pi Pj ∩ Pk Pl ∩ Pm Pn = {P} where P ∈ PG(2, q) then
print “Ei j,kl,mn is an Eckardt point”;

else print failed;
end

2. Find all possible sets of three collinear Eckardt points. The coordinates of an
Eckardt point are obtained by intersecting the required three lines. Then, for each
triple of Eckardt points, it is determined whether or not they are collinear. Alter-
natively, Lemma 2.3 can be used to see the possible collinearities.

3. Find the special trihedral pairs. Every trihedral pair gives two possible collinear
triples of Eckardt points. For every collinear triple of Eckardt points, there is only
one associated trihedral pair, which is called special.

Stage 3: The classification of the sets of six points in PG(3, 13)

In this stage, all projective transformations between six points in PG(3, 13) are
obtained. The process in Lemma 3.4 is repeated five times to classify the sets of
six points of PG(3, 13). Let Xi be the set of i-subsets of PG(3, q) and let Yi be the
set of (i+1)-subsets of PG(3, q), with R the inclusion relation.

Consider the action of the groupG = PGL(4, q)onPG(3, q) andhence on trihedral
pairs and cubic surfaces. Let T = {T1, . . . , Tm} be a set of special trihedral pairs and
G(F) the group of projectivities of F which fixes F.

Stage 4: For each corresponding cubic surface, find its automorphism group

In this stage, the orbit-stabiliser theorem and Lemma 3.4 are used. There are three
steps.

1. Pick a trihedral pair from the set of special trihedral pairs, say T1. Find the stabiliser
of T1:

Stab(T1) = {M ∈ G(F) : M .T1 = T1}.
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Table 2 Cubic surfaces for
q = 13

q F e3 |G(F)| Type

13 F0
13 4 12

13 F1
13 6 24

13 F2
13 9 108

13 F3
13 18 648 E

The elements M are obtained from the previous stage. Two more tests are applied
to show thatM fixes the cubic surfaceF. One is “does it preserve the 3+3 partition
of trihedral pair T1” and another one is “does it preserve the equation of the cubic
surface F”.

2. Consider the set of special trihedral pairs T = {T1, . . . , Tm}; each has six planes.
Find the orbit of T1:

Orb(T1) = {M .T1 ∈ T : M ∈ G(F)}.

3. Use the orbit-stabiliser theorem to find the automorphism group of F:

|G(F)| = |Stab(T1)|×|Orb(T1)|.

Stage 5: Find the projectively equivalent and distinct cubic surfaces in PG(3, q)

Two cubic surfaces F and F ′ with the same number of Eckardt points and isomorphic
group of projectivities are projectively equivalent if and only if there exists a projec-
tivity between them. Let T be a trihedral pair of F and T ′ be a trihedral pair of F ′. If
the projectivity S in PGL(4, q) is such that S.T = T ′ also transforms F to F ′, then
F and F ′ are projectively equivalent; otherwise, F and F ′ are projectively distinct
(Table 2).

5 Cubic surfaces with 27 lines over F13

From Theorem 1.4, such a surface F in PG(3, 13) exists and has 261 points.

Theorem 5.1 There are four projectively distinct cubic surfaces with 27 lines in
PG(3, 13), namely, F0

13,F
1
13,F

2
13,F

3
13.

Proof Two algorithms from the previous section have been used to prove the theorem.
The projectively distinct 6-arcs not on a conic in PG(2, 13) are shown in Table 3. In
Table 4, the projectively distinct non-singular cubic surfaces PG(3, 13) can be seen
with their related plane 6-arcs, automorphism groups, and equations. ��
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Table 3 The 6-arcs not on a conic S in PG(2, 13)

S0 = A1 ∪ {(2, 3, 1)} S7 = A1 ∪ {(2, 4, 1)} S14 = A1 ∪ {(5, 6, 1)}
S1 = A1 ∪ {(4, 3, 1)} S8 = A1 ∪ {(9, 4, 1)} S15 = A1 ∪ {(7, 6, 1)}
S2 = A1 ∪ {(6, 3, 1)} S9 = A1 ∪ {(10, 4, 1)} S16 = A1 ∪ {(8, 7, 1)}
S3 = A1 ∪ {(7, 3, 1)} S10 = A1 ∪ {(4, 5, 1)} S17 = A1 ∪ {(12, 7, 1)}
S4 = A1 ∪ {(8, 3, 1)} S11 = A1 ∪ {(6, 5, 1)} S18 = A2 ∪ {(2, 6, 1)}
S5 = A1 ∪ {(10, 3, 1)} S12 = A1 ∪ {(8, 5, 1)} S19 = A3 ∪ {(5, 4, 1)}
S6 = A1 ∪ {(12, 3, 1)} S13 = A1 ∪ {(12, 5, 1)} S20 = A3 ∪ {(6, 4, 1)}

A1 = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1), (3, 2, 1)},
A2 = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1), (6, 2, 1)},
A3 = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1), (4, 3, 1)}.

