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ABSTRACT
In this work, we consider the advantages and challenges of using free-standing two-dimensional
electron gases (2DEG) as active components in atom chips for manipulating ultracold ensembles
of alkali atoms. We calculate trapping parameters achievable with typical high-mobility 2DEGs in
an atom chip configuration and identify advantages of this system for trapping atoms at sub-
micron distances from the atom chip. We show how the sensitivity of atomic gases to magnetic
field inhomogeneity can be exploited for controlling the atoms with quantum electronic devices
and, conversely, using the atoms to probe the structural and transport properties of semiconductor
devices.
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1. Introduction

Atom chip technology has become a mature engineering
tool for trapping, manipulating and controlling ultra-
cold atomic matter (1). Developed initially to address
neutral alkali atoms (2), atom chips now find applica-
tions in a number of platforms for quantum physics such
as trapped-ions (3), trapped-electrons (4) and ultracold
molecules (5). They are also emerging as promising tools
for manipulating antimatter (1). Advances in material
science and microfabrication techniques have allowed
the integration of a number of devices and materials into
the atom chip, opening the prospect of creating hybrid
quantum systems that exploit the complementary capa-
bilities of atomic matter waves and solid-state devices for
applications in quantum information processing, sensing
and metrology.

Such applications require short distances between the
trapped and trapping elements. However, atom-surface
proximity effects have restricted most atom chip exper-
iments to date to distances exceeding 1µm, with the
exception of sub-micron trapping achieved using evanes-
cent light fields (6, 7). The common use of metallic con-
ductors in atom chips have limited the miniaturization
of the potential landscape, since atomic ensembles
become disturbed by intense Johnson–Nyquist noise
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(8–11), strong atom-surface Casimir–Polder (CP) attrac-
tion (10) and defect-induced fluctuations in trapping
potentials (12–16). A number of proposals have been put
forward to overcome these issues (13, 17–19), drawing
tools from nanofabrication and low-frequency dressing
of atomic states. However, there is currently no single
approach that comprehensively overcomes all of these
difficulties.

The sensitivity of ultracold atoms to magnetic field
fluctuations has, conversely, been exploited to develop
atomic Bose–Einstein condensate (BEC)microscopy and
investigate the properties of the atom chip components
(20–22). The groundbreaking feature of BECmicroscopy
lies in its ability to sense static and AC magnetic fields,
combining high-sensitivity with high-spatial resolution
and single-shot imaging of large areas (20–25). Further
developing this technique will provide imaging access
to a number of physical phenomena observed in solid-
state devices (e.g. quantization of conductance, weak and
strong electronic localization), about which our current
knowledge usually derives from indirect transport mea-
surements (1, 26).

Here we consider atom chips that include conduct-
ing channels defined in high mobility two-dimensional
electron gases (2DEGs) in free-standing heterostructures
(26–28). A schematic diagram of such a hybrid atom chip
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is shown in Figure 1, where the central feature is a free-
standing heterostructure (blue), whose layered structure
is shown enlarged on the right. To demonstrate the ad-
vantages of using 2DEGs in atom chips, we focus on
two possible functions of this device. Firstly, we study
how the magnetic field generated by electric currents
in conductors patterned in a 2DEG can be used to trap
andmanipulate atomic BECs. Secondly, we examine how
BEC microscopy can provide us with information about
transport processes in 2DEGs.

We consider a typical free-standing δ-doped GaAs/
(AlGa)As heterostructure containing a high-mobility
2DEG, shown in Figure 1. For all calculations in this
work, we consider a 2DEG with a mean electron density
of n = 3.3 × 1015 m−2 and electron mobility of μ =
140m2V−1s−1 at liquid helium temperature (29), which
corresponds to a conductivity σ = enμ = 0.074 �−1.
Also, the plane of the 2DEG is separated from a layer of
ionized donors byd = 52.9nm.Details of themodel used
to calculate currents in the 2DEGare given inAppendices
1 and 2. We evaluate the performance of the 2DEG atom
chip by considering magnetic trapping of 87Rb in the
hyperfine state |F = 2,mF = 2〉.

Our numerical investigations suggest that this type
of atom chip has a number of advantages derived from
the flexibility of tailoring the transport properties of the
2DEG and, in particular, offers a favourable platform for
submicron trapping of atomicmatter waves and coupling
to quantum electronic devices.

2. Advantages of using 2DEGs in atom chips:
reduced spatial noise and long life-times

2DEGs in semiconductor heterostructures are essential
components of a major class of modern quantum elec-
tronic devices (30). In addition to being a superb test
bed for investigating fundamental physical phenomena,
2DEGs currently have important technological and in-
dustrial applications, including setting the international
standard of resistance and enabling high-mobility tran-
sistors for mobile communication devices. Despite their
transformative role in electronics, there has been little
discussion of creating hybrid quantum systems based on
current-carrying 2DEGs and near-surface-trapped ultra-
cold atomic matter (31–33). Here, we discuss the chal-
lenges and potential advantages that such hybrid systems
offer for manipulating atomic matter waves and in mate-
rials research.

Strong coupling between neutral ultra-cold atomic
matter and quantum electronic devices in an atom chip
architecture requires an atom-surface separation below
1µm, such that the atoms and material charge carriers
couple via their magnetic moments or dynamical electric

dipoles (34). However, achieving such small separation
requires a number of challenges to be overcome. Firstly,
at sub-micron distances, an intense atom-surface attrac-
tive Casimir–Polder force dominates, making it difficult
to create magnetic trapping potentials that prevent the
atom cloud from collapsing onto the chip surface (10,
28). Secondly, as the atoms get closer to a surface, their
coupling to the electromagnetic Johnson–Nyquist noise
produced by thermal motion of conduction electrons
becomes strong, leading to a reduction in the lifetime
of trappable atomic states (8, 10, 35). Finally, effects orig-
inating from fabrication defects of the atom chip compo-
nents magnify as the atom-surface separation is reduced
(13, 16), making it difficult to define and control smooth
atomic potential landscapes.

All of these challenges can be overcome using free-
standing atom chips containing 2DEGs, such as those
present in semiconducting heterostructures, doped SiN
ultrathin layers, or graphene sheets (27 , 28). These sys-
tems are favourable since their transport properties can
be statically or dynamically tuned by a number of exper-
imental tools, including tailored fabrication, active con-
trol of the operating temperature and partial illumina-
tion. Also, free-standing ultra-thin membranes will exert
only weak attractive forces on neighbouring atoms, due
to the significantly reduced volume of dielectric material
acting on the atoms (28, 35–37). Finally, the intrinsic low
electron density of 2DEGs greatly reduces the Johnson–
Nyquist noise in their immediate vicinity, from which
it follows that the lifetime of trappable atomic states at
submicron distances from typical 2DEGs can become of
the order of a few hundreds of seconds (see Section 2.1)
(11, 32).

