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Abstract
Evidence suggests that both the interaction of so-calledMerkel cells and the epidermal
stress distribution play an important role in the formation of fingerprint patterns during
pregnancy. Tomodel the formation of fingerprint patterns in a biologically meaningful
way these patterns have to become stationary. For the creation of synthetic fingerprints
it is also very desirable that rescaling the model parameters leads to rescaled distances
between the stationary fingerprint ridges. Based on these observations, as well as the
model introduced by Kücken and Champod we propose a newmodel for the formation
of fingerprint patterns during pregnancy. In this anisotropic interaction model the
interaction forces not only depend on the distance vector between the cells and the
model parameters, but additionally on an underlying tensor field, representing a stress
field. This dependence on the tensor field leads to complex, anisotropic patterns. We
study the resulting stationary patterns both analytically and numerically. In particular,
we show that fingerprint patterns can be modeled as stationary solutions by choosing
the underlying tensor field appropriately.

Keywords Nonlocal interactions · Pattern formation · Dynamical systems · Cell
movement

Mathematics Subject Classification 35B36 · 70F10 · 82C22 · 92C15 · 92C17

1 Introduction

Large databases are required for developing, validating and comparing the per-
formance of fingerprint indexing and identification algorithms. The goal of these
algorithms is to search and find a fingerprint in a database (or providing the search
result that the query fingerprint is not stored in that database). The database sizes for
fingerprint identification can vary between several thousand fingerprints e.g. watch-
lists in border crossing scenarios or hundreds of millions of fingerprints in case of the
national biometric ID programme of India.

Extended author information available on the last page of the article
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Clearly, fingerprint identification is of great importance in forensic science and
is increasingly used in biometric applications. Unfortunately, collecting databases of
real fingerprints for research purposes is usually very cost-intensive, requires time and
effort, and in many countries, it is constrained by laws addressing important aspects
such as data protection and privacy. Therefore, it is very desirable to avoid all these
disadvantages by simulating large fingerprint databases on a computer.

The creation of synthetic fingerprint images is of great interest to the community
of biometric and forensic researchers, as well as practitioners. The SFinGe method
(Cappelli et al. 2000) has been proposed to this end by Cappelli et al. (2000). This
method can produce fingerprint images which look realistic enough to deceive atten-
dees of a pattern recognition conference, however, systematic differences between real
fingerprints and synthetic images by SFinGE regarding the minutiae pattern have been
foundwhich allow to distinguish between the two (Gottschlich andHuckemann 2014).
Recently, the realistic fingerprint creator (RFC) (Imdahl et al. 2015) has been suggested
to overcome the issue of unrealistic minutiae distributions. SFinGe and RFC are both
based on Gabor filters (Gottschlich 2012) for image creation. A different approach to
fingerprint creation has been introduced by Kücken and Champod (2013). They strive
to directly model the process of fingerprint pattern formation as it occurs in nature and
their approach is inspired by existing knowledge from biology, anatomy and derma-
tology. Two commonalities of Gabor filters based and biology-inspired approaches are
that both start with random initial conditions and both perform changes in an iterative
fashion. Kücken and Champod suggest amodel describing the formation of fingerprint
patterns over time based on the interaction of certain cells and mechanical stress in
the epidermis (Irmak 2010).

In principle, a nature-inspiredmodel nourishes the hope of producingmore realistic
fingerprints and potentially also to gain insights into the process of natural fingerprint
pattern formation. An extensive literature (Champod et al. 2016; Dell and Munger
1986; Irmak 2010; Kücken and Champod 2013; Moore and Munger 1989; Morohun-
fola et al. 1992; Wertheim 2011) in the biological community suggests that fingerprint
patterns are formed due to the interaction of mechanical stress, trophic factors from
incoming nerves and interactions between so-called Merkel cells. Merkel cells are
epidermal cells that appear in the volar skin at about the 7th week of pregnancy. From
that time onward they start to multiply and organise themselves in lines exactly where
the primary ridges arise (Kücken and Champod 2013).

The development of fingerprints can be described by three phases (Kücken and
Champod 2013). In the first phase, growth forces in the epidermis and shrinkage
of volar pad create compressive mechanical stress, modeled by Kücken and Newell
(2004, 2005). The rearrangement of Merkel cells from a random configuration into
parallel ridges along the lines of smallest compressive stress forms the second phase.
This phase can be regarded as the actual pattern forming process, was first modeled
by Kücken and Champod (2013), and is studied in this paper. In the third phase, the
primary ridges are induced by the Merkel cells.

The fingerprint development based on the rearrangement of Merkel cells was first
modeled by Kücken and Champod (2013). They propose that Merkel cells are the
missing link between the stress distribution in the epidermis and the developing pat-
tern due to their mechanosensing ability. For their mathematical description they use
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an agent-based model to describe the pattern formation process in the second phase
of the fingerprint development where the underlying stress field from the first phase
(Kücken and Newell 2004, 2005) is considered as an input. Due to the lack of specific
information not all details of their model can be confirmed by experimental obser-
vations. Hence, they aim to propose a model as simple as possible that captures the
essence of the interaction between Merkel cells and stress distribution. For instance,
the sensitivity of their model to initial conditions is consistent with the long standing
belief that the pattern arrangement is unique and even for identical twins the finger-
prints are different. However, the resulting patterns in the model proposed by Kücken
and Champod (2013) do not seem to be stationary which is desirable for describing
the formation of fingerprints accurately.

Note that a large range of models exist in literature for describing biological pattern
formation, including reaction–diffusion models (Kondo and Miura 2010; Turk 1991;
Witkin and Kass 1991) and the elastic instability mechanism, see Ball (2009), Koch
and Meinhardt (1994), Meinhardt (1982) for good summaries on this topic. A generic
partial differential equation, well-known for its pattern-forming behavior, is the Swift-
Hohenberg (SH) equation (Swift and Hohenberg 1977). It produces patterns which are
locally stripe-like, and upon inspection of simulations (e.g. Stoop et al. 2015), it seems
that SH equations can, in principle, produce any patterns occurring in fingerprints,
including defects such as triradii and loops in the fingerprint vernacular, and minutiae
ends. To the best knowledge of the authors, however, SH equations have never been
studied for actual fingerprint simulations. Besides, the well-known existence of an
underlying stress field (Kücken and Newell 2004, 2005) is not included in these
pattern formation models.

To describe the central phase of the fingerprint development process, i.e. the rear-
rangement ofMerkel cells in the second of the three phases, as accurate as possible the
underlying stress field, created in the first phase of the fingerprint development process,
has to be considered as an input of our class of models. Motivated by the approach by
Kücken and Champod we propose a general class of evolutionary particle models with
anisotropic, biology-inspired interaction forces in two space dimensions. In contrast to
the Kücken–Champod model, our forces are bio-inspired and we are able to show that
fingerprint patterns can be obtained as stationary solutions to our model, an important
feature of a biologically meaningful fingerprint development model (Galton 1892;
Maltoni et al. 2009; Yoon and Jain 2015). Indeed, the stability of line patterns was the
focus of most studies analyzing effects of growth on fingerprints. Sir Francis Galton
was among the first to demonstrate scientifically the permanence of the configuration
of individual ridges and furrows (Galton 1892). These findings were subsequently
confirmed in intensive pediatric research such as Babler (1991).

In our model, we consider a tensor field, modeling the underlying (inhomogeneous)
stress field, as one of the inputs of our interaction forces. Besides, the interaction force
between two Merkel cells depends on the distance vector between these two cells. We
model the coefficient functions of the interaction forces as damped harmonic oscil-
lators, a well-established modeling assumption in cell biology. Besides, this choice
reflects the exponential decay of the interaction over larger distances, implying that
interactions over very large distances can be neglected, and reinforces an interplay
between repulsive and attractive forces as the distance between two cells increases.
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This choice of the interaction forces is consistent with the general modeling assump-
tion that interaction forces should be short-range repulsive to avoid collisions between
cells, and attractive over larger distances to obtain cell accumulations. Note that a
similar model is proposed in Burger et al. (2018) and its stationary states are studied
both analytically and numerically in the spatially homogeneous case.

