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Abstract
In this paper, we propose and study a new kinetic rating model for a large number
of players, which is motivated by the well-known Elo rating system. Each player
is characterised by an intrinsic strength and a rating, which are both updated after
each game. We state and analyse the respective Boltzmann-type equation and derive
the corresponding nonlinear, non-local Fokker–Planck equation. We investigate the
existence of solutions to the Fokker–Planck equation and discuss their behaviour in
the long time limit. Furthermore, we illustrate the dynamics of the Boltzmann and
Fokker–Planck equation with various numerical experiments.
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1 Introduction

In 1950, the Hungarian physicist Arpad Elo developed a rating system to calculate the
relative skill level of players in competitor versus competitor games (see Elo (1978)).
TheElo rating systemwas initially used in chess competitions, butwas quickly adopted
by the US Chess Federation as well as the World Chess Federation, and the National
Football Foundation. In June 2018, FIFA announced switching their world football
ranking to an Elo system, following two years of reviews and studies of different
alternatives. The Elo rating system assigns each player a rating, which is updated
according to the wins and losses as well as the difference of the ratings. It is hoped that
the rating converges to the relative strength level and is a valid measure of the player’s
skills. However, assigning an initial rating to a new player is a delicate issue, since
it is not clear how an inaccurate initial rating influences the latter performance. Elo
himself tried to validate the model using computational experiments, while Glickman
used statistical techniques to understand the dynamics (Glickman and Jones 1999).
The first rigorous proof of convergence of the ratings to the individual strength was
presented by in Jabin and Junca (2015), who introduced a continuous version of the Elo
rating system. In this continuous model, every player is characterised by its intrinsic
strength ρ and rating R. The intrinsic strength is fixed in time. If two players with
rating Ri and R j meet in a game, their ratings after the game, R∗

i and R∗
j are given by

R∗
i = Ri + K (Si j − b(Ri − R j )), (1a)

R∗
j = R j + K (−Si j − b(R j − Ri )). (1b)

In (1), the random variable Si j is the score result of the game; it takes the value 1 if
player i wins and the value−1 if player j wins. The mean score (i.e. expected value of
Si j ) is assumed to be equal to b(ρi − ρ j ), and hence, the result of each game depends
on the difference of the player’s intrinsic strengths. The rating of each player increases
or decreases proportionally with the outcome of the game, relative to the predicted
mean score b(Ri − R j ). The speed of the adjustment is controlled by the constant
parameter K . The function b is chosen in such a way that extreme differences are
moderated; a typical choice is

b(z) = tanh(cz), (2)

where c is a suitably chosen positive constant. This choice weighs the impact of the
outcome with respect to the relative rating. If a player with a high rating wins a game
against a player with a low rating, the players’ ratings change little. However, if the
player with the low rating wins against a highly rated player, the ratings are strongly
adjusted.

Junca and Jabin proposed the following Boltzmann-type equation to describe the
evolution of the distribution of players f = f (r , t) with respect to their ratings

∂t f (r , t) + ∂r (a( f ) f ) = 0 with a( f ) =
∫
R2

w(r − r ′)(b(ρ − ρ′)

−b(r − r ′)) f (t, r ′, ρ′)dρ′dr ′. (3)
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This equation describes a more general setup than in the microscopic equations. Here,
two players only interact according to the interaction rate function w, which depends
on the difference of their ratings. The function w is assumed to be even and non-
negative. Junca and Jabin analysed the long-time behaviour of solutions to (3). They
proved that in the casew = 1, a so-called all-play-all tournament, the ratings converge
exponentially fast to the intrinsic strength. In the case of local interactions, that is
individuals only play if their ratings are close, the ratings may not converge to the
intrinsic strength and the rating fails to give a fair representation of the player’s strength
distribution.

Rather recently Krupp (2016) proposed an extension of the model by Jabin and
Junca (2015). In her model not only the rating, but also the intrinsic strength changes
as players continuously compete in games. In particular, she assumes that the intrinsic
strength ρ changes in every game according to

ρ∗
i = ρi + Zi j K̃ , (4a)

ρ∗
j = ρ j + Zi j K̃ , (4b)

where K̃ is a positive constant and Zi j takes the value z1 ∈ N or z2 ∈ N. In case of
a win, the inner strength ρi increases by z1 K̃ and in case of a loss by z2 K̃ . Hence, if
z1 < z2, the looser benefits more from the game, while if z1 > z2, the winner learns
more. If z1 = z2, both learn the same. The corresponding Boltzmann-type equation
for the distribution of the players f = f (r , ρ, t) with respect to their strength and
rating reads as

∂t f (r , ρ, t) + ∂r (a( f ) f ) + ∂ρ(c( f ) f ) = 0, (5)

where

a( f ) =
∫
R2

w(r − r ′)[b(ρ − ρ′) − b(r − r ′)] f (r ′, ρ′, t)dρ′dr ′

and

c( f ) =
∫
R2

w(r − r ′)
[ z1
2

(b(ρ − ρ′) + 1) − z2
2

(b(r − r ′) − 1)
]
f (r ′, ρ′, t)dρ′dr ′.

Krupp analysed the qualitative behaviour of solutions to (5). Due to the continuous
increase in strength, the ratings increase in time. Therefore, an appropriately shifted
problem was studied, in which the ratings converged exponentially fast to the intrinsic
strength in the case w = 1.

In this paper, we propose a more general approach to describe how a player’s
strength changes in encounters. We assume that individuals benefit from every game
and increase their strength because of these interactions. However, the extent of the
benefit depends on several factors—first, players with a lower rating benefit more.
Second, the stronger the opponent, the more a win pushes the intrinsic strength. Fur-
thermore, the individual performance changes due to small fluctuations, accounting for
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variations in the mental strength or personal fitness on a day. Based on the microscopic
interaction laws, we derive the corresponding kinetic Boltzmann-type and limiting
Fokker–Planck equations and analyse their behaviour. In the case of no diffusion, we
can show that the strength and ratings of the appropriately shifted PDE converge, while
we observe the formation of non-measure valued steady states in the case of diffusion.
We illustrate our analytic results with numerical simulations of the kinetic as well as
the limiting Fokker–Planck equation. The simulations give important insights into the
dynamics, especially in situations where we are not able to prove rigorous results. The
proposed interaction laws are a first step to develop and analyse more complicated
rating models with dynamic strength. The next developments of the model should
include losses in the player’s strength to ensure that the strength stays within certain
bounds.

The kinetic description of the Elo rating system allowed Junca and Jabin to analyse
the qualitative behaviour of solutions. In the last decades, kinetic models have been
used successfully to describe the behaviour of large multi-agent systems in socio-
economic applications. In all these applications, interactions among individuals are
modelled as ‘collisions’, in which agents exchange goods (Delitala and Lorenzi 2014;
Düring et al. 2017; Burger et al. 2013), wealth (Düring and Toscani 2007; Düring
et al. 2008; Bellomo et al. 2013; Degond et al. 2014), opinion (Toscani 2006; Boudin
et al. 2010; Düring et al. 2009; Motsch and Tadmor 2014; Albi et al. 2014; Düring and
Wolfram 2015) or knowledge (Pareschi and Toscani 2014; Burger et al. 2016). For a
general overview on interacting multi-agent systems and kinetic equations, we refer
to the book of Pareschi and Toscani (2013).

This paper is organised as follows. We introduce a generalisation of the kinetic
Elo model with variable intrinsic strength due to learning in Sect. 2. In Sect. 3, we
derive the corresponding Fokker–Planck-type equation as the quasi-invariant limit of
the Boltzmann-type model. Convergence towards steady states of a suitable shifted
Fokker–Planckmodel is analysed in Sect. 4.We conclude by presenting various numer-
ical simulations of the Boltzmann and the Fokker–Planck-type equation in Sect. 5.

2 An EloModel with Learning

In this section, we introduce an Elomodel, inwhich the rating and the intrinsic strength
of the players change in time. The dynamics are driven by similar microscopic binary
interactions as in the original model by Jabin and Junca (2015) and Krupp (2016).
We state the specific microscopic interaction rules in each encounter and derive the
corresponding limiting Fokker–Planck equation.

2.1 Kinetic model

We follow the notation introduced in Sect. 1 and denote the individual strength by
ρ and the rating by R. If two players with ratings Ri and R j meet, their ratings and
strength after the game are given by:
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R∗
i = Ri + γ (Si j − b(Ri − R j )), (6a)

R∗
j = R j + γ (−Si j − b(R j − Ri )), (6b)

ρ∗
i = ρi + γ h(ρ j − ρi ) + η, (6c)

ρ∗
j = ρ j + γ h(ρi − ρ j ) + η̃. (6d)

The interaction rules are motivated by the following considerations: player ratings
change with the outcome of each game [as in the original model (1) proposed by Jabin
and Junca (2015)]. The random variable Si j corresponds to the score of the match and
depends on the difference in strength of the two players. We assume that Si j takes the
values ±1 with an expectation 〈Si j 〉 = b(ρi − ρ j ). Note that one could also assume
that Si j is continuous, for example Si j ∈ [−1,+1]. The constant parameter γ > 0
controls the speed of adjustment.

The variables η and η̃ are independent identically distributed random variables
with mean zero and variance σ 2 which model small fluctuations due to day-linked
performance in the mental strength or personal fitness.

The function h describes the learning mechanism. We assume that h takes the
following form,

h(ρ j − ρi ) = [
αh1(ρ j − ρi ) + βh2(ρ j − ρi )

]
. (7)

The function h1 corresponds to the increase in knowledge or skills because of inter-
actions. We assume that each player learns in a game; however, players with a lower
strength benefit more. A possible choice for h1, which we shall use throughout this
paper, is

h1(ρ j − ρi ) = 1 + b(ρ j − ρi ), (8)

where b is given by (2). Note that b is an odd function. Since h1 is positive, both
players are able to learn and improve in each game, to an extent which depends on the
difference in strengths, with a player with lower strength benefiting more.

