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Abstract
1.	 World-	wide	declines	in	pollinators,	including	bumblebees,	are	attributed	to	a	mul-
titude	of	stressors	such	as	habitat	loss,	resource	availability,	emerging	viruses	and	
parasites,	exposure	to	pesticides,	and	climate	change,	operating	at	various	spatial	
and	 temporal	 scales.	 Disentangling	 individual	 and	 interacting	 effects	 of	 these	
stressors,	and	understanding	their	impact	at	the	individual,	colony	and	population	
level	are	a	challenge	for	systems	ecology.	Empirical	testing	of	all	combinations	and	
contexts	 is	 not	 feasible.	 A	 mechanistic	 multilevel	 systems	 model	 (individual-	
colony-	population-	community)	 is	 required	 to	 explore	 resilience	mechanisms	 of	
populations	and	communities	under	stress.

2.	 We	present	a	model	which	can	simulate	the	growth,	behaviour	and	survival	of	six	
UK	bumblebee	species	living	in	any	mapped	landscape.	Bumble-	BEEHAVE	simu-
lates,	 in	an	agent-	based	approach,	 the	colony	development	of	bumblebees	 in	a	
realistic	landscape	to	study	how	multiple	stressors	affect	bee	numbers	and	popu-
lation	dynamics.	We	provide	extensive	documentation,	including	sensitivity	anal-
ysis	and	validation,	based	on	data	from	literature.	The	model	 is	freely	available,	
has	 flexible	 settings	 and	 includes	 a	 user	 manual	 to	 ensure	 it	 can	 be	 used	 by	
	researchers,	farmers,	policy-	makers,	NGOs	or	other	interested	parties.

3.	 Model	outcomes	compare	well	with	empirical	data	for	individual	foraging	behav-
iour,	colony	growth	and	reproduction,	and	estimated	nest	densities.

4.	 Simulating	the	impact	of	reproductive	depression	caused	by	pesticide	exposure	
shows	 that	 the	 complex	 feedback	mechanisms	 captured	 in	 this	 model	 predict	
higher	colony	resilience	to	stress	than	suggested	by	a	previous,	simpler	model.

5.	 Synthesis and applications.	The	Bumble-	BEEHAVE	model	represents	a	significant	
step	 towards	 predicting	 bumblebee	 population	 dynamics	 in	 a	 spatially	 explicit	
way.	It	enables	researchers	to	understand	the	individual	and	interacting	effects	of	
the	multiple	stressors	affecting	bumblebee	survival	and	the	feedback	mechanisms	
that	may	buffer	a	colony	against	environmental	stress,	or	indeed	lead	to	spiralling	
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1  | INTRODUC TION

World-	wide	 declines	 in	 pollinators,	 including	 bumblebees,	 are	 at-
tributed	 to	 the	 chronic	 exposure	 of	 populations	 to	 a	 multitude	 of	
stressors	 such	 as	 habitat	 loss	 and	 resource	 availability,	 emerging	
viruses	 and	 parasites,	 exposure	 to	 pesticides,	 and	 climate	 change	
operating	at	various	spatial	and	temporal	scales	(Baude	et	al.,	2016;	
Goulson,	2015;	 IPBES,	2016;	Kerr	et	al.,	2015;	Williams	&	Osborne,	
2009).	Disentangling	 the	 individual	and	 interacting	effects	of	 these	
stressors	and	understanding	their	effects	at	the	individual,	colony	and	
population	level	are	a	considerable	challenge	for	systems	ecology.	Yet	
it	is	essential	to	inform	policy	and	management	recommendations	to	
support	pollinators	and	the	pollination	service	they	provide	to	crops	
and	wild	flowers	(Vanbergen	et	al.,	2013).	Crone	and	Williams	(2016)	
pointed	out	that	 in	the	case	of	bumblebees,	this	challenge	 is	ampli-
fied	by	our	lack	of	knowledge	of	their	population	dynamics.	Despite	
being	a	well-	studied	taxon,	we	have	few	estimates	of	colony	densi-
ties	in	the	landscape	(Goulson	et	al.,	2010;	Osborne,	Martin,	Shortall,	
et	al.,	2008),	and	we	do	not	have	means	of	predicting	future	patterns	
of	population	 change.	This	 is	primarily	because	of	 their	 annual	 and	
social	life	history	and	the	difficulty	of	locating	colonies	and	measuring	
reproductive	success	in	the	field.	Added	to	this,	the	systematic	em-
pirical	testing	of	the	combined	and	synergistic	effects	of	stressors	on	
bumblebee	colonies	 is	 largely	 infeasible	 (Becher,	Osborne,	Thorbek,	
Kennedy,	 &	 Grimm,	 2013;	 Goulson,	 Nicholls,	 Botias,	 &	 Rotheray,	
2015;	Henry	et	al.,	2017).	We	propose	that	a	mechanistic	multilevel	
systems	model	(individual-	colony-	population-	community)	is	required	
to	explore	the	resilience	mechanisms	of	bumblebee	populations	and	
communities	 under	 stress,	 and	 inform	 management	 decisions.	 We	
present	such	a	model,	Bumble-	BEEHAVE,	and	explain	how	it	is	radi-
cally	different	to	other	published	bumblebee	models.

Six	contrasting	bumblebee	models	have	recently	been	published	
(Banks	 et	al.,	 2017;	 Bryden,	 Gill,	 Mitton,	 Raine,	 &	 Jansen,	 2013;	
Cresswell,	 2017;	 Crone	 &	Williams,	 2016;	 Häussler,	 Sahlin,	 Baey,	
Smith,	 &	 Clough,	 2017;	 Olsson,	 Bolin,	 Smith,	 &	 Lonsdorf,	 2015).	
However,	while	useful	 in	exploring	the	 impact	of	 individual	stress-
ors,	such	as	food	availability	(Crone	&	Williams,	2016)	or	pesticides	
(Bryden	et	al.,	2013;	Cresswell,	2017),	none	as	yet	have	the	structural	
realism	to	incorporate	multiple	stressors	or	competition,	operating	
at	different	organisational	levels	(individual	or	colony	or	population).	
They	 have	 limited	 flexibility	 to	 incorporate	 feedback	 mechanisms	
that	may	buffer	the	colony	against	environmental	stress,	or	indeed	
lead	to	spiralling	collapse.	This	mechanistic	richness	is	essential	for	
deep	and	broad	understanding	of	risk	(EFSA,	2015)—indeed	Crone	

and	Williams	(2016)	and	Banks	et	al.	(2017)	noted	that	further	pro-
cesses	and	stage	structure	need	incorporation.	Most	existing	studies	
do	not	model	multiple	colonies	(Bryden	et	al.,	2013;	Cresswell,	2017;	
Häussler	 et	al.,	 2017;	 although	 see	 Banks	 et	al.,	 2017)	 or	 capture	
the	spatio-	temporal	dynamics	of	resource	availability	(although	see	
Häussler	et	al.,	2017;	Olsson	et	al.,	2015;	Polce	et	al.,	2013)	which	
are	essential	to	make	accurate	predictions	in	real	landscapes.	Table	1	
summarises	the	approach	and	capability	of	each	model	in	contrast	to	
the	Bumble-	BEEHAVE	model	presented	here.