Our class of models can be regarded as an biology-inspired adaptation of the
Kücken–Champodmodel (Kücken and Champod 2013) andwe describe ourmodeling
assumptions in detail, resulting in a reproducible pattern formation for fingerprints.
We show that the resulting stationary patterns depend strongly on the underlying ten-
sor field and the given initial conditions. Perturbations in the initial configuration
of the Merkel cells result in perturbed stationary patterns. This situation is analo-
gous to the fingerprints in identical twins who have very similar fingerprints in terms
of direction of the ridges and qualitative features of fingerprint lines, but the exact
location of ridges and minutiae differs (Jain et al. 2002; Srihari et al. 2006; Tao
et al. 2012). Since environmental (within the mother’s womb) and genetic condi-
tions are almost identical for twins the differences in defect location are solely due
to small perturbations such as the initial configuration of the Merkel cells and the
stress field in the epidermis (Kücken and Champod 2013), implying that the fin-
gerprint patterns of underlying identical tensor fields are different but similar. More
varied fingerprints can be obtained by changing the underlying tensor field in the
model.

In this work, we consider N interacting particles on a domain Ω ⊂ R
2 whose

positions x j = x j (t) ∈ Ω , j = 1, . . . , N , at time t satisfy

dx j
dt

= 1

N

N∑

k=1
k �= j

F(x j − xk, T (x j )), (1)

equipped with initial data x j (0) = xinj , j = 1, . . . , N . The term F(x j − xk, T (x j ))
in (1) denotes the force which a particle at position xk exerts on a particle at position
x j . This force depends on an underlying stress tensor field T (x j ) at location x j . The
existence of such a tensor field T (x j ) is based on the experimental results in Kim
and Holbrook (1995) where an alignment of the particles along the local stress lines
is observed. We define the tensor field T (x j ) by the directions of smallest stress at
location x j by a unit vector field s = s(x) ∈ R

2 and introduce a corresponding
orthonormal vector field l = l(x) ∈ R

2, representing the directions of largest stress.
Then the force is given by

F(d = d(x j , xk), T (x j )) = fs(|d|)(s(x j ) · d)s(x j ) + fl(|d|)(l(x j ) · d)l(x j ) (2)

for coefficient functions fs and fl .
In previous works on the Kücken–Champod model (Kücken and Champod 2013)

and its generalization (Burger et al. 2018) a dynamical system of ordinary differential
equations of the form (1) was considered where the force that particle k exerts on
particle j is given by
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F(d = d(x j , xk), T (x j )) = FA(d, T (x j )) + FR(d), (3)

i.e. the sum of repulsion and attraction forces, FR and FA, respectively. Here, the
attraction force depends on the underlying tensor field T (x j ) at x j , modeling the local
stress field. The matrix T (x j ) encodes the direction of the fingerprint lines at x j ,
defined by

T (x) := χs(x) ⊗ s(x) + l(x) ⊗ l(x), χ ∈ [0, 1], (4)

and orthonormal vector fields s = s(x), l = l(x) ∈ R
2. For studying the pattern

formation with an underlying spatially homogeneous tensor field T producing straight
parallel ridges, e.g.

T =
(
1 0
0 χ

)
,

is considered (Burger et al. 2018). The repulsion and attraction forces in the Kücken–
Champod model (Kücken and Champod 2013) and its generalization in Burger et al.
(2018) are of the form

FR(d) = fR(|d|)d (5)

and

FA(d = d(x j , xk), T (x j )) = f A(|d|)T (x j )d, (6)

respectively. Note that the direction of the attraction force FA and hence also the
direction of the total force F are regulated by the parameter χ in the definition of the
tensor field T . The parameter χ introduces an anisotropy to the equation leading to
complex, anisotropic patterns.

For χ = 1 the model (1) with interaction forces of the form (3) for repulsion and
attraction force (5) and (6) reduces to a gradient flow

dx j
dt

= 1

N

N∑

k=1
k �= j

F(x j − xk) (7)

and F(d) = −∇W (d) for a radially symmetric interaction potential W . The contin-
uum equation associated with the isotropic particle model (7) is given by

ρt + ∇ · (ρu) = 0, u = −∇W ∗ ρ

where u = u(t, x) is themacroscopic velocity field. This continuummodel, referred to
as the aggregation equation has been studied extensively recently,mainly in terms of its
gradient flow structure, the blow-up dynamics for fully attractive potentials and the rich
variety of steady states, see Ambrosio et al. (2005), Balagué et al. (2013a, b, 2014),
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Bernoff and Topaz (2011), Bertozzi et al. (2009, 2012), von Brecht and Uminsky
(2012), von Brecht et al. (2012), Cañizo et al. (2015), Carrillo et al. (2003, 2006,
2011, 2012a, b, 2016a, b), Fellner and Raoul (2010, 2011), Li and Toscani (2004),
Raoul (2012), Villani (2003) and the references therein. There has been a trend recently
to connect the microscopic and the macroscopic descriptions via kinetic modeling, see
for instance (Bellomo and Soler 2012; Carrillo et al. 2010; Ha and Tadmor 2008) for
different kinetic models in swarming, Fornasier et al. (2011), Ha and Liu (2009) for
the particle to hydrodynamics passage and Karper et al. (2015) for the hydrodynamic
limit of a kinetic model. It seems that not many results are currently available in the
field of anisotropies. In Evers et al. (2015, 2017) anisotropy is modeled by adding
weights to the interaction terms. One can show that the model in Evers et al. (2015,
2017) is related to our model if a tensor field T is introduced as the velocity direction.

Fingerprint simulation results are shown for certain model parameters in Kücken
and Champod (2013) where the underlying tensor field is constructed based on fin-
gerprint images using the NBIS package from the National Institute of Standards and
Technology. However, Kücken and Champod (2013) is purely descriptive, the choice
of parameters is not discussed and the model (1) was not studied mathematically. The
model (1) was studied analytically and numerically for the first time in Burger et al.
(2018). Here, the authors justify why the particles align along the vector field lines s
provided the parameter χ is chosen sufficiently small so that the total force is purely
repulsive along s. Besides, the authors investigate the stationary states to the parti-
cle model (1) for a spatially homogeneous underlying tensor field where the chosen
model parameters are consistent with the work of Kücken and Champod (2013). For
the simulation of fingerprints, however, non-homogeneous tensor fields have to be
considered, making the analysis of the model significantly more difficult. No analyt-
ical results of the long-time behavior of (1) for non-homogeneous tensor fields are
currently available. Besides, numerical results for the given model parameters and dif-
ferent non-homogeneous tensor fields are shown over time in Burger et al. (2018) and
one can clearly see that the resulting patterns are not stationary. The simulation results
for realistic tensor fields for the simulation of fingerprints in Kücken and Champod
(2013) seem to be far away from being stationary too. This is illustrated in Figure
9 in Kücken and Champod (2013) where snapshots of the solution are shown for a
spatially homogeneous tensor field which should have been parallel lines for steady
states. In the biological community, however, it is well-known that fingerprint patterns
with their ridge lines and minutiae configuration are determined during pregnancy and
remain the same during lifetime (as long as no fingerprint alterations occur). Hence,
we are particularly interested in stationary solutions of the system (1).

The goal of this work is to develop an efficient algorithm for creating synthetic
fingerprint patterns as stationary solutions of an evolutionary dynamical system of the
form (1) as illustrated in Fig. 1d for the underlying tensor field in Fig. 1c.

As a first step we study the existence of stationary solutions to (1) for spatially
homogeneous underlying tensor fields and extend these results to certain spatially
inhomogeneous tensor fields. Based on these analytical results as well as the stability
analysis of line patterns in Carrillo et al. (2018)we can expect stable stationary patterns
along the vector field s. Since the solutions to the particlemodel (1)with the parameters
suggested by Kücken and Champod do not seem to be stationary, we investigate
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Fig. 1 Original fingerprint image and lines of smallest stress s = s(x) for the reconstructed tensor field
T = T (x) with an overlying mask of the original fingerprint image in black, as well as stationary solution
to the interaction model (1) for interaction forces of the form (2) and randomly uniformly distributed initial
data

the impact of the interaction forces on the resulting pattern formation numerically.
In particular the size of the total attraction force plays a crucial role in the pattern
formation. We adjust the model parameters accordingly and simulate fingerprints
which seem to be close to being stationary, resulting in an extension of the numerical
results inBurger et al. (2018) for inhomogeneous tensorfields.Basedon real fingerprint
images as in Fig. 1a we determine the underlying tensor field T with lines of smallest
stress s by extrapolating the direction field outside of the fingerprint image based on
Gottschlich et al. (2009). In Fig. 1b we overlay amask of the original fingerprint image
on the estimated tensor field with direction field s and in Fig. 1c only the direction field
s is shown. Besides, we include a novel method for the generation of the underlying
tensor fields in our numerical simulations which is based on quadratic differentials as
a global model for orientation fields of fingerprints (Huckemann et al. 2008).