The second function, h2, models a change of strength due to gain or loss of self-
confidence due to winning or being defeated in a game. We assume that the loss
of the stronger player is the same as the gain for the weaker one. Hence, we choose
h2(ρ j −ρi ) = Si j l(ρ j −ρi ) to be an odd, regular, bounded functionwhich is vanishing
at infinity, where the function l corresponds to the net change of self-confidence. A
possible choice which we adopt in the following corresponds to

h2(ρ j − ρi ) = Si j [1 − tanh2(ρ j − ρi )]. (9)

Note that the expectation for the learning function is given by

〈h(ρ j − ρi )〉 = [
αh1(ρ j − ρi ) + β〈h2(ρ j − ρi )〉

]
= [

αh1(ρ j − ρi ) + βb(ρi − ρ j )(1 − tanh2(ρ j − ρi ))
]
. (10)
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Fig. 1 Possible choices of h1
and h2
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Figure 1 shows the function h1, 〈h2〉 and 〈h〉 for the particular choice of α = β = 0.1
and c = 1. If α > β, players always improve in strength. In this case the strength and
subsequently the rating will always increase in time. We see that, as in the original Elo
model, the choices of interaction rules and the function b(·) preserve the total value
of the rating pointwise and in mean, that is

〈R∗
i + R∗

j 〉 = Ri + R j .

The evolution of the total strength depends on the choices of the function h1 and h2.
Note that the function h2 does not affect the total strength since

〈ρ∗
j + ρ∗

j 〉 − (ρ j + ρ j ) = 2γα.

We see that that the proposed interaction rules result in a net increase of the total
knowledge in every interactions. Therefore, we expect to see on overall increase in
strength for all times.

The proposed interaction rules are a first step towards a more realistic modelling.
Alternative learningmechanisms, such as the one proposed in the context of knowledge
exchange in a large society (see Burger et al. (2016)) could be considered in the
future. Here the individual with the lower knowledge level assumes the higher level
after the interaction, while the stronger one did not gain anything in the encounter.
Hence, the overall knowledge level is bounded by the maximum initial knowledge
level for all times and the distribution of individuals converges to a Delta Dirac at
that point. We expect a similar dynamics, if we were to apply that rule instead of (6).
Developing learning mechanisms, which combine limitations of individual learning
with the continuous evolution of the collective knowledge, will be an important aspect
of future research developments.

Now we are able to state the evolution equation for the distribution of players
fγ = fγ (ρ, R, t) with respect to their rating R and intrinsic strength ρ. For a fixed
number of players, N , the interactions (6) induce a discrete-timeMarkov process with
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N -particle joint probability distribution PN (ρ1, R1, ρ2, R2, . . . , ρN , RN , τ ). One can
write a kinetic equation for the one-marginal distribution function,

P1(ρ, R, τ ) =
∫

PN (ρ, R, ρ2, R2, . . . , ρN , RN , τ ) dρ2dR2 · · · dρNdRN ,

using only one- and two-particle distribution functions (Cercignani 1988; Cercignani
et al. 1994),

P1(ρ, R, τ + 1) − P1(ρ, R, τ ) =〈
1

N

[∫
P2(ρi , Ri , ρ j , R j , τ )w(Ri − R j )

(
δ0(ρ − ρ∗

i , R − R∗
i )

+ δ0(ρ − ρ∗
j , R − R∗

j )
)
dρidRidρ jdR j − 2P1(ρ, R, τ )

]〉
.

Here, 〈·〉 denotes the mean operation with respect to the random variables η, η̃ and
the function w(·) corresponds to the interaction rate function which depends on the
difference of the ratings. This process can be continued to give a hierarchy of equations
of so-called BBGKY-type (Cercignani 1988; Cercignani et al. 1994), describing the
dynamics of the system of a large number of interacting agents. A standard approxi-
mation is to neglect correlations and assume the factorisation

P2(ρi , Ri , ρ j , R j , τ ) = P1(ρi , Ri , τ )P1(ρ j , R j , τ ).

By scaling time as t = 2τ/N and performing the thermodynamical limit N → ∞, we
can use standard methods of kinetic theory (Cercignani 1988; Cercignani et al. 1994)
to show that the time-evolution of the one-agent distribution function fγ is governed
by the following Boltzmann-type equation:

d

dt

∫
�

φ(ρi , R j ) fγ (ρi , Ri , t)dρidRi

= 1

2

〈 ∫
�

∫
�

(
φ(ρ∗

i , R
∗
j ) + φ(ρ∗

j , R
∗
j ) − φ(ρi , Ri ) − φ(ρ j , R j )

)

× w(Ri − R j ) fγ (ρi , Ri , t) fγ (ρ j , R j , t) dρ jdR jdρidRi

〉
,

(11)

where φ(·) is a (smooth) test function, with support supp(φ) ⊆ �. The function w(·)
corresponds to the interaction rate function which depends on the difference of the
ratings. If w ≡ 1 we consider a so-called all-play-all game. If w has compact support
only players with close ratings compete. Possible choices for w are

w(Ri − R j ) = e
log 2

1+(Ri−R j )
2 − 1 or w(Ri − R j ) = χ{|Ri−R j |≤c}. (12)

where χ denotes the indicator function (or smoothed variants thereof).
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In the following we shall analyse (11) as well as different asymptotic limits of it.
The presented analysis is based on the following assumptions:

(A1) Let � = R
2 or a bounded Lipschitz domain � ⊂ R

2.
(A2) Let f0 ∈ H1(�) with f0 ≥ 0 and compact support. Furthermore we assume

that it has mean value zero, and bounded moments up to order two. Hence

∫
�

f0(ρ, R) dρdR = 1,
∫

�

R f0(ρ, R) dρdR = 0, and
∫

�

ρ f0(ρ, R) dρdR = 0.

(A3) The random variables η, η̃ in (6) have the same distribution, zero mean, 〈η〉 = 0,
and variance σ 2

η .
(A4) Let the interaction rate function w ≥ 0 be an even function with w ∈ C2(�) ∩

L∞(�).

The kinetic Elo model can be formulated on the whole space as well as on a
bounded domain. In reality, the Elo ratings of top chess players vary between 2000 and
3000, which provides evidence for the assumption of a bounded domain �. However,
sometimes it is easier to study the dynamics of models on the whole space, i.e. without
boundary effects. We will generally work on the bounded domain, and clearly state
where we deviate from this assumption, e.g. when we study the asymptotic behaviour
of moments. The second assumption states the necessary regularity assumptions on
the initial data, which we shall use in the analysis of the moments and the existence
proof.

2.2 Analysis of themoments

We start by studying basic properties of the Boltzmann-type equation (11) such as
mass conservation and the evolution of the first and second moments with respect to
the strength and the ratings. Throughout this section we consider the problem in the
whole space.
Conservation of Mass Setting φ(ρi , Ri ) = 1 in Eq. (11) we see that

d

dt

∫
R2

fγ (ρi ,R, t) dRdρ = 0.

Therefore, the total mass is conserved, that is

∫
R2

fγ (R, ρ, t) dRdρ = 1, for all times t ≥ 0. (13)

Moments with Respect to the Rating The sth moment, for s ∈ N, with respect to Ri is
defined as

mRi (t) =
∫
R2

Ri fγ (ρi , Ri , t) dRidρi and Ms,Ri (t) =
∫
R2

Ri
s fγ (ρi , Ri , t) dRidρi ,
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where mRi = M1,Ri . We choose φ(ρi , Ri ) = Ri . Due to (A2) and the symmetry of
b(·) we obtain

d

dt
mRi (t) = 1

2
γ

∫
R4

fγ (ρi , Ri , t) fγ (ρ j , R j , t)×
× (b(ρi − ρ j ) − b(Ri − R j )

+ b(ρ j − ρi ) − b(R j − Ri ))w(Ri − R j ) dR jdρ jdRidρi = 0.

Hence, the mean value w.r.t. the rating is preserved in time and therefore

mRi (t) = 0, for all times t ≥ 0.

The evolution of the second moment can be obtained by setting φ(ρi , Ri ) = Ri
2. We

see that

d

dt
M2,Ri (t)

= 1

2

∫
R4

fγ (ρi , Ri , t) fγ (ρ j , R j , t)w(Ri − R j )×

×
[
γ 2

((
b(ρi − ρ j ) − b(Ri − R j )

)2 + (
b(ρ j − ρi ) − b(R j − Ri )

)2)

+ 2γ

(
Ri (b(ρi −ρ j ) − b(Ri −R j )) + R j (b(ρ j − ρi ) − b(R j − Ri ))

)]
dR jdρ jdRidρi .

The second term in the integral is non-positive, and we obtain the bound

d

dt
M2,Ri (t) ≤ 4γ 2‖b‖2∞.

