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Abstract

Theories of bounded rationality often assume a rich dataset of choices from many overlapping
menus, limiting their practical applicability. In contrast, we study the problem of identifying the
distribution of cognitive characteristics in a population of agents from a minimal dataset that consists
of aggregate choice shares from a single menu, and includes no observable covariates of any kind. With
homogeneous preferences, we find that “consideration capacity” and “consideration probability”
distributions can both be recovered effectively if the menu is sufficiently large. This remains true
generically when tastes are heterogeneous with a known distribution. When the taste distribution is
unknown, we show that joint choice share data from three “occasions” are generically sufficient for
full identification of the cognitive distribution, and also provide substantial information about tastes.

Keywords: attention, bounded rationality, consideration set, stochastic choice.

1. INTRODUCTION

1.1. Motivation

Classical revealed preference analysis has yielded a fine-grained understanding of the relation-
ship between unobserved tastes and observed choices, and of how to infer the former from the latter.
More recently, theoretical work on bounded rationality has extended this methodology to incorporate a
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range of cognitive factors that may affect decision making.1 One drawback of such theories is that they
typically presume access to a very rich dataset—comprising a single individual’s choices from a large
number of different overlapping menus—that can be used to identify the latent components of the cog-
nitive model of interest. For instance, Aguiar et al. (2018), Cattaneo et al. (2017), Gibbard (2019), and
Masatlioglu et al. (2012) require data for all possible menus drawn from a universal set of alternatives;
Manzini and Mariotti (2014) impose a stringent “richness” assumption on their dataset; and Caplin and
Dean (2015) postulate the observability of state-dependent stochastic choice data.2

Identification results developed using such assumptions on the choice domain are often formally
elegant, and can be particularly useful for designing and interpreting experiments (as in Aguiar et al.
2018 and Caplin and Dean 2015). They are less obviously relevant to field data, however, especially when
the type of decision arises rarely (e.g., choice of hospital provider for elective surgery) or the menu is slow
to change (e.g., choice of daily newspaper). Indeed, in settings with such features many characterization
results from the literature on boundedly rational choice may appear implausibly data-hungry. In practice
there may be insufficient menu variation to infer the model components of interest, and for this reason
it is desirable to devise approaches to identification that create a more direct link between theory and
what is feasible empirically.

In this paper we focus on models of limited attention, where agents consider only a subset of the
available alternatives, known as the “consideration set.”3 To address the data-voracity issue noted above,
we propose a novel framework that postulates a minimal dataset comprising (in its basic version) a single,
fixed menu from which we observe only the aggregate choice shares of a population of decision makers.4

Members of the population may (or may not) differ in their preferences over the alternatives, and they
may also differ in cognitive characteristics that affect the allocation of attention. The latter “cognitive
heterogeneity” is taken to be unobserved, and our principal goal is to infer the distribution of these
characteristics from the aggregate choice shares.

We stress that this paper examines the extent to which the cognitive distribution is identified by a
given model of bounded rationality per se—once it has been stripped of the richness of menu variation—
and prior to any ancillary econometric specification that may include covariates for the individuals or the
alternatives. In this respect our primitives and objectives remain typical of those in conventional abstract
choice theory, and this is one way that our contribution differs from recent work in which identification
is facilitated by access to observable covariates (see, e.g., Abaluck and Adams 2017, Barseghyan et al.
2019a, and Barseghyan et al. 2019b). Our model can be extended and tailored to specific applications
by introducing such covariates, as is often done when decision-theoretic models are brought to bear on
data.5 Although such extensions and specializations must be left for future work, at places we will note
how the presence of additional data could aid our identification exercise.

1.2. Cognitive models

In our general framework, each agent has a cognitive type parameter θ ∈ Θ ⊂ < that is distributed in
the population according to a cumulative distribution function F . Given preferences over the menu, an

1This literature examines cognitive factors such as computational constraints, norms and heuristics, reference points
and other framing effects, and various conceptions of attention. Contributions include those of Apesteguia and Ballester
(2013), Baigent and Gaertner (1996), Caplin et al. (2011), Cherepanov et al. (2013), de Oliveira et al. (2017), Echenique
et al. (2018), Manzini and Mariotti (2007), Masatlioglu and Nakajima (2013), Ok et al. (2015), Salant and Rubinstein
(2008), and Tyson (2008, 2013), among numerous others.

2Even stronger assumptions about data availability are commonplace in the theory of choice under uncertainty, where
the decision maker is typically imagined to express preferences over a highly structured mathematical space specifically
designed to facilitate identification.

3This usage follows the marketing literature; see, e.g., Roberts and Lattin (1997) and Shocker et al. (1991). While we
view the consideration set as a manifestation of bounded rationality, other interpretations are possible: Alternatives may
fail to be considered due to habit formation, search costs, or other forms of rational inattention (see, e.g., Caplin and Dean
2015 and Sims 2003).

4Alternatively, the framework could model a single individual choosing repeatedly from the same menu in different
attentional states, where the variation may arise, for example, from a merchandising strategy of the retailer designed to
manipulate customers’ consideration sets. In Section 4.2 we extend this framework to allow for richer “multi-occasion”
choice data, but only after the informational value of our basic dataset has been completely exhausted.

5For example, the Luce (1959) model of probabilistic choice is formulated in terms of abstract utilities, but is implemented
empirically as the multinomial or conditional logit model in which utilities are linear functions of observable characteristics
of the agents or alternatives.
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individual of type θ will choose alternative x with probability pθ(x), and the corresponding aggregate
choice share will be p(x) =

∫
Θ
pθ(x)dF . When the cognitive type is used to capture some form of bounded

rationality, the individual choice distribution will not generally assign all probability to the best available
option, and neither will the aggregate distribution even when the population has homogeneous tastes.
Indeed, the fact that suboptimal alternatives will sometimes be chosen is what will enable us to infer
features of the cognitive distribution F from the observed aggregate shares.6

As already noted, we study bounded rationality in the form of limited attention. Here the cognitive
parameter θ influences the formation of the decision maker’s consideration set, and more specifically
the number of alternatives that are considered. In the “consideration capacity” model, the parameter
γ ∈ {0, 1, 2, . . .} controls the maximum cardinality of the consideration set and is interpreted as a limit
on the number of alternatives that the agent can actively investigate at any one time. We also examine
in detail an important special case, the “consideration probability” model, in which the parameter
ρ ∈ [0, 1] controls the likelihood that each option is considered and is interpreted as the decision maker’s
general awareness of the choice environment. We hypothesize that preferences are maximized over the
consideration set, and full rationality can be restored by letting γ →∞ or ρ = 1, as appropriate.7

1.3. Preview of results

We begin by assuming that the population has homogeneous tastes. In this case preference identification
is not challenging (Proposition 1), which enables us to concentrate entirely on the cognitive identification
problem. Here our attention model is fully identified by a small number of observed choice shares under
several natural functional forms for F (see Appendix A.1). But even without a parametric specification,
the cognitive distribution can for practical purposes be fully recovered if the menu of alternatives is large
enough. In the context of the consideration capacity model, the aggregate choice shares identify the
probabilities of all capacities less than the cardinality n of the menu (Proposition 2). Similarly, for the
consideration probability model the choice shares identify the first n raw moments of F (Proposition 3),
which—using maximum entropy methods and results from sparsity theory—can be exploited to recon-
struct or to closely approximate the cognitive distribution itself (Propositions 4–5). In each context,
identification follows from the system of equations that define the choice shares being recursive and lin-
ear in the relevant quantities (namely, the capacity probabilities or raw moments), so that closed-form
expressions for these quantities can be obtained by inverting an (anti-)triangular matrix.

Turning to the case of heterogeneous preferences, we first note that our identification results continue
to hold generically if the taste distribution is known (Propositions 6–7). For heterogeneous and unknown
tastes, we extend our dataset to include the joint distribution of choices by the same population of agents
on at least three distinct “occasions.” Here we employ a powerful mathematical result on the uniqueness
of tensor decompositions, which to our knowledge has not previously been used in the bounded rationality
literature. (This methodology may be of independent interest, since its potential extends well beyond the
specific models studied in the present paper.) In the context of the consideration capacity model, we show
that joint choice share data are generically sufficient for full identification of the cognitive distribution,
and also provide substantial information about the taste distribution (Proposition 8).

1.4. Related empirical literature

While remaining entirely theoretical in orientation, this paper contributes to a growing literature on
estimating consideration-set models from consumer demand or other choice data, reviewed briefly in this
section.

Abaluck and Adams (2017) construct a general econometric framework in which product characteris-
tics are observable (unlike our setting), and exploit asymmetries in cross-characteristic choice probability

6Note that our framework has similarities to mixed models in the discrete choice literature, where θ would be a taste
parameter such as the agent’s unobserved marginal utility of some observed characteristic. (See Train 2009 and McFadden
2001.) However, since we shall use θ to control cognition instead of tastes, our setting calls for different functional-form
assumptions. In particular, pθ will not have a logit specification (see Luce 1959), as typically assumed in relation to tastes.