Bumble-	BEEHAVE	is	an	open	source	model	(www.beehave-model.
net)	based	on	bumblebee	behaviour	and	life	history,	designed	to	sim-
ulate	colony	growth	and	survival	in	any	landscape	where	nectar	and	
pollen	 sources	 can	 be	 approximated	 from	maps	with	 the	 intention	
of	 predicting	 the	 effects	 of	 multifactorial	 stressors	 on	 bumblebee	
survival	 at	 the	 individual,	 colony	 and	 population	 levels	 (Figure	1).	
We	have	taken	a	broadly	similar	approach	to	that	used	for	develop-
ment	of	the	well-	used	BEEHAVE	model	of	honeybee	colony	dynam-
ics	 (Becher	et	al.,	2014;	EFSA,	2015),	 incorporating	our	BEESCOUT	
model	of	bees	searching	for	forage	in	landscapes	(Becher	et	al.,	2016)	
and	including	substantial	Supporting	Information.	Bumble-	BEEHAVE	
is	an	agent-	based	model	(Grimm	&	Railsback,	2005)	where	individual	
behaviour	 is	determined	by	 stimuli	 and	 thresholds	 that	 scale	up	 to	
colony-		and	population-	level	processes.	Bumble-	BEEHAVE	is	built	on	
empirical	 data	 describing	 colony	 dynamics	 and	 foraging	 in	 realistic	
digitised	 landscapes.	 It	 has	 basic	 parameterisation	 for	 six	 common	
UK	species,	and	 is	structured	so	that	 it	can	be	updated	as	data	for	
further	life	stage	parameters	become	available.	We	present	sensitiv-
ity	analyses	and	compare	simulations	with	empirical	data	to	illustrate	
the	potential	of	Bumble-	BEEHAVE	in	predicting	(a)	individual	foraging	
behaviour,	(b)	colony	growth	and	reproduction	and	(c)	population	nest	
density,	in	realistic	landscape	settings.

2  | MATERIAL S AND METHODS

2.1 | The Bumble-BEEHAVE model

Here	 we	 provide	 a	 condensed	 overview	 of	 the	 Bumble-	BEEHAVE	
model.	 The	 Supporting	 Information	 provides	 the	 complete,	 detailed	
description	 of	 the	model,	 following	 the	Overview,	Design	 concepts,	
Details	 (ODD)	protocol	 (Grimm	et	al.,	2006,	2010),	 the	scheduling	of	
the	 procedures,	 lists	 of	 all	 variables,	 full	 explanation	 and	 references	
used	for	parameterisation	(Appendix	S03),	and	a	user	manual	(Appendix	
S02).	Bumble-BEEHAVE	itself	is	available	in	Appendix	S01	and	free	to	
download	 at	www.beehave-model.net.	 To	 ensure	 it	 is	 suitable	 for	 a	

colony	collapse.	The	model	can	be	used	to	aid	the	design	of	field	experiments,	for	
risk	assessments,	to	inform	conservation	and	farming	decisions	and	for	assigning	
bespoke	management	recommendations	at	a	landscape	scale.

K E Y W O R D S

agent-based	modelling,	Bombus terrestris,	bumblebees,	colony	decline,	cross-level	interactions,	
foraging,	multiple	stressors,	pollination

http://www.beehave-model.net
http://www.beehave-model.net
http://www.beehave-model.net
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wide	range	of	users,	it	is	implemented	using	the	free	open	source	soft-
ware	platform	NETLOGO	(5.3.1;	Wilensky,	1999)	and	 licensed	under	
the	GNU	General	Public	Licence	(Appendix	S09).

2.2 | Purpose

The	purpose	of	 the	model	 is	 to	explore	 the	 colony	and	population	
dynamics	of	bumblebees	as	a	result	of	the	spatial	and	temporal	distri-
bution	of	resources.	It	also	has	the	potential	for	use	in	understanding	
risks	of	pathogen	prevalence	and	pesticide	exposure.	Weather	and/or	
foraging	conditions,	predation	by	badgers	and	social-	parasitism	from	
cuckoo	bees	are	implemented	in	a	relatively	simplified	way	in	the	cur-
rent	version	of	the	model,	but	could	be	developed	in	later	versions.

Bumble-	BEEHAVE	simulates,	in	an	agent-	based	approach,	the	life	
cycle	of	bumblebees,	foraging	for	nectar	and	pollen	from	a	variety	
of	plant	species	 in	a	spatially	explicit	 landscape	(Figure	1).	Starting	
with	an	initial	number	of	hibernating	queens	of	up	to	six	European	
bumblebee	species,	the	foundation	of	nests	in	suitable	habitat,	and	
raising	of	brood	by	the	queen,	and	later	by	worker	bees,	is	modelled	
(parameterisation	in	Appendix	S04).	The	population	dynamics	then	
result	 from	the	number	of	reproductives,	particularly	queens,	pro-
duced	by	colonies	of	the	same	species.	Here	we	focus	simulations	on	
Bombus terrestris	L.	but	if	several	species	are	included	in	the	simula-
tion	then	community	dynamics	also	emerge.

2.3 | Environment

Time	in	the	model	proceeds	in	daily	steps,	during	which	bees	can	per-
form	 different	 tasks	 of	 various	 durations.	 The	modelled	 landscape	
comprises	 a	 number	 of	 food	 sources,	 seasonally	 providing	 nectar	
and	pollen	of	varying	quality	and	quantity	and	can	be	created	using	

the	 BEEHAVE	 landscape	 module	 BEESCOUT	 (Becher	 et	al.,	 2016).	
Weather	 is	not	explicitly	 implemented	 in	 the	model	but	 it	 is	 repre-
sented	by	 specifying	 the	daily	 allowance	of	 foraging	hours	 (i.e.	 the	
maximal	time	foragers	can	spend	every	day	on	foraging).	Furthermore,	
climate	and	weather	conditions	are	 implicitly	 taken	 into	account	by	
the	phenology	of	flower	patches	and	the	timing	of	queen	emergence	
from	hibernation.	Optionally,	predation	by	badgers	can	be	simulated	
by	distributing	badger	setts	in	the	landscape	and,	with	a	certain	prob-
ability,	destroying	colonies	within	the	foraging	range	of	the	badgers.

2.4 | Bees

Each	 “bumblebee”	 in	 the	model	 represents	 either	 a	 single	 individ-
ual	or	a	1-	day	age	cohort.	Adult	queens	are	always	implemented	as	
individuals.	Bees	differ	 in	 their	 age,	 caste	 (worker,	 queen,	male	or	
undefined),	their	activity	and	their	size	(which	affects	their	tongue	
length	and	forage	loads).	Furthermore,	bees	belong	to	a	defined	spe-
cies	and	are	member	of	a	certain	colony	(except	for	hibernating	and	
nest	searching	queens).

