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Abstract 1 

Affordable, autonomous recording devices facilitate large scale acoustic monitoring and Rapid 2 

Acoustic Survey is emerging as a cost-effective approach to ecological monitoring; the success of 3 

the approach rests on the development of computational methods by which biodiversity metrics can 4 

be automatically derived from remotely collected audio data. Dozens of indices have been proposed 5 

to date, but systematic validation against classical, in situ diversity measures are lacking. This study 6 

conducted the most comprehensive comparative evaluation to date of the relationship between avian 7 

species diversity and a suite of acoustic indices. Acoustic surveys were carried out across habitat 8 

gradients in temperate and tropical biomes. Baseline avian species richness and subjective multi-taxa 9 

biophonic density estimates were established through aural counting by expert ornithologists. 26 10 

acoustic indices were calculated and compared to observed variations in species diversity. Five 11 

acoustic diversity indices (Bioacoustic Index, Acoustic Diversity Index, Acoustic Evenness Index, 12 

Acoustic Entropy, and the Normalised Difference Sound Index) were assessed as well as three 13 

simple acoustic descriptors (Root-mean-square, Spectral centroid and Zero-crossing rate). Highly 14 

significant correlations, of up to 65%, between acoustic indices and avian species richness were 15 

observed across temperate habitats, supporting the use of automated acoustic indices in biodiversity 16 

monitoring where a single vocal taxon dominates. Significant, weaker correlations were observed in 17 

neotropical habitats which host multiple non-avian vocalizing species. Multivariate classification 18 

analyses demonstrated that each habitat has a very distinct soundscape and that AIs track observed 19 

differences in habitat-dependent community composition. Multivariate analyses of the relative 20 

predictive power of AIs show that compound indices are more powerful predictors of avian species 21 

richness than any single index and simple descriptors are significant contributors to avian diversity 22 

prediction in multi-taxa tropical environments. Our results support the use of community level 23 

acoustic indices as a proxy for species richness and point to the potential for tracking subtler habitat-24 

dependent changes in community composition. Recommendations for the design of compound 25 

indices for multi-taxa community composition appraisal are put forward, with consideration for the 26 

requirements of next generation, low power remote monitoring networks. 27 

 28 

Keywords:  Biodiversity Monitoring, Remote Sensing, Ecoacoustics, Acoustic Indices, Species 29 

Richness 30 

1. Introduction 31 

Numerous global initiatives aim to conserve biodiversity (e.g. United Nations Sustainable 32 

Development Goals, Convention on Biological Diversity AICHI biodiversity targets, REDD++), but 33 
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action can only be effectively taken if biodiversity can be measured and its rate of change quantified 34 

(Buckland, Magurran, Green, & Fewster, 2005). Coupled with rapid changes in landscape use (Betts 35 

et al., 2017; Newbold et al., 2015) the impact of climate change (Stocker et al., 2013) and growing 36 

fragmentation of natural landscapes globally (Crooks et al., 2017), the development of cost effective 37 

methods for biodiversity monitoring at scale is an urgent global imperative (Newbold et al., 2015). 38 

1.1 Ecoacoustics and Rapid Acoustic Survey 39 

Operating within the conceptual and methodological framework of ecoacoustics (Sueur & Farina, 40 

2015) Rapid Acoustic Survey (RAS) (Sueur, Pavoine, Hamerlynck, & Duvail, 2008) has been 41 

proposed as a non-invasive, cost-effective approach to Rapid Biodiversity Assessment (Mittermeier 42 

& Forsyth, 1993) and is gaining interest from researchers, decision-makers and conservation 43 

managers alike. Whereas bioacoustics infers behavioural information from intra- and interspecific 44 

signals, ecoacoustics investigates the ecological role of sound at higher organisational units - from 45 

population and community up to landscape scales. Sound is understood as a core ecological 46 

component (resource) and therefore indicator of ecological status (source of information). Rather 47 

than attempting to identify specific species calls, RAS aims to infer biodiversity at these higher 48 

levels of organization, through the collection and computational analysis of large scale acoustic 49 

recordings. RAS is a highly attractive solution for large scale monitoring, because it is non-50 

invasive, obviates the need for expert aural identification of individual recordings, scales cost-51 

effectively and is potentially sensitive to multiple taxa. This approach has potential to dramatically 52 

improve remote biodiversity monitoring, enabling data collection and analysis over previously 53 

inaccessible spatio-temporal scales, including in remote, hostile, delicate regions in both terrestrial 54 

and marine environments. The success of the approach rests on the development and validation of 55 

computational metrics, or acoustic indices, which demonstrably predict some facet of biodiversity. 56 

 57 

 58 
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1.2 Acoustic Indices for Biodiversity Monitoring 59 

 60 

 61 

Whereas classical biodiversity indices are designed to enumerate some facet of biotic community 62 

diversity at a particular time and place - richness, evenness, regularity, divergence or rarity in species 63 

abundance, traits or phylogeny (Magurran, 2013; Magurran & McGill, 2011; Pavoine & Bonsall, 64 

2011) - acoustic indices are designed to capture the distribution of acoustic energy across time and/or 65 

frequency in a digital audio file of fixed length. As illustrated in Fig. 1, the use of acoustic indices 66 

(AIs) as ecological indicators is predicated firstly on the assumption that the acoustic community 67 

(Gasc et al., 2013) is representative of the wider ecological community at the place and time of 68 

interest; and secondly that computationally measurable changes in the acoustic environment are 69 

ecologically relevant. An effective index will reflect ecologically meaningful changes in the acoustic 70 

community, whilst being insensitive to potentially confounding variations in the wider acoustic 71 

environment – or soundscape (Pijanowski et al., 2011). Whilst there is an established tradition of 72 

aural survey of individual species (as in point counts), ecoacoustics aims to develop the study and 73 

Fig. 1 The acoustic environment, or soundscape, is comprised of sounds made by noisy biotic and abiotic 
processes, including biological organisms (biophony), geological forces (geophony) and humans and 
machines (anthrophony/ technophony). Acoustic indices provide terse numerical descriptions of the 
overall soundscape. The use of acoustic indices as a proxy for biodiversity is predicated on the assumption 
firstly that the acoustic community of vocalising creatures is representative of the wider ecological 
community and secondly that the facets of soundscape dynamics captured by acoustic indices are 
ecologically-meaningful. The current working hypothesis is that higher species richness will generate 
greater acoustic diversity; a suite of indices aimed at capturing spread and evenness of acoustic energy 
have been proposed but have yet to be conclusively validated against traditional, in situ biodiversity 
metrics.  
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theory of population, community or landscape level bioacoustics. The prevailing predicate of RAS is 74 

that higher species richness in a given community will produce a greater ‘range’ of signals, resulting 75 

in a greater acoustic diversity (Gasc et al., 2013; Sueur, Farina, Gasc, Pieretti, & Pavoine, 2014a; 76 

Sueur et al., 2008). 77 

Based on this premise, indices to measure within-group (alpha) and between-group (beta) indices 78 

have been proposed (Sueur et al., 2014b). The current concern is validation against traditional 79 

metrics derived from species counts, therefore we focus on alpha indices. These are designed to 80 

estimate amplitude (intensity), evenness (relative abundance), richness (number of entities) and 81 

heterogeneity of the acoustic community. A suite of indices was made available via R packages 82 

seewave [1] (Sueur et al., 2008) [1] and soundecology [2] (Villanueva-Rivera, Pijanowski, Doucette, 83 