Another advantage of using 2DEGs over the metallic
conductors usually employed in atom chips is the neg-
ligible magnetic field fluctuations resulting from surface
and edge irregularities, which are reduced due to the ex-
tremely thin nature of the 2DEG (∼15 nm thick) andhigh
accuracy of fabrication methods available for defining
conducting channels in 2DEGs (e.g. the typical resolu-
tion of ion implanting is ∼10 nm (38, 39)). In addition,
as shown below in section 2.2, irregular electronic flow
in a 2DEG can be controlled by imprinting a periodic
pattern in it via optical illumination (40), etching, or
ion-implanting the 2DEG (39). Such patterning results
in an exponential decay of the field inhomogeneity when
moving away from the 2DEG (32), with a decay length
equal to the period of the pattern. Thus, by imprinting a
submicron periodic pattern, the root-mean-square fluc-
tuations of the magnetic field can be up to 3 orders of
magnitude weaker near a 2DEG than in the vicinity of
metallic wires, at distances of ∼1µm (12, 41).



JOURNAL OF MODERN OPTICS 679

Figure 1. (Colour) Schematic diagram of a hybrid 2DEG-atom chip, showing a BEC (red) trapped in the vicinity of a free-standing
heterostructure containing a 2DEG (upper layered structure). The magnetic trapping potential can be produced either by current-
carrying metallic conductors (two of them shown as light brown slabs), by current-carrying channels defined in the 2DEG (Z-shaped
enclosed area in the 2DEG, bounded by the grey Z-shaped boundaries) or by a combination of the two. Metallic gates deposited on top
of the heterostructure’s uppermost layer (small light-yellow squares) control the current in the 2DEG channel. Magenta arrow represents
an applied magnetic field, Bext, with components Bbias (black arrow) and Boffset (green arrow), used to control the trap position and
tightness. Inset: Close up showing the layers of the heterostructure.

During operation, the 2DEG atom chip can develop a
non-uniform layer of surface-adsorbed atoms that pro-
duce stray electric fields affecting both the atomic ensem-
ble and the 2DEG (31, 42–44). Since alkali atoms, such
as 87Rb, have a lower electronegativity than GaAs, when
they are adsorbed they polarize due to the partial transfer
of their valence electron to the GaAs surface (31, 42, 43).
To eliminate such polarization effects, the GaAs could be
passivated, for example by coating it with a monolayer of
sulphur (45).

Collectively, the reduced Johnson–Nyquist noise,weak
atom-surface attraction, and routes to defining smooth
field distributions, make free-standing membranes with
2DEGs ideal for producing smooth near-surface mag-
netic trapswith long lifetimes, as required to create hybrid
cold-atom/quantum electronic systems and devices.

2.1. Life-times ofmagnetically trappable atomic
states near a 2DEG

In many atom chip configurations, the atomic potential
energy is defined by a magnetic field landscape produced
by microfabricated permanent magnets or current-
carrying conductors (46). Typically, this approach pro-
duces a confining potential for a subset of Zeeman split
states of the ground state manifold and, therefore, tran-
sitions between those states reduce the number of trapped
atoms.At short separations between the atomsandmacro-
scopic chip elements, transitions betweenhyperfine states
are enhanced by coupling to thermal electromagnetic
modes (in the formof Johnson–Nyquist noise) surround-
ing the atom chip structure.

The scale of this effect is characterized by the spectral
density of magnetic field fluctuations near the atom chip
surface, which depends on the chip material, geometry
and temperature (46, 47). In particular, transition rates
between Zeeman states near a thin layer of conducting
material, such as the 2DEG, depend on its conductiv-
ity, σ , and the atom-surface separation, z, according to
(8, 48):

�(z) = 9
64

nth + 1
τ0

(
c

ωfi

)3
μ0ωfiσ

1
z2
, (1)

whereωfi is the transition frequency (here determined by
the Zeeman splitting), nth is the thermal occupancy Bose
factor of electromagnetic modes with energy �ωfi, τ0 is
the lifetime of the atomic state in free space, c is the speed
of light and μ0 is the magnetic permittivity of vacuum.

InFigure 2we compare the lifetime, 1/�, of the atomic
state |F = 2,mF = 2〉of 87Rbnear threematerials: a high-
mobility 2DEG as specified in Section 1, a 10-nm thick
layer of copper at room temperature and a superconduct-
ing slab of niobium at T = 4.2K. In all three cases, the
Zeeman splitting frequency is set to ωfi/2π = 1MHz.
Note that the expected atomic lifetime above a 2DEG is
much larger than above a copper layer of similar thick-
ness (10 nm). This is because the small conductivity and
quasi-two dimensional character of the 2DEG makes its
electromagnetic noise spectrum significantly weaker.

For comparison, the lifetime of atomic states above a
superconducting slab of niobium can be estimated using
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Figure 2. (Colour) Lifetime, 1/�, calculated for the hyperfine
ground state |F = 2,mF = 2〉 of 87Rb above a 2DEG (solid/red
curve), a 10 nm thick layer of copper (short-dashed/black curve)
and a thick slab of superconducting niobium (dashed/blue curve).

Equation (9) of (49):

�SC(z) = 1
τ0

(nth + 1)

[
1 + 2

(
3
4

)3 (
c

ωfi

)3 λ3L(T)

δ(T)2
1
z4

]
,

(2)
whereλL is the Londonpenetration length and δ(T) is the
temperature-dependent skindepth of normal conducting
electrons. It has been shown in (49) that the efficient
screening properties of superconducting materials make
the life-time decay with a higher power of the distance
comparedwith normalmetallicmaterials. Figure 2 shows
that the lifetime near a 2DEG is about four times shorter
than near the superconducting surface at atom-surface
separations of z ≈ 1µm. This trend reverses when these
two length scales are comparable and the stronger vari-
ation of � with z for the superconducting case (1/z4 vs.
1/z2) dominates the atomic lifetime. Consequently, the
lifetime near the 2DEG exceeds that for the supercon-
ducting slab when z ≤ 0.5µm, making the 2DEG more
favourable for submicron trapping.

