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SUMMARY 

The role of somatic genetic variants in the pathogenesis of intracranial aneurysm formation is 

unknown. We identified a 23-year-old man with progressive right sided intracranial aneurysms, 

ipsilateral to an impressive cutaneous phenotype. The index individual underwent a series of 

genetic evaluations for known connective tissue disorders that were unrevealing. Paired sample 

exome sequencing between blood and fibroblasts derived from the diseased areas detected a single 

novel variant within the platelet-derived growth factor receptor  gene (PDGFRB) 

juxtamembrane-coding region predicted to cause a p.(Tyr562Cys) [g.149505130T>C 

(GRCh37/hg19); c.1685A>G] change. Variant allele fractions ranged from 18·75% to 53·33% 

within histologically abnormal tissue, suggesting post-zygotic or somatic mosaicism. In an 

independent cohort of aneurysm specimens, we detected somatic activating PDGFRB variants in 

the juxtamembrane domain or kinase activation loop in 4/6 fusiform aneurysms (and 0/38 saccular 

aneurysms, Fisher’s Exact Test p<0·001). PDGFRB-variant, but not wild type, patient cells were 

found to have overactive auto-phosphorylation with downstream activation of ERK, SRC and 

AKT. Expression of discovered variants demonstrated non-ligand dependent auto-

phosphorylation, responsive to the kinase inhibitor sunitinib. Somatic gain-of-function variants in 

PDGFRB are a novel mechanism in the pathophysiology of fusiform cerebral aneurysms and 

suggest a potential role for targeted therapy with kinase inhibitors. 
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Intracranial aneurysms occur in approximately 2% of the population with a rupture risk of 

6 per 100,000 individual-years 1,2. There are two types of aneurysms, the more common saccular 

(90-95%) and fusiform (4-8%)1,2. Saccular aneurysms are abnormal arterial outpouchings at 

branch points with histological loss of the media and intima. Fusiform aneurysms are 

circumferential abnormal arterial dilatation with histological medial and intimal hyperplasia. The 

size, location in the cerebrovascular tree and type of aneurysm all influence the natural history of 

this disease1,2. Abundant evidence supports a genetic component to the etiology of intracranial 

aneurysms1-7. The pathogenesis of cerebral aneurysm formation and rupture is complex and 

involves both environmental2 and genetic factors defined by twin, linkage and genome wide 

association studies3,4,5. Several genetic syndromes are associated with intracranial aneurysms, 

conferring increased risk compared to the general population1-3. Studies in mono and dizygotic 

twins also suggest both genetic and environmental contributions5. Established environmental risk 

factors, which may somatically alter coding regions of the genome, include cigarette smoking and 

hypertension1,2. The role of post-zygotic variants of genes that function in critical intracellular 

signaling pathways has been established for several types of overgrowth syndromes8,9 and vascular 

malformations10-16, but the role of somatic genetic alterations or mosaicism in intracranial 

aneurysms remains unknown. 

The index individual was first treated for a dissecting fusiform paraclinoid internal carotid 

artery aneurysm at 9 years of age. All individuals’ data and specimen collection were reviewed 

and approved by the University of Washington Institutional Review Board and Human Subjects 

Division. The individual was noted to have an impressive ipsilateral cutaneous phenotype. 

Fourteen years later, he developed a giant dissecting fusiform aneurysm of the right vertebral 

artery, which was previously normal by angiography (Fig. 1A-C and Fig. S1 in the Supplementary 
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Appendix). He had apparently normal cognition with no neurological deficits or other birth defects. 

No other abnormalities were found on brain (including intracranial calcifications), cardiovascular, 

or peripheral vascular imaging. He later developed both radial and coronary artery aneurysms (Fig. 

S1 J,K in the Supplementary Appendix), but never aortic aneurysm or dissection, underlying his 

dermal phenotype. Family history was negative. The left neurovascular tree remained normal (Fig. 