Bumblebee	species	in	the	model	differ	in	the	number	of	eggs	laid	
by	the	queen	(batch	size),	durations	and	weights	of	developmental	
stages,	tongue	lengths	(and	hence	the	floral	rewards	that	are	avail-
able	to	them),	suitable	nesting	habitat	and	period	of	emerging	from	
hibernation.	Parameterisation	(and	associated	references)	for	the	six	
most	common	bumblebee	species	in	the	UK	and	for	a	generic	cuckoo	
bee	are	provided	in	Appendix	S04.

2.5 | Model processes

A	simulation	starts	on	the	first	of	January	with	an	initial	number	of	
hibernating	queens	for	each	bumblebee	species.	After	emergence,	

F IGURE  1 Overview	of	the	Bumble-	
BEEHAVE	model	structure.	Starting	with	
an	initial	number	of	hibernating	queens,	
the	colony,	population	and	community	
dynamics	of	up	to	six	UK	bumblebee	
species	can	be	simulated.	In	an	agent-	
based	approach,	nest	search	and	colony	
foundation	by	the	queen	are	modelled.	
Brood	needs	incubation	as	well	as	nectar	
and	pollen	to	develop.	Foraging	takes	
place	in	a	realistic	landscape	of	crop	or	
seminatural	habitat	patches	in	which	a	
number	of	flower	species	provide	nectar	
and	pollen.	Foraging	efficiency	of	the	
bees	depends	on	their	size,	tongue	length	
and	flower	morphology.	Successful	
colonies	produce	males	and/or	queens,	
allowing	the	model	to	run	over	a	number	
of	years
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queens	need	to	find	a	nest	site	in	a	suitable	habitat,	which	can	take	
several	days.	If	they	are	successful,	they	collect	and	store	nectar	and	
pollen	 before	 laying	 their	 first	 batch	of	 eggs.	 The	 brood	needs	 to	
be	incubated	and	larvae	additionally	need	to	be	fed.	Once	the	first	
batch	of	larvae	has	developed	into	pupae,	a	second	batch	of	eggs	can	
be	laid.	When	the	first	adult	workers	emerge,	the	queen	stops	forag-
ing	and	specialises	in	egg	laying.	The	activities	of	bees	are	based	on	
stimuli	 in	 the	 colony	and	 individual	 thresholds	 (See	Appendix	S03	
ODD:	p.	14—Tasks	and	activities;	p.	76—ActivityProc)	for	each	of	the	
three	main	tasks:

1. Egg	 laying:	 eggs	 are	 produced	 in	 batches	 (e.g.	 B. terrestris	 lays	
12)	 and	 can	 be	 male	 or	 female,	 with	 female	 brood	 either	
	developing	 into	 workers	 or	 queens.

2. Nursing:	reflects	the	time	a	bee	spends	on	the	brood	for	incuba-
tion	and	feeding.

3. Foraging	(for	nectar	or	pollen):	foraging	bees	leave	the	colony	to	
collect	food.

While	naive	bees	first	have	to	find	a	food	source,	with	the	detection	
probability	depending	on	the	distance	to	the	colony,	experienced	bees	
typically	know	a	number	of	food	sources	already.	Successful	foragers	
remove	the	collected	nectar	or	pollen	from	the	food	source	(which	is	
replenished	overnight),	and	return	it	to	the	colony’s	stores.	Depending	
on	the	duration	of	the	foraging	trip	and	the	foraging	mortality	per	sec-
ond,	the	survival	of	the	forager	is	determined	at	each	trip.	The	foraging	
choices	of	the	bees	are	based	on	efficiency,	which	decreases	during	the	
day	as	the	food	source	is	depleted.	Flower	handling	times	depend	on	
the	flower	specifications	and	the	bee’s	tongue	length	(Harder,	1983)	and	
affect	the	probability	that	a	foraging	bee	switches	to	(or	searches	for)	
a	more	profitable	food	source	(Appendix	S03,	ODD:	p.	16—Foraging).

Eggs	require	a	species-	specific	minimum	age	and	minimum	incuba-
tion	energy	to	hatch.	As	larvae,	they	need	to	be	fed	and	will	develop	into	
pupae	when	they	reach	a	certain	minimum	age,	minimum	weight	and	
when	summed	minimum	incubation	energy	has	been	received.	A	larva	
will	develop	into	a	worker,	unless	the	colony	reaches	conditions	appro-
priate	for	queen	production	(Appendix	S03,	ODD:	p.	34—Production	of	
males	and	queens)	and	the	larva	has	already	reached	a	species-	specific	
minimal	 weight.	 Pupae	 finally	 develop	 into	 adults,	 when	 they	 reach	
a	minimum	age	and	summed	amount	of	 incubation	energy	 received.	
The	weight	a	bee	has	gained	during	larval	development	determines	its	
size	and	hence	the	size	of	its	honey	stomach,	the	size	of	pollen	pellets	
that	can	be	collected,	and	the	proboscis	length,	affecting	its	foraging	
efficiency	 (Appendix	 S03,	 ODD:	 p.	 49—CropAndPelletSizeREP;	 p.	
106—ProboscisLengthREP).	If	bees	are	unable	to	proceed	to	the	next	
developmental	stage	within	a	certain	time	frame,	they	die.

The	timing	of	queen	production	in	the	model	is	derived	from	data	
on B. terrestris	by	Duchateau	and	Velthuis	(1988).	At	the	beginning	
of	 the	 colony	 development,	 female	 larvae	 develop	 into	 workers,	
whereas	 later,	 they	may	develop	 into	queens.	The	onset	of	queen	
production	follows,	with	c.	5	days	of	delay,	the	queen’s	switch	from	
laying	diploid	eggs	to	haploid,	male	eggs.	However,	this	requires	also	
a	sufficient	number	of	workers	relative	to	 larvae	(larvae	to	worker	

ratio	less	than	3)	in	the	colony.	Diploid	larvae	of	3	days	of	larval	age	
can	then	develop	into	queens	instead	of	workers.

As	soon	as	young	queens	have	developed	 into	adults,	 they	 leave	
their	mother’s	colony	and	mate	with	an	adult	male.	They	then	go	into	hi-
bernation	and	will	not	be	active	until	they	emerge	in	the	following	year.

2.6 | Key output of the model and emerging  
patterns

Outputs	and	patterns	can	emerge	at	all	organisational	levels:

1. Individual	 level:	 bee	 activities	 and	 foraging	 decisions	 (when	
and	 where	 to	 go	 in	 the	 landscape,	 which	 plants	 they	 exploit)	
emerge	as	 a	 result	of	 the	needs	of	 a	 colony	and	 the	 resources	
available	 in	 the	 landscape.	 Bee	 life	 spans	 emerge	 from	 their	
individual	behaviour	(mainly	time	spent	foraging)	and	the	colony	
performance.

