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S1. Our CASA model 12 

The NPP inside China during the period of 1982-2012 is estimated using the CASA model (Zhu 13 

et al., 2006). The calculation model is detailed by the following two equations: 14 

  ( , ) ( , ) ( , )N P P x t A P A R x t x t                          (1) 15 

( , ) ( , ) ( , ) 0 .5A P A R x t SO L x t F P A R x t                          (2) 16 

where NPP(x,t) is the NPP at pixel x (gC/m2/yr) at month t; APAR(x,t) is the photosynthetically 17 

active radiation at month t and pixel x (gC/m2/month), and ε(x, t) is the active light use efficiency 18 

at month t and pixel x (gC/MJ). SOL(x,t) is the total solar radiation at month t and pixel x 19 

(MJ/m2/month). FPAR(x,t) is the fraction of photosynthetically active radiation at month t and 20 

pixel x, representing the percentage of photosynthetically active radiation absorbed by plant. 21 

Different from the ordinary CASA model (Fang et al., 2003), our FPAR has been estimated using 22 

the linear relationship between FPAR and normalized vegetation index based on previous studies 23 



 

2 

 

(Hunt Raymond, 1994; Zhu et al., 2007). A factor of 0.5 is used to reflect the proportion of active 24 

solar radiation to total solar radiation. Also, in contrast to the ordinary CASA model, the 25 

maximum efficiency of light energy utilization of each vegetation type in China is determined 26 

from a previous modeling study (Zhu et al., 2006). Their model provides a more reliable estimate 27 

of Chinese NPP, and has been widely applied by other studies (Mu et al., 2013; Zhang et al., 2009). 28 

Furthermore, our potential evapotranspiration (PET) is determined using the Penman-Monteith 29 

method, which is verified as the optimum method to estimate China’s PET (Yang et al., 2016). 30 

S2. The meteorological and land cover dataset 31 

All meteorological data downloaded from the Data Center of Chinese Meteorological 32 

Administration is imported into ArcGIS 10.2 software to get the location of each meteorological 33 

station (see Fig. 1 in the article), and then interpolated to obtain maps of monthly precipitation, 34 

monthly mean temperature, and monthly total solar radiation using the inverse distance weight 35 

method (Bartier and Keller, 1996). Land-cover images are from the SPOT-VGT site 36 

(http://free.vgt.vito.be/) and the V005 MODIS Land Cover Dynamics (MCD12Q2) product 37 

(https://modis.gsfc.nasa.gov/) based on the land-cover classification system of International 38 

Geosphere-Biosphere Programme (IGBP). The coordinates, projection, and spatial resolution of 39 

land-cover and other interpolation maps are consistent with the NDVI dataset. 40 

S3. Two droughts’ indices  41 

The drought indices (SPI and SPEI) are originated from observed dataset from meteorological 42 

stations inside China (see Fig.1 in the article). Two drought indices at each station are obtained by 43 

using “spei” tool from “SPEI” package in R software (Beguería et al., 2014; Vicente-Serrano et al., 44 

2010), and then interpolated to produce SPI and SPEI maps using the inverse distance weight 45 

http://free.vgt.vito.be/
https://modis.gsfc.nasa.gov/
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method (Bartier and Keller, 1996). The map projection and grid cell size of SPI and SPEI maps 46 

are the same as the NPP map. According to the SPI calculation by Kumar et al. (2009), a negative 47 

SPI value represents less rainfall (dry conditions), whereas a positive SPI value means more 48 

rainfall (wet conditions). The smaller the SPI is, the severer the drought is. When the SPI is less 49 

than -2, a severe drought occurs. Compared with the SPI, the SPEI considers the status of land 50 

surface PET, and is a relatively comprehensive drought index (Vicente-Serrano et al., 2010). The 51 

SPI and SPEI indices are characterised by multi-timescales, such as 3-, 6-, 9-, and 12-month (and 52 

longer) timescales. The drought status over a 3-month period can be identified by using the SPI3 53 

and SPEI3 images. The multi-timescale feature is useful in studying a response time or the lagging 54 

effect of an ecosystem to droughts (Beguería et al., 2014; Zarei and Eslamian, 2017). All our 55 

spatial analyses and statistics are performed by using R, ArcGIS 10.2 (ESRI, USA), and ENVI 5.3 56 