Hence, the second moment grows at most linearly and remains bounded for finite
times. Note that the integral is negative for γ small enough, which implies a decreasing
second moment.
Moments with Respect to the Strength

The moments with respect to strength are defined in an analogous way, that is

mρi (t) =
∫
R2

ρi f (ρi , Ri , t) dRidρi and Ms,ρi (t) =
∫
R2

ρi
s f (ρi , Ri , t) dRidρi ,

for s ∈ N and using again mρi (t) = M1,ρi . Since (A2) holds, we see that for
φ(ρi , Ri ) = ρi , we have

d

dt
mρi (t) = 1

2
γ

∫
R4

fγ (ρi , Ri , t) fγ (ρ j , R j , t)w(Ri − R j )[〈h(ρ j − ρi )

+ h(ρi − ρ j )〉] dρ jdR jdρidRi .
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Therefore,

− γ ‖〈h〉‖∞ ≤ d

dt
mρi (t)

≤ 1

2
γ

∫
R4

2‖〈h〉‖∞ fγ (ρi , Ri , t) fγ (ρ j , R j , t)dρ jdR jdρidRi

≤ γ ‖〈h〉‖∞, (14)

which implies that the mean value is bounded for all times t ∈ [0, T ] and that |mρi (t)|
grows at most linearly in time if h(·) is bounded. If we consider the specific interaction
rules (8)–(12), we obtain

d

dt
mρi (t) = γα

∫
R4

w(Ri − R j ) fγ (ρi , Ri , t) fγ (ρ j , R j , t)dρ jdR jdρidRi ≤ γα,

with equality holding in the ‘all-play-all’ case w = 1. The evolution of the second
moment M2,ρi can be computed by setting φ(ρi , Ri ) = ρi

2. We see that

d

dt
M2,ρi (t) = 1

2

∫
R4

(
γ 2[〈h(ρ j − ρi )

2〉 + 〈h(ρi − ρ j )
2〉]

+ 2γ [ρi 〈h(ρ j − ρi )〉 + ρ j 〈h(ρi − ρ j )〉]
+ 2σ 2(γ )

)
w(Ri − R j ) fγ (ρi , Ri , t) fγ (ρ j , R j , t) dρ jdR jdρidRi

≤ γ 2‖〈h2〉‖∞ + σ 2(γ ) + 4γ |mρi (t)|.
(15)

If h(·) is bounded, the second moment grows at most at polynomial rate. Since the
second moment of f0 is bounded (see assumption (A2)), it remains finite for all times
t ∈ [0, T ].

3 The Fokker–Planck Limit

In the last section, we analysed the evolution of moments to the Boltzmann-type equa-
tion (11). However, it is often more useful to study the dynamics of simplified models
(generally of Fokker–Planck type), which can be derived in particular asymptotic lim-
its. These asymptotics provide a good approximation of the stationary profiles of the
kinetic equation. In what follows, we consider the so-called quasi-invariant limit, in
which diffusion and the outcome of the game influence the long-time dynamics. More
specifically, we consider the limit

γ → 0, ση → 0 such that
σ 2

η

γ
=: σ 2 is kept fixed.

In Appendix A, we derive the following Fokker–Planck limit: the differential form
of (49) is given by (writing t instead of τ )
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∂ f (ρ, R, t)

∂t
= − ∂

∂R
(a[ f ] f (ρ, R, t)) − ∂

∂ρ
(c[ f ] f (ρ, R, t))

+ σ 2

2
d[ f ] ∂2

∂ρ2 f (ρ, R, t) in � × (0, T ), (16)

where

a[ f ] = a[ f ](ρ, R, t) =
∫
R2

w(R − R j )(b(ρ − ρ j ) − b(R − R j ))

× f (ρ j , R j , t) dρ jdR j ,

c[ f ] = c[ f ](ρ, R, t) =
∫
R2

w(R − R j )
(
αh1(ρ j − ρ) + β〈h2(ρ j − ρ)〉)

× f (ρ j , R j , t) dρ jdR j ,

d[ f ] = d[ f ](R, t) =
∫
R2

w(R − R j ) f (ρ j , R j , t) dρ jdR j .

Weconsider Eq. (16)with initial datum f0 satisfying assumption (A2) in the following.
Note that (16) includes the non-local operator a[ f ], corresponding to the change of
the ratings, similar as in the Fokker–Planck equations (3) and (5) obtained in Jabin
and Junca (2015) and Krupp (2016), respectively. The non-local operator c[ f ] in
the transport terms corresponds to the change of the individual strengths, while the
operator d[ f ] describes the fluctuations of the individual strength due to encounters.

3.1 Qualitative Properties of the Fokker–Planck Equation

We continue by discussing qualitative properties of the Fokker–Planck equation (16).
We shall see that several properties, which we observed for the Boltzmann-type equa-
tion (11), can be transferred.

Conservation of mass and positivity of solution: Due to mass conservation and (A2),
we have that

∫
R2

f (ρ, R, t) dρdR =
∫
R2

f0(ρ, R) dρdR = 1 for all t ≥ 0.

Using similar arguments as in Torregrossa and Toscani (2018), we can directly prove
that the Fokker–Planck equation maintains the positivity of the solution. Let vm(t) =
(ρm(t), Rm(t)) denote the minimum, which is obtained at time t̃ . Clearly, if at certain
time t̃ ≥ 0 the function equals zero, i.e. f (ρ, R, t̃) = 0, this point is a stationary point
or a local minimum, hence

∂

∂R
f (vm, t̃) = 0,

∂

∂ρ
f (vm, t̃) = 0,

∂2

∂R2 f (vm, t̃) ≥ 0,
∂2

∂ρ2 f (vm, t̃) ≥ 0.
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Evaluating (16) in (vm, t̃) gives

∂

∂t
f (vm, t̃) = f (vm, t̃)

( − ∂

∂R
a[ f ](vm, t̃) − ∂

∂ρ
c[ f ](vm, t̃)

)

− a[ f ](vm, t̃)
∂

∂R
f (vm, t̃) − c[ f ](vm, t̃)

∂

∂r
f (vm, t̃)

+ σ 2

2
(vm, t̃)d[ f ] ∂2

∂ρ2

(
f (vm, t̃)

) ≥ 0,

which implies that the function f is non-decreasing in time and cannot assumenegative
values.
Evolution of the moments We now consider the evolution of the moments of the
solution of (16) using the interaction rules (8) and (9). Similar calculations as in
Sect. 2.2 confirm the expected behaviour—due to the continuous increase in strength
in each game the system does not converge to a steady state and therefore the respective
mean of the solution is non-decreasing in time. Summarising the results, we have

∂

∂t

∫
R2

R f (ρ, R, t) dRdρ = 0 (17)

∂

∂t

∫
R2

ρ f (ρ, R, t) dRdρ = α

∫
R2

c[ f ] f (ρ, R, t) dRdρ

= α

∫
R4

w(R − R j ) f (ρ, R, t) f (ρ j , R j , t) dρ jdR jdρdR.

(18)

The previous results confirm that due to the continuous increase in strength in each
game, rating and skills tend to become increasingly distant from each other. Therefore,
we adopt an idea byKrupp (2016) and study the evolution of a suitably shifted problem
instead. We define

g(ρ, R, t) = f (ρ + H(ρ, R, t), R, t), (19)

where the scaling function H is given by

∂H(ρ, R, t)

∂t
=

∫
R2

αw(R − R j ) f (ρ j , R j , t) dρ jdR j = αd[ f ]. (20)

This scaling ensures that the mean value is preserved in time. The corresponding
evolution equation for g(ρ, R, t) is given by

∂g(ρ, R, t)

∂t
= − ∂

∂R
(a[g]g(ρ, R, t))− ∂

∂ρ
(c̃[g]g(ρ, R, t))+ σ 2

2
d[g] ∂2

∂ρ2 g(ρ, R, t),

where
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c̃[g] = c̃[g](ρ, R, t)

=
∫
R2

(
αb(ρ j − ρ) + β〈h2(ρ j − ρ)〉)w(R − R j )g(ρ j , R j , t) dρ jdR j .

Now, themean value of g(ρ, R, t) is constant w.r.t. both R and ρ andwe can normalise

∫
R2

Rg(ρ, R, t) dρdR = 0, and
∫
R2

ρg(ρ, R, t) dρdR = 0.

In a general setting, it is not possible to compute scaling function explicitly. However,
in ‘all-meet-all’ tournaments, that is w(R − R j ) = 1, and in case of the specific
interaction rules (8)–(9), we obtain that

H(ρ, R, t) = αt .

Therefore, in the rest of this paper, we consider the following problem on a bounded
domain � ⊂ R

2, with no-flux boundary condition

∂g(ρ, R, t)

∂t
= − ∂

∂R
(a[g]g(ρ, R, t)) − ∂

∂ρ
(c̃[g]g(ρ, R, t))

+ σ 2

2
d[g] ∂2

∂ρ2 g(ρ, R, t) in � × (0, T ), (21a)

∂

∂ν
g = 0 on ∂�, (21b)

g(ρ, R, 0) = g0(ρ, R) in �. (21c)

Here, ν denotes the unit outer normal vector. Note that the existence of solutions to
(21a) on the whole domain is more involved, since we would need to prove that the
solution decays sufficiently as R and ρ tend to infinity. Therefore, we consider the
equation on a bounded domain only.

3.2 Analysis of the Fokker–Planck Equation

In the section, we prove existence of weak solutions to (21). The main result reads as
follows.

Theorem 1 Let (A1) be satisfied, g0 ∈ H1(�) and 0 ≤ g0 ≤ M0 for some M0 > 0
and assume h1, 〈h2〉, b ∈ L∞(�) ∩ C2(�). Then, there exists a weak solution g ∈
L2(0, T ; H1(�))∩ H1(0, T ; H−1(�)) to (21a)–(21c), satisfying 0 ≤ g ≤ M0eλt for
all (ρ, R) ∈ �, t > 0, with a constant λ > 0 depending on the functions h1, 〈h2〉, b
and w.

The presented existence proof was adapted from a similar argument for a nonlinear
Fokker–Planck equation describing the dynamics of agents in an economic market
(see Düring et al. (2017)). However, Eq. (21a) has an additional nonlinearity in the
derivative w.r.t. the rating R. We divide the proof in several steps for the ease of
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presentation. In Step 0, we regularise the nonlinear Fokker–Planck equation (21a) by
adding a Laplace operator with small diffusivity μ ≥ 0. We linearise the equation
in Step 1 and show existence of a unique solution for this problem. In Step 2, we
derive the necessary L∞ estimates to use Leray–Schauder’s fixed-point theorem and
show existence of solutions to the nonlinear regularised problem. In Step 3, we present
additional H1 estimates, which allow us to pass to the limit μ → 0 in Step 4.