7Variants of the consideration capacity model are used by Barseghyan et al. (2019a) and Barseghyan et al. (2019b) to
study discrete choice with heterogeneous consideration sets, and by de Clippel et al. (2014) to study price competition in a
setting where consumers exhibit limited attention. The consideration probability model employed here is the one sketched
in Manzini and Mariotti (2014, Section 7.2).
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responses to identify consideration sets. For choice under risk, Barseghyan et al. (2019a) study prefer-
ences and attention in an extremely general model, with minimal assumptions about the process of
consideration-set formation; targeting partial identification of its components.

Cattaneo et al. (2017) postulate “monotonic attention,” a constraint on how stochastic consideration
sets can change across menus, and use this assumption to derive testable restrictions on choice proba-
bilities. Aguiar et al. (2018) test random consideration models at the population level in a large scale
online experiment, finding support for a specification with heterogeneous preferences and logit attention.
Both of these contributions, however, depend on substantial menu variation.

Crawford et al. (2020) devise a model-free identification strategy based on reducing the menu to a
“sufficient set” of alternatives that are certain to be considered. Gaynor et al. (2016) exploit institutional
changes to identify consideration sets in hospital choice, while Honka et al. (2017) exemplify the approach
of treating consideration sets as the outcome of a search process.8

Lu (2019) develops a methodology for estimating multinomial choice models that employs known
upper and lower bounds on the consideration set. Sovinsky Goeree (2008) studies the impact of marketing
on consideration, using advertising data and observable product characteristics to separate the utility
and attentional components of demand. Van Nierop et al. (2010) propose a specific model of brand choice
accommodating both stated and revealed consideration-set data, which they apply to an experiment on
merchandising strategies.

The paper that relates most closely to our contribution is Barseghyan et al. (2019b), which uses the
attention allocation process that we refer to as the “consideration capacity model.” But here again their
identification strategy relies upon observable covariates—a basic difference from our methodology.

1.5. Outline

The remainder of the paper is structured as follows. Section 2 describes our framework and sets out both
the consideration capacity model and the special case of the consideration probability model. Section 3
pursues cognitive inference under the simplifying assumption of homogeneous tastes. Section 4 extends
the analysis to allow for taste heterogeneity, and Section 5 concludes.

2. COGNITIVE HETEROGENEITY AND CONSIDERATION-SET MODELS

2.1. General framework

Let X denote the (finite) universal set of alternatives. A menu is any nonempty A ⊆ X, with which is
associated a default outcome dA /∈ A. When presented with the menu A, an agent either chooses exactly
one of the available alternatives or chooses none and accepts dA. For example, we could have that:

(i) The menu contains retailers selling (identical versions of) a product, and the default is not to buy.

(ii) The menu contains banks offering fixed deposits, and the default is to hold cash.

(iii) The menu contains risky lotteries, and the default is a risk-free payment.

When deriving our main theoretical results (in Sections 2–3), we shall assume that all agents share
the same linear order preferences % over X. This assumption (relaxed in Section 4) can be interpreted as
using the average utilities of the alternatives in the population, ignoring individual variation. In this sense
our approach complements the classical stochastic-choice literature in economics, where preferences are
allowed to vary but cognitive capabilities are (implicitly) assumed to be uniform. Note that homogeneous
tastes are plausible in examples (i) and (ii) above, where preferences will be determined largely by price
and interest rate comparisons, as well as in example (iii) provided all agents are approximately risk
neutral over the relevant stakes.

When imposing homogeneous tastes, we number the alternatives so that a higher position in the
preference order implies a lower index. We thus write kA for the kth best option on A, and the full menu
appears as A = {1A, 2A, . . . , nA}, where nA = |A|.

8The search literature typically deals with datasets that include information about the composition of a consumer’s
consideration set, although there are exceptions. For example, in Hastings et al. (2017) exposure to a sales force influences
the probability that financial products are considered.
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We introduce cognitive heterogeneity by assigning each agent a cognitive type θ ∈ Θ ⊂ <, drawn
independently across agents from the distribution F . We write pθ(kA) for the probability that type θ
chooses alternative kA, and p(kA) =

∫
Θ
pθ(kA)dF for the overall share in the population. Similarly,

we write pθ(dA) for the probability that type θ accepts the default, and p(dA) =
∫

Θ
pθ(dA)dF for the

population share. For each θ ∈ Θ we have [
∑nA
k=1 pθ(kA)] + pθ(dA) = 1, and in aggregate we likewise

have [
∑nA
k=1 p(kA)] + p(dA) = 1. If wishing to emphasize the role of the type distribution in determining

the choice probabilities, we write p(kA;F ) and p(dA;F ).
The basic scenario of interest involves a large population choosing from a fixed menu M with |M | =

nM ≥ 2. The analyst observes the aggregate choice shares, but knows neither the common preference
order nor the distribution of cognitive types. In this context we shall generally suppress dependence on
M , writing pθ(k) and pθ(d) for the type-specific frequencies, p(k) and p(d) for the population shares,
and n = nM for the cardinality of the menu. Our goal is then to deduce information about the cognitive
distribution F from the data in 〈p(1), p(2), . . . , p(n), p(d)〉.

We proceed now to specialize this framework to a more concrete model in which the cognitive het-
erogeneity relates to limited attention. Each agent will consider (i.e., pay attention to) a subset of the
alternatives, and among those considered will choose the best option according to the common prefer-
ence order. If the preference-maximizing alternative is not in the consideration set, this will result in a
suboptimal decision.

2.2. The consideration capacity model

Let γ ∈ {0, 1, 2, . . .} = Θ denote a limit on the cardinality of the agent’s consideration set; that is, the
consideration capacity. When 1 ≤ γ < n we assume that the agent is equally likely to consider each
Γ ⊂M with |Γ| = γ, and when γ ≥ n we know with certainty that the entire menu M will be considered.
In the former case there are

(
n
γ

)
candidate sets, of which

(
n−k
γ−1

)
contain alternative k and do not contain

any superior alternative ` < k. For 1 ≤ γ < n, the probability of k being chosen is thus
(
n−k
γ−1

)
/
(
n
γ

)
. Note

that this probability is 0 for k > n− γ + 1, since here there are fewer than γ − 1 alternatives inferior to
k that can populate the consideration set in order to allow k to be chosen. Of course, whenever the full
menu is considered we know that alternative 1 will be chosen regardless of the value of γ ≥ n.9

The type-conditional choice frequencies can now be expressed as

pγ(k) =


(
n−k
n−1

)
if γ ≥ n,(

n−k
γ−1

)
/
(
n
γ

)
if 1 ≤ γ < n,

0 if γ = 0;

(1)

pγ(d) =

{
0 if γ > 0,

1 if γ = 0.

Defining the probability masses

π(0) = F (0),

∀γ ∈ {1, 2, . . . , n− 1}: π(γ) = F (γ)− F (γ − 1),

π(n) = 1− F (n− 1);

the corresponding aggregate shares are then

p(k) =

n−k+1∑
γ=1

pγ(k)π(γ) =

n−k+1∑
γ=1

(
n−k
γ−1

)(
n
γ

) π(γ), (2)

p(d) = π(0). (3)

9We have assumed that the common preference relation % is a linear order; i.e., that no two distinct alternatives are
indifferent. If we allow for indifference then, defining ωk(R) = |{j : jRk}|, for 1 ≤ γ < n the probability of option k being

chosen is [
(ωk(%)

γ

)
−
(ωk(�)

γ

)
][
(n
γ

)
[ωk(%)−ωk(�)]]−1 (with Equations 1, 2, and 10 below modified accordingly). While this

generalization causes no significant difficulty for the derivation of choice shares, we shall nevertheless maintain the linear
ordering assumption so as to avoid our main objective of cognitive identification being hampered by a feature of preferences
alone. We also view the prohibition on indifference as relatively innocuous in the present, finite-menu setting.
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Observe that for 1 ≤ k < n we can use Equation 2 to compute

p(k)− p(k + 1) =
π(n− k + 1)(

n
n−k+1

) +

n−k∑
γ=2

(
n−k−1
γ−2

)(
n
γ

) π(γ). (4)

This relation shows that, when we move one ordinal step up the preference scale, the aggregate choice
share increases for two reasons: Firstly, the kth best alternative can be chosen when γ = n−k+1, unlike
the next best option. And secondly, for values of γ smaller than this the better alternative is chosen
more frequently, since there are more ways of populating the rest of the consideration set with inferior
options.

Note also that setting k = n in Equation 2 yields p(n) = π(1)/n and hence

π(1) = np(n). (5)

Similarly, setting k = n− 1 in Equation 4 yields p(n− 1)− p(n) = 2π(2)
n[n−1] and hence

π(2) =
n[n− 1]

2
[p(n− 1)− p(n)]. (6)

Equations 5–6 prefigure the recursive method employed in Section 3 to identify the cognitive type distri-
bution, in which the probabilities π(1), . . . , π(n− 1) are deduced sequentially, with one additional choice
share used at each step.