2.2. Control of inhomogeneity in 2DEGs

Very early in the development of atom chip technology,
magnetic field inhomogeneity was identified as responsi-
ble for the spatial fragmentation of ultracold atomic en-
sembles trapped in the vicinity of current-carrying con-
ductors (14, 16, 21, 50). This is because the electric cur-
rent produces magnetic field fluctuations that originate
from the meandering of the trajectories of free-charges.
In the metallic conductors used in atom chips, material
defects and edge imperfections cause modulation of the
magnetic field produced when an electric current flows
(12–14, 16). Governed by the Biot–Savart law, suchmod-
ulations of the magnetic field increase as the distance to

the conductor decreases, becoming the dominant feature
of the magnetic field profile at separations of the order of
the length scale of the imperfection (12, 14, 16).

In the case of 2DEGs in semiconductor heterostruc-
tures, the main source of defects that affect electronic
transport is the electrostatic interaction between the elec-
trons and ionized donors (see inset of Figure 1). In δ-
dopedheterostructures, the ionizeddonors aredistributed
in a thin layer (red layer in Figure 1) separated from the
2DEG by d ∼10 nm–100 nm. The ionized donor density
profile has a mean density similar to the charge carrier
density in the 2DEG and spatial-fluctuations
nd(x, y, z = −d), where z = 0 defines the 2DEG plane.
This inhomogeneous distribution of ions creates an elec-
trostatic potential energy landscape for the electrons in
the 2DEG,
(x, y), which disturbs their trajectories when
a uniform electric field is applied in the plane of the
2DEG. The resulting perturbed trajectories of electrons
in high-mobility 2DEGs can be calculated using a lin-
ear screening approximation to calculate 
(x, y), as we
explain in Appendix 1.

The inhomogeneity of the magnetic field produced
when a small current flows in a 2DEG is determined by
the density–density correlation of the donor distribution
(see Appendix 1) (40, 51). Semiconducting heterostruc-
tures offer the opportunity to manipulate the donor dis-
tribution in several ways, including thermal cycling, sam-
ple illumination and ion-implanting. Such manipulation
enables reduction of the inhomogeneity intrinsic to a
random distribution of donors. In particular, periodic
modulation of the donor density leads to an exponential
suppression of the high-spatial frequency components of
the current and the corresponding field inhomogeneity
(32).

As a quantitative example of this control of field in-
homogeneity, in Figure 3, we plot the root-mean-square
(rms) amplitude of the magnetic field fluctuations, Brms

x
(z), as a function of the distance z normal to the 2DEG
plane (z = 0) with typical experimental parameters.
In particular, for these calculations, we consider a DC
current density j = 100Am−1 passing through a 2DEG
ofmean electrondensityn = 3.3×1015 m−2 andmobility
of μ = 140m2V−1s−1. The dashed blue curve shows
Brms
x calculated for an isotropic random distribution of

donors, which produces an electric potential landscape,

(x, y), shown in the right inset in Figure 3. The solid
red curve shows Brms

x (z) calculated for a patterned 2DEG
produced by periodic spatial modulation of the ionized
donor density with a period of 200 nm along the y direc-
tion. The corresponding electric potential landscape in
the plane of the 2DEG is shown in the left inset of Figure 3.
For comparison with standard metallic conductors, we
also calculate the corresponding Brms

x (z) curve for field
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Figure 3. (Colour) Brms
x (z) calculated above a current-carrying

2DEG with spatially random (dashed/blue curve) and periodically
modulated (solid/red curve, modulation period λ = 200 nm)
ionized donor profiles in the x − y plane (right- and left-hand
insets respectively, which show the potential landscape in the
plane of the 2DEG). Black/short-dashed curve: Brms

x (z) produced
by edge and surface inhomogeneity above a metal wire of width
W = 3µmcarrying a current I = 035mA, assuming imperfection
with white spectral noise and a typical grain size of 80 nm (41).
The 2DEG has a mean electron density n = 3.3 × 1015 m−2,
mobility of μ = 140m2V−1s−1 and is separated from the donor
layer by d = 52.9 nm.

fluctuations produced by edge imperfections in a metal
wire (with white spectral noise and grain size of 80 nm,
(16)), taking a wire of width W = 3µm and thickness
t = 1µm, carrying a current I = 0.36mA (black/short-
dashed curve) (12, 16).

As shown in Appendix 2, near a 2DEG produced by
ionized donors with an isotropic spatially random distri-
bution, Brms

x (z) ∝ 1
(z+d2) [see Equation (B3)], where d is

the distance between the 2DEG and the layer of ionized
donors. This variation (dashed/blue curve in Figure 3)
lies below the field fluctuations produced by the metal
wire (short-dashed/black curve in Figure 3) for all z in
Figure 3 (13). Periodic modulation of the 2DEG pro-
duces exponential suppression of the field fluctuations,
Brms
x (z) ∝ exp ( − 2k0(z + d)) where k0 = 2π/λ is

determined by the modulation period λ [see Equation
(B5)]. For the value of λ = 200 nm, corresponding to
illumination by an optical standing wave, the field fluctu-
ations (red curve in Figure 3) are six orders of magnitude
lower than for the unpatterned 2DEG at z = 0.8µm.
Smaller periods of a few 10s of nm can be produced by
electron-beam lithography, making the field fluctuations
negligible beyond 100nm from the 2DEG.

The flexibility of modulating the donor distribution
allows us to strongly reduce the spatial inhomogeneity of
magnetic fields produced by electric currents in 2DEGs.
In turn, this enhances the quality of the trapping potential
(see section 3) and helps us to reach operational regimes

that are inaccessible with standard atom chip platforms,
in particular, to produce smooth and tight trapping po-
tential located at submicron distances from the 2DEG.

3. Trapping and control of BECs with a 2DEG
atom chip

We now turn our attention to the use of conducting
channels defined in a 2DEG for near-surface trapping
and control of ultracold atomic ensembles, as shown in
Figure 1. We consider conducting channels defined and
enclosed by insulating regions (grey in Figure 1) made by
implanting Ga ions into the heterojunction or by etching
it (38, 39). The general idea is that controlled currents
through such structures influence the behaviour of neigh-
bouring ultracold atoms.Metal contacts deposited on top
of the cap layer of the heterostructure provide control
over the shape of the channels and current distribution,
via the voltages applied to them.

At short atom-surface separations, the nearby surface
can compromise the quality and stability of magnetic
traps (10, 35, 41). In Section 3.2, we quantify these effects
for the case of a free-standing semiconducting hetero-
junctions containing a 2DEG.