Proof Step 0: the regularised problem. For M > 0, let us denote by gM =
max{0,min{g, M}} and define

KM [g] =
∫

�

[αh1(ρ j − ρ) + β〈h2(ρ j − ρ)〉]w(R − R j )gM (ρ j , R j , t) dρ jdR j ,

LM [g] =
∫

�

[b(ρ − ρ j ) − b(R − R j )]w(R − R j )gM (ρ j , R j ) dρ jdR j .

Next we consider the regularised nonlinear problem for 0 < μ < 1,

∂

∂t
gμ = − ∂

∂R
(LM [gμ]gμ(ρ, R, t)) − ∂

∂ρ
(KM [gμ]gμ(ρ, R, t))

+ σ 2

2
d[gμ] ∂2

∂ρ2 (gμ(ρ, R, t)) + μ�(gμ(ρ, R, t)) in � × (0, T ),

(22a)

with boundary and initial conditions given by

∂

∂ν
gμ = 0 on ∂�, and gμ(ρ, R, 0) = g0 on �. (22b)

The weak formulation of (22) is given by

∫ T

0

〈 ∂

∂t
gμ, v

〉
dt =

∫ T

0

∫
�

(
LM [gμ]gμ

∂

∂R
v

+ KM [gμ]gμ

∂

∂ρ
v − σ 2

2
d[gμ] ∂

∂ρ
gμ

∂

∂ρ
v − μ

∂

∂R
gμ

∂

∂R
v

)
dRdρdt,

(23)

where 〈·, ·〉 is the dual product between H1(�) and H−1(�) and v ∈ H1(�).
Step 1: solution of the linearised regularised problem. Next we want to apply
Leray–Schauder’s fixed-point theorem. Let g̃ ∈ L2(0, T ; L2(�)), θ ∈ [0, 1] and
g+ = max(g, 0). We introduce the operators A : H1(�) × H1(�) → R and
F : H1(�) → R:

A(gμ, v) =
∫

�

μ

(
∂

∂R
gμ

∂

∂R
v + ∂

∂ρ
gμ

∂

∂ρ
v

)
dRdρ, (24)

F(v) = θ

∫
�

(
LM [g̃]g̃+ ∂

∂R
v + KM [g̃]g̃+ ∂

∂ρ
v − σ 2

2
d[g̃] ∂

∂ρ
g̃+ ∂

∂ρ
v

)
dRdρ.

(25)
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The operator A(·, ·) is bilinear and continuous on H1(�) × H1(�). The quantities
|KM [g̃]| and |LM [g̃]| are bounded (because of the assumption made on h1, 〈h2〉 and
b); therefore, F is continuous in H1(�). Because of Poincaré’s inequality, for some
constant C1 and C2

A(gμ, gμ) = μ

∫
�

(∣∣∣ ∂

∂ρ
gμ

∣∣∣2 +
∣∣∣ ∂

∂R
gμ

∣∣∣2
)
dRdρ ≥ C1μ

∥∥gμ

∥∥
H1(�)

− C2
∥∥gμ

∥∥
2 .

By corollary 23.26 in Zeidler (1990), there exists a unique solution gμ ∈
L2(0, T ; H1(�)) ∩ H1(0, T ; H−1(�)) to

〈 ∂

∂t
gμ, v

〉
+ A(gμ, v) = F(v), t > 0, gμ(0) = θg0. (26)

This defines thefixed-point operatorV : L2(0, T ; L2(�))×[0, 1]→ L2(0, T ; L2(�)),
(g̃, θ) �→ V (g̃, θ) = gμ, where gμ solves (26). This operator satisfies V (g̃, 0) =
0. Standard arguments, including Galerkin’s method and estimates on∥∥ ∂

∂t gμ

∥∥
L2(0,T ;H−1(�))

, show that the operator V is continuous (with constants depend-
ing on the regularisation parameter μ). The operator is also compact, because
L2(0, T ; H1(�)) ∩ H1(0, T ; H−1(�)) is compactly embedded in L2(0, T ; L2(�))

(see Simon (1986)). In order to apply the fixed-point theorem of Leray–Schauder, we
need to show uniform estimates.

Step 2: uniform L∞ bound and existence of a fixed point. We start by proving upper
and lower bounds for the function gμ. Let gμ be a fixed point of V (·, θ), i.e. gμ solves
(26) with g̃ = gμ, and θ ∈ [0, 1].
For a lower bound, choosing v = g−

μ = min{0, gμ} ∈ L2(0, T ; H1(�)) as test
function in (26) and integrating in time, we obtain

d

dt

∥∥g−
μ

∥∥2
L2(�)

= −2A(gμ, g−
μ ) ≤ −C1

∥∥g−
μ

∥∥2
2

≤ 0.

This shows that if gμ(0)− = 0, then gμ(t)− = 0 for all t > 0. Hence, in all previous
computations and in (24)–(25), we can replace g+

μ with gμ.
Now we show an upper bound. Let g∗ = (gμ − M)+, where M = M0eλt , for

some λ > 0 to be determined below. We choose v = g∗ ∈ L2(0, T ; H1(�)) as test
function in (23). By assumption, g0 ≤ M0, i.e. g∗(0) = (g0 − M0)

+ = 0. We note
that ∂

∂t M = λM and 1
2

∂
∂ρ

(g2∗) = (gμ − M) ∂
∂ρ
g∗. Then,

1

2

∫
�

g∗(t)2 dRdρ =
∫ t

0

[
−λ

∫
�

Mg∗ dRdρ − A(gμ, g∗) + F(g∗)
]
ds

=
∫ t

0

σ 2

2

∫
�

d[gμ] ∂

∂ρ
((gμ − M) + M)

∂

∂ρ
g∗ dRdρ

− μ

∫
�

|∇g∗|2 dRdρ + θ(I + J ) ds
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≤
∫ t

0
θ(I + J ) ds,

where I = ∫
�
LM [gμ]gμ

∂
∂R g∗ dRdρ and J = ∫

�
KM [gμ]gμ

∂
∂ρ
g∗ dRdρ. Let us

consider I and J , separately:

I =
∫

�

LM [gμ](gμ − M)
∂

∂R
g∗ dRdρ +

∫
�

LM [gμ]M ∂

∂R
g∗ dRdρ

= −1

2

∫
�

∂

∂R
[LM [gμ]]g2∗ dRdρ −

∫
�

∂

∂R
[LM [gμ]]Mg∗ dRdρ

J =
∫

�

KM [gμ](gμ − M)
∂

∂ρ
g∗ dRdρ +

∫
�

LM [gμ]M ∂

∂ρ
g∗ dRdρ

= −1

2

∫
�

∂

∂ρ
[KM [gμ]]g2∗ dRdρ −

∫
�

∂

∂ρ
[KM [gμ]]Mg∗ dRdρ.

The assumptions on h1, 〈h2〉 and b ensure that ∂
∂R [LM [gμ]] and ∂

∂ρ
[KM [gμ]] are

bounded. Hence,

1

2

∫
�

g2∗ dRdρ =
∫

�

( ∂

∂t
g∗

)
g∗ dRdρ

≤ C(LM [gμ], KM [gμ])
∫

�

g2∗ dRdρ

+ (C(LM [gμ], KM [gμ]) − λ)

∫
�

Mg∗ dRdρ.

Choosing λ large enough and using Gronwall’s lemma, we obtain

∫
�

g∗(t)2 dRdρ ≤
∫

�

g∗(0)2 exp[2C(LM [gμ], KM [gμ])t] dRdρ = 0.

Therefore, g∗(t) = 0 for all t > 0, which implies gμ(t) ≤ M for all t > 0. This allows
us to replace LM [gμ] with a[gμ] and KM [gμ] with c̃[gμ] in (23). The uniform L∞
bound provides the necessary bound for the fixed-point operator in L2(0, T ; L2(�)).
This implies existence of a weak solution to (23).
Step 3: uniform H1 bound. Our aim is to derive an H1 bound which is independent
of μ. Choosing v = gμ in (23) with t instead of T , we obtain

1

2

d

dt

∫
�

gμ(t)2 dRdρ =
∫

�

a[gμ]gμ

∂

∂R
gμ dRdρ +

∫
�

c̃[gμ]gμ

∂

∂ρ
g dRdρ

−
∫

�

(σ 2

2
d[gμ] + μ

)∣∣∣ ∂

∂ρ
gμ

∣∣∣2 dRdρ − μ

∫
�

∣∣∣ ∂

∂R
gμ

∣∣∣2 dRdρ
= −1

2

∫
�

∂

∂R
a[gμ]g2μ dRdρ − 1

2

∫
�

∂

∂ρ
c̃[gμ]g2μ dRdρ

−
∫

�

(σ 2

2
d[gμ] + μ

)∣∣∣ ∂

∂ρ
gμ

∣∣∣2 dRdρ
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− μ

∫
�

∣∣∣ ∂

∂R
gμ

∣∣∣2 dRdρ.

Because of the assumptions on h1, 〈h2〉 and b we have that∣∣∣− 1
2

(
∂

∂R a[gμ] + ∂
∂ρ
c̃[gμ]

)∣∣∣ < C . Therefore, we can rewrite the above estimate as

1

2

∫
�

gμ(t)2 dRdρ

+
∫ t

0

[ ∫
�

(σ 2

2
d[gμ] + μ

)∣∣∣ ∂

∂ρ
gμ

∣∣∣2 dRdρ + μ

∫
�

∣∣∣ ∂

∂R
gμ

∣∣∣2 dRdρ
]
ds

≤ C
∫ t

0

∫
�

gμ(t)2 dRdρdt + 1

2

∫
�

g(0)2 dRdρ.

(27)

Using Gronwall’s lemma, the previous estimate guarantees (independent by μ) esti-
mates for gμ(t), i.e. ∥∥gμ

∥∥
L∞(0,T ;L2(�))

≤ C .