Table 4 The projectively distinct non-singular cubic surfaces F in PG(3, 13)

S F e3 Aut(F) Equation of F Class

S0 F0 4 D6 0 0 0 0 4 0 0 9 0 0 0 0 5 0 0 8 12 1 0 0 F0
13

S1 F1 4 D6 0 0 0 0 3 0 0 8 0 0 0 0 6 0 0 8 0 0 1 0

S3 F3 4 D6 0 0 0 0 1 0 0 12 0 0 0 0 7 0 0 9 0 0 1 0

S8 F8 4 D6 0 0 0 0 5 0 0 11 0 0 0 0 2 0 0 7 0 1 0 0

S9 F9 4 D6 0 0 0 0 11 0 0 6 0 0 0 0 6 0 0 8 0 1 0 0

S10 F10 4 D6 0 0 0 0 9 0 0 4 0 0 0 0 11 0 0 7 0 1 0 0

S11 F11 4 D6 0 0 0 0 4 0 0 9 0 0 0 0 8 0 0 12 5 1 0 0

S12 F12 4 D6 0 0 0 0 7 0 0 7 0 0 0 0 5 0 0 5 1 1 0 0

S17 F17 4 D6 0 0 0 0 1 0 0 10 0 0 0 0 11 0 0 4 6 1 0 0

S18 F18 4 D6 0 0 0 0 1 0 0 11 0 0 0 0 12 0 0 1 0 1 0 0

S2 F2 6 S4 0 0 0 0 3 0 0 10 0 0 0 0 2 0 0 2 0 0 8 1 F1
13

S5 F5 6 S4 0 0 0 0 10 0 0 3 0 0 0 0 9 0 0 12 0 0 4 1

S7 F7 6 S4 0 0 0 0 6 0 0 4 0 0 0 0 7 0 0 6 2 1 0 0

S13 F13 6 S4 0 0 0 0 7 0 0 10 0 0 0 0 10 0 0 9 0 0 3 1

S14 F14 6 S4 0 0 0 0 8 0 0 9 0 0 0 0 9 0 0 8 10 1 0 0

S15 F15 6 S4 0 0 0 0 11 0 0 10 0 0 0 0 11 0 0 3 1 1 0 0

S16 F16 6 S4 0 0 0 0 1 0 0 3 0 0 0 0 4 0 0 9 8 1 0 0

S4 F4 9 G1 0 0 0 0 12 0 0 10 0 0 0 0 2 0 0 2 0 0 12 1 F2
13

S6 F6 9 G1 0 0 0 0 7 0 0 5 0 0 0 0 11 0 0 8 0 0 3 1

S19 F19 18 G2 0 0 0 0 8 0 0 6 0 0 0 0 9 0 0 11 8 1 0 0 F3
13

S20 F20 18 G2 0 0 0 0 4 0 0 10 0 0 0 0 3 0 0 1 4 1 0 0

In Table 4, the order of the coefficients is the natural one as follows:

a000x
3
0 + a001x

3
1 + a002x

3
2 + a003x

3
3 + a011x

2
0 x1 + a012x

2
0 x2

+ a013x
2
0 x3 + a022x0x

2
1 + a023x

2
1 x2 + a033x

2
1 x3
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+ a111x0x
2
2 + a112x1x

2
2 + a113x

2
2 x3 + a122x0x

2
3 + a123x1x

2
3

+ a133x2x
2
3 + a222x0x1x2 + a223x0x1x3 + a233x0x2x3 + a333x1x2x3.

Let Cn,Sn and Dn be the cyclic group of order n, the symmetric group of degree n
and the dihedral group of order 2n. In Table 4,

G1 = H3(3) :4,
G2 = (C3×C3×C3)�S4,

where H3(3) :4 is the Heisenberg group extended by a group of order 4.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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