S1 C,E in the Supplementary Appendix). Detailed phenotype information for this individual is 

shown in Supplementary Appendix Fig. S1. He underwent a series of operations for treatment of 

the giant, rapidly growing fusiform vertebral aneurysm. DNA was extracted from multiple 

vascular and perivascular tissue samples (Fig. 1K) obtained during surgery. Initial variant 

discovery was carried out using paired sample exome sequencing to an average depth of ~150x 

between blood and fibroblasts derived from the diseased areas (>99% of the exome was covered 

for all samples). Exome sequencing was performed on blood and abnormal tissue using a 

customized exome capture probe set from the UW Medicine Center for Precision Diagnostics that 

is built upon the xGen Exome Research Panel v1.0 (IDT) backbone. Initial variant discovery was 

carried out using a comparison between blood and diseased area cultured fibroblast exomes 

sequenced to an average depth of ~150x on the Illumina HiSeq 2500 platform. Subsequent exome 

sequencing was performed on other diseased specimens and healthy radial artery (Fig. 1K and L) 

to at least 40x average depth (>99% of exome). Resulting reads were aligned using BWA-MEM 

(v0.7.5) following the Broad Institute’s GATK best practices. Somatic variants were identified 

using MuTect (v1.1.7) with default parameters. Our analysis detected a single novel variant within 

the platelet-derived growth factor receptor  gene (PDGFRB) juxtamembrane-coding region 

(p.Tyr562Cys [g.149505130T>C (GRCh37/hg19); c.1685A>G]). Variant allele fractions ranged 

from 18·75% to 53·33% within histologically abnormal tissue (Fig. 1D-L). No other somatic 
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variants were found. The highest allele fractions were found in a specimen from an occipital artery 

aneurysm (Fig. 1D-I and Fig. S2 in the Supplementary Appendix). This PDGFRB variant was not 

found in DNA isolated from blood or histologically normal, left-sided, radial artery (Fig. 1J-L), 

confirming post-zygotic or somatic mosaicism. 

PDGFRB encodes a conserved transmembrane receptor tyrosine kinase involved in diverse 

signaling processes during embryonal development17-21. PDGFRB is normally expressed in several 

cell types, including pericytes and vascular smooth muscle cells, and has an essential role in 

vascular progenitor cell signaling19-21.  Based on the findings in the individual described above, we 

performed targeted sequencing of PDGFRB in a validation cohort of 50 aneurysm and arterial 

walls (Fig. S3 in the Supplementary Appendix). The validation cohort was sequenced similarly to 

the exome sequencing performed on the index individual with the exception that a custom capture 

probe set (IDT) was used rather than the full exome. Variants were batch-identified across the 

cohort using the Platypus variant caller (v0.8.1), using a minimum variant allele fraction of 2%, a 

minimum coverage of 5 reads, and a minimum posterior probability of 0 (no variant reads) 

allowing more inclusive initial analysis. Germline variants and sequencing artifacts were further 

filtered out with an in-house script. All somatic variants were analyzed with IGV (v2.3.71) and 

functionally annotated with Oncotator (v1.9.3.0). Targeted sequencing revealed four variants in 

three additional sporadic individual cases: a variant within the juxtamembrane domain predicted 

to result in a four amino acid in-frame deletion (p.Tyr562_Arg565del) in exon 12, and two 

additional variants in the activation loop of the kinase domain (p.Asp850Tyr and 

p.Arg849_Lys860delinsHisAlaGlyLeuGluLeuHisLeuGln) in exon 18 (Fig. 2A). The latter variant 

was comprised of two deletions located in cis that together are predicted to result in a complex in-

frame insertion-deletion (Fig. S6 in the Supplementary Appendix). Variants were only found in 
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fusiform aneurysms (3/5, 60%), radiographically and histologically similar to our index individual 

(Fig. 2B-F and Fig. S4 in the Supplementary Appendix). All saccular aneurysms had wild-type 

PDGFRB.  

Exome sequencing was performed on aneurysm walls and control tissues from all three 

PDGFRB-variant sporadic fusiform aneurysms (see the Supplementary Appendix). All aneurysm 

samples were sequenced to at least 175x (>99% of exome) and control samples to at least 90x 

(>99% of exome) average coverage with the exception of lymph node DNA from the VAL-44 

individual. Additional sequencing was added to the PDGFRB variant region of the lymph node 

DNA (non-aneurysm control DNA) with the custom capture probe set in order to study a germline 

contribution for VAL-44. The aneurysm exome of VAL-44 was analyzed on its own. For every 

available control tissue, complete pairs were analyzed with a variant using FreeBayes (v1.0.2), 

Strelka2 (v2.0.17), VarDict (v1.5.1), and VarScan2 (v2.4.3), and the output was filtered with an 

in-house script and confirmed with manual inspection on IGV. For the VAL-44 aneurysm without 

a good-quality control, variant calling was done with FreeBayes, Platypus, and Vardict and the 

output was filtered with an in-house script and confirmed with manual inspection on IGV. Exome 

sequencing of aneurysm and normal tissue DNA revealed only recurrent PDGFRB variants (Fig. 