However, this does not ensure an (independent of μ) estimate for ∂
∂R gμ and ∂

∂ρ
gμ.

In order to obtain it, we differentiate (22a) with respect to R and ρ in the sense of
distributions. This gives us estimates for y := ∂

∂R gμ and z := ∂
∂ρ
gμ. We obtain

∂

∂t
y = − ∂

∂R

(
d[gμ]gμ + a[gμ]y) − ∂

∂ρ
(c̃[gμ]y) + σ 2

2

∂2

∂ρ2 y + γ
∂2

∂R2 y

in � × (0, T ). (28)

Due to no-flux boundary condition (21b), Eq. (28) is complemented with

∂

∂νR
y(ρ, R, t) = 0 on ∂�,

where νR is the component w.r.t. variable R of the normal vector ν to �. Fur-
thermore, y(ρ, R, 0) = ∂

∂R g0(ρ, R). Choosing v ∈ L2(0, T ; H1
0 (�)) and setting

d ′[gμ] = ∂
∂R d[gμ], c̃R[gμ] = ∂

∂R c̃[gμ] and aR[gμ] = ∂
∂R a[gμ], we obtain the weak

formulation of Eq. (28):

∫ T

0

〈 ∂

∂t
y, v

〉
ds =

∫ T

0

∫
�

(
aR[gμ]gμ

∂

∂R
v + a[gμ]y ∂

∂R
v + c̃R[gμ]gμ

∂

∂ρ
v

+ c̃[gμ]y ∂

∂ρ
v − σ 2

2

∂

∂ρ

(
d ′[gμ]gμ + d[gμ]y) ∂

∂ρ
v

−μ
( ∂

∂ρ
y

∂

∂ρ
v + ∂

∂R
y

∂

∂R
v
))

dRdρds. (29)
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We introduce the operators

By(y, v) =
∫

�

−a[gμ]y ∂

∂R
v − c̃[gμ]y ∂

∂ρ
v + σ 2

2
d[gμ] ∂

∂ρ
y

∂

∂ρ
v

+ μ
( ∂

∂ρ
y

∂

∂ρ
v + ∂

∂R
y

∂

∂R
v
)
dRdρ

Gy(v) =
∫

�

c̃R[gμ]gμ

∂

∂ρ
v + aR[gμ]gμ

∂

∂R
v

− σ 2

2
d ′[gμ] ∂

∂ρ
gμ

∂

∂ρ
v dRdρ.

Both operators By : L2(0, T ; H1
0 (�)) × L2(0, T ; H1

0 (�)) → R and Gy :
L2(0, T ; H1

0 (�)) → R are linear and continuous. Garding’s inequality implies

By(y, y) =
∫

�

μ|∇ y|2 dRdρ + 1

2

∫
�

(c̃R[gμ] + aR[gμ])y2dρdR

+ σ 2

2

∫
�

d[gμ]
∣∣∣ ∂

∂ρ
y
∣∣∣2 dRdρ

≥ μ ‖y‖2H1(�)
−

(
μ + 1

2

∥∥a[gμ]∥∥∞ + 1

2

∥∥c̃[gμ]∥∥∞
)

‖y‖22 .

Then, corollary 23.26 in Zeidler (1990) gives existence of a unique solution y ∈
L2(0, T ; H1

0 (�)) ∩ H1(0, T ; H−1(�)) to

〈 ∂

∂t
y, v

〉
+ By(y, v) = Gy(v), t > 0, y(0) = y0. (30)

Choosing v = y in (29), we obtain (using Young’s and Garding’s inequality)

1

2

d

dt

∫
�

y(t)2 dRdρ = −By(y, y) + Gy(y)

≤ −μ ‖y‖2H1(�)
+ C ‖y‖22

+ 1

2

( ∥∥∥∥ ∂2

∂R2 a[gμ]
∥∥∥∥∞

+
∥∥∥∥ ∂

∂ρ

( ∂

∂R
c̃[gμ]

)∥∥∥∥∞

) ∫
�

g2μ + y2 +
∣∣∣ ∂

∂ρ
gμ

∣∣∣2 dRdρ

− σ 2

2

∫
�

d ′[gμ] ∂

∂ρ
gμ

∂

∂ρ
y dRdρ.

Considering the last integral, we calculate

− σ 2

2

∫
�

d ′[gμ] ∂

∂ρ
gμ

∂

∂ρ
y dRdρ = −σ 2

2

∫
�

d ′[gμ] ∂

∂ρ
gμ

∂

∂ρ

( ∂

∂R
gμ

)
dRdρ

= σ 2

2

∫
�

∂

∂R
d ′[gμ]

∣∣∣ ∂

∂ρ
gμ

∣∣∣2 dRdρ + σ 2

2

∫
�

d ′[gμ] ∂

∂R

( ∂

∂ρ
gμ

) ∂

∂ρ
gμ dRdρ,
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and therefore,

−σ 2

2

∫
�

d ′[gμ] ∂

∂ρ
gμ

∂

∂ρ
y dRdρ = σ 2

4

∫
�

∂

∂R
d ′[gμ]

∣∣∣ ∂

∂ρ
gμ

∣∣∣2 dRdρ.

This gives us the following estimate for ‖y‖L2(�) (with a constant depending on a[gμ],
c̃[gμ] and their derivatives)

∫
�

y(t)2 dRdρ ≤
∫

�

h(0)2 dRdρ + C
∫ t

0

∫
�

y2 + g2μ +
∣∣∣ ∂

∂ρ
gμ

∣∣∣2 dRdρds. (31)

We use similar arguments for z = ∂
∂ρ
gμ. For a suitableC , which depends on a[gμ],

c̃[gμ], d[gμ] and their derivatives (but not on μ), we obtain an estimate for the L2

norm of z:

∫
�

z(t)2 dRdρ ≤
∫

�

h(0)2 dRdρ + C
∫ t

0

∫
�

z2 + g2μ +
∣∣∣ ∂

∂R
gμ

∣∣∣2 dRdρds. (32)

We add (27), (31) and (32) to obtain

∫
�

gμ(ρ, R, t)2 + y(ρ, R, t)2 + z(ρ, R, t)2 dRdρ

+σ 2

2

∫ t

0

∫
�

z(ρ, R, s)2 dRdρds

≤ C
∫ t

0

∫
�

y(ρ, R, s)2 + gμ(ρ, R, s)2 + z(ρ, R, s)2 dRdρds

+
∫

�

g(ρ, R, 0)2 + y(ρ, R, 0)2 + z(ρ, R, 0)2 dRdρ, (33)

whereC does not depend onμ. UsingGronwall’s lemma gives the following estimates
(independent of μ)

∥∥gμ

∥∥
L∞(0,T ;L2(�))

≤ C,

∥∥∥∥ ∂

∂ρ
gμ

∥∥∥∥
L∞(0,T ;L2(�))

≤ C,

∥∥∥∥ ∂

∂R
gμ

∥∥∥∥
L∞(0,T ;L2(�))

≤ C .

(34)

Step 4: The limit μ → 0. Let gμ solution of (22a)–(22b) with L[gμ] = a[gμ] and
K [gμ] = c̃[gμ]. We can estimate

∥∥ ∂
∂t gμ

∥∥
L2(0,T ;H−1(�))

, using the norm of operators∥∥ ∂
∂t gμ

∥∥
H−1(�)

= sup‖v‖H1(�)
=1 |〈 ∂

∂t gμ, v〉|.
For a suitable C ≥ (

∥∥ ∂
∂R a[g]∥∥∞)

1
2 + (

∥∥∥ ∂
∂ρ
c̃[g]

∥∥∥∞)
1
2 + σ 2

2 + 1, we obtain

∣∣∣
〈 ∂

∂t
gμ, v

〉∣∣∣ ≤ ∥∥a[gμ]∥∥∞
∫

�

(
g2μ +

∣∣∣ ∂

∂R
v

∣∣∣2
)
dRdρ
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+ ∥∥c̃[gμ]∥∥∞
∫

�

(
g2μ +

∣∣∣ ∂

∂ρ
v

∣∣∣2
)
dRdρ

+ σ 2

2

∥∥d[gμ]∥∥∞
∫

�

∣∣∣ ∂

∂ρ
gμ

∣∣∣2 +
∣∣∣ ∂

∂ρ
v

∣∣∣2 dRdρ
+ μ ×

∫
�

|∇gμ|2 + |∇v|2 dRdρ
≤ C(

∥∥gμ

∥∥
H1(�)

) ‖v‖H1(�) .

This implies

∥∥∥∥ ∂

∂t
gμ

∥∥∥∥
L2(0,T ;H−1(�))

≤ C and
∫ T

0

∥∥gμ

∥∥2
H1(�)

dt = C
∥∥gμ

∥∥
L2(0,T ;H1(�))

≤ C,

(35)

whereC does not depend onμ. Estimates (34) and (35) allow us to apply Aubin–Lions
lemma and conclude the existence of a subsequence of (gμ) such that for μ → 0,

gμ → g strongly in L2(0, T ; L2(�)),

gμ⇀g weakly in L2(0, T ; H1(�)),

∂

∂t
gμ⇀

∂

∂t
g weakly in L2(0, T ; H−1(�)).

Furthermore, by direct computation, we obtain

∥∥c̃[g]g − c̃[gμ]gμ

∥∥
L2(0,T ;L2(�))

≤ ∥∥c̃[g](g − gμ)
∥∥
L2(0,T ;L2(�))

+ ∥∥(c̃[g] − c̃[gμ])gμ

∥∥
L2(0,T ;L2(�))

.