2. Colony	level:	colony	dynamics,	number	and	sex	ratio	of	reproduc-
tives	produced	emerge	from	the	activities	of	colony	members	and	
resources	available	in	the	landscape.

3. Population	level:	the	number	of	hibernating	queens	shaping	the	
population	 dynamics,	 genetic	 diversity,	 and	 overall	 sex	 ratios	
emerge	 from	 colony	performances	 and	 individual	 behaviour	 of	
the	bees.

4. Landscape	level:	the	number	of	visits	to	the	various	food	sources	
(flower	patches	and	flower	species),	the	locations	where	colonies	
produced	 males	 and	 queens,	 and	 the	 colony	 densities	 emerge,	
again	 based	 on	 colony	 performances	 and	 individual	 bees’	
behaviour.

2.7 | Default settings

All	simulations	were	run	using	the	default	settings	(Appendix	S04)	un-
less	stated	otherwise.	Simulations	start	on	1	January	with	a	user-	defined	
number	of	B. terrestris	colonies	and	number	of	days	(see	Appendix	S10	
for	simulation	settings).	Simulations	were	run	using	the	RNetLogo	pack-
age	(Thiele,	2014)	in	r	(version	3.2.3,	R	Core	Team,	2015).

2.8 | Model inputs

2.8.1 | Realistic spatially explicit forage landscapes

Creation	of	the	realistic	spatially	explicit	forage	landscapes	required	
the	combination	of	digitised	landscape	maps,	a	habitats	input	file	of	
flower	species	composition	in	the	different	habitats	and	crop	types,	
calculated	flower	patch	characteristics	(size	and	distance	from	colony),	
average	patch	detection	probability	(using	BEESCOUT)	and	a	flower	
species	input	file	of	resource	characteristics	(nectar	and	pollen	quan-
tity,	quality	and	availability)	(Appendix	S03,	ODD:	p.	27—Input	data).

One	25-	km2	digitised	 landscape	map	of	Sussex,	UK	was	created	
in	 ArcMap	 (Version	 10.2)	 consisting	 of	 suitable	 nesting	 habitat	 and	
sources	of	pollen	and	nectar.	Polygon	data	from	Land	Cover	Map	2007,	
Ordnance	 Survey	 and	 Google	 Maps	 were	 used	 to	 classify	 habitats	
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that	provided	 suitable	nesting	habitat	 (Appendix	S03,	ODD:	p.	 32—
Searching	 nests)	 and	 floral	 resources	 for	 bumblebees,	 and	 included	
permanent	 grassland,	 seminatural	 scrub,	 hedgerows	 and	 woodland	
(gardens	were	not	included	in	this	first	stage	as	pollen	and	nectar	data	
are	not	available,	but	can	be	incorporated	when	data	allow).	Hedgerows	
were	manually	digitised	using	Google	Earth.	The	location	of	mass	flow-
ering	crops	considered	as	sources	of	nectar	and/or	pollen	of	oilseed	
rape,	field	beans	and	maize	(pollen	only)	was	recorded	from	field	sur-
veys	of	 the	 landscapes	during	2014.	Areas	categorised	as	manmade	
(e.g.	buildings	and	roads),	freshwater,	cereal	crop	and	bare	ground	were	
assumed	 to	be	devoid	of	 resources.	These	maps	were	 converted	 to	
Raster	25-	m	grid	cells	and	then	converted	to	Ascii	text	files	to	be	used	
as	map	input	files	for	BEESCOUT	(version	2.0,	Appendix	S05).

The	 habitats	 input	 file	 was	 created	 using	 the	 flower	 species	
abundance per m2	 of	 34	major	 bumblebee	 forage	 plants	 and	 the	
three	mass	flowering	crops	in	the	different	flower	patch	types	which	
were	identified	and	surveyed	in	the	field.	Flower	patch	characteris-
tics	were	calculated	as	the	area,	X and Y	coordinates,	and	detection	
probability	of	each	patch,	and	the	flower	species	input	file	was	cre-
ated	using	the	quantity	of	nectar	(ml)	and	pollen	(g),	quality	of	nec-
tar	 sugar	 (mol/l)	 and	 pollen	 (percentage	 protein),	 available	 during	
the	specified	flowering	period	of	the	different	flower	species	and	
their	phenology	and	morphology	(Appendix	S07,	Fowler,	Rotheray,	
&	Goulson,	2016;	R.	E.	Fowler,	E.	L.	Rotheray,	&	D.	Goulson,	unpub-
lished	data).	Then	the	habitat	input	file	and	flower	patch	character-
istics	were	combined	to	create	the	Bumble-	BEEHAVE	input	text	file	
and	a	new	compatible	map	image	file.

Detection	probability	(Becher	et	al.,		2016;	Appendix	S03,	ODD:	
p.	 88—DetectionProbREP)	 for	 each	 patch	was	 calculated	 from	 its	
distance	to	the	colony	using	BEESCOUT	(version	2.0,	Appendix	S05)	
and	assuming	approximate	maximal	foraging	range	of	758	m	for	B. 
terrestris	(Knight	et	al.,	2005).

2.9 | Model testing

2.9.1 | Verification of the code

The	model	code	was	checked	throughout	all	stages	of	model	devel-
opment	by	both	developers	(MB,	TP).	Visual	testing	was	performed	
using	the	Bumble-	BEEHAVE	output	plots	(graphs	showing	the	emerg-
ing	results	of	the	model)	to	verify	model	behaviour.	“Assertions”	are	
included	at	various	locations	in	the	code	to	halt	a	simulation	run	if	
state	variables	go	beyond	a	defined	range.

2.9.2 | Sensitivity analysis

We	 examined	 Bumble-	BEEHAVE	 model	 sensitivity	 to	 biologically	
relevant	parameters	defined	as	numeric,	noninteger	global	variables	
(either	on	the	interface	or	the	code)	with	a	Default	value	of	less	or	
more	than	zero.	For	each	run,	we	multiplied	a	parameter’s	Default	
value	by	either	0.5,	0.75,	1,	1.25,	1.5	or	2	separately	and	left	all	other	
parameters	at	Default	values.	Each	combination	was	run	for	1	year,	
20	different	times	(aka	Random	Seeds),	and	the	number	of	queens	

and	males	produced	at	the	end	of	each	run	were	recorded	(full	re-
sults	in	Appendix	S08).