& Pekin, 2011) and has been rapidly taken up in ecological research – the libraries exceeding 61,000 84 

downloads since 2012. However, experimental investigation of the relationship between these, and 85 

other acoustics metrics, with traditional, in situ biodiversity measures reveals mixed, and at times 86 

contradictory results (Boelman, Asner, Hart, & Martin, 2007; Fuller, Axel, Tucker, & Gage, 2015; 87 

Mammides, Goodale, Dayananda, Kang, & Chen, 2017). Furthermore, simulation studies (Gasc et 88 

al., 2013) demonstrate that acoustic diversity can be influenced by sources of acoustic heterogeneity 89 

other than species richness, including variation in distance of animals to the sensors, and inter- and 90 

intra-specific differences in calling patterns and characteristics (e.g. duration, intensity, complexity 91 

of song, mimicry). The premise that biodiversity can be inferred from acoustic diversity is percipient 92 

but not fully substantiated: before these proposed indices can be confidently adopted for monitoring 93 

purposes, it is critical to understand i) how well AIs capture ecologically meaningful changes in 94 

community composition and ii) how robust they are to diverse ecological, environmental, and 95 

acoustic conditions. To this end, this study carried out the largest systematic, comparative study of 96 

the relationship between acoustic indices and observed avian diversity to date.  97 

 98 

1.3 Acoustic Indices 99 
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1.3.1 Ecologically inspired diversity indices 100 

Early research led to the development of indices derived from landscape metrics (Turner, 1989) to 101 

measure changes at the level of soundscape (Gage, Napoletano, & Cooper, 2001; Napoletano, 2004). 102 

The Normalised Difference Sound Index (NDSI) (Kasten, Gage, Fox, & Joo, 2012) seeks to describe 103 

the level of anthropogenic disturbance by calculating the ratio of mid-frequency biophony to lower 104 

frequency technophony in field recordings, the values for each being computed from an estimate of 105 

power density spectrum (Welch, 1967). In long term studies, the NDSI has been shown to reflect 106 

assumed seasonal and diurnal variation across landscapes (Kasten et al., 2012).  It has subsequently 107 

been shown to be sensitive to biophony and anthrophony levels in urban areas (Fairbrass, Rennett, 108 

Williams, Titheridge, & Jones, 2017) and to be an indicator of anthropogenic presence in the 109 

Brazilian Cerrado (Alquezar & Machado, 2015). NDSI has also been evaluated as a proxy for 110 

species diversity with mixed results: significant relationships with bird species richness have 111 

reported across mixed habitats in China (Mammides et al., 2017); in Brazilian savanna habitats no 112 

relationships were observed (Alquezar & Machado, 2015).  113 

Based on the foundational premise that biodiversity can be inferred from acoustic diversity, 114 

several indices draw an analogy between species distribution and distribution of energy in a 115 

spectrum, where each frequency band is seen to represent a specific ‘species’. The entropy indices 116 

Hf and Ht (Sueur et al., 2008) are calculated as the Shannon entropy of a probability mass function 117 

(PMF) and designed to increase with species diversity. For Hf the PMF is derived from the mean 118 

spectrum, for Ht from the amplitude envelope. Their product is H. Early studies reported higher 119 

values for intact over degraded tropical forests (Sueur et al., 2008), but subsequent testing in a 120 

temperate woodland reported contradictory results, attributed to background technophonies 121 

(Depraetere et al., 2012). H has since been reported to show positive, moderate correlations with 122 

avian species richness across multiple habitats in China (Mammides et al., 2017) and a variant of Ht 123 

(Acoustic Richness) was shown to be positively associated with observed species richness 124 
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(Depraetere et al., 2012). These entropy and evenness measures encapsulate the foundational 125 

assumption of RAS, but are not intuitive to interpret.  126 

The Acoustic Evenness and Acoustic Diversity Indices (AEI, ADI) are motivated by a similar 127 

analogy between species distribution and distribution of sound energy. Both are calculated by first 128 

dividing the spectrogram into N bins across a given range (typically 0 - 10 kHz) and taking the 129 

proportion of signal in each bin above a set threshold. ADI is the result of the Shannon Entropy (Jost, 130 

2006) applied to the resultant vector; AEI is the Gini coefficient (Gini, 1971), providing a measure of 131 

evenness. These were originally developed to assess habitats along a gradient of degradation under 132 

the assumption that ADI and AEI would be respectively positively and negatively associated with 133 

habitat status as the distribution of sounds became more even with increasing diversity (Villanueva-134 

Rivera et al., 2011): ADI was shown to increase from agricultural to forested sites; AEI was shown 135 

to decrease over the same gradient, as expected. Negative, if weak, associations between AEI and 136 

biocondition (Eyre et al., 2015) have subsequently been corroborated (Fuller et al., 2015) and a 137 

significant positive association between ADI and avian species richness has been reported in the 138 

savannas of central Brazil (Alquezar & Machado, 2015).  139 

Rather than applying extant ecological metrics to acoustic data, other ecoacoustic indices 140 

have been designed more intuitively; the Bioacoustic Index (BI) was designed to capture overall 141 

sound pressure levels across the range of frequencies produced by avifauna (Boelman et al., 2007). 142 

BI was originally reported to correlate strongly with changes in avian abundance in Hawaiian forests 143 

(Boelman et al., 2007), but subsequent assessments have been mixed, showing significant 144 

association with avian species richness (Fuller et al., 2015) and both positive and negative weaker 145 

correlations (Mammides et al., 2017) in areas with multiple vocalizing taxa. Despite an initially 146 

strong demonstration of efficacy, and conceptual and computational simplicity, this index has been 147 

excluded from many recent analyses (Harris, Shears, & Radford, 2016). In response to observations 148 

that many of these indices are over-sensitive to ‘background’ noise, the Acoustic Complexity Index 149 

(ACI) was developed (Pieretti, Farina, & Morri, 2011). ACI reports short-time averaged changes in 150 
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energy across frequency bins, with the aim of capturing transient biophonic sounds, whilst being 151 

insensitive to more continuous technophonies such as airplanes and other engines. ACI has been 152 

reported to correlate significantly with the number of avian vocalisations in an Italian national park 153 

(Pieretti et al., 2011), with observed species evenness and diversity in temperate reefs (Harris et al., 154 

2016) and to be positively related to observed changes in migratory avian species numbers in a 155 

multi-year Alaskan study (Buxton, Brown, Sharman, Gabriele, & McKenna, 2016). A recent urban 156 

study reports correlations between ACI and biotic activity and diversity, as well as anthrophonic 157 

signals (Fairbrass et al., 2017), as expected, given the full range analyses carried out.  158 

1.3.2 Machine learning derived indices 159 

In contrast to these relatively simple indices, more sophisticated supervised and unsupervised 160 

machine learning methods have also been proposed (Phillips, Towsey, & Roe, 2018; Towsey, 161 

Wimmer, Williamson, & Roe, 2014). In a single site comparative study (Towsey et al., 2014) 162 

describe a spectral clustering algorithm which is shown to be the strongest indicator of species 163 

number, outperforming many of the indices described above. In previous work (Eldridge, Casey, 164 

Moscoso, & Peck, 2016; Guyot et al., 2016) we have suggested that more complex analyses that 165 

operate in time-frequency (rather than time or frequency) domain are necessary in order to 166 

rigorously investigate the dynamic composition of acoustic environments. However, in applied 167 

monitoring tasks, we are primarily concerned with cost-effectiveness, validity and reliability across 168 

ecological conditions. Looking toward future application of in situ analyses, efficiency in 169 

computational and logistical terms become important factors; with this in mind it becomes pertinent 170 

to consider how new ecological acoustic metrics might take inspiration from machine listening 171 

applications in other domains. 172 

1.3.3 Simple acoustic descriptors 173 

As micro-processors become smaller, cheaper and more powerful and techniques for data transfer in 174 

low-power networks of embedded systems advance, the possibility for in situ computation becomes 175 

very real. This could be very useful for long-term applications where collection and storage of raw 176 
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audio data is unreasonable, such as phenology monitoring. Under this emerging protocol, 177 

computational efficiency of AIs becomes more important as lower computational cost equates to 178 

lower energetic cost, or energy complexity (Zotos, Litke, Chatzigeorgiou, Nikolaidis, & Stephanides, 179 