Finally, using Equation 5, we can write Equation 4 in terms of probability ratios as

p(k)− p(k + 1)

p(n)
=

n(
n

n−k+1

) π(n− k + 1)

π(1)
+ n

n−k∑
γ=2

(
n−k−1
γ−2

)(
n
γ

) π(γ)

π(1)
. (7)

For instance, when k = n− 1 we find that the probability mass ratio

π(2)

π(1)
=
n− 1

2

[
p(n− 1)

p(n)
− 1

]
(8)

between the two smallest (nonzero) values of the consideration capacity depends only on the aggregate
choice share ratio between the two worst alternatives on the menu.

2.3. A special case: The consideration probability model

One special case of the consideration capacity model is a version of the consideration probability model
studied by Manzini and Mariotti (2014) that emphasizes the interpretation of attention as general aware-
ness of the choice environment. Denote by ρ ∈ [0, 1] the probability that the agent considers each al-
ternative on the menu, with consideration independent across agents and alternatives. Since the same
consideration probability applies independently to each alternative, all subsets of the menu of a given
size are equally likely to be the consideration set. Moreover, the probability of a consideration set of size
γ ≤ n is

π(γ) =

(
n

γ

)∫ 1

0

ργ [1− ρ]n−γdF, (9)

and clearly π(γ) = 0 for γ > n. Adapting Equations 2–3 to this special case, we obtain the aggregate
choice shares

p(k) =

n−k+1∑
γ=1

(
n− k
γ − 1

)∫ 1

0

ργ [1− ρ]n−γdF =

∫ 1

0

ρ[1− ρ]k−1dF, (10)

p(d) =

∫ 1

0

[1− ρ]ndF ;

for the consideration probability model. As in the general case, alternative k’s choice share is the
probability that this option and nothing better is considered, and the share of the default outcome is the
probability that nothing at all is considered.
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3. INFERENCE FROM AGGREGATE CHOICES

3.1. Preference identification

In the context of our limited attention model, the agents’ common preferences over the alternatives
are fully revealed by the observed choice shares under weak conditions. To see that revelation is not
automatic, observe that each alternative’s total choice probability aggregates the probability of being
chosen conditional on each cognitive type, and the various types contribute for different members of
M . In the extreme case where the population consists entirely of (fully rational) types γ ≥ n, only the
best alternative would be revealed; a population containing types γ ≥ n − 1 would reveal the best two
alternatives; and so on. Since γ = 2 alone makes a contribution for every member of M , without this
type the common preference between at least one pair of alternatives would not be identified.

Proposition 1. For the consideration capacity model, with 1 ≤ k < n:

(i) p(k) ≥ p(k + 1).

(ii)
∑n−k+1
γ=2 π(γ) > 0 if and only if p(k) > p(k + 1).

(iii) π(2) > 0 if and only if p(1) > p(2) > · · · > p(n).

Here (i) holds since each term on the right-hand-side of Equation 4 is nonnegative, and (ii) follows
since each such term is zero only if the relevant capacity probability is zero. Moreover π(2) appears in
Equation 4 for all 1 ≤ k < n, and thus strict positivity of this single probability suffices for full revelation
of preferences. This fact, recorded in (iii), can also be specialized to the consideration probability model
using Equation 9.

Corollary 1. For the consideration probability model, if the support of F intersects (0, 1) then p(1) >
p(2) > · · · > p(n).

We conclude that, under the homogeneous tastes assumption, preferences are for practical purposes
fully revealed by aggregate choice data, and efforts can be focused squarely on the cognitive identification
problem. For the remainder of Section 3 we assume tacitly that π(2) > 0, ensuring that the choice shares
p(1) > p(2) > · · · > p(n) faithfully reflect the underlying preference order.

3.2. Cognitive identification

3.2.1. The nonparametric inference problem

When the cognitive type distribution has a known functional form, its parameters can often be deduced
from a few appropriately selected choice-share observations. (This is demonstrated in Appendix A.1 by
means of four examples that highlight non-obvious ways that aggregate choices can convey information
about F .) Yet even in the absence of functional-form assumptions, identification of the type distribution
remains highly tractable for the consideration capacity model. This is because the choice shares are
linear functions of the probability masses π(γ), which are in turn linear functions of the moments mj

of F when we specialize to the consideration probability model. What’s more, each linear system has a
simple triangular structure that enables us to solve it recursively, using one additional choice share at
each step.

In view of these features of the inference problem, we can decode the information about the cognitive
capacity distribution encoded in the choice share data by inverting a triangular n × n matrix. This
will yield the probability of each capacity value strictly less than n, and adding one more option to the
menu will give us knowledge of one additional probability mass. In the consideration-probability setting,
we can then invert a second triangular n × n matrix to deduce the first n raw moments of F from the
capacity probabilities. Finally, well established tools (specifically, sparse matrix theory and maximum
entropy methods) will permit us to approximate F from its moments with increasing precision as the
size of the menu grows (see Section 3.3).
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3.2.2. Recovering n probability masses

Absent parametric assumptions, the aggregate choice shares are given by Equation 2. These relations
can be written together in matrix form as

p(1)
...

p(k)
...

p(n)


︸ ︷︷ ︸

p

=



1/n · · · γ/n · · · 1
...

...
...

1/n · · ·
(
n−k
γ−1

)
/
(
n
γ

)
· · · 0

...
...

...
1/n · · · 0 · · · 0


︸ ︷︷ ︸

C



π(1)
...

π(γ)
...

π(n)


︸ ︷︷ ︸

π

. (11)

The upper anti-triangular and left-stochastic matrix C has a lower anti-triangular inverse, allowing us
to write π = C−1p.10 Accordingly, we can calculate the components of π as

π(γ) =

(
n

γ

) n∑
k=n−γ+1

[−1][γ−1]−[n−k]

(
γ − 1

n− k

)
p(k), (12)

and of course π(0) = p(d) = 1 −
∑n
k=1 p(k). Observe that since π(n) = 1 − F (n − 1), it is in fact the

probabilities of the capacities γ = 0, 1, . . . , n− 1 that are revealed; and γ = n cannot be disambiguated
from higher values. Indeed, all capacities greater than or equal to the number of alternatives will always
be behaviorally indistinguishable. We summarize our conclusions as follows.

Proposition 2. In the consideration capacity model, the probability masses π are uniquely determined
by the aggregate choice shares p.

As an aside, note that the key features of the model for Proposition 2 are that C is known and
invertible. These do not require the assumption that the agent is equally likely to consider each Γ ⊂M
with |Γ| = γ, which we have imposed for simplicity as a point of departure. This observation is illustrated
by the following example.

Example 1 (salience weights). Let n = 3; assign to each alternative k a weight wk > 0, assumed to be
known to the researcher; and define the polynomials W1 = w1 +w2 +w3 and W2 = w1w2 +w1w3 +w2w3.
Conditional on γ = 1, let Γ = {k} with probability wk/W1; and conditional on γ = 2, let Γ = {j, k} (for
j 6= k) with probability wjwk/W2. In this case the analog of Equation 11 is p(1)

p(2)
p(3)


︸ ︷︷ ︸

p

=

 w1/W1 [w1w2 + w1w3]/W2 1
w2/W1 w2w3/W2 0
w3/W1 0 0


︸ ︷︷ ︸

C(w1,w2,w3)

 π(1)
π(2)
π(3)


︸ ︷︷ ︸

π

.

For instance, if w1 = 1, w2 = 2, and w3 = 4, then p = C(1, 2, 4)π and we can compute π(1)
π(2)
π(3)

 = π = C(1, 2, 4)−1p =
1

8

 14p(3)
14p(2)− 7p(3)

8p(1)− 6p(2) + p(3)

 .
Here the matrix C(w1, w2, w3) remains known, upper anti-triangular, and invertible for any salience

weights. If salience is severely misaligned with the agents’ tastes, then it is possible that the choice shares
will no longer directly reveal the preference order. But note that the degree of misalignment embodied
in C(1, 2, 4), together with the decidedly adverse capacity distribution π = 〈1/2, 1/3, 1/6〉, is not enough
to generate this phenomenon. (The resulting shares are p = 〈8/21, 7/21, 6/21〉.) In any case, we shall
return to this issue in Section 4, where we consider the prospects for preference revelation in a much
more general setting that allows for taste heterogeneity. �

10A matrix is left (resp., right) stochastic if all entries are nonnegative and all columns (resp., all rows) sum to one.
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3.2.3. Consideration probability: Recovering n moments

Returning to the special case of the consideration probability model, let us write the jth raw moment of

the type distribution as mj =
∫ 1

0
ρjdF . The binomial in Equation 9 can then be expanded to yield

π(γ) =

(
n

γ

)∫ 1

0

ργ

[
n−γ∑
i=0

(
n− γ
i

)
[−ρ]i

]
dF =

(
n

γ

) n∑
j=γ

(
n− γ
j − γ

)
[−1]j−γmj .