2.9.3 | Empirical testing of the model

We	compared	graphical	outputs	of	Bumble-	BEEHAVE	simulations	with	
empirical	data	at	 the	 individual	 level	 (Stelzer,	Stanewsky,	&	Chittka,	
2010),	colony	level	(Duchateau	&	Velthuis,	1988;	Duchateau,	Velthuis,	
&	Boomsma,	2004;	Gosterit	&	Gurel,	2016;	Lopez-	Vaamonde	et	al.,	
2009)	and	at	the	population	level	(Knight	et	al.,	2005).	For	clarity,	we	
present	the	setup	of	the	simulations	in	the	result	section.	We	do	not	
present	statistical	analyses	since	the	data	on	the	environmental	vari-
ables	underpinning	the	empirical	results,	e.g.	forage	availability	in	the	
landscape,	are	not	available	so	the	model	cannot	be	calibrated	exactly	
to	those	conditions.	It	is	therefore	most	appropriate	to	describe	data	
trends	and	match	patterns	(Grimm	&	Railsback,	2005).

2.9.4 | Model applications

To	 illustrate	 the	 applications	of	Bumble-BEEHAVE,	we	determined	
the	number	of	colonies	supported	by	habitats	with	differing	forage	
quantity	and	quality.	These	could	 then	be	used	 to	estimate	B. ter-
restris	colony	densities	in	any	landscape	based	on	the	areas	of	semi-
natural	habitats	of	grassland,	hedges,	 scrub	or	woodland.	We	also	
simulated	the	impact	of	a	reduction	in	colony	foundation	on	popula-
tion	dynamics	as	a	potential	effect	of	pesticide	exposure.

3  | RESULTS

3.1 | Sensitivity analysis

We	comment	on	the	three	most	sensitive	parameters	here:	further	
details	 are	 in	 Table	2	 and	Appendix	 S08.	 Similar	 to	 the	 honeybee	
model	BEEHAVE,	Bumble-	BEEHAVE	is	most	sensitive	to	changes	in	
the	probability	of	foraging	mortality	as	 it	directly	affects	the	work	
force	and	food	influx	of	the	colony.

Parameter	QueenDestinedEggsBeforeSP_d	defines	when	the	col-
ony	starts	to	raise	queens	rather	than	workers,	relative	to	the	switch	
point	(when	the	queen	lays	haploid	instead	of	diploid	eggs).	While	an	
earlier	onset	of	queen	production	increases	the	number	of	queens,	
it	reduces	the	number	of	males	produced	and	hence	has	the	biggest	
impact	on	the	sex	ratio	of	all	parameters	tested.	NestSearchTime_h 
describes	the	time	in	hours	a	queen	spends	on	searching	a	nest	site	
per	day,	which	is	associated	with	a	high	mortality.

3.2 | Empirical testing of the model

3.2.1 | Individual- level comparison

Setting
We	compared	modelled	 individual	 forager	 behaviour	 to	 that	meas-
ured	by	Stelzer	et	al.	(2010)	who	recorded	foraging	trip	duration	for	all	
foraging	flights	of	one	individual.	We	ran	simulations	with	7,500	initial	
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B. terrestris	queens	to	increase	the	competition;	other	settings	were	
kept	at	default.	(n	=	1	simulation	run,	365	time	steps;	Appendix	S10).

Output
We	selected	the	first	bee	that	had	foraged	(>5	min)	for	at	least	200	trips	
and	plotted	the	foraging	trip	duration	against	the	foraging	trip	number	
for	that	individual	to	compare	to	Stelzer	et	al.	(2010).	Figure	2a	shows	
that	the	increasing	durations	of	foraging	trips	throughout	each	day	in	
the	model	and	empirical	data	follow	a	similar	pattern,	although	the	ab-
solute	trip	durations	in	the	empirical	data	are	considerably	higher	until	
ca.	trip	115,	where	the	experimental	bee	(as	suggested	by	Stelzer	et	al.,	
2010)	might	have	 found	a	 rich	 food	source	close	 to	 the	colony.	This	
could	either	 indicate	that	the	modelled	landscape	is	rather	beneficial	
for	the	bees	or	that	the	handling	times	are	somewhat	underestimated.

3.2.2 | Colony- level comparison

Setting
For	colony-	level	comparison,	we	compared	modelled	colony	invest-
ment	 in	 queen	 production	 and	 the	 days	 when	 colonies	 produced	

queens,	switched	to	producing	males	and	when	workers	started	to	
lay	their	own	eggs	to	data	from	Duchateau	et	al.	(2004),	Duchateau	
and	Velthuis	(1988)	and	Gosterit	and	Gurel	(2016)	(n	=	7,500	simula-
tion	runs,	365	time	steps;	Appendix	S10).

We	compared	the	number	of	workers	produced	by	a	colony	with	
empirical	 datasets	 from	 Duchateau	 and	 Velthuis	 (1988)	 and	 Lopez-	
Vaamonde	et	al.	 (2009).	These	experimental	colonies	were	 located	 in	
a	(climate)	room	but	had	access	to	either	the	outside	environment	or	a	
flight	arena	and	received	additional	food	at	least	during	colony	initiation.

We	simulated	the	colony	development	in	the	realistic	landscape	
with	one	initial	B. terrestris	queen,	implemented	in	the	fully	individual-	
based	 mode	 (Appendix	 S03	 ODD,	 p.	 66—CreateColoniesProc).	
Simulations	ran	for	365	days	with	7,500	replicates	(Appendix	S10).	
We	 recorded	 the	days	of	major	 colony	 events	 and	developmental	
traits	of	the	colony,	including	the	number	of	males	and	queens	pro-
duced	to	calculate	the	colony	investment	in	queens	(Table	3).

Output
For	 colonies	 where	 workers	 were	 produced	 (919),	 the	 average	
simulated	timings	of	colony	events,	such	as	the	day	when	a	colony	

TABLE  2 The	complete	sensitivity	analysis	can	be	found	in	Appendix	S08.	We	present	the	difference	in	the	number	of	queens	(Δ	queens)	
and	males	(Δ	males)	produced,	calculated	as	default	value	×	2—default	value	×	0.5,	e.g.	when	ForagingMortalityFactor	(default	1)	is	set	to	2,	
1,239	queens	less	are	produced	than	when	it	is	set	to	0.5.	Parameters	are	sorted	by	their	impact	on	the	number	of	queens	produced	 
(Δ	queens).	Δ	(males/queens)	described	how	the	sex	ratio	is	affected,	with	negative	numbers	indicating	a	smaller	proportion	of	males.	
Under	default	setting,	590.4	hibernating	queens	and	757.2	adult	males	are	produced	(ratio	m:q	=	1.3)

Parameter (default value) Description Δ queens Δ males Δ (males/queens)

ForagingMortalityFactor	(1) Factor	to	modify	the	foraging	mortality −1,239 −1,796 −0.17

QueenDestinedEggsBeforeSP_d	
(5	days)

Max.	days	before	switch	point	when	queen	
destined	eggs	may	be	laid

853 −953 −6.24

NestSearchTime_h	(6	hr) Time	a	queen	spent	on	searching	for	a	nest	site	
per day

−473 −439 0.22

DailySwitchProbability	(0.13) Daily	probability	that	a	queen	switches	to	lay	
haploid	eggs	(only	if	larvae:worker	ratio	is	<3)