S6 and S7 in the Supplementary Appendix), suggesting a causal role in the formation of sporadic 

fusiform aneurysms. DNA was available from blood and/or unaffected healthy tissue, to explore 

the germline contribution of the variant in all cases (Fig. S7 in the Supplementary Appendix). 

The skewed PDGFRB allele fractions, in sporadic fusiform aneurysms, ranged from 5·6 to 

21·4% (Fig. 2A) also consistent with post-zygotic, somatic variants. These results were also 

confirmed by next generation sequencing after independent primer pair amplification across the 

variant locations, with similar allele fractions (Fig. S5 and S7 in the Supplementary Appendix). 
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Two of the PDGFRB missense variants observed (p.(Tyr562Cys) and p.(Asp850Val)) have 

recently been found in sporadic myofibromas22,23. None of the variants we detected in intracranial 

aneurysms were seen in >120,000 normal genomes (dbSNP, 1000Genomes, NHLBI-EVS, 

gnomAD) which support their pathogenicity and suggest that they may be embryonic lethal. These 

variants altered conserved regions and were predicted to be protein altering and pathogenic by 

PolyPhen2, SIFT and MutationTaster (Fig. S9 in the Supplementary Appendix).  

In fusiform aneurysms, missense variants and in-frame deletions occurred in either the -

ArgTyrGluIleArg- motif of the juxtamembrane region or adjacent -AspPheGly- motif in the 

activation loop (Fig. 3A-C, Fig. S9 in the Supplementary Appendix) of PDGFRB. Disruption of 

juxtamembrane region auto-inhibitory sites causes constitutive activation24,27. All four variants 

occur in known homologous PDGFRA and KIT “hot spots” within the juxtamembrane or activation 

loop of the kinase domains24,25. The conserved residues are found in all tyrosine protein kinases, 

and the analogous residues (Tyr555 and Tyr552) in the PDGFRA and KIT kinases are somatically 

altered in cancers24,25 (Fig. 3B). The aneurysm alterations in PDGFRB are predicted to result in 

p.Tyr562Cys and p.Tyr562_Arg565del. Aligned amino-acid sequences of the activation loops of 

human KIT, PDGFRA and PDGFRB start and end with residues - AspPheGly - and -AlaProGlu-. 

The two alterations within the kinase loop known to be important for autoregulation24,25,28,29 were 

p.(Asp850Tyr) and an in-frame deletion/insertion spanning this region (Fig. 3C). These data 

suggest that variants found in cerebral aneurysms act via gain-of-function mechanisms. Deep 

targeted sequencing of the genes coding for the kinases KRAS, PDGFRA, BRAF, TGFBR1 and 

TGFBR2 identified no variants in the cohort of 50 aneurysms, consistent with an etiology specific 

to PDGFRB. 

Several heterozygous germline or mosaic gain-of-function variants in PDGFRB result in 
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infantile myofibromatosis (IM, MIM #228550) or sporadic myofibromas, while single 

heterozygous germline variants were found in the rare Kosaki overgrowth (MIM #616592) and 

Penttinen syndromes (MIM #601812) (Fig. 3 and Fig. S10 in the Supplementary Appendix). 

Several other heterozygous germline loss-of-function variants cause primary familial brain 

calcification (PFBC, MIM #615007). None of the above phenotypes were found in our four 

aneurysm individuals (Fig. S10 in the Supplementary Appendix). Individuals with genome copy 

number alterations, including chromosome 5 deletions encompassing PDGFRB, have been 

associated with developmental delay but not with aneurysm development26. Mice deficient in 

Pdgfb or Pdgfrb die from multiple developmental defects including hemorrhages due to a lack of 

pericytes and vascular smooth muscle cells in blood vessels17-20. Pdgfrb activating mutations in 

mice cause vascular smooth muscle cell de-differentiation, hyperplasia and increased extracellular 

matrix synthesis20. The wide range of phenotypes suggests a complexity of PDGFRB function and 

downstream signaling that is likely due to cell lineage and developmental timing specific 

expression. 