In the fingerprint community major features of a fingerprint, called minutiae, are
of great interest. Examples include ridge bifurcation, i.e. a single ridge dividing into
two ridges. We study how they evolve over time, both heuristically and numerically.
Finally, we propose a new bio-inspired model for the creation of synthetic fingerprint
patterns which not only allows us to simulate fingerprint patterns as stationary solution
of the particle model (1) but also adjust the distances between the fingerprint lines by
rescaling the model parameters. This is the first step towards modeling fingerprint
patterns with specific features in the future.

Studying the model (1) and in particular its pattern formation result in a better
understanding of the fingerprint pattern formation process. Due to the generality of
the formulation of the anisotropic interaction model (1) this can be regarded as an
important step towards understanding the formation of fingerprints and may be appli-
cable to other anisotropic interactions in nature.

This work is organized as follows. In Sect. 2 the Kücken–Champod model (Kücken
and Champod 2013) is introduced and we propose a new bio-inspired modeling
approach. Section 3 deals with the existence of steady states to (1) in the form of
parallel, equidistant lines for spatially homogeneous tensor fields and its extension to
locally spatially homogeneous tensor fields, implying that measurable quantities, such
as the almost constant distance between the stationary line patterns, can be predicted
with the model. In Sect. 4 we adapt the parameters in the force coefficients (10) and
(11) of the Kücken–Champod model in such a way that fingerprint patterns can be
obtained as stationary solutions to the particle model (1). Based on these results, we
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propose the bio-inspired model, described in Sect. 2, to simulate fingerprints with
variable distances between the fingerprint lines. For the creation of realistic finger-
prints we consider a novel methods for obtaining the underlying tensor field based on
quadratic differentials as well as images of real fingerprint data.

2 Description of themodel

In the sequel, we consider particle models of the form (1) where the force F is of
the form (2) or (3) where the repulsion and attraction forces are given by (5) and (6),
respectively. Note that a model of the form (1) can be rewritten as

dx j
dt

= v j

v j = 1

N

N∑

k=1
k �= j

F(x j − xk, T (x j )) (8)

and can be derived from Newton’s second law

dx j

dτ
= v j

m
dv j

dτ
+ λv j = F j

for particles of identical mass m. Here, λ denotes the coefficient of friction and F j is
the total force acting on particle j . Rescaling in time τ = m

ελ
t for small ε > 0, setting

x j := ελ
m x j , v j := v j and

F j = λ

N

N∑

k=1
k �= j

F(x j − xk, T (x j ))

results in the rescaled second order model

dx j
dt

= v j

ε
dv j

dt
= −v j + 1

N

N∑

k=1
k �= j

F(x j − xk, T (x j )) (9)

for small ε > 0. Starting from (9) the first order model (8) was justified and formally
derived in Bodnar and Velazquez (2005) and similar to the rigorous limit from the
isotropic second order model (9) to the isotropic first order model (8) as ε → 0 in
Fetecau and Sun (2015) one can proof the rigorous limit of the anisotropic model (9).

123



An anisotropic interaction model for simulating fingerprints

Note that setting ε = 0 in (9) leads to (8), corresponding to instantaneous changes in
velocities.

2.1 Kücken–Champodmodel

In the papers (Burger et al. 2018; Kücken and Champod 2013) systems of evolutionary
differential equations of the form (1) are considered where the total force, the attrac-
tion and the repulsion forces are of the forms (3), (5) and (6), respectively, and the
underlying tensor field T is defined as (4). The coefficient functions fR and f A of the
repulsion force FR (5) and the attraction force (6) in the Kücken–Champod model are
given by

fR(d) = (α|d|2 + β) exp(−eR |d|) (10)

and

f A(d) = −γ |d| exp(−eA|d|) (11)

for nonnegative constants α, β, γ, eA and eR , and, again, d = d(x j , xk) = x j − xk ∈
R
2. To be consistent with the work of Kücken and Champod (2013) we assume that

the total force (3) exhibits short-range repulsion and long-range attraction along l and
we choose the parameters in an initial study as:

α = 270, β = 0.1, γ = 35, eA = 95, eR = 100, χ = 0.2. (12)

These parameters are chosen in such a way that the resulting plots of the force coef-
ficients are as close as possible to the ones shown by Kücken and Champod (2013).
Here, the parameter χ ∈ [0, 1] determines the direction of the interaction. For χ = 1
the attraction force between two particles is aligned along their distance vector, while
for χ = 0 the attraction between two particles is oriented exactly along the lines of
largest stress (Burger et al. 2018).

In Fig. 2a the coefficient functions (10) and (11) for the repulsion and attraction
forces (5) and (6) in the Kücken–Champod model (1) are plotted for the parameters
in (12).

The sums of the coefficients of the forces fR + f A and fR + χ f A for χ = 0.2 are
illustrated in Fig. 2b. Note that fR+ f A and fR+χ f A are the force coefficients along l
and s, respectively. For the choice of parameters in (12) repulsion dominates for short
distances along the lines of largest stress to prevent the collision of particles and the
force is long-range attractive along the lines of largest stress leading to accumulations
of the particles. The absolute value of the attractive force decreases with the distance
between particles. Along the lines of smallest stress the particles are always repulsive
for χ = 0.2, independent of the distance, though the repulsion force gets weaker for
longer distances.
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Fig. 2 Coefficients fR in (10) and f A in (11) of repulsion force (5) and attraction force (6), respectively,
as well as total force coefficients along the lines of largest and smallest stress for χ = 0.2 (i.e. f A + fR
and 0.2 f A + fR , respectively) for parameter values in (12)

2.2 Bio-inspiredmodel

Wepropose a system of ordinary differential equations of the form (1) where the forces
are of the form (2). Note that plugging the repulsion and attraction forces (5) and (6)
as well as the definition (4) of the tensor field T into the force term (3) results in forces
of the form (2). Hence, to generalise the Kücken–Champod model we require for the
coefficient functions fs and fl :

fs ≈ χ f A + fR, fl ≈ f A + fR .

Wemodel the force coefficients fs and fl in (2) as solutions to a damped harmonic
oscillator. Like for the coefficient functions (10), (11) in the Kücken–Champod model
we consider exponentially decaying forces describing that short-range interactions
between the particles are much stronger than long-range interactions. Besides, the
repulsion and attraction forces suggested in the Kücken–Champod model dominate
on different regimes. For a more unified modeling approach one may regard this
interplay of repulsion and attraction forces as oscillations. This motivates to model
the force coefficients fs and fl in (2) as solutions to a damped harmonic oscillator
which is also a common modeling approach in cell biology. Hence, we consider the
following ansatz functions for the force coefficients fs and fl :

fs(d) = c exp(es1 |d|) + cs sin

(
π |d|
as

)
exp(es2 |d|),

fl(d) = c cos

(
π |d|
al

)
exp(el1 |d|) + cl sin

(
π |d|
al

)
exp(el2 |d|)