In matrix form, these relations appear as

π(1)
...

π(γ)
...

π(n)


︸ ︷︷ ︸

π

=



n · · · n
(
n−1
j−1

)
[−1]j−1 · · · n[−1]n−1

...
...

...
0 · · ·

(
n
γ

)(
n−γ
j−γ
)
[−1]j−γ · · ·

(
n
γ

)
[−1]n−γ

...
...

...
0 · · · 0 · · · 1


︸ ︷︷ ︸

Q



m1

...
mj

...
mn


︸ ︷︷ ︸

m

.

The upper triangular matrix Q has an upper triangular inverse, so we have

m = Q−1π = Q−1[C−1p] = [CQ]−1p. (13)

Performing this calculation, the raw moments are given explicitly by

mj =

j∑
k=1

[−1]k−1

(
j − 1

k − 1

)
p(k). (14)

We summarize our conclusions for the special case as follows.

Proposition 3. In the consideration probability model, the raw moments m are uniquely determined by
the aggregate choice shares p.

3.3. Consideration probability: Beyond moments

3.3.1. From moments to distributions

Continuing to focus on the consideration probability model, we now investigate what can be learned
about F itself from the information supplied by Proposition 3. To this end, throughout Section 3.3 we
shall treat as known a finite number of raw moments of the cognitive distribution. It is intuitive that
this information constrains the shape of any sufficiently well behaved F , with more moments known
generating tighter constraints. However, two distributions that share certain raw moments could in
principle have differences that are relevant for questions we may wish to study. For instance, we might
hope to measure the fraction of agents with very low or very high values of ρ, or to reveal the cognitive
type of a particularly small subpopulation. For such purposes we may want to have confidence that the
raw moment information can be turned into a distribution that matches or closely approximates F over
the entire range of possible ρ-values.

We now proceed to outline two different strategies for ensuring that the moment information ade-
quately captures the cognitive type distribution. The first will rely on discreteness of the distribution
and ensure a unique characterization of F , while the second will rely on the existence of a density and
guarantee convergence to F in the limit as n→∞.

3.3.2. Discrete type distributions

Suppose that F is a discrete distribution, with the consideration probability ρ taking on the list of
values 〈ρ1, ρ2, . . . , ρL〉. The number L of cognitive types is known, though the values themselves may be
unknown. We assume, however, that the values are located on a (known) finite grid of admissible points
in [0, 1], which can be as fine as desired.
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The realized values of ρ have probabilities 〈ξ(ρ1), ξ(ρ2), . . . , ξ(ρL)〉, each strictly positive and together
summing to one, so that the jth raw moment of F appears as

mj =

L∑
`=1

ξ(ρ`)ρ
j
` . (15)

Treating the first n moments as known, Equation 15 supplies a system of n equalities in 2L unknowns;
namely, the values ρ` and their associated probabilities ξ(ρ`). This system can be solved for n sufficiently
large, but it is not obvious that the solution will be unique.

Assume that the grid of admissible values for ρ is 〈0, 1/N, 2/N, . . . , 1〉, with the fineness parameter
N large relative to L.11 Then F is a discrete distribution defined entirely by the probability masses
〈ξ(`/N)〉N`=0, of which exactly L� N are nonzero. Recovering the distribution thus amounts to finding
a solution ξ of the system

1
m1

...
mj

...
mn


︸ ︷︷ ︸
〈1,m〉

=



1 1 · · · 1 · · · 1
0 1/N · · · `/N · · · 1
...

...
...

...
0 [1/N ]j · · · [`/N ]j · · · 1
...

...
...

...
0 [1/N ]n · · · [`/N ]n · · · 1


︸ ︷︷ ︸

V



ξ(0)
ξ(1/N)

...
ξ(`/N)

...
ξ(1)


︸ ︷︷ ︸

ξ

, (16)

with each component ξ(`/N) weakly positive and exactly L components strictly positive. Here V is a
Vandermonde matrix with many more columns (i.e., grid points) than rows (known moments), implying
an underdetermined system.12 But the number L of grid points actually used could in principle be larger
or smaller than n.

A result of Cohen and Yeredor (2011, Theorem 1) applies to precisely this situation, stating that
Equation 16 has a unique solution if n ≥ 2L. We conclude the following.

Proposition 4. In the consideration probability model, if F is a discrete distribution over L admissible
types, with n ≥ 2L, then F is uniquely determined by the aggregate choice shares p.

This result means that in practice any discrete distribution for the consideration probability ρ can
be fully recovered from aggregate choice share data provided the number of alternatives is large relative
to the number of cognitive types.

3.3.3. Type distributions with a density

Now suppose that the cognitive type distribution F admits a density f . In this case we will clearly not
be able to recover F fully from a finite number n of moments. Instead, we aim to ensure that the known
moments yield a reliable approximation of the true distribution.

Our method relies on standard techniques from the “Hausdorff moment problem” for distributions
on a closed interval. Adopting a maximum entropy approach, define the nth approximating density f̂n
as the solution to the optimization problem

max
fn

∫ 1

0

[− log fn(ρ)]fn(ρ)dρ

subject to the (jth-moment) constraint ∫ 1

0

ρjfn(ρ)dρ = mj (17)

11For notational simplicity we use an evenly spaced grid of admissible values, but this is not essential for our conclusions.
12See, e.g., Macon and Spitzbart (1958) for the definition and properties of Vandermonde matrices.
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for j = 0, 1, . . . , n. Mead and Papanicolaou (1984, Theorem 2) show that such a solution exists and is
unique;13 and that for each bounded, continuous ψ : [0, 1]→ < we have

lim
n→∞

∫ 1

0

ψ(ρ)f̂n(ρ)dρ =

∫ 1

0

ψ(ρ)f(ρ)dρ.

Write F̂n for the distribution function associated with the approximating density f̂n. For any menu
A and each k ≤ min{n, |A|}, we now have that

p(kA; F̂n) = p(kM ; F̂n) = p(kM ;F ) = p(kA;F ). (18)

Here the first and third equalities follow from the observation that in the consideration probability model
an alternative’s choice share depends only on its rank on the menu according to the preference order.
Moreover, in this model we have p = CQm and the shares of the n best alternatives are determined by
the first n moments. The constraints in Equation 17 guarantee that these moments coincide for F̂n and
F , yielding the second equality in Equation 18. We summarize our findings as follows.

Proposition 5. In the consideration probability model, if F admits a density then there exists a map
m 7→ F̂n such that:

(i) The sequence 〈F̂n〉∞n=1 converges weakly to F .

(ii) For any menu A and each k ≤ min{n, |A|}, we have p(kA; F̂n) = p(kA;F ).

As already noted, the constraints in Equation 17 require each approximation F̂n to be observationally
indistinguishable from the true distribution F in the sense that they generate the same first n moments,
and hence the same aggregate choice shares over menu M . Proposition 5 reinforces this by guaranteeing
that the cognitive heterogeneity in the population is reflected in two additional ways: Firstly, as the size
of the observed menu increases, our approximation approaches (in the sense of weak convergence) the
true distribution of the consideration probability. And secondly, each approximation Fn matches the
true F not just over M , but also over the n best alternatives on any other menu A about which we may
wish to make predictions.

3.4. Unobserved default outcome

3.4.1. Conditional choice shares

In this section we examine the feasibility of cognitive identification when the default outcome is unob-
served. Under this assumption our data set consists of the aggregate shares p(k) = p(k)/[1 − p(d)]
conditional on an active choice being made. Of course, any ratio of aggregate shares of the form
p̃(k, `) = p(k)/p(`) = p(k)/p(`) is unaffected by the conditioning, and so Equations 7–8 remain valid when
restated in terms of the conditional shares and the associated probability masses π(γ) = π(γ)/[1−π(0)].

3.4.2. Recovering n− 1 probability mass ratios

As in the basic model, several natural functional forms for the type distribution permit identification of
their parameters even when the default outcome is unobserved. (See Appendix A.2 for examples.) In
the nonparametric setting, it is simple to adapt Equation 12 to this case. Indeed, for each γ = 2, 3, . . . , n
we have that

π(γ)

π(1)
=

(
n
γ

)
n

n∑
k=n−γ+1

[−1][γ−1]−[n−k]

(
γ − 1

n− k

)
p(k)

p(n)
=

(
n
γ

)
n

n∑
k=n−γ+1

[−1][γ−1]−[n−k]

(
γ − 1

n− k

)
p(k)

p(n)
.

Thus we can use the conditional choice shares to recover n− 1 probability mass ratios, though without
knowledge of the default share p(d) = π(0) we are of course unable to determine the masses themselves.