To study the functional status of PDGFRB variants, we performed assays using cells 

collected from skin punches of the index individual (healthy and affected regions) and site-directed 

mutagenesis was performed using the QuickChange II Site-Directed Mutagenesis Kit (Catalog 

#200518, Agilent Technologies). For details, see the Supplementary Appendix. Ligand binding 

induces PDGFRB dimerization and activating autophosphorylation in trans. Phosphorylation on 

multiple tyrosine residues creates docking sites for signaling proteins, including 

phosphatidylinositol-3 kinase (PI3K), AKT, STAT transcription factors, and phospholipase C 

(PLC)27-31. Starved mosaic fibroblasts harvested from the index individual, predicted to express 

the Tyr562Cys variant, had higher basal levels of pPDGFRB, pSRC (Tyr416), pAKT (Ser473) 
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and pERK 1/2 (Thr202/Tyr204) (Fig. 4A, B). PDGFBB was able to further autophosphorylate 

PDGFRB and activate downstream signaling (Fig. 4B). To investigate the pathogenic mechanism 

of all discovered variants, we ectopically expressed wild-type (WT), aneurysm-associated variants, 

and two controls in HEK cells (Fig. 4C). All four aneurysm-associated variants caused higher 

levels of autophosphorylation of PDGFRB when compared to WT. We next tested the ability of 

the multi-targeted receptor tyrosine kinase inhibitor sunitinib (Sutent) to down regulate auto-

phosphorylation of PDGFRB variants (Fig. 4D). While all intracranial aneurysm variants exhibited 

relative resistance to sunitinib compared to WT PDGFRB under these conditions, three could be 

strongly inhibited. In contrast, the p.(Asp850Tyr) variant exhibited marked resistance to sunitinib 

under these conditions. Interestingly, kinase inhibitor resistance was also reported for 

p.(Asp850Val), similar to the p.(Asp842Tyr) PDGFRA and p.(Asp816Val) KIT variants in 

gastrointestinal stromal tumors24,25. 

Exome sequencing of the index individual allowed study of the role of somatic alterations 

in aneurysm formation. A single post-zygotic, somatic variant in PDGFRB, predicted to cause a 

gain-of-function protein, was discovered. This observation in the index individual provided the 

proof in principle that alterations in PDGFRB might be found in sporadic, non-mosaic, individuals. 

Here we describe variants of PDGFRB as a cause of single and multiple fusiform aneurysms. The 

role of somatic mosaicism has been described in overgrowth syndromes (AKT18, PIK3CA9), 

Sturge-Weber Syndrome (GNAQ11), head and neck12-15 and cerebral arterial-venous malformations 

(KRAS16). Following this theme, PDGFRB activating variants of the cerebral vasculature seem to 

drive aneurysm formation. We describe the first reported genetic cause of any type of sporadic 

intracranial aneurysm: activating variants in PDGFRB. We used exome sequencing and targeted 

deep sequencing to explore the genetic landscape of cerebral aneurysms. A somatic point variant, 
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predicted to result in a tyrosine to cysteine (p.(Tyr562Cys)) change, within the conserved, auto-

inhibitory, juxtamembrane region of PDGFRB was identified. To explore the possibility of 

additional driving mutations and genetic similarities we performed exome sequencing in all 

fusiform aneurysms. This confirmed the following: 1. Exome sequencing of PDGFRB-variant 

fusiform aneurysms revealed no additional detectable recurrent gene alterations consistent with a 

causal relationship, 2. Two of the fusiform aneurysms carried wild type PDGFRB and had no 

evidence of novel driver variant and 3. Exome sequencing of multiple abnormal tissue specimens, 

from PDGFRB-variant patients, revealed a definitive role for somatic mosaicism in two of four 

individuals. 

Activating PDGFRB variants underlie sporadic fusiform aneurysms, suggesting an 

important role in cerebral artery angiogenesis. Four of six fusiform aneurysms carried PDGFRB 

activating variants, highlighting the importance of this pathway. Two fusiform aneurysms did not 

harbor PDGFRB alterations even on deep sequencing, suggesting another gene or mechanism in 

formation or that ultra-low variant allele fractions were not detected. While our exome sequencing 

was sensitive enough (150x coverage) to detect PDGFRB variants, it is possible that we were 

unable to detect ultra, low-level variants in other novel contributing genes. Re-sequencing of 

PDGFRB, with on average 400x coverage, in both wild-type fusiform and saccular aneurysms 

should detect allele frequencies down to 1%. Although we examined pathologic tissue specimens, 

we concede our techniques would not allow detection of low frequency fractional (<1%) variants 

with certainty.  

