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Abstract

For a GJR-GARCH(1,1) specification with a generic innovation distribution we
derive analytic expressions for the first four conditional moments of the forward
and aggregated returns and variances. Moments for the most commonly used
GARCH models are stated as special cases. We also derive the limits of these
moments as the time horizon increases, establishing regularity conditions for the
moments of aggregated returns to converge to normal moments. A simulation
study using these analytic moments produces approximate predictive distribu-
tions which are free from the bias affecting simulations. An empirical study using
almost 30 years of daily equity index, exchange rate and interest rate data applies
Johnson SU and Edgeworth expansion distribution fitting to our closed-form for-
mulae for higher moments of returns.
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1 Introduction

Return distributions have a great variety of financial applications to risk assessment and

portfolio optimization so their prediction attracts much interest in academic research. It has

long been recognized that time series of asset returns are not well described by normal, inde-

pendent processes (Mandelbrot, 1963; Fama, 1965). Typically, their conditional distributions

are non-normal and they exhibit volatility clustering, so they are not independent. Hence,

we require forecasts of the entire distribution, not only of the first two moments of returns.

The family of generalized autoregressive conditional heteroskedasticity (GARCH) models

is highly successful in capturing (at least partially) the salient empirical features of both

conditional and unconditional returns distributions. Following the pioneering work of Engle

(1982), Bollerslev (1986) and Taylor (1986) numerous alternative specifications for GARCH

processes have been proposed. In many financial markets, especially equities and commodi-

ties, the GARCH conditional variance equation captures the asymmetric response of volatil-

ity to innovations with different signs. Well-known asymmetric GARCH models include the

EGARCH model of Nelson (1991), the AGARCH model of Engle (1990) and Engle and

Ng (1993), the NGARCH model also proposed by Engle and Ng (1993), and the model of

Glosten, Jagannathan and Runkle (1993), henceforth denoted GJR. Additionally, GARCH

models with non-normal innovation distributions have been developed by Bollerslev (1987),

Nelson (1991), Haas, Mittnik, Paolella (2004) and many others.

The performance of various GARCH models has been empirically assessed by numerous

authors, following Andersen and Bollerslev (1998), Marcucci (2005) and many others.1 Vir-

tually all this literature refers to the accuracy of forward or aggregated returns distributions

when a point GARCH variance forecast is used. However, only the one-step-ahead GARCH

variance forecast can be made with certainty: due to the uncertainty about future returns,

the forward returns variances, and variances of aggregated future returns, are stochastic. So

1Also, Andersen, Bollerslev and Diebold (2009) give a broad overview of volatility modelling procedures,
focusing on the GARCH methodology and Bauwens, Laurent and Rombouts (2006) review some important
contributions to the multivariate ARCH literature.
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a point GARCH variance forecast represents only an expected value of the GARCH variance,

under its distribution. Until now, the only papers to examine this conditional distribution

are Ishida and Engle (2002), who derive the conditional variance of the forward conditional

variance for a symmetric GARCH(1,1) model with symmetric innovations, and Christof-

fersen et al. (2010) who derive the second conditional moment of the two-step-ahead forward

variance for eight GARCH processes with affine vs. non-affine and conditionally-normal vs.

conditionally GED alternatives.

By contrast, there is considerable research on the unconditional moments of returns gen-

erated by GARCH processes.2 However, since returns are not identically distributed, it is

the conditional moments of the returns and variances, and their dynamics that are most

important for financial applications. Knowledge of the dynamics of the conditional mean

and variance is sufficient only when conditional distributions are normal: more generally,

the dynamics of higher order conditional moments are needed. Hence, whilst most research

focuses on the (first four) conditional moments of forward returns for some specific GARCH

processes, several recent papers also consider the aggregated returns.

Duan et al. (1999) derive expressions for the first four conditional moments of the aggre-

gated returns generated by the normal NGARCH model under the risk-neutral probability

measure, and Duan et al. (2006) extend these results to the risk-neutral moments of aggre-

gated returns under normal GJR and normal EGARCH processes.3 Wong and So (2003)

derive an expression for the variance of aggregated QGARCH returns and, under the ad-

ditional assumption that the innovation is symmetric, expressions for the third and fourth

2See Engle (1982), Nemec (1985), Milhoj (1985), Bollerslev (1986), He and Terasvirta (1999a, 1999b),
Karanasos (1999, 2001), He, Terasvirta and Malmsten (2002), Demos (2002), Ling and McAleer (2002a,
2002b), Karanasos and Kim (2003), Bai, Russell and Tiao (2003), Karanasos, Psaradakis and Sola (2004)
and Francq and Zakoian (2010). A flexible approach that offers analytic expressions for the moments of the
absolute values of the returns is given in Harvey (2013) for the Beta-t-EGARCH model and Harvey and
Lange (2017) for the more general Beta-Gen-t-EGARCH model combined with conditional score dynamics.

3See also Nelson (1991) for related results on the moments of the EGARCH model under the physical
distribution and Mazzoni (2010) who considers a related application to option pricing in the implied measure,
using the Heston and Nandi (2000) model. Note that the finance literature makes a clear distinction between
physical and implied distributions, the former being obtained from time series of asset returns and the latter
being obtained from option prices under the assumption of complete markets and risk-neutral valuation.
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order conditional moments of aggregate returns.4 Breuer and Jandacka (2010) derive the

limit of the variance and kurtosis of forward and aggregated returns for a generic symmetric

GARCH(1,1) process, for which the forward and aggregated skewness are both zero.

We extend this previous research in a unified framework for which the results cited above

may be derived as special cases. Assuming a GJR specification and a generic conditional

distribution that accommodates both skewness and kurtosis in the innovations, we derive

formulae for the first four conditional moments of forward and aggregated returns and of

forward and aggregated variances. We also derive the limits of these moments as the returns

horizon increases. Furthemore, we compare our analytic moments with those generated by

Monte Carlo simuation, and by bootstrapping. This shows that our moments are unbiased,

whereas even a very large number of simulations can be highly inaccurate, and bootstrapping

methods can have large biases. Our results may be used to generate accurate forward and

aggregated GARCH distributions for real time series data, without simulations. To illustrate

this, an empirical study estimates a variety of GARCH models for the S&P 500 index, Euro–

US dollar exchange rate and the 3-month Treasury bill rate and again demonstrates a very

good fit between the approximate and simulated predictive returns distributions.5

The formulae for the moments are presented in Section 2 and those for the limits in Section

4. The proofs are lengthy and are presented in a separate on-line technical appendix, which

also details the results for important special cases of the generic model. Section 3 compares

our analytic moments with those obtained using Monte Carlo simulation and bootstrapping.