13The solution takes the form f̂n(ρ) = exp[−
∑n
j=0 λjρ

j ], where the quantities 〈λj〉nj=0 are the Lagrange multipliers on
the constraints in Equation 17.

11



3.4.3. Consideration probability: Recovering n− 1 moment ratios

For the special case of the consideration probability model, Equation 14 can likewise be adapted to the
unobserved default scenario. Here, for each j = 2, 3, . . . , n, we have

mj

m1
=

j∑
k=1

[−1]k−1

(
j − 1

k − 1

)
p(k)

p(1)
=

j∑
k=1

[−1]k−1

(
j − 1

k − 1

)
p(k)

p(1)
.

This yields n− 1 raw-moment ratios, and we could proceed to use methods such as those in Section 3.3
to approximate the shape of the type distribution F (the mean m1 of which would remain undetermined
without knowledge of the default share).14

4. PREFERENCE HETEROGENEITY

4.1. Known taste distribution

Section 3 has studied the identification properties of our model of consideration set formation under the
assumption that preferences are homogeneous. We now aim to show that the preceding analysis can be
extended to allow for heterogeneous preferences, provided the taste distribution is known and statistically
independent of the cognitive type distribution.15 We then proceed (in Section 4.2) to investigate the
prospects for identification when both the taste and cognitive distributions are unknown.

To incorporate preference heterogeneity into the present framework, we order the alternatives arbi-
trarily as M = {1, 2, . . . , n} and write ϕ : M → {1, 2, . . . , n} for the map that associates each option with
its preference rank.16 We enumerate the possible rankings as 〈ϕh〉n!

h=1, write τh for the probability of ϕh,
and denote by P (h) the n×n permutation matrix corresponding to ϕh.17 With preference heterogeneity
Equation 11 then becomes

p =

n!∑
h=1

τh[P (h)C]π =

[
n!∑
h=1

τhP (h)

]
︸ ︷︷ ︸

B

Cπ, (19)

where C is the known, invertible matrix defined in Section 3.2.2.
Equation 19 differs from Equation 11 only in that the right-hand-side vectorCπ is premultiplied byB,

which we refer to as the “average preference permutation matrix.” A typical entry Bkr =
∑
h:ϕh(k)=r τh

of this matrix is the total probability of alternative k being placed in position r, computed as the sum
of the probabilities of all rankings ϕh that make this assignment. Provided B is invertible, we have
π = [BC]−1p from Equation 19, and similarly Equation 13 becomes m = [BCQ]−1p for the special
case of the consideration probability model. We conclude that in the present context the aggregate choice
shares can still be used to find the probability masses in π and the raw moments in m, as long as the
known taste distribution yields a nonsingular B.

The matrix B is a convex combination of permutation matrices, and must therefore be bistochastic.18

Of course there exist taste distributions τ = 〈τh〉n!
h=1 for which B is noninvertible; e.g., the uniform

distribution (with each τh = 1/n!) yields a singularB with each entry equal to 1/n. However, invertibility
is clearly the generic situation here. In fact, det(B) is a polynomial function of τ ∈ <n!, and we know
that any real-valued polynomial function on a Euclidean space is either identically zero or nonzero almost
everywhere (see, e.g., Caron and Traynor 2005). Since det(B) is nonzero for the case of homogeneous

14Horan (2019) considers an unobserved default outcome in the context of a dataset with choices from multiple menus,
showing that the identification properties of the independent random consideration model in Manzini and Mariotti (2014)
remain largely intact.

15The distribution of taste parameters—such as discount factors or risk-aversion coefficients—may be treated as known
for our purposes if these characteristics can be elicited from agents separately, in a setting (e.g., a laboratory experiment)
where limited attention is thought to be irrelevant or controllable to an acceptable degree.

16This formulation maintains the assumption of linear order preferences imposed in Section 2.
17More explicitly, the permutation matrix P (h) translates the kth row of an n×n target matrix A into the ϕh(k)th row

of the product P (h)A. Similarly, postmultiplying by P (h) permutes the columns of A.
18A matrix is bistochastic if it is both left and right stochastic. The Birkhoff/von-Neumann Theorem states that the

class of n× n bistochastic matrices is the convex hull of the set of n× n permutation matrices.
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preferences, it is not identically zero, and thus B is generically invertible. This allows us to extend
Propositions 2–3 as follows.

Proposition 6. In the consideration capacity model with known preference heterogeneity, for almost all
taste distributions τ the probability masses π are uniquely determined by the aggregate choice shares p.

Proposition 7. In the consideration probability model with known preference heterogeneity, for almost
all taste distributions τ the raw moments m are uniquely determined by the aggregate choice shares p.

The following example illustrates the handling of known preference heterogeneity in the context of
the consideration capacity model.

Example 2 (exploded logit). Let n = 3 and u(k) = log k, and suppose that the distribution of tastes is
determined by an exploded logit based on u. In this case the average preference permutation matrix is

B =

n!∑
h=1

τhP (h) =
1

3

 0 0 1
0 1 0
1 0 0


︸ ︷︷ ︸

ϕ1:3�2�1

+
1

4

 0 1 0
0 0 1
1 0 0


︸ ︷︷ ︸

ϕ2:2�3�1

+
1

6

 0 0 1
1 0 0
0 1 0


︸ ︷︷ ︸

ϕ3:3�1�2

· · ·

+
1

10

 1 0 0
0 0 1
0 1 0


︸ ︷︷ ︸

ϕ4:1�3�2

+
1

12

 0 1 0
1 0 0
0 0 1


︸ ︷︷ ︸

ϕ5:2�1�3

+
1

15

 1 0 0
0 1 0
0 0 1


︸ ︷︷ ︸

ϕ6:1�2�3

=
1

60

 10 20 30
15 24 21
35 16 9

 ; (20)

where, for instance, the probability of the ranking ϕ2 is calculated as

τ2 =
eu(2)

eu(1) + eu(2) + eu(3)
× eu(3)

eu(1) + eu(3)
× eu(1)

eu(1)
=

2

6
× 3

4
× 1

1
=

1

4
.

The matrix in Equation 20 is nonsingular (with det(B) = −1/30), whereupon we can compute π(1)
π(2)
π(3)

 = π = [BC]−1p =
1

2

 30p(1)− 27p(2) + 3p(3)
−60p(1) + 75p(2)− 15p(3)
32p(1)− 46p(2) + 14p(3)

 ,
and as always π(0) = p(d).19 �

4.2. Unknown taste distribution

4.2.1. The multiple occasion framework

Continuing to allow for heterogeneous preferences, we next consider the problem of identifying the
cognitive distribution when the taste distribution too is unknown. Here the information in a single
observation of aggregate choices is clearly insufficient to reveal both distributions nonparametrically.
Indeed, Propositions 2–3 already consume all n degrees of freedom in order to infer probability masses or
raw moments of F . The impracticality of deducing cognition and tastes simultaneously from our basic
dataset is illustrated in the following simple example.

Example 3 (identification failure). Let n = 2 and ϕ1(1) = 1, so that τ1 is the probability of the ranking
1 � 2. Equation 19 then takes the form[

p(1)
p(2)

]
= p = [BC]π =

[
1/2 τ1
1/2 τ2

] [
π(1)
π(2)

]
,

an underdetermined system in which the cognitive distribution 〈π(1), π(2)〉 and the taste distribution
τ1 = 1− τ2 cannot be disambiguated. �

19Note that the invertibility of B in this example is not an accident. For any u : M → < it can be shown that

det(B) =
eu(1) − eu(2)

eu(1) + eu(2)
×
eu(1) − eu(3)

eu(1) + eu(3)
×
eu(2) − eu(3)

eu(2) + eu(3)
,

and hence det(B) 6= 0 if and only if the function u is one-to-one.
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To gain some leverage on the unknown tastes scenario, it will be necessary to relax the stringent
assumption that our dataset consists of aggregate choice shares from a single menu, and a variety of
relaxations are possible.20 The approach we shall adopt here is to suppose that the researcher has access
to choice data from the same population of agents on multiple “occasions” across which the cognitive
distribution is stable. While we assume for notational simplicity that the size of the menu is constant,
the alternatives themselves need not be identical across occasions. For instance, the objects of choice
could be interpreted as the same physical items at time-varying prices; the current model of a product
offered in successive periods by a fixed set of suppliers; or the options available in an experiment with
multiple rounds or treatments.

We assume further that our dataset consists of the joint distribution of choices across occasions; as
arising, for example, from discrete choice panel data or from a sequence of discrete choice experiments.
Although such joint choice shares comprise “aggregate” data only from a somewhat literalist point of
view, the agents in the population can remain anonymous in the sense that no observations on individuals
will be required for our analysis other than their observed choice patterns.21

The advantage of this new multi-occasion setting is that it will allow us to deploy a powerful math-
ematical result on tensor decompositions to determine the cognitive distribution even in the context of
unknown and possibly changing tastes. We shall find (in Proposition 8) that joint choice share data from
as few as three occasions is generically sufficient to infer the consideration capacity distribution in full
as well as substantial information about the distribution of tastes.