(13)

for real parameters c, cs, cl , es1 , es2 , el1 , el2 , as, al . The constants es1 , es2 , el1 , el2 con-
trol the decay rates of the force coefficients. Since the force coefficients fs and fl
both vanish over large distances, this implies that the constants es1 , es2 , el1 , el2 are
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Fig. 3 Coefficients fs and fl in
(13) for parameter values in (14)

all negative. Note that c, cs, cl are scaling parameters for the size of the interaction
forces. Since fs has to be an exponentially decaying, repulsive force coefficient (i.e.
fs ≥ 0) with (possibly) small adaptations, we require that the term c exp(es1 |d|)
decays exponentially fast and dominates in the definition of fs . Hence, we assume
that c is a nonnegative constant with |c| > |cs |. The force coefficient fl is assumed
to be short-range repulsive, long-range attractive. Since the cosine function can be
regarded as a short-range repulsive, long-range attractive function, this implies that
c is nonnegative, consistent with the assumptions before, and |c| > |cl |. Besides, we
control the frequency of the oscillations along s and l by positive constants as, al ,
respectively. A possible parameter choice satisfying the above assumptions is given
by

c = 0.1, cs = −0.05, es1 = −65.0, es2 = −100.0, as = 0.03

cl = 0.005, el1 = −160.0, el2 = −40.0, al = 0.022
(14)

and we will see that for this parameter choice it is possible to obtain stationary finger-
print patterns and that rescaling of the coefficient functions fs and fl leads to stationary
patterns with scaled line distances. The force coefficients fs and fl for the parameters
in (14) are shown in Fig. 3. In comparison with the force coefficients FA + fR and
0.2 f A + fR along l and s, respectively, the force fs along s is also purely repulsive,
while the force fl is less attractive which is necessary for obtaining stationary patterns
as discussed in Sect. 4.2.

2.3 General setting

In the sequel, we consider the particle model (1) with force terms of the form F(x j −
xk, T (x j )), such as (2) and (3). As in Burger et al. (2018) we consider the domain
Ω = T

2 where T
2 is the 2-dimensional unit torus that can be identified with the

unit square [0, 1) × [0, 1) ⊂ R
2 with periodic boundary conditions. These boundary

conditions have proven to be very useful to simulate interactions on microscopic
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scales where the simulation domain is large compared to the size of the interacting
particles. Besides, periodic boundary conditions are the natural choice in terms of the
mathematical analysis and the derivation of the associated macroscopic model. Note
that the particles on the domain Ω are separated by a distance of at most 0.5 due to
the periodic boundary conditions. Motivated by this we require for j ∈ {1, 2} and all
x ∈ Ω

F(x − x ′, T (x)) · e j = 0 for |x − x ′| ≥ 0.5 (15)

where e j denotes the standard basis for the Euclidean plane. The forces satisfy this
assumption if a spherical cutoff radius of length 0.5 is introduced for the forces in
(2) or (3), respectively. This assumptions guarantees that the size of the domain is
large enough compared to the range of the total force. In particular, non-physical
artifacts due to periodic boundary conditions are prevented. A cutoff radius is also
very useful to make numerical simulations more efficient. Since our model describes
the second phase of the fingerprint development (Kücken and Champod 2013), i.e. the
rearrangement of Merkel cells from a random configuration into parallel ridges, we
consider randomly uniformly distributed initial data on the torus T2 in the numerical
simulations.

3 Mathematical analysis of steady states

To use the particle system (1) for the simulation of fingerprints it is of great interest
to have a better understanding about the form of the steady states. The steady states
are formed by a number of lines which are referred to as ridges. As discussed in
Sect. 2 we consider purely repulsive forces along s. In this section, we study the
existence of steady states for the particle model (1) for spatially homogeneous and
certain inhomogeneous tensor fields T analytically. The stability of these line patterns
is further investigated in Carrillo et al. (2018). In particular, the authors show that
line patterns for purely repulsive forces along s can only be stable if the patterns are
aligned in direction of the vector field s.

3.1 Spatially homogeneous tensor field

For spatially homogeneous tensor fields T it is sufficient to restrict ourselves to the
tensor field given by s = (0, 1) and l = (1, 0) since stationary solutions to theKücken–
Champod model for any other tensor field can be obtained by coordinate transform
(Burger et al. 2018). Further note that steady states are translation invariant, i.e. if
x1, . . . , xN is a steady state, so is x1 + z, . . . , xN + z for any z ∈ R

2. Hence it is
sufficient to consider one specific constellation of particles for analysing the steady
states of (1). Because of the stability analysis in Carrillo et al. (2018) we restrict
ourselves to line patterns along s = (0, 1), i.e. we consider patterns of vertical lines.
Note that two-dimensional vertical stripe pattern of width Δ for any Δ > 0 do not
satisfy the steady state condition by the analysis in Section 3.3.2 in Burger et al. (2018),
i.e. stable line patterns are one-dimensional structures.

123



An anisotropic interaction model for simulating fingerprints

Proposition 1 Given |d| ∈ (0, 1] such that n := 1
|d| ∈ N and let N ∈ N be given such

that N
n ∈ N. Then n parallel equidistant vertical lines of distance |d| of N

n uniformly
distributed particles along each line are a steady state to the particle model (1) for
forces of the form (2) or (3) where the repulsion and attraction forces are of the form
(5) and (6), respectively.

Note that the choice of the distance |d| of the parallel vertical lines is consistent with
the periodic boundary conditions.

Proof Because of the translational invariance of steady states it is sufficient to consider
any n equidistant parallel vertical lines of N

n particles distributed uniformly along each
line. Without loss of generality we assume that the positions of the particles are given
by

x̄ j =
((

j − j mod N
n

) n
N

n
,
j mod N

n
N
n

)
= 1

N

(
j − j mod

N

n
, n

(
j mod

N

n

))
∈ R

2.

Because of the periodic boundary conditions of the domain as well as the fact that
the particles are uniformly distributed along parallel lines, it is sufficient to require
that

N−1∑

k=1

F(x̄N − x̄k, T (x̄N )) = 0 (16)

for steady states of the particle model (1). Note that for forces of the form (2) or (3)
where the repulsion and attraction forces are of the form (5) and (6), respectively, we
have

F(d, T (x̄N )) = −F(−d, T (x̄N )) for all d ∈ R
2. (17)

As a first step we show that

N
n −1∑

k=1

F(x̄N − x̄k, T (x̄N )) = 0. (18)

Note that x̄k ∈ {0} × [0, 1] for k = 1, . . . , N
n and x̄N = (0, 0) by the periodic

boundary conditions, i.e. we consider all the particles of the vertical line with x1-
coordinate x1 = 0. If N

n is odd, then (18) is satisfied by the balance of forces (17). For
even N

n we have

F(x̄N − x̄k, T (x̄N )) = −F(x̄N − x̄ N
n −k, T (x̄N ))

for k = 1, . . . , N
2n − 1. Besides,

F(x̄N − x̄ N
2n

, T (x̄N )) = 0
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since |x̄N − x̄ N
2n

| = 0.5 and the assumption of the finite range of the forces in (15),
implying that (18) is satisfied. If there is an odd number n of parallel equidistant
vertical lines, then the condition for steady states (16) is satisfied by (17). For n even,
the forces due to particles on the vertical lines at x1 = k|d| balances the interaction
forces due to particles on the vertical lines at x1 = (n − k)|d| for k = 1, . . . , n

2 − 1
by (17), so it suffices to consider the particles on the vertical line at x1 = n

2 |d|, i.e. the
particles at positions x̄k for k = N

2 , . . . , N
2 + N

n − 1. Note that

N
2 + N

n −1∑

k= N
2

F(x̄N − x̄k, T (x̄N )) = 0

since |x̄N − x̄k | ≥ 0.5 for k = N
2 , . . . , N

2 + N
n − 1 and the assumption of the finite

range of the forces in (15). This implies that the condition for steady states (16) is
satisfied. Hence, x̄1, . . . , x̄N form a steady state of the microscopic model (1). �
Corollary 1 Given d ∈ (0, 1] such that n := 1

d ∈ N and let N ∈ N be given such that
N
n ∈ N. Then n parallel, but not equidistant, vertical lines of N

n uniformly distributed
particles along each line are not a steady state to the particle model (1) for forces of
the form (2) or (3) where the repulsion and attraction forces are of the form (5) and
(6), respectively.