Section 5 applies the analytic moments to derive approximate predictive distributions for the

forward and aggregated returns, with an extensive empirical study to examine the goodness-

of-fit between these distributions and those generated via simulation; Section 6 concludes.

4Their QGARCH model is the same as an AGARCH(p,q). Also in the context of a QGARCH process,
Simonato (2013) considers the approximation of multivariate aggregate returns distributions based on their
first four moments. Of some relation to this research is the paper by Christoffersen et al. (2008), proposing
a new two-component GARCH model for European options valuation, for which the authors also derive the
conditional moment generating function of the (log) price distribution.

5The return distributions could, alternatively, be studied via computing their bounds as in Goncalves et
al. (2016).
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2 Moments of Generic GJR Returns and Variances

Here we present analytic expressions for the first four conditional moments of both forward

one-period and future aggregated (also called cumulative) returns and variances for the GJR

model with a generic innovation distribution having zero mean, unit variance and finite higher

moments. For the nth conditional moment of returns to exist we need the first n moments

of z to be finite. So, fourth moments exist for financial returns if n ≥ 4, which is often

but not always satisfied empirically. For instance, Deschamps (2012), Harvey and Lange

(2017) and many others obtain degrees of freedom estimates greater than 4 in t-GARCH

models. Others obtain an estimate greater than 4 for the maximum moment exponent,6 as

in Huisman et al. (2001) and Alexander and Lazar (2009), among others. Similarly, for the

nth conditional moment of variances to exist we need the first 2n moments of z to be finite

and again, this is verified by several but not all prior empirical studies of financial returns.

For example, Lux and Morales-Arias (2010), Zhu and Galbraith (2011), Krause and Paolella

(2014), Theodossiou and Savva (2015) and Harvey and Lange (2017) all estimate general

t-GARCH models with degrees of freedom greater than 8; and Huisman et al. (2002) derive

a maximum moment exponent greater than 8. However, Harvey and Sucarrat (2014) find

several financial assets with degrees of freedom estimates less than 8 in t-GARCH models.

Note that our results can be applied depending on the moments of the data: e.g. if only the

first 6 moments of z exist, then our results can be applied for all four moments of the returns

and the first 3 moments of the variance.

We assume that the one-period log return rt = log
(
Pt+1

Pt

)
on a financial asset with

market price Pt follows a stationary process. The mathematical specification of the generic

GJR model is:

rt = µ+ εt, εt = zth
1/2
t , zt ∼

i.i.d.
D (0, 1) , ht = ω + α ε2

t−1 + λ ε2
t−1I

−
t−1 + β ht−1, (1)

6For a discussion on the link between the tail index estimator and the degrees of freedom of a t distribution
see Paolella (2016).
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where I−t is an indicator function which equals 1 if εt < 0 and zero otherwise. We note

that zt and ht are contemporaneously independent because zt is i.i.d. and ht depends only

on the past. We assume that D(0, 1) is a generic conditional distribution with zero mean,

unit variance, constant skewness τz and kurtosis κz, and with constant higher moments

µ
(i)
z = E (zit) for any i > 4, i ∈ N .7

The aggregated return over n consecutive time periods is
n∑
s=1

rt+s, and the following nota-

tion is used for the conditional un-centred and centred moments of the forward and aggregated

returns:

µ̃
(i)
r,s = Et

(
rit+s

)
, µ

(i)
r,s = Et

((
rt+s − µ̃(1)

r,s

)i)
M̃

(i)
r,n = Et

[(
n∑
s=1

rt+s

)i]
, M

(i)
r,n = Et

((
n∑
s=1

(
rt+s − µ̃(1)

r,s

))i)

for s = 1, 2,..., n and i = 1, 2, 3, 4. Thus, the skewness and kurtosis of the forward return

distributions are:

τr,s = µ
(3)
r,s

(
µ

(2)
r,s

)−3/2

and κr,s = µ
(4)
r,s

(
µ

(2)
r,s

)−2

and the skewness and kurtosis of the aggregated return distributions are:

Tr,n = M
(3)
r,n

(
M

(2)
r,n

)−3/2

and Kr,n = M
(4)
r,n

(
M

(2)
r,n

)−2

.

Similarly, the following notation is used for the conditional un-centred and centred moments

of the forward and aggregated variances:

µ̃
(i)
h,s = Et

(
hit+s

)
, µ

(i)
h,s = Et

((
ht+s − µ̃(1)

h,s

)i)
M̃

(i)
h,n = Et

[(
n∑
s=1

ht+s

)i]
, M

(i)
h,n = Et

((
n∑
s=1

(
ht+s − µ̃(1)

h,s

))i)

7To be more precise, we have:

µ(i)
z = E

(
zit
)

= Et

(
zit
)

= Et (zt − Et (zt))
i

= Et (zt − Et (zt))
i
Et

(
z2t
)−i/2

since un-centred, centred and standardized moments are all equal for a zero mean, unit variance distribution.
Also, since the z process is i.i.d., conditional and unconditional moments of z are also identical.
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for s = 1, 2,..., n and i = 1, 2, 3, 4. Thus, the skewness and kurtosis of the forward variance

distributions are:

τh,s = µ
(3)
h,s

(
µ

(2)
h,s

)−3/2

and κh,s = µ
(4)
h,s

(
µ

(2)
h,s

)−2

and the skewness and kurtosis of the aggregated variance distributions are:

Th,n = M
(3)
h,n

(
M

(2)
h,n

)−3/2

and Kh,n = M
(4)
h,n

(
M

(2)
h,n

)−2

.

We start with the un-centred moments, namely:

Et
(
xit+s

)
and Et

[(
n∑
s=1

xt+s

)i]
for x = r and x = h in turn, s = 1, 2,..., n and i = 1, 2, 3, 4. Subsequently, we obtain the

centred and standardized moments of the GJR process with a generic innovation distribution.

The derivations rely on the observation that, although Et (ht+1) = ht+1 (i.e. Vt (ht+1) = 0)

both {ht+s |Ωt : s ∈ N\ {0, 1}} and

{
n∑
s=1

ht+s |Ωt : n ∈ N\ {0, 1}
}

are random. Moreover,

both {rt+s |Ωt : s ∈ N\ {0}} and

{
n∑
s=1

rt+s |Ωt : n ∈ N\ {0}
}

are random and have distribu-

tions that can also be approximated using moments that we derive.