3.1. Properties of amagnetic microtrap using a
2DEG conducting channel

To evaluate the ability of 2DEGs to create magnetic traps
for ensembles of cold alkali atoms, we consider a single-
wiremicrotrap configurationwith aflat conducting chan-
nel of width W defined in the 2DEG. For simplicity,
we first ignore the effects of atom-surface attraction and
evaluate the trapping parameters for typical operating
conditions of free-standing heterojunctions.

In our scheme, we considermagnetic trapping of 87Rb
in the state |F = 2,mF = 2〉. The trap comprises themag-
netic fieldproducedby a current-carryingZ-shaped chan-
nel defined in the 2DEG bounded by the two Z-shaped
grey insulating regions fabricated in the 2DEG in Figure
1, combined with an uniform magnetic field Bext =
(Bx ,By ,Bz), represented by the magenta arrow in Figure
1. This external field can be produced either by exter-
nal coils or additional on-chip conductors. The position
of the trap is controlled by the component of Bext or-
thogonal to the central section of the 2DEG Z-shaped
channel, which is Bbias = (0,By ,Bz). The component of
Bext parallel to the mean current flow in the wire [here
Boffset = (Bx , 0, 0)] provides control over the tightness
of the trap and helps to reduce the rate of spin-flip losses
(see Section 2.1 and (52)).

In this single-wire microtrap, the intensity and length
scale of variations of the magnetic field are set by the
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current density in the conductor, j , and the conductor’s
width,W , respectively. It is convenient to scale the mag-
netic field by its value at the surface of the conductor,
Bs = μ0| j |/2, and define a corresponding energy scale
Es := gFμBmFBs. A frequency scale (or, equivalently, a
time scale) is conveniently defined by ν0 := 1

2π

√
Es

mW2 ,
wherem is the mass of the trapped atom (53).

We characterise the quality of amagnetic trap neglect-
ing the effect of gravitational attraction. The height of the
energybarrier to thenearest surfacedefines the trapdepth
(i.e. the uppermost layer of the heterostructure) and the
trap frequency, νz , is defined as the curvature of the
potential energy at the point of mechanical equilibrium
along the direction transverse to the plane of the 2DEG
(46). These two quantities are functions of the ratios
|Bbias|/Bs and |Boffset|/Bs multiplied by corresponding
scaling factors (46, 53). Figure 4 shows the properties
of a single-wire micro-trap setup, using the scaling units
defined above, which allows us to quickly estimate the
values we can obtain in typical atom chip setups.

Figure 4(a) shows the potential energy landscape in
the y−z plane normal to the central arm of the Z-shaped
2DEG conducting channel (whose cross-section is shown
as a blue rectangle at the bottom of the figure), for the
case of a bias field adjusted to produce a trap at distance
z = W (central black area), where the colour palette
indicates the potential energy in units of Es. Figure 4(b)
shows the variation of the trap minimum relative to the
2DEG plane (z = 0) vs. the magnitude of the applied
bias field, Bbias, along with a few numerical values for
the case of a conductor of widthW = 20µm, indicating
the ratios of Bbias/Bs required to locate the trap centre at
z = 1µm, 3µm, 5µm and 10µm. Note that as the bias
field increases, the trap centre moves towards the chip
surface at z = 0. Figures 4(c) and (d), show the trap depth
and frequency, respectively, as functions of the scaled bias
and offset fields. For a fixed value of the offset field and
increasing bias field, the trap depth reduces despite the
trap frequency becoming larger. This behaviour results
from the displacement of the trap centre towards the
2DEG surface (z = 0) as the bias field increases. In
contrast, for a fixed bias field (or, equivalently, a fixed trap
position) the trap depth and frequency both reduce as the
offset field increases, which follows from the weakening
of the trap.

The depth and frequency of the trap are determined
by a combination of geometrical factors (e.g. the shape
and dimensions of the conductor) and the strength of
the magnetic field produced by the current through the
chip. For the single-wire magnetic trap, the intensity of
the magnetic field is limited by the peak current density,
jmax, supported by the conductor. In addition, the power

Table 1. Set of parameters for a 2DEG-based single-wiremagnetic
microtrap for cold atoms, comprising a Z-shaped wire of width
W = 20µm defined in a 2DEG with an electron mean density
of n = 3.3 × 1015 m2 and mobility μ = 140m2V−1s−1. For all
cases, the current density is j = 300 A/m (corresponding to the
total current I = 6mA) and the offset field is Boffset = 0.2 G. As
before, 87Rb in the |F = 2,mF = 2〉 state is considered.
Bbias (G) z0(µm) νz (kHz) depth (µK)

1.54 3.0 3.27 15.2
1.33 5.0 2.85 27.9
0.94 10.0 1.78 50.6

dissipated by the elements in the chip should be small
enough to ensure that thermal damage is avoided. This
last condition can be satisfied easily when the conductors
operate in a regime of large conductivity, which is one
of the reasons why metals have so far been the preferred
material for magnetic micro-traps.

High-mobility 2DEGs reach their peak conductivity
at cryogenic temperatures. Typically, they can sustain
currents dissipating a power of a few 106 W m−2, cor-
responding to peak current densities of jmax ∼ 300 A
m−1 (54). This value sets the scale of the magnetic fields
to Bs � 1.89 G and the energy scale to Es � 126.6µK
(for 87Rb). Using a channel width W = 20µm, the fre-
quency scale corresponds to ν0 � 914 Hz. These simple
considerations allow us to identify sets of parameters
that produce magnetic traps with properties similar to
those commonly used in magnetic trapping experiments
(triangles in Figure 4(b)) (13, 25), with some specific
examples in Table 1.

Our results indicate that current-carrying conducting
channels in 2DEGs can definemagnetic traps with spatial
frequencies in the kHz range, requiring offset fields of a
few hundredmG. Such control of magnetic field strength
can be achieved using chip configurations with a num-
ber of different conducting channels, as demonstrated
in (13, 55, 56). Larger trap frequencies and depths will
be produced by thinner conductors, making accessible
trapping temperatures in the range of 1µKat the shortest
distances. Note also that in this example, the atom chip
should be cooled to liquid helium temperatures and thus
presents similar challenges to recently developed super-
conducting atom chips (22, 57–59).