Protein kinase activation by somatic variant or chromosomal alteration is a common 

mechanism of overgrowth syndromes8,9, vascular malformations10-16 as well as tumorigenesis24,25. 

While variants in PDGFRA and PDGFB may be oncogenic, very few variants of PDGFRB have 
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been described in cancer24 (Fig. 3D). Chromosome translocations causing gene fusions have been 

reported in rare cases of myeloid neoplasms with eosinophilia that were sensitive to imatinib34. 

Collectively, our functional studies demonstrate elevated auto-phosphorylation of variant 

PDGFRB and consequent activation of AKT, SRC and ERK. PDGFRB is essential in the 

propagation of cerebral pericytes and is a surface marker for these cells, which are thought to give 

rise to the vascular smooth muscle layer of the arterial media18-21,27-31. Since PDGFRB is highly 

expressed in and plays an essential role in pericyte development18-21,27-31, our data suggest that 

aneurysms may originate from cerebral pericytes, vascular smooth muscle cells or their 

progenitors.  

Alterations result in activated alleles of PDGFRB with differential sensitivity to kinase 

inhibitors, suggesting a potential role for therapeutic intervention. Direct inhibition of activated 

receptor tyrosine kinases may be a promising approach to aneurysm therapy, and further research 

is warranted. Where resistance is encountered, for example in the p.(Asp850Tyr) variant described 

in this study, kinase inhibitors to downstream targets (e.g. AKT, ERK) represent an alternative 

strategy. The PDGFRB variants detected in both fusiform intracranial aneurysms and 

myofibromas cluster in the same two regions (juxtamembrane and activation loop of the kinase 

domain), with one variant in common (p.(Tyr562Cys)) and another involving the same codon 

(p.(Asp850Tyr) in intracranial aneurysms, p.(Asp842Val) in myofibromas). It is striking that none 

of the variants are reported to occur in the germline, but are tolerated in a mosaic pattern. It is 

unknown if PDGFRB variants cause both cerebral aneurysms and myofibromas in the same 

individual but there may be overlap. While the individuals described in this manuscript had no 

evidence of myofibromas, renal and iliac aneurysms have been reported in an individual with IM35. 

More research is necessary to understand the role of age or timing specific intracranial aneurysm 
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formation. PDGFRB targeted therapy for treatment of severe IM in an individual with a 

heterozygous germline mutation PDGFRB has been reported36.  

Fusiform aneurysms of the neurovascular tree are difficult to treat and can rupture, cause 

vessel occlusion or mass effect on nearby perforator vessels resulting in neurologic deficits1,2,32,33. 

Securing of the aneurysm, prior to rupture with maintenance of cerebral blood flow are the goals. 

Fusiform cerebral aneurysms are difficult to treat with surgery or with endovascular techniques, 

such as stent or coil reconstruction32,33. Regardless of treatment option, outcomes for fusiform 

aneurysm are poor32,33, highlighting a need for improved therapies for this select group of vascular 

lesions. The data presented suggests that some fusiform cerebral aneurysms are caused by 

activating variants in PDGFRB. The identification of PDGFRB variants in a subset of human 

fusiform aneurysms and the association between variant and kinase inhibitor efficacy extend the 

role of overactive kinase activity in vascular pathogenesis. The striking differences in PDGFRB 

variants found in fusiform versus saccular aneurysms raise the possibility of unique genetic 

landscapes and molecular pathogenesis underlying this heterogeneity. Our cohort is limited, and 

adequate study will require a much larger cohort from multiple centers. These findings provide a 

model for understanding post-zygotic genetic alterations causing sporadic aneurysms, which may 

occur over the lifetime of individuals. The role of somatic PDGFRB variants in fusiform 

aneurysms has shed light on a pathogenic mechanism in intracranial aneurysms. This finding may 

aid in the identification of additional causative somatic intracranial aneurysm genes. Identification 

of recurrent PDGFRB alterations provide an avenue of study for tyrosine kinase inhibition as a 

future therapeutic strategy in fusiform cerebral aneurysms. 
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Figure 1: Index individual phenotype and PDGFRB genotype. A, Body map skin mosaicism 