The following notation will be used: ϕ = α + λF0 + β, with F0 being the distribution

function for D(0, 1) evaluated at zero; h̄ = ω(1− ϕ)−1 is the steady-state variance towards

which the conditional variance mean reverts, if ϕ ∈ (0, 1);

µ̃
(2)
h,s = c1 + c2ϕ

s−1 +
(
h2
t+1 − c3

)
γs−1, (2)

where γ = ϕ2 + (κz − 1) (α + λF0)2 + κzλ
2F0 (1− F0), c1 =

(
ω2 + 2ωϕh̄

)
(1− γ)−1, c2 =

2ωϕ
(
ht+1 − h̄

)
(ϕ− γ)−1 and c3 = c1 + c2; in the following expectations f is the density

function of D(0, 1) and Et

(
h

3/2
t+s

)
' 5

8

(
µ̃

(1)
h,s

)3/2

+ 3
8
µ̃

(2)
h,s

(
µ̃

(1)
h,s

)−1/2

with µ̃
(2)
h,s given in (2) and

µ̃
(1)
h,s given in Theorem 1 below:

Et
(
εt+sε

2
t+s+u

)
= ϕu−1

ατz + λ

0ˆ

x=−∞

x3f (x) dx

Et

(
h

3/2
t+s

)
, (3)
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and Et
(
εt+sε

3
t+s+u

)
= τzθ

(3/2)
su , with

θ(3/2)
su =

3

4

(
µ̃

(1)
h,s+u

)1/2

 c4ϕ
u−1Et

(
h

3/2
t+s

)
+ 1

2

(
µ̃

(1)
h,s+u

)−1(
c5γ

u−1Et

(
h

5/2
t+s

)
+ 2ωc4

(
ϕ(ϕ− γ)−1 (ϕu−1 − γu−1) + γu−1

)
Et

(
h

3/2
t+s

))
 ,

and c5 = α
(
αµ

(5)
z + 2βτz

)
+ λ (2α + λ)

0́

x=−∞
x5f (x) dx+ 2βλ

0́

x=−∞
x3f (x) dx; and

c4 =

(
ατz + λ

0́

x=−∞
x3f (x) dx

)
. Next, Et

(
εt+sεt+s+uε

2
t+s+u+v

)
= c4ϕ

v−1θ
(3/2)
su and

Et
(
ε2
t+sε

2
t+s+u

)
= h̄ (1− ϕu) µ̃(1)

h,s + ϕu−1κz
(
α + λF0 + κ−1

z β
)
µ̃

(2)
h,s;

Finally, using a second order Taylor expansion for h
5/2
t+s around Et (ht+s) an approximation

for Et

(
h

5/2
t+s

)
is: Et

(
h

5/2
t+s

)
' 1

8

(
µ̃

(1)
h,s

)1/2
(

15µ̃
(2)
h,s − 7

(
µ̃

(1)
h,s

)2
)

.

Theorem 1: Moments of Forward and Aggregated Returns

The conditional moments of forward one-period returns of model (1) are:

µ̃
(1)
r,s = µ, µ

(2)
r,s = µ̃

(1)
h,s = h̄+ ϕs−1

(
ht+1 − h̄

)
,

τr,s = τzEt

(
h

3/2
t+s

)(
µ̃

(1)
h,s

)−3/2

' τz

(
5
8

+ 3
8
µ̃

(2)
h,s

(
µ̃

(1)
h,s

)−2
)
,

κr,s = κzµ̃
(2)
h,s

(
µ̃

(1)
h,s

)−2

.

The conditional moments of the aggregated returns of model (1) are:

M̃
(1)
r,n = nµ, M

(2)
r,n = nh̄+ (1− ϕ)−1 (1− ϕn)

(
ht+1 − h̄

)
,

Tr,n '
(
τz

n∑
s=1

(
5
8

(
µ̃

(1)
h,s

)3/2

+ 3
8
µ̃

(2)
h,s

(
µ̃

(1)
h,s

)−1/2
)

+ 3
n∑
s=1

n−s∑
u=1

Et
(
εt+sε

2
t+s+u

))(
M

(2)
r,n

)−3/2

,

Kr,n =

 κz
n∑
s=1

µ̃
(2)
h,s +

n∑
s=1

n−s∑
u=1

(
4Et

(
εt+sε

3
t+s+u

)
+ 6Et

(
ε2
t+sε

2
t+s+u

))
+12

n∑
s=1

n−s∑
u=1

n−s−u∑
v=1

Et
(
εt+sεt+s+uε

2
t+s+u+v

)
(M (2)

r,n

)−2

.

The first conditional moments µ̃
(1)
r,s and M̃

(1)
r,n simply state that, with a constant conditional

mean equation, the time t conditional expectation of the s-step-ahead one-period return
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is equal to the constant conditional mean, whereas the expected return aggregated over n

periods scales with time. The second moment of the forward return µ
(2)
r,s shows that the

conditional expectation of the s-step-ahead variance is equal to the steady state variance

h̄, plus an exponentially decreasing correction term to account for the distance between the

one-step-ahead variance ht+1 and the steady state variance h̄. Because we assume that the

returns are not autocorrelated, the variance of aggregated returns over n time periods M
(2)
r,n

is simply equal to the sum of the s-step-ahead variances for s = 1, 2, ..., n.

The expressions for the forward and aggregated skewness are obtained using a second

order Taylor series expansion for Et

(
h

3/2
t+s

)
, as detailed in the Technical Appendix A1. It

is easily observed that if the innovation is symmetric (τz = 0) then the forward returns

distribution is also symmetric. By contrast, considering the expression for Et
(
εt+sε

2
t+s+u

)
in (3), cumulative returns have an independent source of skewness in addition to that of

the innovations τz, due to the asymmetric response parameter λ in the conditional variance

equation. When returns are negative and extreme, the volatility increases (due to the lambda

parameter). Consequently, there are more extreme returns in the lower tail than in the

upper tail of the distribution where there is no corresponding increase in the volatility. As a

result, aggregated returns can exhibit skewness even if the innovation is symmetric. Figure

1 illustrates the behaviour of the skewness of aggregated returns for the normal GJR model

with ω = 0.05, α = 0.075, and β = 0.9, and for various values of the leverage parameter λ.

For s = 1, the forward kurtosis equals the kurtosis of the innovation process. But for s > 1,

the forward excess kurtosis can be non-zero even when the innovation has zero excess kurtosis,

due to the uncertainty in forward variance. The conditional variance of the conditional

variance varies with s and, as it must be positive, the forward kurtosis will be greater than

the kurtosis of the innovation, whenever s > 1, and will itself be time-varying. The net effect

of uncertainty in variance is a greater weight in the tails of forward one-period returns. Also,

the time-varying conditional variance of the conditional variance introduces dynamics in the

higher moments of the forward returns.