−448 579 1.60

Lambda_detectProb	(−0.005) From	BEESCOUT:	describes	how	detection	
probability	of	a	food	source	increases	with	
distance

247 466 0.19

Weather	(8	hr) Constant,	daily	foraging	allowance 239 458 0.05

AbundanceBoost	(1) Factor	to	modify	the	amount	of	nectar	and	
pollen	at	each	food	source

203 310 0.09

LarvaWorkerRatioTH	(3) max.	larvae:worker	ratio	under	which	switching	
to	lay	haploid	eggs	and	queen	production	is	
possible

172 −550 −1.05

EnergyRequiredForPollenAssimilation_
kJ_per_g	(6.2	kJ/g)

Energy	required	to	digest	and	assimilate	
proteins	from	pollen	consumed

145 −866 −2.66

ForagingRangeMax_m	(758	m) Maximal	foraging	distance −125 −350 −0.26

FoodSourceLimit	(25) Approx.	number	of	trips	a	food	source	must	be	
able	to	supply	with	nectar	or	pollen,	
otherwise	it	is	removed

121 232 0.13

MetabolicRateFlight_W/kg	 
(488.6	W/kg)

Metabolic	rate	during	flight	(depends	on	
weight	of	bee)

−86 −211 −0.16

MaxLifespanMales	(30	days) Maximal	lifespan	(days)	of	male	bumblebees 47 −5 −0.11

EnergyFactorOnFlower	(0.3) Reduces	energy	spent	on	flying	while	a	bee	is	
in	a	flower	patch

39 −48 −0.16



8  |    Journal of Applied Ecology BECHER Et al.

produces	 queens,	 switches	 to	 producing	 males	 or	 when	 work-
ers	start	laying	their	own	eggs,	are	approximately	in	the	range	of	
those	reported	in	the	literature	(Table	3),	although	there	is	strong	
variation	 in	 reported	data	 for	experimental	colonies	which	were	
kept	 in	 climate	 rooms	 and	 fed	 supplementary	 pollen	 and	 sugar	
water.	 The	 number	 of	workers	 produced	 in	 the	model	matched	
the	data	from	the	 literature	quite	well	and	the	colony	growth	 in	
model	 showed	a	 similar	pattern	 to	experimental	 colonies	with	a	
roughly	 sigmoid	 curve	 (Figure	2b).	We	 calculated	 the	 queen	 in-
vestment	ratio,	accounting	for	differences	in	average	biomass	be-
tween	queens	and	males	(Appendix	S11).	The	simulations	resulted	
in	an	average	queen	investment	ratio	of	0.46–0.49	(depending	on	
estimated	cost	ratio),	matching	the	empirical	range	of	0.44–0.51	
(Duchateau	 &	 Velthuis,	 1988;	 Duchateau	 et	al.	 2004;	 Table	3).	
The	simulations	also	captured	the	overall	bimodal	distribution	in	

queen	investment	per	colony	that	was	found	by	Duchateau	et	al.,	
2004	(Appendix	S11).

3.2.3 | Population- level comparison

Setting
We	 compared	 predicted	 nest	 densities	 of	 simulated	 colonies	
of	 B. terrestris	 to	 estimated	 field	 nest	 densities	 (Knight	 et	al.,	
2005).	 Simulations	 (n	=	3)	 started	 with	 7,500	 queens	 and	 ran	 for	
10	years	 in	 the	 realistic	 landscapes	 (Appendix	 S03	 ODD,	 p.	 66—
CreateColoniesProc,	Appendix	S10).

We	recorded	the	number	of	colonies	 in	the	 landscape	per	km2 
and	calculated	the	maximum	colony	density	per	year	and	then	aver-
aged	this	over	the	last	5	years	for	each	simulation	run.	We	compared	
modelled	mean	nest	densities	to	nest	densities	calculated	from	ge-
netic	data,	and	based	on	an	approximate	foraging	range	of	758	m	for	
B. terrestris	(Knight	et	al.,	2005).

Output
At	the	population	level,	the	modelled	average	peak	nest	of	34	nests/
km2	is	close	to	the	empirical	average	of	28.7	nests/km2	(range	26.6–
30.7)	for	B. terrestris	in	agricultural	landscapes	(Knight	et	al.,	2005).	
Figure	2c	shows	how	this	changes	over	the	10-	year	simulation.

3.2.4 | Model applications

Setting 1: single habitat maps
To	determine	the	number	of	colonies	supported	by	different	habi-
tats,	 an	 artificial,	 single-	patch	 landscape	 was	 simulated,	 starting	
with	1,000	B. terrestris	queens.	The	patch	had	a	size	of	1	km2 and 
represented	one	habitat:	grassland,	hedgerows,	scrub	or	woodland.	
Simulations	ran	for	10	years	(n	=	20).

Output 1.	The	number	of	all	adult	bees	produced	in	the	last	(10th)	
year,	including	hibernating	queens,	and	the	peak	number	of	colonies	
in	 the	 last	year	 (of	 the	simulations	are	shown	 in	Table	4.	The	peak	
nest	densities	(per	ha)	were	0.4	for	grassland,	7.0	for	hedgerows,	3.6	
for	 scrub	and	0.3	 for	woodland.	These	habitat	 specific	population	
measures	can	be	used	 to	estimate	bumblebee	population	 sizes	on	
a	 larger	spatial	scale,	based	on	the	 landscape	composition.	For	ex-
ample,	we	could	predict	 from	the	habitat	specific	colony	densities	
a	peak	colony	number	of	974.0	colonies	 in	 the	realistic	 landscape,	
which,	however,	is	higher	than	the	peak	of	857.7	colonies	from	the	
actual	simulations	in	this	landscape.	The	reason	for	this	discrepancy	
seems	to	be	that	hedgerows	are	represented	by	a	large	number	of	
very	small	patches	in	the	model,	but	inefficiently	small	food	sources	
are	 automatically	 removed	 when	 the	 map	 is	 processed	 (see	 SI03	
ODD:	p.	44—CreateLayersProc).	So	 linear	 features	such	as	hedge-
rows,	and	the	forage	they	afford	to	bees,	are	potentially	underrepre-
sented	in	this	model	version.