(ESRI, USA) software. 57 

S4. Our statistical methods 58 

S4.1 The drought frequency 59 

The drought frequency is defined as the ratio of the months of drought to the total months of 60 

observation period and is calculated as: 61 

( )

1 0 0 %
t

D
P

T
                                      (3) 62 

where P is drought frequency (%), D（t）is the total months at drought level t, and T is the total 63 

months of observation. In this study, T equals to 372 months. 64 

S4.2 The correlation analysis 65 

The correlation between the NPP and drought indices have been examined using Pearson’s 66 

method. The equation is: 67 
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                            (4) 68 

where xi is the monthly drought index (SPI/SPEI) and yi is the monthly NPP. 69 

S4.3 The regression/trend analyses 70 

K-slope is used to reflect the relative variation of monthly NPP per drought index changes, and 71 

is calculated as: 72 

2 2

( )

( )

i i i i

S lo p e

i i

n x y x y
K

n x x

  


 

  

 
                           (5) 73 

where kSlope is the slope of the unary linear regression model; xi is the monthly NPP and yi is the 74 

monthly drought index; n is 372 (see Fig. 7 in the article). In order to determine the annual NPP 75 

trend (see Fig. 9 in the article), the same equation (5) is used. However, in the trend analysis, xi is 76 

the annual NPP from 1982 to 2012, and yi is time in year; n is 31. 77 

S4.3 The contributions of the SPI/SPEI to China’s NPPs across different 78 

timescales 79 

A unary linear regression model is constructed to determine the quantitative 80 

relationship between SPI/SPEI and China’s NPP across three timescales 81 

(3-month,6-month and 12-month ). The equation takes the form below: 82 

   
axy b                          (6) 83 

where, y is NPP; x is the driving force, here is drought index (SPI/SPEI). 84 

S4.4 The contribution of droughts to China’s monthly NPP variation 85 

The coefficient of determination of the unary linear regression model (r-square) indicates the 86 

proportion of the variance of the dependent variable explaining the variance of independent 87 

variable, and can be used to represent the contribution level of drought on the NPP variation. The 88 
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formula is: 89 

2
1 1 0 0 %

res

to t

S S
R

S S
  （ ）                          (7) 90 

where R2 is the contribution level (%), SSres is the sum of the squares of error of the unary linear 91 

regression model, and SStot is the sum squares. Formulas (3), (4), (5), and (6) were run on R 92 

version 3.4.2 software. 93 

S5. The validation of our analyses 94 

The drought indices are diverse (Hou et al., 2007; Yang et al., 2017). Compared with the Palmer 95 

Drought Severity Index (PDSI), the flexible timescales of the SPI and SPEI indices are beneficial 96 

in assessing the relationships between drought and monthly NPP variability over multiple 97 

timescales. The ecological responses of drought index are different among multiple timescales. 98 

The SPEI1 and SPI1 indices are used to reflect the water distribution in land surface with less 99 

significant impact on vegetation activity. However, at 6-month and longer timescales of the SPEI 100 

and SPI indices can reflect the drying-wetting alteration and long-term water distribution, 101 

resulting in a remarkable influence on vegetation activity (Mathbout et al., 2018). The correlation 102 

between the SPI and SPEI is examined at 3-, 6- and 12-month timescales (see Fig. S1 in 103 

supplementary material). The mean correlation coefficient is 0.57 at the 3-month timescale and 104 

decreases to 0.55 at the 12-month timescale. Stronger relationships between the two drought 105 

indices have been found in eastern China, suggesting that our results in those areas are more 106 

reliable (see Fig. S1 in supplementary material). In addition, the SPEI is more sensitive than the 107 

SPI in explaining the responses of the monthly NPP variation to drought in China due to larger 108 

extent and stronger correlation of significant relationships between them (see Figs. 6 and 7 in the 109 

article). 110 



 

6 

 

 111 

Fig. S1 Correlation coefficients between SPI and SPEI at (A) 3-month, (B) 6-month and (C) 112 