Remark 1 Even though parallel, equidistant lines form a steady state for any distance
|d| the line patterns in Proposition 1 are not stable for every |d| ∈ (0, 1]. Themaximum
distance between parallel equidistant lines is given by the cutoff radius Rc of the force
coefficient fl or, equivalently, by the distance Rc such that fl(|d|) vanishes for all
|d| ≥ Rc. In particular, a steady state of parallel, equidistant lines of distance Rc

is also stable under perturbations. This implies that a steady state to (1) of parallel,
equidistant vertical lines for a given choice of force coefficients fs and fl can be
transformed into a steady state of parallel, equidistant vertical lines with a different
line distance by rescaling the force coefficients appropriately.

3.2 Non-constant tensor fields

Many non-constant tensor fields can locally be regarded as spatially homogeneous
tensor fields. Note that by the assumptions in Sect. 2.3 we consider forces of finite
range. In particular, we have local forces for the forces (2) with coefficients (13) and
parameters (14) as well as for forces of the form (3) with force coefficients (10),
(11) and parameters (12). Applying the results from Proposition 1 and Corollary 1 to
a locally spatially homogeneous tensor field implies that the resulting steady states
are locally parallel, equidistant line patterns where the distance of the line patterns
crucially depends on the range of the interaction forces. In particular, this suggests that
the steady states to (1) are given by roughly parallel, equidistant lines whose distance
is almost constant. By rescaling the force coefficients the (almost constant) distance
between parallel lines can be adapted. This shows that the almost constant distance
between (stationary) ridges can be predicted with the model.
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4 Simulation of fingerprint patterns

In this section we investigate how to simulate fingerprint patterns by extending the
theoretical and the numerical results in Burger et al. (2018). In particular, we consider
more realistic tensor fields for the formation of fingerprint patterns and study the
dependence of the parameter values in the Kücken–Champod model on the resulting
fingerprints.

4.1 Local fields in a fingerprint image

In order to use the particle model (1) to simulate fingerprint patterns a realistic tensor
field is needed. It is well known that fingerprints are composed of two key directional
features known as cores and deltas. Hence, we consider the construction of the tensor
fields for these two features first. InHuckemann et al. (2008)Huckemann et al. propose
to use quadratic differentials for generating the global fields in a fingerprint image.
The local field is then generated by the singular points of the field. A core is the
endpoint of a single line (cp. Fig. 4b) and a delta occurs at the junction of three lines
(cp. Fig. 4a).

For simplicity we consider the origin (ζ = 0) as the only singular point, but the
idea can be extended to arbitrary singular points ζ ∈ C. As outlined in Huckemann
et al. (2008) one can model the field near the origin ζ = 0 by considering the initial
value problem

z(r)ż(r)2 = φ(r), z(r0) = z0 (19)

for a smooth, positive function φ = φ(r), r ∈ R, and z0 ∈ C. For φ = 2
3 the solution

to the differential equation is given by

z(r) =
(
r + z3/20

)2/3
. (20)

Note that the shape of the solution curves does not change for reparametrizations,
provided φ > 0. By varying z0 ∈ C the associated solution curves form a delta at the
origin (ζ = 0) as illustrated in Fig. 4a. Hence, we require

z dz2 > 0

for a delta at the origin. Note that z = |z| exp(iarg(z)) where arg(z) denotes the
principal argument of the complex number z ∈ C. Further note that dz can be regarded
as the direction of the smallest stress at z ∈ C ifR2 is identified withC. As outlined in
Sect. 2 the direction of smallest stress is denoted by the unit vector s = s(z) for z ∈ R

2

implying dz = ± exp(−iarg(z)/2). Thus, the lines of smallest stress on a domain
Ω ⊂ C can be obtained by evaluating dz for all z ∈ Ω . Note that exp(−iarg(z)/2)
and − exp(−iarg(z)/2) result in the same lines of the stress field.
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Fig. 4 Solution curves (20) and (22) to the initial value problems (19) and (21), respectively, generating
fields of quadratic differentials for a delta and a core

Similarly, the initial value problem

1

z(r)
ż(r)2 = φ(r), z(r0) = z0 (21)

generates a field with a core at the origin. Up to reparameterization the solution is
given by

z(r) =
(
r + z1/20

)2
(22)

and the solution curves are illustrated for different initial conditions z0 ∈ C in Fig. 4b.
The condition

dz2

z
> 0

has to be satisfied for a core at the origin, implying dz = ± exp(iarg(z)/2), and as
before ± exp(iarg(z)/2) result in the same lines. Further note that a delta or a core at
any ζ ∈ C can be obtained by linear transformation. In Fig. 5 the tensor field for a
delta and a core at the singular point (0.5, 0.5) are plotted on the unit square [0, 1]2.

4.2 Numerical methods

In this section, we describe the general setting for investigating the long-time behavior
of solutions to the particle model (1), motivated by Burger et al. (2018).

We consider the particle model (1) where the forces are of the form (2) or (3) and
investigate the patterns of the corresponding stationary solutions. As in Burger et al.

123



An anisotropic interaction model for simulating fingerprints

Fig. 5 Lines of smallest stress s = s(x) of tensor fields T for a delta and a core

(2018) and outlined in Sect. 2.3 we consider the domain Ω = T
2, i.e. the unit square

[0, 1) × [0, 1) ⊂ R
2 with periodic boundary conditions, and we consider a cutoff of

the forces as in (15) to make the simulations more efficient.
To solve the N particle ODE system (1) we apply either the simple explicit Euler

scheme or higher ordermethods such as the Runge-Kutta-Dormand-Princemethod, all
resulting in very similar simulation results. For the numerical simulations we consider
Δt = 0.2 for the size of the time step.

4.3 Numerical study of the Kücken–Champodmodel

Using the tensor fields introduced in Sect. 4.1 we consider the interaction model (1)
with forces of the form (3) to simulate fingerprint patterns. Here, the repulsion and
attraction forces are of the forms (5) and (6) with force coefficients (10) and (11),
respectively, and we consider the parameters in (12) to make the simulations as close
as possible to the model suggested by Kücken and Champod (2013). It is well known
that fingerprints develop during pregnancy and stay the same afterwards provided no
fingerprint alterations occur. In order to simulate biologically meaningful fingerprints
we aim to model fingerprint patterns as stationary solution to the particle model (1).
Based on the analysis of steady states in Sect. 3 it is possible to obtain stationary
patterns consisting of multiple roughly parallel ridges along the lines of smallest
stress. However, the force coefficients need to be chosen appropriately so that the
resulting patterns are also stable. For the simulations in Fig. 6 we consider the tensor
field for the delta constructed in Sect. 4.1 and depicted in Fig. 5a.

One can clearly see in Fig. 6 that the particles are aligned along the lines of smallest
stress s = s(x) initially, but the patterns dissolve over time and the simulation results
have little similarity with fingerprint patterns over large time intervals. Besides, the
patterns are clearly no stable steady states in Fig. 6. Hence, the question arises why
the patterns simplify so much over time for non-homogeneous tensor fields in contrast
to the stationary patterns arising for spatially homogeneous tensor fields, cf. Burger
et al. (2018), and how this can be prohibited.
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Fig. 6 Numerical solution to the Kücken–Champod model (1) for N = 600 and χ = 0.2 at different times
t where the stress field represents a delta and the cutoff radius is 0.5

To study the long-time behaviour of the numerical solution, it is desirable to have
efficient numerical simulations and of course efficient simulations are also necessary
to to simulate fingerprints based on cell interactions in practice. In Sect. 2.3 we intro-
duced a cutoff radius for the forces, given by (15), in order to deal with the periodic
boundary conditions. Since the forces in the Kücken–Champod model (1) decrease
exponentially, the interaction force between two particles is very small if their distance
is sufficiently large. This is also illustrated in Fig. 2a for the parameters in (12). Hence,
defining the cutoff radius as 0.1 changes the values of the forces only slightly, but it
allows us to compute the numerical solution to the Kücken–Champod model (1) by
using cell lists (Allen and Tildesley 1989). The idea of cell lists is to subdivide the
simulation domain into cells with edge lengths greater than or equal to the cutoff radius
of the interaction forces. All particles are sorted into these cells and only particles in
the same or neighbouring cells have to be considered for interactions. This results in
significantly faster simulations since we only have to consider those particle pairs with
relevant sizes of the interaction forces. Note that the cutoff radius has an impact on
the number of lines that occur in the solution as shown in Fig. 7 in comparison to a
cutoff radius of 0.5 in Fig. 6. In particular the cutoff radius should not be chosen to
small because this prevents the accumulation of particles.