Formally, we index the occasions by i = 1, . . . , I and suppose that on each occasion our population
of agents chooses from a menu M = {1, . . . , n} with default d /∈M . Here neither k ∈M nor the default
d need represent the same economic outcome on different occasions, but the cardinality n of the menu is
constant (see Footnote 26). The taste distribution on occasion i is denoted by τi = 〈τih〉n!

h=1, and agents
are assumed to retain their cognitive types across occasions so that the distribution F is stable. We write
pθ(k1 · · · kI) for the joint probability that on each occasion i an individual of type θ chooses alternative
ki. Our dataset then consists of the corresponding population shares p(k1 · · · kI) =

∫
Θ
pθ(k1 · · · kI)dF ,

and as before our objective is to use this data to deduce information about the underlying cognitive
distribution F .

4.2.2. Joint choice shares in the consideration capacity model

In the context of the consideration capacity model, we assume that the realizations of the consideration
set Γ and the preference ranking ϕh are independent across occasions conditional on the type γ. The
analog of Equation 1 is then

pγ(k1 · · · kI) =


∏I
i=1

∑
h:ϕh(ki)=1 τih if γ ≥ n,∏I

i=1

∑n−γ+1
r=1

(n−r
γ−1)
(nγ)

∑
h:ϕh(ki)=r

τih if 1 ≤ γ < n,

0 if γ = 0;

where (for 1 ≤ γ < n) the product is over the various occasions i, the outer sum is over the possible
ranking positions r of the chosen alternative ki, and the inner sum is over the rankings that place ki in
position r. Now the analog of Equation 2 appears as

p(k1 · · · kI) =

n∑
γ=1

π(γ)pγ(k1 · · · kI) =

n∑
γ=1

π(γ)

I∏
i=1

n−γ+1∑
r=1

(
n−r
γ−1

)(
n
γ

) ∑
h:ϕh(ki)=r

τih, (21)

demonstrating how the population choice shares are determined by the cognitive type distribution π in
conjunction with the taste distributions 〈τi〉Ii=1.

20One strategy would be to supply the researcher with aggregate data on choices from multiple subsets of the menu
(cf. Aguiar et al. 2018 and Geng and Ozbay 2018), while assuming stable tastes. Another strategy—explored in an earlier
version of this paper—would be to supplement the dataset with covariates and estimate a random utility model of preference
determination.

21With I occasions and n alternatives, a single agent’s joint choice can be described by a unit vector in nI -dimensional
space. The aggregate choice frequencies for the population are then given by the sum of these vectors, which is equivalent
to the aggregate joint distribution of choices in our dataset.
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The following example illustrates the multi-occasion framework and shows how joint choice share
data can be used to infer the cognitive and taste distributions.

Example 4 (three occasions). Let n = 2 and I = 3, and for each occasion i let τi1 ∈ (0, 1) denote the
probability of 1i �i 2i. In other words, on each occasion we let the first ranking be the one that prefers
the first alternative (according to the arbitrary initial ordering of M) to the second. Conditioning on
γ > 0, as in Section 3.4, let S denote the 2× 2× 2 array describing the joint distribution of choices on
the three occasions. This array can be represented explicitly as

S =

u

v
k3 = 1 k2 = 1 k2 = 2 k3 = 2 k2 = 1 k2 = 2
k1 = 1 p(111) p(121) k1 = 1 p(112) p(122)
k1 = 2 p(211) p(221) k1 = 2 p(212) p(222)

}

~ . (22)

Our goal is to use the eight joint choice shares p(k1k2k3) to deduce both the cognitive distribution π(1)
and the three occasion-specific taste distributions τi1.22

In Equation 22, consider the top row (associated with k1 = 1) of each 2 × 2 subarray. Agents of
type γ = 1 choose the two options with equal probability on each occasion, and so p1(111) = p1(121) =
p1(112) = p1(122) = 1/8. In contrast, agents of type γ ≥ 2 choose alternative 1 with probability τi1 and
alternative 2 with probability τi2 = 1−τi1 on occasion i, so we obtain the expressions p2(111) = τ11τ21τ31,
p2(121) = τ11τ22τ31, p2(112) = τ11τ21τ32, and p2(122) = τ11τ22τ32. Equation 21 can then be specialized
to each of these four joint choice shares as

p(111) = π(1) · [1/8] + π(2) · τ11τ21τ31, (23)

p(121) = π(1) · [1/8] + π(2) · τ11τ22τ31, (24)

p(112) = π(1) · [1/8] + π(2) · τ11τ21τ32, (25)

p(122) = π(1) · [1/8] + π(2) · τ11τ22τ32. (26)

To recover the cognitive distribution, we combine Equations 23–26 to establish that

8p(111)− π(1)

8p(112)− π(1)
=
τ31

τ32
=

8p(121)− π(1)

8p(122)− π(1)
.

We can then solve for

π(1) =
8[p(111)p(122)− p(112)p(121)]

p(111)− p(112)− p(121) + p(122)
,

and of course π(2) = 1− π(1) since n = 2.
Next, to recover the taste distributions, we define the univariate marginals

G1(k) = p(k11) + p(k12) + p(k21) + p(k22),

G2(k) = p(1k1) + p(1k2) + p(2k1) + p(2k2),

G3(k) = p(11k) + p(12k) + p(21k) + p(22k).

Adding Equations 23–26 yields G1(1) = π(1) · [1/2] + π(2) · τ11, and more generally for each occasion i
we have Gi(1) = π(1) · [1/2] + π(2) · τi1. We can then express each

τi1 =
2Gi(1)− π(1)

2π(2)

in terms of known functions of the array S, as desired. �
22Here π(γ) = π(γ)/[1 − π(0)], as before, and we define p(k1 · · · kI) = p(k1 · · · kI)/[1 − p(d · · · d)] analogously with our

notation for the single-occasion setting.
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4.2.3. Cognitive identification from three occasions

We proceed now to establish that the cognitive identification seen in Example 4 is a generic feature of
the multi-occasion setting. Once again conditioning on the event γ > 0, we represent our dataset as a
tensor S of order I with dimensions n× · · · × n,23 having typical entry

Sk1,...,kI = p(k1 · · · kI) =
p(k1 · · · kI)

1− p(d · · · d)
.

Writing Bi =
∑n!
h=1 τihP (h) for the average preference permutation matrix on occasion i, we can then

express Equation 21 more compactly as

S =

n∑
γ=1

π(γ)⊗Ii=1 [BiC]1γ , (27)

where ⊗ is the outer product operator and 1γ denotes the unit vector for component γ (which here
extracts the γth column of the matrix BiC).24 To illustrate this notation, we pause to revisit the
preceding example.

Example 5 (three occasions; continued from Example 4). For each occasion i = 1, 2, 3 we have

BiC =

[
1/2 τi1
1/2 τi2

]
,

and so Equation 27 takes the form

S = π(1)⊗3
i=1

[
1/2
1/2

]
+ π(2)⊗3

i=1

[
τi1
τi2

]
= π(1)

s
1/8 1/8 1/8 1/8
1/8 1/8 1/8 1/8

{
· · ·

· · ·+ π(2)

s
τ11τ21τ31 τ11τ22τ31 τ11τ21τ32 τ11τ22τ32

τ12τ21τ31 τ12τ22τ31 τ12τ21τ32 τ12τ22τ32

{
. (28)

Here [BiC]11 = 〈1/2, 1/2〉 is the choice distribution of cognitive type γ = 1 on occasion i; namely, uni-
form randomization between the two alternatives. Likewise, [BiC]12 = 〈τi1, τi2〉 is the choice distribution
of type γ = 2, which simply reproduces the taste distribution on occasion i since the full-consideration
type always chooses optimally. Note further that Equation 28 contains the four joint choice shares in
Equations 23–26, as expected.

Finally—anticipating our formal result for the multi-occasion setting—we can bring the capacity
probabilities π(γ) into the outer products by defining matrices

Z1 = [B1C]

[
π(1) 0

0 π(2)

]
,

Z2 = B2C, and Z3 = B3C; and by writing Equation 28 as S = ⊗3
i=1Zi11 +⊗3

i=1Zi12. �

As illustrated in Example 5, Equation 27 decomposes the joint choice share tensor S into a linear
combination of n rank-1 tensors.25 The advantage of this representation is that the uniqueness properties
of such decompositions have been studied extensively, with Kruskal (1977, Theorem 4a) supplying a
fundamental theorem that has been further refined by Sidiropoulos and Bro (2000) and Allman et al.
(2009), among others. We shall use a corollary of the theorem due to Rhodes (2010), adapted for our
setting as follows.

23A tensor is a multidimensional array that generalizes the concept of a matrix to allow for an arbitrary number of
indices—this number being the order of the tensor. The dimensions of a tensor indicate the number of possible values of
each index, generalizing the number of rows and columns of a matrix.