Regarding the kurtosis of aggregated returns, with Gaussian innovations this increases

8



Figure 1: Skewness of aggregated returns The behaviour of the skewness of s-step-ahead aggregated
returns, as a function of h. We assume returns have GJR conditional variances with ω = 0.05, α = 0.075,
and β = 0.9, and we plot the skewness of aggregated returns Tr,n in Theorem 1 for various values of λ. The
innovations zt are normal.

with s initially, but starts to decrease as the central limit theorem becomes effective and

eventually converges to 3. The upper part of Figure 2 illustrates the behaviour of this kurtosis

for the GARCH(1,1) model with ω = 0.05, α = 0.075, and β = 0.9, and for various values of

the initial variance σ2
t+1. However, with thick-tailed innovations, there appears to be a third

effect which reduces the kurtosis over the first few aggregation steps. For instance, if the

innovations are drawn from a unit-variance Student t distribution with 6 degrees of freedom

then, with the same parameters for the GARCH(1,1) the kurtosis of aggregated returns as a

function of the forecast horizon is shown in the lower part of Figure 2. The reason for this

is that for low values of s the fourth moment of aggregated returns increases very quickly

(compared with the increase in the variance) but for higher values of s this increase reduces,

to match the increase in the variance. The driving factor in this is the parameter ϕ; as its

value increases towards 1 the aggregated kurtosis increases more at low values of s. As a

result, it takes longer to converge towards its long-term value of 3. This effect is depicted in

Figure 3.

The moments of variances require the following results (see Technical Appendix A2):

µ̃
(3)
h,s =

s−2∑
i=0

ci6

(
ω3 + 3ω2ϕµ̃

(1)
h,s−i−1 + 3ωγµ̃

(2)
h,s−i−1

)
+ cs−1

6 h3
t+1,

with

9



Figure 2: Kurtosis of aggregated returns for GARCH(1,1) as a function of forecast horizon s for
different starting values of the variance. We assume returns have GARCH(1,1) conditional variances with
ω = 0.05, α = 0.075, and β = 0.9, and we plot the kurtosis of aggregated returns Kr,n in Theorem 1 for
various values of the initial variance σ2

t+1. The upper graph assumes normal innovations and the lower graph
considers innovations that follow a standardised Student t distribution with 6 degrees of freedom.

c6 = µ(6)
z

(
α3 + 3αλ (α + λ)F0 + λ3F0

)
+ 3βγ − β2 (2β + 3 (α + λF0)) (4)

µ̃
(4)
h,s =

s−2∑
j=0

cj7

(
ω4 + 4ω3ϕµ̃

(1)
h,s−j−1 + 6ω2γµ̃

(2)
h,s−j−1 + 4ωc6µ̃

(3)
h,s−j−1

)
+ cs−1

7 h4
t+1,

with

c7 = µ(8)
z

(
α4 + F0

(
λ4 + 4

(
α3λ+ αλ3

)
+ 6α2λ2

))
+ β4

+ 4
[
µ(6)
z β

(
α3 + F0

(
λ3 + 3

(
α2λ+ αλ2

)))
+ β3 (α + λF0)

]
+ 6κzβ

2
(
α2 + λ2F0 + 2αλF0

)
.

Expressions for µ̃
(i,j,k)
h,suv , with i, j, k ∈ {0, 1, 2} are also required but since most are rather

lengthy they are only stated in the Technical Appendix A2, with the proof of the following:
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Figure 3: Kurtosis of aggregated returns for different values of α. We assume returns have Student t
GARCH(1,1) conditional variances with µ = 0, λ = 0, β = 0.9 where α takes values 0.06, 0.065, 0.07, 0.075 and
0.08 and the corresponding values of ϕ are: 0.96, 0.965, 0.97, 0.975 and 0.98. The initial variance σ2

t+1 = 10.

Theorem 2: Moments of Forward and Aggregated Variances

The conditional moments of forward one-period variances of model (1) are:

µ̃
(1)
h,s = h̄+ ϕs−1

(
ht+1 − h̄

)
, µ

(2)
h,s = µ̃

(2)
h,s −

(
µ̃

(1)
h,s

)2

,

τh,s =

[
µ̃

(3)
h,s − 3µ̃

(2)
h,sµ̃

(1)
h,s + 2

(
µ̃

(1)
h,s

)3
](

µ̃
(2)
h,s − µ̃

(1)
h,s

)−3/2

,

κh,s =

(
µ̃

(4)
h,s − 4µ̃

(1)
h,sµ̃

(3)
h,s + 6

(
µ̃

(1)
h,s

)2

µ̃
(2)
h,s − 3

(
µ̃

(1)
h,s

)4
)(

µ̃
(2)
h,s −

(
µ̃

(1)
h,s

)2
)−2

.

The conditional moments of the aggregated future variances of model (1) are:

M̃
(1)
h,n = nh̄+

(
ht+1 − h̄

)
(1− ϕ)−1 (1− ϕn) ,

M
(2)
h,n =

n∑
s=1

(
µ̃

(2)
h,s −

(
µ̃

(1)
h,s

)2
)

+ 2
n∑
s=1

n−s∑
u=1

(
µ̃

(1,1)
h,su − µ̃

(1)
h,sµ̃

(1)
h,s+u

)
,

Th,n = M
(3)
h,n

(
M

(2)
h,n

)−3/2

,

M
(3)
h,n =

n∑
s=1

(
µ̃

(3)
h,s − 3µ̃

(2)
h,sµ̃

(1)
h,s + 2

(
µ̃

(1)
h,s

)3
)

+ 3
n∑
s=1

n−s∑
u=1

Ah,s,u + 6
n∑
s=1

n−s∑
u=1

n−s−u∑
v=1

Bh,s,u,v,

Ah,s,u = µ̃
(2,1)
h,su + µ̃

(1,2)
h,su + 2

(
µ̃

(1)
h,s + µ̃

(1)
h,s+u

)(
µ̃

(1)
h,sµ̃

(1)
h,s+u − µ̃

(1,1)
h,su

)
− µ̃(1)

h,sµ̃
(2)
h,s+u − µ̃

(1)
h,s+uµ̃

(2)
h,s,

Bh,s,u,v = µ̃
(1,1,1)
h,suv − µ̃

(1)
h,sµ̃

(1,1)
h,(s+u)v − µ̃

(1)
h,(s+u)µ̃

(1,1)
h,s(u+v) − µ̃

(1)
h,(s+u+v)µ̃

(1,1)
h,su + 2µ̃

(1)
h,sµ̃

(1)
h,(s+u)µ̃

(1)
h,(s+u+v),
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Kh,n = M
(4)
h,n

