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APPENDIX B: A PRIMER ON TENSOR DECOMPOSITIONS

A tensor is a multidimensional array. The order of a tensor is the number of dimensions it possesses;
e.g., a vector is a tensor of order 1, and a matrix is a tensor of order 2. The dimensions of a tensor
are the numbers of components along each side of the array. A tensor X of order I with dimensions
n1 × · · · × nI has typical element xk1···kI , where 1 ≤ ki ≤ ni for each i = 1, . . . , I.1

For example, consider the tensor of order 3 and dimensions 4× 3× 2 given by

X =

u

wwww
v

k3 = 1 k2 = 1 k2 = 2 k2 = 3 k3 = 2 k2 = 1 k2 = 2 k2 = 3
k1 = 1 x111 x121 x131 k1 = 1 x112 x122 x132
k1 = 2 x211 x221 x231 k1 = 2 x212 x222 x232
k1 = 3 x311 x321 x331 k1 = 3 x312 x322 x332
k1 = 4 x411 x421 x431 k1 = 4 x412 x422 x432

}

����
~
. (1)

This tensor can be viewed variously as a list of two 4× 3 matrices (at left and at right), as a list of six
4-vectors (in the columns), or as a list of 24 individual entries. Note that in Equation 1 the values of the
indices ki are shown in the margins, for clarity, but these are usually suppressed in line with vector and
matrix notation.

A decomposition of a tensor of a given order is a representation as the outer product of lower-order
tensors.2 For instance, any tensor of the form

X =

u

ww
v

y11w1 y12w1 y13w1 y11w2 y12w2 y13w2

y21w1 y22w1 y23w1 y21w2 y22w2 y23w2

y31w1 y32w1 y33w1 y31w2 y32w2 y33w2

y41w1 y42w1 y43w1 y41w2 y42w2 y43w2

}

��
~
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1Tensors are widely used in science and engineering; e.g., in the fields of chemometrics, electrodynamics, general rela-

tivity, and signal processing. For a textbook treatment of the subject, see Danielson (2003).
2Recall that the outer product of a k1-vector u and a k2-vector v is the matrix with dimensions k1 × k2 given by

u⊗ v = uv> (where v> is the transpose of v). Each further outer product operation then adds another dimension to the
resulting array.
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can be decomposed into the outer product of a 4× 3 matrix and a 2-vector as

X =


y11 y12 y13
y21 y22 y23
y31 y32 y33
y41 y42 y43


︸ ︷︷ ︸

Y

⊗
[
w1

w2

]
︸ ︷︷ ︸

w

,

since here each xk1k2k3 = yk1k2wk3 . Moreover, if

Y =


u1v1 u1v2 u1v3
u2v1 u2v2 u2v3
u3v1 u3v2 u3v3
u4v1 u4v2 u4v3

 =


u1
u2
u3
u4


︸ ︷︷ ︸

u

⊗

 v1
v2
v3


︸ ︷︷ ︸

v

,

then we have the further decomposition X = u ⊗ v ⊗w. A tensor is said to be of rank 1 if it can be
decomposed into an outer product of vectors in this way. More generally, the rank of any tensor X is
the minimum number of rank-1 tensors that sum to X.

Intuitively, decomposition of a tensor separates out independent influences on its entries. As an
application of the concept (for which we make no claim of originality), imagine a dinner party at which
numerous guests are all talking at the same time. The verbal barrage can be better understood if
it is separated into a number of distinct, albeit simultaneous conversations. Each is characterized by
particular words or topics, and they proceed for the most part independently of each other, even while
interacting in the auditory space.

In the paper we study a joint choice share tensor S of order I (the number of choice “occasions”)
and dimensions n× · · · × n, with typical entry

sk1···kI = p(k1 · · · kI) =

n∑
γ=1

π(γ)pγ(k1 · · · kI).