3.2. Casimir–Polder attraction in amagnetic
microtrapwith a free-standing 2DEG

The above discussion suggests that 2DEGs can create
near-surface magnetic microtraps with properties that
allow coupling between atomic degrees of freedom and
quantum electronic devices fabricated within the chip.
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Figure 4. (Colour) Properties of a single-wire magnetic microtrap as functions of the components of an external magnetic field
B ext = Bbias + Boffset (see text). (a) Contour plots of scaled potential energy for the single-wire microtrap configuration. Here,
Boffset = 0 and the conductor is shown schematically (in cross section) as a blue rectangle. Energy contours are equally spaced by
0.0375Es. Colour scale right is in units of Es . The bias field is set to produce a potential energy minimum at z/W ∼ 1. (b) Vertical position
of the trap z, scaled to W , calculated as a function of the scaled bias field (Bbias/Bs). Triangles indicate the magnetic field ratio needed
to produce traps centred at the indicated distances, with a conductor of widthW = 20µm. (c) Contour plots of the scaled trap depth,
�E(Bbias/Bs , Boffset/Bs), as a function of the scaled bias and offset fields. Contours are separated by 0.05Es (colour scale right in units of
Es). (d) Contour plot of the scaled trap frequency along a direction transverse to the plane of the wire, as a function of the scale bias and
offset fields. Contours are separated by 0.5ν0 (colour scale right in units of ν0).

Long lifetimes of the trapped atomic states are expected
and the roughness of the magnetic field produced by the
2DEG can be reduced by periodic modulation of the ion-
ized donor distribution. This allows us to prepare strong
and smooth trapping configurations to store atoms at
submicron distances from the atom chip (see Figures 3
and 4), where the atoms can directly couple to charge
carriers of semiconducting devices (32, 34).

At submicron atom-surface distances, the Casimir–
Polder (CP) attraction between the surface and the atoms
can no longer be ignored (10). CP attraction, however,
should be weak for suspended semiconductor
membranes of thickness ≤ 10µm, such as ultrathin het-
erostructures containing a 2DEG, ultrathin SiN and
graphene sheets.

The attractive CP potential, VCP(z), can be calculated
using Equations (25)–(29) of Ref. (36), which are valid at
any vertical distance z from a uniform dielectric slab. For
the present case, VCP(z) is determined by the coefficient

C4 = 2×10−54 Jm4 forRbatomsnearGaAs (36). To eval-
uate the impact of this strongly attractive potential on the
quality of the 2DEG-based trap described in Section 3.1,
we consider aZ-shaped 2DEGchannel ofwidth 3µmand
central arm length of 60µm, carrying a current density
j = 118Am−1, corresponding to a current I = 0.35mA.
The solid curve in Figure 5(a) shows the total potential
energy V(z) = Vm(z) + VCP(z) calculated for 87Rb
atoms in the state |F = 2,mF = 2〉 of the ground state
manifold,whereVm(z)originates from themagnetic field
produced by the current through the 2DEG channel and
an applied field Bext = (40, 536, 0) mG. In this case,
the CP attraction is overcome by the magnetic potential
and the trap is deep enough to confine a small ultra-
cold ensemble of atoms, for example a BEC comprising
500 87Rb atoms in the hyperfine state |F = 2,mF = 2〉,
whose chemical potential (horizontal line in Figure 5) is
far below the top of the energy barrier nearest the chip
surface.
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Figure 5. (Colour) Total potential energy, V = Vm + VCP,
(red/solid curve) calculated as a function of z for the ground state
|F = 2,mF = 2〉 of 87Rb. Blue/dashed line: chemical potential of a
trapped BEC with 500 atoms of 87Rb in the state |F = 2,mF = 2〉.
Themagnetic potential, Vm, is created by combining themagnetic
field produced by a Z-shaped conductor of width W = 3µm
carrying a current density of j = 118 A m−1 (i.e. I = 0.35mA)
with an external homogeneous field Bext = (40, 536, 0)mG. The
Casimir–Polder contribution, VCP, is calculated following (36).

3.3. Effect of quantized electronic atom chip
conductance on the density profile of a nearby BEC

Near-surface trapping makes the atomic gas highly sen-
sitive to magnetic field variations arising from the geom-
etry of the conducting channels, including local narrow-
ing. As an example, suppose that the magnetic fields of
the trapping configuration explained above are adjusted
to place the BEC across the middle arm of a U-shaped
channel, fabricated next to the Z-shaped trapping chan-
nel, as shown schematically in Figure 6.

When a small current is passed through the U-shaped
conductor (IQPC ≈ 5µA), the potential energy of the
atoms in the BEC rises directly above the channel. The
corresponding reduction of the BEC’s local density there-
fore sensitively reflects the conducting state of the chan-
nel, even to the level of registering discrete changes of
the channel conductance (see Figure 6). Quantized steps
in the channel conductance can be swept through by
changing a negative voltage applied tometal surface gates
(pinching gates in Figure 6) positioned either side of
the arms of the U-shaped conductor in the 2DEG. This
negative voltage will produce a local narrowing of the
arm, which can support an integer number of prop-
agating electronic modes contributing to the channel
transport (26). As the voltage is made more negative,
the number of propagatingmodes decreases until the last
one is depopulated and the conductor channel is pinched
off.

Figure 6. (Colour) Sequence for controlled splitting of a BEC
via opening a quantized conductance channel in a U-shaped
2DEG conductor (towards the far right region of the blue plane),
bounded by the grey insulating lines fabricated in the 2DEG. The
conductance of the U channel is controlled by a negative voltage
applied to two pinching gates pinching gates, one located at
each side of one of the channel arms. (a) A BEC (red) is trapped
by a magnetic trap made by a current-carrying Z-shaped 2DEG
conductor defined on a 2DEG and an external magnetic field
(magenta arrow) that provides the bias and offset fields. (b) The
BEC is moved above the middle arm of a U-shaped conductor by
adjusting the current in the Z channel (via the voltage V) and
tilting the external magnetic field. The vertical position of the trap
centre is adjusted to z = 0.7µm. The voltage applied to the
two surface pinching gates (blue patches near the upper-right
corner of the 2DEG plane) is negative enough to depopulate all
conduction channels, preventing current through the U-shaped
channel. (c) Reducing the magnitude of the negative voltage
applied to the pinching gates (i.e. −V < 0 → −V = 0, as
indicated by changing the colour of the pinching gates from blue
to orange), one quantized conduction channel in the U conductor
is opened to let current flow. The small local magnetic field
created by this current splits the BEC. The shadow of the BEC
over the chip surface is added to guide the eye.
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Figure 7. (Colour) Red/solid curve: Calculated total potential energy along the x−axis of a quasi 1D BEC trapped at z = 0.7µm above
the centre of the Z-shaped 2DEG conductor (Figure 6). The inhomogeneity reflects a residual meandering of the currents in the 2DEG
with a periodic pattern of period 200 nm. Short-dashed (black) and dashed (blue) curves: atom density profiles, n(x) of the BEC above
the U-shaped conductor in Figure 6 with N = 0 and N = 1 open quantized conductance channels, respectively.