(
M

(2)
h,n

)−2

M
(4)
h,n =

n∑
s=1

µ
(4)
h,s+

n∑
s=1

n−s∑
u=1

Ch,s,u + 12
n∑
s=1

n−s∑
u=1

n−s−u∑
v=1

Dh,s,u,v + 24
n∑
s=1

n−s∑
u=1

n−s−u∑
v=1

n−s−u−v∑
w=1

Eh,s,u,v,w,

Ch,s,u = 4


µ̃

(3,1)
h,su + µ̃

(1,3)
h,su − 3

(
µ̃

(1)
h,sµ̃

(2,1)
h,su + µ̃

(1)
h,s+uµ̃

(1,2)
h,su

)
−
(
µ̃

(1)
h,s+uµ̃

(3)
h,s + µ̃

(1)
h,sµ̃

(3)
h,s+u

)
+3µ̃

(1)
h,s

(
µ̃

(1)
h,sµ̃

(1,1)
h,su + µ̃

(1)
h,s+uµ̃

(2)
h,s −

(
µ̃

(1)
h,s

)2

µ̃
(1)
h,s+u

)
+3µ̃

(1)
h,s+u

(
µ̃

(1)
h,s+uµ̃

(1,1)
h,su + µ̃

(1)
h,sµ̃

(2)
h,s+u − µ̃

(1)
h,s

(
µ̃

(1)
h,s+u

)2
)


+6

 µ̃
(2,2)
h,su − 2

(
µ̃

(1)
h,sµ̃

(1,2)
h,su + µ̃

(1)
h,s+uµ̃

(2,1)
h,su

)
+
(
µ̃

(1)
h,s

)2

µ̃
(2)
h,s+u

+
(
µ̃

(1)
h,s+u

)2

µ̃
(2)
h,s + 4µ̃

(1)
h,sµ̃

(1)
h,s+uµ̃

(1,1)
h,su − 3

(
µ̃

(1)
h,sµ̃

(1)
h,s+u

)2

 ,

Dh,s,u,v = µ̃
(2,1,1)
h,suv − 2µ̃

(1)
h,sµ̃

(1,1,1)
h,suv − µ̃

(1)
h,s+uµ̃

(2,1)
h,s(u+v) − µ̃

(1)
h,s+u+vµ̃

(2,1)
h,su +

(
µ̃

(1)
h,s

)2

µ̃
(1,1)
h,(s+u)v

+2µ̃
(1)
h,sµ̃

(1)
h,s+uµ̃

(1,1)
h,s(u+v) + 2µ̃

(1)
h,sµ̃

(1)
h,s+u+vµ̃

(1,1)
h,su + µ̃

(1)
h,s+uµ̃

(1)
h,s+u+vµ̃

(2)
h,s

−3
(
µ̃

(1)
h,s

)2

µ̃
(1)
h,s+uµ̃

(1)
h,s+u+v + µ̃

(1,2,1)
h,suv − 2µ̃

(1)
h,s+uµ̃

(1,1,1)
h,suv − µ̃

(1)
h,sµ̃

(2,1)
h,(s+u)v − µ̃

(1)
h,s+u+vµ̃

(1,2)
h,su

+
(
µ̃

(1)
h,s+u

)2

µ̃
(1,1)
h,s(u+v) + 2µ̃

(1)
h,sµ̃

(1)
h,s+uµ̃

(1,1)
h,(s+u)v + 2µ̃

(1)
h,s+uµ̃

(1)
h,s+u+vµ̃

(1,1)
h,su

+µ̃
(1)
h,sµ̃

(1)
h,s+u+vµ̃

(2)
h,s+u − 3µ̃

(1)
h,s

(
µ̃

(1)
h,s+u

)2

µ̃
(1)
h,s+u+v + µ̃

(1,1,2)
h,suv − 2µ̃

(1)
h,s+u+vµ̃

(1,1,1)
h,suv

−µ̃(1)
h,sµ̃

(1,2)
h,(s+u)v − µ̃

(1)
h,s+uµ̃

(1,2)
h,s(u+v) +

(
µ̃

(1)
h,s+u+v

)2

µ̃
(1,1)
h,su + 2µ̃

(1)
h,sµ̃

(1)
h,s+u+vµ̃

(1,1)
h,(s+u)v

+2µ̃
(1)
h,s+uµ̃

(1)
h,s+u+vµ̃

(1,1)
h,s(u+v) + µ̃

(1)
h,sµ̃

(1)
h,s+uµ̃

(2)
h,s+u+v − 3µ̃

(1)
h,sµ̃

(1)
h,s+u

(
µ̃

(1)
h,s+u+v

)2

,

Eh,s,u,v,w = µ̃
(1,1,1,1)
h,suvw − µ̃

(1)
h,s+u+vµ̃

(1,1,1)
h,su(v+w) − µ̃

(1)
h,s+u+v+wµ̃

(1,1,1)
h,suv + µ̃

(1)
h,s+u+vµ̃

(1)
h,s+u+v+wµ̃

(1,1)
h,su − µ̃

(1)
h,sµ̃

(1,1,1)
h,(s+u)vw

+µ̃
(1)
h,sµ̃

(1)
h,s+u+vµ̃

(1,1)
h,(s+u)(v+w) + µ̃

(1)
h,sµ̃

(1)
h,s+u+v+wµ̃

(1,1)
h,(s+u)v − µ̃

(1)
h,s+uµ̃

(1,1,1)
h,(s+u)vw + µ̃

(1)
h,s+uµ̃

(1)
h,s+u+vµ̃

(1,1)
h,s(u+w+v)

+µ̃
(1)
h,s+uµ̃

(1)
h,s+u+v+wµ̃

(1,1)
h,s(u+v) + µ̃

(1)
h,sµ̃

(1)
h,s+uµ̃

(1,1)
h,(s+u+v)w − 3µ̃

(1)
h,sµ̃

(1)
h,s+uµ̃

(1)
h,s+u+vµ̃

(1)
h,s+u+v+w.

Ishida and Engle (2002) and others argue that the conditional variance of the conditional

variance grows faster than linearly with the current variance. Our formula for µ
(2)
h,s shows

that the conditional variance of the forward conditional variance is a quadratic function of

the current variance ht+1, in model (1). Hence, the uncertainty around the point variance

forecast increases much more than linearly when variance levels are high, much reducing the

reliability of the point forecast. This highlights the importance of our analytic formulae for

the higher moments of GARCH variances.8

8Intuitively, we expect distributions of forward variances to be positively skewed, since jumps in variance
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Figure 4: Simulated kurtosis of aggregated returns. The figure compares our theoretical values with
simulated values of the kurtosis of aggregated returns for the Student t-GARCH(1,1) model. The black line
is our theoretical value, the grey line is based on 5 million simulations for 120 steps ahead of forward returns,
and the dotted grey lines are two other simulated values for kurtosis based on 1 million simulations. The
parameter values are: µ = 0, ω = 0.05, α = 0.075, β = 0.9, df = 6, and σ2

t+1 = 10.