2005); reducing energetic cost could afford the development of networks of solar-powered devices, 180 

further increasing feasibility of long term monitoring in remote locations. Machine learning methods 181 

are too computationally intensive for these situations and we look instead to parsimonious solutions 182 

which are computationally and energetically cheap. A large body of research in machine listening in 183 

music, speech and non-ecological environmental sound analyses demonstrates the power of simple 184 

acoustic descriptors in automated classification tasks. Here we select three to test alongside the suite 185 

of existing ecoacoustic diversity indices. These provide information about amplitude, spectral, and 186 

temporal characteristics: Root-mean-square (RMS) of the raw audio signal, spectral centroid (SC) 187 

and zero-crossing rate (ZCR), described below.  188 

The root-mean-square (RMS) of the raw audio signal gives a simple description of signal 189 

amplitude; RMS has been demonstrated to track ecologically-relevant temporal and spatial dynamics 190 

in forest canopy (Rodriguez et al., 2014), and shown to be strongly positively correlated with 191 

percentage of living coral cover in tropical reefs (Bertucci, Parmentier, Lecellier, Hawkins, & 192 

Lecchini, 2016),  but has not been investigated in recent terrestrial correlation studies. Mean values 193 

are expected to increase with acoustic activity, variance may more accurately track avian 194 

vocalisations under the same logic as ACI.  Spectral centroid provides a measure of the spectral 195 

centre of mass; it is widely used in machine listening tasks where is it recognized to have a robust 196 

connection with subjective measures of brightness. This and related spectral indices have been 197 

shown to be effective in automated recognition of environmental sounds in urban environments 198 

(Devos, 2016). Zero-crossing rate (ZCR) is one of the simplest time-domain features, which in 199 

essence reflects the rate at which sound waves impact on the microphone. ZCR provides a measure 200 

of noisiness (being high for noisy, low for tonal sounds) and is widely used in speech recognition 201 

and music information retrieval, for example as a key feature in the classification of percussive 202 
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sounds (Gouyon, Pachet, & Delerue, 2002). SC and ZCR have been demonstrated to be useful 203 

descriptors in classification of habitat type (Bormpoudakis, Sueur, & Pantis, 2013), but have yet to 204 

be evaluated as proxies for species diversity. We expect a negative association with avian activity for 205 

both: relative to the quiet broad-band noise of inactivity, avian vocalisations are predicted to be of 206 

lower frequency and more harmonic, resulting in a lower spectral centroid and zero-crossing rate. 207 

We might also expect the variance of each to positively track activity as the onsets of avian calls will 208 

cause rapid changes in values.  209 

 210 

1.4 Validation Requirements 211 

To assess the potential for these indices as ecological indices, explicit comparison with established 212 

biodiversity metrics is a critical first step (Gasc, Francomano, Dunning, & Pijanowski, 2017). In 213 

order to validate the near-term application of existing AIs in monitoring tasks and to inform the 214 

development of more effective indices for the future, we suggest at least three experimental 215 

conditions are necessary: i) variation in ecological conditions ii) spatial and or temporal replication 216 

iii) comparisons between individual indices as well as compound metrics.  217 

Any ecological indicator must be demonstrably robust to variation in ecological conditions. For 218 

acoustic indices, this includes variations in habitat structure, which affects signal propagation, as 219 

well as heterogeneity of acoustic environment due to non-biotic sound sources (anthrophony and 220 

geophony) and crucially, the diversity and density of vocalising taxa. The impact of environmental 221 

dissimilarity on correlations between the diversity indices and avian species richness was recently 222 

shown to be non-significant (Mammides et al., 2017). Responding to recognition that existing 223 

indices are known to be sensitive to ‘background’ noise (Depraetere et al., 2012), Fairbrass et al., 224 

(2017) compared the response of four AIs (ACI, BI, ADI, and NDSI) in urban environments and 225 

demonstrated that all were sensitive to anthrophony, questioning their application in urban areas 226 

(Fairbrass et al., 2017). Although understanding the performance of AIs in environments with 227 

varying diversity and density of vocalising taxa is fundamental, few studies have explicitly addressed 228 
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this. Recent correlation studies have focused on avian species richness alone, without tracking other 229 

taxa, despite being carried out in tropical environments characterised by high insect and amphibian 230 

activity (Alquezar & Machado, 2015; Fuller et al., 2015; Mammides et al., 2017). This makes 231 

interpretation of results difficult. Where other multiple taxa have been considered, the focus has 232 

generally been on identifying and removing specific categories of sound, such as cicada choruses 233 

(Towsey et al., 2014). Correlation studies to date have also been predominantly carried out at the 234 

peak activity of dawn chorus (Boelman et al., 2007; Mammides et al., 2017), which is a 235 

demonstrably efficient sampling strategy (Wimmer, Towsey, Roe, & Williamson, 2013), but 236 

precludes investigation of the response of AIs to variation in vocalization density.   237 

Carrying out spatially and/or temporally replicated surveys is important because existing 238 

indices are known to be sensitive to local differences in vocalisation patterns (Gasc et al., 2013; 239 

Sueur et al., 2014b). If there are strong community level differences in acoustic communities we 240 

might expect that as survey size increases, the effect of local variation in individuals, species, 241 

vegetation structure or other acoustic events will decrease, cancelling out as noise. 242 

Finally, comparative studies are vital because no single index is likely to give complete and 243 

reliable information about the diversity and state of any given ecosystem - just as no single 244 

biodiversity index will reliably estimate all levels of local or regional biodiversity (Sueur et al., 245 

2014b). Towsey et al. (2014) provided a thorough investigation of multiple indices relative to a 246 

comprehensive avifauna census dataset and showed that a linear combination can be more powerful 247 

than any single index, however they also note that their results are over-fitted, and do not generalise 248 

to other habitats, further stressing the importance of multi-habitat studies. Similarly, more recent 249 

research evaluating indices directly against observed species diversity in terrestrial (Alquezar & 250 

Machado, 2015; Mammides et al., 2017), aquatic (Harris et al., 2016) and urban (Fairbrass et al., 251 

2017) contexts conclude that whilst the approach holds promise, no single index can yet be reliably 252 

adopted as a proxy for biodiversity. These studies have tended to focus on small sets of indices and 253 

been carried out in a constrained set of biomes: the requisite comparative correlation study across 254 
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habitats which support diverse acoustic communities and acoustic density gradients has yet to be 255 

performed. 256 

Here we carry out a systematic, comparative analysis of AIs across a wide range of 257 

ecological conditions in both temperate and neotropical ecozones. The principle aim was to evaluate 258 

the response of a range of acoustic indices to observed changes in avian diversity, across a range of 259 

ecological conditions, in order to both evaluate current indices as ecological indicators and to inform 260 

the design of future indices suitable for low power devices. To this end, the suite of diversity indices 261 

proposed in Sueur et al. (2014b) were compared with parsimonious acoustic descriptors commonly 262 

used in other machine listening tasks.  263 

Two principle questions were addressed: 264 

i) Do existing AIs track observed differences in avian diversity?  265 

ii) Are compound indices more powerful predictors of avian species diversity than any single 266 

index?  267 

Two meta questions applied to both:  268 

- How does the presence of other vocalising species impact these relationships?  269 