The first term on the right side of the previous inequality goes to 0 when μ → 0
because c̃[gμ] is bounded and gμ → g strongly in L2(0, T ; L2(�)). Using Cauchy–
Schwartz’s inequality and that the domain � is bounded, yields

∥∥(c̃[g] − c̃[gμ])gμ

∥∥
L1(0,T ;L1(�))

=
∫ T

0

∫
�

∣∣∣∣
∫

�

(
αh1(ρ j − ρ)

+ β〈h2(ρ j − ρ)〉)

× w(R − R j )
(
g(ρ j , R j , t) − gμ(ρ j , R j , t)dρ jdR j

)∣∣∣∣gμ(ρ, R, t)dρdRdt

≤ C
∫ T

0

(∫
�

g(ρ j , R j , t) − gμ(ρ j , R j , t)dρ jdR j

)(∫
�

gμ(ρ, R, t)dρdR

)
dt

≤ C |�| 12 ∥∥gμ − g
∥∥2
L2(0,T ;L2(�))

.

The constant is bounded from above by the L∞-norm of h and w; hence, this term
goes to 0 as μ → 0.
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Since c[gμ]gμ is bounded, convergence holds in L p for all p < ∞. The same argu-
ment holds for the difference

∥∥a[gμ]gμ − a[g]g∥∥L2(0,T ;L2(�))
. So, we have shown that

c̃[gμ]gμ → c̃[g]g strongly in L2(0, T ; L2(�)),

a[gμ]gμ → a[g]g strongly in L2(0, T ; L2(�)).

Therefore, we can pass to the limit μ → 0 in Eq. (23) and obtain for all v ∈
L2(0, T ; H1(�))

∫ T

0

〈 ∂

∂t
g, v

〉
dt =

∫ T

0

∫
�

a[g]g ∂

∂R
v + c̃[g]g ∂

∂ρ
v − σ 2

2

∂

∂ρ
g

∂

∂ρ
v dRdρdt . (36)

This completes the proof. ��

4 Long-Time Behaviour of Ratings and Strength

In this section, we study possible steady states of the proposed Elo model and discuss
the convergence of the ratings to the strength. We recall that Jabin and Junca (2015)
showed that the ratings of players converge to their intrinsic strength in the casew = 1.
This corresponds to the concentration of mass along the diagonal. In our model, the
intrinsic strength is continuously increasing in time. Hence, to be able to identify
steady states, we consider the shifted Fokker–Planck equation (21a). Throughout this
section, we consider the problem in the whole space.

Since the diffusion part in (21a) is singular, the equation is degenerate parabolic.
Degenerate Fokker–Planck equations frequently, despite their lack of coercivity,
exhibit exponential convergence to equilibrium, a behaviour which has been referred
to by Villani as hypocoercivity in Villani (2009). For subsequent research on hyperco-
ercity in linear Fokker–Planck equations, see (Arnold and Erb 2014; Achleitner et al.
2015). Since (21a) is a nonlinear, non-local Fokker–Planck equation these results do
not apply here, but it is conceivable that generalisations of this approach can be used
in studying the decay to equilibrium for (21a), which is, however, beyond the scope of
the present paper. In the following, we present some results on the long-term behaviour
of solutions to (21a).

Due to normalisation of the mean value, the only point in which the formation of a
steady state is possible is R0 = 0 and ρ0 = 0. Let us assume that we have a measure
valued steady state in (0, 0), that is g∞(ρ, R) = δ(ρ)δ(R). Then, direct computations
using the weak form of (21a) give

0 = ∂

∂ρ
(φ(ρ0, R0))[αb(0) + β〈h2〉(0)] + σ 2

2
w(0)

∂2

∂ρ2 (φ(ρ0, R0))

= σ 2

2
w(0)

∂2

∂ρ2 (φ(ρ0, R0)).
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This equation is not satisfied for all test functions φ. Therefore, we investigate the
possibility of having more complex steady states, which have a similar form as the
one identified by Junca and Jabin. Let us assume that g∞ is of the form

g∞(ρ, R) = δ(ρ)g̃(R), (37)

or alternatively

g∞(ρ, R) = δ(R)g̃(ρ), (38)

where g̃(·) in both cases is not a δ − Dirac.
By direct computation in weak form of (21a) with φ(ρ, R) = ρ2 and φ(ρ, R) = R2,
respectively, we compute the following expressions for the second moments of the
density function g(ρ, R, t):

d

dt
Mg,2,ρ(t) = σ 2

2

∫
R4

w(R − R j )g(ρ, R, t)g(ρ j , R j , t) dR jdρidRdρ

−
∫
R4

(ρ j − ρ)
[
αb(ρ j − ρ)

+ β〈h2(ρ j − ρ)〉]w(R − R j )g(ρ, R, t)g(ρ j , R j , t) dR jdρidRdρ, (39)

d

dt
Mg,2,R(t) =

∫
R4

2R(b(ρ − ρ j )

− b(R − R j ))w(R − R j )g(ρ, R, t)g(ρ j , R j , t) dR jdρ jdRdρ. (40)

The analysis of the second moment w.r.t. ρ leads us to conclude that the diffusion
prevents the formation of a steady state as in (37) if w = 1. Indeed, in this case,
the first integral in (39) equals σ 2. If at certain time t > 0, ρ � ρ j or g(ρ, R, t) =
δ(ρ − ρ0)g̃(R, t), the integral becomes small or vanishes (anyhow smaller than σ 2)
and then d

dt M2,ρi (t) ≥ 0. Thus, we can conclude that the diffusion prevents the
accumulation of the mass in ρ = 0. For a general choice ofw, the long-time behaviour
of solutions is less clear.

Conversely, the second moment w.r.t. R is decreasing. Due to the symmetry of the
functions b and w, we can rewrite (40) as

d

dt
Mg,2,R(t) = −

∫
R4

(R − R j )b(R − R j )w(R − R j )g(ρ, R, t)

×g(ρ j , R j , t) dR jdρ jdRdρ ≤ 0.

This inequality does not contradict the assumption of a steady state of form (38).
In order to evaluate if, with the scaling (20), the rating converges to the intrinsic

strength, let us define the energy

E2(t) =
∫
R2

(ρ − R)2g(ρ, R, t) dρdR. (41)
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We are interested in the evolution of E2 and compute

d

dt
E2(t) = −2

∫
R4

(ρ − R)w(R − R j )b(R − R j )g(ρ, R, t)g(ρ j , R j , t) dρ jdR jdρdR

+ 2
∫
R4

(ρ − R)w(R − R j )b(ρ − ρ j )g(ρ, R, t)g(ρ j , R j , t) dρ jdR jdρdR

+ 2α
∫
R4

(ρ − R)w(R − R j )b(ρ − ρ j )g(ρ, R, t)g(ρ j , R j , t) dρ jdR jdρdR

+ 2β
∫
R4

(ρ − R)w(R − R j )〈h2(ρ − ρ j )〉g(ρ, R, t)g(ρ j , R j , t) dρ jdR jdρdR

+ σ 2
∫
R2

d[g]g(ρ, R, t) dρdR.

(42)

For general functions w, it is not possible to determine the signs of the respective
integrals. Therefore, we consider the case w = 1 only. For all odd functions b(·) (the
same holds true for 〈h2(ρ − ρ j )〉), we are able to show that

∫
R4

ρb(ρ j − ρ)g(ρ, R, t)g(ρ j , R j , t) dρ jdR jdρdR

= 1

2

∫
R4

ρ(b(ρ j − ρ) − b(ρ − ρ j ))g(ρ, R, t)g(ρ j , R j , t) dρ jdR jdρdR

= −1

2

∫
R4

(ρ j − ρ)b(ρ j − ρ)g(ρ, R, t)g(ρ j , R j , t) dρ jdR jdρdR

≤ 0,

and
∫
�2 ρb(R − R j )g(ρ, R, t)g(ρ j , R j , t) dρ jdR jdρdR = 0. In this case we can

rewrite Eq. (42) as

d

dt
E2(t) = −

∫
R4

(R − R j )b(R − R j )g(ρ, R, t)g(ρ j , R j , t) dρ jdR jdρdR

−
∫
R4

(ρ − ρ j )b(ρ − ρ j )g(ρ, R, t)g(ρ j , R j , t) dρ jdR jdρdR

− α

∫
R4

(ρ − ρ j )b(ρ − ρ j )g(ρ, R, t)g(ρ j , R j , t) dρ jdR jdρdR

− 2β
∫
R4

(ρ − ρ j )〈h2(ρ − ρ j )〉g(ρ, R, t)g(ρ j , R j , t) dρ jdR jdρdR

+ σ 2.

(43)

Again we would like to know if a concentration of mass along the diagonal is possible.
Let us assume that at certain time the solution is g(ρ, R, t) = δ(ρ − R)g̃)(ρ, R, t). If
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we insert this claim in (43), we obtain

d

dt
E2(t) = σ 2 > 0.

It shows that the diffusion counteracts the accumulation of themass along the diagonal.
On the other hand, the four integrals in (43) are strictly negative. Hence, if σ 2 is small
enough, the distance between rating and intrinsic strength becomes small, and the
diffusive term can be controlled. This indicates concentration of the mass in a certain
neighbourhood of the diagonal in the long run.

5 Numerical Simulations

In this section, we discuss the numerical discretisation of the Boltzmann equation (11)
and the shifted Fokker–Planck equation (21a). We initialise the distribution of players
with respect to their strength and rating with values from the unit interval and consider
appropriately shifted interaction rules to ensure that the distribution remains inside
the unit square for all times t > 0.

5.1 Monte Carlo Simulations of the Boltzmann Equation

We use the classical Monte Carlo method to compute a series of realisations of the
Boltzmann equation (11). In the direct Monte Carlo method, also known as Bird’s
scheme, pairs of players are randomly and non-exclusively selected for two-player
games. The outcome of the game is determined by (6). Note that we consider the
following shifted interaction rules for the ratings, to ensure that ρ ∈ [0, 1] and R ∈
[0, 1]:

ρ∗
i = ρi + γ h̃(ρ j − ρi )w(Ri − R j ) + η (44a)

ρ∗
j = ρ j + γ h̃(ρi − ρ j )w(Ri − R j ) + η̃, (44b)

where h̃ = b(ρ j − ρi ). The microscopic interactions are simulated as follows:
the outcome of the game Si j is the realisation of a discrete distribution function,
which takes the value {−1, 1} with probability {b(ρi − ρ j ), 1 − b(ρi − ρ j )}. The
random variables η are generated such that they assume values η = ±0.025 with
equal probability, and the parameter γ is set to 0.05. Further information on Monte
Carlo methods for Boltzmann-type equations can be found in Pareschi and Toscani
(2013).