The simulation results for theKücken–Champodmodel (1) in Figs. 6 and 7 illustrate
that the particles align in roughly parallel lines along the lines of smallest stress initially,
but the number of roughly parallel lines decreases as time goes on. In particular,
the complex patterns that occur initially are not stationary. We can expect a similar
behavior (i.e. initial alignment along the lines of smallest stress of the stress tensor
field and subsequent accumulation) of the numerical solution if the parameters in the
coefficient functions of the repulsion and attraction force in (10) and (11) are slightly
changed provided they are repulsive along the lines of smallest stress, as well as short-
range repulsive and long-range attractive along the lines of largest stress. Denoting
the directions of smallest and largest stress by s and l, respectively, the transition of
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Fig. 7 Numerical solution to the Kücken–Champod model (1) for different cutoff radii for N = 600 and
χ = 0.2 at different times t where the stress field represents a delta

the initial pattern of multiple lines to fewer and fewer lines along s suggests that the
attraction forces are very strong resulting in an accumulation of the particles. Note that
this transition is also observed for the long-time behavior of the numerical solution
to the Kücken–Champod model (1) for spatially homogeneous tensor fields in Burger
et al. (2018) where lines merge over time until finally a steady state of equidistant
parallel lines is reached.

In Fig. 8 we show the numerical solution to (1) for a piecewise spatially homoge-
neous tensor field, randomly uniformly distributed initial data and N = 600, resulting
in stationary line patterns along the lines of smallest stress s = s(x). In particular,
this tensor field is not smooth. This suggests that smoothness and periodicity are not
necessary to obtain stationary solutions aligned along the lines of smallest stress.

The big impact of the choice of the attraction force along the lines of largest stress
can be seen by considering Fig. 9. Here, we assume that the total force is given by
F(d, T ) = δFA(d, T ) + FR(d) for δ ∈ [0, 1] for the spatially homogeneous tensor
field T = χs⊗ s+ l⊗ l with l = (1, 0), s = (0, 1) and χ = 1 instead of the definition
of F as the sum of FA and FR in (3), i.e. we vary the size of the attraction force and
consider a radially symmetric force F . In Fig. 9 the steady states to the interaction
mode (1) are shown for different factors δ of the attraction force FA, where N = 600
and initial data distributed equiangularly on a circle with center (0.5, 0.5) and radius
0.005 is considered. One can see in Fig. 9 that δ = 0.1 results in a stationary solution

123



B. Düring et al.

Fig. 8 Non-homogeneous tensor fields T = T (x) given by s = s(x) (left) and the numerical solution to
the Kücken–Champod model (1) at different times t for χ = 0.2, T = T (x), N = 600 and randomly
uniformly distributed initial data (right)

Fig. 9 Stationary solution to the Kücken–Champod model (1) for force F(d, T ) = δFA(d, T )+ FR(d) for
different values of δ (i.e. different sizes of the attraction force FA) and different axis scalings where χ = 1,
N = 600 and radially symmetric initial data (equiangularly distributed on a circle with center (0.5, 0.5))
so that the corresponding stationary solutions are also radially symmetric and radius 0.005

Fig. 10 Total force coefficients δ f A + fR along the lines of largest stress for different values of δ and
different scaling

spread over the entire domain,while ring patterns arise as δ increases. The intermediate
state, occurring for δ = 0.3, is of interest in the sequel, as it is an example of a more
complex pattern and in particular not all the particles accumulate on one single ring
as for δ = 0.5, δ = 0.7 and δ = 0.9 due to too attractive forces.

The forces considered in Fig. 9 and given by δ f A + fR along the lines of largest
stress are plotted in Fig. 10 for different values of δ. As observed in the stationary states
in Fig. 10, the force along the lines of largest stress is purely repulsive for δ = 0.1,
medium- and long-range attractive for δ ≥ 0.5, as well as medium-range attractive
and long-range repulsive for δ = 0.3. In particular, the medium-range attractive forces
for δ = 0.3 are significantly smaller than for larger values of δ.
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5 A newmodel for simulating fingerprints

Based on the analysis of stationary states in Sect. 3 as well as the numerical inves-
tigation of the Kücken–Champod model in Sect. 4.3 we propose a new model for
simulating the formation of fingerprints based on cell interactions where fingerprints
are obtained as stationary states to our model. As a next step we propose a bio-inspired
model for the creation of synthetic fingerprint patterns which can not only be used to
model the formation of fingerprints as stationary solutions but also allows to adjust
the ridge distances of the fingerprint lines.

5.1 Stationary patterns

In this sectionwe investigate howfingerprints can be obtained as stationary solutions to
the Kücken–Champod model (1) where the coefficients of the repulsive and attractive
forces are given by (10) and (11), respectively.

5.1.1 Adaptation of the forces in the Kücken–Champodmodel

Repulsive forces along the lines of smallest stress are an excellent choice to guarantee
that the particles formpatterns along the lines of smallest stress. Hencewe can consider
the repulsive coefficient function 0.2 f A + fR for the force along s with the parameter
values in (12) where the coefficient functions f A and fR of the attraction and repulsion
force are given by (10) and (11), respectively.

Short-range repulsion forces along the lines of largest stress prevent collisions of
the particles and medium-range attraction forces are necessary to make the particles
form aggregates. However, the long-range forces should not be attractive for modeling
complex patterns since strong long-range attraction forces prevent the occurrence of
multiple roughly parallel lines as stationary solutions. Motivated by the more complex
stationary pattern for δ = 0.3 in Fig. 9 and its desired structure of the forces along
the lines of largest stress (short-range repulsive, medium-range attractive, long-range
repulsive as depicted in Fig. 10) we consider the coefficient function 0.3 f A+ fR along
the lines of largest stress for the parameters in (24). Hence, the total force F is given
by (3) where the repulsion force FR is defined as (10) and the attraction force FA with
coefficient function (11) has the new form

FA(d = d(x j , xk), T (x j )) = f A(|d|)T (x j ) = f A(|d|) (0.3(l · d)l + χ(s · d)s)
(23)

where we set T (x j ) = 0.3(l · d)l + χ(s · d)s and we consider the parameter values in
(24).

In Figs. 11, 12 and 13 the numerical solutions for the repulsive force (5), the
attractive force (23) and different realistic tensor fields are illustrated. The tensor fields
in Fig. 11 are given by a delta and a core, respectively, introduced in Sect. 4.1, while
we consider a combination of deltas and cores for the tensor fields in Figs. 12 and 13.
As desired the particles align in roughly parallel lines along the vector field s = s(x)
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Fig. 11 Tensor fields T = T (x) for delta (a–h) and core (i–p) given by s = s(x) and the numerical
solution to the extended Kücken–Champod model (1) with attraction force (23) at different times t for
χ = 0.2, N = 600, T = T (x) and randomly uniformly distributed initial data

and because of long-range repulsion forces these nice patterns are not destroyed over
time. Further note that the numerical solution in Figs. 11, 12 and 13 is shown for
very large times so that it can be regarded as stationary. In particular, this implies that
the adapted forces can be used to simulate fingerprint pattern and more generally any
complex patterns is in principal preserved over time.