- How do simple acoustic descriptors compare to bespoke ecoacoustic diversity indices? 270 

 271 

2. Methods 272 

2.1. Study Sites 273 

Acoustic surveys were carried out along a gradient of habitat degradation (1 forested, 2 regenerating 274 

forest and 3 agricultural land) in South East (SE) England and North Western (NW) Ecuador. The 275 

six sites (UK1, UK2, UK3, EC1, EC2, EC3) were sampled consecutively from May 6th - Aug 25th 276 

2015.  277 

All UK sites were in the county of Sussex, in SE England, an area of weald clays (Fig. 2, left) and 278 

included ancient woodland (UK1), regenerating farmland with patches of woodland (UK2) and a 279 



Acoustic Indices Predict Avian Diversity 

downland barley farm (UK3). Ecuadorian sites (Fig. 2, right) were situated in the NW of the country 280 

and included primary forest (EC1), secondary forest (EC2) and palm oil plantation (EC3). See 281 

supplementary material A for details. 282 

 283 

Fig. 2. Locations of sampling sites in the UK (left) and Ecuador (right): Forest Site, UK1 (N 50° 55' 16.763'' E 0°5' 23.071''); Secondary Forest, 284 
UK2 (N 50° 58' 8.548'' W 0° 22' 40.646''); Agricultural site, UK3 (N 50° 58' 8.548'' W 0° 22' 40.646''. Primary Forest, EC1, (N 0° 32' 17.628'' 285 
W 79° 8' 34.728''); Secondary Forest, EC2 (N 0° 7' 12.320'' W 9° 16' 37.103'') Agricultural, EC3 (N 0° 7' 48.864'' W 79° 12' 59.543'' 286 

2.2. Acoustic Survey Methods 287 

Ten day acoustic surveys were carried out consecutively at each study site using 15 Wildlife 288 

Acoustics Song Meter audio field recorders. Sampling points were arranged in a grid at a minimum 289 

distance of 200 m to minimise pseudo replication (the sound of most species being attenuated over 290 

this distance in all biomes). Altitudinal range of sample points across sites was minimised in order to 291 

prevent introduction of extraneous, confounding gradients. UK sites were within an elevational range 292 

of 10 m – 50 m and Ecuador 130 m – 390 m. Recording schedules captured 1 min every 15 min 293 

around the clock for 10 days at each site, resulting in 960 stereo recordings at each of 15 sample 294 

points for 3 habitat types in 2 different climates (86,400 1 minute stereo recordings in total). Data 295 

across the 15 sample points was pooled; inter-site variation was not explored in the current analyses. 296 

In the UK 3½ hours of each dawn chorus was sampled starting at 1 hour before sunrise. This range 297 

was determined to capture the onset, progression and peak of the dawn chorus, creating a temporal 298 
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gradient. The equatorial dawn chorus is more compact and was sampled for 2¼ hours starting 15 299 

mins before sunrise, capturing a comparable chorus onset and peak. 300 

The Song Meter is a schedulable, off-line, weatherproof recorder, with two channels of omni-301 

directional microphone (flat frequency response between 20 Hz and 20 kHz). Seven SM2+ and eight 302 

SM3 devices were deployed. Gains were matched between models (analogue gains at +36 dB on 303 

SM2+ and +12 dB on SM3 which has inbuilt +12 dB gain) and recordings made at resolution of 16 304 

bits with a sampling rate of 48 kHz.  305 

Local weather was recorded for each site using Met Office data from the nearest station in the 306 

UK (max 20 km distance) and a portable weather station located within 1 km of each study site in 307 

Ecuador.  These data were used to select a subset of 3 consecutive days based on lowest wind speeds 308 

and rainfall for each habitat.  309 

2.3. Avian species identification and soundscape descriptors 310 

In both ecozones all 15 survey points for each habitat were analysed over the 3 day subset for each of 311 

the 3 habitat types in both ecozones, giving a total of 2025 UK files (15 samples for each dawn over 312 

3 days for 15 points for 3 sites) and 1350 Ecuadorian files (10 samples at dawn over 3 days for 15 313 

sample points across 3 habitats). Stereo files were split and the channel with least distortion (due to 314 

wind, rain or faults) for each habitat type was preserved.  315 

These data subsets (2025 mono files for the UK and 1350 for Ecuador) were labelled with 316 

avian species and soundscape descriptors by ornithologists. Files were anonymised, randomised and 317 

presented to ornithologists expert to each ecozone (Joseph Cooper in the UK and Manuel Sanchez in 318 

Ecuador) who established vocalising species richness (N0) values by identifying each avian species 319 

heard in each minute file; an abundance proxy (NN) was achieved by recording the maximum 320 

number of simultaneous vocalisations heard for each species. Their labels were verified by a second 321 

expert for each ecozone (Penny Green in the UK and Jorge Noe Morales in Ecuador) who each 322 

listened to a randomized 10% of the labelled files for their respective ecozone. Pearson’s correlation 323 
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coefficient on species richness between these verified subsets showed acceptable agreement (R = 324 

0.85 for UK and 0.77 for Ecuador). Species ID from recording has recently been shown to be more 325 

powerful than traditional in situ point count, despite the loss in visual registers, and adopted here to 326 

ensure compatibility with acoustic computational methods (Darras et al., 2017). 327 

In order to establish the presence of other vocalizing species and enable comparison of 328 

indices with overall activity of the acoustic community, a subjective measure of biophonic density 329 

(BD) was recorded in the range 0-3, describing the percentage of time vocalisations of specific taxa 330 

occurred across each 1 min sample (0-25%, 25-50%, 50-75% and 75-100%). In the UK biophonic 331 

density included only avian calls; in Ecuador avian, amphibian and insect vocalisations were logged 332 

separately and combined (averaged) to provide an indication of the contribution of non-avian taxa to 333 

the acoustic community. Ordinal descriptors of rain, wind, motor noise, human and ‘other’ sounds 334 

were also recorded and assigned a value in the range 0-4 to describe the level of other soundscape 335 

components. See supplementary material B for instructions given to ornithologists.   336 

2.4. Filtering and screening 337 

All recordings were pre-processed with a high pass filter (HPF) with a cut off of 300 Hz (12 dB). 338 

Pre-processing recordings with a high pass filter (HPF) at 1 kHz is common as low frequency energy 339 

is often considered difficult to interpret, being affected by atmospheric noise (Napoletano, 2004); we 340 

reduced the threshold in order to minimise loss of relevant low frequency biophony of Ecuadorian 341 

species. The HPF also rectified a variable DC offset inherent in the SM3 machines. The main 342 

analyses focused on the files which had been listened to by the ornithologists. Of these, files labelled 343 

as distorted by wind, rain or electrical fault (assigned values of 4) were dropped from the main 344 

analyses, leaving 1976 and 1201 samples for UK and Ecuador respectively. This data set, henceforth 345 

the labelled data set, was used for the main analyses. 346 
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2.5. Acoustic Indices 347 