In Figure 7, we present a quantitative example of this
splitting mechanism, comparing the 1D density profiles
of the atom cloud for two distinct conducting states of a
U-shaped channel. The trapping potential has a residual
inhomogeneity due to the meandering of the currents in
the 2DEG, which are strongly suppressed by assuming
a periodic pattern of period 200 nm (see Section 2.2).
The short-dashed/black curve in Figure 7 shows the 1D
density profile,1 n(x), of the BEC when the number of
open channels in the depletion region of the U-shaped
channel is N = 0. Since there cannot be current flow
in this case, n(x) is just the unperturbed ground state
density profile of the trapping potential shown by the
solid/red curve in Figure 7. Opening a single quantized
conduction channel (N = 1) in the U-shaped conductor
changes the trap profile sufficiently to almost completely
split the BEC [dashed/blue curve in Figure 7]. Thus, even
the smallest quantized changes of the conductance can
either be detected using the BEC or actively used for
manipulating the atom density profile.

4. BECmagnetometry of a 2DEG

The transport properties of semiconductor devices de-
pend strongly on the spatial distribution of their con-
stituent materials at both long-range and atomic scales.
As extreme situations, we have fully ballistic transport for
perfect crystalline structures and, in contrast, diffusive
transport in media with high defect density. In recent
years, by bringing ensembles of alkali atoms close to mi-
crofabricated electronic devices, BECmagnetometry (21)
and microwave atomic scanning (60, 61) have opened
opportunities for investigating electron transport phe-
nomena with unprecedented spatio-temporal resolution.

Thanks to the sensitivity of the atom cloud’s dynamics to
external fields, and modern high-precision knowledge of
the atomic structure, these developmentsmake it possible
to relate spatial inhomogeneity in the optical images of
atomic ensembles directly to the electronic properties of
the solid-state device under study (21, 25, 61).

In this section, we consider what BEC magnetome-
try can tell us about the structure of a semiconductor
heterostructure containing a 2DEG. In such devices, the
electron mobility is influenced by the spatial distribution
of the dopants that provide the charges carriers (here
electrons) in the 2DEG. In typical GaAs/(AlGa)As het-
erostructures, Si donors are confined to a thin layer (δ-
doping) located at z = −52.9 nm from the 2DEG plane.
The ionized Si atoms in the heterostructure δ−doping
layer create an inhomogeneous electrostatic potential
landscape for electrons in the 2DEG [Figure 8(a)], and,
thereby limit its transport quality (62). Generally, the
statistical properties of the donor distribution are hard
to measure directly without strongly perturbing the de-
vice (e.g. using a scanning tunnelling microscope (63)).
However, BEC magnetometry offers to overcome this
challenge by mapping the inhomogeneity of the mag-
netic field created when a small electric current passes
through the 2DEG (40, 63–66). Moreover, the magnetic
field profile provides direct information about the po-
tential energy landscape in the 2DEG plane and of the
underlying ionized donor distribution.

In the 2DEG, the inhomogeneous electronic poten-
tial energy landscape, 
(x, y), created by the ionized
donors, disturbs the rectilinear trajectories that would
follow under the action of a uniform electric field. Typical
current stream lines are shown in Figure 8(a), calculated
for a uniform electric field of 1.6 × 103 V m−1 applied
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along the x direction in the plane of the 2DEG. The
features of the magnetic field fluctuations created by this
current smooth out as the distance from the 2DEG plane
increases, as shown in Figure 8(b) and (c) (32).With BEC
magnetometry, such field fluctuations can be mapped by
scanning the y positionof a quasi-1DBECstretched along
the x axis, and, for each y value, measuring its density ,
n(x), along the x-direction (21).

To quantify this idea, we calculate the atomic den-
sity of a needle-like atomic BEC confined in a mag-
netic trap with trapping angular frequencies in the ra-
tio ω⊥ : ωx = 100 : 1, where ω⊥ (ωx) is the radial
(axial) trapping frequency in the y − z plane (x direc-
tion). The BEC comprises 104 87Rb atoms in hyperfine
ground Zeeman state |F = 2,mF = 2〉 and is positioned
at several distances, z, from a current-carrying 2DEG (see
Figure 1). The BEC density modulationsmirror themag-
netic field fluctuations created by the current in the 2DEG
[Figure 8(b)–(d)]. By confining the BEC strongly along
the y and z directions, the atom density profiles are sensi-

tive only tofluctuations in thefield componentBx(x, y, z),
producedby the y-component of the current in the 2DEG.
Within the Thomas–Fermi approximation, along the
length of the BEC, which is parallel to the x−axis, the
magnetic field and atom density fluctuations are related
by (20):

Bx(x, 0, z) = −2�ω⊥as�n(x, 0, z)/(mFgFμB), (3)

where as is the s-wave atomic scattering length, gF is the
Landé g-factor and μB is the Bohr magneton.

Figure 9 shows the 1D density profile of an elongated
BEC trapped at z0 = 1µm, 3µm and 5µm from a
current-carrying 2DEG. Insets (a)–(c), respectively, show
enlargements of the central region and variations of the
atom density relative to its value in a trap without inho-
mogeneity. Typical density modulations are ≈ 20% of
the atom density at z = 1µm [Figure 9(a)], falling below
the present detection limit (≈ 10%) at z ≈ 5µm [Figure
9(c)] (13).
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Figure 10. (Colour) Reconstruction of current density profiles in 2DEG using BEC magnetometry. (a) Low-resolution image calculate
for the current density in a 2DEG, (b) Simulation of the resulting magnetic field profile in the plane z = 1µm measured by BEC
magnetometry (c) current density profile reconstructed from deconvolution of the magnetic field distribution in panel (b).