3 Simulation and Bootstrapping Results

Simulations offer simplicity, and with modern computers they are also fast, but they can be

inaccurate. To support this observation Figure 4 compares our theoretical formulae for the

kurtosis of aggregated returns 120 days ahead with their simulated values.9 We generate this

figure by taking N × 120 simulations with standardised Student t innovations. We conclude

that simulations can easily over- or under-estimate kurtosis, even with N = 5 million runs.

To examine this bias further, we undertook a bootstrapping exercise. For this, we assume

a standardised symmetric t-GARCH(1,1) process with 6 degrees of freedom and the following

base set of GARCH parameters: µ = 0, ω = 0.05, α = 0.075; β = 0.9. Our aim is to estimate

the distribution of the skewness and kurtosis of the aggregated returns using a bootstrap

approach, and to compare this with our closed-form expressions for the skewness and kurtosis,

up to 120 days ahead. We construct two distributions, one via bootstrapping and one using

are usually positive rather than negative. In an empirical implementation of the moments formulae derived
in this section we find that the skewness of forward variance is indeed positive, for all horizons and all three
samples considered; we also find that the excess kurtosis of variance is always positive. These empirical
results are excluded from this paper for reasons of space, but can be obtained from the authors on request.

9We choose 120 days because it is the longest risk horizon recommended by Basel III banking regulations.
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the closed-form formulae, for the skewness and kurtosis of aggregated returns. Assuming an

initial variance of σ2
t+1 = 10, we simulate a time series of 5,000 t-GARCH returns based on

the above parameters. Then we re-estimate the parameters of the t-GARCH(1,1) model.10

We repeat this simulation and parameter re-estimation exercise 1,000 times and each time

we also save the standardised residuals, for use in the bootstrap.

Using the closed-form expressions derived in Theorem 1, we calculate the skewness and

kurtosis of the returns aggregated over n days for n = 1, ....120, for each set of re-estimated

t-GARCH(1,1) paramaters. For the symmetric t-GARCH(1,1) process the skewness Tr,n is

always zero, but the kurtosis Kr,n is typically non-zero. Hence, based on 1,000 sets of re-

estimated GARCH parameters, we have generated a simulated distribution for the kurtosis

of aggregated returns. We shall illustrate this distribution using its quantiles in Figure 5. In

the bootstrap approach, for each set of re-estimated GARCH parameters, we:

(a) Simulate t-GARCH returns, 120 days ahead, using the bootstrapped returns from the
saved residuals and aggregate the returns over n days ahead, for n = 1, ...120;

(b) Repeat step (a) 1,000 times;

(c) Calculate the skewness and kurtosis of the aggregated returns, for n = 1, ..., 120.

This yields an empirical distribution of 1,000 values for the skewness and kurtosis of aggre-

gated returns, one value for each set of re-estimated parameters. In Figure 5 we plot the

means and the [10%, 90%] and [25%, 75%] confidence intervals of the skewness and kurtosis

of aggregated returns, computed using the closed-form formulae (only for the kurtosis) and

via bootstrapping (for both skewness and kurtosis), and compare them with the values given

by the closed-form formulae using the base set of parameters.

We draw the following conclusions: (i) the bootstrapped skewness is unbiased; (ii) the

bootstrapped kurtosis presents a downwards bias; (iii) the ‘true’ value of the kurtosis lies

outside the inter-quartile range for the bootstrapped kurtosis, in most cases (the effect is

10The parameters were re-estimated using the R statistical package for t-GARCH. We tried using fewer
returns but there was considerable variation in the re-estimated paramaters. There was some variation in
the re-estimated parameters even with a sample of size 5,000 but, for instance, with only 1,000 simulated
returns the re-estimated α parameter varied between 0.05 and 0.1 while the β varied between 0.95 and 0.85
– most of the time. In fact, a few values lay outside this range. Results available on request.
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more visible at longer horizons); and (iv) the kurtosis estimate computed using the closed-

form formulae is unbiased.

Figure 5: Skewness and kurtosis of aggregated returns – bootstrapping exercise. The figure
compares our theoretical values with bootstrapped values of the skewness and kurtosis of aggregated returns
for the Student t-GARCH(1,1) model. The dotted line is our theoretical value, the black line is the mean
based on 1,000 bootstraps for n aggregated returns, with n = 1, ..., 120 along the horizontal axis. The inter-
quartile range and the [10%, 90%] confidence intervals are depicted for each distribution. The base parameter
values for the bootstrap are: µ = 0, ω = 0.05, α = 0.075, β = 0.9, df = 6, and we set σ2

t+1 = 10.
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4 Limits of the Moments

The limits of the forward and aggregated mean are trivial and immediate, but the convergence

behaviour of the conditional moments as the time horizon increases are more complex:

Theorem 3: Limits of Moments of Forward and Aggregated Returns

Suppose ϕ ∈ (0, 1) and ϕ 6= γ for model (1). Then:11

lim
s→∞

µ(2)
r,s = h̄, (5)

lim
s→∞

τr,s =

 τz

(
5
8

+ 3
8

(
ω2 + 2ωϕh̄

)
(1− γ)−1(h̄)−2

)
if γ ∈ (0, 1) ,

sgn (τz)∞ if γ ∈ [1,∞) ,
(6)

lim
s→∞

κr,s =

 κz
(
ω2 + 2ωϕh̄

)
(1− γ)−1(h̄)−2

if γ ∈ (0, 1) ,

∞ if γ ∈ [1,∞) ,
(7)

lim
n→∞

M
(2)
r,n

n
= h̄, (8)

lim
n→∞

Tr,n =


0 if γ ∈ (0, 1) ,

sgn

(
τz
(
α + γ−ϕ

3

)
+ λ

0́

x=−∞
x3f (x) dx

)
∞ if γ ∈ [1,∞) ,

(9)

lim
n→∞

Kr,n =


3 if γ ∈ (0, 1) ,

3 + κz
2

(1− ϕ2)
(
1 + 6 (α + λF0 + κ−1

z β) (1− ϕ)−1)+ sgn (|λ|+ |τz|)∞ if γ = 1,

∞ if γ ∈ (1,∞) .