24Recall that the outer product of a pair of vectors is the first multiplied by the transpose of the second, and similarly
each further outer product operation adds another dimension to the resulting array.

25A tensor is said to be of rank 1 if it is an outer product of vectors. See Supplemental Material Appendix B (Dardanoni
et al. 2020) for a primer on tensor decompositions of the sort studied in Section 4.2.
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Lemma 1 (Kruskal; Rhodes). Given any triad 〈Z1,Z2,Z3〉 of invertible n × n matrices, the tensor
T =

∑n
γ=1[Z11γ ⊗Z21γ ⊗Z31γ ] uniquely determines each Zi up to column rescaling and permutation.

That is, for any 〈Ẑ1, Ẑ2, Ẑ3〉 such that
∑n
γ=1[Ẑ11γ ⊗ Ẑ21γ ⊗ Ẑ31γ ] = T , there exist invertible diagonal

matrices 〈D1,D2,D3〉 and a permutation matrix P such that D1D2D3 = In and each Ẑi = ZiDiP ;
where In is the n× n identity matrix.26

Setting I = 3 and applying Lemma 1 to the tensor S, we can show generic cognitive identification in
the multi-occasion environment.27

Proposition 8. In the consideration capacity model with unknown preference heterogeneity and three
occasions, if π � 0 then for almost all taste distributions 〈τ1, τ2, τ3〉 the probability masses π and
average preference permutation matrices 〈B1,B2,B3〉 are uniquely determined by the joint choice shares
p(k1k2k3) for 1 ≤ k1, k2, k3 ≤ n.

Proof. Write D(π) for the diagonal matrix with entries π = 〈π(γ)〉nγ=1 � 0. Following Allman et al.
(2009, p. 3118) and Example 5 above, set Z1 = [B1C]D(π), Z2 = B2C, and Z3 = B3C. We then have

n∑
γ=1

[Z11γ ⊗Z21γ ⊗Z31γ ] =

n∑
γ=1

π(γ)⊗3
i=1 [BiC]1γ = S.

As argued in connection with Proposition 6, each matrix BiC has full rank for almost all distributions
τi, and since π � 0 it follows that each Zi is generically invertible.

Suppose now that there exists a set of duplicate parameters 〈B̂1, B̂2, B̂3〉 and π̂ � 0 such that the

corresponding
∑n
γ=1[Ẑ11γ ⊗ Ẑ21γ ⊗ Ẑ31γ ] = S. By Lemma 1 there then exist rescalings 〈D1,D2,D3〉

and a permutation P such that

[B̂1C]D(π̂) = Ẑ1 = Z1D1P = [B1C]D(π)D1P , (29)

B̂2C = Ẑ2 = Z2D2P = [B2C]D2P , (30)

B̂3C = Ẑ3 = Z3D3P = [B3C]D3P . (31)

Writing 1 for the vector of ones (and 1> for its transpose), from Equations 30–31 we have 1>B̂iC =

1>[BiC]DiP for each i = 2, 3. Since Bi and B̂i are bistochastic and C is left stochastic, it follows
that 1> = 1>DiP and thus 1> = 1>P> = 1>Di. We conclude that D2 = D3 = In, and therefore
D1 = [D2D3]−1 = In as well.28

Similarly, we have π̂
>

= 1>D(π̂) = 1>D(π)P = π>P from Equation 29 and hence π̂ = P>π. It fol-

lows thatD(π̂) = D(P>π) = P>D(π)P , so that Equation 29 yields [B̂1C]P>D(π)P = [B1C]D(π)P

and [B̂1C]P> = B1C. Together with Equations 30–31, this shows that B̂iC = [BiC]P for all i = 1, 2, 3.

The duplicate parameters 〈B̂1, B̂2, B̂3〉 and π̂ are thus seen to result from label swapping; i.e., a garbling
of the cognitive type distribution π via the permutation P>. This garbling is reversed by swapping labels
in the BiC matrices, carried out by the transformations B̂i = Bi[CPC

−1]. When labels are assigned

correctly, we have P = In, π̂ = π, and each B̂i = Bi, as desired.

26The result in Rhodes (2010, Corollary 2) is in fact substantially more general than this, since it allows the Zi matrices
to have different numbers of rows and one of them to have linearly dependent columns. This necessitates a restriction
on the “Kruskal rank” (Rhodes 2010, p. 1819) of the latter matrix—a hypothesis that is trivially satisfied in the square,
full-rank case. In view of Example 4, different numbers of rows in the Zi matrices will correspond to different numbers of
alternatives across the choice occasions, and so relaxing the assumption of constant menu cardinality is within the scope
of our approach to cognitive identification. We do not pursue this extension at present, since it is tangential to our main
purpose and would complicate our notation considerably.

27Since our goal is to infer cognitive heterogeneity from minimal data, we limit our agent’s choices to the three occasions
needed to apply Lemma 1. Data from additional occasions will neither help nor hinder cognitive identification in this
context, since extensions of Kruskal’s theorem to tensors of order higher than three are available (see, e.g., Sidiropoulos
and Bro 2000, Theorem 3). On the other hand, two occasions are inadequate, with Allman et al. (2009, p. 3108) noting
that “[t]his nonidentifiability is intimately related to the nonuniqueness of certain matrix factorizations.” (See also Kruskal
1977, p. 122.)

28In other words, while Lemma 1 allows for rescaling of columns, our framework rules this out.
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4.2.4. Partial preference identification

In connection with Proposition 8, it is important to note that joint choice share data do not fully pin
down the taste distributions 〈τ1, τ2, τ3〉. On the contrary, factorial explosion of the number of rankings of
n alternatives makes it clear that such identification cannot be possible in general. In relation to tastes,
what the joint choice shares determine are the average preference permutation matrices 〈B1,B2,B3〉.
Recall that, for each occasion i, these matrices record the overall probability of each alternative ki being
assigned each rank position r. The kth entry in the rth column of Bi is given by

∑
h:ϕh(ki)=r

τih, which
is the total probability of all preference rankings that make this assignment. Hence preferences are less
than fully identified only to the extent that the taste distribution can be changed without affecting these
rank-position probabilities.

For instance, when n = 3 we have six preference orders, resulting in average preference permutation
matrices of the form

Bi = τi1

 1 0 0
0 1 0
0 0 1

+ τi2

 1 0 0
0 0 1
0 1 0

+ τi3

 0 1 0
1 0 0
0 0 1

+ τi4

 0 1 0
0 0 1
1 0 0

 · · ·
· · ·+ τi5

 0 0 1
1 0 0
0 1 0

+ τi6

 0 0 1
0 1 0
1 0 0

 =

 τi1 + τi2 τi3 + τi4 τi5 + τi6
τi3 + τi5 τi1 + τi6 τi2 + τi4
τi4 + τi6 τi2 + τi5 τi1 + τi3

 .
Here the perturbed taste distribution τ̂i = τi + ε〈1,−1,−1, 1, 1,−1〉 yields B̂i = Bi, an unchanged
average preference permutation matrix, and it follows that τi and τ̂i cannot be distinguished using our
methods.

Proposition 8 achieves identification of the cognitive distribution and the average preference permu-
tation matrices with no parametric assumptions on the primitives of the consideration capacity model.
Introducing such assumptions may enable us to refine our conclusions about 〈τ1, τ2, τ3〉 beyond the
rank-position probabilities recorded in 〈B1,B2,B3〉, a task that is greatly simplified by knowledge of
F . In fact, since the type-conditional choice distributions have already been recovered, we could focus
on the behavior of full-attention types (with γ ≥ n) and apply known techniques to elicit the distribu-
tion of preferences on each occasion. We could, for example, assume that the type-conditional choices
result from a random utility model (RUM) with a given error distribution, or by a single-crossing RUM
as defined in Apesteguia et al. (2017). In any event, such parametric assumptions are unrelated to the
limited-attention aspects of our model and unnecessary to achieve our primary goal in this section, which
is to identify the cognitive distribution F in the presence of unknown taste heterogeneity.

5. CONCLUSION

The main contribution of this paper is to show how aggregate choice shares can identify the distribution
of cognitive characteristics in a population of agents who exhibit limited attention. A central advantage
of our approach is that it requires minimal data: With homogeneous (or known) tastes we use choices
shares from a single menu, and with heterogeneous (and unknown) tastes we use joint choice shares
from three “occasions.” In this respect our methodology differs from prior theoretical work on bounded
rationality, much of which uses individual choice data from a rich family of overlapping menus. At the
same time, it contrasts with the more applied, econometrically oriented literature on this topic, where
identification is typically facilitated by the presence of observable covariates—an assumption that we
deliberately eschew. Notwithstanding the parsimonious nature of our datasets, we find that aggregate
choice shares can encode substantial information about the distribution of attention characteristics in
the population. In particular, they can reveal the distribution of the consideration capacity γ up to the
cardinality of the menu, and from this we can deduce the same number of raw moments of ρ in the
special case of the consideration probability model.