Since the current density is confined to a 2D plane,
the x-component of the magnetic field component, Bx ,
and the y-component of the current density component,
jy , have a simple relation in terms of Fourier transforms
(20, 24):

Bx(x, y, z0) = μ0

4

∫
kye−kz0ei(kxx+kyy)

×
(

1
4π2

∫
jy(x′, y′)e−i(kxx′+kyy′)dx′dy′

)
dkxdky ,

(4)

where k = (k2x+k2y)1/2. This relation enables us to recon-
struct the total current distribution in the 2DEG plane by
deconvolution of the atomic density profiles measured
at different positions in the z plane (21). Note that, due
to the exponential suppression of the spatial frequency
components of jy in Equation (4), z becomes themaximal
spatial resolution for which the current density can be
calculated accurately from measurements of the atomic
density.

We reconstructed the current density profile by in-
verting Equation (4) (i.e. performing a numerical decon-
volution) for the magnetic field landscape at a distance of
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z = 1µm. To simulate an experimental run, we proceed
as follows: we calculate the current profile over an area of
200µm×200µmof the 2DEGwith a spatial resolution of
0.1µm. Using the Biot–Savart law, this current distribu-
tion is used to calculate the magnetic field over an area of
20µm×20µm with a resolution of 0.8µm in the plane
z = 1µm, shown in Figure 10(b). This magnetic field
profile simulates data obtained by BEC microscopy. The
current distribution is then reconstructed by inverting
Equation (4) using the calculate magnetic field profile.
The reconstructed current profile in Figure 10(c) should
be compared with a low-resolution image of the original
current distribution in Figure 10(a).

Note that features with characteristic lengths larger
than z ≈ 1µm appear in both panels (a) and (c) in
Figure 10. The Pearson correlation coefficient between
the data shown in panels (a) and (c) is corr= 0.7, in-
dicating a high degree of (at least) linear dependence
between the two panels (67). The same procedure applied
to the magnetic field distribution at z = 3µm and 5µm
produces current distributions (not shown) that resemble
the original distribution with a coarser resolution, due to
exponential decay of high-spatial frequency components
of the magnetic field in Equation (4) (20).

The electric potential landscape in the 2DEG,
(x, y),
can be calculated combining the reconstructed current
with the charge conservation law. Since the distribution
of ionized donors located below the 2DEG, n(x, y,−d),
determines 
(x, y) (see Appendix 1), detection of mag-
netic field profiles enables us to calculate n(x, y,−d),
avoiding the strong local perturbations of the 2DEG used
by other techniques (24, 25, 63).

5. Summary

We have presented a theoretical analysis of atom chip
configurations attainable using free-standing 2DEG het-
erojunctions. In particular, we considered two comple-
mentary aspects: trapping of atomic clouds by the atom
chip and, conversely, the use of the atoms to probe the
structure and function of the chip.

We have quantified the advantages of using 2DEGs,
rather than metals, as the trapping conductors in atom
chips, specifically reduced atom loss rates, the ability
to tailor the magnetic field inhomogeneity by manip-
ulating the donor distribution, and weak atom-surface
attraction. All of these advantages will help to achieve
coupling between quantum electronic devices and the
centre of mass and internal state degrees of freedom of
near-surface-trapped atoms. Fabrication advantages can
also be envisaged since additional quantum electronic
devices, such as quantum dots, can be incorporated in
the atom chip within the same production process.

Once the limiting factors to reduce the atom-surface
distance are overcome, tiny currents in the chip can pro-
duce significant changes in the atom cloud’s density.
This paves the way to developing more complex appli-
cations where solid-state devices are coupled to trapped
atoms in their neighbourhood (33). For example, single-
electron transistors (SETs) may be switched by the pres-
ence/absence of an atom, excited atoms may couple to
electrons in 2DEGs tomodify their dynamics, and atomic
Rydberg states may trigger Coulomb blockade in SETs.

Our work also suggests that current advances in BEC
magnetometry techniques can provide new insights into
the structural and functional properties of semiconductor
devices and so contribute to improving their transport
properties (64–66). At the moment, BEC microscopy
can probe long-range structural features, which strongly
affect electron transport in ultra-high mobility 2DEGs
(51, 62, 68), and produce single-shot snapshots of time-
dependent donor distributions.We foresee that improve-
ments in the resolution and sensitivity of this technique
may allow the direct visualization of many other static
and dynamical phenomena including Anderson localiza-
tion, conductor-insulating transitions and electron
Wigner-crystals. Non-invasive BEC microscopy has re-
cently revealed striking long-range patterns in the classi-
cal current flow throughmetals (25) andmayyield similar
surprises in other materials including, e.g. spin transport
in ferromagnetic semiconductors, with the advantage of
leaving the system under scrutiny unperturbed (69).

Notes

1. The 1D density is produced by integrating the 3D den-
sity over the transverse cross-section.
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Appendix 1. Current flow in high-mobility
2DEGs

We consider a GaAs/(AlGa)As heterojunction with layer structure
as shown in Figure 1. A 2DEG (blue layer) is formed by electrons
from donors in a Si δ-doping layer (red), which migrate into the
GaAs and populate the ground state of an almost triangular poten-
tial well formed at the GaAs/(AlGa)As interface. This confines the
electrons in a narrow (∼ 15nm thick) sheet and leaves them free to
move in a plane parallel to the GaAs/(AlGa)As interface (29). The
heterojunction contains a layer of ionized donors of mean density
n = 3.3 × 1015 m−2, which is located at a distance d = 52.9 nm
from a 2DEG with the same density (Figure A1) (29). The 2DEG
is 20 nm below the bottom surface of the heterojunction and its
mobility is μ = 140 m2V−1s−1. To operate in the high electron
mobility regime, the heterojunction must be kept at a temperature
around ∼ 4.2 K, similar to that of a superconducting atom chip
(57 , 58).

The motion of electrons in the 2DEG is affected by the back-
ground layer of ionized donors, whose distribution depends on
factors like the fabrication process, illumination and thermal his-
tory (30, 40). In the high-mobility regime, the electron mean free
path, i.e. the average distance travelled by an electron before being
scattered by an impurity or defect, can be much larger than the
characteristic length scale of the inhomogeneities in the potential
landscape, through which the electron moves, which originate
fromnon-uniformity of the ionized donors (64, 66, 70). In δ-doped
heterojunctions, the distance between the donors and the 2DEG
planes determines the length scale of the potential fluctuations,
since features with smaller characteristic lengths are exponentially
suppressed (see Equation (A2)) (24).