Here k1 · · · kI are the choices on the I occasions, γ is the cognitive type of the agent, and pγ(k1 · · · kI)
is the type-conditional probability of the joint choice share observation. In the consideration capacity
model, the latter probability can be expressed as

pγ(k1 · · · kI) =

I∏
i=1

n−γ+1∑
r=1

(
n−r
γ−1

)(
n
γ

) ∑
h:ϕh(ki)=r

τih︸ ︷︷ ︸
1>
ki

[BiC]1γ

. (2)

Defining the matrices Z1 = [B1C]D(π) and Zi = BiC for each i = 2, . . . , I, we have that the joint
choice shares make up the tensor S =

∑n
γ=1⊗Ii=1Zi1γ .3 In other words, S is the sum of n rank-1 tensors

corresponding to the distinguishable cognitive types.
If there are at least three choice occasions, then we can use the fundamental result of Kruskal (1977),

as adapted by Rhodes (2010), to show that the decomposition of S into Zi matrices is effectively unique.

Lemma 1 (Kruskal; Rhodes). Given any triad 〈Z1,Z2,Z3〉 of invertible n × n matrices, the tensor
T =

∑n
γ=1[Z11γ ⊗Z21γ ⊗Z31γ ] uniquely determines each Zi up to column rescaling and permutation.

We then demonstrate that uniqueness of the decomposition guarantees generic identification of both the
π = 〈π(γ)〉nγ=1 vector and the Bi matrices; since C is constant, known, and invertible. Hence the joint
choice shares in S yield full knowledge of the cognitive distribution (over types γ < n) as well as partial
knowledge of the taste distributions τi.

3Recall that in our notation 1` is the unit vector for component ` and D(v) the diagonal matrix with entries drawn
from the vector v. Thus [BiC]1γ is the γth column of the matrix BiC, and 1>

ki
[BiC]1γ is the kith entry in this column.

Similarly, [B1C]D(π) is the matrix B1C with each column weighted by the corresponding scalar π(γ).
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It is apparent that nothing about our approach to identification depends in any essential way on the
details of the consideration capacity model. The capacity γ can be replaced by an arbitrary cognitive type
θ ∈ {θ1, . . . , θn}, distributed according to π = 〈π(θj)〉nj=1; with C likewise replaced by an n× n matrix
A (still constant and known) whose typical entry akj is the probability that the kth best alternative is
chosen by an agent of cognitive type θj . Equation 2 then becomes

pθj (k1 · · · kI) =

I∏
i=1

n∑
r=1

arj
∑

h:ϕh(ki)=r

τih︸ ︷︷ ︸
1>
ki

[BiA]1j

, (3)

and as before we can define Z1 = [B1A]D(π) and Zi = BiA for each i = 2, . . . , I. As long as the matrix
A is invertible, the decomposition S =

∑n
j=1⊗Ii=1Zi1j will be effectively unique, and both π and the

Bi matrices will be generically identified.4

To illustrate the broad scope of our methodology, consider a primitive model of satisficing in which
with probability π(θj) the agent randomizes uniformly among the j best alternatives available. For n = 3
we then have an invertible (and indeed upper triangular) matrix

A =

 1 1/2 1/3
0 1/2 1/3
0 0 1/3

 ,
and can compute each product

BiA =

 τi1 + τi2 [τi1 + τi2 + τi3 + τi4]/2 1/3
τi3 + τi5 [τi1 + τi3 + τi5 + τi6]/2 1/3
τi4 + τi6 [τi2 + τi4 + τi5 + τi6]/2 1/3

 .
With I = 3, the resulting joint choice share tensor decomposition

S = π(1)⊗3
i=1

 τi1 + τi2
τi3 + τi5
τi4 + τi6

+ π(2)⊗3
i=1

 [τi1 + τi2 + τi3 + τi4]/2
[τi1 + τi3 + τi5 + τi6]/2
[τi2 + τi4 + τi5 + τi6]/2

+ π(3)⊗3
i=1

 1/3
1/3
1/3


is effectively unique, and generic identification holds both for the distribution π of satisficing types and
for each matrix Bi of rank-position probabilities.
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A is square. In the absence of this assumption, a version of Kruskal’s result more general than Lemma 1 would be needed
to show uniqueness of the decomposition.

3


	Inferring cognitive heterogeneity from aggregate choices
	A Primer on Tensor Decompositions