(in red) and specimens used for exome sequencing. B, Cutaneous appearance. C, Angiogram 3D 

reconstruction of right vertebral injection illustrating a giant vertebral fusiform aneurysm. D-I, 

Abnormal extra cranial soft tissue vasculature associated with the occipital artery (Specimen 

MOS-WES-3): D, Low power (4x) and E, medium power (10x) magnification of a hematoxylin 

and eosin (H&E) stained slide demonstrating a markedly affected vessel with focal evidence of 

dissection (arrowhead).  There is severe intimal hyperplasia and the tunica media (*) becomes 

markedly attenuated. F, Low power (4x) and G, medium power (10x) magnification of Gomori 

trichrome (GT) stained slide with the intima (**) and the tunica media (*) highlighted.  H, Low 

power (4x) and I, medium power (10x) magnification of Verhoeff-Van Gieson (VVG) stained 

slide.  The internal elastic lamina (*) associated with the relatively better preserved fragment of 

tunica media, as well several areas with attenuated internal elastic lamina are highlighted (**). J, 

Specimen MOS-WES-6, medium power magnification (10x), H&E stained slide of an 

unremarkable left arm radial artery.  Well-defined intimal layer, tunica media, and tunica 

adventitia along with an intact internal elastic lamina (*) are visualized.  K, Specimens used for 

exome sequencing and coverage of the p.Tyr562Cys variant. L, Next generation sequencing reads 

across the area of the missense variant, with the variant nucleotides (C) in blue. The reference 

nucleotide and amino acid sequences are at the bottom.  
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Figure 2: Sporadic fusiform aneurysms harbour PDGFRB variants. A, Demographics of 

sporadic fusiform aneurysm subjects and variants, including age at treatment. B, C, F, Angiogram 

and/or 3D reconstruction from angiogram representative images illustrating the fusiform 

morphology. D and E, Representative H&E stained sections of specimen VAL-44 at low (1·25x) 

and medium (10x) magnification showing a markedly affected vessel with vascular wall 

attenuation, an intraluminal thrombus with early organization and dissecting haemorrhage. The 

tunica media (*) is focally present and becomes attenuated (**). G, H&E stained sections at 

low magnification (1·25x) of specimen VAL-61 stained showing a representative portion of the 3 

cm aneurysm with a large partially organizing thrombus and a markedly attenuated vascular wall. 

Abbreviations: AF = Allele frequency, ICA = Internal carotid artery, MCA = Middle cerebral 

artery, PCA = Posterior cerebral artery, RCCA = Right common carotid artery. 
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Figure 3: Variants in PDGFRB within the juxtamembrane region and the kinase activation 

loop found in fusiform aneurysms. A, Schematic representation of the PDGFRB protein, amino 

acid sequence of the two hotspots, and the location of variants. Germline and somatic PDGFRB 

variants with known or implied functional consequences in other syndromes and diseases included 

for comparison. B, Homologous juxtamembrane amino acid sequences for KIT, PDGFRA and 

PDGFRB and location of aneurysm variants. C, Homologous kinase domain activation loop amino 

acid sequences for KIT, PDGFRA and PDGFRB and location of aneurysm mutations. D, All 

somatic variants reported in the COSMIC database with possible activating consequences 

(missense and in-frame insertion/deletions) in KIT, PDGFRA and PDGFRB. Notice the increased 

frequency of variants in both juxtamembrane region and kinase activation loop of KIT and 

PDGFRA. There is a comparative lack of variants reported in PDGFRB.  
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Figure 4: PDGFRB variants are constitutively phosphorylated, sensitive to sunitinib kinase 

inhibition and activate downstream signalling pathways. A, Western blot analysis of non-

starved normal (wild-type PDGFRB) and mosaic affected Tyr562Cys fibroblast cells from the 

index individual. B, Western blot analysis of starved and PDGF-BB stimulated normal (wild-type 

PDGFRB) and mosaic affected Tyr562Cys fibroblast cells from the index individual. C, Western 

blot analysis of HEK cells stably expressing the described aneurysm variants and Trp566Arg (IM 

- gain of function) and Asp844Gly (PFBC - loss of function) control variants showing varying 

levels of phosphorylation and expression of PDGFRB. D, Sensitivity of PDGFRB auto-

phosphorylation to sunitinib. 
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