(10)

Hence, under suitable parameter conditions, the conditional moments of forward one-period

returns converge to finite limits that are the unconditional counterparts of the respective

conditional moments, and these parameter conditions are the necessary and sufficient condi-

11sgn (x) =

 −1 if x < 0,
0 if x = 0,
1 if x > 0

and we use the convention that sgn (0)∞ = 0.
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tions for the existence of the corresponding unconditional moments. Indeed, ϕ ∈ (0, 1) is a

necessary and sufficient condition for the existence of the unconditional variance, as can be

shown using Theorem 2.2 (and Example 2.1) in Ling and McAleer (2002b), and for ϕ ∈ (0, 1)

a steady-state level of variance exists, i.e. ∃ h0 such that E (ht) = h0, for any t ∈ N . It is

easy to show that, when it exists, the unconditional variance h0 is given by: h0 = ω
1−ϕ = h̄.12

Thus we obtain that for ϕ ∈ (0, 1), lim
s→∞

µ
(2)
r,s = lim

s→∞
Et (ht+s) = h̄ = E (ht+s).

Again, using Theorem 2.2 from Ling and McAleer (2002b), a necessary and sufficient

condition for the existence of the fourth unconditional moment is γ ∈ (0, 1). This is the

condition required in Theorem 3 for the fourth conditional moment to converge to a finite

limit. It is easy to show that, when it exists, the fourth unconditional moment is given by:

E
(
ε4
t

)
= κzE

(
h2
t

)
= κz

ω2 + 2ωϕh̄

1− γ
= κzc1

and, as a result, the unconditional kurtosis is given by the same expression as in (7) above,

for γ ∈ (0, 1). A special case of this result is the unconditional kurtosis for a GARCH(1,1)

process with symmetric innovations, derived by Ishida and Engle (2002).

The unconditional skewness is given by:

E (ε3
t )

[E (ε2
t )]

3/2
=
E
(
z3
t h

3/2
t

)
[E (ht)]

3/2
= τz

E
(
h

3/2
t

)
[E (ht)]

3/2
.

Since E
(
h

3/2
t

)
cannot be computed analytically in this framework, we use a second order Tay-

lor series expansion to approximate it. Thus, E
(
h

3/2
t

)
' 5

8
(E (ht))

3/2 + 3
8
E (h2

t ) (E (ht))
−1/2

and a resulting approximation of the unconditional skewness is the same as the expression

given in (6) for γ ∈ (0, 1).

For the aggregated returns, if gamma is below 1, the limit of the skewness is zero, and

the limit of the excess kurtosis is zero as well, which illustrates the results of the central

limit theorem that the limiting distribution is normal. The same conditions are needed for

the convergence of s-step ahead skewness and kurtosis, as for the convergence of skewness

12Applying the expectation operator on both sides of the equation for the GJR conditional variance and
using that the indicator I−t and the even powers of the contemporaneous innovations ε2kt , where k ∈ N , are
independent, we get: E (ht) = ω + αE

(
ε2t−1

)
+ λE

(
ε2t−1

)
F0 + β E (ht). Using that Et−2

(
ε2t−1

)
= ht−1

and the tower law of expectations, we can write: E (ht) = ω + (α + λF0 + β) E (ht), which yields E (ht) =
ω

1−ϕ = h̄.
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and kurtosis of aggregated returns. This is in line with the results of Francq and Zakoian

(2010), Appendix A.3.3 with respect to the limit of stationary martingale differences. The

conditional moments of the aggregated returns converge to the corresponding moments of

a normal distribution, provided that certain parameter conditions are met. Outside of the

regularity conditions, the conditional skewness of aggregated returns diverges to ±∞ and

the conditional kurtosis of aggregated returns diverges to +∞. This is similar to a result

of Diebold (1988) who shows that the unconditional distribution of the aggregated returns

for a conditionally normal AR-ARCH (m, p) process also converges to a normal distribution,

under suitable parameter conditions.

Interestingly, identical convergence conditions apply for the moments of both forward and

aggregated returns. Whenever the moments of forward returns converge to the unconditional

moments, the aggregated moments converge to the corresponding moments of a normal dis-

tribution. Moreover, for a special case of the generic framework, namely for the normal

GARCH(1,1) model with γ = 1, the limit of the kurtosis of forward returns is infinite whilst

the kurtosis of aggregated returns converges to a constant value different from 3. In fact, this

additional convergence case for γ = 1 is not specific to the normal GARCH(1,1): it applies to

any GARCH(1,1) model with symmetric innovations. This result, for the symmetric special

case, is in agreement with Breuer and Jandacka (2010) even though our proof is different

from theirs.

Theorem 4: Limits of Moments of Forward and Aggregated Variances

Suppose ϕ ∈ (0, 1) and γ 6= ϕ (as above); additionally c6 6= γ and c6 6= ϕ. Then we have:

a) The limit of the conditional variance of the forward conditional variance of model (1) is:

lim
s→∞

µ
(2)
h,s =


((
ω2 + 2ωϕh̄

)
(1− γ)−1 − h̄2

)
if γ ∈ (0, 1) ,

∞ if γ ∈ [1,∞) .
(11)

b) The limit of the conditional variance of the aggregated conditional variance (per unit of

time) of model (1) is:
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lim
n→∞

M
(2)
h,n

n
=


((
ω2 + 2ωϕh̄

)
(1− γ)−1 − h̄2

) (
1 + 2ϕ(1− ϕ)−1) if γ ∈ (0, 1) ,

∞ if γ ∈ [1,∞) .
(12)

c) The limit of the conditional skewness of the forward conditional variance of model (1) is:

lim
s→∞

τh,s =

 M1 if c6 ∈ (0, 1) ,

∞ if c6 ∈ [1,∞) ,
(13)

where

M1 =
ω
(
ω2 + 3ωϕh̄+ 3γc1

)
(1− c6)−1 − 3h̄c1 + 2h̄3(

c1 − h̄2
)3/2

d) For γ ∈ (0, 1) the conditional skewness of the aggregated conditional variance of model

(1) has limit:13

lim
n→∞

Th,n =


0 if c6 ∈ (0, 1) ,

∞ if c6 ∈ (1,∞) ,

sgn(N)∞ if c6 = 1,

(14)

where

N =
ω(ω2+3ωϕh̄+3γc1)

2
+ 3 h̄

2

(
c1 + ϕ

(
ω2 + 3ωϕh̄+ 3γc1

)
+ ω2(1− γ)−1 + 2ωϕh̄

)
+3γ(1− γ)−1 (ω2+3ωϕh̄+3γc1)

2

(
ω + 2ϕh̄

)
+3(1− ϕ)−1h̄

[
c1 (1 + ϕ)− 2ϕh̄2 + h̄

((
ht+1 − h̄

)
− ω

)
− ϕ

(
2c1 − h̄2

)]
.