After this adaptation of the forces it is desirable to use the original definition of
the forces (3) with repulsion and attraction force given by (5) and (6), respectively,
instead of an attraction force of the form (23). Along l the attraction force (23) can
be regarded as 0.3 f A where f A is the attraction force along l in the original definition
of the attraction force FA in (6). Note that the parameter γ in the definition of the
attractive force coefficient f A in (11) is a multiplicative constant. Hence, we multiply
the original value of γ in (12) by 0.3, resulting in
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Fig. 12 Different non-homogeneous tensor fields T = T (x) (Example 1 in a–h, Example 2 in i–p) given
by s = s(x) and the numerical solution to the extended Kücken–Champod model (1) with attraction force
(23) at different times t for χ = 0.2, N = 600, T = T (x) and randomly uniformly distributed initial data

α = 270, β = 0.1, γ = 10.5, eA = 95, eR = 100, χ = 0.2, (24)

and consider the original definition of the forces in (3), (5) and (6). The forces along
the lines of smallest and largest stress are plotted for the parameters in (24) in Fig. 14b.
Note that they are of the same formas the adapted forces (3), (5) and (23) for the original
parameter values (24), shown in Fig. 14a. Because of the same structure of the forces
we can expect similar simulation results. In Fig. 15 the numerical solution is shown for
two examples, a delta, as well as a combination of a core and a delta. One can clearly
see that the particles align along the lines of smallest stress and the resulting patterns
are preserved over time. Similarly, one can obtain any complex pattern as stationary
solution to the Kücken–Champod model (1) by adapting the underlying tensor field.
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Fig. 13 Non-homogeneous, non-periodic tensor field T = T (x) given by s = s(x) and the numerical
solution to the extended Kücken–Champod model (1) with attraction force (23) at different times t for
χ = 0.2, N = 600, T = T (x) and randomly uniformly distributed initial data

Fig. 14 Total force coefficients 0.2 f A + fR along the lines of smallest stress, as well as 0.3 f A + fR
for parameter values in (24) and f A + fR for parameter values in (24) along the lines of smallest stress,
respectively

In particular, this implies that the Kücken–Champod model (1) with forces defined by
(3), (5) and (6) for the parameters in (24) can be used to simulate fingerprint patterns
which are in principal preserved over time.

The long-time behavior of the numerical solutions to the Kücken–Champod model
(1) with model parameters (24) is investigated in Fig. 16 where the numerical solution
at large times t is illustrated for the tensor field in Example 5 in Fig. 15. Note that
the pattern changes only slightly over large time intervals, demonstrating that these
patterns are close to being stationary. This slow convergence to steady states, especially
for inhomogeneous underlying tensor fields, can also be seen for other pattern forming
systems such as the patterns in the SH equation where the time until the steady state is

123



An anisotropic interaction model for simulating fingerprints

Fig. 15 Different non-homogeneous tensor fields T = T (x) (Example 4 in a–h, Example 5 in i–p) given
by s = s(x) and the numerical solution to the Kücken–Champod model (1) for the parameters in (24) at
different times t for χ = 0.2, N = 600, T = T (x) and randomly uniformly distributed initial data

reached is roughly of the order of what is called the horizontal diffusion time (Nijhout
2018).

5.1.2 Pattern formation based on tensor fields from real fingerprints

In this section, we investigate how to simulate fingerprint patterns based on realistic
tensor fields. As proposed in Kücken and Champod (2013) the tensor field is con-
structed based on real fingerprint data. The tensor field is estimated by a combination
of the line sensor method (Gottschlich et al. 2009) and a gradient based method as
described in Gottschlich and Schönlieb (2012, Section 2.1).

Given some real fingerprint data the aim is to construct the vector field s = s(x)
for all x ∈ Ω as the tangents to the given fingerprint lines. This is based on the idea
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Fig. 16 Long-time behavior of the numerical solution to theKücken–Champodmodel (1) for the parameters
in (24) at different times t for χ = 0.2, N = 600, the tensor field T = T (x) in Example 5 in Fig. 15 and
randomly uniformly distributed initial data

Fig. 17 Original fingerprint image aswell as angles and lines of smallest stress s = s(x) for the reconstructed
tensor field T = T (x)

that the lines of smallest stress are given by s and the solution to the interaction model
(1) aligns along s. Let θ = θ(x) denote the angle between the vertical axis and the
direction of lines of smallest stress s = s(x) at location x , then it is sufficient to
consider the principal arguments θ ∈ [0, π) only. Note that for any x ∈ Ω and any
given θ(x) we can reconstruct s(x) as (cos(θ(x), sin(θ(x))) since s(x) are defined to
be unit vectors. In Fig. 17 fingerprint data, the estimated arguments θ for constructing
the tensor field and the lines of smallest stress s = s(x) of the tensor field are shown.
Note that the lines of smallest stress s = s(x) of the tensor field and the fingerprint
lines in the real fingerprint image coincide.

Considering the tensor field T = T (x) shown in Fig. 17 the associated numerical
solution is plotted for two realizations of uniformly distributed initial data in Fig. 18.
One can clearly see that the particles align along the lines of smallest stress s = s(x).
Besides, Fig. 18 illustrates that we obtain similar, but not exactly the same patterns for
different realisations of random uniformly distributed initial data. This is consistent
with thewell-known fact that everyonehas uniquefingerprints and even thefingerprints
of twins can be distinguished even if the general patterns may seem to be quite similar
at first glance (Champod et al. 2016).
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Fig. 18 Numerical solution to the Kücken–Champod model (1) for the parameters in (24) at different times
t for χ = 0.2, the realistic tensor field T = T (x) in Fig. 17 and two realisations of randomly uniformly
distributed initial data

Fig. 19 Error τ in (25) between
successive time steps for the
numerical solution in Example 6
in Fig. 18 to the
Kücken–Champod model (1) for
the parameters in (24) at
different times t and the realistic
tensor field T = T (x) in Fig. 17

To quantify the distance to the steady state we consider the change of the positions
x j of the particles in successive time steps, given by

τ(t) =
N∑

j=1

‖x j (t + Δt) − x j (t)‖L1 . (25)

In Fig. 19we show the error τ between successive time steps for the numerical solution
in Example 6 in Fig. 18 to the Kücken–Champod model (1). After a sharp initial
decrease the total change in positions of the particles is approximately 1.0 · 10−5, i.e.
the movement of the particles is roughly 1.7 · 10−8 between time steps.
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Fig. 20 Evolution of the
bifurcations in the numerical
solution to the
Kücken–Champod model (1) for
the parameters in (24) for the
non-homogeneous tensor field
T = T (x) in Example 6 in
Fig. 18 at different times t and
randomly uniformly distributed
initial data

5.1.3 Interpretation of the pattern formation

In the simulations for spatially homogeneous tensor fields in Burger et al. (2018)
as well as for realistic tensor fields in Figs. 11, 12, 13, 15, 16 and 18 one can see
bifurcations in the solution pattern for certain time steps. More precisely, there exist
points where two roughly parallel lines merge with a third roughly parallel line from
the other side. These patterns are in the form of the letter ‘Y’. The evolution of one of
these bifurcations is shown in Fig. 20 for the underlying tensor field in Example 6 in
Fig. 18. Note that all these lines are aligned along the lines of smallest stress s of the
tensor field and these bifurcations move towards the two neighboring lines over time.
This behavior can be explained by attraction forces along the lines of largest stress
over medium range distances, i.e. as soon as the distance between the particles along
the lines of largest stress l is small enough they attract each other. In particular, the
particles close to the bifurcation on the two neighboring lines are the first ones to ‘feel’
the attraction force along l and the two roughly parallel lines start merging close to
the bifurcation. Hence, the single line on the other side of the bifurcation gets longer
over time and the bifurcation moves towards the two parallel lines. While the two
roughly parallel lines get shorter over time until they are finally completely merged,
resulting in one single line. Since the movement of the particles is mainly along l there
is a different particle at the bifurcation at each time step. While the particles on the
line in the middle roughly remain at the same position apart from realigning along the
lines of smallest stress s. This realignment along s is due to the additional number of
particles which are aligned along one single line after the merging, as well as due to
the repulsive forces along s spreading the particles to make use of the space along s
and to avoid high particles densities after merging.

5.2 Variable ridge distances

5.2.1 Motivation for a newmodel

The results in Sect. 5.1.2 illustrate that it is possible to simulate realistic fingerprints
with the Kücken–Champod model (1). As seen in the figures, there is some variability
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in ridge distances and in view of realistic biometric applications, it is of great interest
to control them. Note that the total force F in (3), given by the sum of repulsion and
attraction force FR and FA of the form (5) and (6), respectively, can be rewritten as

F(d(x j , xk), T (x j )) = [χ f A(|d|) + fR(|d|)] (s · d)s + [ f A(|d|) + fR(|d|)] (l · d)l
(26)

by using the definition of the tensor field T in (4) and the definition of the distance
vector d(x j , xk) = x j − xk ∈ R

2. The coefficient functions of the repulsion and
attraction forces (10) and (11), respectively, are plotted along s and l for the parameters
in (24) in Fig. 14b. In particular, this motivates us to consider interaction forces of the
form (2).