Setting 2: effects of pesticide exposure
Additionally,	 we	 simulated	 reproduction	 depression	 as	 a	 result	 of	
colony-	level	 pesticide	 exposure.	 Baron,	 Jansen,	 Brown,	 and	 Raine	

F IGURE  2  Individual,	Colony	and	Population	comparison	
of	Bumble-	BEEHAVE	model	simulations	of	Bombus terrestris	to	
empirical	data.	(a)	Foraging	trip	duration	for	all	foraging	trips	made	
by	one	individual	bee	(solid	lines)	compared	to	empirical	data	
(open	circles)	from	Stelzer	et	al.	(2010).	Trips	during	the	same	day	
are	shown	in	the	same	colour	and	colours	alternate	daily	between	
black	and	grey.	(b)	Number	of	workers	(mean	±	SD)	produced	since	
first	worker	eclosion	(solid	line)	compared	to	empirical	data	from	
Duchateau	and	Velthuis	(1988)	and	Lopez-	Vaamonde	et	al.	(2009).	
Lopez-	Vaamonde	et	al.	(2009)	provided	two	datasets	(a,	b	and	c,	
d)	and	distinguished	colonies	producing	queens	(a,	c)	or	not	(b,	d).	
(c)	Nest	densities	over	10	years	compared	to	empirical	average	of	
28.7	nests	per	km2	(grey	arrowed	line)	from	Knight	et	al.	(2005),	for	
realistic	landscape	(solid	line)	and	when	applying	the	Baron	et	al.	
(2017;	dashed	line)	pesticide	exposure	effect	on	reproduction,	
resulting	in	26%	of	emerged	queens	being	unable	to	found	a	colony
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(2017)	reported	a	26%	reduction	in	colony	foundation	after	queens	
have	been	treated	with	field-	relevant	levels	of	a	neonicotinoid	pesti-
cide.	We	simulated	the	population	dynamics	based	on	7,500	(or	500)	
initial	B. terrestris	queens	and	removed	26%	of	those	queens	emerg-
ing	from	hibernation	every	year	(n	=	20,	time	steps	3,650,	all	other	
settings	default,	see	Appendix	S10).

Output 2.	The	annual	removal	of	26%	of	emerging	queens	(from	
an	initial	population	of	7500)	led	to	a	strong	reduction	in	the	number	
of	colonies	(Figure	2c).	However,	unlike	Baron	et	al.’s	(2017)	predic-
tion,	the	population	does	not	go	extinct.	Repeating	these	simulations	

with	500	initial	queens	results	in	an	increase	in	nest	densities	(results	
not	shown).

4  | DISCUSSION

We	 have	 described	 a	 new	 agent-	based	 systems	 model,	 Bumble-	
BEEHAVE,	rich	in	structural	realism	and	mechanism	that	can	be	used	
to	 examine	 the	 effects	 of	 multiple	 stressors	 on	 bumblebee	 colo-
nies	and	populations	over	multiple	years,	 in	 realistic	 landscapes.	 It	

TABLE  3 Results	of	simulations	in	a	realistic	landscape	compared	to	empirical	data	from	literature	(Duchateau	&	Velthuis,	1988;	Gosterit	
&	Gurel,	2016).	Mean	(±SD)	of	each	output	per	colony	or	replicate	is	given.	At the colony level: ncolony	=	number	of	replicates	where	workers	
were	produced;	colony	establishment	prob	=	ncolony/7,500;	Colony	foundation	=	day	on	which	colony	was	founded	by	the	queen;	Worker	
eclosion	=	the	first	day	on	which	workers	emerge	(i.e.	eusocial	phase);	queen	production	=	first	day	new	queens	are	produced;	switch	
point	=	first	day	male	eggs	are	produced;	competition	date	=	when	workers	lay	their	own	eggs.	The	average	values	for	total	colony	weight	
gain	(Weight	gain)	and	the	average	total	numbers	of	brood	(Eggs),	(Larvae)	and	(Pupae)	produced	by	the	colony	were	calculated	on	day	365.	
The	number	of	reproductives	(males	and	queens)	(Duchateau	&	Velthuis,	1988	E	=	Early	male	production;	L	=	late	male	production);	and	the	
sex	ratio	when	using	Queen	investment	conversion	of	1.69	(Duchateau	et	al.,	2004).	At population level:	mean	(±SD)	nest	density	per	km2	for	
the	realistic	landscape	is	shown.	Nreplicates	=	number	of	replicates	and	compared	to	Knight	et	al.	(2005)

Measure Simulations mean (±SD) Empirical data (M ± SD)

Colony Duchateau	and	Velthuis	(1988) Gosterit	and	Gurel	
(2016)

ncolony 919 25–41

Colony	establish	prob 0.12

Colony	foundation	(day) 95.6	(27.0)

Worker	eclosion	(day) 119.3	(27.0)	

After	foundation/initiation 23.7 21 33.4	(5.3)	

Queen	production	(day) 125.1	(33.0)

After	eusocial	phase 5.8	 7.9	(11.4)

After	foundation/initiation 29.5 30.4a

Switch	point	(day) 129.0	(31.2)

After	eusocial	phase 9.7 E:	9.8	(2.4),	L:	23.4	(4.6) −6.42	(14.9)b

After	foundation/initiation 33.4 16.1a

Competition	point	(day)	 138.3	(32.9)

After	eusocial	phase 19.0	 E:	29.6	(4.0),	L:	32.0	(5.2)	

After	foundation/initiation 42.7 52

Weight	gain	(g) 111.5	(36.7)

Workers	(no.) 76.2	(57.5) E:	136.9	(58.8),	L:	284.3	(145.0) 86.3	(50.9)

Eggs	(no.) 379.3	(124.8)

Pupae	(no.) 118.6	(55.3)

Larvae	(no.) 119.5	(55.0)

Males	(no.) 21.8	(18.7) E:164.5	(130.4),	L:	70.4	(89.7) 30.1	(28.2)

Queens	(no.) 19.1	(19.1) E:	9.5	(19.1),	L:	55.8	(72.8) 24.8	(15.8)

Queen	investment	1.69 0.46 E:	0.06,	L:	0.44 0.45

Population Knight	et	al.	(2005)

nreplicates 3

Max.	nest	density	(colonies/km2) 34.31	(2.4) 28.7	(range	
26.6–30.7)

Note. aCalculated	from	table	II	in	Gosterit	and	Gurel	(2016).
b6.42	days	before	eusocial	phase.
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includes	the	option	of	modelling	up	to	six	different	bumblebee	spe-
cies.	We	illustrate	that	 individual,	colony	and	population	level	pro-
cesses	of	bumblebee	colonies	can	be	predicted	by	Bumble-BEEHAVE	
within	the	boundaries	of	independent	empirical	data.	Indeed	the	val-
ues	for	different	life	stages	and	key	time	points	(Table	3)	show	strong	
agreement	with	published	data.	Despite	some	values	for	parameters	
still	being	approximate	in	the	literature,	the	design	and	structure	of	
Bumble-BEEHAVE	means	that	a	user	can	add	or	alter	those	values	as	
they	become	available	to	run	the	model	in	future.

In	 addition,	Bumble-BEEHAVE	 is	 the	only	model	 to	our	 knowl-
edge	 to	 incorporate	energy	budgets	and	depletion	of	 resources	 in	
mapped	landscapes	so	that	interspecific	and	intraspecific	competi-
tion	can	emerge.	Also,	because	the	flower	patches	are	spatially	ex-
plicit,	then	the	patchy	exposure	to	pesticides	 in	the	 landscape	can	
be	simulated	in	future,	by	programming	different	pesticide	applica-
tions	to	different	crops,	and	implementing	differential	mortality	and	
sublethal	effects	depending	on	when	and	where	the	bees	are	forag-
ing—a	pesticide	module	of	this	type	is	currently	being	implemented	
for	BEEHAVE	and	Bumble-	BEEHAVE.