Provided that the 2DEG is within an electric field, E0, which
is large enough to create current streamlines that are only weakly
perturbed by the potential fluctuations, the current flow and the
potential landscape are related by Ohm’s law:

j(x, y) = σE0 x̂ + σ∇2D
(x, y), (A1)

where σ = neμ is the mean 2DEG conductivity and 
(x, y) is the
electrostatic potential experienced by an electron in the 2DEG. In

the Thomas–Fermi screening model (29), 
(x, y) is given by:


(x, y) = e2

4πεε0

∫
e−kd �n(k)ei(kxx+kyy)

k + ks
d2k (A2)

where k = (kx , ky), k = |k|, �n(k) is the 2D Fourier trans-
form of the spatial ionized donor density fluctuations from the
mean, �n(x, y), ε = 12.9 is the relative permittivity of GaAs, and
the screening wave vector, ks = e2m∗/(2εε0π�

2), depends on
the electron effective mass, m∗ (29, 71). Figures A1(a) and (b),
respectively, show a typical ionized donor distribution and the
corresponding electrostatic potential energy, 
(x, y), of a 2DEG
with mean density n = 3.3 × 1015 m2 and ks = 2.1 × 108 m−1.

Appendix 2. Magnetic field produced by
currents in a 2DEG

The model presented in Appendix 1 focuses on the effects of
inhomogeneity of the ionized donor distribution on the current
flow in high-mobility 2DEGs. In turn, the characteristics of the
magnetic field produced by such a flow, such as its rms amplitude
and characteristic length scale, can also be related to the donor
distribution. Figure 8(a) shows a typical potential energy landscape
calculated for an electron in the 2DEG, including current stream
lines (black). Figures 8(b)–(d), respectively, show the correspond-
ing variation of Bx(r , z) in the z = 1µm, 3µm and 5µm planes
parallel to the 2DEG. Note that these magnetic field fluctuations
are independent of the electric field applied to the 2DEG, provided
that this electric field is large enough to create current streamlines
that are only weakly perturbed by the potential energy fluctuations

At distances from the 2DEG larger than the correlation length
of the donor distribution (∼ 10 nm), the length scale of variations
in the magnetic field landscape is dominated by the distance, z,
from the 2DEG (20). Understanding the variation of the magnetic
field landscape with this distance is crucial for designing devices
that couple the 2DEG tonearby atoms.Here,we evaluate the spatial
average of the component of the magnetic field, Bx , parallel to the
mean electronflow,which canbemeasured viaBECmagnetometry
(20, 21) and is given by:

(Brms
x (z))2 =

(
μ0σ e
4εε0

)2 ∫ ∫
d2kd2k′ kyk

′
y
〈
�n(k)�n(k′)

〉
(k + ks)(k′ + ks)

× e−(k+k′)(d+z)

× ei(kx+k′
x)x . (B1)

Equation (B1) is a key result, it shows us that the Brms
x depen-

dence with z is shaped by the correlation function of the ionized
donor density. This enables us to reduce the amplitude of Brms

x
by tailoring the donor statistics, which can be achieved by thermal
cycling, etching, ion deposition or illuminating the heterojunc-
tion (40). In this last case, the ionized donor distribution can
be permanently altered and patterned by transiently illuminating
the device with a laser standing wave. Such static and dynamical
control of local carrier density does not exist for metallic current-
carrying conductors whose geometric and material-related field
inhomogeneity can only be reduced by continuously applied time-
dependent external fields (19).

In general, semiconductor fabrication procedures (e.g. molec-
ular beam epitaxy) produce homogeneous and isotropic donor
distributions, whose correlation function depends only on the
relative distance between two points, |r − r ′|. Correspondingly, in
Fourier space, S(k, k′) is proportional to δ(k + kx), which means
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Figure A1. (Colour) (a) Typical random distribution of ionized donor density calculated in the plane of the δ−doping layer, with donor
density n = 3.3 × 1015 m2, (b) Corresponding screened electrostatic potential energy of an electron in the 2DEG layer, located at a
distance d = 52.9 nm. Scales shown right.

that equation (B1) reduces to:

(Brms
x (z0))2 =

(
μ0σ e
4εε0

)2 < �n2 >
(2π)2

πk2s

×
∫

dk̃k̃3
1

(k̃ + 1)2
e−2k̃(d+z)ks , (B2)

where k̃ = k/kx and
〈
�n2

〉
is the mean-square average of the ion-

ized donor density spatial fluctuations. In this form, the integrand
in equation (B2) is dimensionless, and its numerical evaluation
yields a power law decay as function of (d + z0), specifically:

(Brms
x (z))2 =

(
μ0σ e
4εε0

)2 < �n2 >
(2π)2

π
2.17 × 10−10

(d + z)4
, (B3)

with (d + z0) in microns.
We now consider the decay of the magnetic field fluctuations

produced by a heterostructure whose ionized donor density varies
periodically, with period λ = 2π/k0, along the y−direction. In this
case,

S(k, k′) = δn2

4π2 δ(ky − k0)δ(k + k′), (B4)

where we have assumed an ionized donor density modulation of
amplitude δn.

After integrating Equation (B1), the dependence of the rms
amplitude of the magnetic field with the distance to the chip
becomes:

(Brms
x (z))2 =

(
μ0σ e
4εε0

)2
(δn)2

4k20
(2k0 + k2s )2

e−4k0(d+z0). (B5)

This demonstrates that periodic modulation of the donor dis-
tribution creates an exponential decay of the rms amplitude of
the magnetic field fluctuations, similar to the magnetic mirror in
(72). Such a modulation can be created permanently by etching or
implanting Ga ions (39) or, by optical transient illumination of the
sample with a periodic laser standing wave pattern (40).

Figure 3 in the main text compares Brms
x (z) calculated using

Equation (B5) (solid/red curve) and Equation (B3) (dashed/blue
curve) along with the corresponding field fluctuations for a metal
wire including surface and edge fluctuations (41) (short-dashed/
black curve). Insets in the same figure show the effect of the ionized
donor density distribution on the potential energy landscape of
electrons in the 2DEG with (left-hand inset) and without (right-
hand inset) periodic modulation. Crucially, exponential decay
makes the Brms

x (z0) curve for the periodically modulated donor
distribution rapidly fall off to a value below that for a metal wire.
By patterning the donor distribution with a period of 200 nm, at
z � 0.5µm, the field fluctuations above the 2DEG are more than
3 orders of magnitude smaller than for the metal wire.

The ability to tailor the potential landscape of the 2DEG, and the
resulting field fluctuations, is a unique feature of heterojunctions
and can be exploited for trapping,manipulating, and imagingwith,
ultracold Bose gases.
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