In each simulation, we consider N = 5000 players and compute the steady-state
distribution by performing 108 time steps. The result is then averaged over another
105 time steps. We perform M = 10 realisations and compute the density from the
averaged steady states.
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5.2 Finite Volume Discretisation and Simulations of the Nonlinear Fokker–Planck
Equation

The solver for the Fokker–Planck equation is based on a Strang splitting and an upwind
finite volume scheme. We recall that we discretise the shifted Fokker–Planck equation
(21a), which allows us to perform simulations on a bounded domain. Because of the
splitting, we consider the interactions in the rating and the strength variable separately.
We define two operators, which correspond to

(S1) Interaction step in the strength variable R:

∂g∗

∂t
(ρ, R, t) = − ∂

∂ρ
(c[g̃]g∗(ρ, R, t)) + σ 2

2
d[g̃] ∂2

∂ρ2 (g∗(ρ, R, t))

subject to the initial condition g∗(ρ, R, t) = g̃(ρ, R, t). Note that we compute
the interaction integrals using g̃, which corresponds to the solution at the previous
time step in the full splitting scheme.
(S2) Interaction step in the rating variable ρ:

∂g�

∂t
(ρ, R, t) = − ∂

∂R
(a[g∗]g�(ρ, R, t))

We approximate all integrals, which appear in the interaction coefficients using the
trapezoidal rule.

Let ĝk denote the solution at time tk = k�t , where�t corresponds to the time step
size. Then, the Strang splitting results in the scheme

ĝk+1(ρ, R) = S2

(
ĝ∗,k+1,

�t

2

)
◦ S1

(
ĝ�,k+ 1

2 ,�t
)

◦ S2

(
ĝk,

�t

2

)
,

where the superscripts denote the solutions of g∗ and g� at the discrete time steps

tk+1 = (k+1)�t and tk+ 1
2 = (k+ 1

2 )�t . We use a conservative upwind finite volume
discretisation to discretise the respective operators. The corresponding explicit-in-time
upwind finite volume methods are given by

ĝn+1
j = ĝnj + λ1

(
ĉ j+ 1

2
− ĉ j− 1

2

)
+ λ2

(
d̂ j+ 1

2
− d̂ j− 1

2

)
,

where ĉ is the upwind flux and the diffusive flux is given d̂ j+ 1
2

= D(ĝ j+1)ĝ j+1 −
D(ĝ j )ĝ j . Here, λ1 = �t/�x and λ2 = �t/�x2.

5.3 Computational Experiments

All micro- and macroscopic simulations are performed on the domain [0, 1] × [0, 1]
with no-flux boundary conditions. In the case of a general interaction function, the
interaction rate function w(ri − r j ) is a piecewise constant function given by
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w(z) =
{
1 if |z| ≤ 0.1

0 otherwise.
(45)

5.3.1 All-Play-All Tournaments

We start by investigating the long-time behaviour of the Elo model with w = 1,
α = 0.1 and β = 0 in (7). Hence, players have the same probability to play against
another independent of their respective ratings. We have seen in Sect. 4 that we expect
a measure valued solution in the case of no diffusion. However, we cannot show
convergence of solutions to a measure valued steady state if stochastic fluctuations
influence the intrinsic strength. In the following, we compare computed steady states
of the Boltzmann as well as the Fokker–Planck equation in the case of diffusion and
no diffusion. We start with a uniform distribution of agents in the micro- and the
macroscopic situation. Figure 2 and Fig. 3 confirm the expected formation of a Delta
Dirac at the centre of mass in the case of no diffusion. If the individual strength is also
influenced by stochastic fluctuations, the steady state is smoothed out with respect to
the rating as well. The resulting steady states are Gaussian like profiles in the micro-
and macroscopic simulations (see Figs. 2 and 3). Figure 3 also shows the decay of the
energy E2 in time.

5.3.2 Competitions of Players with Similar Ratings

Assigning initial ratings to players in the Elo rating is a delicate issue, since inaccurate
initial ratings may influence the ability of the rating to converge to a ‘good’ rating of
players reflecting their intrinsic strengths. We show the difficulties in this case by
studying the dynamics if players with close ratings compete.

We set the interaction rate function to (45)—hence, individuals only play against
each other, if the difference between their ratings is small. We consider two groups of
players with different strength and rating levels as initial distribution. The first group
is underrated, that is all players have rating R = 0.2, but their strength is distributed
as ρ ∈ N (0.75, 0.1). The second group is overrated, with rating R = 0.9 and a
uniform distribution in strength.We use this initial configuration in two computational
experiments.

In the first, we choose the learning parameters α = 0.1 and β = 0. We see that
the two groups remain separated due to their different ratings in this case (see Fig. 4).
However, players compete within their own group and since β = 0 the overall rating
improves. In the overrated group the strongest players accumulate at the highest pos-
sible rating, while the underrated group forms a diagonal pattern. Here, the underrated
players evolve to the maximum possible rating level.

In the second experiment, using the same initial configuration, but α = 0.1 and
β = 0.05 the steady-state profile looks totally different. In this setting, stronger players
loose strength, when loosing against a weaker opponent. Therefore, the ratings of the
overrated group decrease, while the ratings of the underrated group increase. After a
while the two groups merge, accumulating on a diagonal which underestimates the
intrinsic strength of players by approximately 0.1 (see Fig. 5).
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Fig. 2 Computational steady state of the Boltzmannmodel forw = 1 in the case of no diffusion, η = η̄ = 0,
and small diffusion in the strength η = η̄ = 0.025. a Steady state—no diffusion. b Steady state (top view)—
no diffusion. c Steady state—diffusion ν = 0.025. d Steady state (top view)—diffusion ν = 0.025

These examples show the importance of the initial ratings as well as the influence
of the adapted learning mechanism.

5.3.3 Foul Play

Finally, we consider a series of games, in which one player, without loss of generality
the first one, is playing unfairly, e.g. through cheating, doping or bribing of referees.
This means that the outcome of every microscopic game which involves this player
is biased in their favour. In particular, we assume that the probability of winning
is increased by a factor b̃ for player 1 and decreased by b̃ for the other contestant.
Figure 6 shows the stationary profile in the case of a uniform initial distribution of
agents, α = 0.1, β = 0, w = 1 and b̃ = 0.2. The star indicates the position of the
unfair first player. While the distribution of players with respect to their ratings and
their strengths accumulates along the diagonal, we see that the first player is rated
higher than implied by his or her strength.
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Fig. 3 Computational steady state of the Fokker–Planck model and energy decay for w = 1 in the case of
no and little diffusion strength. a Steady state (top view)—no diffusion. b Steady state (top view)—with
diffusion. c Energy decay in the case of no diffusion. d Energy decay in the case of diffusion

Fig. 4 Computed stationary profiles in competitions of players with similar ratings in case of two initially
separated groups (one underrated with high strength but low rating and one overrated with variable strength
but rating 0.9). Due to the limited interaction between the groups and the chosen learning mechanism, they
remain separated
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Fig. 5 Computed stationary profiles in competitions of players with similar ratings in case of two initially
separated groups (one underrated with high strength but low rating and one overrated with variable strength
but rating 0.9). Despite the limited interaction between the groups, the adapted learning mechanism leads
to convergence of the ratings to a slightly shifted diagonal

Fig. 6 Computed stationary
profile in a foul play where the
first player has an unfair
advantage in each game. We
observe that the ratings and
strength all players except the
first one converge. The cheating
player (indicated by a star) ends
up with a higher rating than it is
supposed to have
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Appendix A: Derivation of the Fokker–Planck Equation

In this section, we derive the limiting Fokker–Planck equation in the case γ → 0,
ση → 0 such that σ 2

η /γ =: σ 2 is kept fixed. Based on the interaction rules (6),
which define the outcome of a game, we compute the expected values of the following
quantities:

〈(R∗
i − Ri )〉 = γ (b(ρi − ρ j ) − b(Ri − R j ))

〈((R∗
i − Ri )

2)〉 = γ 2(b(ρi − ρ j ) − b(Ri − R j ))
2;

〈(ρ∗
i − ρi )〉 = γ (αh1(ρ j − ρi ) + β〈h2(ρ j − ρi )〉)

〈(ρ∗
i − ρi )

2〉 = γ 2 (
αh1(ρ j − ρi ) + β〈h2(ρ j − ρi )〉

)2 + σ 2
η

〈(ρ∗
i − ρi )(R

∗
i − Ri )〉 = γ 2(αh1(ρ j − ρi ) + β〈h2(ρ j − ρi )〉)

× (b(ρi − ρ j ) − b(Ri − R j )).

Using Taylor expansion of φ(ρ∗
i , R∗

i ) up to order two around (ρi , Ri ), we obtain

〈φ(ρ∗
i , R∗

i ) − φ(ρi , Ri )〉
= 〈R∗

i − Ri 〉 ∂

∂Ri
φ(ρi , Ri ) + 〈ρ∗

i − ρi 〉 ∂

∂ρi
φ(ρi , R j )

+ 1

2

[
〈(R∗

i − Ri )
2〉 ∂2

∂R2
i

φ(ρi , Ri ) + 〈(ρ∗
i − ρi )

2〉 ∂2

∂ρ2
i

φ(ρi , Ri )

+ 2〈(ρ∗
i − ρi )(R

∗
i − Ri )〉 ∂2

∂ρi∂Ri
φ(ρi , Ri )

]

+ Rγ (φ, ρ∗
i , R∗

i , ρi , Ri , τ ),

where the remainder termRγ is given by

Rγ

=
(

ρ∗
i − ρi

R∗
i − Ri

)T
⎛
⎝

∂2

∂ρ2
i
φ(ρi , Ri ) − ∂2

∂ρ2
i
φ(ρi , Ri )

∂2

∂ρi ∂Ri
φ(ρi , Ri ) − ∂2

∂ρi ∂Ri
φ(ρi , Ri )

∂2

∂ρi ∂Ri
φ(ρi , Ri ) − ∂2

∂ρi ∂Ri
φ(ρi , Ri )

∂2

∂R2
i
φ(ρi , Ri ) − ∂2

∂R2
i
φ(ρi , Ri )

⎞
⎠

(
ρ∗
i − ρi

R∗
i − Ri

)
,

for some 0 ≤ θ1, θ2 ≤ 1 with ρi and Ri defined as

ρi = θ1ρi + (1 − θ1)ρ
∗
i and Ri = θ2Ri + (1 − θ2)R

∗
i .
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Next we rescale time as τ = γ t and insert the expansion in (11). This yields

d

dτ

∫
R2

φ(ρi , R j ) fγ (ρi , Ri , τ )dRidρi

= 1

2γ

∫
R2

R̃γ (φ, ρ∗
i , R∗

i , ρi , Ri , τ ) fγ (ρi , Ri , τ )dRidρi

+
∫
R4

[
∂

∂Ri
φ(ρi , R j )(b(ρi − ρ j ) − b(Ri − R j ))

+ ∂

∂ρi
φ(ρi , R j )(αh1(ρ j − ρi ) + β〈h2(ρ j − ρi )〉)

+ σ 2
η

2γ

∂2

∂ρ2
i

φ(ρi , R j )

]
w(Ri − R j ) fγ (ρi , Ri , τ ) fγ (ρ j , R j , τ )dR jdρ jdRidρi ,

(46)

where

R̃γ (φ, ρ∗
i , R∗

i , ρi , Ri , τ ) = γ 2
∫
R2

∂2

∂R2
i

φ(ρi , Ri )(b(ρi − ρ j )

− b(Ri − R j ))
2w(Ri − R j ) fγ (ρ j , R j , τ )dR jdρ j

+ γ 2
∫
R2

∂2

∂ρ2
i

φ(ρi , Ri )
(
αh1(ρ j − ρi )

+ β〈h2(ρ j − ρi )〉
)2

w(Ri − R j ) fγ (ρ j , R j , τ )dR jdρ j

+ 2γ 2
∫
R2

∂

∂ρi∂Ri
φ(ρi , Ri )(b(ρi − ρ j ) − b(Ri − R j ))

(
αh1(ρ j − ρi )

+ β〈h2(ρ j − ρi )〉
)
w(Ri − R j ) fγ (ρ j , R j , τ )dR jdρ j

+
∫
R2

Rγ w(Ri − R j ) fγ (ρ j , R j , τ )dR jdρ j .

Nextwe show that the remainder 1
2γ

∫
R2 R̃γ (φ, ρ∗

i , R∗
i , ρi , Ri , τ ) fγ (ρi , Ri , τ )dRidρi

vanishes for γ → 0. Let us assume that φ(ρi , Ri ) belongs to the space C2+δ(R
2) =

{h : R2 → R, ‖Dζ h‖δ < +∞}, where 0 < δ ≤ 1, ζ is a multi-index with |ζ | ≤ 2
and the seminorm ‖ · ‖δ is the usual Hölder seminorm

‖ f ‖δ = sup
x,y∈R2

| f (x) − f (y)|
|x − y|δ .

With this choice of φ(ρi , Ri ), all the terms which contain ∂2

∂ρ2
i
φ and ∂2

∂R2
i
φ vanish using

the same arguments as in Toscani (2006), Cordier et al. (2009). Hence, we focus on
the mixed derivative ∂2

∂ρi ∂Ri
φ(ρi , Ri ). Since φ(ρi , Ri ) ∈ C2+δ(R

2) and ‖(ρi , Ri ) −
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(ρi , Ri )‖ ≤ ‖(ρ∗
i , R∗

i ) − (ρi , Ri )‖, we have
∣∣∣∣ ∂2

∂ρi∂Ri
φ(ρi , Ri ) − ∂2

∂ρi∂Ri
φ(ρi , Ri )

∣∣∣∣ ≤ ‖φ‖2+δ‖(ρ∗
i , R∗

i ) − (ρi , Ri )‖δ.

Furthermore, due to (2), (8) and (9),

‖(ρ∗
i , R∗

i ) − (ρi , Ri )‖
=

[
γ 2 (

αh1(ρ j − ρi ) + β〈h2(ρ j − ρi )〉
)2 + γ 2 (

b(ρi − ρ j ) − b(Ri − R j )
)2] 1

2

≤ Cγ.

Using the previous inequalities, we estimate the mixed term as

1

2γ

∣∣∣∣∣
∫
R4

(
∂2φ(ρi , Ri )

∂ρi ∂Ri
− ∂2φ(ρi , Ri )

∂ρi ∂Ri

)∥∥∥∥
(

ρi

Ri

)
−

(
ρi

Ri

)∥∥∥∥
2

w(Ri − R j ) fγ (ρ j , R j , τ ) fγ (ρi , Ri , τ ) dRidρidR jdρ j

∣∣∣∣∣
≤ 1

2γ

∫
R4

‖φ‖2+δ‖(ρ∗
i , R∗

i )

− (ρi , Ri )‖δ‖(ρ∗
i , R∗

i ) − (ρi , Ri )‖2 fγ (ρ j , R j , τ ) fγ (ρi , Ri , τ ) dRidρidR jdρ j

≤ 1

2γ

∫
R4

Cδ‖φ‖2+δγ
2+δ fγ (ρ j , R j , τ ) fγ (ρi , Ri , τ ) dRidρidR jdρ j

≤ Cδ

2
‖φ‖2+δγ

1+δ .

Hence, the remainder term converges to 0 as γ → 0. Therefore, the density
fγ (ρi , Ri , τ ) converges to f (ρi , Ri , τ ) which solves

d

dτ

∫
R2

φ(ρi , R j ) f (ρi , Ri , τ )dRidρi =
∫
R2

f (ρi , Ri , τ )

{
∂

∂Ri
φ(ρi , R j )

[ ∫
R2

w(Ri − R j )(b(ρi − ρ j )

− b(Ri − R j )) f (ρ j , R j , τ )dρ jdR j

]

+ ∂

∂ρi
φ(ρi , R j )

[ ∫
R2

w(Ri − R j )
(
αh1(ρ j − ρi )

+ β〈h2(ρ j − ρi )〉
)
f (ρ j , R j , τ )dρ jdR j

]

+ σ 2

2

∂2

∂ρ2
i

φ(ρi , R j )

[ ∫
R2

w(Ri − R j ) f (ρ j , R j , τ )dρ jdR j

]}
dRidρi .

(47)

It remains to show that under suitable boundary conditions Eq. (47) gives the desired
weak formulation of the Fokker–Planck equation. We split the boundary terms BT
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into the different parts BTi , i = 1, 2, 3 that arises, respectively, from each integral.
They are given by

B1 =
∫
R

[
f (ρi , Ri , τ )φ(ρi , Ri )

(∫
R2

w(Ri − R j )(b(ρi − ρ j ) − b(Ri − R j )) f (ρ j , R j , τ )dR j dρ j

)]Ri=+∞

Ri=−∞
dρi

B2 =
∫
R

[
f (ρi , Ri , τ )φ(ρi , Ri )

(∫
R2

w(Ri − R j )(αh1(ρ j − ρi ) + β〈h2(ρ j − ρi )〉) f (ρ j , R j , τ )dR j dρ j

)]ρi=+∞

ρi=−∞
dRi

B3 = σ2

2

∫
R

[
∂

∂ρi
φ(ρi , Ri ) f (ρi , Ri , τ )

( ∫
R2

w(Ri − R j ) f (ρ j , R j , τ )dρ j dR j

)

− φ(ρi , Ri )
∂

∂ρi

[
f (ρi , Ri , τ )

( ∫
R2

w(Ri − R j ) f (ρ j , R j , τ )dρ j dR j

)]]ρi=+∞

ρi=−∞
dRi .

These three terms are zero, if the following boundary conditions are satisfied:

lim|Ri |→+∞ f (ρi , Ri , τ )=0, lim|ρi |→+∞ f (ρi , Ri , τ )=0, lim|ρi |→+∞
∂

∂ρi
f (ρi , Ri , τ )=0.

(48)

These boundary condition are guaranteed for the Boltzmann equation fγ (ρi , Ri , τ ) by
mass conservation and the upper and lower bounds on the mean (see (14)). Therefore,
(47) is the weak form of the Fokker–Planck equation

d

dτ

∫
R2

φ(ρi , Ri ) f (ρi , Ri , τ )dRidρi =
∫
R2

φ(ρi , Ri )

{
− ∂

∂Ri

[
f (ρi , Ri , τ )

∫
R2

w(Ri − R j )(b(ρi − ρ j )

− b(Ri − R j )) f (ρ j , R j )dρ jdR j

]

− ∂

∂ρi

[
f (ρi , Ri , τ )

∫
R2

w(Ri − R j )
(
αh1(ρ j − ρi )

+ β〈h2(ρ j − ρi )〉
)
f (ρ j , R j )dρ jdR j

]

+ σ 2

2

[ ∫
R2

w(Ri − R j ) f (ρ j , R j , τ )dρ jdR j

]
∂2

∂ρ2
i

[
f (ρi , Ri , τ )

]}
dρidRi .

(49)
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