We are interested in rescaling the forces now to vary the distances between the
fingerprint lines, i.e. we consider F(ηd(x j , xk), T (x j )) where η > 0 is the rescaling
factor. For η = 1 we recover the same solution patterns as in Sect. 5.1.2, while the
distances between the fingerprint lines become larger for η ∈ (0, 1) and smaller for
η > 1. Note that the force coefficient f A + fR along l is repulsive over long distances.
For η = 1, the case that has been considered so far, this is fine for the given parameters
in (24). Forη > 1, however, the scaling results in repulsive interaction forces along l for
particles with shorter distances between each other. Besides, short-range forces have
a stronger impact on the interactions. Hence, these short-range repulsive interaction
forces prevent the accumulation of particles along l, resulting in several clusters. Note
that the forces along s are purely repulsive so that rescaling by any η does not change
the nature of the forces.

In order to prevent this behavior and to obtain an interaction model that can be used
for different rescalings, the forces need to be changed slightly so that we have very
small attractive forces along l for η = 1. This does not influence the pattern formation
for η = 1, but for rescaling by η > 1 we can obtain the desired line patterns with
smaller distances between each other. In order to achieve this, we consider a straight-
forward approach first. We consider two cutoffs c1 and c2 and define the adapted force
F piece-wise such that for |d| < c1 the force F is of the form (26) as before while
for |d| > c2 we consider an attraction force tending to zero as d → ∞. To obtain a
continuous force we consider a linear interpolation of the force on [c1, c2]. Setting

f (|d|, χ) := χ f A(|d|) + fR(|d|)

we consider the force coefficients f̄s and f̄l for interaction forces of the form (2) where
the force coefficients are defined as

f̄l(d) =

⎧
⎪⎨

⎪⎩

f (|d|, 1) |d| < c1
f (c1, 1) + |d|−c1

c2−c1
(− f (c2, 1) − f (c1, 1)) |d| ∈ [c1, c2]

− f (|d|, 1) |d| > c2

(27)

and

f̄s(d) = f (|d|, χ). (28)
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Fig. 21 Total force coefficients f̄l and f̄s , defined in (27) and (28) respectively, for interaction forces of
the form (2) and parameter values (24)

Here, we consider the parameter values c1 = 0.06, c2 = 0.07 and the parameters in
the force coefficients (10), (11) are given by (24). The force coefficient fl along l for
|d| > c2 is obtained by multiplying the original force along l by −1. This is based
on the fact that the force coefficient f (d, 1) is repulsive for large distances along l
for the parameters in (24). In Fig. 21 the force coefficients f̄l and f̄s in (27) and (28),
respectively, are shown. In particular, the piecewise definition of f̄l only has a small
influence of the form. In Fig. 22, the stationary solution to the particle model (1) for
interaction forces of the form (2), force coefficients (27), (28), parameter values (24),
the underlying tensor field T = T (x) in Fig. 17 and different rescaling factors η is
shown and one can clearly see that η > 1 leads to smaller ridge distances whereas
η < 1 results in larger ridge distances. In particular, the interaction model (1) with
interaction forces of the form (2) and force coefficients in (27) and (28) can be used
to simulate fingerprints with variable ridge distances. Due to the smaller distances
between the fingerprint lines for η = 1.2 this leads to a larger number of fingerprint
lines on the given domain. Due to this increased number of lines it is desirable to run
simulations with larger numbers of particles. However, particle simulations can only
be applied efficiently as long as the total particle number is not too large. In order
to solve this remedy one can introduce the density ρ = ρ(t, x) associated with the
particle positions and consider the associated macroscopic model

∂tρ(t, x) + ∇x · [ρ(t, x) (F (·, T (x)) ∗ ρ(t, ·)) (x)] = 0 in R2 × R+. (29)

In future work, advanced numerical methods for solving the macroscopic model (29)
with anisotropic interaction forces could be developed for simulating fingerprint pat-
terns.

5.2.2 A bio-inspired model for simulating stationary fingerprints with variable ridge
distances

In this section, we consider interaction forces of the form (2) as before with the aim of
simulating fingerprints with variable ridge distances based on a bio-inspired approach.
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Fig. 22 Stationary solution to the interaction model (1) for interaction forces of the form (2), force coef-
ficients (27), (28), parameter values (24), the realistic tensor field T = T (x) in Fig. 17 and N = 2400
particles initially distributed uniformly at random

Fig. 23 Coefficients fl and fs in
(13) for parameter values in (14)
as well as piecewise defined
coefficients f̄l and f̄s in
(27), (28)

The coefficient functions fl and fs in (27) and (28), respectively, are defined piece-
wise and it is desirable to obtain a closed form for the coefficient functions. As before
we consider exponentially decaying forces describing that short-range interactions
between the particles are much stronger than long-range interactions. Since the forces
are repulsive and attractive on different regimes, this interplay between repulsion and
attraction forces can be regarded as oscillations. Motivated by this, we model the
force coefficients fs and fl in (2) as solutions to a damped harmonic oscillator. Note
that harmonic oscillators are a common modeling approach in cell biology and the
force coefficients fl , fs are given by (13) and are shown in Fig. 23 for the param-
eters in (14) in comparison with the piecewise defined force coefficients f̄l , f̄s for
the parameters in (24). Note that the parameters (14) are chosen in such a way that
the coefficient functions fl , fs of the harmonic oscillator approximate the piecewise
defined coefficient functions f̄l , f̄s in (27), (28), respectively. In Fig. 24 the stationary
patterns to (1) for different rescaling factors η are shown. As expected the larger the
value of η the smaller the distances between the fingerprint lines and the more lines
occur.
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Fig. 24 Stationary solution to the interaction model (1) for interaction forces of the form (2), force coeffi-
cients (13), parameter values (14), the realistic tensor field T = T (x) in Fig. 17 and N = 2400 particles
initially distributed uniformly at random

Fig. 25 Original fingerprint image, arguments and lines of smallest stress s = s(x) for the reconstructed
tensor field T = T (x)with an overlyingmask of the original fingerprint image in black, as well as stationary
solution to the interaction model (1) for interaction forces of the form (2), force coefficients (13), parameter
values (14) and N = 2400 particles initially distributed uniformly at random

5.2.3 Whole fingerprint simulations

In Fig. 25 we construct tensor fields from real fingerprint data based on the methods
discussed in Sect. 5.1.2. We consider a whole fingerprint image shown in Fig. 25a
and determine the underlying tensor field by estimating the arguments θ = θ(x) for
every x ∈ Ω . Since we consider the domain Ω = T

2 we extend the tensor field via
extrapolation from the original fingerprint image in Fig. 25a, based on Gottschlich
et al. (2009). In Fig. 25b, c the arguments θ = θ(x) are shown and the arguments θ are
overlayed by themask of the original fingerprint in black in Fig. 25b. Since s(x) is a unit
vector and hence uniquely determined by its argument θ(x)we reconstruct the lines of
smallest stress s(x) as (cos(θ(x), sin(θ(x))) in Fig. 25d, e, and overlay the direction
field s by the original fingerprint image in black in Fig. 25d. We run simulations
for these realistic tensor fields using our new bio-inspired model (1) with interaction
forces of the form (2), force coefficients (13) inspired from harmonic oscillators and
parameter values in (14) for randomly uniformly distributed initial data and N = 2400
particles. Note that the patterns are preserved over time.
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In conclusion, fingerprints with variable ridge distances can obtained as stationary
solutions to our bio-inspired model. We consider harmonic oscillators as force coeffi-
cients, a well-established modeling approach in biology. Due to lack of experimental
data the exact form of the interaction forces, including the parameter choices, can-
not be validated with experiments. For this reason, the parameters are chosen such
that certain observations are satisfied and the general model formulation of the model
allows to consider a large class of models. As part of future work, the numerical
results can be tested for realness. The distinction between real and synthetics could be
based on Gottschlich and Huckemann (2014) where histograms of minutiae and ridge
frequencies are considered. Another procedure for distinguishing real and synthetic
fingerprints is based on the underlying stress field only (Imdahl et al. 2018).
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