Seven of the core indices included in R libraries Seewave and Soundecology were investigated from 348 

five categories (ACI, ADI & AEI, BI, Hf & Ht, NDSI) along with three simple low level acoustic 349 

descriptors (RMS, SC, ZCR). Acoustic Richness was not used as it is a ranked index, obviating 350 

inclusion in correlation analyses where each record is treated as a statistical individual. Indices were 351 

calculated across 0-24 kHz for each 1 minute file otherwise stated. 352 

1. Acoustic Complexity Index (ACI) (Pieretti et al., 2011) is calculated as the average absolute 353 

fractional change in spectral amplitude (across 0.3-24 kHz) for each frequency bin in consecutive 354 

spectrums. The main ACI value is the average value over 1 minute using default parameters  (J = 5 355 

bins per second).  356 

2. Acoustic Diversity Index (ADI) and Acoustic Evenness Index (AEI) (Villanueva-Rivera et 357 

al., 2011) are calculated by first dividing a spectrogram into 10 bins (min-max 0-10 kHz), 358 

normalizing by the maximum, and taking the proportion of the signals in each bin above a 359 

threshold (-50 dBFS). AD is the result of the Shannon Entropy of the resultant vector; AE is the 360 

Gini coefficient, providing a measure of evenness.  361 

3. Bio-acoustic Index (BI) (Boelman et al., 2007) is calculated as the area under the mean 362 

spectrum (in dB) minus the minimum dB value of this mean spectrum across the range 2-8 kHz. 363 

4. Spectral and Temporal Entropy (Hf and Ht) (Sueur et al., 2008) are calculated as the 364 

Shannon entropy of a probability mass function (PMF). For Hf the PMF is derived from the mean 365 

spectrum, for Ht from the amplitude envelope.   366 

5. Normalised Difference Sound Index (NDSI) (Kasten et al., 2012) is the ratio (biophony - 367 

anthrophony) / (biophony + anthrophony). The values for each are computed from an estimated 368 

power spectral density using Welch's method (win = 1024) where anthrophony is the sum of energy 369 

in the range 1-2 kHz and biophony across 2-11 kHz. 370 

6. Root-Mean-Square (RMS) is calculated by taking the root of the mean of the square of 371 

samples in each frame (N = 512).   372 
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7. Spectral Centroid (SC) (Peeters, 2004) is calculated as the weighted mean of the 373 

frequencies present in the signal, per frame, determined from an SSFT where the weights are the 374 

magnitudes for each bin. 375 

8. Zero-Crossing Rate (ZCR) (Peeters, 2004) is the number of times the time domain signal 376 

value crosses the zero axis, divided by the frame size.  377 

 378 

Calculations were carried out using a bespoke python library to facilitate rapid computation [3]. 379 

Indices in categories 1-5 were based on implementations in the seewave library (Sueur et al., 2008) 380 

[1] and soundecology [2] R packages; results from the python library were validated experimentally 381 

to ensure absolute equivalence with the R packages. For indices in categories 2-5 a single value was 382 

calculated for each 1 minute file. Indices based on frequency analyses (1-5, 7) were calculated from 383 

a spectrogram computed as the square magnitude of an FFT using window and hop size of 512 and 384 

256 frames respectively.  Indices based on short sections (frames) of audio (1, 6, 7, 8) were 385 

calculated for 512 samples. Mean, variance, median, minimum or maximum are recognized to track 386 

different facets of the acoustic environment; each of these 5 statistical variants were calculated for 387 

frame-based indices (ACI, SC, RMS and ZCR) giving a total of 26 indices. 388 

 389 

2.6 Baseline Avian Diversity  390 

Baseline community measures of diversity and abundance (Santini et al. 2016) were calculated for 391 

the subset of labelled data. Avian, amphibian and insect densities were compared per habitat type 392 

and registers of other vocalizing species recorded. 393 

 394 

2.7 Statistical Analyses 395 

2.7.1 Do AIs track changes in avian diversity? 396 
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Three aspects of avian diversity were evaluated i) changes in species richness and abundance across 397 

sample points; ii) diurnal variation in vocalization density; iii) habitat dependent variation in 398 

community composition.  399 

Correlation Analyses (Q1 a): To test the relationship between each of the AIs, and avian species 400 

diversity and biophonic diversity across all sample points, two-tailed Spearman's rank correlations 401 

were carried out between each of the 26 AIs, species richness, species abundance and biophonic 402 

density (BD). In line with previous research (Mammides et al., 2017) species richness (N0) was seen 403 

to correlate strongly with abundance (NN) in both ecozones, presumably due to short survey times, 404 

so further analyses were carried out using N0 only. 405 

 406 

Time series plots (Q1 b): In order to observe how AIs relate to a gradient of vocal community 407 

density, time series plots of the full data set were made; AI values (1 min every 15) for each channel 408 

over each of the 10 sampling days were calculated and plotted relative to dawn for each of the 15 409 

sample sites at each habitat (28,800 values per habitat per ecozone).  410 

Multivariate Classification (Q1 c): To evaluate whether AIs reflect observed differences in 411 

community composition between habitats, clustering analyses were performed on species abundance 412 

data and AIs for the labelled data (UK = 1976, EC = 1201).  A multivariate random forest classifier 413 

(MRF) (Breiman, 2001) was built for each ecozone, with habitat type as response and either species 414 

relative abundance (EC = 90, UK = 65) or AI (n=26) as predictors.  The out of bag (OOB) error rate 415 

gives the MRF predictive power and OOB confusion matrices obtained from the MRF predictor. 416 

Error rates are taken as a measure of how distinct each habitat is, in terms of either avian community 417 

composition or acoustic environment. 418 

 419 

2.7.2 Are compound indices more powerful than any single metric? 420 

Multivariate Regression Analyses (Q2) 421 
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To test whether compound indices are more powerful predictors of avian species richness than any 422 

single AI, and to investigate the relative contributions of each, a multivariate random forest 423 

regression model was built for each ecozone using all 26 AIs as predictors and species richness as 424 

the response. Nine AIs were used at each split with a minimum terminal node size of 10. AIs and 425 

species richness values were first standardised (µ= 0,  σ= 1). Random forests (Breiman, 2001) are 426 

not parsimonious, but use all available variables in the construction of a response variable. For each 427 

variable we examined two metrics: the minimum depth of each variable in the tree, as a proxy for 428 

relative predictive importance (Ishwaran, Kogalur, Gorodeski, Minn, & Lauer, 2010) and the partial 429 

effect of each variable to understand its relationship to the response variable (i.e. removing the 430 

effects of interactions) (Friedman, 2001), this provided a means to assess relative contributions of 431 

AIs in predicting species diversity. Although error rates plateaued around 250 trees, a full 1000 432 

strong forest was generated in order to allow predictors to stabilize. Models were constructed using 433 

the randomForestSRC package in R 3.3.3 (minimum terminal node size 10, 9 variables tried at each 434 

split). Results were plotted using ggplot2 (Wickham, 2009). 435 

3. Results 436 

3.1 Measures of acoustic diversity: Avian species richness and multi-taxa biophonic density 437 

A total of 65 avian species were registered in the UK (52 in UK1, 61 in UK2 and 49 in UK3) and 83 438 

in Ecuador (53 in EC1, 69 in EC2 and 58 in EC3). Per sample site avian species richness (Fig. 3) 439 

followed the same pattern, with medians being highest in the secondary habitats of both ecozones 440 

and lowest in the agricultural site for UK and the primary forest for Ecuador (Fig. 3). Subjective 441 

ratings of biophonic density per species (Fig. 4) show the same pattern for UK species richness, with 442 

highest overall avian vocalization density in UK2 and lowest in UK3. In Ecuador avian activity was 443 

consistently high in EC2 and EC3, with greater variation in EC1; Amphibian activity was higher in 444 

EC1 than EC2 and EC3 where calls are much sparser and insect activity was lowest in EC3 relative 445 

to EC1 and EC2 during the dawn chorus.  446 
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 447 

Fig. 3 Tukey’s box plots of avian species richness per sample site for each habitat in UK (left) and Ecuador (right). The highest median avian 448 
species richness per sample site was observed in secondary habitats in both ecozones. Horizontal lines represent medians; the box represents the 449 
interquartile range; whiskers represent min and max values within 1.5 IQR. Shapiro-wilk normality test showed neither data set to be normal (UK W = 450 
0.966, p < 0.0001; EC W = 0.968, p < 0.001). Non-parametric two sample tests confirmed observed differences in species richness between each 451 
habitat in the UK to be significant (p < 0.001); in Ecuador richness in both secondary forest and agricultural plantation was significantly greater than in 452 
the primary (p < 0.001), but differences between secondary and agricultural habitats were non-significant (p = 0.175). See supplementary material C for 453 
full details. 454 

 455 

 456 

Fig. 4 Box and whisker plots for multi-taxa biophonic density (BD) per sample site. Horizontal lines represent medians; the box represents the 457 
interquartile range; whiskers represent min and max values within 1.5 IQR.  For the UK (far left) biophonic density is equal to the percentage acoustic 458 
cover per 1 min file of avian vocalisations. Each band is assigned a value 0-3 for analysis. For Ecuador (right) BD includes avian, amphibian and 459 
invertebrate vocalisations and is calculated as the average score for each 1 min file. 460 

 461 
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3.2.1 Correlation Analyses 462 

Each one of the 26 AIs showed a significant correlation between both UK species richness and 463 

biophonic density (Fig. 5). In Ecuador significant correlations between richness and biophonic 464 

density were observed in 19 and 24 of the 26 indices respectively. Correlations were strong between 465 

many AIs and both measures of biodiversity in the UK, but weak between AIs and richness in 466 

Ecuador (Fig. 5 and supplementary material D for scatter plots). 467 

 468 

Fig. 5.  Spearman's rank coefficients for correlations between each acoustic index and species richness (top) and biophonic density (bottom) for UK 469 
(left, N = 1976) and Ecuador (right, N = 1201). Stars denote p-values (*** < 0.001, ** < 0.01, * < 0.05, . < 0.01), colours group class of index. 470 

 471 

In the UK the highest correlation coefficients were for ADI, AEI and BI; they all had coefficients  472 

greater than 0.6 with both biophonic density and species richness. All indices show positive 473 

relationships, save the entropy indices (Ht, Hf and ADI) which are negatively associated with both 474 

(Fig. 5). However, the simple descriptors (RMS, SC and ZCR) all also indicated moderate 475 

correlations (> 0.5) with both biophonic diversity and species richness; RMS metrics all showed 476 

positive relationships, ZCR and SC were negatively associated with both measures of acoustic 477 
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community diversity, except for the variances, which showed smaller, positive associations. 478 

Correlations between AIs and species richness in Ecuador were generally low; in contrast, moderate 479 

significant relationships are observed between AIs and biophonic density, with relative strengths 480 

following a very similar pattern to those observed in the UK. Overall there were no strong consistent 481 

differences between the variants of each index, although the variances had a tendency toward lower 482 

correlations.  In the UK, variance of ZCR and SC shows a positive relationship, as expected. 483 

3.2.2 Time Series Plots 484 

Examination of the response of AIs to diurnal changes in acoustic activity seen in the full data set 485 

helps to interpret the results of the correlation analyses of the labelled subset, including the negative 486 

correlations observed for the entropy indices. Diurnal soundscape patterns in all habitats are clearly 487 

observable in the temporal variation of AI values over 24 hour periods (Fig. 6). UK nights (Fig. 6 488 

top) are quiet relative to day time avian activity: this is seen in low nocturnal values of ACI, AEI, BI 489 

and RMS. Entropy indices (ADI, Hf and Ht), SC and ZCR show the reverse pattern, as per 490 

correlation results. In contrast, Ecuadorian nights (Fig. 6 bottom) show an increase in acoustic 491 

activity. Peak activity at dawn and dusk anuran choruses are clearly visible as strong peaks in the 492 

AEI, inverted in Ht.  493 

 494 
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 495 

 496 

Fig. 6 Main AI values for each 1 min file for all 15 sample sites averaged over 10 days in each UK (top) and EC (bottom) habitat type and plotted 497 
relative to dawn (vertical dashed line). Central band shows mean and standard deviation; IQR is denoted by dashed lines. N = 28,800 per habitat.  498 
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3.2.3 Classification Analyses 499 

Overall, errors were lower for multivariate classification by AIs than by species in both the UK and 500 

Ecuador (Fig. 7 right versus left, top and bottom) but follow the same pattern or relative magnitudes. 501 

This suggests that differences in acoustic environments between sites are greater than inter-site 502 

differences in community composition but track changes in community composition: Errors for UK 503 

by species are lowest for UK3 (5%) compared to the two forested habitats UK1 (15%) and UK2 504 

(22%); classifcation errors by AIs, are lowest of UK3 (3%), suggesting that UK3 has the most 505 

distinct soundscape as well as the most distinct avian community.  506 

 507 

 508 

 509 

For Ecuador, errors for classification by species were lowest in EC1 (1%) with higher errors in EC2 510 

Fig. 7. Confusion matrices for multivariate classification of habitat by species (left) and acoustic 
indices (right); actual habitats are shown in columns and predictions as rows for EC (N = 1201: 424, 
420, 357) and UK (N = 1976: 663, 645, 668). Overall OOB classification errors are shown in each 

subplot title, and error rates per habitat type on the x-axes. 
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(18%) and EC3 (21%), suggesting that there are more shared species between EC2 and EC3 than in 511 

the primary forest of EC1. Similarly, errors for acoustic indices are negligible for each habitat in 512 

Ecuador (1%, 3% and 1% respectively), suggesting soundscapes at each site are highly distinct. 513 

3.3. Multivariate Random Forest Regression Analyses 514 

MRF regression analyses confirm that compound indices are stronger predictors of species richness 515 

than any single index: BI is the strongest single predictor of N0 in both UK (34% variance 516 

explained) and Ecuador (13% variance explained) (Fig. 8). For the UK, AEI also makes a significant 517 

contribution (18%), followed by ACI.med, ACI, ADI, ACI.min, ACI.max and ZCR.mean, NDSI and 518 

ACI.var. In Ecuador, the simple acoustic descriptors make significant contributions: ZCR.mean 519 

accounts for an additional 13% variance, followed by SC.max, NDSI, ZCR.med, ACI.var and 520 

RMS.var.  All other indices exceed the analytic threshold (Ishwaran et al., 2010), suggesting that 521 

they all make a contribution to predictive power, however small. These results clearly demonstrate 522 

that a compound index has more predictive power than any single AI alone. Partial dependence plots 523 

which elucidate the nature of these relationships are given in supplementary material E. 524 

 525 
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 526 

Fig. 8 Cumulative percentage variance explained by multivariate random forest regression model using all 26 AIs as predictors of N0 for UK 527 
(60% variance explained, error rate = 3.28%, top) and EC (47% variance explained, error rate 2.65%, bottom). AIs are ordered by minimal depth. 528 
 529 
 530 

Discussion 531 

The observed correlations between species richness and AIs in temperate habitats approach the 532 

strengths expected for AIs to be adopted as indicators of biodiversity and are stronger than those 533 

reported in recent smaller scale terrestrial correlation studies.  Thus although it has been suggested 534 

that there are many other sources of acoustic heterogeneity that could undermine the value of AIs as 535 

proxies for biodiversity (Gasc et al., 2013), the present results suggest that with sufficient spatial and 536 

temporal replication these local individual differences may be ameliorated by community level 537 

effects. 538 

We report five key findings which contribute to the interpretation, development and application of 539 

acoustic indices for biodiversity monitoring in the future: i) Vocalising species richness does not 540 

necessarily increase with ecological status ii) AIs track changes in acoustic community composition 541 

and reveal strong differences in acoustic environments between habitats iii) AIs correlate strongly 542 

with vocalising avian species richness in temperate (mono-taxa) environments and with subjective 543 
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measures of biophonic density in both tropical and temperate ecozones; iv) Performance of simple 544 

acoustic descriptors approaches that of bespoke diversity indices across ecological conditions and 545 

contributes more to predictive power than most diversity indices in multi-taxa environments; v) 546 

compound indices are more effective than any single index in predicting species richness. 547 

4.1 Vocalising avian species richness does not increase with habitat status. Registered avian 548 

species richness was significantly higher in the secondary habitats than the ancient temperate and 549 

primary tropical forests. The relationship between habitat status and species diversity was not a 550 

central question of the current study, but a positive relationship between habitat status and acoustic 551 

diversity is a foundational assumption of RAS (Sueur et al., 2008) and ecoacoustics (Villanueva-552 

Rivera et al., 2011). Our results challenge this assumption and are in line with previous studies: a 553 

similar pattern was observed in a study in the Ecuadorian Cloud Forest (Eldridge et al., 2016); 554 

greater diversity has also been reported in young, evolving forests compared to mature forests 555 

(Depraetere et al., 2012); and recent studies evaluating the relationship between soundscape and 556 

landscape in Australian Gum forests similarly find no clear, positive relationship between 557 

biocondition and species richness (Fuller et al., 2015). That the secondary forest sites show greater 558 

avian species richness is not unexpected: all exhibited over a decade of regrowth, providing a range 559 

of niche space for a wide diversity of avian species (Reid, Harris, & Zahawi, 2012). More generally, 560 

it is recognized that high diversity does not ensure that a site has a high ecological value (Dunn, 561 

1994), and that species richness alone may not be sufficient to fully understand ecosystem resilience 562 

and functioning (Chillo, Anand, & Ojeda, 2011).  Therefore, the assumption that acoustic 563 

diversity is a proxy for habitat health may be questioned. 564 

 565 

4.2 AIs track changes in community composition across habitat types and reveal strong 566 

differences in acoustic environments between habitats. Multivariate classification analyses 567 

showed that AIs follow the same pattern of change across habitats as species composition; errors for 568 

classification by AIs were even smaller than errors by species lists, suggesting that between habitats 569 
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differences in acoustic environment are even greater than differences in acoustic community 570 

composition. The ecological relevance of these differences is unclear but warrants further 571 

investigation. Explanations include: i) differences in vocalization characteristics of registered 572 

species. For example, the agricultural land in the UK differed from the forest sites in the presence of 573 

skylarks and absence of pheasants, both species having very distinct calls which strongly impact 574 

many of the indices values; ii) Prevalence of non-avian taxa. As seen in Fig. 4 there were marked 575 

differences in anuran and invertebrate activity across sites; iii) site-specific differences in 576 

anthrophonies such as airplanes, generators or human voice; iv) site-specific differences in 577 

geophonies (wind, rain), potentially augmented by the impact of habitat structural variation on 578 

propagation of acoustic signals. These results tentatively point to the possibility that acoustic 579 

assessments could potentially provide a more complete measure of biodiversity than traditional 580 

avian surveys; further research should investigate the potential for acoustic assessment of 581 

community composition and ecologically relevant differences in acoustic environments.  582 

 583 

4.3 AIs correlate with vocalising avian species richness in temperate (mono-taxa) 584 

environments. Strong correlations were also observed between AIs and subjective measures of 585 

biophonic density in both tropical and temperate ecozones. Overall, we observe stronger 586 

relationships between AIs and species richness in temperate habitats than have been reported in 587 

recent correlation studies, possibly because these previous studies were carried out in tropical 588 

environments where results may have been confounded by other vocalizing taxa. This interpretation 589 

is supported by the fact that AIs correlate significantly with the subjective multi-taxa measure of 590 

biophonic density in both ecozones in the current study. 591 

These results suggest firstly that AIs successfully track acoustic communities, (even in the presence 592 

of considerable anthrophony and geophony), and secondly reiterate the need to develop and test 593 

acoustic methods to assess multi-taxa communities.  594 
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Observed relationships between avian species richness and BI, ACI and NDSI are largely in line 595 

with previous findings. In contrast, entropy and evenness indices (AEI, ADI, Hf, Ht) show an inverse 596 

relationship to many previous findings. Results for each class of index are discussed below: 597 

• The Bioacoustic Index showed the best overall performance, being the strongest 598 

predictor of avian species richness in both ecozones and showing strong positive correlations 599 

with species richness in the UK and biophonic density in Ecuador and the UK. This result 600 

corroborates previous studies which report strong correlations between BI and avian species 601 

abundance (Boelman et al., 2007), number of bird vocalizations (Pieretti et al., 2011) and 602 

biotic diversity (Fairbrass et al., 2017). The superior performance of BI over other indices 603 

could be attributed to the fact that it is calculated across a narrower frequency range, 604 

potentially strengthening the relationship with biophony by reducing sensitivity to low 605 

frequency engine and wind noise and high frequency components of insect calls. This is a 606 

simple but important considering in the design of future indices. Future indices could be 607 

band limited and tuned to the range of calls of interest.  608 

• Correlations between ACI and species richness in the UK are in line with many 609 

previous findings which report positive relationships between ACI and number of avian 610 

vocalisations (Pieretti et al., 2011) and reef fish abundance in temperate (Harris et al., 2016) 611 

and tropical (Bertucci et al., 2016) marine environments. The weaker relationship between 612 

ACI and observed species richness and negative relationship to biophonic diversity in Ecuador 613 

is understandable given the other biophonies present: ACI acts as an event detector, so it will 614 

likely track insect and amphibian calls with rapid onsets; similar negative trends have recently 615 

been reported in other areas of high species diversity (Mammides et al., 2017). It is of note but 616 

not surprising that median values performed a little better than the standard mean value, being 617 

less susceptible to extreme changes which may be due to wind, electronic error or other 618 

biasing outliers. Median, rather than mean values may be more robust metrics in general. 619 
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• Although NDSI was developed to capture anthropogenic disturbance, rather than 620 

acoustic community diversity, significant relationships with bird species richness have been 621 

reported elsewhere (Fuller et al., 2015), however weak and non-significant correlations have 622 

also been observed (Mammides et al., 2017). The moderate, positive correlations observed 623 

here between species richness and biophonic density likely reflect an overall increase in 624 

biophonies relative to background technophonies - which were present in all habitats here - 625 

supporting the use of NDSI as a high-level measure of anthropogenic disturbance. As has 626 

been highlighted elsewhere, assumptions over frequency range of anthrophony and biophony 627 

may be over simplistic: frequency components of anthropogenic and biotically generated 628 

sounds are not necessarily strictly band-limited, but could potentially be tuned to meet local 629 

characteristics. For example, calls of the Ecuadorian Toucan barbet (Semnornis ramphastinus) 630 

contain spectra as low as 300 Hz, well below the default 2 kHz lower limit of biophony in 631 

NDSI. Ranges for frequency-dependent indices could be tuned to particular 632 

characteristics of local communities of interest. 633 

• The Acoustic Evenness Index (AEI) showed the highest correlation with species 634 

richness in the UK and contributed strongly to prediction in the multivariate regression model. 635 

The observed strong positive correlations between species richness and Acoustic Evenness 636 

Index and negative correlations between species richness and the entropy indices show that 637 

evenness of the spectra decrease with increasing richness for ADI, Ht and Hf. These finding 638 

are at odds with some previous short term correlation studies, but show the same patterns 639 

observed in longer term soundscape investigations (Gage & Farina, 2017) and shed light on 640 

inconsistencies previously reported for entropy indices (Depraetere et al., 2012; Sueur et al., 641 