Our	simulations	demonstrate	that	colony	dynamics	and	popula-
tion	 are	 driven	 by	 the	 spatio-	temporal	 availability	 of	 resources	 as	
expected	 (Crone	&	Williams,	 2016;	Goulson,	Hughes,	Derwent,	&	
Stout,	2002;	Williams,	Regetz,	&	Kremen,	2012).

While	the	comparative	simulations	are	promising,	without	du-
plicating	 the	 realistic	 spatially	 explicit	 forage	 landscape	 of	 the	
independent	 empirical	 studies,	 we	 were	 unable	 to	 replicate	 all	
absolute	 values	 and	 trends	 in	 the	 empirical	 data.	 Additionally,	
when	we	do	have	 a	 landscape	map	 that	 replicates	 an	 empirical	
landscape,	 this	 is	 a	 simplification	of	 the	 full	 range	of	 resources	
that	pollinators	utilise	in	the	wild.	It	is	vital	for	pollinator	models	
to	 operate	 in	 realistic	 landscapes	 (EFSA,	 2015)	 at	 a	 scale	 rele-
vant	to	bumblebee	ecology	and	to	policy	and	land	management.	
Bumble-BEEHAVE	input	maps	represent	a	5	km	×	5	km	landscape	
covering	 the	 likely	 foraging	 range	of	bumblebees	of	up	 to	2	km	
(Osborne,	Martin,	Carreck,	et	al.,	2008),	 and	 so	provide	a	 flexi-
ble	tool	for	scientists	and	practitioners	to	explore	the	effects	of	
multifactorial	stressors	and	their	potential	mitigation	at	relevant	
scales.	The	outputs	can	 include	documentation	of	which	 forag-
ers,	and	how	many,	have	foraged	on	different	 resource	patches	
in	 the	 landscapes	 and	 the	 results	 can	 be	 compared	 to	 other	

landscape-	scale	pollination	service	models	(Lonsdorf	et	al.,	2009;	
Olsson	et	al.,	2015;	Polce	et	al.,	2013),	but	the	novelty	of	Bumble-	
BEEHAVE	is	that	because	it	explicitly	programmes	the	life	cycle	
of	the	colony	via	 individual	behaviours,	 it	 includes	resource	de-
pletion,	and	has	the	potential	to	include	predation,	pathogen	and	
pesticide	exposure	effects.	Importantly,	we	simulated	the	impact	
of	 reproductive	 depression	 caused	by	 a	 pesticide,	 as	measured	
by	Baron	et	al.	(2017).	They	used	a	simple	model	to	predict	that	
the	 impact	 could	 be	 colony	 extinction.	 Our	 simulations	 gave	 a	
more	nuanced	result,	suggesting	that	the	impact	will	depend	on	
the	initial	population	size:	so	while	colony	numbers	might	reduce,	
the	population	is	likely	to	stabilise,	though	at	a	lower	density	than	
for	control.

4.1 | Applications

Bumble-BEEHAVE	is	open-	source	(Appendix	S01	and	via	www.bee-
have-model.net),	thoroughly	documented	and	has	flexible	settings,	
enabling	even	nonspecialist	users	to	simulate	the	effects	of	stressors	
by	adjusting	and/or	updating	parameters	as	data	become	available.	
The	predecessor	honeybee	model,	BEEHAVE	(Becher	et	al.,	2014)	is	
being	used	by	regulators,	industry	and	land	managers	for	risk	assess-
ment	and	decision	support	relating	to	honeybees.	Thus,	we	foresee	
the	 integration	of	Bumble-BEEHAVE	beyond	academia	to	 industry,	
conservation	and	policy.

Bumble-BEEHAVE	can	be	used	to:

1. Explore	how	stressors	combine,	resulting	in	emergent	properties	
of	 colony	 and	 population	 success	 in	 realistic	 landscapes.

2. Identify	tipping	points	as	a	result	of	multiple	stressors	that	lead	to	
colony	 failures	 as	 well	 as	 the	 feedback	 mechanisms	 that	 can	
buffer	the	effects	of	stressors.

3. Predict	 pollination	 services	 for	 current	 and/or	 future	 cropping	
patterns	in	realistic	landscape	settings.

4. Test	the	relative	effects	of	specific	policy	recommendations	for	
pollinators	in	agricultural	landscapes,	such	as	planting	pollen	and	
nectar	strips	(Dicks	et	al.,	2015).

5. Explore	 multiple	 landscapes	 comprising	 various	 habitat	 types	
with	unique	forage	species	composition	in	combination	with	the	
UK	nectar	database	(Baude	et	al.,	2016).

TABLE  4 The	number	of	hibernating	queens	(n.	hibernating	queens)	and	the	peak	number	of	colonies	(n.	colonies	(peak))	(M	±	SD,	N	=	20)	
predicted	in	year	10	of	the	simulation.	We	used	an	artificial,	single-	patch	landscape	with	1	km2	of	the	respective	habitat	and	show	the	
number	of	foraging	trips	per	million	(n.	million	foraging	trips)	and	the	percentage	of	nectar	foragers	(%	nectar).	Number	of	bees	(n.	bees)	
refers	to	the	total	number	of	adult	workers,	queens	and	males	produced	during	the	last	(10th)	year

No. hibernating queens No. colonies (peak)
No. million foraging trips  
(% nectar) No. bees

Grassland 399	(197.9) 40.6	(18.7) 3.2	(76) 134,707.8	(24,019.1)

Hedgerows 7455.6	(530.3) 704.25	(54.9) 31.1	(72) 1,467,027.6	(68,561.1)

Scrub 3752.4	(431.8) 361.6	(43.2) 17.2	(73) 795,631.2	(40,067.7)

Woodland 281.4	(211.6) 30.6	(23.9) 2.7	(77) 107,839.2	(34,476.1)

http://www.beehave-model.net
http://www.beehave-model.net
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5  | CONCLUSIONS

Bumble-	BEEHAVE	represents	a	significant	step	 towards	predicting	
individual	to	population	level	effects	of	multiple	stressors	operating	
at	multiple	scales	in	a	spatially	explicit	way	and	is	designed	to	leave	
scope	 for	 future	model	 comparison	and	development.	With	 sensi-
tivity	analysis	and	verification,	we	have	demonstrated	that	Bumble-	
BEEHAVE	 makes	 realistic	 predictions,	 and	 thus	 has	 the	 potential	
to	be	a	powerful	decision	support	tool	to	be	used	by	scientists	and	
stakeholders	to	explore	a	range	of	questions	in	bumblebee	ecology	
and	conservation—used	to	aid	 the	design	of	 field	experiments,	 for	
risk	 assessments	 and	 for	 assigning	 bespoke	 management	 recom-
mendations	at	a	landscape	scale.
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