There are numerous ways that we could build upon the work reported in this paper (some of which
have been mentioned in passing; see Footnotes 20 and 26). We could, for instance, attempt to tighten
the identification of preferences in the multiple occasion environment by postulating access to additional
data. Alternatively, we could seek to bring other forms of bounded rationality—such as framing effects
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or satisficing—into the present setting. A third variety of extension would be to weaken the assumptions
needed to derive our main results, and in order to illustrate this possibility let us return briefly to the
assumption of conditionally uniform consideration sets.

For n = 3, Example 1 outlines a generalized consideration capacity model in which salience weights
w = 〈w1, w2, w3〉 for the alternatives affect the relative probabilities of different consideration sets of the
same size. Allowing for preference heterogeneity, a typical ranking ϕh permutes the salience weights to
P (h)w, and the transition from π to p is then governed by the matrix P (h)C(P (h)w). Averaging over

rankings yields the full transition matrix T =
∑6
h=1 τh[P (h)C(P (h)w)], and the analog of Equation 19

for this scenario can be written explicitly as p(1)
p(2)
p(3)


︸ ︷︷ ︸

p

=

 w1/W1 [τ1 + τ2 + τ5]w1w2/W2 + [τ1 + τ2 + τ3]w1w3/W2 τ1 + τ2
w2/W1 [τ3 + τ4 + τ6]w1w2/W2 + [τ1 + τ3 + τ4]w2w3/W2 τ3 + τ4
w3/W1 [τ4 + τ5 + τ6]w1w3/W2 + [τ2 + τ5 + τ6]w2w3/W2 τ5 + τ6


︸ ︷︷ ︸

T

 π(1)
π(2)
π(3)


︸ ︷︷ ︸

π

.

Extending this generalized model to the multi-occasion setting, with I = 3 and

Ti =

 w1/W1 [τi1 + τi2 + τi5]w1w2/W2 + [τi1 + τi2 + τi3]w1w3/W2 τi1 + τi2
w2/W1 [τi3 + τi4 + τi6]w1w2/W2 + [τi1 + τi3 + τi4]w2w3/W2 τi3 + τi4
w3/W1 [τi4 + τi5 + τi6]w1w3/W2 + [τi2 + τi5 + τi6]w2w3/W2 τi5 + τi6

 ,
Equation 27 becomes S =

∑3
γ=1 π(γ) ⊗3

i=1 Ti1γ . As previously, we can use Lemma 1 to show that the
probability masses π and transition matrices 〈T1,T2,T3〉 are uniquely determined by the joint choice
shares p(k1k2k3). The attention distribution therefore continues to be identified by our multi-occasion
dataset, as are the relative salience weights (supplied by the first column of Ti) when these are taken to
be unknown to the researcher. In fact, all of this would remain true even if the salience weights were
to depend on the occasion—a useful formulation if, for instance, each weight was defined as a function
of characteristics of the corresponding alternative. Carrying through such a broad generalization of our
attention model goes well beyond the scope of the present paper. However, its apparent feasibility serves
to emphasize that our results on cognitive identification are robust to quite substantial extensions of the
framework, including the sort of modifications that may be needed to use our contribution as the basis
for fully fledged empirical applications.

APPENDIX A: PARAMETRIC IDENTIFICATION

A.1. Basic models

Both for the consideration capacity model and for the special case of the consideration probability model,
we consider simple one- and two-parameter functional forms for F .

Example 6 (Poisson γ). For µ > 0, let the consideration capacity γ have the Poisson distribution
π(γ) = [µγ/γ!]e−µ for 0 ≤ γ < n. In this case Equation 3 yields default share p(d) = π(0) = e−µ, and
thus µ = − log p(d). Alternatively, Equation 8 yields

n− 1

2

[
p(n− 1)

p(n)
− 1

]
=
π(2)

π(1)
=
µ

2
,

and so µ = [n− 1][p(n− 1)/p(n)− 1]. �

Example 7 (Pascal γ). For r ∈ {1, 2, 3, . . .} and q ∈ (0, 1), let the consideration capacity γ have the
Pascal (or “negative binomial”) distribution π(γ) =

(
γ+r−1
γ

)
[1 − q]rqγ for 0 ≤ γ < n. Equation 8 then

yields
n− 1

2

[
p(n− 1)

p(n)
− 1

]
=
π(2)

π(1)
=
q[r + 1]

2
. (32)

We have also
np(n)

p(d)
=
π(1)

π(0)
= qr, (33)
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and Equations 32–33 can be solved simultaneously for the parameters

q = [n− 1]

[
p(n− 1)

p(n)
− 1

]
− np(n)

p(d)
,

r =
np(n)2

p(d)[n− 1][p(n− 1)− p(n)]− np(n)2
. �

Example 8 (uniform ρ). For ρmin ∈ [0, 1), let the consideration probability ρ be distributed uniformly
on [ρmin, 1]. Since F (ρ) = [ρ− ρmin]/[1− ρmin], Equation 10 becomes

p(k) =
1

1− ρmin

∫ 1

ρmin

ρ[1− ρ]k−1dρ. (34)

The first choice share is then p(1) = [1 + ρmin]/2, yielding the parameter ρmin = 2p(1)− 1. �

Example 9 (Beta ρ). For a, b > 0, let the consideration probability have the Beta distribution F (ρ) =
B(a, b)−1

∫ ρ
0
ta−1[1− t]b−1dt (where B is the Beta function). Here Equation 10 appears as

p(k) = B(a, b)−1

∫ 1

0

ρa[1− ρ]b+k−2dρ =
B(a+ 1, b+ k − 1)

B(a, b)
.

The first two choice shares are

p(1) =
B(a+ 1, b)

B(a, b)
=

a

a+ b
, (35)

p(2) =
B(a+ 1, b+ 1)

B(a, b)
=

ab

[a+ b][a+ b+ 1]
; (36)

and we can solve for the parameters

a =
p(1)p(2)

p(1)[1− p(1)]− p(2)
,

b =
[1− p(1)]p(2)

p(1)[1− p(1)]− p(2)
. �

Observe that for parameterizations of the consideration capacity γ we have used the choice shares p(n)
and p(n− 1), corresponding to the least attractive alternatives, to elicit information about the cognitive
type distribution. In contrast, for parameterizations of the consideration probability ρ we have used
p(1) and p(2), corresponding to the most attractive alternatives. This mirrors our elicitation procedure
in Section 3.2, where each mass π(γ) is seen to depend on the choice shares of a group of sufficiently
unattractive options (cf., Equation 12), and each moment of the ρ-distribution is seen to depend on the
shares of a sufficiently attractive group (cf., Equation 14).

A.2. Unobserved default

Here we adapt each of the parametric examples in Section A.1 to the unobserved default scenario.

Example 10 (Poisson γ; continued from Example 6). Here µ = [n− 1][p̃(n− 1, n)− 1], as above. �

Example 11 (Pascal γ; continued from Example 7). Equation 32 can be written as p̃(n − 1, n) =
q[r + 1]/[n− 1] + 1, and similarly from Equation 7 we obtain

p̃(n− 2, n)− p̃(n− 1, n) =
2

n− 1

[
π(2)

π(1)
+

3

n− 2

π(3)

π(1)

]
=
q[r + 1]

n− 1

[
1 +

q[r + 2]

n− 2

]
.

These equations can be solved simultaneously for the parameters

q =
2p̃(n− 1, n)− [n− 1]p̃(n− 1, n)2 + [n− 2]p̃(n− 2, n)− 1

p̃(n− 1, n)− 1
,

r =
2np̃(n− 1, n)− 2[n− 1]p̃(n− 1, n)2 + [n− 2]p̃(n− 2, n)− n
−2p̃(n− 1, n) + [n− 1]p̃(n− 1, n)2 − [n− 2]p̃(n− 2, n) + 1

. �
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Example 12 (uniform ρ; continued from Example 8). From Equation 34 we have both p(1) = [1+ρmin]/2
and p(2) = [2ρmin + 1][1− ρmin]/6. Hence

p̃(1, 2) =
3[1 + ρmin]

[2ρmin + 1][1− ρmin]
,

and it follows that

ρmin =
p̃(1, 2)− 3 +

√
3[3p̃(1, 2)− 1][p̃(1, 2)− 3]

4p̃(1, 2)
. �

Example 13 (Beta ρ; continued from Example 9). Equations 35–36 yield p̃(2, 1) = b/[a + b + 1], and
likewise we can compute p̃(3, 2) = [b+ 1]/[a+ b+ 2]. Solving for the parameters, we obtain

a =
1− 2p̃(3, 2) + p̃(3, 1)

p̃(3, 2)− p̃(2, 1)
,

b =
p̃(2, 1)[1− p̃(3, 2)]

p̃(3, 2)− p̃(2, 1)
. �
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