The returns process has no autocorrelation so the variance of aggregated returns is just the

sum of the forward one-period variances. However, the variance process is autocorrelated.

As a result the variances of the two processes have different limiting behaviour. The limit of

the variance of aggregated returns per unit of time is equal to the limit of forward variance

(i.e. lim
n→∞

M
(2)
r,n

n
= lim

s→∞
µ

(2)
r,s ), but the same does not hold for the variance of variance. Indeed,

lim
n→∞

M
(2)
h,n

n
> lim

s→∞
µ

(2)
h,s.

13Since proofs become increasingly lengthy we only state the limit of the conditional skewness of the
aggregated conditional variance in the case that γ ∈ (0, 1), and for γ ≥ 1 we present the principles of the
derivation in the Technical Appendix A4.
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Of course, the returns and variance processes are not independent, and certain aspects

of this dependence are reflected in a similar behaviour in their limiting distributions. In

particular, recall that the forward and aggregated returns had identical regularity conditions

and that whenever a moment of forward returns converges to a finite limit, the corresponding

moment of aggregated returns converges to the normal value. Theorem 4 yields a similar re-

sult for forward and aggregated variances: the skewness of the aggregated variance converges

to zero when the skewness of forward variance converges to a finite value. Figure 6 shows

the convergence areas for the moments of the returns and variance.

3

4

5

6

7

8

9

10

0.2 0.35 0.5 0.65 0.8

k_z

F0

γ > 1

c6 < 1

c6 >1

γ < 1

Figure 6: Convergence of moments The convergence areas for the moments of the returns and variances
are illustrated, as a function of F0 and κz. The parameter values used are ω = 0.000075, α = 0.03887, λ =
0.007846 and β = 0.9476.

How useful are these results in practice? In the previous section we have compared our

theoretical results with simulated and bootstrapped values for these moments and we have

demonstrated that both simulated and bootstrapped moments can be highly inaccurate.

Another point to note is that our results yield parameter conditions for the existence of finite

values for the skewness and kurtosis of the aggregated returns. In the next section we shall

apply some standard models to daily log returns on some standard risk factors for equities,
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foreign exchange rates and interest rates. We used the daily log returns on the S&P 500 index,

the daily log returns on the EUR/USD exchange rate, and the daily basis point changes in

the 3-month US Treasury bill rate, from 1990 to 2018. The GARCH(1,1) and GJR normal

and Student t GARCH models were estimated using these data, with estimations being based

on an in-sample period of about 10 years of daily returns. All models were rolled forward

daily, then used for forecasting s-step ahead forward and aggregated returns and variances.

We were rather surprised by our findings, which were derived from both the EVIEWS

package and the MatLab Financial Econometrics (MFE) tool box provided by Kevin Shep-

pard, each being standard tools for academic research on GARCH models. For instance,

based on the out-of-sample period 1 Jan 2018 to 30 March 2018 2018, most of these models

returned a value for γ which is greater than 1, implying that both the (unconditional) skew-

ness and kurtosis of these returns are infinite, and that these moments of aggregated returns

will diverge as the risk horizon increases.14

5 An Application: Approximate Predictive Distributions

Density forecasting is a prime application of our moment formulae.15 Whilst one must know

all the moments of a random variable to determine its distribution,16 it can be approximated

based on the first few moments alone. Based on their relative merits and drawbacks, and

given the frequency of their use in similar applications as well as the feasibility of obtaining

14Earlier estimations did not have this problem, except for the interest rate data – more detailed results are
available on request. The only exceptions were the EUR/USD exchange rate models with normal innovations,
where few of the estimations returned a value for γ which implied divergence skewness and kurtosis.

15Another possible application in finance is the computation of Value-at-Risk and Expected Shortfall of
portfolios, for regulatory purposes. This is a natural extension of the moments formulae, which can to be
used jointly with a statistical approximation method such as: the Johnson SU distribution, illustrated in
Simonato (2010), or the Gram-Charlier expansions (for example the Edgeworth expansion discussed below).
In this second case the formulae are lengthy (available from the authors on request). Also, a working formula
for the Edgeworth Expected Shortfall is published in Boudt, Peterson and Croux (2009), which can be
modified by calculating VaR via an inversion of the Edgeworth expansion (as opposed to a Cornish-Fisher
approximation). Alternatively, the Cornish-Fisher ES formulae of Christoffersen (2012) can be used. These
are all time-efficient approximations, the efficiency of which needs further investigation.

16To be precise, a distribution is uniquely determined by its moments only if the Carleman condition holds,

i.e. only if
∞∑

n=1
α−0.5n2n →∞, where {αk} is the moment sequence (see Serfling, 1980, p.46). In the following

we assume that this condition is met.
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an approximate distribution function in closed form, we have selected two approximation

methods: the Edgeworth expansion and the Johnson SU distribution.

5.1 Distribution Approximations Methods

The first paper to use the Edgeworth expansion to approximate the multi-step-ahead dis-

tribution in GARCH models is Baillie and Bollerslev (1992).17 The Edgeworth expansion

can approximate a density of interest around a base density, usually the standard normal

density.18 It belongs to the class of Gram-Charlier expansions, being a rearrangement of a

Gram-Charlier A series.19 However, Gram-Charlier A series and Edgeworth series are only

equivalent asymptotically, when an infinite number of terms enter the expansions. In em-

pirical applications using finite order approximations they can differ significantly, and the

Edgeworth version is preferred because it is an asymptotic expansion.20 Nevertheless, the

Edgeworth expansion may have monotonicity and convergence problems, i.e. the distribu-

tion function is not guaranteed to be monotonic and the error of approximation does not

necessarily improve when we increase the order of the expansion.21

The first four terms of the Edgeworth expansion are:

fx (x) ' fEx (x) = ϕ (x)− τx
6
ϕ(3) (x) + (κx−3)

24
ϕ(4) (x) + τ2x

72
ϕ(6) (x) ,

where fEx (x) is the second-order Edgeworth approximation of fx, so moments (cumulants)

of order higher than four (kurtosis) are ignored, ϕ is the standard normal density and ϕ(k)

17They constructed multi-step-ahead prediction error intervals in ARMA-GARCH models and, assuming
a GARCH(1,1) error term with symmetric innovation density, explicitly computed the second and fourth
conditional moments of the s-step-ahead forecast error at forecast origin t. Then they use the Cornish-Fisher
expansion to approximate the quantiles of the multi-step-ahead prediction error distribution. Similarly,
Alexander et al. (2013) use analytic higher-order moments to compute the multi-step-ahead Value-at-Risk
from GARCH models using the Cornish-Fisher expansion.

18For the general theory and expansion see Edgeworth (1905), