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ABSTRACT 

The focus of this thesis is the design of low-dimensional coordination polymers (CPs) using 

semi-rigid N-donor ligands based on heterocyclic molecules, especially benzotriazole, and 

the investigation of their potential magnetic and catalytic properties.  

 

Chapter 1 serves as a general introduction to the chemistry discussed in the thesis. The first 

part emphasizes on the synthetic aspects and applications of CPs. The second part presents 

the unique chemical characteristics of benzotriazole and includes a thorough literature review 

on its use as a ligand in coordination chemistry, culminating to the development of a ligand 

system for the design of the targeted materials.   

 

Chapter 2 introduces the main family of benzotriazole-based ligands (L1-L3) employed in 

this thesis, focusing on their coordination chemistry with cobalt salts. The synthesis and 

characterisation of a series of novel 0D, 1D and 2D compounds with a large structural variety 

is reported. Synthetic aspects and magnetic properties of selected compounds are discussed. 

 

Chapters 3, 4 and 5 report a series of copper coordination compounds employing L1-L3 as 

well as analogous N-donor ligands (L4-L8). A system of 1D CPs is established and 

investigated for its catalytic properties in a range of organic transformations that includes the 

synthesis of 1,4-dihydropyridines through a previously unreported route, the A3 coupling and 

the ‘click’ azide-alkyne cycloaddition reaction. Investigations into optimising the catalytic 

behaviour and mechanistic aspects of this system are presented.  

 

In Chapter 6 the coordination capabilities of L1-L3 are combined with the rich chemistry of 

silver salts to generate a structurally diverse family of 0D, 1D and 2D compounds. 

Investigations of their potential catalytic properties in the A3 coupling and alkyne hydration 

reactions are additionally presented.  

 

Chapter 7 provides an overall conclusion to the work presented in the thesis, including its 

contributions to the reported literature as well as potential future directions. Finally, 

experimental and synthetic details as well as crystallographic data are presented in Chapter 

8 and Chapter 9 respectively. 
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Chapter 1: General Introduction 

 

1.1. Coordination Polymers  

 

1.1.1. Classifications and Brief History 

Throughout the numerous amount of studies performed in the fields of Inorganic and 

Coordination Chemistry during the last 50 years, research on Coordination Polymers (CPs) 

holds a leading position. CPs are infinite, hybrid organic-inorganic compounds; they are 

constructed from metal centres linked to each other via organic ligands (linkers) through 

coordination bonds, thus forming structures that extend into one, two or three dimensions1,2 

(Scheme 1.1). Metal-Organic Frameworks (MOFs), a term popularized by Yaghi et al. in 

19953,4, refers to compounds also included in this class. They may be defined as high-

dimensional porous CPs that are capable of including guest species within their cavities. 

 

 

Scheme 1.1. A schematic representation of one-, two- and three-dimensional coordination 

polymers.  

 

While the term of “coordination polymer” has been regularly used in scientific reports since 

the 1950s5, interest in this field exploded rapidly in the early 1990s (Scheme 1.2) when 

Robson and others published a series of papers6–11 proposing a design approach towards CPs 

with targeted structures. The development of this concept was further aided by the rising 
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growth of crystal engineering, which concerns the study and understanding of intermolecular 

interactions (eg. hydrogen bonds, halogen bonds, π··π interactions etc.) in a crystal structure, 

towards the design of new molecules with desired applications12–14. These concepts have 

been widely used for the production of CPs ever since15: synthetic variables such as ligand 

and metal source selection, or experimental conditions (e.g., solvent, temperature) may be 

controlled and manipulated to afford polymeric compounds with the desired shape and 

dimensionality, and most importantly the desired applications. The most important of these 

aspects will be further discussed in the following section. 

 

  

Scheme 1.2. Number of publications per year on the topics of “coordination polymer(s)” or 

“metal organic framework(s)”. Based on a Web of Science search (June 2018).  

 

1.1.2. Synthetic Aspects of Coordination Polymers 

When approaching the design of CPs/MOFs, the initial step involves the choice of 

appropriate organic linker(s) and metallic sources. The following subsections will explore 

the plethora of options available for both of these parameters. 
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1.1.2.1. Ligand Selection 

 

1.1.2.1.1. Rigid Ligands 

During the emergence of MOFs and rational design concepts rigid organic linkers with a 

fixed geometry quickly became the popular choice amongst researchers. In particular, several 

studies have reported the use of polycarboxylate ligands towards the construction of CPs and 

especially MOFs. These O-donor ligands can easily coordinate to a range of transition metals 

and lanthanides under various binding modes (mono- or multi-dentate, chelating or bridging). 

Their fixed geometry provides an excellent opportunity to tune the architecture of the 

resulting network in accordance with the chemical nature of their backbone. A well-known 

example of this concept was reported by Yaghi and others in multiple studies16,17. The authors 

employed 1,4-benzenedicarboxylate (bdc), a rigid linker with a fixed angle of 180° between 

the two carboxylic groups, towards the construction of a MOF formulated as 

[Zn4O(bdc)3]·(solvent) (1.1). The main building unit of this compound contains a Zn4O 

tetrahedron in which the oxide ion is located in the centre (Figure 1.1, left). These units are 

linked to each other by bridging bdc ligands which coordinate to the metal centres, 

completing the charge balance and contributing towards the tetrahedral geometry of each ZnII 

ion. Owed to the geometrical characteristics of the bdc linkers, the resulting structure is a 

three-dimensional cubic framework with large pores (Figure 1.1, right). Further optimization 

was made possible by extending the length of the polycarboxylate linker while retaining the 

same building unit (iso-reticular synthesis), which in turn increased the size of the pores. 

Notably, the use of p-terphenyl-4,4′′-dicarboxylate (tpdc) resulted in the analogous 

[Zn4O(tpdc)3] 3D CP which exhibited an extremely high porous volume of 91.1% in the 

absence of guest solvent molecules.  
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Figure 1.1. The building unit (left) and the porous 3D framework (right) in compound 1.1. 

Hydrogen atoms and guest molecules are omitted for clarity. Colour code Zn (grey), C 

(black), O (red). 

 

Another design approach involves the use of N-donor ligands. Initially, a popular use of this 

type of linkers was as a secondary (co-) ligand in polycarboxylate-based CPs to increase the 

dimensionality in the resulting framework. The linear bridging linker 4,4´-bipyridine (bipy) 

has been commonly used in such a fashion. For example, compound 

[Ni6(btc)4(bipy)6(H2O)9(MeOH)3] (1.2, where btc = benzene-1,3,5- tricarboxylate) 

synthesized by Rosseinsky’s group18 contains [Ni3(btc)2]-based nodes that expand infinitely 

to generate porous 2D sheets with a honeycomb-like architecture. Bipy molecules occupy 

the axial positions of the NiII centres and are perpendicular to these sheets, resulting in a 

pillared 3D MOF structure (Figure 1.2). The porous volume of 1.2 was determined at 74% 

after guest solvents were removed.  
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Figure 1.2. The building unit (left) and the porous honeycomb-like framework (right) in 

compound 1.2. Hydrogen atoms and certain guest molecules are omitted for clarity. Colour 

code Ni (green), C (black), N (light blue), O (red). 

 

However, an increasing number of reports have recently surfaced in which rigid N-donor 

linkers based on heterocyclic molecules are employed as primary ligands. Most of the ligands 

used in this category are neutral, resulting to architectures that are cationic as the charge 

balance is completed by the anion component of the metal salt. This strategy can cause certain 

disadvantages compared to polycarboxylate-based linkers, depending on the coordinating 

nature of the employed anion. Non-coordinating anions are usually found within the voids of 

the framework, reducing its porosity. They can also participate in various non-covalent 

interactions which further hinders their removal from the framework. Stronger-coordinating 

anions with multi-dentate or bridging capabilities can lead to unanticipated architectures, 

making prediction of the resulting framework more difficult. 

 

On the other hand, M-N coordination bonds (M = metal) are generally weaker and more 

labile compared to the M-Ocarboxylate coordination bond. As a result the constructed 

frameworks are more dynamic and more flexible to rearrangements during the self-assembly 

process, allowing for further optimization. Some of the manipulations towards improved 

properties include anion exchange, removal/exchange of guest molecules or temperature-
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induced crystal transformations. For example, Kitagawa and co-workers19 report a dynamic 

CuII/bipy system with AF6 type anions (A = Si, Ge, P) that can undergo multiple anion-

induced transformations or guest exchanges to engineer a variety of CP frameworks with 

different dimensionalities and pore sizes. 

 

1.1.2.1.2. Flexible Ligands 

For many years the synthesis of CPs or MOFs was conducted almost entirely using rigid 

bridging ligands, largely due to their convenience and ease of use when it comes to rational 

design strategies and prognosis of the resulting structures. In contrast, flexible ligands (i.e., 

ligands in which rotation around single bonds occurs) can adopt more than one conformation 

and are therefore more likely to lead to various frameworks throughout the self-assembly 

process. Moreover, the adjustability of these linkers further increases the influence of 

reaction parameters such as temperature or time, as subtle changes can drastically affect the 

resulting frameworks and make the prediction of structures even more difficult.  

 

Despite these drawbacks, the conformational freedom of flexible ligands can also provide 

unique advantages to this approach. The versatility in coordination and conformation modes 

leads to a large structural diversity that in many cases cannot be achieved in strategies that 

include rigid linkers. As a result, this diversity can lead to an unparalleled variety of structural 

topologies and offer exceptional understanding of these systems, which in turn may provide 

more efficient optimization of any potential applications. Moreover, the malleability of the 

ligand backbone allows the network to respond reversibly to the presence or absence of guest 

molecules; in contrast, many frameworks based on rigid building blocks have been found to 

collapse when guest molecules are removed20,21. Another important aspect of these linkers is 

the potential induction of chirality within the final structures. Flexible chiral ligands, such as 

amino acids or peptides22,23, are much more common and less expensive compared to 

conformationally rigid chiral molecules. Their use promotes the construction of homochiral 

CPs which can be then employed in the fields of asymmetric catalysis or enantioselective 

separation. For all these reasons, flexible ligands have gathered increasing attention in recent 

years and are also being used to generate frameworks despite the challenges they pose24.  
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An example reported by Wu and co-workers25 was [Cu2(hpp)2Cl2]·H2O (1.3), a homochiral 

CP constructed using the serine-based ligand (S)-3-hydroxy-2-(pyridine-4-

ylmethylamino)propanoic acid (Hhpp). 1.3 presents a framework that extends to two 

dimensions: each ligand coordinates to one copper centre through its serine-based functional 

groups (amino, hydroxyl and carboxyl), while its pyridyl nitrogen coordinates to a second 

metal centre; this arrangement results in polymeric 1D Cu/hpp chains which are then further 

connected by chloride bridges to generate the final architecture (Scheme 1.3, inset). This 

compound was found to catalyse the asymmetric 1,2-addition of a Grignard reagent to 

various α,β-unsaturated ketones with excellent (88–98%) conversions and very good 

enantioselectivities, with enantiomeric excess (ee) values up to 99%. The conditions for this 

reaction are presented in Scheme 1.3.   

 

 

Scheme 1.3. Asymmetric 1,2-addition to various α,β-unsaturated ketones as catalysed by 1.3. 

Inset: Part of the 2D architecture of 1.3. H-atoms have been removed for clarity. Colour code 

Cu (blue), C (black), N (light blue), O (red), Cl (green). 

 

1.1.2.2. Metal Selection 

When choosing the appropriate metal sources for CP design, multiple parameters have to be 

taken into consideration. These are: i) their ease of coordination to the donor atom of the 

linker(s), as the strength of these interactions will determine the robustness or dynamism of 

the resulting structure; ii) their structural flexibility and capabilities, such as the possible 

coordination numbers and metal geometries. For example, AgI and CuI sources are often used 

when linear or trigonal metal geometries are desired, while CuII, ZnII, CoII or MnII favour 

octahedral geometry; iii) their electronic functionality and properties. Several transition 
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metals, such as copper, iron, cobalt or manganese may exist in multiple oxidation states and 

are thus ideal for the design of CPs with potential catalytic activity in redox reactions. On the 

other hand, lanthanide-based compounds are mostly investigated for their magnetic 

properties due to the high number of unpaired electrons in the now-used 4f orbitals; iv) the 

nature of the counter anion, which can easily influence the resulting structure e.g. through 

coordination or participation in other (hydrogen bond, π···π stacking) interactions; v) their 

general ease of chemistry (e.g., solubility in common organic solvents, air sensitivity); vi) 

their abundance and cost; vii) the intended resulting application. Most of the above criteria 

can be satisfied by transition metals of the first and (in a lesser extent) second row, and as a 

result a large percentage of CPs are based on such sources.  

 

Another common synthetic approach concerns the use of heterometallic (mixed-metal) 

systems. In this method the CPs are usually constructed in a stepwise manner: first, a metal 

centre reacts with a suitable ligand to form an initial coordination complex, which in this case 

acts as a building unit (“metalloligand”26). These units are linked to each other through 

heterometallic nodes, providing the final structure.  

 

The metalloligand approach offers even greater control and predictability over the resulting 

framework and is especially beneficial in the design of CPs with catalytic properties, as it 

can efficiently provide unsaturated catalytically active metal sites. An example of this was 

reported by Bhunia and others27 who employed a targeted synthesis of MnII/LnIII CPs based 

on the ligand N,N´-bis(4-carboxysalicylidene)ethylenediamine (H4bced) to generate 1D 

frameworks with MnII metal centres as the active sites. The CPs were then successfully used 

as catalysts in the epoxidation of olefins. A total of five isostructural compounds were 

synthesized, formulated as {Ln2[Mn(bced)Cl]2(NO3)2(DMF)5} (1.4 - 1.8), where Ln=Nd 

(1.4), Eu (1.5), Gd (1.6), Dy (1.7), Tb (1.8). The frameworks are constructed by two different 

Mn-based units, [Mn(bced)Cl(DMF)] and [Mn(bced)Cl], which are then connected by 

lanthanide-based nodes (Figure 1.3). Regarding their catalytic activity, 1.4 - 1.8 afforded 

similarly good (60-66%) yields in the epoxidation of trans-stilbene with molecular oxygen 

in order to form stilbene oxide. Further tests were made using an analogous zero-dimensional 

MnII complex, affording significantly lower conversions. These results show that the choice 
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of lanthanide has zero effect on the catalytic activity directly; however, its role as a node in 

the generation of the 1D framework is essential in order to optimize the catalytic 

performance.  

 

 

Figure 1.3. Part of the polymeric framework observed in compounds 1.4 – 1.8. Hydrogen 

atoms and certain solvent molecules are omitted for clarity. Colour code Ln (grey), Mn 

(maroon), C (black), N (light blue), O (red), Cl (green). 

 

1.1.2.3. Synthetic Conditions  

After a suitable metal/ligand system is chosen, special attention must be paid to the synthetic 

approach as certain factors can drastically affect the resulting structures. In particular, the 

selection of solvent is of significant importance for the system: depending on its coordination 

capabilities, it is possible that the solvent occupies coordination sites of the metal, limiting 

the number of available sites for ligand binding and affecting the final architecture. 

Furthermore, certain solvents can participate in various interactions (such as hydrogen 

bonding) which stabilize the framework. In the case of porous CPs solvent compounds may 

also act as guest molecules and will have to be removed in order to assess the porosity, as 

detailed in Section 1.1.3.1.  

 

The temperature of the conducted experiments also plays an important role in CPs. While 

most reactions are typically performed at room temperature, an increasingly common 

technique in order to generate CPs is the use of solvothermal conditions. In this case, the 

reaction mixture is sealed in a vessel and heated above the boiling point of the solvent under 

autogenous pressure. It is therefore possible for the system to undergo unexpected chemical 
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changes due to the significant amount of energy provided under these conditions, affording 

CPs which would not be achievable by conventional methods.    

 

1.1.3. Selected Applications 

As the rational design of CPs is constantly optimized to produce targeted compounds, the 

application range of such materials has greatly expanded beyond the scope of Coordination 

Chemistry and includes fields such as chemical and biological sensing28–30, luminescence31, 

drug delivery32 and conductivity33. In the context of this thesis, the current section will 

highlight the use of CPs in the selected topics of porosity, magnetism and catalysis along 

with particular examples.  

 

1.1.3.1. Porosity 

The porous nature of some CPs has been of significant interest to researchers with several 

applications emerging from this field in recent decades. While the presence of voids can be 

determined through visual inspection of the structure, conclusive proof of porosity is 

typically established by gas adsorption-desorption isotherm studies. These experiments 

provide information on the pore size and determine whether the material retains its structural 

identity during adsorption and desorption of guest molecules. The latter property, known as 

permanent porosity, is especially important in CPs: since nature tends to avoid empty space, 

porous CPs are generally synthesized containing various guest molecules within the cavities, 

such as solvents, free ligands or anions. Therefore, any related applications may only be 

studied when these molecules are removed without causing the remaining “activated” 

framework to collapse.  

 

Perhaps the most important of these applications is gas sorption, for which several porous 

CPs have been found to be excellent candidates. Compared to other porous materials, CPs 

can have tuneable pore size through targeted ligand design. Additionally, the hydrocarbons 

and aromatic groups contained within the linkers can attract guest molecules by forming 

weak interactions (typically physisorptive). For these reasons, CPs have been reported to 

store and/or separate gases of various size and chemical nature through safe, efficient and 
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cost-effective methods. Characteristic examples include the storage of hydrogen34, carbon 

dioxide35, methane36, and the selective adsorption of acetylene over other gases37. 

 

1.1.3.2. Catalysis 

Another key application of CPs involves their use as homogeneous or heterogeneous 

catalysts in various chemical reactions. The field has attracted increased interest especially 

after the emergence of MOFs, as researchers immediately drew comparisons between these 

porous materials and aluminosilicate minerals, commonly known as zeolites. The latter have 

been regularly used in commercial catalysis due to their high surface area, porosity and 

thermal stability. CPs may also show some of these characteristics, but their lower thermal 

stability makes them unsuitable for reactions under extreme conditions. On the other hand, 

they can be efficient catalysts in sensitive reactions which involve delicate molecules and 

require milder conditions. Furthermore, the plethora of options in metal and ligand selection 

means that CPs can be synthesized in greater chemical variety compared to zeolites, 

providing plenty of room for catalyst tuning and optimization.  

 

A seminal example of a CP with heterogeneous catalytic activity was presented by Kaskel 

and co-workers, who investigated38 the catalytic potential of an already known39 CuII-based 

MOF, formulated as [Cu3(tma)2(H2O)3] (1.9, where H2tma = benzene-1,3,5-tricarboxylic 

acid). The compound consists of dicopper tetracarboxylate building blocks that are linked to 

form a 3D network with large diamond-shaped pores (Scheme 1.4, inset). In particular, 1.9 

was employed in the cyanosilylation of carbonyl compounds. The resulting cyanohydrins are 

versatile components in synthetic chemistry and act as intermediates in the preparation of 

compounds such as β-amino alcohols or α-hydroxy aldehydes. Trimethylsilyl cyanide 

(TMSCN) is the most commonly used cyanide source for the formation of cyanohydrins, 

however the use of a catalyst is also necessary in order to activate both the substrate and the 

cyanide precursor. 1.9 was first activated at high temperature under vacuum to remove guest 

solvents and the axially coordinated water molecules, leaving Lewis acidic CuII centres with 

unsaturated sites. This dehydrated framework was found to promote the cyanosilylation of 

benzaldehyde (Scheme 1.4) in a protocol that involved stirring TMSCN and benzaldehyde in 

pentane, for 72 hours and under 40°C. Encouraging yields of 57% were afforded using this 
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method, while the reaction gave trace amounts of the cyanohydrin product when no catalyst 

was used. It is worth noting that zero conversion was observed when the reaction took place 

in the coordinating solvent THF, further confirming the role of the unsaturated CuII sites.  

 

 

Scheme 1.4. Cyanosilylation of benzaldehyde as catalysed by 1.9. Inset: The porous 3D 

architecture of 1.9. H-atoms have been removed for clarity. Colour code Cu (blue), C (black), 

O (red). 

 

1.1.3.3. Magnetism 

The generation of materials that exhibit magnetic ordering is an important topic in 

coordination chemistry, as well as one of the primary investigations in Chapter 2 of this 

thesis. To facilitate the presentation of these results, this subsection will first introduce related 

measures and definitions before expanding on the use of CPs in this area. 

 

Introduction 

In general, the magnetic properties in an atom or a compound arise from the total spin and 

orbital angular momentum of its unpaired electrons. As a result, magnetic moment (expressed 

in bohr magneton, μB) is created under the presence of an applied magnetic field (H); 

magnetization (M), i.e., the quantity of magnetic moment per unit volume, is typically used 

to measure this behaviour. Another common measure is magnetic susceptibility (χ), i.e. the 

ratio of magnetization M to the applied field strength H, which is often used to indicate 

whether the material is attracted or repelled by the presence of this field. Furthermore, χ has 

been found to be inversely proportional to the effects of temperature in what is known as the 
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Curie’s law, showing that the magnetic properties of materials increase at lower 

temperatures. 

 

In the case of paramagnetic materials, the individual magnetic moments do not interact with 

each other and as a consequence their magnetization M is zero when the field is no longer 

applied. Additional phenomena (Figure 1.4), however, may be observed in chemical 

compounds (in the crystalline phase) where magnetic interactions between the spins of 

neighbouring atoms also occur. These exchange interactions (coupling) provide magnetic 

ordering in the compounds and are typically described by the exchange coupling constant J. 

Common types of magnetic ordering observed in structures are:  

i) Ferromagnetism (J > 0), in which spins are coupled in a parallel alignment. This 

results in a large net magnetization and susceptibility even in the absence of an 

external field as the magnetic moments of the individual spins add to each other. 

While this electronic interaction is strong enough to align spins, the effect of 

thermal energy can overcome this exchange at a particular temperature, also 

known as the Curie temperature (Tc). As a result, ferromagnetic materials lose this 

behaviour and their magnetic ordering above Tc, becoming paramagnets.  

ii) Ferrimagnetism, in which materials exhibit the same characteristics as 

ferromagnets (spontaneous magnetization, temperature dependence). However, 

they show different magnetic ordering, as antiparallel coupling of unequal spins 

occurs. 

iii) Antiferromagnetism (J < 0), in which antiparallel coupling of equal spins is 

observed. The magnetization and susceptibility in such materials is therefore low, 

as the individual magnetic moments cancel each other. Such coupling interactions 

are common in transition metal-based compounds. As with ferromagnets, 

antiferromagnetic materials exhibit ordering until a critical temperature, in this 

case called the Néel temperature (TN). 
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Figure 1.4. The arrangement of spins (left) and characteristic χ vs T plots (right) in magnetic 

materials.   

 

The exact nature of the magnetic phenomena in compounds can be established through 

temperature-dependent molar magnetic susceptibility (χM) measurements as well as 

investigations on the dependence of H on the magnetization M below the Curie temperature. 

The main instrument used for these determinations is the Superconducting Quantum 

Interference Device (SQUID), providing magnetic measurements of (micro)crystalline 

samples in temperatures as low as 2 K. The susceptibility is typically plotted as χMT versus 

T, as it can visually provide more information on the type of magnetic coupling.  

 

Another considerable factor during investigations of magnetic properties is the presence of 

spin-orbit coupling, which may cause a weak interaction of the spins even in the absence of 

a magnetic field, eventually leading to a split of the spin state levels. The phenomenon is 

known as Zero-Field Splitting (ZFS). In magnetism ZFS can have a profound effect in the 

resulting properties, causing unequal distribution of the magnetic moment to the three 

dimensions (magnetoanisotropy). ZFS is usually found in transition metal complexes which 

have a molecular spin S ≥ 1 and consists of an axial (D) as well as a rhombic (E) component. 

The determination of ZFS in a material with magnetic properties is typically done through 

Electron Paramagnetic Resonance (EPR) studies. The data are then modeled against 

theoretical spin Hamiltonian equations in order to derive the most accurate fits for the D and 

E values. 
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CPs in magnetism 

CPs are an excellent option for the purposes of studying such phenomena, as they can 

incorporate paramagnetic metal centres and carefully chosen organic linkers to connect them 

within interacting range through direct coordination bonds. These parameters are ideal for 

the formation of exchange interactions between the spins of the paramagnetic metals, 

establishing cooperative magnetic behaviour. As such, CPs have been extensively studied for 

their magnetic properties in recent decades. 

 

An interesting example of a CP with such capabilities was recently reported by Zeng and co-

workers40. The authors constructed the 3D CP [CoII
3(lac)2(pybz)2]·3DMF (1.10, where pybz 

= 4-pyridyl benzoate, lac = D- and L-lactate) which consists of CoII-lac nodes bridged by 

pybz linkers that also act as pillars and form a porous 3D architecture (Figure 1.5). DMF 

solvent molecules are found within the pores, however they may be easily exchanged post-

synthetically with other molecules through single-crystal to single-crystal transformation: 

selected compounds [CoII
3(lac)2(pybz)2]·6MeOH (1.11), [CoII

3(pybz)2(lac)2(H2O)2]·7H2O 

(1.12) and [CoIIICoII
2(pybz)2(lac)2(H2O)2]I·2H2O·1.5DMSO (1.13) were obtained through 

immersion of the material in MeOH, H2O and I2/H2O/DMSO solutions respectively. 1.10 and 

1.11 are isostructural and both showed antiferromagnetic behaviour when tested for their 

magnetic properties. However, 1.12 and 1.13 show structural differences which affect the 

metal centres, as coordination of water molecules and oxidation of CoII ions takes place in 

each case. These variations account for significant differences in the magnetic behaviour, 

with 1.12 behaving as a ferrimagnet and 1.13 showing ferromagnetic interactions between 

the metal ions. 
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Figure 1.5. The building unit (left) and the porous architecture (right) in compound 1.10. 

Hydrogen atoms and solvent molecules are omitted for clarity. Colour code Co (blue), C 

(black), N (light blue), O (red).  

 

1.1.4. One-dimensional coordination polymers 

Amongst the thousands of reports on CPs that have been studied for their applications, a large 

majority of those consists of porous 2D and 3D CPs especially since the emergence of the 

“MOF” term in the literature. Consequently, lesser attention has been paid towards one-

dimensional CPs and their potential properties. However, more efforts to systematically 

study these materials have been made recently29,33,41. Despite their structural simplicity 

compared to MOFs, 1D CPs in particular are generally easier to synthesize and the resulting 

framework can be tuned more effectively in order to generate structures with maximized 

application potential42,43. A number of detailed reviews regarding the potential of 1D CPs 

have been published. In 1993 Chen and Suslick44 reported the uses of 1D CPs in various 

topics of materials science. In 2011, a comprehensive review by Leong and Vittal45 covered 

the literature on 1D CPs from 1993 up to the end of the previous decade, focusing on 

structural motifs and supramolecular architecture issues as well as their applications. More 

recently, a study by Slabbert and Rademeyer46 published in 2015 focused on the structural 

trends of 1D halide-bridged CPs.  
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In all these reviews, the catalytic properties of 1D CPs received minimal focus; however, 

efforts towards more systematic studies in this field have been made recently. 1D CPs can 

catalyse an organic transformation via homo- or heterogeneous pathways depending on their 

solubility; this can introduce ambiguity when determining the active catalytic species and is 

therefore considered as a disadvantage when compared to the capabilities of 2D/3D MOFs. 

On the other hand, their easy synthesis and tuning offers greater potential and unrivalled 

variability for mechanism unravelling or catalyst development in an existing system. 

Therefore, 1D CPs with catalytic activity present a unique opportunity to connect Inorganic 

and Organic Chemistry, providing invaluable information.  

 

For these reasons, Section 1.1.4.1 will provide selected reports of 1D CPs that have been 

used as catalysts in various organic reactions in the last decade. The CPs have been mainly 

categorized into homometallic and heterometallic compounds; additional parameters such as 

the metal and ligand selection for the CP are discussed, to provide a more detailed look into 

each system.  

 

1.1.4.1. Recent advances of one-dimensional coordination polymers as catalysts 

Homometallic 

Several cases of 1D CPs with catalytic activity in oxidation reactions have been reported. 

Such reactions are a very useful tool for synthetic organic chemists, however due to the high 

activation energies involved they often require the use of a catalyst as well as harsh 

conditions. The first related compound was introduced by Karabach and co-workers47, 

synthesized through the self-assembly of CuII nitrate, triethanolamine (H3tea) and 

pyromellitic acid (H4pma) in an aqueous medium. The ligand selection was intended to 

promote the synthesis of CPs with a targeted CuII coordination environment to mimic the 

respective environment in methane monooxygenase, a copper enzyme that can catalyse the 

oxidation of alkanes. Indeed, the resulting compound, [Cu2(tea)2(pma)] (1.14), forms 1D 

ladder-like polymeric chains in which each Cu centre possesses a {NO5} coordination 

environment. 1.14 was used as a catalyst precursor in the mild oxidation of cyclohexane 

(Scheme 1.5) at room temperature and in MeCN/H2O, providing moderate conversion to 

cyclohexanol and cyclohexanone (29% overall yield based on cyclohexane); this result was 
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comparable to other copper catalysts for this reaction. The catalyst was also found to largely 

retain its activity when reused in the reaction (26% overall yield after three recycles). 

 

 

Scheme 1.5. Oxidation of cyclohexane as catalysed by 1.14. Inset: Part of the 1D architecture 

of 1.14. H-atoms have been removed for clarity. Colour code Cu (blue), C (black), N (light 

blue), O (red). 

 

Very recently, Wang and co-workers48 came up with a series of catalysts for the selective 

oxidation of arylalkanes to ketones. The synthetic procedure for the catalysts involves the 

use of various CuI halogen sources and the tpb ligand (tpb = N,N,N-tris(3-pyridinyl)-1,3,5-

benzenetricarboxamide). Out of the reported compounds, the iodine analogue formulated as 

[CuI(tpb)] (1.15) features a 1D framework along the a axis, which consists of a herringbone-

like chain due to the conformation of the tpb molecules. Each CuI centre possesses a trigonal 

geometry and a {N2I} coordination environment. 1.15 acts as an excellent heterogeneous 

catalyst for the oxidation of a series of arylalkanes to the corresponding ketones (Scheme 

1.6), providing the highest yields (72-99%) out of all the compared catalysts in the study. 

The ketones are afforded in very high selectivity and the reaction takes place under easy and 

eco-friendly conditions (air atmosphere, H2O as solvent, room temperature and only 4 hours 

stirring time). Additionally, only 5 mol% of the catalyst is employed, which can be then 

recovered and reused for at least six cycles with small losses in activity. Interestingly, the 

authors attribute the superiority of 1.15 to its coordination environment; it is proposed that 

the iodide anions enhance the activity of the metal centres and further facilitate the substrate 

binding.  
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Scheme 1.6. Oxidation of arylalkanes to corresponding ketones as catalysed by 1.15. Inset: 

The 1D herringbone-like chain in 1.15. H-atoms have been removed for clarity. Colour code 

Cu (light orange), C (black), N (light blue), O (red), I (purple). 

 

Furthermore, a MnII 1D CP with the ligand N-(4-carboxybenzyl) iminodiacetic acid (H3cia) 

was reported by Lymperopoulou49 and co-workers, showing catalytic activity in the 

epoxidation of alkenes. The compound, formulated as [Mn(Hcia)(H2O)] (1.16), forms 1D 

ladder-like chains with the ligand being only partially deprotonated, as the benzoic group 

remains intact and participates in hydrogen bonding interactions. Catalysis-wise, 1.16 

promotes the epoxidation of a large range of olefins when hydrogen peroxide and ammonium 

acetate were added respectively as oxidant and additive (Scheme 1.7). Typically the reactions 

proceeded under room temperature and were completed at 6 hours, providing epoxide 

products with moderate to high conversions (up to 81%) and excellent selectivities (up to 

100%).  
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Scheme 1.7. Olefin epoxidation catalysed by 1.16. Inset: The 1D ladder-like structure of 

1.16. Certain H-atoms have been removed for clarity. Colour code Mn (maroon), C (black), 

N (light blue), O (red). 

 

The use of 1D CPs as catalysts, however, is not limited to oxidation reactions only.  In a 

recent study by Wani50 and co-workers a zinc-based 1D CP, [Zn(tppz)(Hccb)] (1.17), is 

tested for its catalytic efficiency in the transesterification reaction. In this transformation, 

synthesis of esters is achieved as the organic component of the alkoxy group of a different 

starting ester is exchanged with the organic group of an alcohol.  Two different organic 

linkers, 2,3,5,6-tetrakis(2-pyridyl)pyrazine (tppz) and 3-(carboxymethyl-amino)-4-

chlorobenzoic acid (H3ccb) are used for the synthesis of 1.17 providing multiple potential 

coordination sites to the metal centres. The resulting compound comprises of M(tppz) units 

linked by Hccb ligands with deprotonated carboxyl groups, which provide the dimensionality 

to the framework. This forms a 1D zig-zag chain where each zinc centre is penta-coordinated 

in a square pyramidal geometry. In regards to its catalytic activity, very good yields were 

achieved when the transesterification reactions proceeded in DMSO, under 80oC and within 

4 to 16 hrs, when 2 mol% of 1.17 was used (Scheme 1.8). The catalyst may also be reused 

for at least four cycles without any loss in yield. As 1.17 has a superior activity compared to 

ZnII salts, the authors propose that this may be attributed to the unsaturated penta-coordinated 

ZnII centres which provide a free site for substrate binding. 
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Scheme 1.8. Transesterification reaction as catalysed by 1.17. Inset: The 1D zig-zag chain in 

1.17. Solvent molecules and H-atoms have been removed for clarity. Colour code Zn (grey), 

C (black), N (light blue), O (red), Cl (green). 

 

The Knoevenagel reaction51 is another chemical transformation in which the catalytic 

potential of 1D CPs has been studied recently. This C-C bond formation reaction affords α,β-

unsaturated compounds from the condensation of a carbonyl compound and an active 

hydrogen compound, which is then deprotonated by the catalyst. Recently, Karmakar and co-

workers52 reported the synthesis of a 1D zig-zag CP, [Zn(aipa)(H2O)2] (1.18), using 5-

acetamidoisophthalic acid (H2aipa) as the primary linker. This compound was found to have 

very good performance as a heterogeneous catalyst for the Knoevenagel condensation 

reaction (Scheme 1.9) with various aldehydes and malononitrile used to produce the 

corresponding benzylidenemalononitriles. Moreover, the catalyst was found to be recyclable 

without any considerable loss of activity. The suggested mechanism by the authors involves 

a synergistic effect by the Lewis acid (Zn centres) and basic (carboxylate-O or amide-O) 

sites, highlighting the importance of the metal and ligand selection when choosing the 

synthetic and catalytic systems. 
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Scheme 1.9. Knoevenagel reaction as catalysed by 1.18. Inset: Part of the 1D zig-zag 

framework in 1.18. Lattice solvent molecules have been removed for clarity. Colour code Zn 

(grey), C (black), N (light blue), O (red). 

 

Heterometallic 

As the search for new and effective metal catalysts carries on, the concept of multimetallic 

catalytic systems has been growing increasingly53. The use of two or more different metal 

elements in order to promote a reaction can be very rewarding and enhance the catalytic 

performance in various ways: firstly, the potential cooperativity and synergy effects54,55 can 

lead to improvements in the catalytic activity, as the multimetallic system may provide 

greater performance than the individual homometallic components. Furthermore, reports 

have shown that the binding affinity of a substrate to a metal centre may increase when 

another metal centre is in close proximity56. 

 

Section 1.1.2.2. included compounds 1.4 – 1.8 as examples of mixed-metal (3d/4f) 1D CPs 

with catalytic activity. Another heterometallic one-dimensional coordination polymer based 

on a lanthanide element was presented by Kumar and co-workers57 in a recent study. The CP 

contains a CoIII/EuIII core and was found to be a suitable catalyst for various ring opening 

reactions of epoxides. The metalloligand approach is once again used in the synthetic method, 

as a CoIII precursor (1.19) with the ligand 4,4'-((pyridine-2,6-

dicarbonyl)bis(azanediyl))dibenzoic acid (H4pdada) is employed. Addition of the lanthanide 

source follows, as the 1D CP [Co(pdada)2Eu(H2O)5]·8H2O (1.20) is constructed. Each 

metalloligand as a whole coordinates to two Eu(III) centres, generating a zig-zag framework. 
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1.20 was found to be an efficient heterogeneous catalyst in the ring opening reactions of 

cyclohexene oxide and styrene oxide with various nucleophiles (Scheme 1.10), including 

anilines (aminolysis), trimethylsilyl azide (azidolysis), alcohols (alcoholysis) and thiols 

(thiolysis). The corresponding products are afforded at excellent yields (78-100%) and under 

mild conditions, as the reactions are treated with 2 mol% catalyst under ambient conditions 

and for 4 hours. Reusability tests showed that the catalyst may be recycled at least five times 

with very minor losses in yield. The activity of this heterometallic CP is mainly attributed to 

the strong Lewis acidic nature of the EuIII centres, as well as their coordinating environment. 

Many of the coordination sites of the lanthanide are occupied by labile water molecules, 

providing an easy access to substrates. 

 

Scheme 1.10. A scope of the ring-opening reactions catalysed by 1.20. Inset: Part of the zig-

zag chain in 1.20. Lattice solvent molecules and H-atoms have been removed for clarity. 

Colour code Co (green), Eu (grey), C (black), N (light blue), O (red). 
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1.2. Benzotriazole 

Section 1.1.2.1 of this Chapter discussed the importance of ligand selection towards the 

construction of functional CPs. Particularly noted amongst the plethora of available choices 

were N-donor ligands based on heterocyclic molecules. This category has been recently 

attracting increased interest with several reported frameworks based on imidazole-, 

benzimidazole-, triazole- and tetrazole-derived ligands58–60. The following section will focus 

on the analogous aspects of benzotriazole, since the use of this molecule will be a key feature 

of this thesis in regards to the ligand design. 

 

1.2.1. Introduction 

Benzotriazole (Hbta) is an aromatic heterocyclic compound that has been widely popular in 

organic as well as inorganic chemistry. It belongs in the general category of azoles, along 

with other well-known heterocyclic molecules such as pyrazole, imidazole, 1,2,3-triazole, 

1,2,4-triazole and tetrazole. Hbta contains a benzene ring that is fused with a five-membered 

aromatic ring which incorporates the 1,2,3-triazole moiety.  

 

Since the proton in this moiety can easily relocate between the nitrogen atoms, Hbta can exist 

in two tautomeric forms, 1H- and 2H-Benzotriazole (Scheme 1.11, Forms A and B 

respectively). Investigation of this phenomenon has been the subject of multiple studies 

throughout the years, which showed that the 1H-tautomer (A) is the predominant species in 

solution. This has been attributed to its high dipole moment (μ = 4.3 D in A, 0.38 D in B, 

according to theoretical calculations) which favours interactions with the solvent and 

therefore provides better solvation than in the case of the 2H-tautomer61. Furthermore, the 

1H-tautomer has been found to be the only stable isomer in the solid state, as shown by X-

Ray crystallography62 and other spectroscopic studies. 

 

 

Scheme 1.11. The two tautomeric forms in Hbta. 
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Historically, the synthesis of the first benzotriazole derivative dates back to the late 19th 

century. A study by Zinin in 1860 reports efforts towards the nitration of azoxybenzene63. 

One of the afforded products was 2-phenylbenzotriazole-1-oxide, although this was not 

recognised until 1899 by Werner and Stiasny64. Other studies in that period by Hofmann65 

and Ladenburg66 investigated the effect of nitrous acid on various phenylenediamines, noting 

that the use of o-phenylenediamines resulted in products with unique properties compared to 

the rest. These products were later found to be benzotriazole derivatives and the synthetic 

method to obtain Hbta remains similar today (Scheme 1.12), albeit with certain 

improvements in the reaction conditions67. 

 

 

Scheme 1.12. Common synthetic method to obtain benzotriazole. 

 

The popularity of benzotriazole derivatives amongst organic chemists is in no small part due 

to their attractive properties. Hbta is an odourless, non-toxic, non-sensitive chemical that 

shows excellent solubility in a variety of organic solvents and is almost insoluble in water. 

Additionally, it is inexpensive and easy to synthesize. More importantly, Hbta exhibits both 

electron donating and electron attracting capabilities; it can either act as a weak acid (pKa = 

8.2) through proton loss, or as a very weak Brønsted base (pKa < 0) through accepting a 

proton using the lone pair electrons available on the nitrogen atoms. As such, it is also soluble 

in aqueous Na2CO3 as well as HCl, meaning that it can be easily separated from reaction 

mixtures. Finally, its ring system shows remarkable thermal (up to 400°C) and chemical (in 

the presence of H2SO4, KOH, LiAlH4 etc.) stability. For these reasons, benzotriazole and its 

derivatives have been extensively used in synthetic organic chemistry as auxiliary tools 

towards a great range of reactions and syntheses. Relevant work by Katritzky should be noted 

in particular, as his group contributed more than 600 research papers as well as multiple 

reviews and books related to this field in the span of three decades. This enormous work 

revolving around the synthetic utilities of benzotriazole derivatives extends well beyond the 
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scope of this thesis. Characteristic examples include benzotriazole-mediated alkylation 

reactions or the synthesis of heterocycles, peptides and amino-acid derivatives68–72.    

 

1.2.2. Benzotriazole-based Molecules as Ligands in Coordination Chemistry 

 

1.2.2.1. Brief History 

The unique properties and synthetic versatility of Hbta are not limited within the realm of 

synthetic organic transformations. In 1947, Procter and Gamble Ltd submitted a patent73 on 

the use of Hbta as a corrosion inhibitor for metallic copper. In particular, subjection of copper 

to a solution containing Hbta formed a barrier layer that was insoluble in water and many 

organic solvents, protecting the metal from potential surface reactions. Subsequent studies74 

by Cotton and co-workers in the 1960s suggested that this protective layer consisted of a 

polymeric CuI-bta complex in which each benzotriazole molecule is deprotonated and uses 

its two non-central nitrogen atoms of the 1,2,3-triazole moiety to coordinate to two different 

copper centres, forming a linear polymeric structure (Scheme 1.13).  

 

 

Scheme 1.13. Proposed structure of the formed copper-benzotriazole complex as suggested 

by Cotton and co-workers. 

 

As a result of these reports Hbta was introduced in inorganic synthesis as a potential ligand 

towards the formation of coordination complexes. The first related coordination compound 

that was characterized by X-Ray crystallography was presented in 1976 when Meunier-Piret 

and co-workers reported75 the structure of a NiII/benzotriazole coordination complex, while 

studies in the 1980s also investigated the coordination capabilities of Hbta with other 

transition metals76,77. However, the increased popularity of N-donor linkers in the late 1990s 

allowed researchers to fully realize the advantages that benzotriazole-based ligands could 
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offer in coordination chemistry: i) being N-donor ligands, they can provide dynamic and 

flexible frameworks (as previously explained in Section 1.1.2.1); ii) the 1,2,3-triazole moiety 

provides multiple potential coordination modes and allows Hbta to be utilized as a terminal 

or a bridging ligand (Scheme 1.14); iii) they can participate in various interactions (e.g. 

hydrogen bonds, π···π stacking) which stabilize the resulting structures and provide a better 

understanding of the system; iv) due to the synthetic versatility of Hbta it is very easy to 

synthesize benzotriazole-based ligands with various levels of flexibility, although in some 

cases it can be difficult to separate the resulting 1H- and 2H-isomers.  

 

 

Scheme 1.14. Bridging coordination modes of benzotriazole (top, modes μ2,3, μ1,3) and 

benzotriazolate (bottom, modes μ1,2, μ1,3, μ-η2:η1, μ1,2,3). 

 

As a result of the above, a search in the Cambridge Structural Database (CSD)78 for 

coordination compounds based on benzotriazole-derived ligands reveals a high number of 

studies with the majority published after 2000. However, the relevant reviews on this subject 

are surprisingly scarce. In 2010 Mohamed reported58 the coordination chemistry of various 

N-donor ligands employing coinage metals, however only complexes based on 1,2,4-triazole 

are mentioned. A review by Aromí and co-workers in 2011 presents the use of triazole and 

tetrazole ligands in coordination chemistry and includes some examples of benzotriazole-

based complexes59. Similarly, a 2012 review60 by Zhang covers the subject of metal azolate 

frameworks, however only a few selected cases are mentioned in regards to benzotriazolate 

compounds. As such, in order to fully realise the potential of benzotriazole-based linkers in 

coordination chemistry, Section 1.2.2.2 will present a more detailed, non-exhaustive list of 

related coordination complexes (Scheme 1.15) covering the literature as of April 2018. This 

list will include certain structural information on the compounds as well as notable reported 
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applications. In order to facilitate this presentation, the complexes have been primarily 

categorized in regards to the exact linker used (Hbta or some derivative) and its role in the 

resulting architecture (either as a main or as a supporting co-ligand). 

 

 

Scheme 1.15. A list of the benzotriazole-based ligands and the respective coordination 

compounds mentioned in Section 1.2.2.2. 
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1.2.2.2. Recent Advances 

 

1.2.2.2.1. Benzotriazole as a Main Ligand 

Polynuclear Coordination Clusters 

Long-time investigations of the coordination capabilities of Hbta using MII transition metals 

have shown that the system frequently leads towards polynuclear coordination complexes 

with similar structural motifs. Notably, a family of pentanuclear compounds with the general 

formula [M5(OH)x(bta)6–x(acac)4(H2O)4x] (where M = CuII, NiII, acac = acetylacetonate, x = 

0, 1) have been commonly reported79–81 in previous decades. These compounds consist of 

four penta-coordinated MII centres that are found in the corners of an imaginary tetrahedron, 

while the fifth MII ion is found at the centre of this arrangement and is hexa-coordinated. 

These metal centres are bridged exclusively by deprotonated benzotriazole (bta) molecules 

in a μ1,2,3-bridging fashion, as the N1, N3 nitrogen atoms coordinate to metal ions of the 

tetrahedron while the six N2 atoms coordinate to the central octahedral metal. The remaining 

coordination sites are occupied by oxygen atoms deriving from acetyloacetonate units, which 

simply act as chelating terminal ligands. In 2008, Biswas and co-workers reported82 the 

synthesis of a Zn5 complex with the same structural characteristics (Figure 1.6), formulated 

as [Zn5(bta)6(acac)4] (1.21), based on the room temperature reaction of Zn(acac)2 and Hbta 

in CH2Cl2. 

 

 

Figure 1.6. The pentanuclear motif as observed in compound 1.21. Hydrogen atoms and 

parts of the acetyloacetonates are omitted for clarity. Colour code Zn (grey), C (black), N 

(light blue), O (red). 
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Interestingly, a study83 by Raptopoulou and co-workers in 2009 showed that the same 

reaction in DMF yields the analogous compounds [Zn5(bta)6(acac)4(DMF)]·DMF and 

[Zn5(bta)6(acac)4(DMF)]·3.7DMF (1.22 and 1.23), however higher nuclearity may be 

achieved when the reaction takes place at high temperature and in the presence of pyrazine. 

The afforded product in this case is a nonanuclear compound, formulated as 

[Zn9(bta)12(acac)6]·6DMF (1.24). Its structure contains seven ZnII centres that are found at 

the corners of two corner-sharing imaginary tetrahedra, and a ZnII ion at the centre of each 

tetrahedron (Figure 1.7). As such, this motif may be best described as the addition of two 

tetrahedral units from 1.21 with the abstraction of one ZnII centre and two acac- molecules. 

The benzotriazole molecules also exhibit a similar coordination mode. Further efforts84 by 

Volkmer’s group resulted in the construction of two more nonanuclear complexes with 

similar structural motif and coordination characteristics, formulated as 

[Ni9(bta)12(NO3)6(MeOH)6]·4THF (1.25) and [Co9(bta)12(MeOH)18]·(NO3)6·9C6H6 (1.26). 

Instead of pyrazine, the authors employ a very large excess of Hbta during the synthetic 

procedure, with metal:ligand ratios of 1:4 and 1:8 respectively. Due to this, the excess ligand 

acts as the base to deprotonate the coordinated bta molecules. Additionally, magnetic 

measurements were also performed for 1.25 – 1.26, revealing the presence of 

antiferromagnetic interactions between the metal ions in each case. 

 

 

Figure 1.7. The nonaanuclear motif as observed in compound 1.24. Hydrogen atoms and 

parts of the acetyloacetonates are omitted for clarity. Colour code Zn (grey), C (black), N 

(light blue), O (red). 
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Another example of the pentanuclear structural motif was reported by Yuan and co-workers, 

who synthesized a mixed valent complex that contains four CuI ions in the corners of the 

imaginary tetrahedron and a CuII ion in the centre85. The resulting compound is formulated 

as [CuIICuI
4(bta)5Cl(PPh3)4] (1.27). The bta molecules exhibit a similar coordination mode 

as they bind to the CuII ion through the N2 atom and bridge two CuI centres with the 

remaining nitrogen atoms. In this case, four PPh3 molecules and one chloride act as the 

terminal ligands, with the latter also contributing to the charge balance of the complex. 

 

Different motifs and nuclearities, however, may be achieved when M3+ metal sources are 

introduced into the synthetic procedure; this has led to the reports of several benzotriazole-

based coordination clusters with interesting magnetic properties. In a series of studies86–88 

Jones and co-workers utilize the physical properties and multimodal capabilities of Hbta with 

MnF3 to generate tri-, deca-, and hexaicosametallic MnIII coordination complexes. To 

overcome the general insolubility of MnF3 the authors employ Hbta as the solvent; all 

reactions are performed at 100°C to generate “melt” Hbta, in which the metal is soluble. This 

results in a simple synthetic route that does not require oxidation of MnII sources. The 

trinuclear species [NHEt3]2[Mn3O(bta)6F3]·2MeOH (1.28) consists of an anionic 

[Mn3O(bta)6F3]
2- unit in which a central μ3-bridging oxide links three MnIII centres which are 

found in a triangular arrangement (Figure 1.8, upper left). Deprotonated benzotriazole units 

provide further bridging in a μ1,2-fashion as each bta molecule coordinates to two MnIII ions 

along the edge of the imaginary triangle. The unbound nitrogen atoms form strong O-H···N 

hydrogen bonds with the lattice methanol solvents to further stabilize this architecture. The 

use of pyridine, a weaker but coordinating base, increases the aggregation of these units into 

larger fragments and results in the formation of a decanuclear complex formulated as 

[Mn10O6(OH)2(bta)8(py)8F8]·0.75H2O·0.5Hbta·1.4MeOH (1.29). This compound contains 

eight edge-sharing {Mn3O}7+ triangular units as described before (Figure 1.8, upper right), 

with py molecules as terminal ligands and the benzotriazolate units participating again in 

μ1,2-bridging and hydrogen bonding. The protonated Hbta molecule found in the lattice also 

forms a strong hydrogen bond to increase framework stability. When no base is used during 

synthesis, aggregation of the {Mn3O}7+ units increases even further and results in a 

hexaicosanuclear compound [Mn26O17(OH)8(OMe)4F10(bta)22(MeOH)14(H2O)2]·MeOH 
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(1.30, Figure 1.8 bottom). The versatility and role of the benzotriazole units is critical for the 

formation of 1.30. All 22 units are deprotonated, contributing to the charge balance; four of 

these exhibit a μ1,2,3-bridging coordination mode, using all nitrogen atoms to coordinate to 

MnIII ions. The remaining eighteen molecules participate in μ1,2-bridging instead, as the third 

nitrogen atom forms hydrogen bonds with nearby MeOH, H2O or OH- units. 

Magnetochemical investigations for compounds 1.28 – 1.29 showed that the respective χMT 

values decrease as temperature decreases, indicating the presence of dominant 

antiferromagnetic exchange interactions between the metal ions. Additional studies for 1.30 

showed that the compound displays single-molecule magnet (SMM) behaviour, i.e. 

exhibiting magnetization which is of molecular origin, thus retaining it even after the removal 

of the external field. In particular, 1.30 showed magnetisation relaxation at low temperatures 

below 1.2 K. 

 

 

 

Figure 1.8. (upper left) The anionic trinuclear unit found in compound 1.28. (upper right) 

The structure of the decanuclear complex 1.29. (bottom) The structure of the 
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hexaicosanuclear compound 1.30. Hydrogen atoms and all lattice molecules are omitted for 

clarity. Colour code Mn (maroon), C (black), N (light blue), O (red), F (green).  

 

Similar investigations with various FeIII sources led to the construction of two more 

polynuclear complexes, formed as [Fe5O2(OMe)2(bta)4(Hbta)(MeOH)5Cl5] (1.31) and 

[Fe14(bta)6O6(OMe)18Cl6] (1.32) respectively89,90. The former compound exhibits a structural 

motif that is similar to the one described in compound 1.21; however, in this case a protonated 

Hbta unit is also observed, acting as a terminal ligand to one of the FeIII centres. All 

benzotriazole molecules participate in extensive hydrogen bonding as well as π···π 

interactions with other Fe5 clusters in the lattice. Magnetic studies point to an 

antiferromagnetic coupling of the central FeIII ion to the peripheral metal ions which gives 

rise to a spin ground state of S = 15/2. In contrast, the tetradecanuclear compound 1.32 was 

afforded under solvothermal synthetic conditions and shows a completely different motif, 

consisting of a central hexagonal Fe6 ring that is linked to a [Fe4(bta)3Cl3] unit on either side 

through methoxide and oxide bridges (Figure 1.9). All benzotriazolate units exhibit a μ1,2,3-

bridging mode, while chloride anions are also present and act as terminal ligands. 1.32 

exhibits a very large ground spin state of S = 25, which is attributed by the authors to the 

competition of antiferromagnetic exchange interactions within the cluster. An analogous 

synthetic procedure was performed with CrIII and VIII sources in a subsequent study to 

generate the isoskeletal compounds [Cr14(bta)6O6(OMe)18Cl6] (1.33) and 

[V14(bta)6O6(OMe)18Cl6] (1.34), however the magnitude of the exchange interactions appears 

to be much smaller in this case as both complexes were found to have S = 0 spin ground 

states90.  

 

In order to obtain compounds with improved SMM behaviour, Layfield and co-authors 

explored the capabilities of benzotriazole using lanthanide sources91. More specifically, 

reactions with DyCp3 (Cp = cyclopentadienyl) and Hbta resulted in a dimeric compound 

formulated as [Cp2Dy(bta)]2 (1.35), which was found to behave as an SMM in temperatures 

below ~12 K. It consists of DyIII centres that are bridged by deprotonated bta ligands. Each 

of these ligands coordinates to one metal centre through two nitrogen atoms and to the other 



34 
 

one through the remaining nitrogen in a μ-η2:η1 bridging mode (Figure 1.10). Notably, 1.35 

is one of the first benzotriazole-based complexes in organolanthanide chemistry. 

 

 

Figure 1.9. The structure of the tetradecanuclear complex 1.32. Hydrogen atoms are omitted 

for clarity. Colour code Fe (brown), C (black), N (light blue), O (red), Cl (green). 

 

 

Figure 1.10. The structure of compound 1.35. Hydrogen atoms are omitted for clarity. Colour 

code Dy (grey), C (black), N (light blue). 

 

Coordination Polymers 

Apart from the formation of zero-dimensional polynuclear coordination clusters, Hbta has 

also been identified as a suitable linker towards the design of coordination polymers under 

appropriate synthetic parameters. Few examples of such compounds exist in the literature. 
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For instance, Shao and co-authors report the isolation of a three-dimensional CP with helix-

like network, formulated as [Zn(bta)2] (1.36) under harsh hydrothermal conditions92. The 

framework in 1.36 comprises of tetrahedral zinc centre nodes that are considered 

asymmetrical, as they are linked through bridging μ1,3-bta molecules with different directions 

(Figure 1.11).  

 

 

Figure 1.13. Part of the 3D architecture in compound 1.36. Hydrogen atoms are omitted for 

clarity. Colour code Zn (grey), C (black), N (light blue). 

 

Furthermore, in a series of studies by Müller-Buschbaum’s group various lanthanide sources 

are employed to produce several CPs with different dimensionalities as the coordination 

capabilities of Hbta are utilized in full effect93–96. In this synthetic procedure the reactants are 

first heated to 100-120°C to form “melt” Hbta and are then subjected to solvothermal 

conditions for several days. The method affords 1D CPs that exhibit a chain framework based 

on a [Ln(bta)x(Y)] backbone, where Y is a neutral ligand species that is either Hbta or one of 

its thermal decomposition products, in this case phenylene-diamine or ammonia. These CPs 

are [La(bta)3(Hbta)], [Ce(bta)3(Hbta)], [Pr(bta)3(Hbta)], [Nd(bta)3(Ph(NH2)2)], 

[Tb(bta)3(Ph(NH2)2)], [Yb(bta)3(Ph(NH2)2)], [Ho2(bta)6(Hbta)(NH3)] and [EuII(bta)2(Hbta)2] 

(1.37 – 1.44). 1.37 – 1.42 exhibit deca-coordinated lanthanide centres and two different 

coordination mode are seen in the benzotriazole ligands. In the first one, the ligand shows a 

μ‐η2:η1 binding mode, coordinating to one Ln centre through two nitrogen atoms while the 

third nitrogen coordinates to a neighbouring Ln ion. In the second type of bta ligands the 
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third nitrogen atom does not coordinate and instead participates in hydrogen bond 

interactions. The coordination sphere of the Ln ion is filled by either Hbta of Ph(NH2)2 

molecules which bind through two nitrogen atoms. 1.43 exhibits a ladder-like framework 

which contains nona-coordinate holmium centres; the bta ligands are either in a similar μ‐

η2:η1 binding mode or a μ1,3-bridging type. 1.44 presents a rare case of a divalent lanthanide 

compound and its EuII centres are octa-coordinated. To add to this structural variety, crystal 

transformations of 1.37, 1.38 and 1.43 were induced in temperatures up to 350°C: in these 

conditions the neutral ligands are removed from the frameworks and are replaced by 

symmetry related bta molecules which increase the dimensionality, leading to the 3D CPs 

[La(bta)3], [Ce(bta)3] and [EuII(bta)2] (1.45 – 1.46). 

 

In another notable example Lin and co-authors presented97 the first crystal structure of a 

coordination polymer containing CuI sources and Hbta, a feat of significant importance as it 

could shed light in the mechanistic investigations of the aforementioned corrosion inhibiting 

effect of benzotriazole in metallic copper. The compound is formulated as [CuI
2(bta)2] (1.47) 

and its structure contains crystallographically independent Cu centres that exhibit linear, 

trigonal and tetrahedral geometry respectively. These metal ions are linked by μ1,2,3-bridging 

type deprotonated benzotriazole molecules, as the framework extends to form a 1D chain 

(Figure 1.12). The formation of π···π stacking interactions between these bta units further 

increases the stability of the architecture. 

 

 

Figure 1.12. Part of the polymeric 1D network in compound 1.47. Hydrogen atoms are 

omitted for clarity. Colour code Cu (orange), C (black), N (light blue). 
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1.2.2.2.2. Benzotriazole as a co-Ligand 

A significant portion of studies have incorporated Hbta in coordination chemistry as a 

potential co-ligand. More specifically, it has been used as a supporting linker in the 

construction of CPs due to its versatility in coordination modes and bridging capabilities. 

From a structural point of view, the role of Hbta falls under one of the following categories: 

i) it forms stable polynuclear coordination clusters which in this case are used as building 

blocks and are linked by a second ligand (usually of O-donor type), forming multi-

dimensional materials, ii) it acts as a supporting pillar in otherwise existing metal:ligand 

frameworks, occupying the remaining coordination sites and increasing the dimensionality 

of the structure. Some examples of both categories will be presented herein. 

 

Several attempts have been made to utilize the well-established [MII
5(bta)6]

4+ unit as a 

secondary building block and introduce a polytopic bridging co-ligand. The first relevant 

report came from Bai and co-authors who used [M5(bta)6(NO3)4(H2O)4] (M = CoII or NiII) as 

the node, then introduced LiTCNQ (TCNQ = 7,7,8,8-tetracyano-p-quinodimethane) for its 

radical anions to replace the nitrate and water molecules and occupy their coordination 

sites98. This stepwise assembly led to the synthesis of 3D diamond-like networks (1.48 and 

1.49) based on the [M5(bta)6(TCNQ·-)4] backbone (Figure 1.13). It is worth noting that this 

benzotriazolate polynuclear node retains its structural stability during this procedure. 

 

Subsequently, employment of the analogous ZnII cluster as precursor along with the 

introduction of linear polycarboxylates as co-ligands led to additional CPs of similar fashion. 

Wang and co-workers report the compounds [Zn5(bta)6(bdc)2(H2O)2], 

[Zn5(bta)6(abdc)2(H2O)2] and [Zn5(bta)6(bpdc)2(H2O)2] (1.50 – 1.52, where H2bdc = 1,4-

benzenedicarboxylic acid, H2abdc = 2-amino-1,4-benzenedicarboxylic acid and H2bpdc = 

4,4’-biphenyldicarboxylic acid), which also exhibit similar 3D microporous diamondoid 

networks99. Similar rational synthesis using 1,4-naphthalenedicarboxylic acid (H2ndc) by 

Deng et al. led to [Zn5(bta)6(ndc)2(H2O)] (1.53), which exhibits a 3D framework with 

different topology due to the added steric hindrance of the naphthalene-based co-linker100. 

1.53 was also tested for its luminescent properties, showing solvent-dependent activity. 
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Figure 1.13. View of the diamonoid 3D network found in compound 1.48. Hydrogen atoms 

are omitted for clarity. Colour code Co (blue), C (black), N (light blue).  

 

Another diamond-like 3D interpenetrated framework, [Zn5(bta)6(tda)2] (1.54, H2tda = 

thiophene-2,5-dicarboxylic acid) was reported by Zhang and co-authors, showing selective 

gas sorption of C2H2 or CO2 over CH4 at room temperature101. Chen and others employed 

tritopic polycarboxylates (H3qbtcb = 4,4´,4´´-[1,3,5-

benzenetriyltris(carbonylimino)]tris(benzoate) and H3tbtcb = 3,3´,3´´-[1,3,5-

benzenetriyltris(carbonylimino)]tris(benzoate)) as co-linkers using a one-pot synthesis 

instead of the step-wise assembly102. This resulted in the two compounds 

[Zn5(bta)6(qbtcb)(H2O)(NO3)] and [Zn9(bta)12(tbtcb)2] (1.55 and 1.56). The structural 

characteristics of the cluster building blocks and the behaviour of the bta molecules are 

similar compared to the pentanuclear and nonanuclear clusters 1.21 and 1.24 respectively, 

indicating that the formation and stability of such species is heavily favoured regardless of 

the synthetic method. In both products the structure extends to form microporous 2D 

networks which exhibited selective uptake of CO2 over CH4 and N2 at room temperature, 

when guest solvents are removed.  

 

A similar one-pot synthesis was also used by Tan and co-authors103 to generate a compound 

based on the analogous pentanuclear Nickel analogue and isonicotinic acid (H2ina). 

[Ni5(bta)6(ina)3(H2O)(CH3COO)] (1.57) reveals a porous 2D layer as the co-linker 
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coordinates to metal centres through both its pyridinic and carboxylic groups (Figure 1.14). 

1.57 also showed selective CO2 adsorption over CH4 in its framework. 

 

        

Figure 1.14. The building unit (left) and the porous 2D layer in compound 1.57 along the 

b0c plane (right). Hydrogen atoms and certain solvent molecules are omitted for clarity. 

Colour code Ni (green), C (black), N (light blue), O (red).  

 

Other types of building block clusters (and consequently, different resulting frameworks) 

may also be achieved depending on parameters such as the synthetic conditions, the type of 

co-linker or the binding preference and available coordination sites of the selected metal. For 

example, Zhong and co-workers report104 the construction of a 2D layered compound 

[Cd5(bta)6(bdc)2(DMF)4(H2O)2] (1.58) which contains the common pentanuclear motif and 

the co-ligand H2bdc, synthesized in room temperature. However, a similar reaction under 

intense solvothermal conditions promotes the coordination of more bdc molecules over bta 

and affords the heptanuclear complex [Cd7(bta)2(bdc)6(DMF)8] (1.59). In this case the 

compound contains two inner trinuclear [Cd3(bta)]5+ cluster units in which the Cd centres are 

found in a triangular arrangement and are bridged by μ1,2,3-bta molecules (Figure 1.15, left). 

These units are linked by bdc ligands as the frameworks extends to form a CP with 3D 

architecture.  
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Li and co-workers reported another 3D CP based on a trinuclear benzotriazole-built unit, 

using CoII sources and 1,3-benzenedicarboxylic acid (H2mbdc) under harsh solvothermal 

conditions105. The afforded compound [Co4(mbdc)3(bta)2(EtOH)2] (1.60) contains tricobalt 

building blocks bridged by μ1,2,3-bta molecules, with the metal centres forming a rod-shaped 

chain arrangement (Figure 1.15, right).  

 

  

Figure 1.15. The polynuclear building units observed in compounds 1.59 (left) and 1.60 

(right). Hydrogen atoms are omitted for clarity. Colour code Cd (light purple), Co (blue), C 

(black), N (light blue), O (red). 

 

A different bta-based building block cluster is reported in the cationic framework 

[Zn4(bta)3(ipa)6] (1.61, H2ipa = isophthalic acid) constructed by Qin and co-authors106. 

Synthesized solvothermally at 160°C, its structure contains unusual plate-like [Zn4(bta)3]
5+ 

units that act as six-coordinated nodes as they are bridged by ipa ligands to form a 3D 

architecture. Each of these units presents three zinc centres in a triangular arrangement, 

connecting to the N1, N3 atoms of the bta molecules. A fourth metal ion is found at the centre 

of this unit, coordinating to the N2 atoms of the benzotriazoles (Figure 1.16, left).  

 

Finally, an unusual heptanuclear [Zn7(bta)7(oadbc)(μ3-OH)2(μ2-OH)2] complex (1.62, 

H3oadbc = 5-oxyacetatoisophthalic acid) was synthesized by Shao and co-workers, who 

reacted zinc acetate and H3oadbc at 180°C for several days107. The structure of 1.62 is rather 

complicated and is based on a rare hexa-zinc subunit that is best formulated as [Zn6(bta)4(μ3-

OH)2], containing four zinc atoms in a near planar metallomacrocyclic motif as well as two 

zinc centres inside this cyclic cavity. These ions are connected by μ1,2,3-bta and μ3-OH 
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moieties (Figure 1.16, right). The extended framework is three-dimensional as these sub-

units are linked by oadbc ligands and μ1,3-bta molecules, while the uncoordinated central N 

atoms in these benzotriazoles participate in structure-stabilizing hydrogen bonding 

interactions. 

 

      

Figure 1.16. The polynuclear building units observed in compounds 1.61 (left) and 1.62 

(right). Certain hydrogen atoms are omitted for clarity. Colour code Zn (grey), C (black), H 

(light pink), N (light blue), O (red). 

 

In regards to the latter category, in which Hbta is utilized as a secondary pillar to increase the 

dimensionality of coordination compounds, most studies employ carboxylate-based ligands 

as primary linkers. In order to promote this outcome over the formation of benzotriazole-

based cluster building blocks, the synthetic method typically involves careful adjustment of 

the mixture’s pH (usually to 7-8) in accordance to the pKa value of the primary linker in each 

case. The solution is then subjected to solvothermal conditions for several days. Such 

procedures are reported in the formation of compounds [Co5(μ3-OH)2(bdc)3(bta)2], [Zn5(μ3-

OH)2(bdc)3(bta)2], [Co(cdc)0.5(bta)], [Zn(cdc)0.5(bta)], [Zn(apa)0.5(bta)], [Zn(gta)0.5(bta)], 

[Co3(D-cam)2(bta)2], [Zn3(D-cam)2(bta)2], [Co3(sdba)2(bta)2] and [Cd2(bpt)(bta)(DMF)] 

(1.63 – 1.72, H2cdc = 1,4-cyclohexanedicarboxylic acid, H2apa = adipic acid, H2gta = glutaric 

acid, D-H2cam = D-camphoric acid, H2sdba = 4,4´-dicarboxybiphenyl sulfone and H3bpt = 

biphenyl-3,4´,5-tricarboxylic acid)108–112. In compounds 1.63 – 1.68 the bta units bridge 
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metal centres in a μ1,3-fashion to form a M-bta 1D chain, thus increasing the dimensionality 

of the framework (Figure 1.17). The architectures in the remaining compounds are based on 

[M3(bta)2(CO2)4] nodes which contain both linkers and are connected by Lcarboxylate 

molecules. In these examples bta adopts a μ1,2,3-bridging coordination mode. 

 

 

Figure 1.17. Part of the 2D network in compound 1.65 along the b0c plane. Hydrogen atoms 

are omitted for clarity. Colour code Co (blue), C (black), N (light blue), O (red). 

  

A relevant example using non-carboxylate linkers was presented in 2009 by Herchel and co-

workers, who opted to use a 0D metalloligand based on FeIII and the salen ligand (salen = 

N,N′-Ethylenebis(salicylimine))113. The addition of Hbta induces dimensionality and leads to 

a 1D chain as the [Fe(salen)]1+ nodes are bridged by μ1,3-bta molecules to generate 

[Fe(salen)(bta)] (1.73). This compound also showed promising anti-tumour activity against 

various cancer cell lines. 

 

1.2.2.2.3. Benzotriazole Derivatives as main Ligands 

Many derivatives of Hbta have also been used as ligands in coordination chemistry. This 

section includes: i) benzotriazolates with added functional groups in the 5´ (or 5´,6´) 

position(s). These compounds retain their triazole moiety intact for coordination and are 

generally available at low cost. The most common examples are 5-methylbenzotriazole 

(MebtaH), 5-chlorobenzotriazole (ClbtaH), benzotriazole-5-carboxylic acid (H2btca), 5,6-
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dimethylbenzotriazole (Me2btaH) and 5,6-dimethoxybenzotriazole (OMe2btaH). ii) N-

substituted benzotriazoles (in either the 1´ or 2´ position), which only offer two nitrogen 

atoms for metal coordination. However, due to the synthetic versatility of Hbta they also 

provide extended options in ligand design and flexibility. 

 

C-substituted Benzotriazole Derivatives  

In regards to this category, employment of MII sources with MebtaH, ClbtaH, Me2btaH or 

OMe2btaH as the main ligand again seems to favour the formation of polynuclear 

coordination clusters with no major differences compared to the analogous Hbta-based 

compounds mentioned before, despite the presence of additional chemical groups with 

potential steric hindrance. As a result, the reported82,90,114–117 penta-, nona- and 

tetradecanuclear compounds [Zn5Cl4(Me2bta)6], [Zn9(Me2bta)12(CH3COO)6], 

[Zn9Cl6(OMe2bta)12], [Fe14O6(Mebta)6(OMe)18Cl6], [Fe14O6(Clbta)6(OMe)18Cl6], 

[Fe14O6(Me2bta)6(OMe)18Cl6] (1.74 – 1.79) exhibit the same structural features noted in 

compounds 1.21, 1.24 and 1.32 respectively. Similar isostructural complexes with a 

heteronuclear {MIIZn4} (where M = Fe, Co, Cu, Ni, Ru)82,114,115 or {MII
3Zn6} (where M = 

Fe)117 core have also been reported; in both cases, the MII ions are located in the centre of the 

core arrangement.  

 

Perhaps the more interesting ligand in this category, however, is H2btca, as its carboxylate 

group provides additional coordination sites and accounts for completely different structures 

with unique features and properties. In a recent study, Lanza and co-workers report118 the 

formation of a polymeric framework [Co3(OH)2(btca)2]·2DMF (1.80) which contains 

rhombic pores and extends to 3D as each btca unit bridges in total five CoII centres through 

its carboxylate and triazole moieties (Figure 1.18). These centres are unsaturated 

(coordination number 5), as the solvent molecules do not coordinate and are instead found 

within the pores. This framework appears to be very flexible, showing reversible pressure-

induced nucleophilic addition of guest molecules; upon increase of pressure, coordination of 

DMF to one of the unsaturated metal sites occurs as the framework becomes more rigid, 

while the introduction of MeOH results in solvent exchange and coordination to all Co sites. 
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After decompression, the framework retains its flexibility as the MeOH molecules are no 

longer coordinated.  

 

 

Figure 1.18. View of the rhombic 3D framework in compound 1.80. Hydrogen atoms and 

solvent molecules are omitted for clarity. Colour code Co (blue), C (black), N (light blue), O 

(red). 

 

A similar solvent exchange phenomenon was demonstrated119 by Qiao et al. in the isoskeletal 

[Co3(OH)2(btca)2]·4H2O (1.81), which upon immersion to EtOH exchanges its guest 

molecules to generate [Co3(OH)2(btca)2]·EtOH. Additionally, sorption properties for the 

desolvated compound were studied by Ren and co-authors, who showed that the framework 

exhibits very good CO2 uptake of 223.7 and 104.7 mg g-1 at 273 and 298 K respectively120.  

Xiao and co-workers showed121 that the isostructural zinc analogue 

[Zn3(OH)2(btca)2]·DMF·H2O (1.82) also exhibits large flexibility and a similar “breathing 

effect”. Controlled heating of 1.82 at 220 or 440°C yielded compounds 

[Zn3(OH)2(btca)2]·DMF·0.5H2O (1.83) and [Zn3(OH)2(btca)2]·2H2O (1.84) which showed 

increased framework narrowing and pore shrinking as the guest molecules were gradually 

removed. 

 

N-substituted Benzotriazole Derivatives 

In recent years there have been several studies that explore the coordination chemistry of 

ligands based on 2H-benzotriazol-2-yl phenolate (BTP) derivatives towards the design of 

catalytic systems for ring-opening polymerization (ROP) reactions. More specifically, it has 
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been shown that the ROP of cyclic esters, which affords biodegradable polyesters, is best 

promoted by well-defined metal complexes with a limited number of active sites, preventing 

any side reactions. BTP ligands are therefore ideal for these purposes, offering N,O-bidentate 

chelation which ensures the formation of stabilized and well-defined 0D complexes. For 

example, Li and co-workers designed122 [(μ-C8BTP)Ti(OiPr)3]2 (1.85, C8BTPH = 2-(2H-

benzotriazol-2-yl)-4-(2,4,4-trimethylpentan-2-yl)phenol, Figure 1.19), a 0D dimeric 

compound which was found to be an efficient catalyst in the ROP of ε-caprolactone and L-

lactide, generating polymers with conversions up to 99% when the reaction occurred in 

toluene at 30°C and under 0.01 M of the catalyst. The latter reaction may also be catalysed 

by the monomeric magnesium-based compound [(TMClBTP)2Mg(THF)2] (1.86, TMClBTPH = 

2-tert-butyl-6-(5-chloro-2Hbenzotriazol-2-yl)-4-methylphenol) in 97% conversion under 

analogous conditions as shown by the same group123. 

 

 

Figure 1.19. The structure of the dimeric compound 1.85. Hydrogen atoms are omitted for 

clarity. Colour code Ti (dark blue), C (black), N (light blue), O (red). 

 

In similar fashion, Chang et al. constructed124 a dinuclear zinc compound using the imino-

based BTP ligand 2-(2H-benzotriazol-2-yl)-6-(((2,6-dimethylphenyl)imino)methyl)-4-

methylphenol (C1DMeIBTPH). [(μ-C1DMeIBTP)ZnEt]2 (1.87) catalyses the ROP of ε-

caprolactone and β-butyrolactone in toluene at 55°C, as well as the ROP of L-lactide in 

CH2Cl2 at 30°C. In all cases the afforded conversions are excellent (up to 99%), while only 

0.01 M of 1.87 is required. 
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Also prevalent in the literature is the use of 1-substituted benzotriazole ligands with various 

groups or molecules as substituents. One of the first works that incorporated this strategy was 

by Richardson and Steel, who explored the chemistry of ligands pbta (1-(pyridin-2-yl)-1H-

benzotriazole), pmbta (1-(pyridin-2-ylmethyl)-1H-benzotriazole) and ibta (1-(1H-

benzotriazol-1-yl)isoquinoline) with PdII, CuII and AgI sources125. This strategy mainly 

afforded 0D dimers and 1D CPs where metal coordination occurs through the N3 atom of the 

benzotriazole moieties.  

 

More intriguing, however, is the incorporation of a second benzotriazole unit to generate 

1,1´-bis(benzotriazole) ligands with an increased number of potential coordination sites and 

provide controlled flexibility in the system. For this type of linkers, flexibility is typically 

introduced with the inclusion of alkyl chain spacer groups between the two benzotriazole 

units. Alkanes up to hexane have been a popular choice for these purposes, and several 

compounds have been reported with the respective ligands125–131. Most of these studies focus 

solely on the structural features of the compounds, as mainly [Cu(bbtm)(NO3)2] (1.88, where 

bbtm = bis(benzotriazol-1-yl)methane, Figure 1.20) was further tested for any potential 

properties showing weak antiferromagnetic coupling between the CuII ions130. However, it is 

worth noting that the use of all linkers in this category consistently produced CPs with low 

dimensionalities, mainly one-dimensional.  

 

 

Figure 1.20. Part of the 1D framework in compound 1.88. Hydrogen atoms are omitted for 

clarity. Colour code Cu (blue), C (black), N (light blue), O (red). 

 

Analogous bis(benzotriazole)-dioxoalkane ligands have been employed using 1-

hydroxybenzotriazole as the starting material, affording compounds similar to the above132–
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134. Notably, efforts133 undertaken by Shit et al. resulted in the synthesis of isoskeletal 

polymeric compounds [Cu(Br)2(bbdp)]2 and [Cu(Cl)2(bbdp)]2 (1.89 – 1.90, where bbdp = 

bis(benzotriazol-1-yl)-1,3-dioxapropane) which expand to two dimensions through halide 

bridging. 1.89 and 1.90 exhibited antiferromagnetic (χMT = 0.79 cm3 K mol−1 at 200 K, 0.09 

cm3 K mol−1 at 5 K) and ferromagnetic (χMT = 0.91 cm3 K mol−1 at 200 K, 1.00 cm3 K mol−1 

at 5 K) behaviour respectively. Magneto-structural correlation studies by the authors 

attributed this discrepancy to the different bridging halide atom in each case. 

 

1.3. Aim of This Thesis 

Section 1.1 of this chapter explored in detail the synthetic intricacies and application range 

of CPs, demonstrating their popularity in the last few decades. It also highlighted the 

underutilization of 1D CPs which have attracted significantly lower interest compared to 

porous MOFs. For this reason, the primary aim of this thesis is to design 1D CPs with 

potential applications, focusing on magnetism and catalysis.  

 

To achieve this goal, it was essential to develop a ligand system which would not promote 

the formation of rigid high-dimensional frameworks and would instead offer a certain degree 

of freedom for easier tuning and optimization. Emphasis was also placed on factors such as 

cost of reagents, general ease of chemistry and ligand novelty. Having all these in mind, it 

was determined that such capabilities and framework dynamism would be best provided by 

N-donor ligands that exhibit some degree of flexibility.  

 

Benzotriazole emerged as an ideal template molecule to design such a system, due to its 

unique characteristics as shown in Section 1.2. Relevant literature searches (Section 1.2.2.2) 

showed that simple Hbta as well as C-substituted benzotriazoles mostly lead towards the 

formation of polynuclear coordination clusters. The exception to this was the ligand H2btca, 

however it resulted to CPs with characteristics (3D compounds, robust M-O coordination 

bonds) that were unwanted for the scope of this work. Instead, it was found that the formation 

of low-dimensional CPs is best achieved by N-substituted benzotriazole ligands, especially 

1,1´-bis(benzotriazole) ligands which contain spacer groups between the two benzotriazole 

units. Apart from promoting the desired compound dimensionalities, such linker systems 
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may provide a contained amount of flexibility and can be easily synthesized through N-

alkylation (Scheme 1.16), although potential unwanted isomerism should also be 

considered135. Furthermore, it is worth noting that very few of the reported coordination 

compounds with this type of linkers were investigated for any applications, as more attention 

was paid to their structural capabilities instead. For this reason, a secondary aim of this thesis 

is to explore the potential of such ligands towards functional CPs. 

 

 

Scheme 1.16. Proposed synthesis of the 1,1´-bis(benzotriazole) ligand system. 

 

The following chapters will present efforts made to achieve both of these targets through a 

series of coordination compounds synthesized by CoII , CuI/II and AgI sources and a family 

of semi-rigid benzotriazole-based ligands. These transition metals satisfy most of the criteria 

presented in Section 1.1.2.2, as they show ease of coordination with N atoms and can feature 

various geometries; they are also relatively low-cost, high-abundance metals with ease of 

chemistry and stability under ambient conditions. Furthermore, the magnetic properties of 

cobalt compounds136, as well as the catalytic activities of systems based on copper137 and 

silver138 have been well documented in the literature.  

 

In order to provide comparison and fully determine the role and effect of the benzotriazole 

moiety, additional compounds with analogous N-donor ligands, including bis(5-

methylbenzotriazole), bis(5,6-dimethylbenzotriazole), bis(benzimidazole), bis(imidazole) 

were also synthesized and tested for the same properties.  
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Chapter 2: Exploring the coordination capabilities of a family of flexible 

benzotriazole-based ligands using CoII sources 

 

Abstract: This study focuses on the coordination chemistry of a family of three flexible 

benzotriazole-based ligands (L1-L3) using CoII salts. These efforts have resulted to the 

formation of ten novel compounds, formulated as [Co2(L1)2Cl4]·2MeCN (1), Co2(L1)2Br4 

(2), [Co(L2)Cl2]·MeCN (3), Co(L2)Cl2 (4), [Co2(L2)2Br4]·2MeCN (5), 

[Co(L2)2(NO3)2]·2MeCN (6), [Co2(L3)2Cl4]·2MeCN (7), Co2(L3)2Cl4 (8), Co2(L3)2Br4 (9), 

and Co(L3)2(NO3)2 (10). The structures have been well characterised through X-Ray 

crystallography, FT-IR, ESI-MS, PXRD, Elemental Analysis and TGA studies. The 

compounds show a large structural variety depending on synthetic parameters and the ligand 

selection. When tuned appropriately, these factors drastically affect dimensionality, metal 

geometry and the nuclearity of the final product, resulting in a range of 0D dimers (1, 3, 5, 

8, 9), 1D (2, 7, 10) and 2D (4, 6) CPs. A temperature-induced single-crystal to single-crystal 

transformation of compound 3 to 4 is additionally reported. The magnetic properties of 

representative compounds (4, 7, 9) are subject to large changes with only minor structural 

variations, suggesting that tetrahedral CoII nodes in CPs could function as sensitive reporters 

of small changes in the local environment. 

 

External Contributions: Nicholas F. Chilton (University of Manchester) was responsible 

for the collection and interpretation of magnetic and EPR data for compounds 4, 7 and 9. 

Alaa Abdul-Sada (University of Sussex) was responsible for the collection of all ESI-MS 

data.  

 

2.1. Introduction 

The current chapter reports the first efforts towards the development of a system providing 

functional CPs with low dimensionality based on N-donor ligands, particularly 

benzotriazole-derived. The construction of such a specific system remains a difficult task, 

despite the advances of the rational design concepts during the last few decades. As discussed 

in Chapter 1, the resulting architecture of CPs may be manipulated by changing the reaction 

conditions, leading to a large variety of structurally and topologically unique products139–141.  
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However, controlling and predicting the final outcome of the self-assembly procedure 

remains one of the major challenges in the field12. The resulting products are often strongly 

influenced by factors such as the behaviour of a functional group in a molecule142, the 

influence of the crystallization conditions and the various conformations of the components 

within the crystal143.  

 

For reasons already detailed in Section 1.3, initial approaches involved the design of 1,1´-

bis(benzotriazole) ligands with flexible spacer groups between the two units. Much 

consideration was given to the exact level of flexibility within the linkers. To maintain an 

amount of control over the resulting structure while retaining the advantages of flexible 

linkers, it was determined that the middle ground between these two extremes would be the 

most sensible option. This would require the use of ‘semi-rigid’ ligands with a smaller degree 

of flexibility; such molecules have also been successfully employed to afford CPs42,144–150. 

To satisfy these conditions, a family of benzene-substituted benzotriazole molecules, namely 

1,4-bis((1H-benzo[d][1,2,3]triazol-1-yl)methyl)benzene (L1), 1,3-bis((1H-

benzo[d][1,2,3]triazol-1-yl)methyl)benzene (L2), and 1,2-bis((1H-benzo[d][1,2,3]triazol-1-

yl)methyl)benzene (L3) (Scheme 2.1) was designed and introduced. These ligands contain a 

flexible C-N bond in an otherwise rigid molecule and when coupled with different positions 

on the benzene ring (para-, meta- and ortho-substitution for L1, L2 and L3, respectively), can 

lead to a wide array of coordination motifs. In addition, they have been scarcely used in 

coordination chemistry151,152. 

 

Cobalt was selected as the most suitable metal for these initial investigations; it is well known 

that CoII can adopt versatile coordination geometries and often displays large magnetic 

anisotropy136,153,154. Furthermore, detailed studies of the correlation between the coordination 

geometry of the metal centre and the magnetic parameters of the compounds has already been 

well established, especially for tetra-155–158, penta-159–161 and hexa-coordinated162,163 CoII 

complexes. 

 

Having all these in mind, the present work aims to study the coordination capabilities of L1, 

L2, L3 along with CoII salts as metal sources. Ten new compounds, formulated as 
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[Co2(L1)2Cl4]·2MeCN (1), Co2(L1)2Br4 (2), [Co(L2)Cl2]·MeCN (3), Co(L2)Cl2 (4), 

[Co2(L2)2Br4]·2MeCN (5), [Co(L2)2(NO3)2]·2MeCN (6), [Co2(L3)2Cl4]·2MeCN (7), 

Co2(L3)2Cl4 (8), Co2(L3)2Br4 (9), and Co(L3)2(NO3)2 (10) are reported. Synthetic aspects, as 

well as the magnetic properties of selected compounds 4, 7 and 9 are discussed. 

 

 

Scheme 2.1. The organic ligands L1, L2, and L3 used in this study.  

 

2.2. Results and Discussion 

 

2.2.1. Crystal Structure Description of Compounds 1 – 10 

Compound 1 crystallizes in the triclinic 𝑃1 space group. The asymmetric unit consists of one 

CoII centre, one L1 molecule, two chlorine atoms which act as terminal ligands and an 

acetonitrile molecule in the lattice. X-Ray data further reveal that the structure is finite and 

does not extend to any dimension (Figure 2.1, upper). CoII is coordinated to four atoms in a 

{N2Cl2} environment and exhibits a slightly distorted tetrahedral geometry. In this case, the 

ligand adopts a boat-like conformation, and its coordination mode is presented in Scheme 2.2 

(Mode A). The mean Co-N distances are 2.047(4) and 2.042(4) Å respectively, while the 

angles of the tetrahedron range from 105.85(12)° to 113.694(14)°. The Co-Cl distances were 

measured at 2.2439(14) and 2.2393(13) Å. Finally, Co···Co distance was found to be 

11.5929(19) Å. While no hydrogen bonds are formed, the supramolecular architecture of the 

complex is formed and stabilized through inter-molecular π⋯π stacking interactions of the 

benzotriazole aromatic rings (Figure S2.1, Appendix). The values for these interactions are 

detailed in the Appendix (Table S2.1).  

 

Similarly to 1, compound 2 crystallizes in the triclinic 𝑃1 space group; its asymmetric unit 

contains one CoII centre, one L1 molecule and two bromide atoms which act as terminal 
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ligands. The arrangement of the resulting {N2Br2} coordination environment around the CoII 

centre can be described as slightly distorted tetrahedral, in which the angles of the tetrahedron 

range from 106.27(16)° to 112.77(5)°. As in compound 1, the metal is coordinated to the 

ligand through the N3 atom of the benzotriazole units. However, in this case the ligand adopts 

a chair-like conformation (Scheme 2.2, Mode B). As a result, the structure is extended 

infinitely into one direction, forming a one-dimensional coordination polymer (Figure 2.1, 

lower). The Co-N and Co-Br distances are 2.021(5) and 2.030(5), 2.3709(10) and 2.3745(10) 

Å respectively. No hydrogen bonds or other intermolecular interactions were observed. 

 

 

Figure 2.1. (upper) The structure of compound 1. (lower) Part of the 1D framework of 

compound 2 along the a axis. In each case the ligand adopts a different conformation (boat 



53 
 

or chair). H atoms and solvent molecules are omitted for clarity. Colour code Co (blue), Cl 

(green), Br (brown), C (black), N (light blue). 

 

L2-based compounds 3 and 5 are isostructural, therefore only the former will be described in 

detail. 3 crystallizes in the triclinic 𝑃1 space group and forms a zero-dimensional dimer 

structure as seen in Figure 2.2. The asymmetric unit consists of one CoII centre, one L2 

molecule, two chlorine atoms which act as terminal ligands and an acetonitrile molecule in 

the lattice. CoII presents a {N2Cl2} coordination environment and exhibits a slightly distorted 

tetrahedral geometry. The conformation (boat) and coordination sites of the ligand are 

detailed in Scheme 2.2 (Mode C). The mean Co-N distances are 2.0341(2) and 2.0352(2) Å 

respectively, while the Co-Cl distances were measured at 2.0352(17) and 2.0341(17) Å. 

Angles of the tetrahedron range from 100.470(8)° to 113.250(7)°. Co···Co distance was 

found to be 11.1122(11) Å. As in the case of compound 1, the supramolecular architecture is 

further stabilized by the formation of inter-molecular π⋯π interactions (Figure S2.2, 

Appendix), as described in Table S2.2, Appendix. Again, no hydrogen bonds are formed. 

 

 

Figure 2.2. The structure of compounds 3 and 5. X = Cl (3), Br (5). H atoms and solvent 

molecules are omitted for clarity. Colour code Co (blue), X (green), C (black), N (light blue). 

 

Compound 4 crystallizes in the monoclinic space group P21/c and its asymmetric unit consists 

of one CoII centre, one L2 molecule and two chlorine atoms. CoII is coordinated to a total of 

five atoms and exhibits a distorted trigonal bipyramidal geometry (τ = 0.67).164 The basal 
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plane consists of one nitrogen atom from the ligand and the two chlorine atoms, while the 

apical positions are occupied by a nitrogen and a chlorine atom from symmetry related 

molecules. In contrast to compound 3, which has the same molecular formula and its structure 

is zero-dimensional, the structure of 4 propagates in two directions through the formation of 

a chlorine bridge and the concurrent rotation of the non-rigid C-N bond (Figure 2.3, left / 

Scheme 2, Mode D). This results in the construction of a 2D framework, which consists of 

layers that are formed along the b0c plane axis (Figure 2.3, right). This packing arrangement 

allows for the formation of π···π inter-molecular interactions between certain benzotriazole 

aromatic rings, as detailed in the Appendix (Table S2.3). These weak interactions further 

facilitate the stability of the framework (Figure S2.3, Appendix). Considering each CoII
2Cl2 

unit as a node, the topological evaluation of 4 results in a uninodal 4-connected sql network 

with node distances at 11.724Å.  

 

     

Figure 2.3. (left) The building unit of compound 4. (right) Part of the 2D framework of 

compound 4 along the b0c plane. H atoms are omitted for clarity. Colour code Co (blue), Cl 

(green), C (black), N (light blue). 

 

Complex 6 crystallizes in the monoclinic space group P21/c. The asymmetric unit contains a 

CoII centre, one L2 molecule, one lattice acetonitrile molecule and one nitrate which acts as 

a terminal ligand (Figure 2.4, upper). The geometry of CoII is octahedral as it is coordinated 

to four nitrogen atoms from L2 molecules, which consist the basal plane and two nitrate 

oxygen atoms which occupy the axial positions. The respective mean Co-N distances are at 
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2.15789(10) and 2.19315(8) Å, the longest observed in this Chapter. The relevant Co-O 

distance was measured at 2.0920(13) Å. In this case, the ligand adopts a chair conformation 

(Scheme 2.2, Mode E) and as a result the structure extends to two dimensions along the b0c 

plane axis, forming a 2D coordination polymer (Figure 2.4, lower). No hydrogen bonds or 

other supramolecular interactions were observed. Considering each CoII centre as a node, the 

topological analysis of 6 results, as in the case of compound 4, in a uninodal four-connected 

sql network with node distances at 12.908Å.  

 

 

 

Figure 2.4. (upper) The building unit in compound 6. (lower) Part of the 2D architecture of 

compound 6 along the b0c plane. H atoms and solvent molecules are omitted for clarity. 

Colour code Co (blue), C (black), N (light blue), O (red). 
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In regards to the L3-based compounds, 7 was synthesized using CoCl2 as the metal source 

and crystallizes in the monoclinic space group P21/c. The asymmetric unit consists of one 

CoII centre, one organic ligand molecule, two chlorine atoms and a lattice acetonitrile 

molecule. CoII is coordinated to the two chlorine atoms and to two nitrogen atoms from L3 

and a symmetry related L3 molecule respectively. The metal centre therefore has a 

coordination number of four and exhibits a slightly distorted tetrahedral geometry, with the 

angles of the tetrahedron ranging from 105.402(10)° to 114.2428(14)°. The mean Co-N 

distance is 2.048(2) Å, and the Co-Cl distances are 2.2348(9) and 2.2254(9) Å. In this 

conformation of the ligand (Scheme 2.2, Mode F), the rotation of the non-rigid C-N bond 

brings the planes of the benzotriazole molecules to a 44.61(7)° angle. As a result, the structure 

propagates in one direction with the complex forming one dimensional (1D) chains that 

unfold in a helix-like manner (Figure 2.5). 

 

 

Figure 2.5. Part of the 1D framework of compound 7 along the b axis. H atoms and solvent 

molecules are omitted for clarity. Colour code Co (blue), Cl (green), C (black), N (light blue). 

 

Compounds 8 and 9 are isostructural and as such only 8 will be described below. The 

compound crystallizes in the triclinic space group 𝑃1. CoII is coordinated to four atoms in a 

{N2Cl2} environment and exhibits a slightly distorted tetrahedral geometry. The mean Co-N 
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distances are 2.041(3) and 2.032(3) Å, and the Co-Cl distances are 2.2350(13) and 

2.2378(13) Å. Angles of the tetrahedron range from 104.32(14)° to 119.73(6)°. Co···Co 

distance was found to be 9.0147(19) Å. In this conformation of the ligand (Scheme 2.2, Mode 

G), the angle between the planes of the benzotriazole molecules is a 123.05(3)°. As the 1,2,3-

triazole moieties are now in a different arrangement compared to 7, compound 8 is eventually 

a zero-dimensional dimer structure (Figure 2.6). As in the previous dimers, inter-molecular 

π⋯π stacking interactions are formed to facilitate the stability of the supramolecular network 

(Appendix, Figure S2.4, lower). Additionally, there is an intra-molecular π⋯π interaction 

within the dimer, formed between the aromatic rings of benzotriazole molecules (Appendix, 

Figure S2.4, upper). Details for these interactions are listed in the Appendix (Table S2.4). 

 

 

Figure 2.6. The structure of compounds 8 and 9. X = Cl (8), Br (9). H atoms and solvent 

molecules are omitted for clarity. Colour code Co (blue), X (grey), C (black), N (light blue). 

 

Finally, compound 10 crystallizes in the triclinic 𝑃1 space group and contains a CoII centre, 

a nitrate anion which acts as a terminal ligand, and one organic ligand molecule in the 

asymmetric unit. The metal centre is coordinated to six atoms and exhibits a distorted 

octahedral geometry. Four nitrogen atoms from symmetry related ligand molecules occupy 

the equatorial positions of the octahedron, while two nitrate oxygen atoms occupy the axial 
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positions. The Co-N and Co-O distances are 2.186(3) and 2.095(2) respectively. The 

coordination mode and conformation of the ligand in this case is similar to the zero-

dimensional dimers 8 and 9 (Scheme 2.2, Mode G). However the octahedral geometry of CoII 

in compound 10 means that the structure forms a neutral one-dimensional (1D) framework 

with small voids, which can be seen in Figure 2.7. 

 

 

Figure 2.7. Part of the 1D framework of compound 10 along the b axis. H atoms are omitted 

for clarity. Colour code Co (blue), C (black), N (light blue), O (red). 
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Scheme 2.2. The coordination modes of the ligands L1 (upper, modes A, B), L2 (middle, 

modes C-E), and L3 (lower, modes F and G). 

 

Table 2.1. Overview of the coordination characteristics of the compounds reported in this 

study. 

Entry Ligand Compound Geometry of 

CoII 

Coordination 

Mode 

Dimensionality 

1 L1 1 

 

A 0D 

2 L1 2 

 

B 1D 

3 L2 3 

 

C 0D 

4 L2 4 

 

D 2D 

5 L2 5 

 

C 0D 
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6 L2 6 

 

E 2D 

7 L3 7 

 

F 1D 

8 L3 8 

 

G 0D 

9 L3 9 

 

G 0D 

10 L3 10 

 

G 1D 

 

2.2.2. Synthetic Aspects  

As shown in Table 2.1, the employment of L1, L2 and L3 along with CoII sources afforded a 

variety of compounds, including 0D dimers and 1D or 2D CPs. This structural diversity is 

owed to the ligand, ratio, temperature and metal source used. As such, these parameters and 

their importance to this study will be further discussed below. While various solvents were 

tested during synthesis, only acetonitrile and acetone were successful. The choice of solvent, 

however, does not seem to play any significant part in the resulting compounds and therefore 

will not be discussed in further detail. 

 

A close inspection of the ratio and temperature conditions used provides a significant 

understanding of the system and allows for its finer control. In regards to the ratio, complexes 

1-5, 7, 9 and 10 were synthesized using either a 1:1 or a 2:1 metal-ligand analogy. 

Interestingly, other ratios were not so successful, resulting mostly in non-crystalline material. 

The only exceptions to this were 1 and 7, which were also prepared in a 1:2 ratio, and 6 and 
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8 which were synthesized in 3:1. Νone of the ten compounds could be afforded in larger 

ratios.  

 

Introduction of the temperature parameter through various forms (gentle heating to 50°C, 

solvothermal reactions to 75-100°C) led to more interesting results. In several cases, an 

increase in temperature during synthesis allowed for a better control of the resulting product 

through manipulation of the non-rigid part of the ligands. In the L1-based compounds 1 and 

2, the former was synthesized at room temperature (rt), while the latter was prepared at 50°C. 

This temperature effect has a subsequent result in the conformation of the ligand (Scheme 

2.2, Modes A and B) which allows for the manipulation of the dimensionality in the 

structures: 1 is a 0D dimer while 2 is a 1D coordination polymer. Another interesting example 

is observed in the L2-based compounds 3 and 4. Both were prepared by the same method, 

however 3 was synthesized at rt and produced a 0D dimer, while 4 was subjected to 75°C 

heating and afforded a 2D coordination polymer. A closer comparison of the structures 

reveals a rotation of the non-rigid C-N bond in L2, which can be attributed to the temperature 

effect in each case. To further investigate this, an acetonitrile solution containing single 

crystals of 3 was heated to 75°C for 18 hours, and after X-Ray crystallography analysis the 

crystals were found to have been converted to compound 4, confirmed also by IR spectra. 

Thus, compound 3 can undergo a temperature-induced single crystal transformation to 4 

(Scheme 2.3), subjecting to significant alterations: the coordination geometry of CoII changes 

from tetrahedral to trigonal bipyramidal, the dimensionality of the structure changes from 0D 

to 2D, and the loss of lattice solvent is also observed. In regards to the crystallographic 

parameters, there are considerable differences in the space group (𝑃1 to P21/c) and unit cell 

dimensions. Efforts to make this transformation reversible were unsuccessful.  

 

Taking these findings up to this point into consideration, it was envisioned that a combination 

of higher temperatures and large metal:ligand ratios would allow for further structural 

variety. Indeed, compounds 6 and 8 were synthesized employing a 3:1 ratio and solvothermal 

conditions. As evident by a comparison of 8 to 7 (synthesized in rt), temperature once again 

affects the conformation of the ligand’s non-rigid part, leading to a 0D dimer and a 1D chain 

respectively. Efforts to obtain 6 and 8 using different ratios or in the absence of high 
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temperature proved unsuccessful, indicating the importance of both parameters in controlling 

the system.  

 

 

Scheme 2.3. A schematic representation of the temperature-induced single-crystal to single-

crystal transformation of 3 to 4. 

 

A classification of complexes 1-10 by ligand reveals that the para-substituted ligand L1 

afforded the lowest number of structures, as only a 0D dimer and a 1D CP were obtained. In 

contrast, four complexes were synthesized using each of the meta- and ortho-substituted 

ligands L2 and L3 respectively; two 0D dimers and two low-dimensional CPs in each case. 

Furthermore, L1-based compounds were afforded in much poorer yields compared to the rest. 

In all complexes, coordination of the CoII centre takes place only through the N3 atom of the 

1,2,3-triazole moiety; coordination through the N2 atom is likely not promoted due to steric 

effects. L1, L2 and L3 also contribute to the stability of the respective 0D dimers via 

participation in intermolecular π···π stacking interactions. The present findings, summarized 

in Table 2.1, recommend that all ligands are suitable for the construction of dimers and low-
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dimensional CPs, however formation of the latter can be easily promoted under the proper 

synthetic conditions. Taking also into consideration the low yields of the L1-based 

compounds, it can be deduced that ligands L2 and L3 with respective substitution in meta- 

and ortho- position, are the most appropriate for the synthesis of the desired polymeric 

structures. These findings were very encouraging, especially having also in mind the little 

attention that this family of organic ligands has received in coordination chemistry compared 

to the corresponding derivatives of other heterocyclic N-donors, such as benzimidazole165–

174.  

 

In regards to the cobalt sources, a variety of sources were used in order to perform a full 

systematic study for the metal, including CoCl2, CoBr2, Co(NO3)2, Co(OAc)2, Co(BF4)2, 

Co(ClO4)2 and Co(SO4)2. Out of these salts, only the first three afforded any results. Each 

anion appears to contribute differently to the dimensionality of the structures. Cl plays a 

significant role in compound 4, as the structure propagates in two directions through the 

formation of a chloride bridge. Bromine-based complexes have less frequency and variation, 

despite efforts to produce results similar to the chloride-based structures. Finally, 

experiments with CoII nitrate lead exclusively to coordination polymers, as compounds 6 and 

10 are 2D and 1D respectively. This change in anion is also accompanied by a drastic change 

in the geometry of the metal centre, as all nitrate-based compounds exhibit octahedral {N4O2} 

coordination motifs. 

 

2.2.3. Characterization of Compounds 1 – 10 

ESI-MS Studies  

To confirm their identity in solution, electrospray ionization mass spectrometry (ESI-MS) 

was performed for compounds 1-10. The MS (positive-ion mode) for all complexes shows 

four peaks at the regions of 369.60, 539.65 and 709.75 and 880.32 m/z which perfectly 

correspond to the respective [Co(L)2 – H]2+, [Co(L)3 – H]2+ and [Co(L)4 – H]2+ dicationic 

fragments. Additional peaks, depending on the anion present, are also observed. 1, 3, 4, 7 

and 8 show additional peaks at 434.04, 562.24, 774.18 m/z that correspond to the [Co(L)Cl 

– H]1+, [Co2(L)Cl3 – H]1+ and [Co(L)2Cl – H]1+ monocationic fragments respectively. 

Compounds 2, 5 and 9 exhibit peaks at 479.95, 696.75, 820.09, 1036.87 and 1160.24 m/z, 
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corresponding to [Co(L)Br – H]1+, [Co(L)Br2 – H]1+, [Co(L)2Br – H]1+, [Co2(L)2Br3 – H]1+, 

and [Co(L)3Br – H]1+ fragments. For 6 and 10 two peaks appear at 461.06 and 801.20 m/z, 

that match the [Co(L)(NO3) – H]1+ and [Co(L)2(NO3) – H]1+ monocationic fragments 

respectively. The representative ESI-MS spectra are presented in the Appendix (Figures 

S2.11-S2.15). 

 

TGA and Powder XRD Studies 

Thermogravimetric analysis (TGA) between room temperature and 900-1000 °C was carried 

out on all compounds (Figures S2.16-S2.18, Appendix). All compounds start to decompose 

in the region of 200-350°C. In compounds with lattice solvent molecules, this loss takes place 

in the region of 70-190 °C. Furthermore, to confirm phase purity of the samples, 

representative compounds 7, 8 and 9 were further characterized through Powder XRD 

studies. The resulting spectra, as seen in the Appendix (Figures S2.8-S2.10), indicated that 

the complexes are indeed formed in high purity. 

 

2.2.4. Magnetic and EPR Studies 

Selected complexes 4, 7 and 9 were investigated in order to elucidate their magnetic 

properties with SQUID magnetometry, Electron Paramagnetic Resonance (EPR) 

spectroscopy and ab initio Complete Active Space Self-Consistent Field Spin-Orbit 

(CASSCF-SO) calculations. The compounds were chosen based on their characteristic 

structural features in regards to coordination environment, metal geometry and 

dimensionality. Complexes 7 and 9 contain CoII in a distorted tetrahedral environment, while 

the CoII site in 4 is a distorted trigonal bipyramid, giving in all cases an anisotropic S = 3/2 

ground state. Complex 7 is a 1D CP, the nearest-neighbour Co···Co distance is over 8.5 Å 

and the through-bond connectivity involves 10 ligand N and C atoms, thus the CoII sites are 

treated as uncoupled. Complex 9 is a discrete 0D dimeric species with intramolecular π-π 

stacking, thus some magnetic interaction between the two CoII ions may be present. Complex 

4 is a 2D CP featuring a repeat unit of a μ2-Cl- bridged dimer and thus it is expected that the 

magnetic interactions between the CoII ions in could be rather strong. Importantly, for both 

4 and 9, the CoII ions are related by crystallographic inversion symmetry and hence must 
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have the same local electronic structure. Initial investigations took place for 7, followed by 

9 and 4, following the expected level of complexity. 

 

The magnetic susceptibility-temperature product, χMT, for 7 has a value of 2.71 cm3 mol-1 K 

at room temperature and is more-or-less temperature independent until it begins to fall below 

30 K to reach a minimum value of 1.67 cm3 mol-1 K at 2 K (Figure 2.8). The isothermal 

magnetization, M, profiles at 2 and 4 K approach and the same maximum value, but fail to 

saturate at 7 T (Tesla units) with values of 2.78 and 2.73 μB mol-1 and are non-superimposible 

on a reduced magnetization plot, (Figure S2.5, Appendix). The low temperature drop in χMT, 

the lack of saturation of M and the non-superimposable reduced M plots all suggest 

significant Zero-Field Splitting (ZFS) of the ground S = 3/2 state in this isolated tetrahedral 

CoII species. The ZFS was estimated by fitting these magnetic data simultaneously with the 

PHI program175, using the spin Hamiltonian in Equation 1. With the E term fixed to zero to 

avoid over parameterization, reasonable fits are obtained for D ≈ ±7 cm-1 and g ≈ 2.3. The 

cryogenic X- and Q-band (ca. 9.4 and 34 GHz, respectively) EPR spectra for compound 7 

show a reasonably broad feature around 0.15 and 0.45 T, respectively (Figure 2.9). It was 

found that the relative intensity of the two features in the Q-band spectrum can only be 

reproduced when D ≈ -7 cm-1; subsequent optimization of the parameters against the 

magnetometry and EPR data yields D = -6.53 cm-1, E = 0.379 cm-1 and g = 2.26, with 

frequency-space Lorentzian linewidths of η(X-band) = 3 GHz and η(Q-band) = 6 GHz. 

Introducing further flexibility to the Hamiltonian with anisotropic g-values and/or anisotropic 

linewidths does not improve the simulation; furthermore, it is likely that hyperfine coupling 

of the electron spin to the 100% naturally abundant 59Co nucleus with I = 7/2 is responsible 

for these strange line shapes. Indeed, CASSCF-SO calculations on the Co-containing repeat 

unit of 7 confirm the experimental findings, suggesting D = -8.3 cm-1, E = 1.0 cm-1 and g = 

2.31. 

 

𝐻̂1 = 𝐷 (𝑆̂𝑧
2

−
1

3
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Figure 2.8. Experimental (black circles) and fitted (purple line, parameters in text) χMT for 

7 in a 0.5 T field. 

 

Figure 2.9. Experimental (lower traces) and simulated (upper traces, parameters in text) EPR 

spectra for a polycrystalline powder of 7 at 9.39557 GHz (purple) and 34.049 GHz (green) 

at 5 K. Note that the feature at ~ 0.23 T in the X-band spectrum is a background signal. 

 

The χMT(T) for 9 has value of 5.55 cm3 mol-1 K (per dimer) at room temperature that is 

roughly constant until it declines below 40 K to reach 1.15 cm3 mol-1 K at 2 K (Figure 2.10). 

While the χMT(T) is broadly similar in profile to that of 7, the magnetization data at 2 and 4 

K show quite different behaviour compared with 7, where the two isotherms are coincident 

until ca. 1 T where they separate before approaching one another again at 7 T reaching 4.39 

and 4.25 μB mol-1, respectively (Figure 2.10, inset). It is impossible to reproduce this data 
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using the spin Hamiltonian Equation 1 for each site of the dimer, as the strange sigmoidal 

shape of the magnetization data is directly indicative of antiferromagnetic interactions. Thus, 

for the initial modelling of the magnetic data the spin Hamiltonian Equation 2 was used, 

which takes into account an isotropic interaction between the two CoII ions. Using the same 

initial minimal model as previously with E fixed to zero, the magnetic data fit to find two 

minima: D = -19.9 cm-1, g = 2.38, J = -0.319 cm-1, and D = 26.8 cm-1, g = 2.41, J = -0.559 

cm-1. EPR spectra for 9 at X- and Q-band show only one broad resonance at each frequency 

(Figure 2.11). Of the two parameter sets determined from the magnetic data, only the D < 0 

set is in agreement with the EPR data. Further refinement of these parameters gives D = -

19.6 cm-1, g = 2.38, J = -0.319 cm-1 with frequency-space Lorentzian linewidths of η(X-band) 

= 6 GHz and η(Q-band) = 12 GHz. Given the lack of fine structure in the EPR spectra, it is 

not possible to further refine the model to estimate the rhombicity of the local ZFS tensors. 

Ab initio CASSCF-SO calculations on single sites of 9 again lend support to these 

conclusions, predicting D = -12.3 cm-1, E = 2.6 cm-1 and g = 2.34; furthermore the trend of 

D for 9 being greater than for 7 is also verified. 
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2
) + 𝑔𝑆̂𝑖 ∙ 𝐵]2

𝑖=1 − 2𝐽𝑆̂1 ∙ 𝑆̂2 (2) 

 

Figure 2.10. Experimental (black circles) and fitted (purple line) χMT for 9 in a 0.5 T field. 

(inset) Experimental (black circles and squares) and fitted (purple and green lines) 

magnetization for 9 at 2 and 4 K. 
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Figure 2.11. Experimental (lower traces) and simulated (upper traces, parameters in text) 

EPR spectra for a polycrystalline powder of 9 at 9.40040 GHz (purple) and 33.927 GHz 

(green) at 5 K. Note that the feature at ~ 0.23 in the X-band spectrum is a background signal. 

 

χMT vs. T for compound 4 is similarly temperature independent from 300 K down to 20 K, 

with a value of 6.04 cm3 mol-1 K at 300 K, before a small increase to a maximum value of 

6.22 cm3 mol-1 K at 7 K followed by falling to reach 4.95 cm3 mol-1 K at 2 K (Figure 2.12). 

Such a rise directly indicates exchange coupling between the CoII ions. The magnetization 

vs. field data at 2 and 4 K and 7 T are nearly coincident with a value of 5.35 μB mol-1, 

indicating a well isolated ground manifold (Figure 2.12, inset). Owing to the likely presence 

of significant magnetic exchange in this case and given that the CASSCF-SO calculations 

have been good estimates for 7 and 9, such calculations are also used for 4 in order to estimate 

the local electronic structure of the CoII centres. As the Co sites are related by 

crystallographic inversion symmetry, both will possess the same local electronic structure; 

the calculations suggest that the CoII ions are subject to a very large ZFS of D = +48.4 cm-1 

with E = -8.9 cm-1 and g = 2.38 (note that the sign of D is also different to 7 and 9). The very 

large ZFS leads to a well-isolated ground Kramers doublet (first excited state at ~ 114 cm-1) 

with effective g-values of g1 = 1.8, g2 = 3.5 and g3 = 6.5 that are approximately associated 

with metal-ligand directions in the first coordination sphere; g1 is associated with the 

approximate three-fold axis of the trigonal bipyramid (Cl1-Co1-N6), g2 is associated with 

the other bridging Cl- anion (Cl1´-Co1), and g3 is perpendicular to the Cl1’-Co1-Cl1 plane 
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(roughly along the Co1-N1 direction). Based on the prediction of a very large ZFS with D > 

0, the magnetic data for 4 can be satisfactorily modelled using Equation 2 with D = +10 cm-

1, E = -2 cm-1, g = 2.5 and J = +1 cm-1. This model gives effective g-values for the ground 

Kramers doublet of each CoII ion as g1 = 2.2, g2 = 3.4 and g3 = 6.3, which are in excellent 

agreement with those suggested by CASSCF-SO calculations. The characteristic rise in χMT 

at the lowest temperatures can loosely be associated with a ferromagnetic interaction, 

however this is a poor description when the local ZFS >> J. EPR spectra for 4 are much more 

featured than for 7 and 9, and show a general decrease in intensity on increasing temperature, 

as seen in Figures 2.13 and 2.14. The X-band spectra show a structured resonance at low 

field, while the Q-band spectra show four clear resonances from 0.16 to 1.2 T. Owing to the 

large ZFS and small exchange interaction, the EPR experiments only probe the four lowest 

lying states of the exchange coupled manifold. Therefore, the most appropriate model for 

these data is the pseudo-spin S = 1/2 model, where the lowest lying Kramers doublet of each 

CoII ion is treated as a S = 1/2 state with the magnetic anisotropy given by three principal g-

values, and the intramolecular interaction modelled with an anisotropic effective exchange 

term, Hamiltonian Equation 3. Fixing the local orientations of the g-tensors from the 

CASSCF-SO calculations, and approximating the Cl1´-Co1-Cl1 angle as 90° (it is 84.5° from 

X-Ray crystallography), the local 𝑔𝑒̿̿ ̿ matrix of each site is rotated around the z-axis by ±45° 

and thus the model is constructed according to Figure 2.15. The anisotropic exchange term 

is approximated by considering a unique value for Jx connecting the CoII ions with fixed Jy 

= Jz. The best simulation was obtained with g1 = 1.84, g2 = 3.61, g3 = 5.36, Jx = ±0.240 cm-1 

and Jyz = ±0.344 cm-1 with anisotropic frequency-space Lorentzian linewidths of ηxy(X-band) 

= 3 GHz, ηz(X-band)  = 5 GHz, ηxz(Q-band) = 5 GHz and ηy(Q-band)  = 10 GHz (Figures 

2.13 and 2.14), which is in good agreement with the effective g-values determined both by 

CASSCF-SO and the magnetometry data. It is noted that the spectra are insensitive to the 

overall sign of the J terms, however the relative signs of both must be the same (i.e. the 

product JxJyz is positive). While this model is unable to replicate the magnetometry data 

directly owing to the influence of excited states, simulation of  χMT for Jx and Jyz positive 

shows an increase at the lowest temperatures, compared to a decrease with  Jx and Jyz negative 

(Figure S7) and hence it is suggested that Jx and Jyz are both positive. 

𝐻̂3 = 𝜇𝐵(𝑆̂1 ∙ 𝑔𝑒̿̿ ̿ + 𝑆̂2 ∙ 𝑔𝑒
′̿̿ ̿̿ ) ∙ 𝐵 − 2(𝐽𝑥𝑆̂1,𝑥𝑆̂2,𝑥 + 𝐽𝑦𝑧(𝑆̂1,𝑦𝑆̂2,𝑦 + 𝑆̂1,𝑧𝑆̂2,𝑧)) (3) 
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Figure 2.12. Experimental (black circles) and simulated (purple line) χMT for 4 in a 0.5 T 

field. (inset) Experimental (black circles and squares) and fitted (purple and green lines) 

magnetization for 4 at 2 and 4 K. 

 

 

Figure 2.13. Experimental (lower traces) and simulated (upper traces) X-band EPR spectra 

for 4 at 9.3854 GHz and 5 (purple), 7.5 (green) and 10 (blue) K. Note that the feature at ~ 

0.32 T is a background signal. 
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Figure 2.14. Experimental (lower traces) and simulated (upper traces) Q-band EPR spectra 

for 4 at 33.95 GHz and 5 (purple), 7.5 (green) and 10 (blue) K. 

 

 

Figure 2.15. Relative orientations of principal g-values and exchange coupling terms in 

Hamiltonian Equation 3 for compound 4. 

 

2.3. Conclusion 

To summarize, the potential versatility of a series of benzotriazole-based semi-rigid ligands 

in cobalt coordination chemistry has been investigated. The ten compounds derived from this 

systematic study reveal a large structural variety that is owed on synthetic parameters (ratio, 

temperature and salt) and flexible ligand selection (various conformations in each ligand 

dependent on temperature). Tuning of these parameters allows for a greater control and 
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manipulation of the system towards compounds with desired characteristics, generating a 

series of 0D dimers, 1D and 2D CPs with various metal geometries. A temperature-induced 

single-crystal to single-crystal transformation of compound 3 to 4 is additionally reported. 

 

In addition, the magnetic properties of a selection of representative compounds, including 

the low-dimensional CPs 4 and 7 have been investigated. The relevant results show 

considerable differences when only minor structural variations take place, suggesting that 

tetrahedral CoII nodes in CPs could function as sensitive signals of small changes in the local 

environment.  

 

These findings show that the chosen ligands, particularly L2 and L3, are indeed ideal 

candidates for the generation of low-dimensional CPs, producing dynamic architectures that 

can be easily manipulated and tuned. The following Chapters will present subsequent 

investigations dedicated to: i) employing different metals to fully explore the coordination 

potential of these ligands, ii) exploiting the versatility of this system to generate compounds 

with potential catalytic properties. 
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Chapter 3: A copper-benzotriazole based coordination polymer catalyses 

the efficient one-pot synthesis of (N′-substituted)-hydrazo-4-aryl-1,4-

dihydropyridines from azines 

 

Abstract: A series of new (N′-substituted)-hydrazo-4-aryl-1,4-dihydropyridines (C3D) were 

successfully synthesized via a facile one-pot catalytic pathway utilizing azines (C3Z) and 

propiolate esters (C3L) as starting materials. A novel CuII-based 1D CP, formulated as 

[CuII(L3)2(MeCN)2]·(ClO4)2·MeCN (11) is employed as the catalyst. The proposed method 

provides good yields, with catalyst loadings as low as 2 mol% and under mild conditions. In 

the absence of catalyst, formation of the corresponding 5-substituted-4,5-dihydropyrazoles 

(C3P) is instead promoted with moderate to high yields. Compounds 

[CuII(L3)(NO3)2]·MeCN (12) and [ZnII(L3)2(H2O)2]·(ClO4)2·2MeCN (13) were also 

synthesized during efforts to optimise the catalytic behaviour, allowing for more insights in 

regards to the plausible reaction mechanism. 

 

External Contributions: Ioannis N. Lykakis (University of Thessaloniki) was responsible 

for the design of the synthetic method towards dihydropyridines and the proposing 

mechanisms. Initial development of catalytic protocols (results in Tables 3.2, 3.3) was 

performed by Michael Kallitsakis (University of Thessaloniki). Nicholas F. Chilton 

(University of Manchester) was responsible for the collection and interpretation of magnetic 

data. Alaa Abdul-Sada (University of Sussex) was responsible for the collection of all ESI-

MS data. Graham J. Tizzard and Simon J. Coles (University of Southampton) were 

responsible for the collection of some crystallographic data (compound 11i).  

 

3.1. Introduction 

In the constant search for efficient activation and optimization of organic reactions with 

transition metal elements, copper remains one of the most attractive options due to the many 

advantages it offers. Apart from its abundance and low cost, copper presents an incredibly 

versatile chemistry and may be easily available in one of multiple (Cu0, CuI, CuII, CuIII) 

oxidation states. As a result, its salts and compounds can be powerful catalysts for reactions 

that involve both one and two-electron (radical and bond-forming) mechanisms. 
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Furthermore, it can easily coordinate to heteroatoms as well as π-bonds to form 

organometallic intermediates that are crucial promoters of these transformations137,176,177. 

These reasons made copper an obvious choice for the purposes of this thesis.  

 

In view of the importance of the synthesis of pyridine derivatives, the metal-catalysed access 

to 1,4-dihydropyridines (1,4-DHPs) has received considerable attention178,179. 1,4-DHPs and 

their derivatives are a significant class of biologically active organic compounds with 

extensive use in pharmacology; notable examples are the calcium channel blockers 

amlodipine, nifedipine and felodipine180–182. Moreover, symmetrical N′-substituted-hydrazo-

4-aryl-1,4-DHPs (HA-1,4-DHPs) are new heterocycles in nature with probably wide-ranging 

biological activity183,184. Since the first synthesis (Hantzsch reaction185, Scheme 3.1) multiple 

methodologies including multicomponent178,179,186, cycloaddition187–189, or C-C coupling 

reactions190 have been used for the formation of 1,4-DHPs derivatives (Scheme S3.1, 

Appendix). A series of organocatalytic procedures have been employed for such purposes191–

194, however these exhibit major drawbacks such as high reagent cost, high temperatures and 

tedious work up. 

 

This work reports the synthesis and characterization of three novel coordination compounds, 

[CuII(L3)2(MeCN)2]·(ClO4)2·MeCN (11), [CuII(L3)(NO3)2]·MeCN (12) and 

[ZnII(L3)2(H2O)2]·(ClO4)2·2MeCN (13). 11 presents a 1D polymeric structure and shows 

significant homogeneous catalytic activity in the one-pot synthesis of a series of HA-1,4-

DHPs based on the reaction between symmetrical electron rich aldazines and alkyl propiolate 

(Scheme 3.2, highlighted in blue). As conjugated dienes, aldazines195 are a class of 

compounds with interesting chemical properties that undergo a wide variety of chemical 

processes (i.e. redox, cycloadditions, criss-cross reactions)196–198 to yield hydrazones, 

pyrazoles, purines or pyrimidines (Scheme 3.2). However, an extensive literature search 

showed that the synthesis of substituted symmetrical HA-1,4-DHPs using aryl aldazines and 

propiolates as starting materials is a previously unknown chemical transformation. The 

proposed reaction employs mild conditions and only 2 mol% of 11, providing good yields. 

Catalytic and mechanistic aspects are also discussed, as the use of 12 and 13 provides more 

insights in regards to the plausible reaction mechanism and fine tuning of the catalyst. 
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Scheme 3.1. The multicomponent Hantzsch reaction for the synthesis of 1,4-DHPs starting 

with β-ketoester, an aldehyde and an amine. 

 

 

Scheme 3.2. Synthetic scheme for known reactions that aldazines undergo. Highlighted in 

blue: the synthesis of HA-1,4-DHP derivatives and 5-aryl-pyrazoles as reported in this 

Chapter. 

 

3.2. Results and Discussion 

 

3.2.1. Crystal Structure Description of Compounds 11 – 13 

Compound 11 crystallizes in the triclinic space group 𝑃1̅ and its asymmetric unit consists of 

a CuII centre, one L3 molecule, a perchlorate lattice anion and two acetonitrile solvent 

molecules (Figure 3.1, left). One of these solvents acts as a terminal ligand and one is in the 
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lattice; the latter will not be further discussed. In this conformation of the ligand (Table 3.1, 

Mode A), the angle between the planes of the benzotriazole molecules is 123.00(5)°. As a 

result, the structure extends to one dimension along the a axis, forming a 1D framework with 

small voids (Figure 3.1, right). CuII is coordinated to six nitrogen atoms and possesses a 

distorted octahedral geometry, in which the axial positions are occupied by acetonitrile 

nitrogen atoms. The relevant N ˗ Cu ˗ N bond angles range from 87.02(7)° to 92.98(7)°. As 

for the relevant bond lengths, the mean Cu-Nligand distances are 2.0815(16) and 2.0133(17) 

Å, significantly shorter than the respective Cu-Nacetonitrile distance which was measured at 

2.422(2) Å. No strong hydrogen bonds or other supramolecular interactions are observed. 

Additionally, compound 13 was found to be isostructural to 11; 13 was synthesized using 

Zn(ClO4)2·6H2O and shows an identical 1D framework, however the two coordinating 

acetonitrile moieties are replaced by H2O molecules (Figure 3.2). As a result, its structure 

will not be described in further detail.  

 

     

Figure 3.1. (left) The asymmetric unit of 11. (right) Part of the one-dimensional framework 

in 11 along the a axis. H atoms, certain perchlorate anions and solvent molecules are omitted 

for clarity. Colour code Cu (blue), C (black), N (light blue), Cl (green), O (red). 

 

In compound 12 the complex crystallizes in the monoclinic P21/n space group. A CuII centre, 

one L3 molecule, two coordinating nitrate anions and one acetonitrile lattice solvent molecule 

are found within the asymmetric unit (Figure 3.3, left). The coordination mode of L3 is the 

same as in the mode in 11 (Table 3.1, Mode A). However, in this case the presence of both 

chelating and bridging nitrate moieties leads to the formation of an unusual dimeric Cu2 unit 

as the structure extends in two dimensions along the b0c plane (Figure 3.3, right). A search 
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in the Cambridge Structure Database199 reveals no other example of such a Cu2 unit based on 

nitrates. The metal centre has a coordination environment of {N2O5} and possesses a pseudo-

octahedral geometry; five nitrate oxygen atoms occupy the equatorial positions of the 

pseudo-octahedron, while two nitrogen atoms from ligand molecules occupy the axial 

positions. The mean Cu-N distances are 1.9849(6) and 1.9916(6) Å, while the Cu-O distances 

range from 1.9813(6) to 2.6587(6) Å. The relevant N-Cu-O bond angles range from 85.32(4)° 

to 95.66(4)°. A summary of all coordination characteristics for compounds 11-13 may be 

found in Table 3.1. 

                    

Figure 3.2. (left) The asymmetric unit of compound 13. (right) Part of the one-dimensional 

framework of the complex. H atoms, certain perchlorate anions and solvent molecules are 

omitted for clarity. Colour code Zn (grey), C (black), N (light blue), Cl (green), O (red). 

 

    

Figure 3.3. (left) The asymmetric unit of compound 12. (right) Part of the two-dimensional 

framework of 12. H atoms and solvent molecules are omitted for clarity. Colour code Cu 

(blue), C (black), N (light blue), O (red). 
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Table 3.1. Overview of the coordination characteristics (ligand conformation, coordination 

geometry of the metal) of the compounds used in this study (S = solvent). 

Entry Compound Coordination 

Environment of MII 

Coordination 

Mode 

Dimensionality 

1 11 

 

A 1D 

2 12 

 

A 2D 

3 13 

 

A 1D 

 

 

3.2.2. Synthetic Aspects  

Similar synthetic concepts to the ones established in Chapter 2 were employed to generate 

the resulting compounds. As a result, good quality crystals for all complexes were afforded 

by leaving the samples undisturbed in room temperature or through the liquid diffusion 

technique.  Although the yields in all cases were comparable, the best values were obtained 

through the former technique for compounds 11 and 13, and the latter for 12. The 

metal:ligand molar ratio does not appear to have a significant effect, as ratios from 2:1 to 1:2 

afford the same compound with little change in the resulting yield. In regards to the 

temperature, solvothermal reactions of copper and zinc perchlorate with L3 resulted once 

again in the formation of 11 and 13; no crystals were formed in the analogous experiments 

with copper nitrate. These findings indicate that the formation of the resulting frameworks is 
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heavily favoured especially in the 1D CPs 11 and 13. As in the case of the CoII-based 

compounds 1-10, the metal centre (CuII or ZnII) is only coordinated to the N3 nitrogen atom 

of the benzotriazole molecules in all complexes. Finally, 11-13 are very soluble in DMF and 

slightly soluble in other common organic solvents (e.g. acetonitrile, methanol, THF); their 

solubility in these solvents increases greatly when heated. However, they are insoluble in 

water. 

 

3.2.3. Characterization of Compounds 11 – 13 

Solid-state Studies 

Magnetic measurements for 11 and 12 in the solid state are consistent with octahedral S = ½ 

CuII centres with g ~ 2.2. For 11 there are negligible interactions along the chain (Figure 

S3.7, Appendix), whilst in 12 a weak short-range ferromagnetic exchange is observed within 

the dimeric repeat unit of ca. 1 cm-1 (Figure S3.8, Appendix). Furthermore, TGA 

measurements were conducted to examine the thermal stability of all complexes. In all cases 

(Figures S3.9-S3.11, Appendix), the first mass loss corresponds to the loss of the coordinated 

and/or lattice solvent molecules, while the remaining frameworks are stable up to ~150-200 

°C. Due to the presence of perchlorates, thermal studies for 11 and 13 were conducted only 

up to 230 °C, as a very large endothermic peak appeared in temperatures above that level 

(Appendix, Figure S3.9, inset). In 11, a continuous mass loss occurs from room temperature 

up to 226 °C, corresponding in good agreement to the loss of the lattice and coordinated 

acetonitrile molecules (calc.: 11.87%, theor.: 11.57%). The analysis for 12 shows an initial 

mass loss which begins from room temperature and agrees to one acetonitrile molecule (calc.: 

5.73%, theor.: 6.22%). Decomposition to CuO follows immediately, beginning from 217 °C. 

For 13, the first mass loss is completed at ~150 °C, attributed to the loss of two water 

molecules (calc.: 4.23%, theor.: 3.69%). The remaining core is then immediately subjected 

to a further mass loss.  

 

Solution Studies 

ESI-MS (positive-ion mode) in methanolic solution for the CuII complexes 11 and 12 reveals 

two main peaks at 403.07 and 743.22 m/z which correspond perfectly to the respective 

[Cu(L)]1+ and [Cu(L)2]
1+ fragments. Additional peaks are also observed in each spectrum, 
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corresponding perfectly to the [Cu(L)X]1+, [Cu(L)2X]1+, [Cu(L)3X]1+ (where X is the anion 

present in each compound) metal-ligand-anion fragments. Similar fragments were obtained 

for the ZnII-based compound 13. ESI-MS spectra, along with detailed analysis of the 

fragments are presented in the Appendix (Figures S3.4-S3.6). These results indicated that the 

CPs of this study could retain their polymeric structure in the solution. To elaborate on this, 

the same method was applied in a DMF solution of 11, given that generally DMF molecules 

can easily coordinate to the metal centre. Indeed, the mass spectrum showed identical peaks 

as above, as well as an additional peak at 575.07 m/z, corresponding perfectly to 

[Cu(L)(DMF)(ClO4)]
1+ (Appendix, Figure S3.4, lower). To further clarify on their solution 

behaviour, the UV-Vis spectra of 11 and 12 were measured in MeOH, showing a broad peak 

in the region of 750-850 nm which is characteristic of Jahn Teller effect and consistent for a 

CuII centre with an octahedral geometry (Figure S3.12-S3.14, Appendix).  

 

3.2.4. Catalytic Studies 

3.2.4.1. Benchmarking and Optimisation 

The present catalytic protocol arose during the study of the title reaction using 1,2-bis ((E)-

4-methylbenzylidene) hydrazine (C3Z1) and ethyl propiolate (C3L1), in the presence of 

various copper sources. Initial experiments with copper salts (2 mol%), 0.1 mmol of C3Z1, 

C3L1 (2 eq. based on the amount of C3Z1) in MeOH under reflux for 24 hours (Table 3.2, 

entries 1 - 6), showed consumption of C3Z1 which in most cases was almost quantitative. 

The corresponding 4-methylbenzaldehyde (C3A1) was afforded as the major or only product, 

along with a mixture of unidentified products. This result was attributed to the oxidation 

reaction taking place between the starting aldazine and molecular oxygen, forming the 

corresponding aldehyde through a hydrolysis pathway. Indeed, aldehyde C3A1 was formed 

as the only product when oxygen saturated methanolic solution of aldazine C3Z1 was used 

under the same catalytic conditions (Table 3.2, entry 13).  

 

Interestingly, an analogous reaction in the absence of catalyst afforded aldehyde C3A1 in 

35% relative yield, as well as a significant amount (30%) of the corresponding pyrazole 

derivative 5-(p-tolyl)-4,5-dihydro-1H-pyrazole-4-carboxylate (C3P1) (Table 3.2, entry 7). A 

literature search revealed that this transformation has never been reported before under the 
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present reaction conditions. However, when compound 11 was incorporated (2 mol%) as the 

catalyst under similar conditions, the corresponding dihydropyridine C3D1 was formed in 

65% yield, as determined by 1H NMR (Table 3.2, entry 8). On the contrary, the use of 12 

gave no conversion (Table 3.2, entry 9), whereas employment of 13 yielded a mix of pyrazole 

C3P1 and aldehyde C3A1 (Table 1, entry 10) in yields comparable to the ones when no 

catalyst was added. These results clearly indicate that a clean and selective transformation of 

C3Z1 to C3D1 only takes place in the presence of 11. To further confirm this, L3 was then 

tested as catalyst under the same conditions; in this case, formation of C3P1 with lower 

conversion and yield was observed (Table 3.2, entry 11). For comparison, a mixture of 

Cu(ClO4)2 (2 mol%) and L3 (4 mol%) was found to catalyse the formation of C3D1 in a 

lower 14% yield  (Table 3.2, entry 12). However, in the absence of L3 no formation of C3D1 

was observed (Table 3.2, entry 1). The latter indicates a significant ligand effect that probably 

plays a crucial role to the catalytic reaction mechanism (see the mechanistic discussion in 

Section 3.2.4.3). 

 

Table 3.2. Initial experiments of the transformation of aldazine C3Z1 to the corresponding 

dihydropyridine (C3D1), pyrazole (C3P1) and aldehyde (C3A1) derivatives using various 

catalysts. 

 

Entry Catalyst[a] 
Conv.[b] 

(%) 

C3D1 [c] 

(%) 

C3P1 [c] 

(%) 

C3A1 [c] 

(%) 

1 Cu(ClO4)2 >99 - - >99 

2[d] Cu(NO3)2
 54 - - 31 

3[d] Cu(OAc)2 42 - - 32 
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4 CuCl2 >99 - - >99 

5 CuSO4 >99 - - >99 

6 Cu(PPh3)2(MeCN)2]ClO4 N.r.[e] - - - 

7 No catalyst 65 - 30 35 

8 11 >99 65 13 22 

9 12 N.r.[e] - - - 

10 13 52 - 25 27 

11 L3 25 - 12 13 

12[d] Cu(ClO4)2 + L3 [f] 99 14 - - 

13 Cu(OAc)2 
[g] 100 - - 100 

[a] C3Z1 (0.1 mmol), ethyl propiolate (0.2 mmol) and 2 mol% of the solid catalysts. [b] Based 

on the consumption of C3Z1 as determined by 1H NMR. [c] Relative yields based on 1H NMR 

analysis from the integration of the corresponding proton shifts. [d] A mixture of unidentified 

products was observed by 1H NMR. [e] No reaction. [f] 4 mol% of L3 was added into the 

reaction mixture. [g] Oxygen saturated methanolic solution was used as solvent. 

 

Among the solvents studied, high conversion of C3Z1 was observed using methanol while 

EtOH afforded lesser consumption. The use of non-protic polar solvents, such as DMF, 

CH3CN, acetone, DCE or THF resulted in no conversion as only formation of the C-C 

coupling product, diethyl hexa-2,4-diynedioate, was observed. Subsequently, no formation 

of C3D1 was observed when H2O was employed as reaction solvent or co-solvent. However, 

no significant increase of the relative yield of C3D1 was observed when the reaction was 

performed under dry methanolic solution (over 3 Å molecular sieves). The full results of the 

solvent screening are presented in Table 3.3. 

 

Having identified methanol as the most suitable solvent, the next step was to optimise the 

remaining conditions of the catalytic procedure. Table 3.4 contains the results of these 

experiments. It was found that higher or lower loadings of 11 afforded lower yields of C3D1. 

Additionally, C3Z1 remains intact when the reaction is performed at room temperature, 

while heating the mixture at 50oC provided low conversions. However, no dihydropyridine 

is formed when the reaction takes places under microwave irradiation; instead, the formation 
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of the corresponding hydroalkoxylation product, ethyl (Z)-3-methoxyacrylate as the major 

product is observed. Finally, no reaction took place in the presence of several other alkyl or 

aryl alkynes (i.e. DMAD, phenyl acetylene, propargyl bromide, propargyl alcohol and crotyl 

ester), as the formation of the corresponding dihydropyridine was only observed when methyl 

or ethyl propiolate were used (Table S3.2, Appendix). 

 

Table 3.3. Evaluation of solvents in the catalytic transformation of C3Z1 to the 

corresponding products using 11 (2 mol%) as the catalyst. The remaining reaction parameters 

were the same as the ones employed for the results of Table 3.2.  

Entry Solvent C3Z1 

(%) 

C3D1 

(%) 

C3P1 

(%) 

C3A1 

(%) 

1 MeOH - 65 13 22 

2 MeOH (dried over mol. sieves 3 Å) - 69 14 17 

3 MeOH/H2O (99/1) 64 - - 36 

4 MeOH/DCE 35 29 10 26 

5 EtOH 28 21 24 48 

6 H2O >99 - - - 

7 MeCN 43 - 21 26 

8 MeCN/H2O (99/1) 68 - - 32 

9 Dioxane 86 - - 14 

10 DCE 78 trace - 21 

11 THF >99 - -  

12 Toluene >99 - -  

13 Acetone 72 - - 28 

14 DMF >99 - - - 
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Table 3.4. Optimisation of the catalyst loading and temperature conditions in the catalytic 

transformation of C3Z1 to the corresponding products using 11 as the catalyst and methanol 

as solvent. The remaining reaction parameters were the same as the ones employed for the 

results of Table 3.2.  

Entry Conditions Catalyst (mol%) Conv. 

(%) 

C3D1 

(%) 

C3P1 

(%) 

C3A1 

(%) 

1 reflux - 65 - 30 35 

2 reflux 11 (2) 100 65 13 22 

3 reflux 11 (1) 69 42 10 17 

4 reflux 11 (4) 100 55 18 27 

5 r.t. 11 (2) 0 - - - 

6 50oC 11 (2) 74 36 13 25 

7 M.W.[a] 11 (2) 36 - - 36 

8 reflux [b] 11 (2) 52 - 10 42 

9 reflux [c] 11 (2) 100 - - 100 

[a] The corresponding hydroalkoxylation product was formed as the major one. [b] Adding 

1,2,3-trimethoxybenzene. [c] Oxygen saturated methanolic solution was used as solvent. 

 

3.2.4.2. Scope of Reaction 

To study the limitation of the above catalytic procedure, a series of substituted azines were 

examined. Scheme 3.3 summarizes the results obtained using 11 as catalyst. In all cases the 

corresponding HA-1,4-DHPs derivatives (Scheme 3.3, entries C3D1 – C3D18) were formed 

with good isolated yields (ca. 44-68%). It is worth noting that electron rich aromatic azines 

(X = Me or MeO) are transformed to the corresponding HA-1,4-DHPs derivatives (entries 

C3D1 – C3D5, C3D11 – C3D14), with higher yields (44%-68%) within 24 hours, compared 

to the electron deficient azine (X = CF3) in which negligible yield (<5%) for the 

corresponding dihydropyridine C3D8 was observed within 48 hours. Remarkably, no 

reaction was observed when the para-nitro substituted azine was used as substrate. In 

addition, the use of methyl propiolate instead of ethyl propiolate gave similar conversions 

and isolated yields of the corresponding HA-1,4-DHPs derivatives (entries C3D11 – C3D15) 

compared to the respective ethyl propiolate entries. Heterocyclic substituted azines 
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containing thiophenyl and furyl units were also tested under the present catalytic conditions, 

giving the corresponding dihydropyridines C3D16 and C3D17 in ca.67% and 10% isolated 

yield, respectively. Subsequently, the analogous naphthyl substituted azine shows lower 

activity, with the corresponding product formed in negligible yield (<5%). All the products 

were determined by 1H NMR spectroscopy, whereas C3D4, C3D5, C3D6 and C3D13 were 

additionally characterized with single X-Ray diffraction (Figure 3.4). 

 

 

 

 

Figure 3.4. Crystal structures of the 1,4-DHPs for entries C3D4 (upper left), C3D5 (upper 

right), C3D6 (bottom left) and C3D13 (bottom right). Colour code C (black), H (light pink), 

N (light blue), Cl (green), O (red). 
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Scheme 3.3. Various (N´-substituted)-hydrazo-4-aryl-1,4-dihydropyridines synthesized by 

Cu-catalysed reaction. The percentages correspond to the yields of isolated products. n.d. = 

not detected. Relative yields for the catalytic 1,4-DHP products (C3D) and non-catalytic 

pyrazoles products (C3P) in each case may be found in Table S3.1, Appendix. 
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3.2.4.3. Mechanistic Insights 

Regarding the mechanism of the title reaction, the following were observed:  

a) For azines bearing electron donating groups such as 4-Me, 4-MeO, 3-MeO, 3,4-diMeO 

and 2,5-diMe a five times faster reaction was observed compared to the corresponding 

reaction of the azine containing H atoms in the 4-positions (entry C3D7). On the other hand, 

the azine bearing the electron-withdrawing CF3 substituent in the para position reacted with 

a slower manner, while the respective NO2-containing azine remained intact and did not 

react. This observation implies that an initial complex between the azine and the CuII-catalyst 

is formed, followed by a single electron transfer (SET)200 process to form the active species. 

In the same context, a small amount (10 mol%, based on C3Z1) of the electron donor 

molecule. trimethoxybenzene (TMB) was added, as TMB shows  oxidation potential less 

than that of azines (E1/2ox vs SCE 1.12 V)201. As seen in Table 3.4, entry 8, this addition 

retards the reaction process.  

 

b) Having in mind the ability of azines to donate electrons via lone pairs of the N atom or 

the C=N p-orbital electrons195, it was expected that binding between the CuII catalyst and the 

azine would take place in solution. It is already known that azines show versatile properties 

of coordination in binding to metal centres, such as CuII or FeII, especially when the aromatic 

ring of the azine contains a hydroxyl group in the ortho position202. Indeed, experiments with 

the relevant starting material (containing the 2-OH and 3-MeO groups) under the proposed 

catalytic conditions showed no reactivity towards the synthesis of C3D10, probably through 

the in-situ azine-CuII catalyst coordination effect (a proposed complex is shown in Figure 

S3.15, Appendix). 

 

c) The reaction of 4-methylbenzaldehyde (C3A1), ethyl propiolate and 11 in methanol 

yielded a mixture of unidentified products as confirmed by 1H NMR (Figure S3.16, 

Appendix). Furthermore, the hetero-azine (1E,2E)-1-(4-chlorobenzylidene)-2-(4-

methoxybenzylidene)hydrazine, which bears two different substituents in the para-positions 

of the aromatic rings (MeO and Cl), was tested as a substrate. In that case, both HA-1,4-DHP 

derivatives C3D19a and C3D19b were formed in a ratio of 2:1, as determined by 1H NMR 

and LC-MS (Figures S3.17-S3.19, Appendix). These results indicate that the azine does not 
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dissociate during the current catalytic reactions. Therefore, the present catalytic procedure 

probably follows a different mechanistic pathway compared to the commonly proposed 

multi-component reaction (MCR) or Lewis-acid catalysed processes178,179.  In addition, when 

(Z)-3-methoxyacrylate (a common starting material for the above literature studies) was 

employed instead of the propiolate ester under the same catalytic conditions, the desired 1,4-

dihydropyridine product was not observed (Table S3.2, Appendix). 

 

d) During attempts to recover the catalyst, a yellow solid material formulated as 

[CuI(L3)Cl] (11i) was isolated and characterized via single crystal X-Ray crystallography, 

corresponding to a 1D CP that extends infinitely through chlorine bridging while L3 retains 

the same conformation and coordination mode (Figure 3.5). This indicates that ClO4
- and CuII 

convert to Cl- and CuI respectively203. Therefore, it is envisaged that at a certain point, 

transformation of perchlorate to chloride occurs, which in turn starts to coordinate to CuI 

centres, transforming the catalyst to 11i (Scheme 3.4, bottom). In addition, 11i was found to 

be catalytically inactive when tested under the same conditions. This result indicates a low 

value of turnover number (TON) of the present catalytic system 11, with a max number of 

ca. 55). 

 

   

 

Figure 3.5. (left) The asymmetric unit of compound 11i. (right) part of the one-dimensional 

framework of the complex. H atoms are omitted for clarity. Colour code Cu (dark blue), C 

(black), N (light blue), Cl (green). 
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Based on the above experimental results and observations, a possible reaction mechanism is 

proposed in Scheme 3.4. Azine (Z) initially coordinates to the catalyst (CuIIL2), forming a 

new catalytic intermediate CuIIL2Z (Scheme 3.4, top). ESI-MS and UV-Vis studies in 

methanolic solutions indicate that CuII in 11 retains the octahedral geometry and coordinates 

to four N atoms of four different L3 ligands; a similar pattern was observed for the 

isostructural Zn analogue 13. In comparison, in the case of the catalytically inactive 

compound 12 CuII retains its geometry but coordinates to two N atoms belonging to two L3 

ligands. Sequentially, a single electron transfer (SET) occurs from the electron rich azine to 

the CuIIL2Z, yielding the active reduced form, CuIL2Z. This active species is responsible 

for the first catalytic pathway which includes the simultaneously formed propiolate complex 

and the proton release by the presence of the perchlorate anion forming the corresponding 

CuI-acetylide intermediate (CuIL2Z’). Then, CuIL2Z’ may undergo a cyclization process, 

forming the unusual five-membered CuIII-metallacycle intermediate I (path A, Scheme 3.4). 

A similar intermediate has been supported by a previous theoretical study on the copper-

catalysed synthesis of azoles204. This hypothesis has also found support from related literature 

on the Cu-benzotriazole catalysed electrophilic cyclization of N-arylamines205, as well as the 

Cu-catalysed synthesis of isoquinoline derivatives or other heteroarenes206–208. 

 

Subsequently, a reductive single cleavage (ring contraction)209 leads to the common 

intermediate II, which after proteolysis releases the cyclo-compound dihydroazete III; this 

is followed by simultaneous conrotatory ring opening, yielding the corresponding diene 

which in turn reacts in situ with a second molecule of propiolate via a [4+2], giving the 

desired dihydropyridine derivative as the final product. This pathway requires a ligand 

replacement by the azine material that coordinates to a Cu centre204 (Scheme 3.4). On the 

other hand, pathway B which contains the cyclization process without any ligand replacement 

or azine binding effect cannot be excluded (path B and intermediate I’, Scheme 3.4). 

However, it is worth noting that during the catalytic process a white powder was formed, that 

was found to be ligand L3 (confirmed by IR and NMR). In addition, a possible reductive 

elimination pathway from intermediate I would lead to the CuIL which would then react with 

Cl- to form the inactive specie [CuILCl] (Scheme 3.4, bottom). 
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Scheme 3.4. Plausible mechanism for the synthesis of the (N’-substituted)-hydrazo-4-aryl-

1,4-dihydropyridines through the Cu-catalysed coupling of azine and propiolate. 

 

In parallel and under non-catalytic conditions, the formation of pyrazole products is promoted 

through a stepwise mechanism which contains a known criss-cross reaction ([3+2] 

cycloaddition) between the azine and the triple bond of propiolate, at a first step195,196. After 
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that, a nucleophilic addition and hydrolysis take place (with either one preceding the other) 

resulting to the corresponding 5-substituted-4,5-dihydro pyrazoles, as shown in Scheme 3.5. 

This is accompanied with an equimolar amount of the corresponding X-substituted 

benzaldehydes as the product from the hydrolysis pathway. It is worth noting that X-

substituted benzaldehydes were also formed through an oxidative pathway from the initial 

azine; as shown in Table 3.4, entry 9, using molecular oxygen (O2) saturated methanolic 

solution and under the present catalytic conditions (C3Z1, ethyl propiolate and 11 as catalyst) 

the corresponding aldehyde C3A1 was observed as the only product. 

 

 

Scheme 3.5. Proposed mechanism for the synthesis of 5-substituted-4,5-dihydropyrazoles. 

 

3.3. Conclusion 

In conclusion, the current work exemplifies the unique nature of the CuII benzotriazole-based 

1D CP 11 as a catalyst in the efficient synthesis of HA-1,4-DHPs. 11 may be easily 

synthesized in very good conversions and promotes the formation of a series of substituted 

dihydropyridines in good isolated yields, under relatively mild conditions and a low catalyst 

loading. Useful information about the mechanism of the reaction was obtained through fine 

tuning of the catalyst and the use of compounds 12 and 13. From the mechanistic point of 

view, a metal:azine coordination initial step is followed by a SET pathway and a cyclization 

process constituting the basic catalytic procedures in the title reaction. The herein Cu-

catalysed process is advantageous because of its possible wide use towards the synthesis of 

different heterocyclic organic molecules and because of its unique mechanistic 
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understanding. Having identified the potential of this system, Chapters 4 and 5 will document 

efforts on optimising its catalytic behaviour and its potential application towards other 

chemical transformations. 
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Chapter 4: CuII coordination polymers as vehicles in the A3 coupling 

 

Abstract: A family of benzotriazole-based coordination compounds, obtained in two steps 

and good yields from commercially available materials, formulated as [CuII(L3)2Cl2]2 (14), 

[CuII
5(L3)2Cl10] (15), [CuII

2(L3)4Br2]·4MeCN·(CuII
2Br6) (16), [CuII(L3)2(MeCN)2]·(BF4)2 

(17), [CuII(L3)2(CF3SO3)2] (18), [ZnII(L3)2(MeCN)2]·(CF3SO3)2 (19) 

[CuII
2(L4)4(H2O)2]·(CF3SO3)4·4Me2CO (20) and [CuII

2(L5)4(CF3SO3)2]·(CF3SO3)2·Me2CO 

(21) are reported. Along with already reported complexes 11-13, these air stable compounds 

were tested as homogeneous catalysts for the A3 coupling synthesis of propargylic amine 

derivatives (C4P) from aldehyde (C4A), amine (C4M) and alkyne (C4L) under a non-inert 

atmosphere. Fine-tuning of the catalyst resulted in a 1D CP (18) with excellent catalytic 

activity towards a wide range of substrates, avoiding any issues that would inhibit its 

performance. 

 

External Contributions: Nikolaos Tsoureas (University of Sussex) was responsible for the 

collection and interpretation of cyclic voltammetry data. Alaa Abdul-Sada (University of 

Sussex) was responsible for the collection of all ESI-MS data.  

 

4.1. Introduction 

The metal catalysed multi-component reaction (MCR) of an aldehyde, an amine and an 

alkyne, also known as the A3 coupling (Scheme 4.1), has gathered significant interest210–218. 

This coupling reaction yields propargylic amines, which have been proposed as key 

intermediates in the synthesis of nitrogen-containing biologically active compounds such as 

acrylamidines219, oxazoles220,221, pyrroles222, pyrrolidines223 as well as natural products224,225. 

Due to this importance, a large variety of metal sources have been employed to catalyse this 

reaction such as AuI/AuIII 226–228, AgI 229–232, CuI 217,233–236, InIII 237 or RhIII 238. More common 

transition metals, such as CuII 239–241, FeIII 242–244, NiII 245 and ZnII 246 have also been 

occasionally employed, albeit with higher catalyst loadings and under inert conditions. 
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Scheme 4.1. The A3 coupling reaction towards the formation of propargylic amines. 

 

Chapter 3 demonstrated the catalytic activity of compound 11 in the synthesis of 1,4-

dihydropyridines through a proposed mechanism which involved the formation of a CuI-

acetylide intermediate, whereas compounds 12 and 13 were catalytically inactive. This big 

discrepancy in catalytic activity was attributed to the different coordination environment (11 

against 12) as well as the different metal centre (11 against 13). Moreover, the catalytic 

performance of 11 was inhibited due to its conversion to the catalytically inactive compound 

11i where ClO4
- is converted to Cl-. These results revealed the large catalytic potential of this 

CuII/L3 system in similar transformations of high interest; however, more tests were required 

in order to further elucidate and tune this behaviour as well as identify more mechanistic 

aspects.  

 

As a result of all the above, the next step in these efforts was to further explore the 

coordination capabilities of L3 with other CuII salts to characterize new low-dimensional CPs 

and use them as catalysts towards the well-known A3 coupling reaction. It is worth noting 

that no 1D CuII CPs have been reported as catalysts for this reaction so far. To provide 

additional insight, analogous ligands L4 and L5 (Scheme 4.2), where benzotriazole molecules 

are replaced by 5-methylbenzotriazole and 5,6-dimethylbenzotriazole respectively, were 

synthesized and employed in these investigations. Therefore, this Chapter reports the 

synthesis and characterization of eight new compounds formulated as [CuII(L3)2Cl2]2 (14), 

[CuII
5(L3)2Cl10] (15), [CuII

2(L3)4Br2]·4MeCN·(CuII
2Br6) (16), [CuII(L3)2(MeCN)2]·(BF4)2 

(17), [CuII(L3)2(CF3SO3)2] (18), [ZnII(L3)2(MeCN)2]·(CF3SO3)2 (19) 

[CuII
2(L4)4(H2O)2]·(CF3SO3)4·4Me2CO (20) and [CuII

2(L5)4(CF3SO3)2]·(CF3SO3)2·Me2CO 

(21), as well as the catalytic application of 11 – 21 in to the A3 coupling reaction between 

aldehydes, alkynes and amines yielding the corresponding propargylamine derivatives. 
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Scheme 4.2. The organic ligands (L3-L5) used in this study. 

 

 

4.2. Results and Discussion 

 

4.2.1. Crystal Structure Description of Compounds 14 – 21 

The crystal structures of 11 – 13 were described in Chapter 3 and will not be discussed in 

detail in this Section. In addition, the structures of CuII-based compound 17 and ZnII-based 

19 were also found to be analogous to the one of 11, with BF4
- and CF3SO3 units instead of 

ClO4
- respectively. As a result, they show the same MII coordination environment (Table 4.1, 

entries 7, 9) and ligand conformation (Table 4.1, Mode A), generating similar 1D polymeric 

frameworks as seen in Figures 4.3 and 4.5. For this reason, these structures and their 

crystallographic parameters will also not be discussed further. 

 

Compound 14 crystallizes in the triclinic 𝑃1̅ space group and consists of two [Cu2(L3)2Cl4] 

units. All metal centres in the structure show a distorted trigonal bipyramidal geometry 

through a coordination environment of {N2Cl3} (τ = 0.46 for Cu1, 0.40 for Cu2)247. The basal 

plane in the geometries of both metal centres consists of chloride atoms, while ligand nitrogen 

atoms are in the axial positions. These units are not further linked through intermolecular 

interactions and each ligand adopts a syn-conformation in regards to the position of the 

benzotriazole groups (Table 4.1, Mode B). This accounts for the eventual formation of zero-

dimensional dimeric units (Figure 4.1, left). The mean Cu-N distances are 2.015(4) and 

2.028(4) Å. Cl-Cu-Cl bond angles range from 93.65(4)° to 154.33(6)° while the respective 

values for the N-Cu-N angles are 177.47(17)° and 178.44(17)°. 
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Compound 15 also crystallizes in the triclinic 𝑃1̅ space group. However, in this case the 

asymmetric unit contains two full-occupancy and one half-occupancy CuII centres, as well as 

one L3 molecule and five chlorine atoms. Two of the metal centres (Cu2, Cu3) are 

coordinated to the ligand and to chlorine atoms, while the third (Cu1) is only coordinated to 

chlorine atoms and bridges the [Cu2(L3)2] nodes. The ligand adopts the same conformation 

as in Mode A, but a different coordination mode (Table 4.1, Mode C). All of the above lead 

to the formation of an unusual two-dimensional coordination polymer which extends along 

the a0c plane, as shown in Figure 4.1 (right). The coordination environment and geometries 

of the metal centres are also varied. Cu1 is coordinated to five chlorine atoms and exhibits a 

distorted square pyramidal geometry (τ = 0.15)247. The basal plane in this geometry has a 

mean deviation of 0.129 Å. Cu2 is also coordinated to five atoms and possesses a distorted 

square pyramidal geometry (τ = 0.09)247, however in this case the basal plane consists of 

three chlorine atoms and one ligand nitrogen atom, while the axial position is occupied by 

another ligand nitrogen atom, resulting in a {N2Cl3} coordination environment. In this case, 

the respective plane has a deviation of 0.151 Å. Finally, Cu3 shows a {N2Cl4} coordination 

environment consistent with an octahedral geometry, in which the ligand nitrogen atoms 

occupy the axial positions while chlorine atoms form the basal plane. The mean Cu-Cl bond 

distances range from 2.2671(12) to 2.6348(10) Å, while the respective Cu-N bond lengths 

range from 2.016(3) to 2.425(3) Å.  
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Figure 4.1. The structures of compounds 14 (zero-dimensional dimer, left) and 15 (two-

dimensional framework, right). H atoms are omitted for clarity. Colour code Cu (blue), C 

(black), N (light blue), Cl (green). 

 

Compound 16 was synthesized using CuBr2 and crystallizes in the monoclinic C2/c space 

group. The main core of the structure consists of a [Cu2(L3)4Br2]
2+ dicationic dimer. A 

dianionic [Cu2Br6]
2- unit is also present and completes the charge balance for all CuII centres. 

In similar fashion to 14, this dimer does not form any intermolecular interactions and thus 

the structure is zero-dimensional (Figure 4.2). In this case the angle between the planes of 

the benzotriazole molecules of the ligand was measured at 125.4(4)°, similar to the one in 

Mode A. However, a concurrent rotation of the non-rigid C-N bond is also observed, leading 

to a different conformation mode (Table 4.1, Mode D). The metal centre that shows ligand 

coordination (Cu1) possesses a distorted trigonal bipyramidal (τ = 0.65)247 geometry through 

a {N4Br} environment. The bromine atom and two nitrogen atoms from ligand molecules 

consist of the basal plane, with the relevant angles ranging from 102.2(5)° to 139.0(3)°. The 

two remaining nitrogen atoms also derive from ligand molecules and occupy the axial 

positions of the bipyramid.  
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Figure 4.2. The structure of compound 16. H atoms and solvent molecules are omitted for 

clarity. Colour code Cu (blue), C (black), N (light blue), Br (brown). 

 

Compound 18 crystallizes in the triclinic 𝑃1̅ space group and its asymmetric unit contains a 

CuII centre, one L3 molecule and one triflate anion molecule. The metal centre is coordinated 

to a total of six atoms and possesses an octahedral geometry through a {N4O2} coordination 

environment. The complex shows an identical one-dimensional framework to the one found 

in compounds 11, 13, 17 and 19; the only difference is that the axial positions of the 

octahedron are now occupied by triflate oxygen atoms instead of acetonitrile nitrogen (Figure 

4.4). Consequently, the ligand adopts the same coordination mode as in the aforementioned 

compounds (Mode A). The mean Cu-O distance was measured at 2.536(4) Å, while the Cu-

N bond lengths are 2.009(5) and 2.013(7) Å. No strong hydrogen bonds or other 

supramolecular interactions are observed.  
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Figure 4.3. Part of the one-dimensional framework of 17 along the a axis. H atoms and 

solvent molecules are omitted for clarity. Colour code Cu (blue), C (black), N (light blue), B 

(dark grey), F (light green). 

 

 

Figure 4.4. Part of the one-dimensional framework of 18 along the a axis. H atoms are 

omitted for clarity. Colour code Cu (blue), C (black), N (light blue), O (red), S (yellow), F 

(light green). 
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Figure 4.5. Part of the one-dimensional framework of 19 along the a axis. H atoms and anion 

molecules are omitted for clarity. Colour code Zn (grey), C (black), N (light blue). 

 

Compound 20 was prepared using L4 as the ligand and crystallizes in the monoclinic C2/c 

space group. The structure is similar to the one of compound 16 as it contains a tetracationic 

dimer, [Cu2(L4)4(H2O)2]
4+, as the main core. Four triflate anions are present in the lattice to 

complete the charge balance for all metal centres. As a result, the structure is zero-

dimensional (Figure 4.6) and the dimer is further stabilized through the formation of two 

strong O-H···O hydrogen bonds, each formed between a water molecule and a triflate anion. 

The L4 ligand behaves similarly to L3 in the case of compound 16, adopting the same 

conformation and coordination mode (Table 4.1, Mode D). Each metal centre shows a {N4O} 

coordination environment through four ligand nitrogen atoms and one oxygen atom from the 

water molecule, possessing a distorted square pyramidal (τ = 0.29)247 geometry. The basal 

plane of this pyramid consists of three nitrogen atoms and one oxygen and shows a mean 

deviation of 0.149 Å. Compound 21 may be considered as isoskeletal to 20 as it contains a 

similar dimeric [CuII
2(L5)4(CF3SO3)2] core; in this case the two coordinating water molecules 

are replaced by triflate anions while L5 exhibits the same conformation as L4 (Figure 4.7). 

Due to the similarities, the resulting zero-dimensional structure will not be further described.  
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Figure 4.6. The structure of compound 20. Lattice solvent molecules, lattice anions and 

certain H atoms are omitted for clarity. Colour code Cu (blue), C (black), N (light blue), O 

(red), H (light pink). 

 

Figure 4.7. The zero-dimensional compound 21. Lattice solvent molecules, lattice anions 

and H atoms are omitted for clarity. Colour code Cu (blue), C (black), N (light blue), O (red). 
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Table 4.1. Overview of the coordination characteristics (ligand conformation, coordination 

geometry of the metal) of the compounds used in this study (S = solvent). 

Entry Compound Geometry of MII Coordination Mode Dimensionality 

1 11 

 

A 1D 

2 12 

 

A 2D 

3 13 

 

A 1D 

4 14 

 

B 0D 

5 15 

 

C 2D 

6 16 

 

D 0D 

7 17 

 

A 1D 

8 18 

 

A 1D 

9 19 

 

A 1D 

10 20 

 

D 0D 

11 21 

 

D 0D 
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4.2.2. Synthetic Aspects 

An efficient synthetic strategy to generate CuII and ZnII-based compounds using L3 was 

discussed in detail in Chapter 3. Therefore, several of the compounds presented in this 

Chapter employ the same techniques of leaving the sample undisturbed in room temperature 

(compounds 16, 17) and using liquid diffusion (compounds 18 – 19). In the case of CuCl2-

based compounds 14 and 15, a crystalline material was obtained through the use of 

solvothermal conditions. Ligands L4 and L5 show similar behaviour to L3 as they are soluble 

in DMF, acetonitrile and acetone while they are insoluble in water and alcoholic media. As 

a result, similar techniques were employed for the synthesis of 20 and 21, with liquid 

diffusion providing the better quality of crystals. The same materials were obtained by 

employing all aforementioned techniques, albeit with worse crystal quality, showing that the 

formation of 0D dimers over CPs is heavily favoured in the case of L4 and L5, possibly due 

to the steric effects caused by the additional methyl groups.  

 

All reactions, with the exception of compounds 14 and 15, are not sensitive to the MII:L molar 

ratio; ratios from 3:1 to 1:3 yield the same compound in comparable yields and purity. In the 

case of 14 and 15, the final product depends on the appropriate ratio of starting materials (1:1 

and 3:1, respectively) and temperature (75° and 95°C, respectively), accompanied by a 

change in the conformation of the ligand. These effects are consistent with the ones reported 

in the CoCl2-based compounds in Chapter 2. In this case, efforts to obtain 15 through a crystal 

transformation of 14 proved unsuccessful. The use of CuICl as the metal source resulted in 

the synthesis (through liquid diffusion) of the catalytically inactive species 11i and therefore 

was not investigated further. As in all previous compounds, the metal centre (CuII or ZnII) is 

not coordinated to the middle nitrogen atom of the benzotriazole molecules in any of the 

compounds. Furthermore, 14-21 show no solubility in water, good solubility in DMF and 
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little solubility in other common organic solvents (such as acetonitrile or alcoholic media), 

which increases greatly when the mixture is heated. 

  

4.2.3. Characterization of Compounds 14 – 21 

TGA Studies 

TGA measurements in all compounds showed (Figures S4.10-S4.17, Appendix) that the 

thermal stability of the frameworks is retained up to the region of ~250-400 °C, where 

gradual decomposition takes place. Before these temperatures an initial mass loss occurs in 

certain compounds, corresponding to the loss of any existing solvent molecules or the 

counter-anions. In detail, compound 14 shows an initial mass loss which occurs at 312 °C 

and corresponds in good agreement to the loss of all chlorine atoms (calc.: 16.10%, theor.: 

15.08%). The complex then undergoes another mass loss due to the gradual decomposition 

to copper oxide (calc.: 73.81%, theor.: 74.58%). In compound 15, mass loss begins in the 

region of ~250 °C due to the loss of all ten chlorine atoms (calc.: 26.40%, theor.: 26.00%) 

before decomposition takes place (calc.: 70.34%, theor.: 69.13%). In 16, a continuous mass 

loss from room temperature up to ~190 °C takes place initially, in reasonable agreement with 

the loss of four acetonitrile molecules (calc.: 4.47%, theor.: 5.81%). Gradual decomposition 

of the remaining core occurs almost immediately. A similar procedure (calc.: 6.74%, theor.: 

7.21%) is observed in the TGA analysis of 17 with the remaining framework retaining its 

stability up to ~260 °C. In compound 18 a continuous mass loss up to the region of ~270 °C 

occurs due to the loss of the triflate anions (calc.: 27.94%, theor.: 28.80%) before the 

decomposition of the remaining framework to copper oxide. The analysis for 19 shows an 

initial mass loss from room temperature up to ~250 °C, due to the loss of all acetonitrile 

molecules (calc.: 8.94%, theor.: 7.29%). The next mass loss occurs immediately and up to 

~400 °C (calc.: 25.29%, theor.: 26.50%) and corresponds to the loss of triflates. 

Decomposition to ZnO follows after that temperature (calc.: 59.16%, theor.: 59.10%). A 

similar procedure takes place in compound 20, with the first and second mass loss 

corresponding to the respective losses of solvent molecules (calc.: 10.29%, theor.: 10.89%) 

and triflates (calc.: 24.45%, theor.: 24.20%). The remaining framework begins to decompose 

to CuO (calc. 58.98%, theor.: 58.52%) at the region of 380-400 °C. Finally, compound 21 

shows an initial loss up to the region of ~380-400 °C, due to the loss of triflates and acetone 
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lattice molecules (calc. 29.45%, theor.: 30.56%). The remaining framework then decomposes 

gradually to the respective oxide (calc. 62.52%, theor.: 61.93%). 

 

Solution Studies 

ESI-MS (positive-ion mode) experiments performed in methanolic solution for all CuII 

compounds (14 – 18, 20 – 21) once again showed the presence of two main peaks which are 

attributed to the respective [Cu(L)]1+ and [Cu(L)2]
1+ fragments with excellent agreement. 

Each spectrum also contains several additional peaks, with the main peaks corresponding 

with perfect agreement to metal-ligand-anion fragments; the most common fragments found 

were [Cu(L)X]1+, [Cu2(L)X]1+, [Cu(L)2X]1+, [Cu(L)3X]1+, where X is the anion present in 

each compound. It is worth noting that many of these peaks in the ESI-MS spectrum of the 

CuBF4-based compound 17 correspond perfectly to analogous fragments with F- as the anion 

present, suggesting a possible conversion of BF4
- to F- within the solution. In regards to the 

ZnII compound 19, similar peaks were observed corresponding perfectly to the [Zn(L3)]+1, 

[Zn(L3)2]
1+, [Zn(L3)X]+1, [Zn(L3)2X]+1, [Zn(L3)3X]+1 fragments. ESI-MS spectra, along with 

detailed analysis of the fragments are presented in the Appendix (Figures S4.1-S4.8). 

Additionally, the UV-Vis spectra of compounds 17, 18, 20 and 21 in MeOH show a broad 

peak (ca. 800 nm) which is characteristic of Jahn Teller effect and consistent for a CuII centre 

with an octahedral {N4O2} geometry (Figure S4.9, Appendix).  

 

Cyclic Voltammetry Studies for Compound 18 

To investigate its electron donating capabilities, the electrochemistry of 18 was studied by 

cyclic voltammetry (CV). CV in the cathodic direction over several cycles showed a quasi-

reversible reduction process at -0.423 V vs Fc+/0 (ia/ic = 1.5) (Figure 4.8) vs FeCp2
+/0 and a 

non-reversible reduction process248 at -1.156 V vs Fc+/0. The former may be assigned to the 

[CuII]↔[CuI] couple, further supporting the possible formation of a CuI intermediate during 

a catalytic reaction. 
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Figure 4.8. Overlaid CV scans (2 cycles) of 18 in 0.05 M [nBu4N][PF6]/DMSO. Scan rate 

300 mVs -1. 

 

4.2.4. Catalytic Studies 

4.2.4.1. Benchmarking and Optimisation 

In order to test the possible catalytic activity of 11 – 21, the application of these catalytic 

systems was first studied in the A3 coupling of benzaldehyde, pyrrolidine and 

phenylacetylene. During initial experiments with 11 as catalyst, a yellow crystalline material 

was isolated after the end of the reaction, as based on TLC. X-Ray crystallography showed 

that this material corresponds to the same CuI 1D CP 11i, which has already been reported 

in Chapter 3 and found to inhibit the catalytic performance of 11. To avoid these conversion 

issues, compound 18 was therefore employed in the following optimization procedures.  

 

After screening a variety of solvents for the title reaction, 2-propanol (iPrOH), an 

environmentally friendly solvent249, was found to provide an excellent 89% yield of the 

corresponding propargylamine when the reaction mixture was heated to 90oC (Table 4.2, 

entry 6). Additionally, the reaction was found to be catalysed by only 0.02 mmol of the 
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catalyst (in 1 mmol reaction scale of benzaldehyde), in 12 hours stirring and under air 

atmosphere; the turn-over number (TON) and turn-over frequency (TOF) for this result were 

thus calculated at 44.5 and 3.71 hr-1 respectively. In contrast, other common organic solvents 

(such as DMF, acetonitrile, DCM) afforded lower yields. The remaining compounds 11-17, 

19-21 were also tested as catalysts under the same conditions (Table 4.3), showing inferior 

activity. A thorough discussion on rationalizing this behaviour is included in Section 4.2.4.3. 

 

Table 4.2. Solvent optimization of the multi-component coupling of phenylacetylene, 

pyrrolidine and benzaldehyde using 18 as the catalyst.  

 

 

Entry Solvent [product] % 

1 DMF NR 

2 DMSO NR 

3 MeOH trace 

4 EtOH 11 

5 i-PrOH 26 

6 i-PrOHa 89 

7 Toluene 24 

8 Toluenea 76 

9 MeCN 13 

10 CH2Cl2 NR 

11 CHCl3 trace 

Reaction conditions: Benzaldehyde (102 μL, 1 mmol), pyrrolidine (90μL, 1.1 mmol), 

phenylacetylene (132 mL, 1.2 mmol), 18 (2% mmol), solvent (5 ml), rt, 12 h.  Relative yields 

based on 1H NMR analysis from the integration of the corresponding proton shifts. NR = no 

reaction. a heated at 90oC.  
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Table 4.3. Overview of the characteristics and catalytic activity of the coordination 

compounds in this study (S = Solvent). 

Entry Compound Geometry of MII Yield % a, b 

1 11 

 

68 

2 12 

 

<5 

3 13 

 

<10 

4 14 

 

NRc 

5 15 

 

NRc 

6 16 

 

NRc 

7 17 

 

64 

8 18 

 

89(85)d 

9 19 

 

21 

10 20 

 

57 

11 21 

 

44 

a Relative yields based on 1H NMR analysis from the integration of the corresponding proton 

shifts. b Reaction conditions: benzaldehyde (102 μL, 1 mmol), pyrrolidine (90μL, 1.1 mmol), 
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phenylacetylene (132 mL, 1.2 mmol), catalyst (2 mol%), iPrOH (5 ml), T = 90oC, 12 hr 

stirring. c No reaction. d The reaction was performed in presence of 10% TEMPO. 

 

To further evaluate the catalytic activity of 18, several control experiments with common 

CuII salts were performed for the same A3 reaction and the results are summarized in Table 

4.4. In all cases, the corresponding CuII salts afforded significantly lower yields, ranging from 

55 to 65%, at a higher catalyst loading of 10 mol% based on the benzaldehyde amount (Table 

4.4, entries 1-8). Moreover, the use of CuII salts as catalysts in the analogous A3 coupling 

with other para-substituted benzaldehydes (such as the 4-chloro-, 4-trifluoromethyl-, 4-

methoxy-) instead of benzaldehyde, yielded the corresponding product in low yields (10-

15%) showcasing their limited catalytic efficiency (Table 4.4, entries 9-14). In the absence 

of catalyst no reaction was observed, a result that supports the catalytic behaviour of the 

studied multi-component coupling. 

 

Table 4.4. Evaluation of various CuII salts as catalysts in the multi-component coupling of 

phenylacetylene, pyrrolidine and benzaldehyde. 

Entry Catalyst [product %] a  

1 CuCl2 64 

2 Cu(NO3)2·2.5H2O 65 

3 Cu(ClO4)2·6H2O 60 

4 CuBr2 64 

5 CuBF2·6H2O 55 

6 Cu(OAc)2·H2O 58 

7 Cu(OTf)2·H2O 53 

8 Cu(OTf)2·H2O b 59 

9 CuCl2
 c 11 

10 CuCl2
 d 13 

11 CuCl2
 e 11 

12 Cu(NO3)2·2.5H2O
 c 13 

13 Cu(NO3)2·2.5H2O
 d 15 
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4.2.4.2. Scope of Reaction 

The scope of the reaction was then explored by employing a variety of aldehydes, amines 

and alkynes. The results are presented in Scheme 4.3. Using different aldehydes, pyrrolidine 

as the amine and phenylacetylene under the above described conditions, a variety of alkyl 

and aryl substituted propargylamines (C4P1-C4P11) were formed in moderate to high 

isolated yields. In particular, saturated aliphatic aldehydes react with higher isolated yields 

(98-100%), compared to the aromatic aldehydes that show slightly lower reactivity with 

moderate yields in the range of 57 to 89%. Consequently, the results of the amine screening 

(C4P12-C4P21) indicate that only secondary amines lead to reaction completion, in contrast 

to primary amines in which no reaction was observed. In general, cyclic aliphatic and 

aromatic secondary amines afford the corresponding propargylamine products in excellent 

yields, ranging from 98 to 100%; acyclic secondary amines were found to be slightly less 

effective. Finally, the employment of 1-hexyne and 4-trifluoromethylphenylacetylene in the 

reaction process (C4P22-C4P24), demonstrated that both alkynes react with the produced 

imine forming the analogous propargylamine products in good to excellent yields. 

 

14 Cu(NO3)2·2.5H2O e 10 

15 No catalyst NRf 

a Reaction conditions: Benzaldehyde (102 μL, 1 mmol), pyrrolidine (90μL, 1.1 mmol), 

phenylacetylene (132 μL, 1.2 mmol), catalyst (10 mol%), iPrOH (5 ml), heated at 90oC for 

12 hr.  Relative yields based on 1H NMR analysis from the integration of the corresponding 

proton shifts. b Two equivalents of L3 were added to the reaction mixture. c 4-chloro-

benzaldehyde was used as instead of benzaldehyde. d 4-trifluoromethyl-benzaldehyde was 

used as instead of benzaldehyde. e 4-methoxy-benzaldehyde was used as instead of 

benzaldehyde. f No reaction. 
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Scheme 4.3. Catalytic activity of 18 in the A3 coupling between aldehydes, amines and 

substituted acetylenes towards the synthesis of propargylamine derivatives. 

 

4.2.4.3. Mechanistic Insights 

In order to investigate the role of CPs in the reaction and shed light into the respective 

mechanism, a variety of CuII CPs with the same ligand were synthesized by fine tuning their 

composition; these studies would provide significant information on factors such as the metal 

geometry or the different anion in the compounds and their effect on the catalytic activity, 

allowing for optimization of their catalytic performance. As a result, compounds which 
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possess the desired characteristics (as detailed in Tables 4.1 and 4.3) were obtained. 12 was 

synthesized using Cu(NO3)2·2.5H2O and the metal centre has a coordination environment of 

{N2O5}, possessing a pseudo-octahedral geometry. The resulting 2D CP, however, only 

accounted for disappointing yields when tested as a catalyst (Table 4.3, entry 2). The 

employment of halogen copper sources afforded complexes 14, 15 and 16, which show 

considerable differences. The presence of a coordinating anion with bridging capabilities 

once again affects the resulting coordination environments ({N2Cl3}, {N2Cl4}, {N4Br}) and 

geometries (trigonal bipyramidal, octahedral), which can be found in further detail in Table 

4.1 (entries 4, 5, 6). Nevertheless, none of the compounds show any catalytic activity in the 

tested reaction.  

 

Furthermore, by using CuII sources with traditionally non-coordinating anions (as in the case 

of the initial catalyst, 11 which contains perchlorates), the isolation of compounds 17 and 18 

was made possible. Both compounds show an identical 1D framework and similar solution 

behaviour compared to 11 and only the present anion (BF4
- or OTf) is different. The use of 

17 as a catalyst (Table 4.3, entry 7) provided results similar to 11. This indicated that a similar 

CuI species is generated, possibly through the conversion of BF4
- to F- (further supported by 

the ESI-MS analysis of 17, in which several peaks containing F- as the anion were observed) 

and inhibits the performance of the catalyst. In contrast, 18 showed very good catalytic 

activity in the tested reaction, with yields superior compared to any of the tested catalysts 

(Table 4.3, entry 8). Cyclic voltammetry experiments for 18 showed a quasi-reversible 

reduction process which may be assigned to the [CuII]↔[CuI] couple, further supporting the 

formation of a CuI intermediate during the catalytic reaction.  

 

Additional control experiments were then performed to investigate the importance of the 

redox potential. Given that ZnII has lower potential than CuII, compounds 13 and 19 were 

employed; both are 1D ZnII CPs constructed using metal salts with non-coordinating anions 

and show the same framework as their respective CuII compounds (11 and 18); they also have 

similar thermal and solution behaviour. In the case of 13, the corresponding propargylamine 

was afforded only at 10% yield (Table 4.3, entry 3). Similarly, 19 was found to catalyse the 

title reaction in only 21% yield, as determined by 1H NMR (Table 4.3, entry 9). 
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Further investigations were made using the modified benzotriazole derivatives in position 5 

(L4) or positions 5,6 (L5), which yielded the corresponding dimers, 20 and 21 and not the 

anticipated 1D CPs. These dimers were found to moderately catalyse the reaction (Table 4.3, 

entries 10 and 11). In both structures, each CuII centre coordinates to four N atoms (from four 

different ligands) and one O atom, adopting a distorted square planar geometry. However, 

the UV-Vis spectra show that the CuII centres in 20 and 21 adopt an octahedral geometry 

(4N+2O) and possibly upon solvation four N atoms and two O atoms, from four ligands and 

two MeOH solvated molecules (catalysis takes place in iPrOH), occupy the equatorial and 

axial positions, respectively. In this way, the adaption of the symmetrical {N4} plane in 

solution yields the anticipated 1D CP and this transformation may explain the catalytic 

activity of 20 and 21. However, the poorer catalytic performance of 20 and 21 in comparison 

to 18 may be explained by the following factors or a combination of them: A) The 

aforementioned “in situ” transformation is required for 20 and 21 to behave as catalysts, B) 

Substitution in position(s) 5(6) of the benzotriazole moieties may attribute a second 

coordination sphere effect to Cu centres. C) The presence of different axial ligands H2O (20) 

or Br (16) versus OTf (18) may disrupt the aforementioned “in situ” transformation or 

decrease the reactivity of the catalysts250,251. It is also worth noting that the addition of 10 

mol % of TEMPO did not affect the reaction yield, showcasing the absence of a clear radical 

process containing the CuI-complex species and supporting the plausible in-situ formation of 

the CuI-acetylide intermediate, that is responsible for the catalytic cycle.   

 

Based on the above observations, the presence of a CuII centre in the solution featuring an 

octahedral geometry with four nitrogen atoms occupying the equatorial positions, is 

important in order to promote catalytic activity. Furthermore, the choice of the proper anion 

is critical, as the desired catalytically active motif (4N+2O) can only be reproduced through 

the use of non-coordinating anions. In contrast, the use of other anions results in different 

coordination geometries and dimensionalities, with zero catalytic activity. These 

observations are also consistent with the commonly suggested mechanism of the A3 coupling, 

which involves the activation of the alkyne by the catalyst (Scheme 4.4). The planar {N4} 

geometry of CuII promotes the coordination of the alkyne with concomitant activation of the 

C–H bond and the formation of the corresponding CuI-acetylide (the acetylenic hydrogen 



115 
 

might be abstracted from the hydroxyl anions produced from the iminium ion formation). 

Consequently, the symmetrical {N4} plane accounts for adequate electron delocalization to 

ensure the reduction of CuII to CuI, which is further promoted by the redox potential of CuII. 

Finally, addition of the CuI-acetylide to the in situ generated iminium ion yields the 

corresponding propargylamine derivative and water, and regeneration of the catalyst. The 

proposed catalytic pathway can be supported, in part, by the recently reported kinetic studies 

on the effect of alcoholic solvents to CuII Schiff base complexes250, as well as the reported 

CuII-catalysed aerobic oxidation of benzylic alcohols in an imidazole containing {N4} ligand 

framework251. 

 

 

Scheme 4.4. A plausible mechanism of the A3 reaction catalysed by CuII-CP 18. 
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4.3. Conclusion 

In this work, a system of 1D CuII CPs that can catalyse the multicomponent reaction of 

aldehydes, amines and alkynes to produce propargylamine derivatives is introduced. In 

particular, fine-tuning of the catalyst allowed for the generation of a 1D CP with excellent 

catalytic activity, avoiding any issues that would inhibit its performance. The method uses 

relatively mild conditions and provides results for a broad range of substrates, especially 

when aliphatic aldehydes and secondary amines are employed. Furthermore, it eliminates the 

need for expensive metal salts, inert atmosphere or high loadings. Attempts were also made 

to shed more light on the mechanism of the reaction, from an inorganic point of view; through 

a thorough synthesis and study of targeted CPs, factors like coordination geometry, anion, 

ligand tuning were evaluated for their effect in the catalytic activity. The results are consistent 

with the suggested mechanism. It is envisioned that this work further demonstrates the 

catalytic potential of the rarely used 1D CPs, especially when combined with N-donor 

ligands. As such, efforts in Chapters 5 and 6 will be dedicated to a) synthesizing variations 

of 18 with the use of analogous N-donor ligands, in order to further investigate their effect, 

b) using the present library of catalysts to other chemical transformations and c) employing 

CPs of other metals in the given A3 coupling reaction. 
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Chapter 5: CuII-benzotriazole coordination compounds in click chemistry: 

A diagnostic reactivity study 

 

Abstract: This diagnostic study aims to shed light on the catalytic activity of a library of 

CuII-based coordination compounds with benzotriazole-based ligands. The synthesis and 

characterization of five new coordination compounds formulated as 

[CuII(L2)(MeCN)2(CF3SO3)2] (22), [CuII(L6)2(CF3SO3)2] (23), 

[CuII(L7)2(MeCN)(CF3SO3)]·(CF3SO3) (24), 

[CuII(L7)2(H2O)(CF3SO3)]·(CF3SO3)·2(Me2CO) (25), 

[CuI
4(L3)2(L3T)2(CF3SO3)2]2·(CF3SO3)4·8(Me2CO) (26), derived from similar nitrogen-

based ligands, is herein reported. The homogeneous catalytic activity of these compounds 

along with selected coordination compounds (11, 13, 11i, 17 – 21) from previous chapters, 

derived from similar ligands, is tested against the well-known CuI-catalysed azide-alkyne 

cycloaddition reaction. The optimal catalyst [CuII(L3)2(CF3SO3)2] (18) activates the reaction 

to afford 1,4-disubstituted 1,2,3-triazoles with yields up to 98% and without requiring a 

reducing agent. Various control experiments are performed to optimize the method as well 

as examine parameters such as ligand variation, metal coordination geometry and 

environment, in order to elucidate the behaviour of the catalytic system. 

 

External Contributions: Csilla Kállay and Gizella Csire (University of Debrecen) were 

collectively responsible for the collection and interpretation of cyclic voltammetry data. Alaa 

Abdul-Sada (University of Sussex) was responsible for the collection of all ESI-MS data. 

Adam Brookfield (University of Manchester) was responsible for the collection and 

interpretation of EPR data. Graham J. Tizzard and Simon J. Coles (University of 

Southampton) were responsible for the collection of some crystallographic data (Compounds 

24-26). 

 

5.1. Introduction 

The Huisgen 1,3-dipolar cycloaddition252,253 of organic azides and alkynes is a characteristic 

reaction in the field of copper catalysis. In the absence of a catalyst, the reaction proceeds 

very slowly and under harsh conditions to produce a mixture of 1,4- and 1,5-disubstituted 
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1,2,3-triazoles with no regioselectivity (Scheme 5.1, pathway A). However, the introduction 

of a CuI source, as found independently by the groups of Meldal254 and Sharpless255, greatly 

improves the rate256 and regioselectivity of the reaction to produce only the 1,4-disubstituted 

analogue (Scheme 5.1, pathway B) under favourable conditions. The resulting triazoles have 

considerable applications in various biological activities, and as a result the Cu-catalysed 

azide–alkyne cycloaddition (CuAAC) reaction has been employed in the fields of drug 

discovery257, biochemistry258–261 and materials science262. 

 

 

Scheme 5.1. General synthetic scheme of disubstituted 1,2,3-triazoles through azide-alkyne 

cycloaddition.  

 

Multiple studies have shown that the reaction proceeds using almost any copper source as a 

catalytic precursor, as long as it generates catalytically active CuI species in the reaction 

medium256,263–265. The most popular method involves the use of an inexpensive CuII salt and 

a reducing agent (e.g sodium ascorbate255 or hydrazine hydrate266) in large excess. The choice 

of the ligand is also important in the CuAAC reaction; it has been shown that certain nitrogen-

containing ligands (e.g. amines267, histidines268, triazoles269, benzimidazoles270 and other 

polydentate chelators261,271,272) accelerate the transformation and enhance the stability of the 

CuI state through coordination, which protects the metal centres from oxidation. Therefore, 

the formation of unnecessary by-products is avoided.  

 

Chapters 3 and 4 investigated the coordination and catalytic capabilities of CuII compounds 

based on the semi-rigid benzotriazole-derived organic ligands L3 – L5 (Scheme 5.2). These 

studies showed that the catalytic activity of this system is greatly influenced by factors like 
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coordination geometry, anion and ligand tuning. In addition, various results from these 

studies indicated the formation of a CuI intermediate during the reaction, which acts as the 

catalytically active species. However, more specific details on the mechanistic nature of the 

catalyst remained yet elusive. 

 

Having all these in mind, in this work a study of a two-fold character is performed. Firstly, 

to evaluate the efficacy of the catalysts derived from the benzotriazole-based organic ligand 

L3 against other isotypical nitrogen-based ligands L2, L4 – L8 (Scheme 5.2), which involve 

the use of substituted benzotriazoles (L2 – L5 and L8), benzimidazole (L6) or imidazole (L7), 

in a given reaction system. Secondly, to shed light on the mechanistic aspects and 

performance of the present catalytic library in the CuAAC reaction, a well-refined and known 

transformation that is promoted exclusively by CuI sources. To perform this diagnostic study, 

the synthesis and characterization of five new compounds formulated as 

[CuII(L2)(MeCN)2(CF3SO3)2] (22), [CuII(L6)2(CF3SO3)2] (23), 

[CuII(L7)2(MeCN)(CF3SO3)]·(CF3SO3) (24), 

[CuII(L7)2(H2O)(CF3SO3)]·(CF3SO3)·2(Me2CO) (25), 

[CuI
4(L3)2(L3T)2(CF3SO3)2]2·(CF3SO3)4·8(Me2CO) (26) is herein reported. The catalytic 

performance of 22-26 in the one pot synthesis of 1,4-disubstituted 1,2,3-triazoles (click 

reaction) is additionally reported. The tested methods employ either organic halides or 

phenylboronic acid as starting materials, along with sodium azide to generate the organic 

azides in situ and avoid the isolation of potentially unstable intermediates. To provide further 

comparisons and draw useful conclusions towards these targets, suitable coordination 

compounds from Chapters 3 and 4, formulated as [CuII(L3)2(MeCN)2]·(ClO4)2·MeCN 

(11·MeCN), [ZnII(L3)2(H2O)2]·(ClO4)2·2MeCN (13·2MeCN), [CuI(L3)Cl] (11i), 

[CuII(L3)2(MeCN)2]·(BF4)2 (17), [CuII(L3)2(CF3SO3)2] (18), [ZnII(L3)2(MeCN)2]·(CF3SO3)2 

(19) [CuII
2(L4)4(H2O)2]·(CF3SO3)4·4Me2CO (20) and 

[CuII
2(L5)4(CF3SO3)2]·(CF3SO3)2·Me2CO (21) were selected and their respective catalytic 

performance was also evaluated.  
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Scheme 5.2. The organic ligands (L2-L8) used in this study. 

 

 

5.2. Results and Discussion 

 

5.2.1. Crystal Structure Description of Compounds 22 – 26 

The crystal structures of compounds 11, 13, 11i, 17 – 21 have already been reported and 

described in Chapters 3 and 4. Hence, only the structures of 22 – 26 will be discussed in 

detail in this section. These complexes have been synthesized having in mind the structural 

characteristics of reference compound 18; therefore, certain comparisons to this framework 

will be made in each description. A summarizing table providing structural details for all 

compounds is given in Table 5.1. 

 

22 was prepared using the L2 ligand and crystallizes in the triclinic 𝑃1̅ space group. One CuII 

centre, one L2 molecule, two coordinating triflate anions and two coordinating acetonitrile 

molecules are contained in the asymmetric unit. The L2 ligand molecules in the structure 

adopt a type of syn- conformation that promotes the formation of a one-dimensional chain as 

shown in Figure 5.1. The behaviour of the flexible unit of L2 is similar to the one of L3, with 

an angle of 123.96(4)° between the planes of the benzotriazole moieties. However, due to the 

meta-substitution in L2 the resulting polymer in 22 shows a Cu-Cu distance of 9.3801(5) Å, 

larger compared to the 9.0095(3) Å measured for 18. Each CuII centre possesses a slightly 

distorted octahedral geometry and a {N4O2} coordination environment in which the axial 
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positions of the octahedron are occupied by the triflate oxygen atoms; relevant Cu-O 

distances were measured at 2.370(4) and 2.401(4) Å. The remaining four nitrogen atoms 

form a near-perfect square plane, as the mean Cu-N distances range from 1.994(5) to 2.003(4) 

Å. While similar coordination characteristics were found in the main catalyst 18, in this case 

only two of the four nitrogen atoms that form the square plane derive from ligand molecules. 

The relevant N-Cu-N angles were found to be in the range of 87.82(15) to 91.16(17)°. Finally, 

no π···π interactions or strong hydrogen bonds were observed in the compound.  

 

 

Figure 5.1. Part of the one-dimensional chain in 22. H atoms are omitted for clarity. Colour 

code Cu (blue), C (black), N (light blue), O (red), S (yellow), F (light green). 

 

Compound 23 was synthesized using the benzimidazole-based L6 ligand; the compound 

crystallizes in the triclinic 𝑃1̅ space group and its asymmetric unit contains a CuII centre, one 

L6 molecule and one triflate anion molecule. Due to the generated symmetry, the structure 

propagates into a ribbon-like one-dimensional polymeric framework with small cavities 

(Figure 5.2). This framework is isoskeletal to the one of reference compound 18 and as a 

result 23 contains very similar structural characteristics in regards to coordination mode of 

the ligand and the coordination geometry of the Cu centre. Owed to the flexibility of the –

CH2 groups in L6, the planes of the benzimidazole molecules are found at an angle of 

117.21(12)° to each other. Due to this, the metal centres are fairly separated and the 

corresponding Cu-Cu distance was measured at 9.0686(6) Å. Each CuII centre possesses an 

octahedral geometry through a {N4O2} coordination environment. In this arrangement, the 

axial positions of the octahedron are occupied by triflate oxygen atoms as the four nitrogen 

atoms from L6 molecules in the equatorial positions create a perfect square plane. The mean 

Cu-O and Cu-N bond lengths were measured at 2.549(3) Å and 2.022(4) Å, respectively. 
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The imidazole-based L7 ligand was employed for the construction of compound 24. The 

complex crystallizes in the monoclinic C2/c space group and its asymmetric unit contains 

one CuII centre, two L7 molecules, two triflate anion molecules and one acetonitrile molecule. 

As in the cases of the benzotriazole (18) and benzimidazole (23) analogues, the CuII centres 

possess an octahedral geometry that also includes a {N4} square plane with ligand-deriving 

nitrogen atoms at distances ranging from 1.996(4) to 2.017(4) Å. As a result, 24 exhibits a 

similar one-dimensional framework as shown in Figure 5.3 (top). A triflate and an acetonitrile 

molecule also coordinate through the axial positions in significantly larger distances (Cu-O: 

2.513(5) Å, Cu-N: 2.549(6) Å respectively) to complete the octahedron, while a second 

triflate anion is also present in the crystal lattice to account for the charge balance. In this 

case the distance between the metal centres was measured at 9.7264(3) Å, which is the 

highest relevant in the study. This may be attributed to the absence of the bulky phenyl groups 

which limits potential steric effects and the possible formation of weak C-H···π interactions. 

As a result of this increased flexibility, the angles between the planes of the imidazole 

moieties were measured at 100.1(2) and 111.5(3)°, differing significantly compared to the 

previous compounds. 

 

 

Figure 5.2. Part of the one-dimensional framework in compound 23 along the a axis. Certain 

H atoms are omitted for clarity. Colour code Cu (blue), C (black), H (light pink), N (light 

blue), O (red), S (yellow), F (light green). 

 

Compound 25 was also synthesized using L7 and Cu(OTf)2·H2O as the metal salt. Compared 

to 24, compound 25 reveals an analogous one-dimensional framework which consists of the 
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same [CuII(L7)2(solvent)(CF3SO3)] units, however with some structural differences based on 

the use of different crystallization solvents (H2O/Me2CO instead of MeCN). In this case, the 

complex crystallizes in the monoclinic P21/n space group and a water molecule acts as the 

coordinating solvent (Figure 5.3, bottom). This accounts for octahedral CuII centres with 

{N4O2} environment, slightly different compared to the case of compound 24, however the 

ligand-derived {N4} square plane is present on both occasions. A second triflate anion along 

with solvent molecules are also found in the crystal lattice. The structure of 25 is further 

stabilized by the formation of two strong O-H···O hydrogen bonds between the oxygen from 

the water molecule and an oxygen atom of either a triflate anion or a solvent molecule in 

each case.  

 

 

 

Figure 5.3. The one-dimensional frameworks in 24 (top) and 25 (bottom). Certain H atoms 

are omitted for clarity. Colour code Cu (blue), C (black), H (light pink), N (light blue), O 

(red), S (yellow), F (light green). 
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Determination of the structure of 26 by X-ray crystallography reveals a zero-dimensional CuI 

tetramer (Figure 5.4) which crystallizes in the triclinic space group 𝑃1̅. All of the metal 

centres in this Cu4 unit appear aligned in a single plane. Four organic ligands derived from 

L3 are also present. An interesting case of ligand isomerism is observed in two of these 

ligands, as the -CH2 linker is bonded to the central N atom of one of the benzotriazole 

moieties, generating the 1,2-disubstituted benzotriazole analogue (Scheme 5.3, L3T) despite 

the fact that pure crystals of L3 were used during the synthesis. This phenomenon is common 

in substituted benzotriazole derivatives, as multiple studies by Katritzky’s group273,274 have 

shown that both the benzotriazol-1-yl and -2-yl adducts exist in solution; the position of this 

equilibrium has been found to be strongly dependant on parameters such as the polarity of 

the solvent, the temperature or the bulkiness of the substrate275–279, however the 1-yl adduct 

remains predominant, which explains the presence of both species in the structure. A more 

detailed study on these phenomena will follow in Chapter 6. Two triflate molecules are also 

present in these tetramer units, each coordinating to one metal centre. All CuI centres exhibit 

tetrahedral geometry; the two external centres have a {N3O} coordination environment which 

involves nitrogen atoms from three different ligand molecules (two as L3 and one as L3T). 

Respective Cu-N distances for these atoms were measured from 1.981(3) to 2.010(3) Å. The 

remaining metal centres in-between are coordinated to nitrogen atoms from two as L3 and 

two L3T ligands, possessing an {N4} environment. In this case, the measured Cu-N distances 

were found to be slightly larger, ranging from 2.037(3) to 2.080(3) Å. In regards to the triflate 

coordination, the analogous Cu-O distance was calculated at 2.173(3) Å. Finally, the relevant 

angles for all tetrahedra were found to be in the range of 99.47(12) and 112.74(12)°. 

 

 

Scheme 5.3. The ligand isomerization observed in compound 26. 
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Figure 5.4. The structure of the tetrameric units in compound 26. Lattice solvent and anion 

molecules, as well as H atoms are omitted for clarity. Colour code Cu (orange), C (black), N 

(light blue), O (red), S (yellow), F (light green).  

 

Table 5.1. Structural summary of all compounds used in this study (S = Solvent).  

Entry Compound Ligand Coordination 

Environment 

(M = Cu/Zn) 

M source Dimensionality 

1 11 L3 

 

Cu(ClO4)2·6H2O 1D 

2 13 L3 

 

Zn(ClO4)2·6H2O 1D 

3 11i L3 

 

Cu(ClO4)2·6H2O 1D 

4 17 L3 

 

Cu(BF4)2·6H2O 1D 

5 18 L3 

 

CuII(OTf)2·H2O 1D 

6 19 L3 

 

Zn(OTf)2 1D 
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7 20 L4 

 

CuII(OTf)2·H2O 0D (dimer) 

8 21 L5 

 

CuII(OTf)2·H2O 0D (dimer) 

9 22 L2 

 

CuII(OTf)2·H2O 1D 

10 23 L6 

 

CuII(OTf)2·H2O 1D 

11 24 L7 

 

CuII(OTf)2·H2O 1D 

12 25 L7 

 

CuII(OTf)2·H2O 1D 

13 26 L3 , 

L3T’ 
 

CuI(OTf)(MeCN)4 0D (tetramer) 

 

5.2.2. Synthetic Aspects 

Due to the similar chemical nature and behaviour of ligands L2, L4 – L8 compared to the 

prototype L3, similar methods and techniques were employed to generate frameworks that 

resemble the coordination geometry and environment of the main catalyst 18. As a result, all 

newly reported compounds were synthesized under aerobic conditions and analogous 

concentrations. The experiments were mainly conducted using acetonitrile or acetone as the 

main solvent, in order to i) provide satisfying solubility for all ligands and metal salts, ii) 

maintain the same synthetic method that was used during experiments with L3, iii) efficiently 

engineer the resulting coordination environment through the coordinating (MeCN) or non-

coordinating (Me2CO) capabilities of the solvents. The main crystallization technique that 

was used for all compounds in order to provide high diffraction quality crystals was liquid or 

vapour diffusion. In regards to the secondary crystallization solvent, the non-coordinating 

solvents Et2O and n-hexane proved to be the best choices; nevertheless H2O (a coordinating 

solvent) also provided some success during the synthesis of 25 and allowed for a slight 
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manipulation in the coordination environment of CuII. Room temperature conditions were 

employed in almost all compounds, with the exception of 22; it has been reported in Chapter 

2 that the temperature effect on L2 further promotes the formation and dimensionality of 

coordination polymers. For this reason, the mixture in this case was initially heated at 95 °C. 

Despite several efforts, a crystalline material could not be obtained during experiments with 

Cu(OTf)2 and L8 in order to generate a compound with analogous coordination 

characteristics to the ones in 18 (for purposes explained in Section 5.2.4.3). As a result, the 

targeted material was synthesized in situ; indicated peaks in the corresponding ESI-MS 

spectra, as reported in the Appendix (Figure S5.16), gave conclusive proof of successful 

coordination and thus the material was used in this way during catalytic experiments. All 

compounds are soluble in DMF, less soluble in other common organic solvents (eg. 

acetonitrile, THF, alcoholic media) and insoluble in water.  

 

5.2.3. Characterization of Compounds 22 – 26 

TGA Studies 

Thermogravimetric analysis experiments of 22-26 up to a temperature of 1000°C revealed 

that the polymeric compounds 22-25 are slightly more stable than the zero-dimensional 

tetrameric complex 26; the former retain their main metal-ligand core until the region of 260-

300°C after which gradual decomposition to copper oxide begins. In complex 26, the same 

procedure occurs at a slightly lower temperature region (~240°C).  

 

In more detail, compound 22 undergoes an initial mass loss (calcd: 4.68%, theor: 5.01%) in 

the 100-125°C range due to the loss of any remaining acetonitrile solvent, while the second 

mass loss occurs at approximately 285°C as the existing core begins to decompose to the 

resulting oxide (calcd: 86.28%, theor.: 84.31%). Compound 23 completely retains its stability 

up to the region of 260°C, where removal of the triflate anions occurs (calcd: 28.77%, theor.: 

28.70%). The remaining polymeric core loses its stability at approximately 375°C towards 

gradual decomposition to CuO (calcd: 63.93%, theor.: 63.64%). In the case of 24, there is an 

immediate mass loss which concludes at 163°C, owed to the loss of the coordinated 

acetonitrile molecule with satisfactory agreement (calcd: 5.997%, theor.: 4.02%). The 

remaining residue remains stable until approximately 300°C before it begins to decompose. 
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The TGA analysis of compound 25 is in agreement with the elemental analysis measurements 

which suggest that the acetone molecules in the lattice are removed under room temperature. 

As such, the first mass loss in the range of 85-100°C is attributed to the removal of the 

coordinated water solvent from the framework. The remaining core is stable until it begins 

decomposing in the region of 300-325°C to the eventual oxide residue. The total mass loss 

for these processes (92.84%) is in very good agreement to the theoretical value (91.71%). 

Finally, in compound 26 there is a continuous mass loss which occurs immediately, until 

approximately 217°C. This corresponds to the loss of the remaining four acetone solvent 

molecules that are present in the lattice (calcd: 9.54%, theor: 9.50%). An immediate second 

mass loss occurs after this, as the remaining framework is decomposed. The TGA graphs are 

presented in the Appendix (Figures S5.11-S5.15). 

 

Mass Spectometry Studies 

ESI-MS (positive-ion mode) in methanolic solution for complexes 22-26 shows a variety of 

peaks depending on their behaviour in solution as well as the ligand used. The most common 

peaks can be found in all or almost all compounds and correspond perfectly to the respective 

[Cu(L)]+, [Cu(L)2]
+, [Cu(L)(CF3SO3)]

+ and [Cu(L)2(CF3SO3)]
+ fragments. Additional peaks 

are also observed in each spectrum, which are consistent to various metal–ligand-anion 

fragments. For example, 22 and 23 also contain peaks that correspond to the respective 

[Cu2(L)2(CF3SO3)3]
+ and [Cu2(L)3(CF3SO3)3]

+ fragments. Imidazole-based compounds 24 

and 25 present additional peaks that match the theoretical values for the [Cu(L7)3]
+ and 

[Cu(L7)3(CF3SO3)]
+ fragments. Finally, the ESI-MS spectrum of 26 reveals five main peaks 

which are attributed to the corresponding [Cu(L3)]+, [Cu(L3)2]
+, [Cu(L3)2(CF3SO3)]

+, 

[Cu2(L3)2(CF3SO3)]
+ and [Cu2(L3)3(CF3SO3)]

+ fragments. Overall, 22-26 appear to behave 

in solution similarly to the already reported compounds 11, 13, 17-21 which were also 

employed in this catalytic study. All ESI-MS spectra, along with a detailed analysis of the 

fragments, are presented in the Appendix (Figures S5.6–S5.10). 

 

Cyclic Voltammetry studies  

As a first step, cyclic voltammetric studies of selected ligands L3, L4, L6, L7 were performed. 

During these experiments, no processes were observed in either the negative or positive 
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potential range and only the CV of the TBAP was measurable. Therefore, it can be 

established that the ligands are stable in DMSO and in DMF, and they are not oxidized. CV 

studies were then performed for the Cu based compounds (Figures 5.5 and 5.6). Compounds 

18, 20 and 23 were selected for these purposes due to their structural characteristics and 

catalytic performance. 18 and 23 can be reduced in the first step and can be then oxidized 

back in the second step in the positive potential range. The Ia/Ic is ~1 and the v1/2-|Ic| function 

is not linear whereas the potential difference of the anodic and cathodic peak potential is 

more than 59 mV indicating a structural change. This can be rationalized to the different 

coordination preference of the Copper element in different oxidation states (I or II), therefore 

the intra-conversion (II to I to II) takes place in a slower manner, or the electron crossing 

may be slower on the electrode surface. These results show that these processes are quasi-

reversible. The redox potentials are positive in both cases and substantially different when 

compared with the redox potential of Cu(NO3)2, thus supporting that the measured potential 

values correspond to CuII complexes. The CV of compound 20 complex is similar to the 

Cu(NO3)2 cyclic voltammogram in both solvents, indicating that compound 20, despite 

having similar structural characteristics with 18 and 23, is not stable in DMF and in DMSO. 

 

   

Figure 5.5. Voltammograms of 18 (purple) and 23 (black) in 0.1 M TBAP/DMF (Potential 

range: 800-0 mV. Scan rate 100 mV/s). (right) Voltammograms of 20 (green) and Cu(NO3)2 

(red) in 0.1 M TBAP/DMF (Potential range: 800-(-1200) mV for 20, 800-(-700) mV for 

Cu(NO3)2. Scan rate 100 mV/s). 
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Figure 5.6. (left) Voltammograms of 18 (purple) and 23 (black) in 0.1 M TBAP/DMSO 

(Potential range: 800-(-400) mV for 18, 800-0 mV for 23. Scan rate 100 mV/s). (right) 

Voltammograms of 20 (green) and Cu(NO3)2 (red) in 0.1 M TBAP/DMSO (Potential range: 

800-(-1200) mV for 20, 1000-(-1200) mV for Cu(NO3)2. Scan rate 100 mV/s). 

 

EPR Studies  

To gain further structural insights, X-band EPR studies of characteristic compounds 18, 20, 

23 were performed. The spectra of polycrystalline samples in solid-state or in frozen 

alcoholic solution were recorded at a temperature of 5 K. Initial investigations took place for 

23, followed by 18 and 20. For compound 23, a comparison between the spectra of the solid-

state sample and the one in frozen methanol (Appendix, Figure S5.17, right) shows similar 

signals in both case, however fewer hyperfine lines are observed in the former. A closer look 

at the crystallographic parameters of the compound reveals severe axial distortion in the 

octahedron due to Jahn-Teller effects, with the Cu-N and Cu-O distances at 2.022(3) and 

2.549(3) Å respectively. Furthermore, a series of weak intramolecular interactions (C–H⋯π, 

C–H⋯OOTf) involving the –CH group of the imidazole moiety is observed. Both these 

phenomena contribute to weaker magnetic coupling between neighbouring cations and 

eventually a narrowing of the hyperfine lines. The best simulation (Appendix, Figure S5.17, 

left) was obtained with (gx, gy, gz) = (1.92, 1.99, 2.3) ± 0.01 and A = 200 ± 30 MHz (where 

A = hyperfine) which is in agreement with the above observations. In contrast, the EPR signal 

of 23 in methanolic solution provides much more defined hyperfine lines which are consistent 

to a CuII (S=1/2) interaction with four 14N nuclei from L6 ligands in a square planar 

environment, pointing to an eventual {N4O2} octahedral geometry. A plausible hypothesis 

for the difference in the clarity of the two spectra could be that, in solution, methanol 
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molecules replace the triflate anions and coordinate to the CuII centres, removing any 

potential formation of C–H⋯O interactions250,251. 

 

Similar studies for compound 18, as can be seen in Figure S5.18, Appendix, show that CuII 

retains the {N4O2} octahedral geometry in alcoholic solution, and the structure remains 

polymeric. This result is consistent with the UV-Vis studies reported in Chapter 4 which 

showed that the compound retains a similar coordination environment in solution. It is worth 

noting that the spectrum in this case is very well defined compared to the one of compound 

23, as no weak C–H⋯O interactions are formed in the absence of the imidazolic moiety. A 

comparison of the hyperfine lines shows slight changes in the coordination environment upon 

solvation but does not alter, indicating once again potential replacement of the triflate anions 

with ethanol molecules. A simulation with very good agreement for the polycrystalline 

sample at room temperature provided the fitting parameters (gx, gy, gz) = (2.08852, 2.03142, 

2.29635) ± 0.01 and A = 520 ± 30 MHz, indicating that the unpaired electron is localized in 

the dx
2

−y
2 orbital. Furthermore, they are in accordance to the corresponding values of similar 

CuII complexes with a {N4O2} coordination environment280–282. 

 

While the crystallographic data for 20 could not be optimally refined, the CuII centres clearly 

exhibited a square pyramidal geometry in the crystal structure, with a {N3O} environment in 

the equatorial plane. The X-band EPR studies (Figure S5.19, Appendix) of the 

polycrystalline sample at 5 K further confirm this behaviour. Reasonable fits are obtained for 

(gx, gy, gz) = (1.96, 2.04, 2.28) ± 0.01 and A = 350 ± 30 MHz; these values are in satisfying 

agreement to the ones of related CuII complexes with a {N4O} coordination sphere283,284. 

Once again, a narrowing of the hyperfine lines is also observed, possibly due to the formation 

of weak π⋯π and C–H⋯π interactions within the structure. 

 

5.2.4. Catalytic Studies 

5.2.4.1. Benchmarking and Optimisation 

In order to provide an ideal scheme for the reaction, attention was paid towards establishing 

a  catalytic protocol which would avoid the isolation of the potentially unstable organic azides 

(especially azides with low molecular weights263). For these reasons, the multicomponent 
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reaction between organic halides (C5H), alkynes (C5L) and sodium azide (C5Z) was 

adopted as the initial reaction scheme, in which the respective organic azide is generated in 

situ. The initial catalytic protocol included the use of benzyl chloride, sodium azide and 

phenylacetylene, as well as reference compound 18 as the homogeneous catalyst. After 

several catalytic tests (Table 5.2), it was found that optimal results were obtained when the 

reaction takes place in ethanol for 24 hrs, under reflux and 5 mol% of the catalyst (Table 5.2, 

entry 2). Under these conditions, the starting material is consumed and the reaction leads to 

the corresponding triazole C5T1 in an excellent 93% yield. Notably, this result was obtained 

in the absence of any external reducing agent, providing substantial evidence towards the 

formation of a CuI intermediate during the reaction. 

 

Encouraged by this result, the performance of various CuI and CuII salts was then tested under 

the same reaction conditions (Table 5.3), demonstrating the superior performance of 18. In 

addition; in some of these cases, the starting material was not even entirely consumed. 

 

Table 5.2. Optimization of the synthesis of triazole C5T1 using 18 as the catalyst. 

 

Entry Solvent Temperature 

(oC) 

Time 

(h) 

Loading 

(mol %) 

Conversion 

(%)a 

Yield 

(%)b 

Regioselectivity 

1,4/1,5-product 

TON/TOF 

(hr-1) 

1 MeOH 64 24 5 76 62 83:17 12.4/0.52 

2 EtOH 78 24 5 100 93 99:1 18.6/0.78 

3 iPrOH 82 24 5 94 76 98:2 15.2/0.63 

4 MeCN 82 24 5 65 43 99:1 8.6/0.36 

5 Toluene 110 24 5 NR - - - 

6 DMF 120 24 5 96 46 98:2 9.2/0.38 
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7 1,4-

Dioxane 

101 24 5 NR - - - 

8 H2O 100 24 5 NR - - - 

9 EtOH 78 24 2.5 83 47 99:1 18.8/0.78 

10 EtOH 78 1 5 45 22 98:2 4.4/4.4 

11c EtOH 78 24 5 93 82 97:3 16.4/0.68 

12d EtOH 78 24 5 87 87 99:1 17.4/0.73 

13e EtOH 78 24 5 100 93 99:1 18.6/0.78 

14e EtOH 78 1 5 99 92 99:1 18.4/18.4 

15 EtOH rt 24 5 NR - - - 

Reaction conditions: benzyl chloride (0.5 mmol), sodium azide (0.5 mmol), phenylacetylene 

(0.5 mmol), 10, solvent (3 mL). [a]: based on benzyl chloride. Differences between the 

conversion and yield percentages are due to the unreacted benzyl azide. [b]: calculated from 

the crude mixture by 1H NMR. [c]: with 0.5 ml solvent. [d] with the addition of 15% P(Ph)3. 

[e] with the addition of 15% Sodium Ascorbate. NR = no reaction. The reported285 1HNMR 

peaks of the 1,5-analogue were employed to determine regioselectivity. 

 

Table 5.3. Evaluation of various CuI and CuII salts in the synthesis of triazole C5T1. 

 

Entry Catalyst Conversion 

(%)a 

Yield (%)b Regioselectivity  TON/TOF 

(hr-1) 

1 CuICl 100 72 99:1 14.4/0.6 

2 CuI(BF4)(MeCN)4 93 80 99:1 16/0.67 

3 CuI(OTf)(MeCN)4 100 78 99:1 15.6/0.65 

4 CuIICl2 79 35 99:1 7/0.29 

5 CuIIBr2 77 32 98:2 6.4/0.27 
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6 CuII(OTf)2·H2O 99 78 99:1 15.6/0.65 

7 CuII(OAc)2·H2O 92 40 99:1 8/0.33 

8 CuII(ClO4)2·6H2O 99 76 97:3 15.2/0.63 

9 CuII(BF4)2·6H2O 99 71 96:4 14.2/0.59 

10 CuII(NO3)2·2.5H2O 93 62 96:4 12.4/0.52 

Reaction conditions: benzyl chloride (0.5 mmol), sodium azide (0.5 mmol), phenylacetylene 

(0.5 mmol), catalyst (5% mol), EtOH (3 mL), heated at 78°C for 24 h. [a]: based on benzyl 

chloride. Differences between the conversion and yield percentages are due to the unreacted 

benzyl azide. [b]: Relative yields based on 1H NMR analysis from the integration of the 

corresponding proton shifts. The reported285 1HNMR peaks of the 1,5-analogue were 

employed to determine regioselectivity. 

 

5.2.4.2. Scope of Reaction 

Having obtained the optimal conditions for the system, a number of substrates were then 

tested in order to study the catalytic scope and limitations of 18. Initial substrate screening 

included the use of organic halides as starting materials as well as a variety of terminal 

alkynes (e.g. aromatic, alkyl, linear, containing hydroxyl or carboxylate groups). The results 

are presented in Scheme 5.4. The reaction affords triazoles in excellent (88 - 99%) yields 

when aromatic or substituted aliphatic alkynes are used. In regards to the organic halide, 

increasing the strength of the leaving group from Cl- (entries C5T1 – C5T6) to Br- (entries 

C5T7 – C5T11) led to improved results as expected. It is also worth noting that the triazoles 

derived from benzyl halide proved to be very easy to crystallize. As such, X-Ray 

crystallography structures of representative triazoles C5T1 – C5T4 are additionally included. 

Iodobenzene was also tested as a possible substrate during attempts to generate the relevant 

aryl triazole analogues, however these efforts were unsuccessful. This was not surprising as 

the azidonation of aryl halides269,286,287 is generally a slow process that requires very harsh or 

tedious conditions. For this reason, the inexpensive and readily available benzeneboronic 

acid was employed in order to obtain the corresponding product288. As a result, the resulting 

triazole C5T12 was generated in a very good 80% yield, as seen in Scheme 5.5. Additional 

screening of the arylboronic acid with other alkynes led to the formation of triazoles C5T13 

– C5T15 in poorer yields, whereas reactions with 2-hydroxyphenylboronic acid did not yield 
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any product (C5T16 – C5T17). Nevertheless, these results provided another potential 

pathway for catalyst 18 which avoids the isolation of unstable organic azide intermediates.  

 

    

 

Scheme 5.4. Catalytic activity of 18 in the multicomponent synthesis of 1,4-disubstituted 

1,2,3-triazoles from organic halides. 
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Scheme 5.5. Catalytic activity of 18 in the one-pot synthesis of 1-aryl-1,2,3-triazoles from 

boronic acid derivatives. 

 

5.2.4.3. Mechanistic Insights 

The homogeneous catalytic performance of 18 in the azide-alkyne cycloaddition provides yet 

another organic transformation in which this library of 1D CuII CP catalysts may be applied. 

More importantly, the presence of a CuI source is necessitated for this specific reaction to 

occur; this serves as an excellent blueprint, which could shed light into the mechanistic 

function of the catalysts. Up to this point, it has been established that these polymeric CuII 

compounds retain their nature in alcoholic solution, and can generate CuI species when tested 

as pre-cursor catalysts in organic reactions under alcoholic media which involve the 

formation of the important CuI-acetylide intermediate. Within these concepts, an extensive 

set of control experiments and techniques was performed in order to: i) diagnose the exact 

nature of the generated CuI species, ii) find the limits of the present catalytic system, iii) 

identify the importance of the CuII pre-cursor in the catalytic activity, iv) further examine the 

effect of parameters such as ligand variation, metal effect, polymeric nature, dimensionality, 

geometry and coordination sphere. The results of these experiments are shown in Table 5.4. 
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Firstly, the importance of metal selection in the construction of the catalysts was evaluated. 

ZnII-based compounds 13 and 19 were tested as catalysts for the synthesis of C5T1, as they 

are isostructural to 18, containing the same one-dimensional framework; they also behave 

similarly in solid and solution state. Recent investigations289,290 on the feasibility of a ZnAAC 

system have shown that the reaction is indeed possible. However, it requires the presence of 

a reducing agent (when none is present in the proposed system in this Chapter) and is highly 

sensitive to steric effects in regards to the choice of alkyne. Nevertheless, no product was 

formed in both cases (Table 5.4, entries 2 and 6). Given the inactivity of Zn centres towards 

the AAC reaction, this experiment excludes the possibility that the reaction is promoted by 

the ligand. 

 

The next step was to assess the performance of all CuI complexes from the library of related 

obtained structures presented so far in this thesis. Relevant compounds 11i and 26 were 

employed for these purposes, accounting for average yields as seen in Table 5.4, entries 3 

and 13. As a consequence, the remaining fine-tuning efforts were narrowed down to CuII 

compounds. Therefore, the next step was to study the effect of the choice of metal salt during 

the catalytic process. The comparison tests in this case involved the isoskeletal 1D catalysts 

11, 17 and 18 (Table 5.4, entries 1, 4, 5) that differ in the counter anion (ClO4
-, BF4

-, OTf- 

respectively). The results show significant differences in the afforded yield, with the OTf- 

analogue exhibiting superior behaviour and the BF4
- analogue accounting for the lowest 

activity. In addition, lower conversion (90%) of the starting material was observed in both 

ClO4
- and BF4

- analogues. These results indicate that Cu(OTf)2 is the ideal choice of metal 

salt for the construction of catalysts in this system. Having also in mind that the triflate 

analogues provided the most encouraging results during the evaluation of CuI compounds 

and CuI/CuII salts (Table 5.3, entries 3 and 6), it is envisioned that this performance is 

established as either the reaction requires the presence of a weak base to get a proton or the 

triflate unit has better resistance to the oxidation/reduction reaction, compared to ClO4
- or 

BF4
-. Moreover, any anion conversion issues that would inhibit the catalytic activity, such as 

the ones reported in Chapters 3 and 4 for the ClO4
- and BF4

- analogues (respectively 

converted to Cl- and F-), are avoided.  
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The influence of the nitrogen-based ligand was then examined. Employment of organic 

ligands L4 and L5 in which the benzotriazole moieties contain –CH3 groups in positions 5 

and 5,6 respectively resulted in the isolation of coordination compounds 20 and 21. Both of 

these compounds show important structural differences compared to the reference catalyst 

18 which derived from the parent ligand L3. More specifically, the CuII centres possess 

different coordination geometry and the complexes have no polymeric nature, forming 

dicopper dimers instead. As seen in Table 5.4, entries 7 and 8, the catalytic tests for 20 and 

21 showed average behaviour compared to 18. This may be attributed to the aforementioned 

structural differences as well as a possible second sphere coordination effect to the CuII 

centres, due to the presence of the –CH3 groups. The ligand L2 was also employed to 

determine the effect of the position of the substituted benzotriazole molecules. Compared to 

the ortho-substitution in parent ligand L3, the meta-substitution in L2 provides increased 

flexibility to account for any potential steric effects. For this reason, the resulting 1D polymer 

22 reveals larger Cu-Cu distances compared to 18 as well as larger angles between the 

benzotriazole molecules. 22 also provides increased space for substrate accommodation, as 

the four nitrogen atoms which comprise the square plane of the {N4O2} coordination 

environment are derived from two L2 and two MeCN molecules. However, its catalytic 

activity proved to be lower (Table 5.4, entry 9); it can be thus concluded that this lack of 

ligand molecules leads to different and less active species during the catalysis, making 22 a 

less effective catalytic precursor. Having this result in mind, the next efforts focused 

exclusively on nitrogen-based ligands with ortho-substitution. The use of benzimidazole 

(compound 23) or imidazole (compounds 24, 25) instead of benzotriazole generates 

topologically equivalent CuII-based 1D frameworks; however, their use as catalysts reveals 

a considerable decrease in the product yield (Table 5.4, entries 10 - 12). As CV studies show 

that the benzimidazole-based analogue 23 behaves similarly to 18, the yield difference can 

be attributed to electronic factors / second coordination sphere effect, while the absence of 

the bulky phenyl group might be a factor in the case of the imidazole-based compounds. The 

possibility that more drastic species are formed with the benzotriazole ligand should also be 

considered. It is worth noting that both compounds 24 and 25 present the ligand-derived {N4} 

square plane that is required for the catalytic activity, however they have slight differences 

in the species that occupy the axial positions of the octahedron (OTf-/MeCN versus OTf-
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/H2O). The latter parameter appears to have no effect in the catalytic performance, based on 

the similar yields measured in each case (69 and 70% respectively). Furthermore, to 

determine the importance of the polymeric nature on the catalysts, the ligand 1-benzyl-1H-

1,2,3-benzotriazole, L8, was employed as the mono-substituted version of L3 in order to 

guarantee the generation of 0D coordination compounds. The in situ reaction of Cu(OTf)2 

and L8 yields the corresponding product in poorer yields (Table 5.4, entry 14) indicating the 

necessity of a bis-substituted ligand. Finally, the in situ reaction of Cu(OTf)2 and L3 also 

resulted in significantly lower yield (Table 5.4, entry 15), showcasing that other, non-

catalytically active species are formed during this process. From these results, it can be 

concluded that higher catalytic efficacy is achieved using the well-characterized, polymeric 

precursors. 

 

In regards to the use of additives, it was found that the presence of sodium L-ascorbate 

enhances the CuI to CuII conversion (Table 5.2, entries 13 and 14), therefore improving the 

catalytic affinity. However, after 24 hours the catalytic conversion is similar to that without 

any additive. Triphenylphosphine (PPh3) was also tested as an additive in the reaction; apart 

from its role as a reducing agent, PPh3 may potentially react with the organic azide to 

eventually produce the corresponding amine through the Staudinger reaction291, thus 

deactivating the CuAAC transformation. However, no significant effect in the yield was 

observed in the analogous catalytic tests (Table 5.2, entry 12), indicating that PPh3 is not 

involved in the catalytic cycle.  

 

Additionally, a series of EPR experiments was performed monitoring the synthesis of triazole 

C5T1 using 18 as the catalyst, in order to investigate the nature of the copper-based 

compound during the reaction. A comparison of the afforded spectra during the first 120 

minutes of the reaction (Appendix, Figure S5.20, left) confirms the constant presence of CuII 

species in the solution, albeit with a continuous decrease in the intensity, which could indicate 

the change into EPR silent CuI. In comparison, similar studies were performed with the 

addition of the reducing agent sodium-L-ascorbate in the reaction mixture (Appendix, Figure 

S5.20, right). While the intensity decrease is higher in the first 60 minutes of the reaction, the 
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signals after 120 minutes are eventually similar to the ones without the presence of the 

additive, which is consistent to the similar catalytic results as previously mentioned.  

 

Considering all these parameters and taking into account the above CV and EPR studies, a 

possible mechanistic pathway as depicted in Scheme 5.6 is proposed. CV studies showed 

reversible transition CuII(L)2 (A) to CuI(L)2 (B) for compounds 18 and 23 but not for 20, 

therefore CuI(L)2 (B) is considered to be the possible catalytic active species. However, the 

comparison of the TOF values 4.4 (after 1 hour reaction time) and 0.8 (after 24 hours) (Table 

5.2, entries 2 and 10) indicates structural change of the catalyst. The crystallographic 

characterization (as reported in Chapter 3) of the 1D compound [CuI(L3)Cl] (11i) as the 

deactivated catalytic species, confirms the partial dissociation of the ligand yielding the 

CuI(L) (C) species. The structure of C can be a 1D [CuIN2] compound, or due to the flexibility 

of the organic ligand it may consist of dimeric species. In these cases, the transition of C to 

the corresponding CuII(L) species (D) cannot be excluded. EPR studies during the first 120 

minutes of the reaction confirm the presence of CuII species in the solution, thus excluding 

the possibility that the CuII has converted in full to CuI at the beginning of the reaction. As 

the reaction proceeds, the excess of the produced 1,4-triazoles, that have similar coordination 

abilities to L3, yields in further dissociation of L3 and formation of the species [CuN4] (E) 

and termination of the catalytic cycle. The two CuI units in the crystallographically 

characterized analogue of C are at an approximate distance of 8.74 Å, thus any chance that 

the reaction is promoted from a species involving neighbouring copper centres256,265 should 

be excluded for this catalytic system. Therefore, both active species B and C could catalyse 

the present 1,3-dipolar cycloaddition, as shown in Scheme 5.6. Consequently, a coordination 

of copper to the acetylene takes place forming the corresponding CuI-acetylide intermediate, 

that in the presence of the azide undergoes a cyclization process through an unusual six-

membered copper metallacycle intermediate. This pathway is supported by theoretical 

studies on copper-catalyzed 1,3-dipolar cycloaddition process and synthesis of azoles204,292. 

Finally, the ring contraction to a triazolyl-copper derivative is followed by protonolysis that 

delivers the triazole product and closes the catalytic cycle. 
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Table 5.4. Catalytic evaluation of all coordination compounds tested in the synthesis of 

triazole C5T1. 

 

Entry Catalyst Conversion (%)a Yield (%)b Regioselectivity of 

C5T1c 

1 11 90 56 99 

2 13 NR - - 

3 11i 100 58 98 

4 17 90 47 99 

5 18 100 93 99 

6 19 NR - - 

7 20 97 78 98 

8 21 94 76 98 

9 22 99 74 99 

10 23 99 84 99 

11 24 100 69 99 

12 25 100 70 99 

13 26 99 77 99 

14 Cu(OTf)2·H2O + L8 87 28 99 

15 Cu(OTf)2·H2O + L3 99 57 99 

Reaction conditions: benzyl chloride (57.5 μL, 0.5 mmol), sodium azide (32.5 mg, 0.5 

mmol), phenylacetylene (55 μL, 0.5 mmol), catalyst (5 mol %), EtOH (3 mL), heated at 78°C 

for 24 h. [a]: based on benzyl chloride. Differences between the conversion and yield 

percentages are due to the unreacted benzyl azide. [b]: Relative yields based on 1H NMR 

analysis from the integration of the corresponding proton shifts. [c]: calculated from 

regioisomers 1,4-product : 1,5-product. 
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Scheme 5.6. A plausible mechanism of the AAC reaction catalysed by 18. 

 

5.3. Conclusion 

This work has afforded a series of Cu coordination compounds with nitrogen-containing 

ligands which have been added in the pre-existing library of analogous catalysts introduced 

in the previous Chapters. Attempts have been made to understand their homogeneous 

catalytic performance and mechanistic nature through their activity in the well-known CuI-

promoted AAC reaction. In particular, compound [CuII(L3)2(CF3SO3)2] (18) is the optimal 

catalyst affording 1,4-disubstituted 1,2,3-triazoles with moderate to excellent (27-99%) 

yields without requiring a reducing agent. Furthermore, the proposed method avoids the 

isolation of potentially unstable organic azides, using either organic halides or 

benzeneboronic acid as starting materials.  
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CV studies of selected samples showed that fine-tuning the organic ligand has a significant 

effect on the electrochemical properties (20 differs to 18 and 23). The coordination sphere of 

18 and 23 is rather similar which is proved by the similar formal potential values. The 

measured formal potential values are more negative in DMSO than in DMF, which supports 

that it is much more difficult to reduce the complexes in stronger donor solvents. This fact 

may help in choosing the right solvent for a more effective catalysed reaction. 

 

The catalytic system has also been optimized and fine-tuned using an extensive set of control 

experiments and techniques throughout Chapters 3, 4 and 5. These studies confirm that 18 

can act as an excellent precursor in a number of organic reactions under alcoholic media, 

providing CuI active species. Initiating the catalysis from a polymeric CuII compound appears 

essential for the system, since the efforts to obtain the corresponding CuI derivatives or 

improve the catalytic performance with monomeric analogues were not successful. Through 

this diagnostic study, the benzotriazole-based ligand is identified as the most suitable for this 

catalytic system. The findings also confirm the optimal metal geometry and coordination 

environment for the precursor. Furthermore, the semi-flexibility of the ligand through the 

introduction of the –CH2 groups appears to be crucial, allowing for the formation and fine-

tuning of the initial polymeric compounds, as well as the transformation to the various species 

during the catalytic cycle.  

 

Having established a good understanding of the catalytic activity of this system using Cu 

sources, the following chapter will focus on analogous efforts while exploring the catalytic 

potential of other metals. 
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Chapter 6: Structural diversity and catalytic properties in a family of AgI-

benzotriazole based coordination compounds 

 

Abstract: In this work the coordination chemistry of benzotriazole based ligands L1-L3 is 

studied using the low coordination number but versatile AgI ions. This has led to nine new 

coordination compounds formulated as [Ag(L1)(CF3CO2)] (27), 

[Ag2(L1T)2(CF3SO3)2]·2Me2CO (28), [Ag(L2T)(ClO4)(Me2CO)] (29), [Ag(L2T)(BF4)(Et2O)] 

(30), [Ag2(L3T)2(ClO4)2]2 (31), [Ag(L3)(NO3)] (32), [Ag2(L3T)2(CF3CO2)2] (33), 

[Ag2(L3T)(CF3SO3)2] (34) and [Ag2(L3T)2(CF3CF2CO2)2]·2Me2CO (35). These compounds 

show structural diversity including dimers (31, 33, 35), 1D (29, 30, 32) and 2D (27, 28, 34) 

CPs. The presence of the two -CH2- units between the three rigid backbones, benzotriazole/-

C6H4-/benzotriazole, provides a limited but significant, flexibility in L1-L3, influencing their 

varying coordination abilities. Interestingly, certain structures exhibit an isomerism effect 

(L1T-L3T) in the benzotriazole unit when in solid state; a series of studies are indicative of 

the 1,1- form being generally dominant in solution even in cases where the crystal structure 

does not contain this tautomer. The homogeneous catalytic efficacy of all compounds against 

the well-known multi component A3 coupling reaction and the hydration of alkynes are 

investigated. Compound 30 was identified as the optimal catalyst for both reactions, 

promoting the multicomponent coupling as well as the alkyne hydration reaction under low 

loadings (0.5 and 3 mol%, respectively) and in high yields (up to 99 and 93% in each case). 

 

External Contributions: Iain Day (University of Sussex) was responsible for the 

interpretation of the 15N NMR studies. Alaa Abdul-Sada (University of Sussex) was 

responsible for the collection of all ESI-MS data. 

 

6.1. Introduction 

The use of silver for the construction of coordination architectures has been receiving 

increasing attention due to its rich and unique chemistry. Compared to other metals, AgI 

provides a wide range of coordination environments, with multiple possibilities in 

coordination number (from 2 to 6) and geometries (e.g. linear, trigonal, tetrahedral, trigonal 

bipyramidal, square pyramidal, octahedral)293. This versatility and adaptability of AgI 
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systems, along with the potential formation of argentophilic (AgI – AgI) interactions, has 

contributed significantly to the formation of peculiar structural topologies294–303 with various 

dimensionalities, as well as uncommon supramolecular architectures304. These exploits have 

also been crucial towards the development of AgI CPs with structural interest and potential 

applications, which include luminescence305–307, anion exchange307–309, antibacterial310–316 

and catalytic activity231,317–322. Focusing on the latter, several Ag CPs and MOFs have been 

especially used as catalysts in organic transformations that involve alkyne activation138,323 

due to the supreme capability of the metal to form organometallic intermediates through π-

coordination with the carbon–carbon triple bond. 

 

The cobalt and copper chemistry of ligands L1-L3 (Scheme 6.1) was investigated extensively 

in Chapters 2-5. The results demonstrated the structural diversity and flexibility of these N-

containing ligands, leading to multiple coordination compounds with interesting magnetic 

and catalytic properties. The next step in these studies was to combine this rewarding and 

flexible system with the rich chemistry and unique coordination variety of AgI ions, exploring 

the resulting structural aspects as well as potential catalytic applications to add to the existing 

findings.  

 

Having the superior alkynophilicity of AgI in mind, the A3 multicomponent coupling and the 

hydration of terminal alkynes were identified as two potential reactions to test any afforded 

compounds. The former reaction and its importance have been already discussed in Chapter 

4; as mentioned, the key mechanistic step during this coupling requires the formation of a 

metal acetylide intermediate which is then added to the iminium ion to generate the resulting 

propargylamine. For this reason, a variety of AgI sources has been utilized in this reaction324, 

including simple salts230, coordination compounds325–328 and CPs231,320,329. The second 

reaction involves treatment of alkynes with water, resulting to the synthesis of ketones that 

follow Markonikov’s rule. As the classic method for this reaction requires the addition of 

toxic mercury under harsh acidic conditions, multiple systems involving other transition 

metal elements (e.g Cu330, Fe331, Ru332, Au333) have also been explored. Another common334–

336 strategy involves incorporation of silver as a co-catalyst with gold to activate this reaction; 

on the other hand, only a few reports using solely silver sources as catalysts can be found. 
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The first example dates back to 2012, when Wagner and co-workers337 employed AgSbF6 for 

the selective hydration of terminal alkynes. In the following years AgBF4
338, AgOTf339 and 

a silver exchanged silicotungstic acid (STA) catalyst340 were also tested successfully. 

However considerable disadvantages in these procedures, such as the high loadings (up to 10 

mol% in most cases) or temperatures, the use of expensive salts (such as AgSbF6) or the 

lengthy workup for the preparation of the catalyst (in the case of AgSTA) reveal the need for 

further optimization in this area. In addition, a literature search showed that no silver 

coordination compounds have been reported to catalyse this reaction up to this date.  

 

As a result of all the above, this Chapter reports i) the synthesis and characterization of 

compounds [Ag(L1)(CF3CO2)] (27), [Ag2(L1T)2(CF3SO3)2]·2Me2CO (28), 

[Ag(L2T)(ClO4)(Me2CO)] (29), [Ag(L2T)(BF4)(Et2O)] (30), [Ag2(L3T)2(ClO4)2]2 (31), 

[Ag(L3)(NO3)] (32), [Ag2(L3T)2(CF3CO2)2] (33), [Ag2(L3T)(CF3SO3)2] (34) and 

[Ag2(L3T)2(CF3CF2CO2)2]·2Me2CO (35) and ii) the demonstration of their catalytic activity 

in the A3 coupling and alkyne hydration reactions.  

 

 

Scheme 6.1. The organic ligands L1, L2, and L3 used in this study and their potential isomer 

forms L1T, L2T, and L3T. 
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6.2. Results and Discussion 

 

6.2.1. Crystal Structure Description of Compounds 27 – 35 

Compound 27 was synthesized using silver trifluoroacetate and the para-substituted L1 

ligand. The structure crystallizes in the triclinic 𝑃1̅ space group and its asymmetric unit 

consists of one AgI centre, one L1 molecule and one trifluoroacetate anion. In this 

coordination mode, L1 adopts a chair conformation, with the benzotriazole units being 

parallel to each other. Each ligand molecule coordinates to a total of two AgI centres as seen 

in Scheme 6.2, mode A. The trifluoroacetate anions also act as bridging ligands, generating 

[Ag2(L
1)4(CF3CO2)2] nodes which expand to a two-dimensional architecture. As a result, 27 

may be described as a 2D coordination polymer that propagates along the a0c plane (Figure 

6.1, upper). Each of the metal centres possesses a tetrahedral geometry and a {N2O2} 

coordination environment. This tetrahedron is rather distorted, with the relevant angles 

ranging from 97.18(18) to 140.94(19)°. The related Ag-N and Ag-O bond distances are 

surprisingly similar, ranging from 2.304(5) to 2.340(5) Å. No hydrogen bonds or other 

supramolecular interactions were observed. 

 

Compound 28 was synthesized through the use of silver triflate as the metal salt and the 

resulting structure crystallizes in the monoclinic P21 space group. In this case, an isomerism 

phenomenon is observed in the benzotriazole moieties of all L1 molecules, as one of the two 

–CH2 linkers connects to the middle N atom of the benzotriazole. Consequently, the 

disubstituted 1,2-yl analogue (L1T) is obtained, instead of the 1,1-yl. As a result the 

asymmetric unit of 28 contains two AgI centres, two L1T molecules, two triflate anion 

molecules that act as terminal ligands and two acetone lattice solvents. The latter will not be 

further mentioned in this description. The coordination mode for the two crystallographically 

independent L1T molecules (Scheme 6.2, Modes B and C) is similar, as each of the ligands 

coordinates to three different AgI centres. More specifically, the benzotriazol-1-yl unit 

coordinates to one AgI centre through the single far nitrogen atom, while the 2-yl moiety 

coordinates to two metal centres through its two far nitrogen atoms. The two L1T molecules 

however differ slightly in orientation as the angle between their benzotriazole entities are 

49.27(3) and 43.47(3)° respectively. This conformation accounts for the formation of 
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[Ag2(L1T)2(CF3SO3)2] nodes which are connected to each other through Ag-N bonding to 

generate the resulting two-dimensional coordination polymer along the b0c plane (Figure 

6.1, lower). Each AgI centre possesses a {N3O} coordination environment and a slightly 

distorted tetrahedral geometry. The Ag-N bonds range from 2.266(10) to 2.349(10) Å, while 

the Ag-O are slightly larger at 2.323(15) and 2.366(9) Å. The angles of the tetrahedra range 

from 97.2(3) to 135.0(3)°. While no strong H-bonds are formed, π⋯π interactions form 

between the benzene and the benzotriazole moieties of ligand molecules to further stabilize 

the two-dimensional architecture. The parameters for these interactions are detailed in the 

Appendix (Table S6.1). 

 

Figure 6.1. (upper) Part of the two-dimensional framework along the a0c plane in compound 

27. H atoms are omitted for clarity. Colour code Ag (grey), C (black), N (light blue), O (red), 
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F (light green). (lower) Part of the two-dimensional framework along the b0c plane in 

compound 28. For clarity, H atoms, solvent molecules and part of the triflate anions have 

been omitted. Colour code Ag (grey), C (black), N (light blue), O (red). 

 

For the construction of compound 29 the meta-substituted ligand L2 was utilized along with 

silver perchlorate. The complex crystallizes in the monoclinic P21/n space group and contains 

one AgI centre, a ligand molecule, a perchlorate anion as well as one acetone molecule in the 

asymmetric unit. Interestingly, another case of ligand isomerism is observed as the ligand 

molecule appears as the 1,2-disubstituted benzotriazole analogue (L2T). Each of these L2T 

ligands coordinates to two different AgI centres through the far N atom of each benzotriazole 

moiety. Due to the increased flexibility of the –CH2 linkers, in this conformation mode 

(Scheme 6.2, Mode D) the planes of the two benzotriazole moieties are found at an angle of 

54.56(19)°. As a result of these features, the structure of 29 consists of a one-dimensional 

polymeric chain which propagates along the b axis (Figure 6.2, upper). The perchlorate and 

acetone molecules also coordinate to the AgI centre, which exhibits a heavily distorted 

tetrahedral geometry in a {N2O2} coordination environment. As expected, the Ag-O bond 

distances, ranging from 2.47520(8) to 2.52007(9) Å, are significantly larger than the 

analogous Ag-N values which were calculated at 2.15565(8) and 2.18819(7) Å respectively. 

 

Compound 30 was found to crystallize in the monoclinic P21/n space group. Determination 

of the structure through X-Ray crystallography reveals a similar case of isomerization of L2 

to L2T as seen in 29. However, in this case the ligand shows a different conformation (Scheme 

6.2, Mode E), as the two benzotriazole moieties are almost parallel to each other at an angle 

of only 3.70(11)°. Due to this, the compound propagates in one direction, forming 1D helix-

like chains along the b axis as shown in Figure 6.2, lower. This difference in the conformation 

of L2T also accounts for significant variance in Ag-Ag distance; this value was measured at 

8.9893(4) Å in 29 and 10.3143(9) Å in 30. Each AgI centre is coordinated to four atoms in a 

distorted tetrahedral geometry. The coordination environment consists of two N atoms from 

two L2T molecules, one F atom from tetrafluoroborate anions and one O atom from a 

coordinating diethyl ether solvent molecule. The largest bond in this coordination sphere is 

the Ag-F distance which was measured at 2.615(4) Å. In contrast, the Ag-N bond values were 
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the smallest at 2.224(5) and 2.250(4) Å. The arrangement of the framework also promotes 

the formation of inter-molecular π···π interactions341 which account for further stability. 

These weak interactions occur between certain benzotriazole aromatic rings, as detailed in 

the Appendix (Table S6.2). 

 

 

 

Figure 6.2. (upper) Part of the one-dimensional framework in 29. H atoms are omitted for 

clarity. Colour code Ag (grey), C (black), N (light blue), O (red), Cl (light green). (lower) 

Part of the one-dimensional framework in 30 along the b axis. H atoms are omitted for clarity. 

Colour code Ag (grey), C (black), N (light blue), B (dark grey), F (light green). 

 

Compound 31 crystallizes in the triclinic 𝑃1̅ space group and its structure consists of two 

crystallographically independent dimeric [Ag2(L3T)2(ClO4)2] units as shown in Figure 6.3. 

Similarly to the para- and meta- analogues, the ortho-substituted ligand also appears here as 

the L3T isomer. The presence of two different types of dimeric units within the structure are 

due to the coordination modes and conformations of L3T (Scheme 6.2, Modes F and G). In 

the first unit the benzotriazol-1-yl moiety coordinates to both AgI centres through the 
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respective middle and far nitrogen atoms; the related atoms appear aligned in a single plane. 

The 2-yl moiety is found at an angle of 63.31(9)° to this plane and coordinates to only one 

metal centre. As a result, the relevant AgI centres possess a distorted tetrahedral {N3O} 

environment. In contrast, the second dimer consists of L3T ligands in which the benzotriazole 

entities are almost parallel (6.02(8)° angle between the two planes). This dimeric component 

is further stabilized by a weak Ag···π interaction which is formed as the phenyl group of the 

ligand backbone faces towards the silver atom with a slight slippage of 1.717 Å, as depicted 

in Figure S6.1, Appendix. The centroid-metal distance in this case was measured at 3.177(2) 

Å. A series of relevant Ag···C distances from 2.737(5) to 3.317(5) further support the 

formation of this interaction. Each of these units coordinate to one AgI centre through their 

respective far nitrogen atoms and therefore the metal ions show a distorted trigonal geometry 

and a {N2O} coordination environment. The formation of several intermolecular π···π 

interactions (Appendix, Table S6.3) further stabilizes the packing arrangement of these 

dimeric units.  

 

Figure 6.3. The two crystallographically independent dimeric units in 31. H atoms are 

omitted for clarity. Colour code Ag (grey), C (black), N (light blue), O (red), Cl (light green). 

 

Crystallographic analysis for compound 32 reveals a one-dimensional polymeric structure 

which extends along the b axis to form a ribbon-like 1D framework with small voids (Figure 

6.4, left). The compound crystallizes in the triclinic 𝑃1̅ space group and its asymmetric unit 

contains an AgI centre, one L3 ligand molecule and one nitrate anion which acts as a bridging 

ligand. Interestingly, no isomerization of the ligand is observed: each of the benzotriazol-1-

yl moieties coordinate to one AgI ion through the far nitrogen atom (Scheme 6.2, Mode H), 

with the respective Ag-Ag distance at 10.749(3) Å. In regards to the ligated nitrate anion, 
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one oxygen atom coordinates to the metal ion, while another oxygen coordinates to the same 

AgI centre as well as a symmetry related one. As a result, two zig-zag 1D architectures are 

bridged by the nitrate anions to form the resulting ribbon-like framework. The resulting 

{N2O3} coordination environment of the metal ion provides a distorted square pyramidal 

geometry (τ = 0.05164). As expected, the mean Ag-N distances (2.242(7) and 2.243(6) Å) are 

significantly shorter than the respective Ag-O distances (ranging from 2.512(6) to 2.720(6) 

Å). 

 

Compounds 33 and 35 contain isoskeletal cores and as such only the former will be described 

in detail. The structure of 33 consists of a wheel-like [Ag2(L3T)2(CF3CO2)2] dimeric unit in 

which the ligand appears as the L3T isomer (Figure 6.4, right). Similarly to one of the dimers 

in compound 31, the benzotriazole moieties in the ligand are found almost parallel to each 

other at an angle of 7.97(8)° and coordinate to a total of two AgI ions through their respective 

far nitrogen atoms (Scheme 6.2, Mode I). This Ag-Ag distance was measured at 3.9108(7) 

Å. A trifluoroacetate anion also coordinates to the metal centre through one oxygen atom to 

complete its {N2O} coordination sphere. The relevant angles in this trigonal geometry range 

from 105.18(13)° to 127.82(11)°. Intermolecular π···π interactions provide extended stability 

to this architecture. The parameters for these interactions may be found at the Appendix 

(Table S6.4). 

 

Figure 6.4. (left) Part of the one-dimensional framework in 32 along the b axis. H atoms are 

omitted for clarity. Colour code Ag (grey), C (black), N (light blue), O (red). (right) The 

structure of compound 33. H atoms are omitted for clarity. Colour code Ag (grey), C (black), 

N (light blue), O (red), F (green). 
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Finally, compound 34 crystallizes in the monoclinic P21/n space group and its asymmetric 

unit contains two AgI centres, two triflate anion molecules and one organic ligand as the L3T 

isomer. The conformation of the latter is similar to other compounds mentioned in this study, 

with the planes of the benzotriazole entities forming a very small angle of 12.18(12)°. 

However, the coordination mode varies in this case, as the benzotriazol-2-yl unit utilize both 

far nitrogen atoms to coordinate to two metal centres (Scheme 6.2, Mode J). The ligated 

triflates also play an important role in the resulting architecture as they bridge symmetry 

related [Ag2(L3T)2] nodes. This bridging leads to the formation of a two-dimensional sheet 

along the b0c plane (Figure 6.5) which is supported by argentophilic interactions between 

two symmetry-related AgI centres which are found at a distance of 3.1794(11) Å. Further 

support is provided by the formation of weak π···π interactions between aromatic rings as 

detailed in Table S6.5, Appendix. It is worth noting that each of the triflate units bridge the 

aforementioned nodes in a different way (Scheme 6.2, bottom middle and right). For the first 

triflate, each of the three oxygen atoms coordinate to different AgI ions, while the second 

anion employs only one oxygen atom for coordination, binding concurrently to the two AgI 

centres which participate in the argentophilic interaction. As a result of all the above, the two 

crystallographically independent metal centres of this compound possess a distorted trigonal 

bipyramidal (τ = 0.68164) coordination geometry, respectively. 

 

 

Figure 6.5. Part of the two-dimensional framework along the b0c plane in compound 34. H 

atoms are omitted for clarity. Color code Ag (grey), C (black), N (light blue), O (red), F 

(green), S (yellow). 
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Table 6.1. Structural summary of compounds 27-35 (M = Ag).  

Entry Compound Ligand in 

 Crystal Structure 

Coordination 

Environment of AgI 

Solvent 

Used 

Metal salt Dimensionality 

1 27 L1 

 

MeCN AgCF3CO2 2D 

2 28 L1T 

 

Me2CO AgCF3SO3 2D 

3 29 L2T 

 

Me2CO AgClO4 1D 

4 30 L2T 

 

Me2CO AgBF4 1D 

5 31 L3T 

 

Me2CO AgClO4 0D 

6 32 L3 

 

MeCN AgNO3 1D 

7 33 L3T 

 

Me2CO AgCF3CO2 0D 

8 34 L3T 

 

Me2CO AgCF3SO3 2D 

9 35 L3T 

 

Me2CO AgCF3CF2CO2 0D 
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Scheme 6.2. (Modes A-J) The coordination modes for all ligands that appear in compounds 

27-35. (bottom middle and right) The coordination modes of the triflate anions342 in 

compound 34. 

 

6.2.2. Synthetic aspects 

The chemistry used to afford 27-35 was similar to the one mentioned in the synthetic aspects 

of Chapters 2-5. The compounds were generated under the use of various metal:ligand ratios 

ranging from 2:1 to 1:2, in either acetone or acetonitrile and with diffusion or slow 

evaporation as the crystallization technique. In this case, no crystalline material was afforded 

through the use of higher temperatures. All synthetic experiments were performed in the 

absence of light (vials were covered with tin foil, then stored in a closed cupboard), although 

the resulting silver compounds do not appear to be light sensitive. 
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6.2.3. Characterization of Compounds 27 – 35 

TGA Studies 

TGA experiments to determine the thermal stability of 27-35 revealed similar outcomes, as 

in all cases the main (polymeric or dimeric) core retains its stability up to the region of ~220-

300°C, where gradual decomposition begins to take place. Complex 27 shows a gradual mass 

loss in the 50-250°C range which is due to the removal of trifluoroacetate entities (calcd.: 

20.45%, theor.: 20.18%). Almost immediately, the core is subjected to further gradual 

decomposition towards the final oxide (calcd.: 58.77%, theor.: 59.30%). In the case of 

complex 28, the first mass loss (9.59%) occurs from 50 to 114°C and corresponds to the loss 

of the acetone lattice molecule in good agreement (theoretical value: 8.87%). The remaining 

core is stable until 291°C, where it collapses towards gradual decomposition. In compound 

29, the main core retains its stability until 297°C where it is decomposed to Ag2O (calcd.: 

79.24%, theor.: 78.96%). Compound 30 remains relatively stable until the region of 285°C 

(as the Et2O molecule is lost before the TGA measurement begins) and the first mass loss 

corresponds to the collapse of the entire framework until decomposition (calcd.: 82.94%, 

theor.: 81.14%). Complex 31 shows very similar thermal stability, retaining its main core up 

to 285°C before eventual collapse. In compound 32, an initial mass loss of 11.60% occurs at 

approximately 273°C and finishes at 286°C, attributed to the loss of the nitrate anion (theor.: 

12.15%). Decomposition of the remaining framework takes place almost immediately 

(calcd.: 65.65%, theor.: 65.33%). The structure of 33 remains relatively stable up to the 

region of 215°C, where a large mass loss occurs (81.73%), attributed to the collapse of the 

framework with reasonable agreement (theor: 79.48%). In complex 34, there is initially a 

removal of the triflate anions (28.11% mass loss) from the framework which begins at 275°C 

and concludes at 310°C. Shortly after this point, the remaining structure collapses to eventual 

decomposition to silver oxide (calcd.: 54.58%, theor.: 55.59%). Finally, in compound 35 the 

first mass loss occurs until approximately 218°C and corresponds to the loss of the acetone 

lattice solvent molecule (calcd: 4.54%, theor: 5.96%). The second mass loss begins almost 

immediately (at the region of 220°C) and is owed to the collapse of the remaining compound 

up to decomposition (82.16% mass loss) with satisfactory agreement to the theoretical value 

(84.26%). The respective TGA graphs are presented in the Appendix (Figures S6.13-S6.21). 
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Solution Studies 

Electrospray ionization mass spectrometry (ESI-MS) in methanolic solution was also 

performed for compounds 27-35. As in the case of the cobalt and copper compounds in this 

thesis, the resulting spectra are very similar for all complexes, with two peaks at 447.05 and 

789.20 m/z which correspond to the relevant [Ag(L)]+ and [Ag(L)2]
+ fragments. These are 

the main peaks of all compounds with the exception of complex 32; in this case, the main 

peaks correspond to ligand-based fragments and the aforementioned Ag-containing peaks are 

found in very low intensity, indicating that the polymer may not be so stable in solution. 

Several of the remaining compounds present additional peaks and the most common 

fragment is [Ag2(L)2X]+, where X is the relevant anion in each case. Other peaks that are 

present in some compounds correspond perfectly to the [Ag(L)3]
+, [Ag2(L)3X]+, 

[Ag3(L)2X2]
+ and [Ag(L)3X2]

+ fragments. All spectra are presented in the Appendix (Figures 

S6.22-S6.30) along with a detailed analysis of the fragments.  

 

Isomerism effect and NMR studies 

The tautomerism of heterocycles343,344 is a very common phenomenon that has been 

extensively studied for several decades. Related reports345–349 focusing specifically on 

benzotriazole and its derivatives began surfacing especially after the 1980s, including studies 

on relevant metal complexes279,350–353. Multiple efforts have documented that several types 

of substituted benzotriazole derivatives exist in solution as an equilibrium mixture of the 

corresponding 1- and 2-isomers273,274,354,355. Some of these cases include N-arylmethyl-275, 

N-(aminomethyl)-276,278, N-(alkoxyalkyl)-356 and N-(alkylthioalkyl)- or N-(arylthioalkyl)-

benzotriazoles357. It has been shown343,346,354 that the main parameters that affect the position 

of this equilibrium are i) solvent polarity, as a more polar solvent shifts the equilibrium 

towards the more polar 1-isomer, ii) temperature, as benzotriazole has been found to be stable 

as the 2-isomer in gas phase, and iii) the nature of the substituent, as the ratio of the 2-isomer 

increases in equilibrium when the bulkiness of the substituent is also increased.  

 

Interestingly, a search in the literature reveals no similar investigations for bis-benzotriazole 

substituted compounds. The first example of such phenomena was observed in the CuI-based 

compound 26, presented in Chapter 5. Moreover, the current Chapter contains several 
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compounds with both isomer forms in three different bis-benzotriazole ligands, while the 

presence of AgI allows for possible NMR studies. Therefore, this provided an excellent 

opportunity to shed more light into this isomerism effect. The sole reported AgI compound 

with these ligands in the literature is a dimeric [Ag2(L2)3]·(NO3)2·(MeCN) compound as 

described by O’Keefe and Steel151, in which only the 1,1-isomer form of L2 is present in the 

crystal structure; unfortunately, no NMR studies were performed for the compound in that 

report. 

 

To initiate these investigations, purity during the synthesis was established by employing 

crystals of the 1,1-isomer form for ligands L1-L3. Crystals of compounds 27-35 were then 

characterized with 1HNMR in deuterated DMSO, as none of the complexes was soluble in 

CDCl3. The obtained ppm shifts reveal interesting results: In general, the 1,1-isomer form 

exists almost solely (>99:1 ratio) in solution for compounds 27 and 32; this result is consistent 

with that determined in the crystal structure. Surprisingly, the corresponding 1,1-isomers 

were also obtained for compounds 28-30, despite the exclusive presence of the 1,2-isomers 

in their crystal structures. On the other hand, both 1,1- and 1,2- isomers are present in the 

solution form for complexes 31, 33, 34 and 35 with various ratios (1:1, 1:1, 2:1 and 1:1 

respectively). These results demonstrate that the 1,1- form is generally dominant in solution 

even in cases where the crystal structure does not contain this tautomer; however, the 

equilibrium may still move towards the 1,2-form in some cases. Having in mind that all NMR 

studies were performed under the same solvent and temperature conditions, it can be 

proposed that the main reason for the presence of the 1,2-isomer is the nature of the 

substitution. This hypothesis is consistent with the findings for compounds 31, 33-35 where 

the used substituent is increasing its bulky effect and the benzotriazole units are found in the 

ortho-position. From the crystal structure of these compounds it is evident that the ortho-

substitution accounts for larger steric effects compared to the para- and meta-substituted 

structures. Additional intermolecular π···π and argentophilic interactions are also present in 

these complexes, possibly hindering the equilibrium shift to the 1,1-form even further. 15N 

HMBC studies (Figures S6.40-S6.41, Appendix) were also performed for selected 

compounds 30 and 32. Both spectra show only a single resonance, originating from the -CH2 

linker, showing a 2JNH correlation to the pyrrole-like nitrogen of the triazole. The respective 
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15N chemical shifts (referenced to CH3NO2) at -155.99 (for 30) and -154.37 (for 32) ppm are 

also consistent with a pyrrole-like nitrogen, suggesting the existence of 1,1-isomer in both 

compounds.  

 

On the other hand, less clear conclusions may be drawn in regards to the parameters which 

promote the presence of the 1,2-isomer in the solid state. Synthetic conditions such as the 

temperature, metal:ligand ratio or crystallization method do not seem to have any noticeable 

effect. However, a correlation with the solvent choice and polarity during the initial synthesis 

may be observed, as all 1,1-based compounds were afforded in acetonitrile (μ = 3.92 D), 

while the use of the slightly less polar acetone (μ = 2.88 D) resulted only in 1,2-based 

compounds. Interestingly, this pattern is additionally supported by two more compounds 

synthesized during these experiments, which are not presented in detail due to very weak 

crystallographic data. Both of these compounds, formulated as [Ag(L2)(CF3CF2CO2)] and 

[Ag2(L2)3](ClO4)2 (Figures S6.2-S6.3, Appendix), were synthesized in acetonitrile and 

contain only the 1,1-isomer of the ligand. A comparison between the latter complex and 

compound [Ag(L2T)(ClO4)(Me2CO)] (29) show that the choice of solvent could indeed play 

an important role. Moreover, the [Ag2(L2)3]·(NO3)2·(MeCN) compound151 was also prepared 

through recrystallization in acetonitrile. However, this phenomenon is only consistent for AgI 

complexes, as several CuII and CoII compounds presented in previous Chapters did not 

exhibit similar behaviour. As such, more studies are required to fully comprehend this effect. 

 

6.2.4. Catalytic Studies in the A3 Coupling 

6.2.4.1. Benchmarking and Optimisation 

Initial investigations for the catalytic potential of 27-35 involved the employment of 

compounds in the multicomponent A3 coupling of benzaldehyde, pyrrolidine and 

phenylacetylene, performing an extensive screening of all related parameters as seen in Table 

6.2. All compounds proved to be ineffective in solvents such as water, DMF and DMSO 

(Table 6.2, entries 7 – 9, 23 – 25), however they provided low yields in the homogeneous 

catalysis of the reaction when other common organic solvents were used such as Toluene, 

THF, CH3CN, CH2Cl2 and CHCl3 (Table 6.2, entries 6, 10 – 13, 22, 26 – 29). In general, the 

highest yields were achieved through the use of polar alcoholic solvents and especially with 
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the environmentally friendly solvent249 2-propanol (iPrOH) when the reaction mixture was 

heated to 90oC for 12 hours. All compounds were found to catalyse the reaction under these 

conditions (Table 6.2, entries 4-5, 14-15, 19-21, 32-36); amongst these, the 1D CP 30 

afforded the corresponding product at excellent yields of 94%, with very low loadings of 0.5 

mol% used (TON = 188 and TOF = 15.7 hr-1, calculated with the ratio of product mol/catalyst 

mol). 

 

Table 6.2. Optimization of the conditions for the synthesis of propargylamines. 

 

Entry Catalyst (mol%)a Solvent Yield (%)b TON TOF (hr-1) 

1 27 (2) MeOH trace - - 

2 27 (2) EtOH 18 9 0.8 

3 27 (2) iPrOH 28 14 1.2 

4 27 (2) iPrOHc 85 43 3.6 

5 27 (0.5) iPrOHc 83 166 13.8 

6 27 (2) Toluene 14 7 0.6 

7 27 (2) H2O NRd - - 

8 27 (2) DMF NRd - - 

9 27 (2) DMSO NRd - - 

10 27 (2) THF 10 5 0.4 

11 27 (2) MeCN 13 7 0.6 

12 27 (2) CH2Cl2 11 6 0.5 

13 27 (2) CHCl3 14 7 0.6 

14 28 (0.5) iPrOHc 81 162 13.5 

15 29 (0.5) iPrOHc 88 176 14.7 

16 30 (2) MeOH <10 - - 
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17 30 (2) EtOH 16 8 0.7 

18 30 (2) iPrOH 29 15 1.3 

19 30 (2) iPrOHc 95 48 4 

20 30 (1) iPrOHc 94 94 7.8 

21 30 (0.5) iPrOHc 94 188 15.7 

22 30 (2) Toluene 18 9 0.8 

23 30 (2) H2O NRd - - 

24 30 (2) DMF NRd - - 

25 30 (2) DMSO NRd - - 

26 30 (2) THF <10 - - 

27 30 (2) MeCN 11 6 0.5 

28 30 (2) CH2Cl2 15 8 0.7 

29 30 (2) CHCl3 16 8 0.7 

30 30 (0.5)e iPrOHc 63 126 21 

31 30 (0.5)f iPrOHc 94 188 7.8 

32 31 (0.5) iPrOHc 70 140 11.7 

33 32 (0.5) iPrOHc 81 162 13.5 

34 33 (0.5) iPrOHc 66 132 11 

35 34 (0.5) iPrOHc 71 142 11.8 

36 35 (0.5) iPrOHc 74 148 12.3 

37 No catalyst iPrOHc NRd - - 

a Reaction conditions: benzaldehyde (25 μL, 0.25 mmol), pyrrolidine (22 μL, 0.275 mmol), 

phenylacetylene (43 μL, 0.4 mmol), catalyst (mol% based on aldehyde amount), solvent (3 

ml), 12 hr stirring, air. b Relative yields based on 1H NMR analysis from the integration of 

the corresponding proton shifts. c T = 90oC. d No reaction. e under 6 hrs stirring. f under 24 

hrs stirring. 

 

To further evaluate the efficiency of 30, its performance was compared to the ones of all 

reported AgI sources that have been tested in the model reaction within the literature. This 
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search included simple salts, coordination polymers and coordination compounds (Table 

6.3). Notably, 30 emerges as a highly advantageous catalyst in many aspects, due to the 

resulting excellent yield and TOF value which outperforms many of the reported Ag sources 

(Table 6.3, entries 1-8). On the other hand, the stirring times in the case of 30 appear to be 

longer than those usually reported230,231,320,325,328,358. Despite this, the conditions of the 

proposed reaction system appear to be less harsh or tedious (e.g. no N2 atmosphere or 

environmentally unfriendly solvent is needed). Various AgI salts were also tested under the 

same conditions (Table 6.3, entries 10-15) showing slightly inferior performance, further 

indicating the superiority of 30. 

 

Table 6.3. Comparison of the performances of all reported AgI sources for the A3 coupling 

of benzaldehyde, pyrrolidine and phenylacetylene. 

Entry Catalyst (mol%) Conditions Yield (%) TON TOF (hr-1) Reference 

1 AgI (3) H2O, 100oC, N2, 2 h 95 31.7 15.8 230 

2 (NHC)Ag(OAc) (3) MeOH, 25oC, 3 h, air 88 29.3 9.8 358 

3 [Ag(bpa)(NO3)CH3CN] (2) DCM, 5h, 60oC, N2 96 48 9.6 325 

4 [Ag(bpa)NO3] (0.5) DCM, 5h, 60oC, N2 95 190 38 325 

5 [Ag(psmb)NO3] (2) DMSO, 3h, 60oC, air 93 46.5 15.5 320 

6 [Ag(psemb)NO3] (2) DMSO, 3h, 60oC, air 94 47 15.7 320 

7 [Ag(Pc-L)]·OTf- (3) Toluene, 150oC, mW, 10 min 96 32 192 328 

8 [Ag(bdob)(NO3)] (1.9) CHCl3, 12 h, air, rt 68 35.8 3.0 231 

9 30 (0.5) iPrOH, 90oC, air, 12 hr 94 188 15.7 This work 

10 AgClO4 (0.5) iPrOH, 90oC, air, 12 hr 88 176 14.7 This work 

11 AgOTf (0.5) iPrOH, 90oC, air, 12 hr 84 168 14 This work 

12 AgNO3 (0.5) iPrOH, 90oC, air, 12 hr 91 182 15.2 This work 

13 AgCF3CO2 (0.5) iPrOH, 90oC, air, 12 hr 89 178 14.8 This work 

14 AgBF4 (0.5) iPrOH, 90oC, air, 12 hr 85 170 14.2 This work 

15 AgCF3CF2CO2 (0.5) iPrOH, 90oC, air, 12 hr 83 166 13.8 This work 
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bpa = 4,5-bis(phenylthiomethyl)acridine, psmb = 1‐phenylsulfanylmethyl‐1H‐benzotriazole, psemb 

= 1‐phenylselenylmethyl‐1H‐benzotriazole, Pc-L = 6-(Naphthalen-1-ylmethyl)-3,9-ditosyl-3,6,9,15- 

tetraazabicyclo[9,3,1]pentadeca-1(15),11,13-triene, bdob = 1,4-bis(4,5-dihydro-2-oxazolyl)benzene.  

 

6.2.4.2. Scope of Reaction 

Having determined the optimal efficiency, various aldehydes, amines and alkynes were 

coupled under the proposed conditions in order to explore the substrate scope of the system. 

The results are shown in Scheme 6.3. The effect of the aldehyde was first investigated, 

retaining pyrrolidine and phenylacetylene as the model substrates. In all cases the 

corresponding A3 products C6P1-C6P9 were formed in good to high isolated yields, 

however the substituted aromatic aldehydes show lower reactivity, allowing for more 

moderate (64-89%) yields and sometimes requiring higher catalyst loading. In contrast, 

saturated aliphatic aldehydes display excellent reactivity and provide very high (98-99%) 

yields, irrespective of whether the tested substrate is cyclic or linear. Having this in mind, 

amine screening proceeded by employing cyclohexylcarboxaldehyde and phenylacetylene as 

the remaining two model substrates. These tests showed that the proposed reaction system is 

ideal for secondary amines, as the resulting products are afforded in excellent yields of 93 to 

99% (C6P9-C6P15). There are seemingly no restrictions in the choice of secondary amine, 

as similar results were obtained for cyclic or linear aliphatic and aromatic substrates. 

However, this behaviour seems to be limited as no reaction was observed when primary 

amines were used (entries C6P16 and C6P17). Finally, in regards to the alkyne selection, the 

use of either phenylacetylene or 1-hexyne resulted to the corresponding propargylamines in 

excellent yields, C6P9 and C6P18 in 99% and 98%, respectively.  
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Scheme 6.3. Catalytic activity of 30 in the A3 coupling between various aldehydes, amines 

and alkynes towards propargylamine synthesis. 

 

6.2.4.3. Mechanistic Insights 

A possible mechanism for this multicomponent coupling on the basis of many reported 

proposals (including the findings in Chapter 4) is presented in Scheme 6.4. It involves the 

activation of the alkyne by the silver catalyst to form a metal-acetylide π-complex 

intermediate. Concurrently, the addition of aldehyde and amine results to the generation of 

an iminium ion in situ; the hydroxyl anions produced during the formation of this species 

might also assist in the abstraction of the acetylenic proton. In the last step of the catalytic 

cycle the AgI-acetylide is added to this iminium ion to produce the corresponding 

propargylamine derivative and water, as the catalyst is regenerated. It is envisioned that the 

formation of the metal-acetylide intermediate could also be influenced by the coordination 

and geometric characteristics of the catalytic precursors; both compounds 29 and 30, which 

resulted in the highest yields in the control experiments, possess a trigonal {N2X} 

environment (CHN and TGA studies show that all other coordinating solvents contained are 

removed from the frameworks at slightly above room temperature) that provides adequate 

space and possibly promotes the coordination of the alkyne. The helix-like chain in 30, owed 

to the flexibility of the –CH2 linkers which leads to almost parallel conformation of the 

benzotriazole planes, accounts for further space between the AgI centres, with the Ag-Ag 
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distance measured at 10.3143(9) Å, the largest between these two complexes. It is also worth 

noting that the dimeric core compounds (31, 33 and 35) of the study resulted in lower yields 

in all cases. It can be therefore suggested that the use of polymeric precursors leads to the 

formation of the most catalytically active species and is essential for optimal efficiency in 

the reaction. 

 

 

Scheme 6.4. A plausible mechanism of the A3 coupling catalysed by 30. 

 

6.2.5. Catalytic Studies in the Hydration of Alkynes 

6.2.5.1. Benchmarking and Optimisation 

The selective hydration of alkynes is an important transformation in organic chemistry. When 

Markovnikov’s rule is followed, the reaction leads to the formation of ketones, which are 

very important due to their abundance in natural products and their extensive use as building 
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blocks in organic synthesis. For the initial experiments, 30 was used towards the hydration 

of phenylacetylene in various solvent/water systems in a 10/1 ratio. The outcomes of these 

screenings are shown in Table 6.4. Notably, this procedure selectively affords the resulting 

acetophenone (C6K1) in an excellent 93% yield, when MeOH/H2O is used as the solvent 

system, under 90°C for 24 hours and 3 mol% catalyst loading, with TON = 31.0 and TOF = 

1.32 hr-1 (Table 6.4, entry 3). The presence of alcoholic media and temperature appears to be 

essential for the system (Table 6.4, entries 3, 5 and 8), as no product was afforded when the 

reaction took place at room temperature or in other solvents such as CH3CN and EtOAc 

(Table 6.4, entries 6 and 7). The other catalytic compounds 27-29 and 31-35 of this study 

were also examined in the reaction (Table 6.4, entries 9-16), providing lower yields. 

Compound 29 shows the best catalytic activity compared to the others, catalysing the reaction 

in an excellent 86% yield. This result further supports the above suggestions that the 

coordination characteristics of 29 and 30 promote the formation of the silver-acetylide 

intermediate. Interestingly, none of the dimeric compounds of the study afforded the 

corresponding ketone, as the only remaining compounds that promoted the reaction were the 

2D CPs 27, 28 and 34 with moderate to good yields (Table 6.4, entries 9, 10 and 15 

respectively). 

 

Table 6.4. Optimization experiments for the hydration of phenylacetylene to acetophenone. 

 

Entry Catalyst (mol%) Solvent Yield(%)a, b TON TOF (hr-1) 

1 30 (0.5) MeOH 66 22.0 0.92 

2 30 (1) MeOH 74 24.7 1.03 

3 30 (3) MeOH 93 31.0 1.32 

4 30 (3) MeOH NRc,d - - 

5 30 (3) EtOH 77 25.7 1.07 

6 30 (3) MeCN NRc - - 

7 30 (3) EtOAc NRc - - 
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8 30 (3) iPrOH 65 21.7 0.90 

9 27 (3) MeOH 44 14.7 0.61 

10 28 (3) MeOH 60 20.0 0.83 

11 29 (3) MeOH 86 28.7 1.20 

12 31 (3) MeOH NRc - - 

13 32 (3) MeOH NRc - - 

14 33 (3) MeOH NRc - - 

15 34 (3) MeOH 66 22.0 0.92 

16 35 (3) MeOH NRc - - 

a Relative yields based on 1H NMR analysis from the integration of the corresponding proton 

shifts. b Reaction conditions: phenylacetylene (121 μL, 1 mmol), catalyst, solvent (1.5 ml), 

H2O (150 μl), 90oC, 24 hr stirring, air. c No reaction. d At room temperature.  

 

6.2.5.2. Scope of Reaction 

The hydration of other terminal alkynes using 30 was also tested successfully (Scheme 6.5) 

under the optimal conditions. The presence of a methoxy- substituent in the initial alkyne 

does not appear to affect the reaction as the corresponding 4-methoxyacetophenone (C6K2) 

was produced in 94% yield. Furthermore, to evaluate the catalytic ability of this system with 

aliphatic alkynes the linear 1-hexyne was employed under the same conditions, forming the 

corresponding ketone in good conversions (C6K3, in 66% yield). 

 

 

Scheme 6.5. Catalytic activity of 30 in the hydration of alkynes to ketones. 
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6.2.5.3. Mechanistic Insights 

It is envisioned that the mechanism proceeds in a commonly proposed pathway (Scheme 6.6) 

in which the silver-acetylide species (A) is formed in the first step, possibly promoted by the 

coordination environment of the catalyst as well as the use of the protic solvent methanol. It 

is highly likely, by analogy with Belanzoni and Zuccaccia’s mechanistic studies on gold 

catalyzed hydration reactions359, that the ligand is facilitating the reaction through 

electrostatic interaction between water and the ligand(s) via hydrogen bonding to one of the 

Brønsted-basic nitrogens. This chelation directs H2O during the addition reaction to generate 

the enol intermediate (B) and the ligand can subsequently assist with the proton transfer from 

the newly formed oxonium. B then undergoes keto–enol tautomerism to produce (C) which 

subsequently undergoes proto-demetalation to generate the resulting ketone (D). Importantly, 

the best results are of great eco-friendly impact, with low catalyst loading and acid-free 

conditions, and requiring environmentally-benign methanol as solvent. 

 

 

Scheme 6.6. A plausible mechanism of the hydration of alkynes catalysed by 30. 
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6.3. Conclusion 

In this study, attempts have been made to combine the rich chemistry and coordination 

capabilities of AgI ions with a series of semi-rigid benzotriazole-based ligands L1-L3. The 

resulting compounds 27-35 exhibit a large structural diversity that includes a range of 0D 

dimers and 1D / 2D coordination polymers with interesting topological features and 

architectures as well as peculiar isomerism effects observed. An important factor for the 

variety in these coordination networks is owed to the flexibility of the ligands, which 

accounts for multiple coordination modes. The complexes have also been investigated for 

their potential catalytic applications. Due to its structural nature and coordination 

characteristics, compound 30 serves as homogeneous catalyst in A3 coupling and alkyne 

hydration reactions, providing the respective propargylamines and ketones in generally 

excellent yields (up to 99 and 93% in each case) that are comparable or superior to the ones 

of other reported AgI-based catalysts. Both proposed reaction schemes include easy synthetic 

conditions and avoid the use of inert atmosphere or environmentally harsh solvents. 

Furthermore, the superior alkynophilicity of AgI compared to CuII makes 30 a favourable 

option against the relevant CuII-based coordination polymers with reported catalytic 

performance, as high yields are achieved with much lower catalyst loadings (0.5 mol% 

compared to 2 mol%). Encouraged by these results, future work will focus on using this 

structural information to expand the scope to additional N-containing flexible ligands with 

AgI sources and tune their coordination environment to optimize their application potential. 
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Chapter 7: Conclusions and Future Work 

 

7.1. Concluding Remarks 

The purpose of this Chapter is to summarize the results presented in Chapters 2-6 and 

contextualize them in regards to the aims of the thesis. The impact and limitations of this 

work, as well as future potential directions will also be discussed to bring the dissertation to 

a conclusion. 

 

Summary 

The main target of this thesis as outlined in Chapter 1 was the development of a system that 

generates low-dimensional CPs in order to study their potential properties in magnetism and 

catalysis. Most results were produced using the benzotriazole-based semi-rigid ligands L1-

L3; N-based ligands L4-L8, based on other heterocyclic units, were also employed to yield 

the corresponding isostructural compounds, providing very useful structural information and 

allowing for the optimization of the system’s catalytic behaviour. In total, 35 main 

compounds were synthesized and characterized in detail across Chapters 2-6. All compounds 

presented low to no dimensionality, ranging from  dimers and tetramers, to 1D and 2D CPs. 

 

Chapter 2 reported the initial efforts of determining the potential of L1-L3 in such purposes 

using CoII sources and served as an introduction to the ligands’ coordination capabilities. The 

ten novel compounds presented (1-10) revealed the diversity of this system, showing that 

manipulation of the resulting product and its dimensionality is possible through careful ratio 

(e.g. compounds 7 - 9) or temperature (e.g. 1 and 2, 3 and 4) adjustments. These findings 

demonstrated the suitability of this ligand system, especially L2 and L3, for the generation of 

low-dimensional CPs in high yields and through easy synthetic methods. Apart from these 

structural studies, the magnetic properties of selected compounds 4, 7 and 9, show 

considerable differences despite only minor variations in the coordination environment and 

the metal geometry. 

 

Chapters 3-5 embarked on the development of a system of catalysts mainly based on the 

ortho-substituted L3 linker and CuII salts. This system was then optimized and evaluated from 
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an inorganic chemistry approach. Several new compounds (11-26) were synthesized and 

characterized after extensive investigations and fine tuning. It was established that the use of 

L3 with CuII sources that contain traditionally non-coordinating anions generates isoskeletal 

1D CPs with a ribbon-like framework (11, 17, 18) in high yields, using an easy two step 

method and room temperature conditions. These compounds have a general formula of 

[CuII(L3)2(X)2] (where X = anion or solvent) and exhibit octahedral CuII centres that contain 

a symmetrical {N4} square plane with the nitrogen atoms belonging to L3 molecules. 

Additionally, CuII in these compounds can be quasireversibly reduced to CuI. Owed to these 

characteristics, 11 was found to homogeneously catalyse the one-pot synthesis of 

symmetrical 1,4-dihydropyridines using a previously unreported synthetic method. Good 

yields (up to 68%) of the resulting products are afforded in a protocol that employs mild 

conditions (methanol, reflux, air atmosphere) and low (2 mol%) catalyst loadings. Further 

fine-tuning of the catalyst led to compound 18, which was found to be an excellent 

homogeneous catalytic precursor for the multicomponent A3 coupling and the azide-alkyne 

“click” reaction to produce propargylamines and 1,2,3-triazoles respectively. Both reactions 

take place in alcoholic media do not require harsh conditions or tedious work-ups and 

generate excellent yields of the resulting products (almost quantitative in both reaction 

schemes). Additional diagnostic experiments using ligands L4-L8 showcased the superiority 

of the benzotriazole-based polymeric precursors in regards to the catalytic efficacy, while 

providing useful mechanistic evidences for the functionality of the system. 

 

Finally, Chapter 6 showcased attempts to explore the coordination potential of L1-L3 

combined with the diverse chemistry of AgI ions. The nine resulting compounds (27-35) 

show a large structural variety with diverse motifs, ligand conformations and coordination 

networks. An isomerism effect (L1T-L3T) is also observed in the benzotriazole unit when in 

solid state, however investigations showed that the 1,1-form is generally dominant in 

solution. The homogeneous catalytic activity of all compounds was also examined in the A3 

coupling reaction and the hydration of alkynes. In both of these transformations, compound 

30 was found to be the best catalytic precursor, providing excellent yields (up to 99 and 93% 

in each case) under relatively mild conditions and using low loadings (0.5 and 3 mol%). 
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Synthetic Aspects 

The development of a system with ease of chemistry was an especially important target in 

this thesis. It is felt that the efforts towards this direction were very successful, as all 35 

compounds were afforded using straightforward methods in air atmosphere and under non-

harsh conditions. The crystallization techniques involved liquid and vapour diffusion, slow 

evaporation or storage of the sample under room temperature, as well as heating of the 

sample; the harshest synthetic method involved solvothermal treatment of the mixture up to 

only 95 oC for less than a day. In general, the compounds are easily reproducible in a range 

of metal:ligand ratios (from 2:1 to 1:2) and bulk materials are afforded in good to excellent 

yields. 

 

Main ligands L1-L3 appear to be ideal for the generation of low-dimensional materials: during 

experiments in this work, multiple synthetic conditions using cobalt, copper or silver sources 

were tested, however the synthesis of 3D compounds could not be performed. Nevertheless, 

the formation of such networks under harsh solvothermal conditions or by using different 

solvents and/or bridging anions cannot be excluded, considering that there do not seem to be 

any steric effects from preventing this. The use of a secondary ligand could also be another 

method to induce dimensionality; the initial compounds, especially the ones forming dimeric 

and tetrameric 0D frameworks, could be then used as building blocks similarly to the 

examples mentioned in Chapter 1. Nevertheless, since this thesis only investigated the 

potential of L1-L3 as primary ligands, the resulting complexes clearly show that certain ligand 

conformations and topologies are promoted under most applied conditions, leading to 0D, 

1D and, under the presence of bridging anions, 2D structures. In addition, these architectures 

are further stabilized in some cases by various weak interactions. 

 

Additional N-containing ligands L4-L8 were also tested for comparison and diagnostic 

purposes. These linkers maintain the ortho-substitution of L3 and allow for studying the 

influence of phenomena such as second coordination sphere and steric effects, or enforce the 

generation of analogous non-polymeric structures. The results showed that the added steric 

effects in L4 and L5 promote the synthesis of dimeric structures which are unstable in solution 

(as shown by UV-Vis and CV studies), making these ligands unsuitable for generation of 
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stable CPs. On the other hand, ligands L6-L7 behave much more similar to L3, providing 

similar 1D polymeric frameworks. However, due to second coordination sphere effect these 

compounds showed inferior activity compared to the benzotriazole analogue. In addition, L6 

and L7 have been extensively used in the literature with cobalt, copper and silver sources and 

therefore do not show much novelty. For these reasons, their use was limited to tuning and 

optimization purposes.  

 

The above remarks confirm that L1-L3 were an excellent choice for the synthesis of the 

targeted materials for this thesis. Despite this, the potential isomerization phenomena make 

their behaviour more unpredictable; this could also explain why bis(benzotriazole) ligands 

have been seldom used in the literature compared to their imidazole/benzimidazole 

counterparts. Chapter 6 detailed initial efforts to understand these effects during the synthesis 

of coordination compounds, however more studies should ensue to provide more accurate 

conclusions.      

 

Characterisation 

A range of characterisation techniques were employed to fully determine the nature of the 

synthesized materials in solid state and in solution. In regards to the solid state methods, large 

efforts were made to generate crystalline material for all related ligands and compounds 

wherever that was possible. Apart from establishing purity, this process was essential since 

the study and optimization of magnetic and catalytic properties of the compounds was often 

dependant on specific coordination characteristics such as geometry and environment. As a 

result, the use of single-crystal X-Ray diffraction proved critical in the determination of these 

features. Other characterisation methods (powder diffraction, elemental analysis and FT-IR) 

were also used to confirm the structure of the bulk material, while the thermal stability of the 

compounds was identified through TGA measurements. 

  

Determining the behaviour of the compounds in the solution was a more complex task. The 

ESI-MS spectra of 1-35 displayed several peaks that corresponded to various metal-ligand 

and metal-ligand-anion fragments. This indicated that the compounds may retain their 

identity in solution, although more investigations were required to provide conclusive proof, 
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especially for the coordination polymers that were used in the subsequent catalytic studies. 

For this reason, EPR and UV-Vis studies on selected CuII based CPs were additionally 

performed, providing the required information. On the other hand, the nature of the AgI 

compounds was examined through 1H NMR studies, which also allowed for the investigation 

of the ligand isomerization phenomena. Finally, CV studies were also performed on selected 

CuII compounds to determine their suitability as catalysts in reactions that involve redox 

processes. 

 

Impact and System Limitations 

Apart from meeting the aims of this thesis, it is felt that several of the results have notably 

contributed to the scientific literature. In regards to the originality of the ligand system, the 

chosen linkers L1-L3 based on benzotriazole had been largely untested in coordination 

chemistry up to this point, in contrast to their benzimidazole and imidazole counterparts. As 

shown in Chapter 1, the existing literature on bis(benzotriazole) ligands only included the 

use of alkyl chain spacer groups between the benzotriazole units, while the resulting 

compounds were mostly examined for their structural features. Instead, the current ligand 

system introduced the semi-rigid -CH2-C6H4-CH2- backbone which proved to be crucial to 

the control and manipulation of the resulting compounds, as well as the formation of various 

weak interactions which stabilized the afforded architectures. In addition, while several 

studies have focused on the isomerization phenomena of benzotriazole derivatives, this thesis 

presents the first relevant results in the topic of bis(benzotriazole) molecules. Finally, the 

novelty factor was also evident for ligands L4 and L5, with compounds 20 and 21 being the 

first reported examples of using these linkers in coordination chemistry.  

 

The crystal engineering and structural studies in the afforded compounds provided an 

interesting insight on the capabilities of this system. However, the biggest impact was 

undoubtedly made during the inspection of their potential properties. The results in Chapter 

2 presented a systematic investigation of carefully selected compounds, showcasing the 

importance of structure dimensionality, coordination environment and metal geometry in the 

ensuing magnetic properties. This study was also reported in the journal Crystal Growth and 

Design.  
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The studies detailed in Chapters 3-6 successfully demonstrated the use of various 1D CPs as 

catalysts in a series of organic transformations; the catalytic system was developed, 

optimized and evaluated through an “inorganic approach” that involved tuning of several 

coordination parameters in order to obtain important mechanistic information. It is felt that 

these results add an extensive amount of novel scientific input in the currently underutilized 

(as discussed in Chapter 1) field of 1D CPs in catalysis. In addition to the diagnostic research 

and novel approaches presented in these Chapters, the catalytic results and protocols in each 

case provide further scientific contribution of importance: Chapter 3 introduces a previously 

unreported method in the synthesis of 1,4-DHPs, molecules with extensive use in biology 

and pharmacology, under a protocol that includes low catalyst loadings and non-harsh 

conditions. Chapter 4 contains the first report of 1D CuII CPs as catalysts in the A3 coupling 

to generate propargylamines in excellent yields. Chapter 5 reports the use of a CuII 1D 

polymeric precursor with very good activity in the CuI-catalysed click reaction; the 1,2,3-

triazole products are afforded without the need of a reducing agent and are molecules of great 

importance in biological applications. Finally, Chapter 6 includes the first case of a AgI 

coordination compound used as a catalyst in the hydration of alkynes. It is worth noting that, 

in all these cases, the catalytic behaviour of the CPs was found to be superior to the one of 

the relevant metal salts under the same conditions. These studies were also reported in the 

journals Advanced Synthesis and Catalysis, Inorganic Chemistry, Dalton Transactions and 

Crystal Growth and Design, respectively. 

 

While these results are certainly encouraging, the system presents some notable limitations 

which will need to be overcome in the future. The isomerization observed in benzotriazole-

based ligand systems present additional difficulties in regards to ease of chemistry and 

determination of behaviour in solution. These phenomena are more extensive in 

bis(benzotriazole) linkers and created eventual hindrances in the determination of the active 

species during catalytic studies with copper and silver. Further limitations may also be 

identified in the catalytic system; while the relevant results in this thesis were very promising, 

all active CPs required increased temperatures, did not operate under the presence of aqueous 

media and only showed homogeneous catalytic behaviour.  
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Nevertheless, it is hoped that the contributions of this thesis will encourage efforts towards a 

more systematic design and study of low-dimensional materials beyond the realms of 

structural reports, in order to exploit their unique features and untap their potential in other 

interesting fields. In particular, the catalytic studies of 1D CPs in this thesis revealed an 

intriguing system which provided invaluable information while bridging the fields of 

Inorganic Chemistry, Organic Chemistry and Catalysis. It is therefore felt that this is a 

research topic that should definitely be more explored in the future. 

 

7.2. Future Work 

The following work on CPs with these N-containing ligands may be expanded into several 

directions. Since the magnetic properties of the CoII-based compounds were explored in 

detail, focus may be instead shifted on their possible catalytic activity. Such efforts could 

result in the addition of more compounds to the existing library of catalysts, while increasing 

the scope and knowledge on this system. An important characteristic of the respective CuII 

catalysts in Chapters 3-5 was the {N4O2} octahedral geometry in the metal centres, which 

contained a symmetrical square plane consisting of ligand nitrogen atoms. Looking back at 

the results of Chapter 2, it can be observed that such a coordination environment is promoted 

through the use of cobalt nitrate; notably, the L3-based complex 10 (Figure 7.1, upper) shows 

the same 1D framework seen in the main copper catalysts of this work. Preliminary synthetic 

efforts with the imidazole-based analogue L7 revealed that the same framework is once again 

promoted, generating a compound formulated as [Co(L7)2(H2O)2]·(NO3)2 (36, Figure 7.1, 

middle). As such, initial future efforts could involve CV voltammetry studies of 10 and 36, 

to determine the feasibility of a reversible redox process, and their employment as catalysts 

in relevant transformations. Other metals could also be employed in a similar fashion and 

provide the desired coordination characteristics; MnII-based compound [Mn(L3)2(NO3)2] (37, 

Figure 7.1, lower), also synthesized during these preliminary efforts, could be another 

candidate for these purposes. 
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Figure 7.1. The architectures in 1D CPs 10 (upper) 36 (middle) and 37 (lower). Certain anion 

molecules and H atoms have been omitted for clarity. Colour code: Co (dark blue), Mn 

(maroon), C (black), H (light pink), N (light blue), O (red). 
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In regards to the copper catalysts of this study, an important aspect of future research should 

be the heterogenization of the catalyst, which would allow for its collection and reuse. Such 

a process would make this library of catalysts much more attractive for industrial purposes. 

Furthermore, the catalytic activity of these compounds could be tested in additional organic 

transformations which would broaden the scope of the system and reveal further mechanistic 

details. C-C coupling reactions that involve the formation of a CuI-acetylide intermediate 

could be explored, such as the Sonogashira reaction (Scheme 7.1) or the Glaser 

homocoupling (Scheme 7.2).  

 

 

Scheme 7.1. A general overview of the Sonogashira coupling reaction. 

 

 

Scheme 7.2. A general overview of the Glaser coupling reaction. 

 

Another direction where future efforts could be concentrated would be the introduction of 

enantioselectivity into the system. The behaviour of CuII compound 18 showed that the axial 

components (triflate oxygen atoms) of the octahedral centres may be easily replaced; similar 

observations were made for the AgI compound 30. Therefore, an enantioselective catalyst 

may be developed in the solid state or in situ with the addition of various aminoacids such as 

L-Alanine or L-Tyrosine.  

 

Finally, upcoming investigations could also expand on the N-based ligand design (Scheme 

7.3). Having determined the novelty and superiority of bis(benzotriazole) ligands over 

analogous linkers with other heterocyclic molecules, future research could further explore 

the effect of the backbone moiety. Various units, such as phthaloyl (L12), pyridine (L13), 2,6-

dimethylpyridine (L14), 4,4-biphenyl (L15), 9,10-dimethylanthracene (L16), 1,3,5-triethyl-

2,4,6-trimethylbenzene (L17) could drastically affect the resulting coordination compounds 

through parameters such as steric effects, potential interactions or additional coordination 
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sites. In turn, this could lead to entirely different behaviour and properties. Additionally, a 

more systematic study on the topic of benzotriazole-based ligands could also involve 

molecules not used in this thesis, such as benzotriazole-5-carboxylic acid, 5-

chlorobenzotriazole or the simpler 1,2,4-triazole (example ligands L9-L11)  

 

 

 

 

Scheme 7.3. Potential N-containing ligands to expand the scope of the current system. 
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Chapter 8: Experimental and Synthetic Details 

 

8.1. General Methods 

Materials  

Chemicals (reagent grade) were purchased from Sigma Aldrich, Acros Organics and Alfa 

Aesar. All experiments were performed under aerobic conditions using materials and 

solvents as received. Unless stated in their chemical formula, the metal salts used were 

anhydrous. Safety notes: Perchlorate salts and azides are potentially explosive; such 

compounds should be used in small quantities and handled with caution using the appropriate 

protection measures at all times. 

 

Instrumentation  

FT-IR. IR spectra of the samples were recorded over the range of 4000-650 or 600 cm-1 on 

a Perkin Elmer Spectrum One FT-IR spectrometer fitted with a UATR polarization 

accessory.  

ESI-MS. ESI-MS was performed on a VG Autospec Fissions instrument (EI at 70 eV).  

NMR. NMR spectra were measured on a Varian VNMRS solution-state spectrometer (at 

400, 500 or 600 MHz) at 30°C using residual isotopic solvent (DMSO-d5, δH= 2.50 ppm or 

CDCl3, δH= 7.26 ppm) as internal reference. Chemical shifts are quoted in parts per million 

(ppm). Coupling constants (J) are recorded in Hertz (Hz).  

TGA. TGA analysis was performed on a TA Instruments Q-50 model (TA, Surrey, UK) 

under nitrogen and at a scan rate of 10 °C/min.  

Powder diffraction. X-ray powder diffraction patterns were recorded at the University of 

Cyprus.  

UV-Vis. UV-Vis measurements were performed on a Thermo Scientific Evolution 300 UV-

Vis Spectrophotometer as indicated with quartz cuvettes and the collected data were 

processed using the Vision Pro software. 

Cyclic Voltammetry. Chapter 4: Cyclic voltammetry studies were performed using a BASi-

Epsilon potentiostat under computer control. IR drop was compensated using the feedback 

method. Cyclic voltammetry experiments were performed using a three-electrode 

configuration with glassy carbon disc (7.0 mm2) as the working electrode, a Pt wire as the 
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counter electrode and Ag wire as the pseudoreference electrode. Sample solutions were 

prepared by dissolving the analyte (ca. 5 mM) in DMSO (1 ml) followed by addition of 0.05 

M of the supporting electrolyte [nBu4N][PF6]. The reported half potentials are referenced to 

the FeCp2
+/0 redox couple, which was measured by adding ferrocene (ca. 1 mg) to the sample 

solution.  

Chapter 5: The cyclic voltammograms of the CuII complexes were obtained by means of a 

Metrohm VA 746 Trace Analyzer equipped with a 747 VA Stand driven by a common PC. 

All the measurements were carried out in DMF and DMSO (0.10 M TBAP was used as the 

supporting electrolyte). Argon gas was bubbled through the complex solutions again to 

ensure the absence of oxygen. In each case, the voltammogram of the ligand was registered 

and no peaks were found. The systems were analysed at 25°C with a three electrode 

assembly. During the experiments, the working electrode was glassy carbon (glassy carbon 

electrode: CHI104). The reference electrode was a Vycor tip Ag/AgCl electrode stored in 3 

M NaCl (BASI Instr. RE-5B, MF-2079), while the counter electrode was a platinum 

electrode (distributed by ALS Co., Japan). The concentration of the complexes was 1·10–3 M 

and the volume of the sample was 1 mL. Before each scan, the working electrode was treated 

with alumina paste (0.1 micron ordered from Buehler Company) and the surface was cleaned 

with the help of sandpaper. The electrochemical measuring system was calibrated with the 

[Fe(CN)6]
3–/[Fe(CN)6]

4– redox system. The redox potential was 0.462 V, which is in good 

agreement with the published redox potential (0.458 V360). The potential range was changed 

between +800 and –1200 mV. The voltammograms were recorded at 25, 100, 1000 mV/s 

sweep rates. For the analysis of the voltammograms, the CACYVO program was used which 

was provided by the distributor of the instrument. The half-wave potential (E1/2) values were 

calculated based on the following equation:  

E1/2 = 
2

papc EE 
 , where Epc and Epa are the cathodic and anodic peak potentials, respectively. 

Considering that E1/2 = E0, the E0 values throughout this work are referred to Normal 

Hydrogen Electrode (NHE), taking into account that E0
Ag/AgCl versus E0

NHE (water) is +209 mV 

at 25 °C. 

E0 = E1/2 + E0
Ag/AgCl 
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Magnetic studies. Magnetization data were measured on a Quantum Design MPMS-XL7 

SQUID magnetometer. Ground polycrystalline samples were restrained with eicosane in a 

gelatin capsule at the center of a straw and fixed to the sample rod. Susceptibility 

measurements were conducted upon cooling the sample in a magnetic field. 

Electron paramagnetic resonance. Chapter 2: EPR spectra were collected with a Bruker 

EMX spectrometer at X-band and Q-band, using liquid helium with an Oxford Instruments 

temperature controller. Chapter 5: 9 GHz continuous-wave X-band electron paramagnetic 

resonance (EPR) spectra were recorded on a Bruker Biospin EMX spectrometer with a 

Bruker ER4119HS resonator. The spectra were obtained with 2.2 mW microwave power and 

2G modulation under non-saturating conditions at 5K. Low temperature measurements were 

achieved using an Oxford Instruments ESR900 cryostat. The Easyspin361 software package 

was used for all simulations. 

X-Ray Crystallography. Data for L1, L4, L5, L7, L8, compounds 1, 3-15, 19, 22, 23, 27-31 

and 34 , dihydropyridine products C3D5 and C3D6 and triazole products C5T1 – C5T4 were 

collected (ω-scans) at the University of Sussex, using either a Rigaku 007HF rotating anode 

generator with CCD plate detector (for L1, 27, 28) or an Agilent Xcalibur Eos Gemini Ultra 

diffractometer with CCD plate detector (for the remaining molecules). Collection took place 

under a flow of nitrogen gas at 173(2) K for all compounds except 4 which was measured at 

293(2) K. Mo Kα (λ = 0.71073 Å) or Cu Kα radiation (λ = 1.54184 Å) were used. CRYSALIS 

CCD and RED software was used respectively for data collection and processing. Reflection 

intensities were corrected for absorption by the multi-scan method. Data for L3, compounds 

2, 16-18, 20, 24-26, 32, 33 and 35, and dihydropyridine products C3D4 and C3D13 were 

collected at the National Crystallography Service, University of Southampton.362 All 

structures were determined using Olex2363, solved using SHELXT364,365 and refined with 

SHELXL-2014366. All non-H atoms were refined with anisotropic thermal parameters, and 

H-atoms were introduced at calculated positions and allowed to ride on their carrier atoms. 

Compound 19 is isostructural to 18 (unit cell comparison) and its formula was confirmed by 

ESI-MS, TGA and CHN analysis, however the lattice OTf molecules were not possible to be 

refined with anisotropic parameters, therefore the SQUEEZE method was applied to remove 

them. Crystal data and structure refinement parameters are given in Chapter 9. For compound 

21, three different crystallographic datasets (University of Sussex, National Crystallography 
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Service, University of Southampton, Diamond Source) confirmed the synthesis of the 

proposed formula, also suggested from ESI-MS, TGA and CHN analysis. However, despite 

producing large block shaped green crystals, none of these datasets fulfilled the publication 

criteria, therefore the crystallographic parameters will not be reported. 

Geometric/crystallographic calculations were performed using PLATON367, Olex2363, and 

WINGX366 packages; graphics were prepared with Crystal Maker and MERCURY368.  

 

 

8.2. Ligand Synthesis 

Supporting Figures for 1H NMR, 13CNMR, FT-IR and ESI-MS may be found in the 

Appendix. 

 

Synthesis of 1,4-bis((1H-benzo[d][1,2,3]triazol-1-yl)methyl)benzene (L1) 

Benzotriazole (5.0 g, 42.0 mmol) was dissolved in acetone (50 mL) and then potassium 

carbonate (12.0 g, 86.2 mmol) and potassium iodide (0.50 g, 3.01 mmol) were added. After 

stirring for 30 min, solid α,α'-dichloro-p-xylene (3.5 g, 20.0 mmol) was added slowly. The 

mixture was refluxed for 1 h. After cooling, the solution was filtered and the filtrate 

evaporated to dryness to give a white solid product. The residue was recrystallized in 

methanol/water (1:1) to give a white crystalline material. NMR of the pure crystals revealed 

a mix of isomer forms; the peaks given here correspond to the main (1,1-) isomer. Yield: 

63%. Selected IR peaks (cm-1): 3065 (w), 3033 (w), 1940 (w), 1615 (m), 1564 (m), 1495 (m), 

1455 (m), 1410 (m), 1322 (m), 1312 (m), 1272 (m), 1222 (m), 1150 (m), 1085 (w), 1050 (w), 

1000 (m), 981 (w), 966 (m), 944 (m), 906 (m), 837 (m), 787 (m), 762 (m), 740 (s), 733 (s), 

696 (m), 667 (m). 1H NMR (500 MHz, DMSO-d6) δ 8.01 (d, J = 8.5 Hz, 2H), 7.80 (d, J = 

8.9 Hz, 2H), 7.52 – 7.48 (m, 2H), 7.44 – 7.31 (m, 6H), 5.94 (s, 4H). 13C NMR (126 MHz, 

DMSO-d6) δ 145.8, 144.3, 136.4, 135.5, 129.2, 129.1, 128.6, 128.5, 127.8, 126.9, 124.4, 

119.6, 118.2, 111.0, 59.5, 51.0. The results are in agreement to those in the literature369. 

HRMS for C20H17N6 [M + H]: theor. 341.1514 m/z, found 341.1503 m/z. 
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Synthesis of 1,3-bis((1H-benzo[d][1,2,3]triazol-1-yl)methyl)benzene (L2) 

L2
 was prepared by the same method and ratio as L1, using α,α'-dichloro-m-xylene (3.5 g, 

20.0 mmol) after stirring, then refluxing the mixture for 3 h. Yield: 74%. NMR of the pure 

crystals revealed a mix of isomer forms; the peaks given here correspond to the main (1,1-) 

isomer. Selected IR peaks (cm-1): 3067 (w), 3034 (w), 1940 (w), 1614 (m), 1588 (w), 1565 

(m), 1496 (m), 1453 (m), 1342 (w), 1310 (m), 1274 (m), 1226 (m), 1157 (m), 1105 (w), 1080 

(w), 1050 (w), 1000 (m), 981 (w), 954 (m), 850 (m), 780 (m), 739 (s), 702 (m), 665 (m). 1H 

NMR (500 MHz, DMSO-d6) δ 8.01 (d, J = 8.3 Hz, 2H), 7.70 (d, J = 9.1 Hz, 2H), 7.44 (t, J = 

7.6 Hz, 2H), 7.40 – 7.23 (m, 6H), 5.92 (s, 4H). 13C NMR (126 MHz, DMSO-d6) δ 145.4, 

136.5, 132.7, 129.4, 127.6, 127.4, 127.3, 124.1, 119.3, 110.6, 50.8. The results are in 

agreement to those in the literature370. HRMS for C20H16N6K [M + K]: theor. 379.1073 m/z, 

found 379.1063 m/z. 

 

Synthesis of 1,4-bis((1H-benzo[d][1,2,3]triazol-1-yl)methyl)benzene (L3) 

L3
 was prepared by the same method and ratio as L1, using α,α'-dichloro-o-xylene (3.5 g, 

20.0 mmol) after stirring, then refluxing the mixture for 2 h. Yield: 78%. NMR of the pure 

crystals revealed a mix of isomer forms; the peaks given here correspond to the main (1,1-) 

isomer. Selected IR peaks (cm-1): 3059 (w), 1961 (w), 1616 (m), 1563 (m), 1497 (m), 1451 

(m), 1389 (m), 1319 (m), 1297 (m), 1272 (m), 1227 (m), 1145 (m), 1098 (w), 1065 (w), 1001 

(m), 969 (m), 946 (m), 907 (m), 846 (m), 787 (m), 765 (m), 736 (s), 692 (m), 669 (m).1H 

NMR (DMSO-d6, 500 MHz, ppm): δ 5.98 – 5.90 (m, 4H), 7.44 – 7.28 (m, 7H), 7.54 – 7.45 

(m, 1H), 7.85 – 7.70 (m, 1H), 7.88 (m, 2H), 8.03 (d, J = 8.3 Hz, 1H). 13C NMR (126 MHz, 

DMSO-d6): δ 134.4, 129.1, 129.0, 128.1, 128.0, 127.1, 124.6, 124.6, 119.8, 118.3, 111.1, 

48.8. HRMS for C20H17N6 [M + H]: theor. 341.1514 m/z, found 341.1506 m/z. 

 

Synthesis of 1-(2-((5-methyl-1H-benzo[d][1,2,3]triazol-1-yl)methyl)benzyl)-5-methyl-

1H-benzo[d][1,2,3]triazole (L4) 

5-methyl-1H-benzotriazole (2.796 g, 21.0 mmol) was dissolved in acetone (40 mL) and then 

potassium carbonate (6 g, 43 mmol) and potassium iodide (0.50 g, 3.01 mmol) were added. 

After stirring for 30 min, solid α,α'-dichloro-o-xylene (1.75 g, 10.0 mmol) was added slowly. 

The mixture was refluxed for 5 hrs. After cooling, the solution was filtered and the filtrate 
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was evaporated to dryness. The resulting colourless syrup was then dissolved in 20 ml 

methanol after which a white microcrystalline precipitate was formed. This was subsequently 

recrystallized in acetonitrile/water (1:1). Yield: 33% (1.2 g). Selected IR peaks (cm-1): 2972 

(w), 1624 (w), 1501 (m), 1455 (m), 1311 (w), 1278 (m), 1265 (w), 1222 (s), 1163 (w), 1135 

(w), 1117 (m), 1103 (m), 1075 (m), 1039 (w), 951 (m), 930 (m), 860 (m), 801 (s), 757 (s), 

740 (s), 722 (s), 693 (m), 664 (w), 616 (m). NMR of single crystals revealed a complicated 

spectrum due to the presence of multiple isomers. HRMS for C22H21N6 [M + H]: theor. 

369.1826 m/z, calcd. 369.1822 m/z. 

 

Synthesis of 1-(2-((5,6-dimethyl-1H-benzo[d][1,2,3]triazol-1-yl)methyl)benzyl)-5,6-

dimethyl-1H-benzo[d][1,2,3]triazole (L5) 

5,6-dimethyl-1H-benzotriazole monohydrate (1.3 g, 8 mmol) was dissolved in acetone (30 

mL) and then potassium carbonate (2.2 g, 16 mmol) and potassium iodide (0.50 g, 3.01 

mmol) were added. After stirring for 30 min, solid α,α'-dichloro-o-xylene (0.65 g, 3.75 mmol) 

was added slowly. The mixture was refluxed for 5 hrs. After cooling, the solution was filtered 

and the filtrate was evaporated to dryness after which a brown microcrystalline precipitate 

was formed. This precipitate was then was recrystallized in acetonitrile/water (1:1) to 

produce light brown crystals which were identified as [L5]·2H2O. Yield: 93% (1.38 g). 

Selected IR peaks (cm-1): 2974 (w), 1630 (w), 1493 (m), 1449 (m), 1372 (w), 1314 (w), 1284 

(m), 1259 (w), 1222 (s), 1158 (w), 1117 (m), 1102 (m), 1070 (m), 1049 (w), 1023 (w), 999 

(m), 934 (m), 846 (s), 784 (w), 746 (s), 718 (s), 685 (m), 664 (w), 606 (m). NMR of single 

crystals revealed a complicated spectrum due to the presence of multiple isomers. HRMS for 

C24H25N6 [M + H]: theor. 397.2141 m/z, calcd. 397.2135 m/z. 

 

Synthesis of 1-(2-((1H-benzo[d]imidazol-1-yl)methyl)benzyl)-1H-benzo[d]imidazole 

(L6) 

L6 was synthesized according to the literature method371 with slight modifications: To a 

solution of benzimidazole (3.0 g, 25 mmol) in DMF (50 ml) was added a solution of KOH 

(1.6 g, 25 mmol) in 20 ml H2O. After 20 minutes of stirring, a,a'-dichloro-o-xylene (2.19 g, 

12.5 mmol), was added slowly and the mixture was stirred under room temperature for 4 hrs. 

Then H2O (30 mL) was added to the reaction mixture, and stirring was continued for another 
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1 hr. The mixture was then filtered to provide L6 as a pale brown solid. Yield: 71% (2.98 g). 

1H NMR (500 MHz, CDCl3) δ 7.84 (d, J = 8.0 Hz, 2H), 7.77 (s, 2H), 7.35 – 7.21 (m, 6H), 

7.12 (d, J = 8.0 Hz, 2H), 7.06 – 7.03 (m, 2H), 5.28 (s, 4H). 13C NMR (126 MHz, CDCl3) δ 

143.8, 142.8, 133.7, 132.9, 129.4, 129.0, 123.5, 122.7, 120.7, 109.7, 46.3. Selected IR peaks 

(cm-1): 3087 (w), 1615 (w), 1496 (m), 1458 (w), 1428 (w), 1402 (w), 1393 (w), 1385 (w), 

1366 (w), 1317 (w), 1287 (m) 1265 (m), 1230 (w), 1201 (s), 1006 (w), 963 (w), 937 (w), 891 

(m), 866 (w), 849 (w), 771 (m), 733 (s), 645 (w), 631 (w), 619 (m). HRMS for C22H19N4 [M 

+ H]: theor. 339.1604 m/z, found 339.1611 m/z. 

 

Synthesis of 1-(2-((1H-imidazol-1-yl)methyl)benzyl)-1H-imidazole (L7)  

L7 was synthesized according to the literature method372 with slight modifications: a solution 

containing imidazole (3.16 g, 46.4 mmol) and α,α′-dichloro-o-xylene (0.78 g, 4.46 mmol) in 

methanol (50 mL) was heated under reflux for 20 hrs. After cooling, the solvent was 

evaporated to give a yellow syrup, which was then dissolved in 80 ml aqueous potassium 

carbonate (6.13 g). The resulting solution was left undisturbed to produce large crystals 

which were identified as [L7]·2H2O. Yield: 1.0 g (82%). 1H NMR (500 MHz, CDCl3) δ 7.43 

(s, 2H), 7.36 (dd, J = 5.7, 3.4 Hz, 2H), 7.09 (s, 2H), 7.07 (dd, J = 5.7, 3.4 Hz, 2H), 6.78 (s, 

2H), 5.01 (s, 4H). 13C NMR (126 MHz, CDCl3) δ 137.3, 133.7, 130.1, 129.4, 119.2, 117.7, 

48.1. HRMS for C14H15N4 [M + H]: theor. 239.1291 m/z, found 239.1290 m/z. 

 

Synthesis of 1-benzyl-1H-benzo[d][1,2,3]triazole (L8) 

Benzotriazole (2.4 g, 20.0 mmol) was dissolved in acetone (50 mL) and then potassium 

carbonate (6.0 g, 43.0 mmol) and potassium iodide (0.25 g, 1.5 mmol) were added. After 

stirring for 30 min, benzyl chloride (2.3 ml, 20.0 mmol) was added slowly. The mixture was 

refluxed for 1 h. After cooling, the solution was filtered and the filtrate evaporated to dryness 

to give a colourless crystalline material. Yield: 71%. Selected IR peaks (cm-1): 3362 (br), 

1615 (w), 1582 (w), 1497 (w), 1449 (w), 1274 (m), 1222 (s), 1170 (s), 1025 (s), 931 (w), 791 

(m), 747 (m), 698 (w), 632 (m). 1H NMR (600 MHz, CDCl3) δ 8.08 (d, J = 8.3 Hz, 1H), 7.42 

– 7.26 (m, 8H), 5.85 (s, 2H). 13C NMR (151 MHz, CDCl3) δ 145.9, 134.7, 129.0, 128.4, 

127.6, 127.4, 123.9, 120.1, 109.7, 77.2, 77.0, 76.8, 52.3. The results are in agreement to those 
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in the literature373. HRMS for C13H11N3K [M + K]: theor. 248.0590 m/z, found 248.0584 

m/z. 

 

 

8.3. Synthesis of Coordination Compounds 1-35 

 

Synthesis of [Co2(L1)2Cl4]·2MeCN (1).  

Method 1: 0.12 mmol (0.041 g) of L1 were dissolved in 10 ml MeCN while stirring to produce 

a colourless solution. A solution containing 0.12 mmol (0.016 g) of anhydrous CoCl2 in 

MeCN (7.5 ml) was slowly added. The resulting dark blue solution was filtrated, then layered 

over 10 ml of Et2O. Blue prismatic crystals were obtained after 2 days. Selected IR peaks 

(cm-1): 2996 (w), 1595 (w), 1493 (w), 1456 (m), 1439 (w), 1315 (m), 1278 (w), 1226 (m), 

1167 (w), 1142 (w), 1104 (w), 1003 (w), 954 (w), 850 (w), 782 (m), 749 (s), 669 (m). Yield: 

20% (based on Co). Elemental analysis (%) for C44H38Cl4Co2N14: C 51.69, H 3.75, N 19.17; 

found C 51.70, H 3.82, N 19.13. Alternative Methods: 1 may also be prepared by the same 

method as above but using either a 2:1 or 1:2 metal:ligand (M:L) ratio.  

 

Synthesis of Co2(L1)2Br4 (2).  

Method 1: 0.12 mmol (0.041 g) of L1 were dissolved in 10 ml Me2CO while stirring to 

produce a colourless solution. A solution containing 0.12 mmol (0.027 g) of anhydrous CoBr2 

in Me2CO (7.5 ml) was slowly added. The resulting blue solution was stirred for 45 minutes, 

while heated to 50°C. After the solution was left to cool, it was filtrated and then carefully 

layered over 10 ml of Et2O. Blue needles were obtained after 2 days. Selected IR peaks (cm-

1): 3033 (w), 1591 (w), 1495 (w), 1455 (m), 1430 (w), 1313 (m), 1283 (w), 1225 (m), 1180 

(w), 1139 (w), 1109 (w), 1002 (w), 963 (w), 836 (w), 772 (m), 734 (s), 669 (m). Yield: 14% 

(based on Co). Elemental analysis (%) for C40H32Br4Co2N12: C 42.97, H 2.88, N 15.03; found 

C 42.99, H 2.92, N 14.93. Alternative Methods: 2 is also obtained by performing the same 

reaction in a 2:1 M:L ratio. It may also be prepared in a similar fashion using MeCN instead 

of Me2CO. 
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Synthesis of [Co(L2)Cl2]·MeCN (3). Method 1: 0.12 mmol (0.041 g) of L2 were dissolved 

in 10 ml MeCN while stirring to produce a colourless solution. A solution containing 0.24 

mmol (0.032 g) of anhydrous CoCl2 in MeCN (7.5 ml) was slowly added. The resulting dark 

blue solution was filtrated, then subjected to slow evaporation. Blue block crystals were 

obtained 1 day later. Selected IR peaks (cm-1): 2986 (w), 1592 (w), 1492 (w), 1454 (m), 1315 

(m), 1279 (w), 1227 (m), 1167 (w), 1122 (m), 1004 (w), 982 (w), 849 (w), 768 (m), 743 (s), 

700 (m). Yield: 52% (based on Co). Elemental analysis (%) for C22H19Cl2CoN7: C 51.69, H 

3.75, N 19.17; found C 51.57, H 3.73, N 19.25. Method 2: The product may also be obtained 

performing a similar reaction in a 1:1 M:L ratio. 

 

Synthesis of [Co(L2)Cl2] (4). Method 1: 0.12 mmol (0.041 g) of L2 and 0.24 mmol (0.032 g) 

of anhydrous CoCl2 were dissolved in 12 ml MeCN while stirring to produce a blue solution. 

After a further 15 minutes of stirring, the solution was stored in a glass vessel and heated at 

75 °C for 18 hours to produce large blue block crystals. Method 2: 4 may also be obtained by 

a similar solvothermal reaction in a 1:1 M:L ratio, heating the solution at 100 °C for 3 days. 

Selected IR peaks (cm-1): 2990 (w), 1594 (w), 1493 (w), 1457 (m), 1314 (m), 1287 (w), 1229 

(m), 1167 (w), 1139 (w), 1124 (m), 1093 (w), 1003 (w), 982 (w), 851 (w), 823 (w), 768 (m), 

750 (s), 739 (s), 702 (m). Yield: 69% (based on Co). Elemental analysis (%) for 

C20H16Cl2CoN6: C 51.09, H 3.43, N 17.87; found C 50.97, H 3.53, N 17.75. 

 

Synthesis of [Co2(L2)2Br4]·2MeCN (5). 5 was prepared in the same solvent and crystallizing 

method as 3 (Methods 1, 2), using CoBr2 as the metal salt. Selected IR peaks (cm-1): 3055 

(w), 1594 (w), 1493 (w), 1456 (m), 1324 (m), 1283 (w), 1224 (m), 1170 (w), 1148 (m), 1002 

(w), 972 (w), 779 (m), 765 (m), 747 (s), 702 (m), 672 (m). Yield: 49% (based on Co). 

Elemental analysis (%) for C44H38Br4Co2N14: C 44.03, H 3.19, N 16.33; found C 43.90, H 

3.12, N 16.20. 

 

Synthesis of [Co(L2)2(NO3)2]·2MeCN (6). 0.12 mmol (0.041 g) of L2 and 0.36 mmol (0.105 

g) of Co(NO3)2·6H2O were dissolved in 8 ml MeCN while stirring to produce a pink solution. 

After a further 15 minutes of stirring, the solution was filtrated, then stored in a glass vessel 

and heated at 100 °C for 3 days to produce pink block crystals. Selected IR peaks (cm-1): 
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3038 (w), 1978 (w), 1612 (m), 1596 (m), 1497 (m), 1445 (m), 1370 (m), 1321 (m), 1298 (s), 

1226 (m), 1168 (m), 1145 (w), 1128 (m), 1028 (m), 1011 (w), 959 (m), 935 (w), 857 (m), 

817 (m), 760 (s), 743 (s), 701 (m), 670 (m). Yield: 22% (based on Co). Elemental analysis 

(%) for C44H38CoN16O6: C 55.88, H 4.05, N 23.69; found C 55.68, H 3.63, N 22.74. 

 

Synthesis of [Co2(L3)2Cl4]·2MeCN (7). Method 1: 7 was prepared in the same method, ratios 

and crystallization technique as 1, using L3 instead of L1. Blue prismatic crystals were 

obtained after 2 days. Method 2: 7 was also prepared using the same method and solvothermal 

conditions as 4 (Method 1), in a 1:1, 2:1 or 1:2 ratio, employing L3 instead of L2. Selected 

IR peaks (cm-1): 2974 (w), 2861 (w), 1593 (w), 1491 (w), 1455 (m), 1319 (m), 1285 (w), 

1228 (m), 1167 (w), 1151 (w), 1116 (m), 1094 (w), 1002 (w), 959 (w), 846 (w), 814 (w), 790 

(w), 765(m), 746 (s), 733 (s), 668 (m). Yield: 64% (based on Co). Elemental analysis (%) for 

C22H19Cl2CoN7: C 51.69, H 3.75, N 19.17; found C 49.70, H 3.64, N 17.07. This result 

corresponds to the loss of one acetonitrile molecule and the presence of one water molecule: 

C20H16CoN6(H2O): C 49.20, H 3.72, N 17.19. 

 

Synthesis of Co2(L3)2Cl4 (8). 0.12 mmol (0.041 g) of L3 and 0.36 mmol (0.048 g) of 

anhydrous CoCl2 were dissolved in 8 ml MeCN while stirring to produce a blue solution. 

After a further 15 minutes of stirring, the solution was filtrated, then stored in a glass vessel 

and heated at 75 °C for 18 hours to produce single crystal X-ray quality blue block crystals. 

Selected IR peaks (cm-1): 2983 (w), 1595 (w), 1497 (w), 1458 (m), 1433 (w), 1323 (m), 1282 

(w), 1226 (m), 1171 (w), 1151 (w), 1005 (w), 973 (w), 957 (w), 845 (w), 793 (m), 774 (m), 

742 (s), 705 (m), 667 (m). Yield: 60% (based on Co). Elemental analysis (%) for 

C40H32Cl4Co2N12: calcd. C 51.09, H 3.43, N 17.87; found C 51.19, H 3.46, N 17.99. 

 

Synthesis of Co2(L3)2Br4 (9). 9 was prepared in the same method, ratios and crystallization 

technique as 1, using anhydrous CoBr2 as the metal salt and L3 instead of L1. Blue prismatic 

crystals were obtained after 3 days. Selected IR peaks (cm-1): 3097 (w), 1591 (w), 1493 (w), 

1456 (m), 1329 (m), 1281 (w), 1230 (m), 1168 (w), 1143 (m), 1002 (w), 967 (w), 841 (w), 

792 (w), 780 (m), 767 (m), 742 (s), 712 (m), 669 (m). Yield: 60% (based on Co). Elemental 
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analysis (%) for C40H32Br4Co2N12: calcd. C 42.97, H 2.88, N 15.03; found C 42.89, H 2.82, 

N 14.95. 

 

Synthesis of Co(L3)2(NO3)2 (10). 10 was prepared in the same method and ratios as 1, using 

Co(NO3)2·6H2O as the metal salt and L3 instead of L1. The resulting light red solution was 

filtrated, then kept at a stored vial in room temperature. Pink needle-like crystals were 

obtained after 3 days. Selected IR peaks (cm-1): 3105 (w), 3081 (w), 1978 (w), 1611 (m), 

1592 (m), 1497 (m), 1436 (m), 1374 (m), 1320 (m), 1300 (m), 1279 (m), 1232 (m), 1167 (m), 

1145 (m), 1088 (w), 1028 (w), 1003 (m), 970 (m), 953 (m), 930 (w), 857 (m), 814 (m), 755 

(s), 741 (s), 711 (m), 669 (m). Yield: 42% (based on Co). Elemental analysis (%) for 

C40H32CoN14O6: C 55.63, H 3.73, N 22.70; found C 55.62, H 3.64, N 22.79. 

 

Synthesis of [CuII(L3)2(MeCN)2]·(ClO4)2·MeCN (11). 0.24 mmol (0.082 g) of L3 were 

dissolved in 10 ml MeCN while stirring to produce a colourless solution. A solution 

containing 0.48 mmol (0.178 g) of Cu(ClO4)2·6H2Oin MeCN (7.5 ml) was slowly added. 

The resulting green solution was filtrated, then kept stored in room temperature. High quality 

green crystals were obtained after 1 day. Selected IR peaks (cm-1): 3464 (br), 1646 (w), 1592 

(w), 1495 (w), 1457 (m), 1393 (w), 1319 (m), 1279 (m), 1230 (m), 1171 (m), 1073 (m), 1039 

(m), 969 (w), 851 (w), 778 (m), 739 (s), 671 (w), 623 (s). Yield: 49% (based on Cu). 

Elemental analysis (%) for C46H41Cl2CuN15O8: theor. C 51.82, H 3.88, N 19.70; found C 

52.02, H 3.88, N 19.78. 

 

Synthesis of [CuII(L3)(NO3)2]·MeCN (12). 0.12 mmol (0.041 g) of L3 were dissolved in 10 

ml MeCN while stirring to produce a colourless solution. A solution containing 0.12 mmol 

(0.027 g) of Cu(NO3)2·2.5H2Oin MeCN (7.5 ml) was slowly added. The resulting blue 

solution was filtrated, then layered over Et2O in a 1:2 ratio. Blue crystals were obtained after 

1 day. Selected IR peaks (cm-1): 3120 (w), 1594 (w), 1484 (s), 1454 (m), 1436 (w), 1367 (w), 

1320 (w), 1279 (s), 1236 (m), 1181 (w), 1166 (m), 1006 (m), 962 (w), 839 (w), 798 (w), 768 

(m), 757 (s), 741 (s), 669 (w). Yield: 14% (based on Cu). Elemental analysis (%) for 

C22H19CuN9O6: theor. C 46.45, H 3.37, N 22.15; found C 44.04, H 2.65, N 21.08. This result 
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corresponds to the loss of one acetonitrile molecule and the presence of one water molecule: 

C20H16CuN8·(H2O): C 44.03, H 3.32, N 20.55. 

 

Synthesis of [ZnII(L3)2(H2O)2]·(ClO4)2·2MeCN (13). 0.12 mmol (0.041 g) of L3 and 0.48 

mmol (0.180 g) of Zn(ClO4)2·6H2O were dissolved in 7.5 ml MeCN while stirring to produce 

a colourless solution. After filtration, the solution was then kept stored in room temperature. 

White crystals were obtained after 1 week. Selected IR peaks (cm-1): 3402 (br), 1645 (w), 

1589 (w), 1494 (w), 1453 (m), 1436 (w), 1317 (m), 1276 (m), 1231 (m), 1170 (m), 1100 (m), 

1046 (m), 959 (w), 850 (w), 739 (s), 712 (m), 670 (w), 624 (s). Yield: 19% (based on Zn). 

Elemental analysis (%) for C40H36Cl2N12O10Zn: theor. C 48.97, H 3.70, N 17.13; found C 

48.87, H 3.74, N 17.24. 

 

Synthesis of [CuII(L3)2Cl2]2 (14). 0.12 mmol (0.041 g) of L3 and 0.12 mmol (0.016 g) of 

anhydrous CuCl2 were dissolved in 8 ml MeCN while stirring to produce a yellow solution. 

After a further 15 minutes of stirring, the solution was filtrated, stored in a glass vessel and 

heated at 75 °C for 18 hours to produce large green block crystals. Selected IR peaks (cm-1): 

1590 (w), 1492 (w), 1455 (m), 1315 (m), 1290 (w), 1235 (w), 1145 (w), 1015 (w), 1006 (w), 

952 (m), 900 (w), 778 (m), 770 (m), 729 (s), 661 (m). Yield: 18% (based on Cu). Elemental 

analysis (%) for C40H32Cl4Cu2N12: calcd. C 50.74, H 3.41, N 17.76; found C 50.79, H 3.46, 

N 17.89. 

 

Synthesis of [CuII
5(L3)2Cl10] (15). 0.12 mmol (0.041 g) of L3 and 0.36 mmol (0.048 g) of 

anhydrous CuCl2 were dissolved in 8 ml MeCN while stirring to produce a yellow solution. 

After a further 15 minutes of stirring, the solution was filtrated, stored in a glass vessel and 

heated at 95 °C for 18 hours to produce good quality brown block crystals. Selected IR peaks 

(cm-1): 1589 (w), 1492 (w), 1452 (m), 1370 (w), 1331 (m), 1313 (w), 1278 (w), 1231 (m), 

1165 (w), 1144 (w), 1002 (w), 970 (w), 961 (w), 841(w), 792 (w), 779 (w), 752 (m), 738 (s), 

711 (m), 668 (m). Yield: 33% (based on Cu). Elemental analysis (%) for C40H32Cl10Cu5N12: 

calcd. C 35.70, H 2.40, N 12.50; found C 35.59, H 2.46, N 12.43. 
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Synthesis of [CuII
2(L3)4Br2]·4MeCN·(CuII

2Br6) (16). Anhydrous CuBr2 was used as the 

metal salt in a procedure similar to the synthesis of 14. The resultant dark green solution was 

stored in a vial at room temperature. Small green crystals were obtained after 3 days. Selected 

IR peaks (cm-1): 1594 (w), 1494 (s), 1456 (m), 1321 (w), 1283 (w), 1233 (m), 1167 (m), 1144 

(m), 1002 (w), 966 (w), 843 (w), 789 (m), 736 (s), 670 (w), 628 (m). Yield: 11% (based on 

Cu). Elemental analysis (%) for C88H76Br8Cu4N28: theor. C 43.69, H 3.17, N 16.21; found C 

43.81, H 3.13, N 16.11. 

 

Synthesis of [CuII(L3)2(MeCN)2]·(BF4)2 (17). 0.24 mmol (0.082 g) of L3 were dissolved in 

10 ml MeCN while stirring to produce a colourless solution. A solution containing 0.48 mmol 

(0.170 g) of Cu(BF4)2·6H2O in MeCN (7.5 ml) was slowly added. The resulting green 

solution was filtrated and kept stored at room temperature. Green block crystals were 

obtained after 1 day. Selected IR peaks (cm-1): 3468 (w), 3508 (w), 1651 (w), 1592 (w), 1495 

(w), 1454 (m), 1320 (m), 1282 (m), 1234 (m), 1172 (m), 1159 (w), 1060 (s), 1017 (s), 969 

(m), 953 (w), 853 (w), 793 (w), 780 (m), 757 (s), 748 (s), 739 (s), 672 (w). Yield: 49% (based 

on Cu). Elemental analysis (%) for C44H38B2CuF8N14: theor. C 52.84, H 3.83, N 19.62; found 

C 52.92, H 3.86, N 19.70. 

 

Synthesis of [CuII(L3)2(CF3SO3)2] (18). 0.24 mmol (0.082 g) of L3 and 0.48 mmol (0.180 g) 

of Cu(OTf)2·H2O were dissolved in 15 ml Me2CO while stirring to produce a dark green 

solution. After stirring for 1 hr, the solution was filtrated, then layered over n-hexane in a 1:2 

ratio to produce large blue block crystals after 7 days. Selected IR peaks (cm-1): 1589 (w), 

1492 (w), 1457 (m), 1320 (m), 1275 (m), 1244 (m), 1163 (w), 1140 (m), 1023 (s), 952 (w), 

848 (w), 779 (m), 746 (s), 669 (m). Yield: 11% (based on Cu). Elemental analysis (%) for 

C42H32CuF6N12O6S2: calcd. C 48.41, H 3.10, N 16.14; found C 48.53, H 3.04, N 16.07. 

 

Synthesis of [ZnII(L3)2(MeCN)2]·(CF3SO3)2 (19). 0.24 mmol (0.082 g) of L3 were dissolved 

in 15 ml MeCN while stirring to produce a colourless solution. 0.12 mmol (0.044 g) of 

Zn(OTf)2 were then added. After stirring for a further 30 min., the resulting colourless 

solution was filtrated, then layered over Et2O in a 1:2 ratio. Large colourless block crystals 

were obtained after 2 weeks. Selected IR peaks (cm-1): 3434 (br), 1654(w), 1592 (w), 1494 
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(w), 1456 (m), 1372 (w), 1319 (m), 1269 (m), 1226 (s), 1153 (m), 1094 (w), 1025 (s), 951 

(w), 880 (w), 843 (w), 766 (w), 740 (s), 714 (w), 669 (m). Yield: 38% (based on Zn). 

Elemental analysis (%) for C46H38F6N14O6S2Zn: C 49.04, H 3.40, N 17.42; found C 49.11, H 

3.53, N 17.38. 

 

Synthesis of [CuII
2(L4)4(H2O)2]·(CF3SO3)4·4Me2CO (20). 0.1 mmol (0.036 g) of L4 and 0.1 

mmol (0.037 g) of Cu(OTf)2·H2O were dissolved in 15 ml acetone while stirring to produce 

a turquoise solution. The solution was filtrated, then layered over n-hexane in a 1:2 ratio to 

produce green needle-like crystals after a few hours. Selected IR peaks (cm-1): 1592 (w), 

1504 (w), 1457 (m), 1279 (m), 1223 (s), 1158 (m), 1027 (s), 868 (w), 805 (m), 758 (w), 721 

(w), 636 (s). Yield: 23% (based on Cu). Elemental analysis (%) for C104H108Cu2F12N24O18S4: 

C 50.65, H 4.42, N 13.64; found C 50.73, H 4.36, N 13.63. 

 

Synthesis of [CuII
2(L5)4(CF3SO3)2]·(CF3SO3)2·Me2CO (21). 0.12 mmol (0.048 g) of L5 and 

0.24 mmol (0.089 g) of Cu(OTf)2·H2O were dissolved in 15 ml acetone while stirring to 

produce a dark green solution. The solution was filtrated, then layered over n-hexane in a 1:2 

ratio to produce small green block crystals after 10 days. Selected IR peaks (cm-1): 3436 (br), 

1707 (w), 1631 (w), 1590 (w), 1559 (w), 1494 (w), 1456 (m), 1252 (m), 1235 (s), 1221 (s), 

1153 (m), 1026 (s), 1003 (m), 965 (w), 901 (w), 845 (m), 785 (w), 748 (m). Yield: 10% 

(based on Cu). Elemental analysis (%) for C103H102Cu2F12N24O13S4: C 52.25, H 4.35, N 

14.21; found C 52.33, H 4.41, N 14.34. 

 

Synthesis of [CuII(L2)(MeCN)2(CF3SO3)2] (22). 0.05 mmol (0.017 g) of L2 and 0.10 mmol 

(0.036 g) of Cu(OTf)2·H2O were dissolved in 10 mL of MeCN while stirring to produce a 

green solution. After 10 min of stirring, the solution was stored in a glass vessel and heated 

at 95 °C for 18 h. After cooling down, the solution was subjected to Et2O using the vapour 

diffusion technique. Green block crystals were produced after 3 days. Selected IR peaks (cm-

1): 3564 (w), 3512 (w), 1651 (w), 1455 (m), 1321 (m), 1283 (m), 1234 (w), 1172 (w), 1059 

(s), 1020 (s), 954 (w), 880 (w), 794 (w), 758 (s), 748 (s), 672 w), 626 (w). Yield: 26% (based 

on Cu). Elemental analysis (%) for C26H22CuF6N8O6S2: C 39.81, H 2.83, N 14.29; found C 

39.96, H 2.82, N 14.38. 
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Synthesis of [CuII(L6)2(CF3SO3)2] (23). 0.06 mmol (0.022 g) of L6 and 0.12 mmol (0.044 g) 

of Cu(OTf)2·H2O were dissolved in 15 ml acetone while stirring to produce a dark green 

solution. Then the solution was filtrated and layered over n-hexane in a 1:2 ratio to produce 

small blue block crystals after 3 weeks. Selected IR peaks (cm-1): 3351 (br), 3125 (w), 1616 

(w), 1558 (w), 1519 (m), 1484 (w), 1465 (m), 1397 (w), 1241 (s), 1224 (s), 1175 (m), 1028 

(s), 928 (w), 849 (w), 740 (s), 669 (m). Yield: 19% (based on Cu). Elemental analysis (%) 

for C46H36CuF6N8O6S2: C 53.22, H 3.50, N 10.80; found C 53.36, H 3.42, N 10.83. 

 

Synthesis of [CuII(L7)2(MeCN)(CF3SO3)]·(CF3SO3) (24). A 10 ml solution of 

Cu(OTf)2·H2O (0.072 g, 0.2 mmol) in MeCN was dropwise added to a 10 ml solution of L7 

(0.068 g, 0.2 mmol) in methanol. The resulting blue solution was filtered, then carefully 

layered over Et2O in a 1:2 ratio to produce blue block crystals after 1 week. Selected IR peaks 

(cm-1): 3462 (br), 3145 (m), 1659 (w), 1522 (m), 1459 (m), 1445 (w), 1258 (s), 1244 (m), 

1226 (s), 1174 (w), 1109 (m), 1089 (m), 1032 (s), 947 (w), 868 (w), 857 (w), 838 (w), 774 

(m), 759 (m), 729 (s), 687 (w), 661 (s), 634 (m), 625 (m).  Yield: 24% (based on Cu). 

Elemental analysis (%) for C32H31CuF6N9O6S2: C 43.73, H 3.56, N 14.35; found C 43.70, H 

3.72, N 14.43. 

 

Synthesis of [CuII(L7)2(H2O)(CF3SO3)]·(CF3SO3)·2(Me2CO) (25). A 5 ml solution of L7 

(0.038 mg, 0.16 mmol) in acetone was layered on a 8 ml solution of Cu(OTf)2·H2O (0.029 

g, 0.08 mmol) in H2O. Purple needles were obtained after 5 days. Selected IR peaks (cm-1): 

3516 (w), 3444 (w), 3135 (w), 1611 (w), 1523 (m), 1461 (m), 1441 (w), 1277 (m), 1263 (m), 

1244 (s), 1224 (s), 1155 (m), 1108 (m), 1090 (m), 1026 (s), 950 (m), 842 (w), 827 (w), 773 

(w), 758 (w), 734 (s), 667 (m), 655 (m), 634 (s).  Yield: 31% (based on Cu). Elemental 

analysis (%) for C36H42CuF6N8O9S2: C 44.46, H 4.35, N 11.52; found C 42.00, H 3.35, N 

12.91. This result corresponds to the loss of two Me2CO molecules (calcd. C 42.08, H 3.43, 

N 13.08). 

 

Synthesis of [CuI
4(L3)2(L3T)2(CF3SO3)2]2·(CF3SO3)4·8(Me2CO) (26). 0.06 mmol (0.022 g) 

of L3 and 0.12 mmol (0.045 g) of CuI(MeCN)4·CF3SO3 were dissolved in 17.5 ml acetone 
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while stirring to produce a light yellow solution. Then the solution was filtrated and layered 

over Et2O in a 1:2 ratio to produce small yellow block crystals after 2 days. Selected IR peaks 

(cm-1): 3395 (br), 1608 (w), 1597 (w), 1499 (w), 1522 (m), 1457 (m), 1275 (m), 1223 (s), 

1165 (m), 1026 (s), 869 (w), 743 (m), 634 (s).  Yield: 41% (based on Cu). Elemental analysis 

(%) for C96H88Cu4F12N24O16S4: C 47.17, H 3.63, N 13.75; found C 46.89, H 3.08, N 14.71. 

This result corresponds to the loss of four acetone molecules (calcd. C 46.77, H 2.85, N 

14.87). 

 

Synthesis of [Ag(L1)(CF3CO2)] (27). 0.06 mmol (0.020 g) of L1 were dissolved in 17.5 ml 

MeCN while stirring to produce a colourless solution. 0.12 mmol (0.027 g) of AgCF3CO2 

were then added and the resulting white solution was filtrated and left undisturbed under 

room temperature to produce white needles after 12 days. Selected IR peaks (cm-1): 3098 

(w), 1691 (w), 1593 (w), 1497 (w), 1454 (w), 1310 (w), 1278 (w), 1226 (m), 1162 (w), 1114 

(m), 1033 (m), 825 (w), 780 (m), 738 (s), 621 (w). Yield: 36% (based on Ag).1H NMR (600 

MHz, DMSO-d6) δ 8.02 (d, J = 8.3 Hz, 2H), 7.78 (d, J = 8.4 Hz, 2H), 7.49 (t, J = 7.7 Hz, 2H), 

7.37 (d, J = 7.8 Hz, 2H), 7.29 (s, 4H), 5.93 (s, 4H). Elemental Analysis (%) for 

C22H16AgF3N6O2: C 47.08, H 2.87, N 14.97; found C 47.01, H 2.81, N 15.08. 

 

Synthesis of [Ag2(L1T)2(CF3SO3)2]·2Me2CO (28). 0.06 mmol (0.020 g) of L1 were dissolved 

in 17.5 ml Me2CO while stirring to produce a colourless solution. 0.12 mmol (0.031 g) of 

AgOTf were then added. The resulting white solution was filtrated, then layered over n-

hexane in a 1:2 ratio. White needles were obtained after 8 days. Selected IR peaks (cm-1): 

3404 (w), 1705 (w), 1574 (m), 1517 (w), 1421 (w), 1285 (m), 1234 (m), 1160 (m), 1026 (s), 

866 (w), 795 (w), 747 (s), 635 (s). Yield: 32% (based on Ag).1H NMR (600 MHz, DMSO-

d6) δ 8.03 (d, J = 8.0 Hz, 2H), 7.80 (d, J = 8.3 Hz, 2H), 7.50 (t, J = 7.2 Hz, 2H), 7.38 (t, J = 

7.0 Hz, 2H), 7.30 (s, 4H), 5.94 (s, 4H). Elemental Analysis (%) for C48H44Ag2F6N12O8S2: C 

43.98, H 3.38, N 12.82; found C 44.11, H 3.30, N 12.85. 

 

Synthesis of [Ag(L2T)(ClO4)(Me2CO)] (29). 0.12 mmol (0.041 g) of L2 were dissolved in 10 

ml Me2CO while stirring to produce a colourless solution. A solution containing 0.12 mmol 

(0.027 g) of AgClO4 in Me2CO (10 ml) was slowly added. The resulting white solution was 
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filtrated, then layered over Et2O in a 1:2 ratio. White needles were obtained after 4 days. 

Selected IR peaks (cm-1): 1689 (m), 1594 (w), 1496 (w), 1455 (m), 1318 (m), 1286 (m), 1226 

(m), 1159 (w), 1084 (s), 818 (w), 780 (m), 750 (s), 622 (s). Yield: 81% (based on Ag).1H 

NMR (600 MHz, DMSO-d6) δ 8.02 (d, J = 8.4 Hz, 2H), 7.72 (d, J = 8.2 Hz, 2H), 7.46 (t, J = 

7.5 Hz, 2H), 7.37 (dd, J = 16.6, 9.5 Hz, 3H), 7.31 (t, J = 7.6 Hz, 1H), 7.24 (d, J = 7.7 Hz, 

2H), 5.94 (s, 4H). Elemental Analysis (%) for C23H22AgClN6O5: C 44.60, H 3.86, N 13.87; 

found C 44.44, H 3.65, N 14.05. 

 

Synthesis of [Ag(L2T)(BF4)(Et2O)] (30). 30 was synthesized using the same method and 

ratios as 29, with AgBF4 (0.023 g) as the metal salt. White needles were obtained after 3 

days. Selected IR peaks (cm-1): 3098 (w), 1593 (w), 1497 (w), 1456 (w), 1310 (w), 1287 (w), 

1226 (m), 1157 (w), 1055 (s), 1034 (s), 818 (w), 779 (m), 751 (s), 741 (s), 698 (w), 640 (w), 

618 (w). Yield: 79% (based on Ag). 1H NMR (600 MHz, DMSO-d6) δ 8.04 (d, J = 8.3 Hz, 

2H), 7.73 (d, J = 8.3 Hz, 2H), 7.47 (t, J = 7.6 Hz, 2H), 7.38 (dd, J = 16.0, 8.9 Hz, 3H), 7.33 

(t, J = 7.6 Hz, 1H), 7.25 (d, J = 7.5 Hz, 2H), 5.95 (s, 4H). 15N NMR (40 MHz, DMSO-d6) δ 

-155.99. Elemental Analysis (%) for C24H26AgBF4N6O: C 47.32, H 4.30, N 13.80; found C 

44.59, H 3.70, N 12.87. This result corresponds to the presence of two water molecules. 

Elemental Analysis (%) for (C24H26AgBF4N6O)(H2O)2: C 44.68, H 3.69, N 13.03. 

 

Synthesis of [Ag2(L3T)2(ClO4)2]2 (31). 0.12 mmol (0.041 g) of L3 were dissolved in 10 ml 

Me2CO while stirring to produce a colourless solution. A solution containing 0.12 mmol 

(0.027 g) of AgClO4 in Me2CO (10 ml) was slowly added. The resulting white solution was 

filtrated, then left undisturbed under room temperature to produce white needles after 2 days. 

Selected IR peaks (cm-1): 1705 (w), 1594 (w), 1497 (w), 1457 (m), 1226 (m), 1153 (m), 1087 

(s), 1025 (m), 953 (w), 856 (w), 780 (m), 765 (m), 741 (s), 622 (s). Yield: 88% (based on 

Ag).1H NMR (500 MHz, DMSO-d6) δ 8.04 (d, J = 8.3 Hz, 2H), 7.88 (dd, J = 6.6, 3.2 Hz, 

4H), 7.71 (d, J = 8.4 Hz, 2H), 7.50 (t, J = 7.7 Hz, 2H), 7.45 – 7.37 (m, 6H), 7.36 – 7.20 (m, 

6H), 6.98 (d, J = 7.3 Hz, 2H), 6.24 (d, J = 4.8 Hz, 8H). These shifts indicate the presence of 

both isomer forms (1,1 and 1,2) in a 1:1 ratio. Elemental Analysis (%) for 

C40H32Ag2Cl2N12O8: C 43.86, H 2.94, N 13.34; found C 43.78, H 2.85, N 13.37. 
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Synthesis of [Ag(L3)(NO3)] (32). 0.06 mmol (0.020 g) of L3 were dissolved in 10 ml MeCN 

while stirring to produce a colourless solution. After five minutes a solution containing 0.12 

mmol (0.020 g) of AgNO3 in MeCN (10 ml) was slowly added. The resulting white solution 

was filtrated, then layered over Et2O in a 1:2 ratio. Colourless blocks were obtained after 1 

day. Selected IR peaks (cm-1): 1592 (w), 1495 (w), 1455 (m), 1413 (m), 1290 (m), 1228 (m), 

1161 (m), 1135 (w), 1113 (w), 1087 (w), 1033 (w), 1001 (w), 958 (w), 885 (w), 842 (w), 818 

(w), 767 (m), 759 (m), 748 (s), 708 (w), 667 (w), 625 (w). Yield: 82% (based on Ag).1H 

NMR (399 MHz, DMSO-d6) δ 8.09 (d, J = 8.4 Hz, 2H), 7.78 (d, J = 8.3 Hz, 2H), 7.54 (t, J = 

7.6 Hz, 2H), 7.44 (t, J = 7.5 Hz, 2H), 7.28 – 7.21 (m, 2H), 6.96 – 6.89 (m, 2H), 6.27 (s, 4H). 

15N NMR (40 MHz, DMSO-d6) δ -154.37. Elemental Analysis (%) for C20H16AgN7O3: C 

47.08, H 3.16, N 19.22; found C 47.18, H 3.25, N 19.33. 

 

Synthesis of [Ag2(L3T)2(CF3CO2)2] (33). 0.06 mmol (0.020 g) of L3 were dissolved in 10 ml 

Me2CO while stirring to produce a colourless solution. A solution containing 0.12 mmol 

(0.027 g) of AgCF3CO2 in Me2CO (10 ml) was slowly added. The resulting white solution 

was filtrated, then layered over n-hexane in a 1:2 ratio. White needles were obtained after 2 

days. Selected IR peaks (cm-1): 1665 (w), 1595 (w), 1499 (w), 1457 (m), 1222 (s), 1147 (s), 

1025 (s), 952 (w), 837 (w), 780 (m), 746 (s), 633 (s). Yield: 52% (based on Ag).1H NMR 

(600 MHz, DMSO-d6) δ 8.09 (d, J = 8.5 Hz, 1H), 8.06 (d, J = 8.6 Hz, 1H), 7.92 – 7.86 (m, 

2H), 7.79 (d, J = 8.4 Hz, 1H), 7.75 (d, J = 8.4 Hz, 1H), 7.57 – 7.48 (m, 3H), 7.46 – 7.37 (m, 

5H), 7.34 – 7.21 (m, 5H), 6.97 (d, J = 7.5 Hz, 1H), 6.94 – 6.89 (m, 2H), 6.28 –6.26 (m, 8H). 

These shifts indicate the presence of both isomer forms (1,1 and 1,2) in a 1:1 ratio. Elemental 

Analysis (%) for C44H32Ag2F6N12O4: C 47.08, H 2.87, N 14.97; found C 47.00, H 2.84, N 

15.06. 

 

Synthesis of [Ag2(L3T)(CF3SO3)2] (34). A procedure similar to the synthesis of 33 was 

followed, using AgOTf (0.12 mmol, 0.031 g) as the metal salt. White needles were obtained 

after 1 day. Selected IR peaks (cm-1): 1594 (w), 1498 (w), 1458 (m), 1265 (s), 1241 (s), 1223 

(s), 1166 (m), 1023 (s), 956 (w), 861 (w), 766 (w), 751 (s), 740 (s), 629 (s), 606 (w). Yield: 

58% (based on Ag).1H NMR (600 MHz, DMSO-d6) δ 8.08 (d, J = 8.4 Hz, 2H), 8.05 (d, J = 

8.4 Hz, 1H), 7.90 – 7.85 (m, 2H), 7.79 (d, J = 8.4 Hz, 2H), 7.76 (d, J = 8.4 Hz, 1H), 7.58 – 
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7.49 (m, 3H), 7.46 – 7.38 (m, 3H), 7.34 – 7.21 (m, 3H), 6.99 (d, J = 7.5 Hz, 1H), 6.94 (dd, J 

= 5.6, 3.5 Hz, 2H), 6.27 (s, 6H). These shifts indicate the presence of both isomer forms (1,1 

and 1,2) in a 2:1 ratio. Elemental Analysis (%) for C22H16Ag2F6N6O6S2: C 30.93, H 1.89, N 

9.84; found C 31.10, H 2.01, N 9.86. 

 

Synthesis of [Ag2(L3T)2(CF3CF2CO2)2]·2Me2CO (35). A procedure similar to the synthesis 

of 33 was followed, using AgCF3CF2CO2 (0.12 mmol, 0.033 g) as the metal salt. White 

needles were obtained after 3 days. Selected IR peaks (cm-1):1661 (m), 1499 (w), 1455 (w), 

1319 (m), 1277 (w), 1212 (m), 1166 (m), 1147 (m), 1022 (m), 852 (w), 815 (w), 771 (w), 

747 (s), 728 (s), 628 (w). Yield: 64% (based on Ag).1H NMR (600 MHz, DMSO-d6) δ 8.05 

(d, J = 8.4 Hz, 2H), 7.90 (dd, J = 6.6, 3.1 Hz, 4H), 7.74 (d, J = 8.4 Hz, 2H), 7.50 (t, J = 7.7 

Hz, 2H), 7.43 (dd, J = 6.6, 3.0 Hz, 4H), 7.39 (t, J = 7.7 Hz, 2H), 7.34 – 7.20 (m, 6H), 6.95 (d, 

J = 7.5 Hz, 2H), 6.28 (s, 4H), 6.26 (s, 4H). These shifts indicate the presence of both isomer 

forms (1,1 and 1,2) in a 1:1 ratio. Elemental Analysis (%) for C49H38Ag2F10N12O5: C 45.96, 

H 2.99, N 13.12; found C 45.97, H 3.06, N 13.20. 

 

8.4. Catalytic Protocols 

 

Chapter 3 

General Catalytic Protocol for the synthesis of 1,4-DHPs (dihydropyridine products 

C3D1-C3D18): Into a sealed tube containing the azine (0.2 mmol) and methanol (1 mL), 0.4 

mmol of ethyl propiolate and 3 mg of the corresponding Cu catalyst (2 mol%, based on azine 

amount) were added. The reaction mixture was vigorously stirred at 70 oC for selected time 

and the reaction process was monitored by thin layer chromatography (TLC). After 

completion, the mixture was filtered under reduced pressure through a short pad of Celite 

and silica gel to withhold any solid material using CH2Cl2 (~5 mL) as an eluent. The filtrate 

was then evaporated under vacuum to give a mixture containing the corresponding 

dihydropyridine derivative (1,4-DHP). Further purification with column chromatography 

(solvent mixture with increasing the polarity from hexane to ethyl acetate) afford the 1,4-

DHPs in pure form. Supporting Figures for 1H NMR, 13CNMR and ESI-MS may be found 

in the Appendix. 
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Diethyl 1-((4-methylbenzylidene)amino)-4-(p-tolyl)-1,4- 

dihydropyridine-3,5-Dicarboxylate (C3D1) 

 
1H-NMR (500 MHz, CDCl3): 8.11 (s, 1H), 7.86 (s, 2H), 7.64 (d, J = 8.4 Hz, 2H), 7.26-7.19 

(m, 4H), 7.06 (d, J = 8.1 Hz, 2H), 4.96 (s, 1H), 4.15 (q, J = 7.1 Hz, 4H), 2.41 (s, 3H), 2.28 

(s, 3H), 1.25 (t, J = 7.1 Hz, 6H). 13C-NMR (125 MHz, CDCl3): 166.5, 143.9, 142.1, 141.1, 

136.3, 133.6, 130.6, 129.7, 129.0, 128.0, 127.5, 110.8, 60.5, 37.8, 21.6, 21.1, 14.3. HRMS 

calcd.: 432.2048 m/z, found: 431.1965 [Μ-Η+]. 

 

Diethyl 1-((4-methoxybenzylidene)amino)-4-(4-methoxyphenyl)-1,4- 

dihydropyridine-3,5-dicarboxylate (C3D2) 

 

1H-NMR (500 MHz, CDCl3): 8.09 (s, 1H), 7.84 (s, 2H), 7.68 (d, J = 8.8 Hz, 2H), 7.23 (d, J 

= 8.6 Hz, 5H), 6.96 (d, J = 8.8 Hz, 2H), 6.78 (d, J = 8.6 Hz, 2H), 4.94 (s, 1H), 4.16 (q, J = 

7.1 Hz, 4H), 3.87 (s, 3H), 3.75 (s, 3H), 1.24 (t, J = 7.1 Hz, 6H). 13C NMR (125 MHz, CDCl3): 

166.6, 161.7, 158.4, 143.9, 137.5, 133.5, 129.2, 129.1, 126.0, 114.5, 113.6, 110.6, 60.5, 55.5, 

55.2, 37.4, 14.3. HRMS calcd.: 464.1947 m/z, HRMS found: 463.1864 [Μ-Η+]. 
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Diethyl 1-((2-methoxybenzylidene)amino)-4-(2-methoxyphenyl)-1,4- 

dihydropyridine-3,5-dicarboxylate (C3D3) 

 
1H-NMR (500 MHz, CDCl3): 8.57 (s, 1H), 7.97 (dd, J = 7.8, 1.6 Hz, 1H), 7.87 (s, 1H), 7.44-

7.35 (m, 1H), 7.29 (dd, J = 7.8, 1.6 Hz, 1H), 7.18-7.13 (m, 1H), 7.01 (t, J = 7.8 Hz, 1H), 6.95 

(d, J = 8.3 Hz, 1H), 6.88-6.84 (m, 2H), 6.81 (d, J = 8.3 Hz, 2H), 5.22 (s, 1H), 4.17-4.04 (m, 

4H), 3.91 (s, 3H), 3.75 (s, 3H), 1.21 (t, J = 7.1 Hz, 6H).  13C-NMR (125 MHz, CDCl3): 166.9, 

158.2, 158.0, 138.9, 134.3, 132.4, 131.7, 131.3, 130.9, 128.0, 126.3, 122.0, 121.0, 120.3, 

111.1, 109.4, 60.3, 55.6, 55.4, 34.9, 14.2. HRMScalcd: 464.1947 m/z, HRMS found: 

463.1864 [Μ-Η+]. 

 

Diethyl 1-((3,4-dimethoxybenzylidene)amino)-4-(3,4-dimethoxyphenyl)-1,4- 

dihydropyridine-3,5-dicarboxylate (C3D4) 

 
1H NMR (500 MHz, CDCl3): 8.07 (s, 1H), 7.86 (s, 2H), 7.41 (dd, J = 8.2, 1.8 Hz, 1H),  7.18 

(dd, J = 8.2, 1.8 Hz, 1H), 6.96-6.90 (m, 2H), 6.82 (dd, J = 8.2, 1.8 Hz, 1H), 6.75 (d, J = 8.2 

Hz, 1H), 4.95 (s, 1H), 4.24-4.10 (m, 4H), 4.00 (s, 3H), 3.97 (s, 3H), 3.96 (s, 3H), 3.94 (s, 

3H), 1.26 (t, J = 7.1 Hz, 3H). 13C NMR (125 MHz, CDCl3): 166.6, 151.6, 149.6, 148.5, 147.9, 

144.0, 137.9, 133.5, 126.2, 122.8, 120.0, 111.8, 110.9, 110.8, 110.5, 108.0, 60.5, 56.3, 56.1, 

55.9, 55.8, 37.7, 14.4. HRMS calcd.: 524.2158 m/z, HRMS found: 523.2075 [Μ-Η+]. 
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Diethyl 1-((2,5-dimethylbenzylidene)amino)-4-(2,5-dimethylphenyl)-1,4- 

dihydropyridine-3,5-dicarboxylate (C3D5) 

 
1H NMR (500 MHz, CDCl3): 8.38 (s, 1H), 7.90 (s, 2H), 7.71 (s, 1H), 7.17-7.11 (m, 2H), 

6.98-6.93 (m, 2H), 6.86 (d, J = 7.6 Hz, 1H), 5.14 (s, 1H), 4.16-4.07 (m, 4H), 2.63 (s, 3H), 

2.51 (s, 3H), 2.38 (s, 3H), 2.21 (s, 3H), 1.23 (t, J = 7.0 Hz, 6H). 13C NMR (125 MHz, CDCl3): 

166.7, 144.1, 142.1, 136.0, 135.4, 134.4, 133.5 (2), 132.9, 131.2, 131.1, 130.8, 129.8, 127.5, 

127.4, 111.9, 60.5, 39.0, 21.2, 21.1, 19.4, 19.1, 14.3. HRMS calcd.: 460.2361 m/z, HRMS 

found: 459.2278 [M-H+]. 

 

Diethyl (E)-1-((3-chlorobenzylidene)amino)-4-(3-chlorophenyl)-1,4-dihydropyridine-

3,5-dicarboxylate (C3D6) 

 
1H NMR (500 MHz, CDCl3): 8.08 (s, 1H), 7.88 (s, 2H), 7.78 (s, 1H), 7.59 (d, J = 7.4 Hz, 

1H), 7.42-7.33 (m, 2H), 7.27 (s, 1H) 7.25-7.22 (m, 1H), 7.21-7.12 (m, 2H), 4.99 (s, 1H), 

4.25-4.09 (m, 4H), 1.25 (t, J = 7.3 Hz, 6H). 13C NMR (125 MHz, CDCl3):166.1, 146.6, 141.7, 

135.0, 134.1, 133.5, 130.6, 130.3, 130.2, 129.4, 128.4, 127.1 (2), 126.6, 126.0, 110.7, 60.8, 

38.3, 14.3. HRMS calcd.: 472.0956 m/z, HRMS found: 495.0848 [Μ+Νa]. 
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Dimethyl 1-((4-methylbenzylidene)amino)-4-(p-tolyl)-1,4-dihydropyridine- 

3,5-Dicarboxylate (C3D11) 

 
1H-NMR (500 MHz, CDCl3): 8.10 (s, 1H), 7.87 (s, 2H), 7.63 (d, J = 8.3 Hz, 2H), 7.26-7-22 

(m, 2H), 7.07 (d, J = 8.1 Hz, 2H), 4.97 (s, 1H), 3.70 (s, 6H), 2.41 (s, 3H), 2.28 (s, 3H). 13C-

NMR (125 MHz, CDCl3):166.9, 144.1, 141.9, 141.2, 136.4, 133.8, 130.5, 129.7, 129.1, 

127.9, 127.5, 110.4, 51.7, 37.7, 21.6, 21.1. HRMS calcd.: 404.1735 m/z, HRMS found: 

403.1652 [Μ-Η+]. 

 

Dimethyl 1-((4-methoxybenzylidene)amino)-4-(4-methoxyphenyl)-1,4- 

dihydropyridine-3,5-dicarboxylate (C3D12) 

 

1H NMR (500 MHz, CDCl3): 8.08 (s, 1H), 7.84 (s, 1H), 7.68 (d, J = 8.7 Hz, 1H), 7.24 (d, J 

= 8.6 Hz, 1H), 6.96 (d, J = 8.7 Hz, 1H), 6.79 (d, J = 8.6 Hz, 1H), 4.95 (s, 1H), 3.87 (s, 3H), 

3.76 (s, 3H), 3.70 (s, 6H). 13C-NMR (125 MHz, CDCl3):167.0, 161.8, 158.5, 144.1, 137.3, 

133.8, 129.2, 129.0, 125.9, 114.3, 113.7, 110.3, 55.5, 55.2, 51.6, 37.3. HRMS calcd.: 

436.1634 m/z. HRMS found: 435.1551 [Μ-Η+]. 

 

Dimethyl 1-((2-methoxybenzylidene)amino)-4-(2-methoxyphenyl)-1,4- 

dihydropyridine-3,5-dicarboxylate (C3D13) 
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1H NMR (500 MHz, CDCl3):8.57 (s, 1H), 7.96 (d, J = 7.8 Hz, 1H), 7.87 (s, 2H), 7.40 (t, J = 

8.2 Hz, 1H), 7.30 (d, J = 7.8 Hz, 1H), 7.16 (t, J = 8.2 Hz, 1H), 7.02 (t, J = 7.8 Hz, 1H), 6.95 

(d, J = 8.2 Hz, 1H), 6.88 (d, J = 7.8 Hz, 1H) 6.83 (d, J = 8.2 Hz, 1H), 5.22 (s, 1H), 3.92 (s, 

3H), 3.76 (s, 3H), 3.66 (d,6H). 13C-NMR (125 MHz, CDCl3):167.2, 158.2 (2), 139.1, 134.4, 

132.3, 131.8, 131.1, 128.1, 126.3, 122.0, 121.0, 120.5, 111.5, 111.1, 109.0, 55.7, 55.6, 51.5, 

34.9. HRMS calcd.: 436.1634 m/z, HRMS found: 435.1551. 

 

Dimethyl 1-((3,4-dimethoxybenzylidene)amino)-4-(3,4-dimethoxyphenyl)-1,4- 

dihydropyridine-3,5-dicarboxylate (C3D14) 

 
1H-NMR (500 MHz, CDCl3): 8.06 (s, 1H), 7.86 (s, 2H), 7.40 (d, J= 1.5 Hz, 1H), 7.17 (d, J = 

8.2 Hz, 1H), 6.93 (d, J = 1.5 Hz, 1H), 6.91 (d, J = 8.2 Hz, 1H), 6.82 (dd, J = 8.2, 1.5, 1H), 

6.75 (d, J = 8.2 Hz, 1H), 4.96 (s, 1H), 3.96 (s, 3H), 3.94 (s, 3H), 3.85 (s, 3H), 3.82 (s, 3H), 

3.72 (s, 6H). 13C-NMR (125 MHz, CDCl3):166.9, 151.6, 149.6, 148.7, 148.0, 144.2, 137.6, 

133.7, 126.2, 122.9, 119.8, 111.7, 111.1, 110.8, 110.2, 108.0, 56.1, 56.0, 55.9, 55.8, 51.7, 

37.6. HRMS calcd.: 496.1845 m/z, HRMS found: 495.1762 [Μ-Η+].  

 

Dimethyl 1-((4-chlorobenzylidene)amino)-4-(4-chlorophenyl)-1,4- 

dihydropyridine-3,5-dicarboxylate (C3D15) 

 
1H NMR (500 MHz, CDCl3): 8.08 (s, 1H), 7.87 (s, 2H), 7.67 (d, J = 8.5 Hz, 2H), 7.42 (d, J 

= 8.5 Hz, 2H), 7.26-7.23 (m, 4H), 4.98 (s, 1H), 3.70 (s, 6H). 13C NMR (125 MHz, CDCl3): 

166.5, 143.0, 142.3, 136.7, 133.6, 132.7, 131.6, 129.4, 129.3, 128.7, 128.5, 110.4, 51.8, 37.8. 

HRMS calcd.: 444.0643 m/z, HRMS found: 443.0560 [M-H+] 
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Diethyl 4-(thiophen-2-yl)-1-((thiophen-2-ylmethylene)amino)-1,4-dihydropyridine-3,5-

dicarboxylate (C3D16) 

 
1H NMR (500 MHz, CDCl3): 8.29 (s, 1H), 7.80 (s, 2H), 7.43 (d, J = 5.1 Hz, 1H), 7.36 (d, J 

= 3.6 Hz, 1H), 7.12-7.08 (m, 2H) 6.89-6.85 (m, 2H), 5.32 (s, 1H), 4.29-4.19 (m, 4H), 1.29 (t, 

J = 7.1 Hz, 6H). 13C NMR (126 MHz, CDCl3): 166.2, 139.5, 137.9, 137.2, 133.7, 131.1, 

129.2, 127.8, 126.8, 124.4, 124.1, 110.1, 60.7, 32.8, 14.4. HRMS calcd.: 416.0912 m/z, 

HRMS found: 415.0830 [Μ-Η+]. 

 

Chapter 4 

General Catalytic Protocol for A3 coupling (propargylamine products C4P1-C4P23): A 

mixture of aldehyde (1 mmol), amine (1.1 mmol), alkyne (1.2 mmol), Cu catalyst (2 mol%, 

based on aldehyde amount) and 2-propanol (5 ml) was added into a sealed tube and stirred at 

90 °C for selected time. After completion, the mixture was filtered upon a short pad of silica 

(to withhold any solid material) and the filtrate was evaporated under vacuum. The resulting 

residue was then loaded to a flash column chromatography and the product propargyl amine 

was isolated through silica gel using a mixture of hexane/EtOAc in a ratio of 10/1, as the 

eluent. The characterization data of the products matched well with those reported in the 

literature374. Supporting Figures for 1H NMR, 13CNMR and ESI-MS may be found in the 

Appendix. 

 

1-(1,3-diphenylprop-2-ynyl)pyrrolidine (C4P1) 

 

Yellow oil; 1H NMR (500 MHz, CDCl3) δ 7.66 – 7.60 (m, 2H), 7.54 – 7.46 (m, 2H), 7.41 – 

7.27 (m, 6H), 4.95 (s, 1H), 2.78 – 2.70 (m, 4H), 1.86 – 1.78 (m, 4H). 13C NMR (126 MHz, 
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CDCl3) δ 136.41, 131.77, 128.30, 128.23, 128.07, 127.59, 88.81, 85.80, 59.06, 50.20, 23.52.  

HRMS for C19H20N [M + 1]: calc: 262.1595, found: 262.1590. 

 

1-(3-phenyl-1-(p-tolyl)prop-2-yn-1-yl)pyrrolidine (C4P2) 

 

Yellow oil; 1H NMR (500 MHz, CDCl3) δ 7.52 – 7.46 (m, 4H), 7.33 – 7.30 (m, 3H), 7.19 – 

7.16 (m, 2H), 4.84 (s, 1H), 2.71 – 2.67 (m, 4H), 2.36 (s, 3H), 1.83 – 1.77 (m, 4H). 13C NMR 

(126 MHz, CDCl3) δ 134.0, 133.7, 131.8, 129.0, 128.4, 128.3, 128.3, 128.2, 118.6, 88.3, 58.8, 

50.2, 23.5, 21.1. HRMS for C20H21N [M]: calc: 274.1595, found: 274.1590. 

 

1-(1-(4-methoxyphenyl)-3-phenylprop-2-yn-1-yl)pyrrolidine (C4P3) 

 

Yellow oil; 1H NMR (500 MHz, CDCl3) δ 7.56 – 7.45 (m, 4H), 7.35 – 7.28 (m, 3H), 6.93 – 

6.87 (m, 2H), 4.83 (s, 1H), 3.82 (s, 3H), 2.70 – 2.66 (m, 4H), 1.82 – 1.79 (m, 4H). 13C NMR 

(126 MHz, CDCl3) δ 159.0, 131.7, 129.3, 128.2, 128.0, 124.2, 113.6, 88.3, 86.6, 58.5, 55.3, 

50.2, 23.9, 23.5. EI for C20H21NO: 291 [M]. 

 

1-(1-(4-chlorophenyl)-3-phenylprop-2-yn-1-yl)pyrrolidine (C4P4) 

 

Yellow oil; 1H NMR (500 MHz, CDCl3) δ 7.59 – 7.56 (m, 2H), 7.52 – 7.38 (m, 4H), 7.35 – 

7.33 (m, 3H), 4.99 (s, 1H), 2.81 – 2.70 (m, 4H), 1.87 – 1.78 (m, 4H). 13C NMR (126 MHz, 
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CDCl3) δ 137.8, 131.8, 129.7, 128.4, 128.3, 127.9, 127.6, 120.7, 88.3, 50.1, 23.5. HRMS for 

C19H19ClN [M + 1]: calc: 296.1205, found: 296.1201. 

 

1-(3-phenyl-1-(4-(trifluoromethyl)phenyl)prop-2-ynyl)pyrrolidine (C4P5) 

 

Pale yellow oil; 1H NMR (500 MHz, CDCl3) δ 7.79 – 7.73 (m, 2H), 7.66 – 7.60 (m, 2H), 

7.53 – 7.47 (m, 2H), 7.37 – 7.32 (m, 3H), 4.97 (s, 1H), 2.75 – 2.64 (m, 4H), 1.86 – 1.77 (m, 

4H). 13C NMR (126 MHz, CDCl3) δ 143.7, 131.8, 129.9, 128.5, 128.3, 125.2, 125.2, 125.2, 

125.1, 124.0, 122.9, 110.9, 102.6, 87.6, 85.6, 58.6, 50.1, 31.6, 23.6. HRMS for C20H19F3N 

[M + 1]: calc: 330.1469, found: 330.1464. 

 

2-(3-phenyl-1-(pyrrolidin-1-yl)prop-2-yn-1-yl)phenol (C4P6) 

 

Yellow oil; 1H NMR (500 MHz, CDCl3) δ 7.58 – 7.51 (m, 3H), 7.40 – 7.33 (m, 3H), 7.26 – 

7.18 (m, 1H), 6.89 – 6.83 (m, 2H), 5.29 (s, 1H), 2.95 – 2.77 (m, 4H), 1.93 – 1.85 (m, 4H). 

13C NMR (126 MHz, CDCl3) δ 157.6, 131.9, 129.3, 128.5, 128.4, 127.8, 122.6, 122.2, 118.9, 

116.2, 89.0, 83.0, 57.1, 48.9, 23.9. HRMS for C19H20NO [M + 1]: calc: 278.1544, found: 

278.1539. 
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1-(1-(naphthalen-1-yl)-3-phenylprop-2-yn-1-yl)pyrrolidine (C4P7) 

 

Yellow oil; 1H NMR (500 MHz, CDCl3) δ 8.44 (d, J = 8.5 Hz, 1H), 7.96 – 7.85 (m, 3H), 7.57 

– 7.44 (m, 5H), 7.36 – 7.30 (m, 3H), 5.59 (s, 1H), 2.86 – 2.64 (m, 3H), 1.84 – 1.73 (m, 4H). 

13C NMR (126 MHz, CDCl3) δ 136.5, 133.9, 131.8, 131.5, 129.0, 128.4, 128.2, 127.9, 126.9, 

125.9, 125.8, 125.5, 124.9, 124.8, 124.8, 124.4, 123.4, 87.4, 86.8, 56.7, 50.2, 23.7, 11.4. EI 

for C23H21N: 311 [M]. 

 

1-(1-(naphthalen-2-yl)-3-phenylprop-2-yn-1-yl)pyrrolidine (C4P8) 

 

Yellow oil; 1H NMR (500 MHz, CDCl3) δ 8.06 (s, 1H), 7.88 – 7.83 (m, 3H), 7.78 – 7.75 (m, 

1H), 7.55 – 7.52 (m, 2H), 7.49 – 7.47 (m, 2H), 7.37 – 7.31 (m, 3H), 5.04 (s, 1H), 2.78 – 2.71 

(m, 4H), 1.86 – 1.80 (m, 4H). 13C NMR (126 MHz, CDCl3) δ 137.2, 133.0, 131.8, 128.2, 

128.1, 127.9, 127.6, 126.8, 126.5, 125.9, 125.8, 123.3, 88.3, 87.6, 59.3, 50.4, 23.6, 21.0. EI 

for C23H21N: 311 [M]. 

 

1-(1-cyclohexyl-3-phenylprop-2-ynyl)pyrrolidine (C4P9) 

 

Yellow oil; 1H NMR (500 MHz, CDCl3) δ 7.48 – 7.40 (m, 2H), 7.34 – 7.26 (m, 3H), 3.37 (d, 

J = 8.4 Hz, 1H), 2.79 – 2.71 (m, 2H), 2.69 – 2.64 (m, 2H), 2.15 – 2.07 (m, 1H), 2.00 – 1.95 

(m, 1H), 1.84 – 1.77 (m, 6H), 1.73 – 1.66 (m, 1H), 1.65 – 1.54 (m, 1H), 1.34 – 1.06 (m, 5H). 
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13C NMR (126 MHz, CDCl3) δ 131.7, 128.1, 127.6, 123.7, 85.8, 61.2, 50.0, 41.4, 30.7, 30.3, 

26.7, 26.2, 26.2, 23.6. HRMS for C19H26N [M + 1]: calc: 268.2065, found: 268.2060. 

 

1-(1-phenyloct-1-yn-3-yl)pyrrolidine (C4P10) 

 

Yellow oil; 1H NMR (500 MHz, CDCl3) δ 7.45 – 7.42 (m, 2H), 7.31 – 7.29 (m, 3H), 3.70 

(dd, J = 7.5 Hz, 1H), 2.81 – 2.69 (m, 4H), 1.85 – 1.80 (m, 4H), 1.77 – 1.70 (m, 1H), 1.52 – 

1.48 (m, 1H), 1.38 – 1.26 (m, 6H), 0.92 (t, J = 6.5 Hz, 3H). 13C NMR (126 MHz, CDCl3) δ 

138.0, 136.6, 131.7, 128.2, 92.1, 84.0, 51.3, 48.6, 31.6, 26.4, 23.5, 22.6, 22.6, 14.1. HRMS 

for C18H26N [M + 1]: calc: 256.2065, found: 256.2060. 

 

1-(1-cyclohexyl-3-phenylprop-2-ynyl)piperidine (C4P12) 

 

Yellow oil; 1H NMR (500 MHz, CDCl3) δ 7.50 – 7.44 (m, 2H), 7.33 – 7.28 (m, 3H), 3.14 (d, 

J = 9.9 Hz, 1H), 2.69 – 2.64 (m, 2H), 2.47 – 2.41 (m, 2H), 2.18 – 2.04 (m, 2H), 1.84 – 1.76 

(m, 2H), 1.75 – 1.54 (m, 6H), 1.50 – 1.44 (m, 2H), 1.35 – 1.17 (m, 3H), 1.10 – 0.92 (m, 2H). 

13C NMR (126 MHz, CDCl3) δ 131.7, 128.1, 127.6, 123.9, 87.8, 86.2, 64.4, 39.6, 31.3, 30.5, 

26.8, 26.3, 26.3, 26.1, 24.8. HRMS for C20H28N [M + 1]: calc: 282.2221, found: 282.2216. 
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1-[1-Cyclohexyl-3-(4-methylphenyl)-2-propynyl]hexamethylamine (C4P13) 

 

Yellow oil; 1H NMR (500 MHz, CDCl3) δ 7.45 – 7.42 (m, 2H), 7.31 – 7.26 (m, 3H), 3.17 (d, 

J = 10.1 Hz, 1H), 2.85 – 2.78 (m, 2H), 2.62 – 2.55 (m, 2H), 2.20 – 2.08 (m, 2H), 1.81 – 1.75 

(m, 2H), 1.72 – 1.62 (m, 8H), 1.56 – 1.48 (m, 1H), 1.37 – 1.17 (m, 3H), 1.06 – 0.88 (m, 2H). 

13C NMR (126 MHz, CDCl3) δ 131.7, 128.1, 127.5, 124.0, 90.5, 84.9, 65.2, 52.7, 40.8, 31.1, 

30.7, 29.3, 27.1, 26.8, 26.2, 26.1. HRMS for C21H30N [M + 1]: calc: 296.2378, found: 

296.2373. 

 

4-(1-cyclohexyl-3-phenylprop-2-ynyl)morpholine (C4P14) 

 

Yellow oil; 1H NMR (500 MHz, CDCl3) δ 7.48 – 7.42 (m, 2H), 7.33 – 7.27 (m, 3H), 3.81 – 

3.69 (m, 4H), 3.15 (d, J = 9.8 Hz, 1H), 2.75 – 2.68 (m, 2H), 2.57 – 2.49 (m, 2H), 2.16 – 2.02 

(m, 2H), 1.83 – 1.58 (m, 4H), 1.36 – 0.94 (m, 5H). 13C NMR (126 MHz, cdcl3) δ 131.7, 

128.2, 127.8, 123.4, 86.8, 86.6, 67.2, 64.0, 50.0, 39.1, 31.0, 30.4, 26.7, 26.2, 26.0. HRMS for 

C19H26NO [M + 1]: calc: 284.2014, found: 284.2011. 
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1-(1-cyclohexyl-3-phenylprop-2-ynyl)indoline (C4P15) 

 

Yellow oil; 1H NMR (500 MHz, CDCl3) δ 7.39 – 7.32 (m, 2H), 7.29 – 7.24 (m, 3H), 7.11 (t, 

J = 7.0 Hz, 2H), 6.70 (t, J = 7.3 Hz, 1H), 6.60 (d, J = 7.6 Hz, 1H), 4.17 (d, J = 10.0 Hz, 1H), 

3.57 – 3.43 (m, 2H), 3.07 – 2.98 (m, 2H), 2.24 (d, J = 12.4 Hz, 1H), 2.13 (d, J = 12.0 Hz, 

1H), 1.91 – 1.72 (m, 4H), 1.42 – 1.12 (m, 4H), 1.11 – 1.00 (m, 1H). 13C NMR (126 MHz, 

CDCl3) δ 151.6, 131.8, 130.1, 128.1, 127.8, 127.1, 124.4, 123.3, 117.8, 107.6, 87.0, 85.2, 

55.3, 48.3, 41.1, 31.5, 31.0, 30.2, 28.4, 26.6, 26.1, 26.0. HRMS for C23H26N [M + 1]: calc: 

316.2065, found: 316.2060. 

 

1-cyclohexyl-N,N-diethyl-3-phenylprop-2-yn-1-amine (C4P16) 

 

Yellow oil; 1H NMR (500 MHz, CDCl3) δ 7.45 – 7.39 (m, 2H), 7.31 – 7.26 (m, 3H), 3.31 (d, 

J = 9.9 Hz, 1H), 2.72 – 2.64 (m, 2H), 2.48 – 2.40 (m, 2H), 2.15 – 2.07 (m, 2H), 1.82 – 1.65 

(m, 4H), 1.29 – 1.12 (m, 4H), 1.07 (t, J = 7.2 Hz, 6H), 0.94 – 0.85 (m, 1H). 13C NMR (126 

MHz, CDCl3) δ 132.5, 131.6, 129.2, 128.4, 128.1, 127.5, 121.8, 81.5, 77.3, 77.0, 76.7, 59.4, 

44.9, 40.3, 31.4, 30.9, 30.7, 26.8, 26.2, 26.0, 13.7. HRMS for C19H28N [M + 1]: calc: 

270.2221, found: 270.2216 
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N-(1-cyclohexyl-3-phenylprop-2-yn-1-yl)-N-methylaniline (C4P17) 

 

Yellow oil; 1H NMR (500 MHz, CDCl3) δ 7.44 – 7.32 (m, 3H), 7.32 – 7.23 (m, 4H), 6.92 – 

6.86 (m, 2H), 6.81 – 6.73 (m, 1H), 4.36 (d, J = 9.6 Hz, 1H), 2.93 (s, 3H), 2.22 – 2.14 (m, 

1H), 1.95 – 1.67 (m, 7H), 1.21 – 0.95 (m, 3H). 13C NMR (126 MHz, CDCl3) δ 150.6, 132.5, 

131.7, 129.1, 129.0, 128.4, 128.1, 127.9, 123.4, 117.6, 114.4, 88.3, 87.5, 58.8, 41.4, 33.4, 

30.7, 30.2, 26.5, 26.1, 25.9. EI for C22H25N: 303 [M] 

 

1-(1-cyclohexylhept-2-yn-1-yl)pyrrolidine (C4P22) 

 

Yellow oil; 1H NMR (500 MHz, CDCl3) δ 3.08 (d, J = 8.2 Hz, 1H), 2.67 – 2.52 (m, 4H), 2.23 

(td, J = 6.9, 2.1 Hz, 2H), 2.03 – 1.96 (m, 2H), 1.90 – 1.83 (m, 2H), 1.79 – 1.71 (m, 2H), 1.70 

– 1.63 (m, 2H), 1.54 – 1.01 (m, 11H), 0.92 (t, J = 7.2 Hz, 3H). 13C NMR (126 MHz, CDCl3) 

δ 87.2, 85.5, 60.6, 50.0, 41.4, 31.3, 30.7, 30.0, 29.7, 26.8, 26.4, 26.3, 26.2, 23.6, 22.0, 18.4, 

13.6. HRMS for C17H30N [M + 1]: calc. 248.2378, found 248.2373. 

 

1-(1-cyclohexyl-3-(4-(trifluoromethyl)phenyl)prop-2-ynyl)pyrrolidine (C4P23) 

 

Yellow oil; 1H NMR (500 MHz, CDCl3) δ 7.58 – 7.50 (m, 4H), 3.38 (d, J = 8.5 Hz, 1H), 2.78 

– 2.70 (m, 2H), 2.69 – 2.61 (m, 2H), 2.11 – 2.06 (m, 1H), 2.01 – 1.95 (m, 1H), 1.81 (s, 1H), 

1.73 – 1.55 (m, 2H), 1.36 – 1.04 (m, 8H), 0.93 – 0.87 (m, 2H). 13C NMR (126 MHz, CDCl3) 
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δ 131.9, 129.5 (q, J = 32.6 Hz), 127.5, 127.2, 125.1 (q, J = 3.8 Hz), 122.9, 120.7, 90.9, 84.6, 

61.2, 60.3, 50.0, 41.3, 31.6, 30.7, 30.3, 26.7, 26.2, 26.1, 23.6, 22.6, 14.0. HRMS for 

C20H24F3N [M + 1]: calc: 336.1939, found: 336.1934. 

 

Chapter 5 

General catalytic protocol for alkyne-azide cycloaddition (triazole products C5T1-

C5T17): To a sealed tube containing 0.5 mmol of sodium azide (0.033 g) in 3 mL of ethanol, 

0.5 mmol of organic halide or boronic acid, 0.5 mmol of alkyne and 5 mol% of the catalyst 

were added and the mixture was stirred at reflux for the appropriate time. After completion 

of the reaction, the mixture was filtered upon a short pad of silica (to withhold any solid 

material) and the filtrate was evaporated under vacuum. The resulting residue was then 

separated by column chromatography using silica gel and a mixture of hexane/EtOAc (5/1 

ratio for triazoles deriving from organic halides, 10/1 ratio for triazoles deriving from boronic 

acid) as the eluent, to afford the corresponding triazole product in pure form. The 

characterization data of the products matched well with those reported in the literature. 

Supporting Figures for 1H NMR, 13CNMR and ESI-MS may be found in the Appendix. 

 

1-benzyl-4-phenyl-1H-1,2,3-triazole (C5T1)375 

 

Yellow oil; 1H NMR (500 MHz, CDCl3) δ 7.81 (d, J = 7.7 Hz, 2H), 7.68 (s, 1H), 7.42 – 7.30 

(m, 8H), 5.59 (s, 2H). 13C NMR (126 MHz, CDCl3) δ 134.5, 129.2, 128.9, 128.8, 128.3, 

128.1, 125.8, 54.4. HRMS for C15H14N3 [M + 1]: calc: 236.1182, found: 236.1174. 

 

1-benzyl-4-(4-methoxy)phenyl-1H-1,2,3-triazole (C5T2)375 

 

Yellow oil; 1H NMR (500 MHz, CDCl3) δ 7.75 – 7.69 (m, 2H), 7.58 (s, 1H), 7.40 – 7.34 (m, 

3H), 7.30 (d, J = 7.0 Hz, 2H), 6.92 (d, J = 7.7 Hz, 2H), 5.56 (s, 2H), 3.82 (s, 3H). 13C NMR 
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(126 MHz, CDCl3) δ 159.6, 148.1, 134.7, 129.1, 128.7, 128.0, 127.0, 123.3, 118.7, 114.2, 

55.3, 54.2. HRMS for C16H16N3O [M + 1]: calc: 266.1288, found: 266.1279. 

 

1-benzyl-4-butyl-1H-1,2,3-triazole (C5T3)375 

 

Yellow oil; 1H NMR (600 MHz, CDCl3) δ 7.37 – 7.28 (m, 3H), 7.23 – 7.20 (m, 2H), 7.19 (s, 

1H), 5.44 (s, 2H), 2.66 (t, J = 7.8 Hz, 2H), 1.60 (p, J = 7.7 Hz, 2H), 1.33 (q, J = 7.5 Hz, 2H), 

0.88 (t, J = 7.4 Hz, 3H). 13C NMR (151 MHz, CDCl3) δ 148.8, 135.0, 129.0, 128.5, 127.9, 

120.6, 53.9, 31.5, 25.4, 22.3, 13.8. HRMS for C13H18N3 [M + 1]: calc: 216.1495, found: 

216.1494. 

 

(1-benzyl-1H-1,2,3-triazol-4-yl)methanol (C5T4)375 

 

Yellow oil; 1H NMR (600 MHz, CDCl3) δ 7.48 (s, 1H), 7.38 – 7.30 (m, 3H), 7.29 – 7.22 (m, 

2H), 5.48 (s, 2H), 4.72 (s, 2H). 13C NMR (151 MHz, CDCl3) δ 148.4, 134.5, 129.1, 128.8, 

128.1, 122.2, 56.2, 54.2. HRMS for C10H12N3O [M + 1]: calc: 190.0975, found: 190.0968. 

 

2-(1-benzyl-1H-1,2,3-triazol-4-yl)ethanol (C5T5)375 

 

Yellow oil; 1H NMR (600 MHz, CDCl3) δ 7.38 – 7.30 (m, 4H), 7.27 – 7.23 (m, 2H), 5.48 (s, 

2H), 3.91 (s, 2H), 2.90 (t, J = 6.1, 2.0 Hz, 2H). 13C NMR (151 MHz, CDCl3) δ 146.0, 134.7, 

129.1, 128.7, 128.1, 121.5, 61.5, 54.1, 28.7. HRMS for C11H14N3O [M + 1]: calc: 204.1131, 

found: 204.1131.  
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Ethyl 1-benzyl-1H-1,2,3-triazole-4-carboxylate (C5T6) 

 

 

1H NMR (600 MHz, CDCl3) δ 7.97 (s, 1H), 7.31 – 7.27 (m, 3H), 7.23 – 7.17 (m, 2H), 5.58 

(s, 2H), 4.40 (q, J = 7.2 Hz, 2H), 1.39 (t, J = 7.1 Hz, 3H). The found values match well to 

those in the literature.375 

 

1-butyl-4-phenyl-1H-1,2,3-triazole (C5T7)376 

 

Yellow oil; 1H NMR (500 MHz, CDCl3) δ 7.84 (d, J = 7.6 Hz, 2H), 7.76 (s, 1H), 7.42 (t, J = 

7.6 Hz, 2H), 7.33 (t, J = 7.4 Hz, 1H), 4.41 (t, J = 7.2 Hz, 2H), 1.99 – 1.89 (m, 2H), 1.45 – 

1.34 (m, 2H), 0.97 (t, J = 7.4 Hz, 3H). 13C NMR (126 MHz, CDCl3) δ 148.6, 130.7, 128.8, 

128.1, 125.7, 119.4, 50.2, 32.3, 19.7, 13.5. HRMS for C12H16N3 [M + 1]: calc: 202.1339, 

found: 202.1341. 