12-month timescales 113 

The mean monthly SPEI3 in China were extracted during the study period (see Fig. S2), 114 

revealing that drought usually occurs in summer. However, the humid periods during a given year 115 

tends to shorten and the drought periods tends to increase, indicating that China’s climate 116 

generally tends to be dry, which is supported by Qian et al. (2014). Aridification during the 117 

summer has tended to aggravate sharply, especially in the past 15 years. In the summer of 1999, 118 

the SPEI3 decreased to -1, suggesting that moderate drought appeared across China (see 119 

supplementary material, Fig. S2). On the basis of Fig. S2A, the drought in northern China has 120 

tended to increase during the study period, which will cause a huge risk to the future localized 121 

NPP in China. Although, according to Fig. 3B and Fig. 8 in the article, interannual NPP inside 122 

China has tended to increase, a negative effect of water on the monthly NPP variation in southern 123 

China at the 3-month timescale has been found (see Fig. 7 in the article). This negative effect of 124 
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them is probably caused by frequent heavy rainfall in the summer of southern China at the shorter 125 

timescale, which however contributes little to interannual variability of the NPP in China. The 126 

increasing annual NPP trend inside China has been testified by many studies (Pei et al., 2013; Piao 127 

et al., 2005; Yuan et al., 2014). The main reasons are: 1) The advances in agricultural facilities, 128 

breeding, fertilization, and management all support the ecosystem production of farmland; 2) The 129 

NPP of natural ecosystems (forest, grass, and high mountains) continue to increase due to global 130 

warming and nitrogen deposition, which can compensate for the NPP losses caused by flooding 131 

(Zhan et al., 2015; Zhu et al., 2015); 3) The aridification does not reach a threshold that restricts 132 

vegetation activity in southern China, where radiation has been demonstrated as the main driving 133 

factor of vegetation activity (Nemani et al., 2003). 134 

 135 

Fig. S2 Variations of SPEI3 index in China from 1982 to 2012. (A) For Northern China, (B) For 136 

Southern China, and (C) For the whole China. The regression lines are shown together with the 137 

actual SPEI3 time series in each panel. 138 

S6. Chinese forestry data (1950-2013) 139 

To find out what contribute to this long-term and substantial increase of annual total NPP inside 140 

China, we have downloaded the forest inventory data from Chinese Forestry Administration 141 
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Government website (http://www.forestry.gov.cn/portal/xdly/s/5197/content-931245.html) to 142 

investigate the changes of Chinese forest coverage (Fig. s3B) and farmland coverage (Fig. s3A), 143 

based on data from a previous study (Liu et al., 2014), and our derived NPP for corresponding 144 

plant functional types (Fig. s3C). Our results have showed that farmland cover has increased 5% 145 

(Fig. s3A), and forest cover has almost doubled from 1982 to 2012 (Fig. s3B), and the 146 

corresponding forest NPP has increased from 1452.3 TgC to 1565.19 TgC during this period (Fig. 147 

s3C). In addition, the farmland NPP has also increased for 896.51 TgC to 1066.53 TgC during the 148 

same period (Fig. s3C). We believe the long-term and substantial increase of total NPP inside 149 

China is linked to the government sponsored reforestation and the ever expanding agriculture 150 

activities over the last decades (Wang et al., 2017). 151 
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 152 

Insert Fig.s3 The timeseries of (A) Chinese farmland (Liu et al., 2014), (B) Chinese forestry (see 153 

supplementary material Table S1), and (C) Our derived NPP for corresponding plant functional 154 

types. 155 

 156 

Table S1: Chinese forestry data for the period between 1950 and 2013 (Data source: 157 

2010-2015 Chinese forestry development report, accessed online at 158 
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http://www.forestry.gov.cn/portal/xdly/s/5197/content-931245.html) 159 

Periods between 1950 to 2013 Forest Area (km2) Forest Coverage (%) 

1950～1962 2120000 8.90 

1973～1976 2576000 12.70 

1977～1981 2671000 12.00 

1984～1988 2674000 12.98 

1989～1993 2629000 13.92 

1994～1998 2633000 16.55 

1999～2003 2849000 18.21 

2004～2008 3059000 20.36 

2009～2013 3126000 21.63 

 160 
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