2014b). Given that the measurement of acoustic diversity is foundational to RAS, reconciling 642 

these inconsistencies is important, as conflicting accounts exist both empirically and 643 

hypothetically. 644 

 645 
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4.3.1. Interpretation of Entropy Indices. AEI, ADI and Hf are derived by calculating Gini and 646 

Shannon indices on the relative distribution of acoustic energy across frequency bands in a given 647 

recording. The motivational logic is that an increasing number of species will generate signals across 648 

a wider range of frequencies due to partitioning (Sinsch, Lümkemann, Rosar, Schwarz, & Dehling, 649 

2012; Sueur, 2002), resulting in increased evenness (AEI tends to zero and ADI and H to 1). 650 

However, this is only true over the bandlimited range of bird song (often cited as 2 – 8 kHz). Over a 651 

wider frequency range, the inverse prediction also stands: as the mid- and high-frequency range of 652 

songbird vocalisations increase relative to acoustic energy at the top and bottom of the spectrum, 653 

evenness would decrease (AEI tends to 1). Therefore, both the strength and direction of relationship 654 

between biophonic diversity and entropy indices is related to the frequency range analysed.  655 

The bimodal response of entropy indices also makes interpretation difficult. Entropy metrics in both 656 

time and frequency domains report high values for signals with diametrically opposed acoustic and 657 

ecological characteristics: As noted in the seewave documentation, the temporal entropy of signals of 658 

high acoustic activity (with many amplitude modulations) and a quiet signal will both tend towards 659 

0, but a sustained sound with an almost flat envelope will also show a very high temporal entropy. 660 

Similarly, for any given frequency range, the spectral entropy of a signal of high acoustic activity 661 

and diversity (lots of species calls across different frequencies) will produce a high value, whereas 662 

the call of a single species will produce an isolated spike and a low value. However, recordings with 663 

very low acoustic activity and low signal:noise ratio will also result in a high diversity value due to 664 

the low magnitude, flat spectra. Entropy indices have a bimodal, rather than unimodal response. 665 

Thus, whether ADI and AEI decrease or increase with increasing species richness depends on 666 

whether you compare high activity either to silence or low activity, i.e. the length of acoustic density 667 

gradient. Inconsistencies in results for H indices have previously been attributed to the presence of 668 

technophony (plane, car, farm machinery or train) (Depraetere et al., 2012) which produce a flat 669 

spectrum similar to the broadband white noise of silence. The sampling regime deployed here 670 

highlights that low signals (silence) gives similar results. Thus, when a long gradient of vocalization 671 
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density is included in the sampling protocol, inequality and entropy decrease with species richness, 672 

in direct contrast to standard ecological interpretations of Gini-Simpson and Shannon-Wiener indices 673 

when applied to species counts. Entropy indices are non-intuitive and must be interpreted 674 

carefully. 675 

 676 

4.4 Performance of simple acoustic descriptors. The performance of simple acoustic descriptors 677 

RMS, ZCR and SC suggest alternatives to single temporal or spectral diversity metrics and inspire 678 

further research in the development and testing of acoustic indices. Correlation strengths of RMS, 679 

ZCR and SC approached that of the diversity indices and, in Ecuadorian habitats, ZCR and SC made 680 

significant contributions to species richness predictions. As expected, RMS shows a positive 681 

association with increasing vocal activity and ZCR and SC are negatively associated. Rather than 682 

measuring acoustic diversity, these simple descriptors track changes in amplitude (RMS), spectral 683 

(SC) and temporal characteristics of signals (ZCR). RMS and SC are intuitive to interpret; the 684 

contribution of ZCR to predicting avian richness in complex multi-taxa environments can be 685 

understood in light of its recognized power in percussion classification tasks. The ZCR of the decay 686 

portion of percussive sounds is reported to out-perform more complex computations in separating the 687 

high pitch sharp attacks of snare drum hits from lower frequency, slower onset, bass drum strikes 688 

(Gouyon et al., 2002). The possibility that such a simple descriptor may track distinct characteristics 689 

of the vocalisations of different taxa -  such as the rapid onset of harmonic bird vocalisations versus 690 

the continuous noise of some invertebrates - warrants further investigation. Computational simplicity 691 

translates to low energy requirements, making these simple descriptors ideal candidates for 692 

implementation of in situ analysis for the emerging generation of monitoring networks built from the 693 

emerging generation of embedded devices.  694 

4.5 Compound indices are more effective than any single index in predicting species richness. 695 

Multivariate regression results demonstrating the superior performance of compound over single 696 

indices are in line with results of previous studies (Wimmer et al., 2013) and follow intuition. 697 
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Besides increasing predictive power, another advantage of compound indices is that they are likely to 698 

be less biased by dominant species vocalisations. Some indices are particularly sensitive to certain 699 

call characteristics, compromising their reliability as a biodiversity proxy. For example, we have 700 

noticed in previous work that the high frequency short, rapid shrill of the Dusky Bush Tanager 701 

(Chlorospingus semifuscus) generates high ACI values. The first generation of ecoacoustic indices 702 

aimed to provide single values of acoustic diversity; future research should focus on 703 

development and testing of a suite of complementary features for use in a compound index, 704 

capturing timbral as well as temporal and spectral characteristics. Site-specific compound 705 

indices could then be developed, for example by tuning relative weights by carrying out a PCA on a 706 

sample recording. 707 

 708 

4.6 Future Directions in Acoustic Indices 709 

The development of indices for RAS in multi-taxa environments can be approached under one of two 710 

principles: either focus on a single identified indicator taxon (birds or amphibians) and removing 711 

unwanted sounds (insect choruses, wind rain); or attempting to capture the global interplay of multi-712 

species multi-taxa choruses. Exciting advances are being made in both areas using machine learning: 713 

source separation algorithms can be used to tackle the former  (Xie et al., 2016), and unsupervised 714 

clustering algorithms have been productively applied to analyse the variety of sounds sources in long 715 

term monitoring projects (Phillips et al., 2018). Whilst powerful these approaches are too 716 

computationally intensive to run on microcomputers in situ. The use of simple acoustic descriptors 717 

which track changes across spectral, temporal and timbral dimensions of vocalisations offer an 718 

alternative, parsimonious approach to monitoring the integrated chorus and point to new directions 719 

for the development of tuneable, compound ecoacoustic indices capable of tracking the dynamics of 720 

multi-taxa acoustic communities. 721 
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5. Conclusion 722 

Results from acoustic surveys across a wide range of ecological conditions, in temperate and tropical 723 

ecozones support the use of acoustic indices to appraise avian species richness in temperate but not 724 

in the multi-taxa acoustic communities of tropical habitats. Compound indices appear to be sensitive 725 

to habitat-dependent changes in acoustic community composition, which could provide a potentially 726 

more cost-effective and nuanced assessment than current standard avian surveys against which we 727 

are validating. These results both highlight the need for, and inspire the development of, new indices 728 

for monitoring more complex multi-taxa communities. Our results clearly demonstrated that 729 

compound indices are to be recommended, and that development and testing of new simple timbral, 730 

spectral and temporal indices to complement existing diversity indices deserves further investigation. 731 

Future research should confirm these results and further integrate extant knowledge from machine 732 

listening and bioacoustics research to create more powerful computational methods for the analysis 733 

of acoustic community dynamics at extended spatio-temporal scales. By doing so we can maximize 734 

the potential for ecoacoustics methods to provide robust, cost-effective tools for ecological 735 

monitoring and prediction. 736 
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