 

1-butyl-4-(4-methoxy-phenyl)-1H-1,2,3-triazole (C5T8)376 

 

Yellow oil; 1H NMR (500 MHz, CDCl3) δ 7.76 (d, J = 8.3 Hz, 2H), 7.66 (s, 1H), 6.96 (d, J 

= 8.3 Hz, 2H), 4.40 (t, J = 7.3 Hz, 2H), 3.85 (s, 3H), 1.97 – 1.90 (m, 2H), 1.44 – 1.36 (m, 

2H), 0.98 (t, J = 7.4 Hz, 3H). 13C NMR (151 MHz, CDCl3) δ 159.6, 150.6, 133.6, 127.0, 

118.6, 114.2, 77.2, 77.0, 76.8, 55.3, 50.1, 32.3, 19.7, 13.5. HRMS for C13H18N3O [M + 1]: 

calc: 232.1444, found: 232.1447. 
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1,4-dibutyl-1H-1,2,3-triazole (C5T9)377 

 

Yellow oil; 1H NMR (500 MHz, CDCl3) δ 7.27 (s, 1H), 4.32 (t, J = 7.2 Hz, 2H), 2.71 (t, J = 

7.7 Hz, 2H), 1.91 – 1.83 (m, 2H), 1.69 – 1.61 (m, 2H), 1.43 – 1.30 (m, 4H), 1.00 – 0.89 (m, 

6H). 13C NMR (126 MHz, CDCl3) δ 148.3, 120.4, 49.9, 32.3, 31.6, 25.4, 22.3, 19.7, 13.8, 

13.5. HRMS for C10H20N3 [M + 1]: calc: 182.1652, found: 182.1652. 

 

(1-Butyl-1H-1,2,3-triazol-4-yl)methanol (C5T10)378 

 

Light yellow oil; 1H NMR (500 MHz, CDCl3) δ 7.54 (s, 1H), 4.80 (s, 2H), 4.36 (t, J = 7.2 

Hz, 2H), 1.89 (p, J = 7.5 Hz, 2H), 1.42 – 1.26 (m, 2H), 0.95 (t, J = 7.4 Hz, 3H). 13C NMR 

(126 MHz, CDCl3) δ 147.6, 121.7, 56.5, 50.1, 32.2, 19.7, 13.4. HRMS for C7H14N3O [M + 

1]: calc: 156.1131, found: 156.1134. 

 

2-(1-butyl-1H-1,2,3-triazol-4-yl)ethanol (C5T11) 

 

Light yellow oil; 1H NMR (600 MHz, CDCl3) δ 7.40 (s, 1H), 4.32 (t, J = 7.2 Hz, 2H), 3.96 

(s, 2H), 2.93 (t, J = 5.7 Hz, 2H), 1.87 (p, J = 7.4 Hz, 2H), 1.38 – 1.24 (m, 2H), 0.95 (t, J = 

7.3 Hz, 3H). 13C NMR (126 MHz, CDCl3) δ 147.1, 121.6, 61.6, 50.0, 32.2, 28.6, 19.7, 13.4. 

HRMS for C7H14N3O [M + 1]: calc: 170.1288, found: 170.1288. 

 

 

 

 

 

 



217 
 

1,4-Diphenyl-1H-[1,2,3]-triazole (C5T12)379 

 

Yellow oil; 1H NMR (600 MHz, CDCl3) δ 8.20 (s, 1H), 7.92 (d, J = 7.4 Hz, 2H), 7.80 (d, J 

= 7.6 Hz, 2H), 7.55 (t, J = 7.6 Hz, 2H), 7.49 – 7.43 (m, 3H), 7.40 – 7.34 (m, 1H). 13C NMR 

(151 MHz, CDCl3) δ 148.4, 137.1, 130.2, 129.8, 128.9, 128.8, 128.4, 125.8, 120.5, 117.6, 

77.2, 77.0, 76.8. HRMS for C14H12N3 [M + 1]: calc: 222.1026, found: 222.1026. 

 

(1-phenyl-1H-1,2,3-triazol-4-yl)methanol (C5T14)380 

 

Light yellow oil; 1H NMR (600 MHz, CDCl3) δ 7.98 (s, 1H), 7.73 (d, J = 7.6 Hz, 2H), 7.53 

(t, J = 7.8 Hz, 2H), 7.45 (t, J = 7.5 Hz, 1H), 4.91 (s, 2H). 13C NMR (151 MHz, CDCl3) δ 

148.2, 135.6, 129.8, 128.9, 120.6, 119.9, 56.7. HRMS for C9H9N3ONa [M + Na]: calc: 

198.0638, found: 198.0631. 

 

2-(1-phenyl-1H-1,2,3-triazol-4-yl)ethanol (C5T15)381 

 

Light yellow oil; 1H NMR (600 MHz, CDCl3) δ 7.85 (s, 1H), 7.73 (d, J = 7.9 Hz, 2H), 7.53 

(t, J = 7.7 Hz, 2H), 7.44 (t, J = 7.2 Hz, 1H), 4.03 (t, J = 5.9 Hz, 2H), 3.21 (t, J = 6.3 Hz, 1H), 

3.06 (t, J = 5.8 Hz, 2H). 13C NMR (151 MHz, CDCl3) δ 146.2, 135.6, 129.7, 128.7, 120.5, 

119.8, 77.2, 77.0, 76.8, 61.6, 28.7. HRMS for C10H11N3ONa [M + Na]: calc: 212.0794, 

found: 212.0786. 

 

Chapter 6 

General catalytic protocol for A3 coupling (propargylamine products C6P1-C6P18): A 

mixture of aldehyde (1 mmol), amine (1.1 mmol), alkyne (1.3 mmol), Ag catalyst (0.5 mol%, 

based on the aldehyde amount) and 2-propanol (5 ml) was added into a sealed tube and stirred 
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at 90 °C for appropriate time. After completion of the reaction, the mixture was left to cool 

to room temperature, filtered upon a short pad of silica (to separate any solid material) and 

the filtrate was evaporated under vacuum. The corresponding propargyl amine was isolated 

in pure form by column chromatography using silica gel and a solvent mixture of 

hexane/EtOAc in a ratio of 10/1 as the eluent. The characterization data of the products 

matched well with those reported in the respective studies in Chapter 4. 

 

General catalytic protocol for alkyne hydration (ketone products C6K1-C6K3): A 

mixture of alkyne (1 mmol), water (150 μl), Ag catalyst (3 mol%, based on the alkyne 

amount) and methanol (1.5 ml) was added into a sealed tube and stirred at 90 °C for 24 hr. 

The mixture was then allowed to cool to room temperature and filtered upon a short pad of 

silica (to withhold any solid material). The resulting residue was then loaded to a flash 

column chromatography using silica gel and the corresponding ketone was isolated in pure 

form using a mixture of hexane/EtOAc in a ratio of 10/1 (for C6K1, C6K2) or 3/1 (for 

C6K3), as the eluent. The characterization data of the products matched well with those 

reported in the literature337,339. Supporting Figures for 1H NMR, 13CNMR and EI-MS may be 

found in the Appendix. 

 

Acetophenone (C6K1) 

 

Yellow oil; 1H NMR (500 MHz, CDCl3) δ 7.91 (d, J = 8.3 Hz, 2H), 7.50 (t, J = 6.6 Hz, 1H), 

7.40 (t, J = 7.7 Hz, 2H), 2.54 (s, 3H). 13C NMR (126 MHz, cdcl3) δ 198.0, 137.1, 133.0, 

128.5, 128.2, 26.5. GCMS (EI) m/z: 120 (M+). 
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4-methoxyacetophenone (C6K2) 

 

Yellow oil; 1H NMR (500 MHz, CDCl3) δ 7.92 (d, J = 8.8 Hz, 2H), 6.92 (d, J = 8.8 Hz, 2H), 

3.85 (s, 3H), 2.54 (s, 3H). 13C NMR (126 MHz, CDCl3) δ 196.8, 163.5, 130.6, 130.3, 113.6, 

55.4, 26.3. MS (EI) m/z: 151 (M+). 

 

2-hexanone (C6K3) 

 

Yellow oil; 1H NMR (600 MHz, CDCl3) δ 2.41 (t, J = 7.5 Hz, 2H), 2.12 (s, 3H), 1.53 (p, J = 

7.5 Hz, 2H), 1.29 (q, J = 7.4 Hz, 2H), 0.88 (t, J = 7.4 Hz, 3H). 13C NMR (151 MHz, CDCl3) 

δ 210.5, 43.5, 29.7, 25.9, 22.2, 13.7. GCMS (EI) m/z: 100 (M+). 
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Chapter 9: Crystallographic Data 

 

9.1. Crystallographic Data of Ligands 

 

Table 9.1. Crystal data and structure refinement for ligands L1, L3, L4. 

Compound L1 L3 L4 

Empirical formula C20H16N6 C20H16N6 C22H20N6 

Formula weight 340.39 340.39 368.44 

Temperature/K 100 100(2) 173 

Crystal system monoclinic triclinic triclinic 

Space group P21 P-1 P-1 

a/Å 4.6565(3) 6.3881(4) 8.2386(9) 

b/Å 29.1915(15) 7.6794(9) 11.8590(11) 

c/Å 6.0504(4) 17.8944(12) 19.4033(13) 

α/° 90 87.348(7) 90.193(7) 

β/° 100.173(6) 89.529(5) 91.897(7) 

γ/° 90 67.155(8) 89.882(8) 

Volume/Å3 809.50(9) 808.07(13) 1894.7(3) 

Z 2 2 2 

ρcalcg/cm3 1.396 1.399 1.292 

μ/mm1 0.703 0.089 0.639 

F(000) 356.0 356.0 776.0 

Crystal size/mm3 0.41 × 0.11 × 0.09 0.12 × 0.06 × 0.04 0.17 × 0.14 × 0.12 

Radiation 
CuKα (λ = 

1.54184) 
Mo Kα (λ = 0.71075) CuKα (λ = 1.54184) 

2Θ range for data collection/° 6.056 to 135.36 4.558 to 54.96 8.754 to 142.688 

Index ranges 
-4 ≤ h ≤ 5, -34 ≤ k 

≤ 32, -5 ≤ l ≤ 7 

-8 ≤ h ≤ 8, -9 ≤ k ≤ 9, -23 

≤ l ≤ 23 

-6 ≤ h ≤ 10, -7 ≤ k ≤ 

14, -22 ≤ l ≤ 23 

Reflections collected 4039 13024 5180 
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Independent reflections 

2463 [Rint = 

0.0466, Rsigma = 

0.0565] 

3650 [Rint = 0.0484, 

Rsigma = 0.0480] 

4563 [Rint = 0.0466, 

Rsigma = 0.0683] 

Data/restraints/parameters 2463/1/235 3650/0/235 4563/238/485 

Goodness-of-fit on F2 1.038 1.118 2.015 

Final R indexes [I>=2σ (I)] 
R1 = 0.0664, wR2 = 

0.1708 

R1 = 0.0994, wR2 = 

0.2643 

R1 = 0.1997, wR2 = 

0.5013 

Final R indexes [all data] 
R1 = 0.0708, wR2 = 

0.1819 

R1 = 0.1229, wR2 = 

0.2788 

R1 = 0.2351, wR2 = 

0.5299 

Largest diff. peak/hole / e Å-3 0.44/-0.24 0.68/-0.44 1.51/-0.81 

 

 

Table 9.2. Crystal data and structure refinement for ligands L5, L7, L8. 

Compound [L5]·2H2O [L7]·2H2O L8 

Empirical formula C24H28N6O2 C14H18N4O2 C13H11N3 

Formula weight 432.52 274.32 209.25 

Temperature/K 173.0 173.0 173.0 

Crystal system orthorhombic triclinic monoclinic 

Space group Pna21 P-1 P21/c 

a/Å 20.4631(9) 8.1128(8) 11.5768(16) 

b/Å 4.89861(18) 8.7716(11) 5.9774(8) 

c/Å 22.5403(9) 10.9028(11) 16.119(2) 

α/° 90 80.648(10) 90 

β/° 90 69.951(9) 106.541(14) 

γ/° 90 84.374(10) 90 

Volume/Å3 2259.45(16) 718.41(15) 1069.3(3) 

Z 4 2 4 

ρcalcg/cm3 1.271 1.268 1.300 

μ/mm1 0.677 0.716 0.634 

F(000) 920.0 292.0 440.0 
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Crystal size/mm3 
0.4 × 0.26 × 

0.14 
0.24 × 0.16 × 0.12 0.34 × 0.28 × 0.2 

Radiation 
CuKα (λ = 

1.54184) 
CuKα (λ = 1.54184) CuKα (λ = 1.54184) 

2Θ range for data collection/° 
7.844 to 

142.628 
8.716 to 141.898 7.966 to 142.23 

Index ranges 

-24 ≤ h ≤ 23, -3 

≤ k ≤ 5, -27 ≤ l 

≤ 27 

-9 ≤ h ≤ 7, -9 ≤ k ≤ 10, -

13 ≤ l ≤ 12 

-14 ≤ h ≤ 12, -5 ≤ k 

≤ 7, -19 ≤ l ≤ 19 

Reflections collected 11155 3676 3132 

Independent reflections 

4091 [Rint = 

0.0371, Rsigma = 

0.0393] 

2629 [Rint = 0.0358, 

Rsigma = 0.0721] 

1981 [Rint = 0.0368, 

Rsigma = 0.0464] 

Data/restraints/parameters 4091/1/299 2629/0/187 1981/0/145 

Goodness-of-fit on F2 1.047 0.986 1.034 

Final R indexes [I>=2σ (I)] 
R1 = 0.0484, 

wR2 = 0.1263 

R1 = 0.0484, wR2 = 

0.1108 

R1 = 0.0606, wR2 = 

0.1614 

Final R indexes [all data] 
R1 = 0.0569, 

wR2 = 0.1371 

R1 = 0.0730, wR2 = 

0.1284 

R1 = 0.0753, wR2 = 

0.1860 

Largest diff. peak/hole / e Å-3 0.21/-0.18 0.20/-0.26 0.20/-0.27 

 

 

9.2. Crystallographic Data of Coordination Compounds 

 

9.2.1. Chapter 2 Compounds 

 

Table 9.3. Crystal data and structure refinement for 1-3. 

Compound  1 2 3  

Empirical formula  C44H38Cl4Co2N14 C40H32Br4Co2N12 C22H19Cl2CoN7  

Formula weight  1022.54 1118.27 511.27  
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Temperature/K  173.0 293(2) 173.0  

Crystal system  triclinic triclinic triclinic  

Space group  P-1 P-1 P-1  

a/Å  9.2872(6) 9.4548(5) 10.3450(9)  

b/Å  11.0385(9) 10.7016(8) 10.6249(10)  

c/Å  13.0562(8) 10.7793(9) 12.4219(11)  

α/°  67.511(7) 68.392(7) 79.192(7)  

β/°  84.255(5) 81.206(6) 72.669(8)  

γ/°  79.656(6) 83.475(5) 72.588(8)  

Volume/Å3  1215.87(15) 1000.14(13) 1236.4(2)  

Z  1 1 2  

ρcalcg/cm3  1.397 1.857 1.373  

μ/mm1  7.744 4.873 0.933  

F(000)  522.0 550.0 522.0  

Crystal size/mm3  0.08 × 0.06 × 0.03 0.093 × 0.055 × 0.031 0.28 × 0.2 × 0.18  

Radiation  CuKα (λ = 1.54184) MoKα (λ = 0.71073) MoKα (λ = 0.71073)  

2Θ range for data 

collection/°  
8.774 to 142.54 5.616 to 52.744 6.912 to 58.188  

Index ranges  
-9 ≤ h ≤ 11, -13 ≤ k ≤ 

13, -11 ≤ l ≤ 16 

-11 ≤ h ≤ 10, -13 ≤ k ≤ 

13, -13 ≤ l ≤ 13 

-12 ≤ h ≤ 13, -13 ≤ k 

≤ 9, -16 ≤ l ≤ 16 
 

Reflections collected  4518 11760 8046  

Independent reflections  
4518 [Rint = 0.0571, 

Rsigma = 0.0893] 

4014 [Rint = 0.1146, 

Rsigma = 0.0833] 

5498 [Rint = 0.0248, 

Rsigma = 0.0516] 
 

Data/restraints/parameters  4518/1/290 4014/0/262 5498/24/290  

Goodness-of-fit on F2  1.019 1.385 1.012  

Final R indexes [I>=2σ 

(I)]  

R1 = 0.0717, wR2 = 

0.1813 

R1 = 0.0719, wR2 = 

0.1873 

R1 = 0.0385, wR2 = 

0.0888 
 

Final R indexes [all data]  
R1 = 0.0895, wR2 = 

0.2011 

R1 = 0.0938, wR2 = 

0.1995 

R1 = 0.0495, wR2 = 

0.0954 
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Largest diff. peak/hole / e 

Å-3  
1.26/-0.52 1.67/-0.82 0.43/-0.48  

 

 

Table 9.4. Crystal data and structure refinement for 4-7. 

Compound  4 5 6 7  

Empirical formula  C20H16Cl2CoN6 C44H38Br4Co2N14 C44H38CoN16O6 C22H19Cl2CoN7  

Formula weight  470.22 1200.38 945.83 511.27  

Temperature/K  173 173.0 173.0 173  

Crystal system  monoclinic triclinic monoclinic monoclinic  

Space group  P21/c P-1 P21/c P21/c  

a/Å  10.1342(8) 10.4914(10) 10.3683(6) 12.7902(11)  

b/Å  21.3347(15) 10.8202(10) 24.1547(10) 8.7966(8)  

c/Å  9.7278(11) 12.3408(11) 9.1109(4) 20.363(2)  

α/°  90 79.793(8) 90 90  

β/°  109.334(10) 73.864(8) 110.136(6) 100.365(10)  

γ/°  90 72.821(9) 90 90  

Volume/Å3  1984.7(3) 1278.8(2) 2142.29(19) 2253.6(4)  

Z  4 1 2 4  

ρcalcg/cm3  1.574 1.559 1.466 1.507  

μ/mm1  1.154 3.818 3.732 1.024  

F(000)  956.0 594.0 978.0 1044.0  

Crystal size/mm3  
0.38 × 0.29 × 

0.25 
0.26 × 0.2 × 0.1 0.2 × 0.1 × 0.08 

0.12 × 0.09 × 

0.06 
 

Radiation  
MoKα (λ = 

0.71073) 

Mo Kα (λ = 

0.71073) 

CuKα (λ = 

1.54184) 

MoKα (λ = 

0.71073) 
 

2Θ range for data 

collection/°  
7.14 to 59.038 7.604 to 52.742 

10.972 to 

140.372 

7.296 to 

57.968 
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Index ranges  

-12 ≤ h ≤ 12, -27 

≤ k ≤ 27, -13 ≤ l 

≤ 12 

-13 ≤ h ≤ 12, -13 

≤ k ≤ 14, -7 ≤ l ≤ 

16 

-7 ≤ h ≤ 12, -25 

≤ k ≤ 29, -11 ≤ l 

≤ 10 

-17 ≤ h ≤ 17, -

7 ≤ k ≤ 11, -26 

≤ l ≤ 15 

 

Reflections collected  8647 5739 6575 8556  

Independent reflections  

4428 [Rint = 

0.0812, Rsigma = 

0.1051] 

3973 [Rint = 

0.0222, Rsigma = 

0.0514] 

3936 [Rint = 

0.0254, Rsigma = 

0.0421] 

5048 [Rint = 

0.0326, Rsigma 

= 0.0548] 

 

Data/restraints/parameters  4428/0/262 3973/13/290 3936/0/305 5048/0/290  

Goodness-of-fit on F2  1.013 1.026 1.030 1.040  

Final R indexes [I>=2σ (I)]  
R1 = 0.0753, 

wR2 = 0.1787 

R1 = 0.0424, wR2 

= 0.1019 

R1 = 0.0389, 

wR2 = 0.0960 

R1 = 0.0478, 

wR2 = 0.0996 
 

Final R indexes [all data]  
R1 = 0.1242, 

wR2 = 0.2174 

R1 = 0.0562, wR2 

= 0.1100 

R1 = 0.0473, 

wR2 = 0.1014 

R1 = 0.0742, 

wR2 = 0.1175 
 

Largest diff. peak/hole / e 

Å-3  
1.08/-1.31 0.53/-0.41 0.42/-0.32 0.33/-0.36  

 

 

Table 9.5. Crystal data and structure refinement for 8-10. 

Compound   8 9 10  

Empirical formula   C40H32Cl4Co2N12 C40H32N12Co2Br4 C40H32CoN14O6  

Formula weight   940.43 1118.27 863.72  

Temperature/K   173.0 173.0 173.0  

Crystal system   triclinic triclinic triclinic  

Space group   P-1 P-1 P-1  

a/Å   10.0907(18) 10.1947(9) 9.8734(7)  

b/Å   10.4778(13) 10.5735(11) 10.0969(7)  

c/Å   11.011(2) 11.0714(12) 10.6672(9)  

α/°   83.817(13) 81.303(9) 96.504(6)  

β/°   77.419(16) 77.374(8) 112.290(7)  

γ/°   63.231(16) 62.179(10) 99.774(6)  
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Volume/Å3   1014.4(3) 1028.3(2) 951.10(13)  

Z   1 1 1  

ρcalcg/cm3   1.540 1.806 1.508  

μ/mm1   1.129 4.739 4.128  

F(000)   478.0 550.0 445.0  

Crystal size/mm3   0.12 × 0.08 × 0.04 0.36 × 0.24 × 0.18 0.4 × 0.28 × 0.14  

Radiation  
 
MoKα (λ = 0.71073) MoKα (λ = 0.71073) 

CuKα (λ = 

1.54184) 
 

2Θ range for data collection/°   7.584 to 58.59 7.556 to 58.686 9.062 to 142.056  

Index ranges  
 -12 ≤ h ≤ 13, -9 ≤ k 

≤ 14, -11 ≤ l ≤ 14 

-13 ≤ h ≤ 13, -13 ≤ k 

≤ 12, -15 ≤ l ≤ 15 

-8 ≤ h ≤ 12, -12 ≤ k 

≤ 12, -13 ≤ l ≤ 13 
 

Reflections collected   6761 7075 5125  

Independent reflections  

 
4567 [Rint = 0.0436, 

Rsigma = 0.1116] 

4605 [Rint = 0.0352, 

Rsigma = 0.0697] 

3503 [Rint = 

0.0455, Rsigma = 

0.0624] 

 

Data/restraints/parameters   4567/0/262 4605/0/262 3503/0/277  

Goodness-of-fit on F2   1.033 1.007 1.043  

Final R indexes [I>=2σ (I)]  
 R1 = 0.0611, wR2 = 

0.1014 

R1 = 0.0427, wR2 = 

0.0813 

R1 = 0.0584, wR2 = 

0.1562 
 

Final R indexes [all data]  
 R1 = 0.1082, wR2 = 

0.1274 

R1 = 0.0625, wR2 = 

0.0904 

R1 = 0.0643, wR2 = 

0.1677 
 

Largest diff. peak/hole / e Å-3   0.58/-0.52 0.69/-0.84 0.43/-0.70  
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9.2.2. Chapter 3 Compounds 

 

Table 9.6. Crystal data and structure refinement for 11-13, 11i. 

Compound   11 12 13 11i  

Empirical formula   C46H41Cl2CuN14.5O8 C22H19CuN9O6 C40H36Cl2N12O10Zn C21H17Cl4CuN6  

Formula weight   1059.37 569.00 981.08 559.75  

Temperature/K   173.0 173 173 100(2)  

Crystal system   triclinic monoclinic triclinic triclinic  

Space group   P-1 P21/n P-1 P-1  

a/Å   8.9947(5) 10.8479(3) 9.5360(6) 9.5949(6)  

b/Å   11.5251(7) 14.9136(4) 9.6786(7) 10.6656(7)  

c/Å   12.2870(7) 15.1286(5) 11.6134(9) 11.3259(6)  

α/°   105.528(5) 90 79.785(6) 82.344(5)  

β/°   99.583(5) 103.517(3) 78.701(6) 74.965(5)  

γ/°   101.062(5) 90 79.075(6) 77.851(6)  

Volume/Å3   1172.03(12) 2379.73(13) 1021.03(13) 1090.50(12)  

Z   1 4 1 2  

ρcalcg/cm3   1.501 1.588 1.596 1.705  

μ/mm1   0.651 0.978 2.694 1.515  

F(000)   546.0 1164.0 504.0 564.0  

Crystal size/mm3  
 

0.2 × 0.12 × 0.08 
0.28 × 0.16 × 

0.08 
0.2 × 0.16 × 0.12 

0.05 × 0.04 × 

0.01 
 

Radiation  
 MoKα (λ = 

0.71073) 

MoKα (λ = 

0.71073) 

CuKα (λ = 

1.54184) 

MoKα (λ = 

0.71075) 
 

2Θ range for data 

collection/°  

 
6.768 to 65.326 

6.888 to 

59.034 
7.846 to 122.294 5.098 to 54.97  

Index ranges  

 
-13 ≤ h ≤ 13, -16 ≤ 

k ≤ 17, -14 ≤ l ≤ 18 

-11 ≤ h ≤ 13, -

19 ≤ k ≤ 19, -

20 ≤ l ≤ 12 

-10 ≤ h ≤ 7, -10 ≤ 

k ≤ 10, -13 ≤ l ≤ 

13 

-12 ≤ h ≤ 12, -

13 ≤ k ≤ 13, -

14 ≤ l ≤ 14 

 

Reflections collected   12030 11083 8034 13369  
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Independent reflections  

 
7566 [Rint = 

0.0347, Rsigma = 

0.0588] 

5483 [Rint = 

0.0295, 

Rsigma = 

0.0429] 

3110 [Rint = 

0.0338, Rsigma = 

0.0330] 

4940 [Rint = 

0.0743, 

Rsigma = 

0.1165] 

 

Data/restraints/parameters   7566/2/339 5483/0/344 3110/1/303 4940/0/289  

Goodness-of-fit on F2   1.050 1.042 1.062 0.994  

Final R indexes [I>=2σ (I)]  
 R1 = 0.0520, wR2 = 

0.1223 

R1 = 0.0359, 

wR2 = 0.0859 

R1 = 0.0368, 

wR2 = 0.0890 

R1 = 0.0534, 

wR2 = 0.0904 
 

Final R indexes [all data]  
 R1 = 0.0707, wR2 = 

0.1342 

R1 = 0.0475, 

wR2 = 0.0916 

R1 = 0.0443, 

wR2 = 0.0951 

R1 = 0.1057, 

wR2 = 0.1038 
 

Largest diff. peak/hole / e 

Å-3  

 
0.77/-0.61 0.43/-0.39 0.36/-0.41 0.53/-0.80  

 

 

 

9.2.3. Chapter 4 Compounds 

 

Table 9.7. Crystal data and structure refinement for compounds 14-17. 

Compound  14 15 16 17 

Empirical formula  C80H64Cl8Cu4N24 C40H32Cl10Cu5N12 C88H76Br8Cu4N28 C44H38B2CuF8N14 

Formula weight  1899.31 1352.97 2419.20 1000.04 

Temperature/K  173 173 100.0 100(2) 

Crystal system  triclinic triclinic monoclinic triclinic 

Space group  P-1 P-1 C2/c P-1 

a/Å  9.5604(6) 10.2604(8) 32.215(2) 8.9788(2) 

b/Å  13.9067(7) 10.5576(8) 13.4835(10) 11.4531(3) 

c/Å  14.9267(10) 11.3368(8) 25.8172(18) 12.1017(4) 

α/°  97.491(5) 101.609(6) 90 105.004(3) 

β/°  104.148(6) 104.227(7) 122.782(3) 101.295(3) 

γ/°  96.127(5) 91.061(7) 90 101.078(2) 
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Volume/Å3  1888.0(2) 1163.05(16) 9428.1(12) 1139.36(6) 

Z  1 1 4 1 

ρcalcg/cm3  1.670 1.932 1.704 1.457 

μ/mm1  4.406 8.206 4.341 0.563 

F(000)  964.0 671.0 4784.0 511.0 

Crystal size/mm3  
0.12 × 0.08 × 

0.04 
0.24 × 0.16 × 0.12 

0.03 × 0.025 × 

0.01 
0.4 × 0.12 × 0.08 

Radiation  
CuKα (λ = 

1.54184) 

CuKα (λ = 

1.54184) 

MoKα (λ = 

0.71075) 

Mo Kα (λ = 

0.71075) 

2Θ range for data 

collection/°  
9.642 to 131.984 8.914 to 142.998 4.882 to 52.746 3.81 to 54.96 

Index ranges  

-10 ≤ h ≤ 11, -16 

≤ k ≤ 12, -17 ≤ l 

≤ 17 

-12 ≤ h ≤ 12, -6 ≤ 

k ≤ 12, -13 ≤ l ≤ 

10 

-41 ≤ h ≤ 41, -17 

≤ k ≤ 17, -32 ≤ l ≤ 

33 

-11 ≤ h ≤ 11, -14 

≤ k ≤ 14, -15 ≤ l ≤ 

15 

Reflections collected  10497 6771 9519 14570 

Independent 

reflections  

6406 [Rint = 

0.0925, Rsigma = 

0.1081] 

4315 [Rint = 

0.0361, Rsigma = 

0.0536] 

9519 [Rint = ?, 

Rsigma = 0.1905] 

5202 [Rint = 

0.0224, Rsigma = 

0.0255] 

Data/restraints/param

eters  
6406/18/523 4315/0/304 9519/68/579 5202/0/314 

Goodness-of-fit on 

F2  
0.993 1.010 1.053 1.047 

Final R indexes 

[I>=2σ (I)]  

R1 = 0.0646, 

wR2 = 0.1512 

R1 = 0.0378, wR2 

= 0.0931 

R1 = 0.1409, 

wR2 = 0.3466 

R1 = 0.0335, wR2 

= 0.0867 

Final R indexes [all 

data]  

R1 = 0.1017, 

wR2 = 0.1776 

R1 = 0.0499, wR2 

= 0.1025 

R1 = 0.2346, 

wR2 = 0.3856 

R1 = 0.0391, wR2 

= 0.0892 

Largest diff. 

peak/hole / e Å-3  
0.93/-0.90 0.62/-0.72 1.71/-1.11 0.42/-0.34 

 

 

 



230 
 

 

Table 9.8. Crystal data and structure refinement for 18-20. 

Compound  18 19 20 

Empirical formula  C42H32CuF6N12O6S2 C44H38N14Zn C52H54CuF6N12O9S2 

Formula weight  1042.45 828.25 1232.73 

Temperature/K  100(2) 173.0 100(2) 

Crystal system  triclinic triclinic monoclinic 

Space group  P-1 P-1 C2/c 

a/Å  9.0095(3) 9.1257(4) 21.7957(11) 

b/Å  11.1490(4) 11.8008(6) 22.4426(10) 

c/Å  12.0186(6) 13.0936(7) 27.7251(19) 

α/°  115.336(5) 108.539(5) 90 

β/°  104.428(4) 95.030(4) 110.418(6) 

γ/°  93.558(3) 101.159(4) 90 

Volume/Å3  1036.89(8) 1294.63(12) 12709.7(13) 

Z  1 1 8 

ρcalcg/cm3  1.669 1.062 1.288 

μ/mm1  0.722 0.980 0.485 

F(000)  531.0 430.0 5096.0 

Crystal size/mm3  0.07 × 0.03 × 0.01 
0.2 × 0.16 × 

0.12 

0.090 × 0.050 × 

0.040 

Radiation  Mo Kα (λ = 0.71075) 
CuKα (λ = 

1.54184) 

Mo Kα (λ = 

0.71075) 

2Θ range for data collection/°  5.166 to 54.968 
10.01 to 

142.142 
4.124 to 50.052 

Index ranges  
-11 ≤ h ≤ 11, -14 ≤ k ≤ 

13, -15 ≤ l ≤ 15 

-6 ≤ h ≤ 11, -

14 ≤ k ≤ 14, -

15 ≤ l ≤ 15 

-25 ≤ h ≤ 25, -26 ≤ 

k ≤ 26, -32 ≤ l ≤ 32 

Reflections collected  17458 6991 62999 
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Independent reflections  
4736 [Rint = 0.0720, 

Rsigma = 0.0650] 

4792 [Rint = 

0.0278, 

Rsigma = 

0.0380] 

11194 [Rint = 

0.1674, Rsigma = 

0.1259] 

Data/restraints/parameters  4736/0/313 4792/0/270 11194/0/748 

Goodness-of-fit on F2  1.028 1.101 0.964 

Final R indexes [I>=2σ (I)]  
R1 = 0.0465, wR2 = 

0.1055 

R1 = 0.0798, 

wR2 = 0.2063 

R1 = 0.0969, wR2 = 

0.2466 

Final R indexes [all data]  
R1 = 0.0733, wR2 = 

0.1153 

R1 = 0.0859, 

wR2 = 0.2093 

R1 = 0.1912, wR2 = 

0.3047 

Largest diff. peak/hole / e Å-3  0.90/-0.66 0.82/-0.65 0.88/-0.44 

 

 

9.2.4. Chapter 5 Compounds 

 

Table 9.9. Crystal data and structure refinement for compounds 22-24. 

Compound 22 23 24 

Empirical formula C26H22CuF6N8O6S2 C46H36CuF6N8O6S2 C32H31CuF6N9O6S2 

Formula weight 784.17 1038.49 879.32 

Temperature/K 173.0 173.0 100.0 

Crystal system triclinic triclinic monoclinic 

Space group P-1 P-1 C2/c 

a/Å 9.3801(5) 9.0686(6) 14.1878(5) 

b/Å 13.3284(8) 11.2199(6) 13.3086(5) 

c/Å 16.0985(8) 12.0883(8) 40.4807(13) 

α/° 107.132(5) 115.102(6) 90 

β/° 103.696(5) 104.812(6) 90.608(3) 

γ/° 100.131(5) 93.484(5) 90 

Volume/Å3 1802.08(18) 1056.48(13) 7643.1(5) 

Z 2 1 8 
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ρcalcg/cm3 1.445 1.632 1.528 

μ/mm1 2.659 2.439 0.765 

F(000) 794.0 531.0 3592.0 

Crystal size/mm3 0.14 × 0.11 × 0.07 0.22 × 0.17 × 0.14 0.1 × 0.06 × 0.05 

Radiation CuKα (λ = 1.54184) CuKα (λ = 1.54184) MoKα (λ = 0.71073) 

2Θ range for data collection/° 10.024 to 142.2 8.5 to 142.266 4.024 to 52.744 

Index ranges 
-11 ≤ h ≤ 11, -16 ≤ k 

≤ 13, -13 ≤ l ≤ 19 

-6 ≤ h ≤ 11, -13 ≤ k ≤ 

13, -14 ≤ l ≤ 14 

-17 ≤ h ≤ 17, -16 ≤ k 

≤ 16, -50 ≤ l ≤ 50 

Reflections collected 9434 5327 42305 

Independent reflections 
6550 [Rint = 0.0463, 

Rsigma = 0.0730] 

3844 [Rint = 0.0921, 

Rsigma = 0.0976] 

7794 [Rint = 0.0735, 

Rsigma = 0.0429] 

Data/restraints/parameters 6550/0/444 3844/1/313 7794/0/506 

Goodness-of-fit on F2 1.048 1.048 1.029 

Final R indexes [I>=2σ (I)] 
R1 = 0.0657, wR2 = 

0.1742 

R1 = 0.0682, wR2 = 

0.1736 

R1 = 0.0938, wR2 = 

0.2448 

Final R indexes [all data] 
R1 = 0.0890, wR2 = 

0.1921 

R1 = 0.0883, wR2 = 

0.1948 

R1 = 0.1173, wR2 = 

0.2638 

Largest diff. peak/hole / e Å-3 1.66/-0.65 1.06/-0.81 1.59/-0.89 

 

 

Table 9.10. Crystal data and structure refinement for compounds 25-26. 

Compound 25 26 

Empirical formula C36H42.67CuF6N8O9.33S2 C96H88Cu4F12N24O16S4 

Formula weight 978.43 2444.30 

Temperature/K 100(2) 100(2) 

Crystal system monoclinic triclinic 

Space group P21/n P-1 

a/Å 20.8910(7) 16.6451(3) 

b/Å 9.2748(2) 17.1433(2) 

c/Å 25.1344(9) 19.1060(3) 
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α/° 90 90.7040(10) 

β/° 114.487(4) 90.0420(10) 

γ/° 90 97.2670(10) 

Volume/Å3 4432.0(3) 5407.72(14) 

Z 4 2 

ρcalcg/cm3 1.466 1.501 

μ/mm1 2.336 2.420 

F(000) 2017.0 2496.0 

Crystal size/mm3 0.1 × 0.08 × 0.03 0.12 × 0.1 × 0.01 

Radiation CuKα (λ = 1.54184) CuKα (λ = 1.54178) 

2Θ range for data collection/° 7.172 to 136.48 6.916 to 133.18 

Index ranges 
-24 ≤ h ≤ 25, -11 ≤ k ≤ 10, -

30 ≤ l ≤ 30 

-19 ≤ h ≤ 19, -20 ≤ k ≤ 20, -

22 ≤ l ≤ 22 

Reflections collected 41244 50455 

Independent reflections 
8098 [Rint = 0.0843, Rsigma = 

0.0564] 

18266 [Rint = 0.0517, 

Rsigma = 0.0552] 

Data/restraints/parameters 8098/0/616 18266/1296/1442 

Goodness-of-fit on F2 1.007 1.010 

Final R indexes [I>=2σ (I)] R1 = 0.0606, wR2 = 0.1638 R1 = 0.0609, wR2 = 0.1626 

Final R indexes [all data] R1 = 0.0765, wR2 = 0.1744 R1 = 0.0818, wR2 = 0.1769 

Largest diff. peak/hole / e Å-3 1.48/-1.02 1.06/-0.55 

 

9.2.5. Chapter 6 Compounds 

Table 9.11. Crystal data and structure refinement for compounds 27-29. 

Compound 27 28 29 

Empirical formula C22H16AgF3N6O2 C48H44Ag2F6N12O8S2 C23H22AgClN6O5 

Formula weight 561.28 1310.81 605.78 

Temperature/K 173.0 100.0 173 

Crystal system triclinic monoclinic monoclinic 
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Space group P-1 P21 P21/n 

a/Å 10.1359(12) 12.9491(3) 15.5196(8) 

b/Å 11.0137(13) 9.2308(2) 8.9893(4) 

c/Å 11.3295(13) 22.4537(4) 19.5761(8) 

α/° 64.447(12) 90 90 

β/° 76.865(11) 101.680(2) 92.354(4) 

γ/° 72.658(11) 90 90 

Volume/Å3 1082.0(3) 2628.33(10) 2728.8(2) 

Z 2 2 4 

ρcalcg/cm3 1.723 1.656 1.475 

μ/mm1 8.009 7.471 7.194 

F(000) 560.0 1320.0 1224.0 

Crystal size/mm3 0.32 × 0.28 × 0.24 0.4 × 0.18 × 0.09 0.25 × 0.11 × 0.08 

Radiation 
CuKα (λ = 

1.54184) 
CuKα (λ = 1.54184) CuKα (λ = 1.54184) 

2Θ range for data collection/° 8.708 to 140.52 7.308 to 135.364 10.832 to 140.318 

Index ranges 
-12 ≤ h ≤ 10, -12 ≤ 

k ≤ 13, -13 ≤ l ≤ 13 

-15 ≤ h ≤ 15, -10 ≤ k ≤ 

10, -26 ≤ l ≤ 23 

-18 ≤ h ≤ 16, -7 ≤ k 

≤ 10, -22 ≤ l ≤ 23 

Reflections collected 6366 14247 7997 

Independent reflections 

3991 [Rint = 

0.0470, Rsigma = 

0.0625] 

7424 [Rint = 0.0323, 

Rsigma = 0.0445] 

4931 [Rint = 0.0564, 

Rsigma = 0.0819] 

Data/restraints/parameters 3991/0/307 7424/37/707 4931/24/327 

Goodness-of-fit on F2 1.008 1.030 1.054 

Final R indexes [I>=2σ (I)] 
R1 = 0.0494, wR2 = 

0.1245 

R1 = 0.0603, wR2 = 

0.1591 

R1 = 0.0931, wR2 = 

0.2562 

Final R indexes [all data] 
R1 = 0.0626, wR2 = 

0.1348 

R1 = 0.0624, wR2 = 

0.1625 

R1 = 0.1198, wR2 = 

0.2900 

Largest diff. peak/hole / e Å-3 1.34/-1.00 1.42/-0.67 1.64/-1.21 
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Table 9.12. Crystal data and structure refinement for compounds 30-32. 

Compound 30 31 32 

Empirical formula C24H26AgBF4N6O C40H32Ag2Cl2N12O8 C20H16AgN7O3 

Formula weight 609.19 1095.41 510.27 

Temperature/K 173 173.0 100(2) 

Crystal system monoclinic triclinic triclinic 

Space group P21/n P-1 P-1 

a/Å 11.6635(9) 11.2007(6) 8.3196(2) 

b/Å 14.6472(7) 11.2256(5) 10.7490(3) 

c/Å 15.5988(13) 17.8129(8) 11.3260(10) 

α/° 90 82.719(4) 84.406(5) 

β/° 110.943(9) 86.099(4) 68.669(6) 

γ/° 90 64.378(5) 73.758(3) 

Volume/Å3 2488.8(3) 2002.96(18) 905.81(9) 

Z 4 2 2 

ρcalcg/cm3 1.626 1.816 1.871 

μ/mm1 7.031 9.686 1.156 

F(000) 1232.0 1096.0 512.0 

Crystal size/mm3 0.11 × 0.03 × 0.02 0.14 × 0.08 × 0.02 
0.050 × 0.040 × 

0.010 

Radiation 
CuKα (λ = 

1.54184) 
CuKα (λ = 1.54184) 

MoKα (λ = 

0.71073) 

2Θ range for data collection/° 8.56 to 142.25 8.756 to 143.216 5.45 to 55.16 

Index ranges 
-14 ≤ h ≤ 13, -10 ≤ 

k ≤ 17, -15 ≤ l ≤ 18 

-13 ≤ h ≤ 13, -8 ≤ k ≤ 

13, -21 ≤ l ≤ 20 

-10 ≤ h ≤ 10, -13 ≤ 

k ≤ 13, -10 ≤ l ≤ 14 

Reflections collected 7561 13746 4101 

Independent reflections 

4616 [Rint = 

0.0385, Rsigma = 

0.0573] 

7557 [Rint = 0.0421, 

Rsigma = 0.0606] 

4101 [Rint = 0.0669, 

Rsigma = 0.0492] 

Data/restraints/parameters 4616/0/336 7557/0/577 4101/0/281 



236 
 

Goodness-of-fit on F2 1.059 1.018 1.086 

Final R indexes [I>=2σ (I)] 
R1 = 0.0586, wR2 = 

0.1500 

R1 = 0.0429, wR2 = 

0.0957 

R1 = 0.0666, wR2 = 

0.1736 

Final R indexes [all data] 
R1 = 0.0764, wR2 = 

0.1719 

R1 = 0.0590, wR2 = 

0.1034 

R1 = 0.0721, wR2 = 

0.1772 

Largest diff. peak/hole / e Å-3 1.57/-1.11 1.05/-0.91 3.86/-1.13 

 

 

Table 9.13. Crystal data and structure refinement for compounds 33-35. 

Compound 33 34 35 

Empirical formula C44H32Ag2F6N12O4 C22H16Ag2F6N6O6S2 C49H38Ag2F10N12O5 

Formula weight 1122.55 854.27 1280.65 

Temperature/K 100(2) 173.0 100(2) 

Crystal system monoclinic monoclinic triclinic 

Space group P21/c P21/n P-1 

a/Å 11.0493(5) 13.1029(8) 8.3697(3) 

b/Å 8.4381(4) 17.2845(5) 13.2918(6) 

c/Å 22.4661(10) 13.2948(8) 22.1244(9) 

α/° 90 90 102.215(4) 

β/° 96.003(5) 109.777(7) 90.352(3) 

γ/° 90 90 94.281(3) 

Volume/Å3 2083.14(17) 2833.4(3) 2398.28(18) 

Z 2 4 2 

ρcalcg/cm3 1.790 2.003 1.773 

μ/mm1 1.029 1.619 0.919 

F(000) 1120.0 1672.0 1280.0 

Crystal size/mm3 
0.3500 × 0.0150 × 

0.0100 
0.28 × 0.22 × 0.17 

0.100 × 0.015 × 

0.010 
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Radiation 
Mo Kα (λ = 

0.71075) 
MoKα (λ = 0.71073) 

Mo Kα (λ = 

0.71075) 

2Θ range for data collection/° 4.92 to 54.958 6.608 to 58.282 4.882 to 54.956 

Index ranges 
-14 ≤ h ≤ 14, -10 ≤ 

k ≤ 10, -29 ≤ l ≤ 28 

-17 ≤ h ≤ 8, -23 ≤ k ≤ 

19, -11 ≤ l ≤ 17 

-10 ≤ h ≤ 9, -17 ≤ k 

≤ 17, -28 ≤ l ≤ 28 

Reflections collected 25576 11474 41994 

Independent reflections 

4765 [Rint = 

0.0447, Rsigma = 

0.0270] 

6412 [Rint = 0.0370, 

Rsigma = 0.0708] 

10947 [Rint = 

0.0815, Rsigma = 

0.1026] 

Data/restraints/parameters 4765/0/307 6412/0/397 10947/0/705 

Goodness-of-fit on F2 1.042 1.029 1.005 

Final R indexes [I>=2σ (I)] 
R1 = 0.0472, wR2 = 

0.1215 

R1 = 0.0594, wR2 = 

0.1113 

R1 = 0.0571, wR2 = 

0.0966 

Final R indexes [all data] 
R1 = 0.0563, wR2 = 

0.1268 

R1 = 0.1026, wR2 = 

0.1351 

R1 = 0.1290, wR2 = 

0.1163 

Largest diff. peak/hole / e Å-3 2.04/-1.15 1.11/-0.72 1.01/-0.74 

 

 

 

9.2.6. Chapter 7 Compounds 

 

Table 9.14. Crystal data and structure refinement for compounds 36-37. 

Compound 36 37 

Empirical formula C28H32CoN10O8 C40H32MnN14O6 

Formula weight 695.56 859.73 

Temperature/K 173 173 

Crystal system triclinic triclinic 

Space group P-1 P-1 

a/Å 8.7772(10) 10.0086(9) 

b/Å 9.5437(11) 10.1350(9) 
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c/Å 10.7337(12) 10.7313(7) 

α/° 68.365(11) 97.028(7) 

β/° 67.877(11) 112.652(8) 

γ/° 76.700(10) 99.700(8) 

Volume/Å3 769.90(17) 969.02(15) 

Z 1 1 

ρcalcg/cm3 1.500 1.473 

μ/mm1 4.949 3.350 

F(000) 361.0 443.0 

Crystal size/mm3 0.18 × 0.14 × 0.08 0.28 × 0.2 × 0.16 

Radiation CuKα (λ = 1.54184) CuKα (λ = 1.54184) 

2Θ range for data collection/° 9.364 to 141.81 9.046 to 142.154 

Index ranges 
-6 ≤ h ≤ 10, -8 ≤ k ≤ 11, -

11 ≤ l ≤ 12 

-11 ≤ h ≤ 12, -12 ≤ k ≤ 12, -8 ≤ 

l ≤ 12 

Reflections collected 4093 5299 

Independent reflections 
2860 [Rint = 0.0377, 

Rsigma = 0.0713] 

3563 [Rint = 0.0520, Rsigma = 

0.0667] 

Data/restraints/parameters 2860/0/215 3563/0/277 

Goodness-of-fit on F2 1.044 1.056 

Final R indexes [I>=2σ (I)] 
R1 = 0.0537, wR2 = 

0.1327 
R1 = 0.0474, wR2 = 0.1173 

Final R indexes [all data] 
R1 = 0.0628, wR2 = 

0.1425 
R1 = 0.0585, wR2 = 0.1301 

Largest diff. peak/hole / e Å-3 0.85/-0.51 0.55/-0.83 
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9.3. Crystallographic Data of Catalytic Products 

 

9.3.1. 1,4-Dihydropyridine Products 

 

Table 9.15. Crystal data and structure refinement for 1,4-DHP products C3D4-C3D6, 

C3D17. 

Compound  C3D4 C3D5 C3D6 C3D13 

Empirical formula  C28H32N2O8 C28H32N2O4 C24H22Cl2N2O4 C24H24N2O6 

Formula weight  524.55 460.55 473.33 436.45 

Temperature/K  100 173.0 173 173.0 

Crystal system  triclinic triclinic monoclinic monoclinic 

Space group  P-1 P-1 P21/c P21/n 

a/Å  8.6245(3) 10.7636(18) 9.3349(2) 15.5881(6) 

b/Å  11.3274(3) 11.3391(17) 27.5175(6) 20.3221(5) 

c/Å  14.4275(6) 11.4031(18) 9.3096(2) 33.8600(10) 

α/°  101.801(3) 79.397(13) 90 90 

β/°  104.493(3) 64.791(16) 107.552(3) 97.853(3) 

γ/°  103.978(3) 82.197(13) 90 90 

Volume/Å3  1270.46(8) 1235.1(4) 2280.07(10) 10625.7(6) 

Z  2 2 4 20 

ρcalcg/cm3  1.371 1.238 1.379 1.364 

μ/mm1  0.101 0.664 2.844 0.099 

F(000)  556.0 492.0 984.0 4600.0 

Crystal size/mm3  
0.1 × 0.05 × 

0.04 
0.2 × 0.08 × 0.04 

0.24 × 0.21 × 

0.18 

0.19 × 0.03 × 

0.03 

Radiation  
MoKα (λ = 

0.71073) 

CuKα (λ = 

1.54184) 

CuKα (λ = 

1.54184) 

MoKα (λ = 

0.71073) 

2Θ range for data 

collection/°  
5.07 to 54.966 7.95 to 124.666 

10.472 to 

142.862 
4.65 to 50.056 
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Index ranges  

-11 ≤ h ≤ 11, -14 

≤ k ≤ 14, -18 ≤ l 

≤ 17 

-10 ≤ h ≤ 12, -12 

≤ k ≤ 13, -12 ≤ l 

≤ 12 

-8 ≤ h ≤ 11, -32 

≤ k ≤ 33, -11 ≤ 

l ≤ 6 

-18 ≤ h ≤ 17, -24 

≤ k ≤ 24, -40 ≤ l 

≤ 40 

Reflections collected  16762 8369 12792 59833 

Independent reflections  

5771 [Rint = 

0.0285, Rsigma = 

0.0372] 

3781 [Rint = 

0.0876, Rsigma = 

0.0897] 

4373 [Rint = 

0.0273, Rsigma = 

0.0220] 

18712 [Rint = 

0.0571, Rsigma = 

0.0698] 

Data/restraints/parameters  5771/0/349 3781/0/314 4373/0/292 18712/0/1461 

Goodness-of-fit on F2  1.031 0.951 1.028 1.022 

Final R indexes [I>=2σ 

(I)]  

R1 = 0.0448, 

wR2 = 0.0972 

R1 = 0.0616, 

wR2 = 0.1455 

R1 = 0.0524, 

wR2 = 0.1418 

R1 = 0.0824, 

wR2 = 0.1997 

Final R indexes [all data]  
R1 = 0.0624, 

wR2 = 0.1045 

R1 = 0.1084, 

wR2 = 0.1719 

R1 = 0.0573, 

wR2 = 0.1466 

R1 = 0.1485, 

wR2 = 0.2438 

Largest diff. peak/hole / e 

Å-3  
0.27/-0.21 0.24/-0.29 0.38/-0.57 1.06/-0.34 

 

 

 

9.3.2. 1,2,3-Triazole Products 

 

Table 9.16. Crystal data and structure refinement for triazole products C5T1-C5T4. 

Compound  C5T1 C5T2 C5T3 C5T4 

Empirical formula  C15H13N3 C16H15N3O C13H17N3 C10H11N3O 

Formula weight  235.28 265.31 215.29 189.22 

Temperature/K  173.0 173.0 173.0 173.0 

Crystal system  orthorhombic monoclinic monoclinic triclinic 

Space group  Pna21 P21 P21/c P-1 

a/Å  11.2241(4) 8.1339(8) 13.0813(10) 8.2035(12) 

b/Å  19.3350(6) 5.6565(6) 5.4875(3) 11.0403(11) 

c/Å  5.5817(2) 14.5299(16) 17.7677(16) 11.2020(11) 
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α/°  90 90 90 93.064(8) 

β/°  90 92.836(9) 108.906(9) 106.687(11) 

γ/°  90 90 90 104.934(10) 

Volume/Å3  1211.33(7) 667.69(12) 1206.62(17) 930.1(2) 

Z  4 2 4 4 

ρcalcg/cm3  1.290 1.320 1.185 1.351 

μ/mm1  0.619 0.680 0.563 0.744 

F(000)  496.0 280.0 464.0 400.0 

Crystal size/mm3  
0.24 × 0.18 × 

0.1 
0.27 × 0.1 × 0.06 

0.28 × 0.19 × 

0.16 

0.12 × 0.08 × 

0.06 

Radiation  
CuKα (λ = 

1.54184) 

CuKα (λ = 

1.54184) 

CuKα (λ = 

1.54184) 

CuKα (λ = 

1.54184) 

2Θ range for data 

collection/°  
9.11 to 142.246 10.89 to 140.486 

10.636 to 

140.672 
8.32 to 142.388 

Index ranges  

-12 ≤ h ≤ 13, -15 

≤ k ≤ 23, -6 ≤ l 

≤ 6 

-9 ≤ h ≤ 9, -5 ≤ k 

≤ 6, -17 ≤ l ≤ 14 

-15 ≤ h ≤ 15, -4 

≤ k ≤ 6, -21 ≤ l 

≤ 20 

-10 ≤ h ≤ 8, -11 

≤ k ≤ 13, -13 ≤ l 

≤ 11 

Reflections collected  3555 1972 3667 5011 

Independent reflections  

2053 [Rint = 

0.0254, Rsigma = 

0.0382] 

1586 [Rint = 

0.0309, Rsigma = 

0.0578] 

2234 [Rint = 

0.0350, Rsigma = 

0.0433] 

3462 [Rint = 

0.0266, Rsigma = 

0.0545] 

Data/restraints/parameters  2053/1/163 1586/1/183 2234/0/146 3462/0/255 

Goodness-of-fit on F2  1.069 1.019 1.024 1.052 

Final R indexes [I>=2σ 

(I)]  

R1 = 0.0373, 

wR2 = 0.0855 

R1 = 0.0464, 

wR2 = 0.1051 

R1 = 0.0469, 

wR2 = 0.1150 

R1 = 0.0451, 

wR2 = 0.1051 

Final R indexes [all data]  
R1 = 0.0418, 

wR2 = 0.0892 

R1 = 0.0617, 

wR2 = 0.1164 

R1 = 0.0658, 

wR2 = 0.1336 

R1 = 0.0688, 

wR2 = 0.1216 

Largest diff. peak/hole / e 

Å-3  
0.10/-0.17 0.19/-0.19 0.14/-0.19 0.18/-0.24 
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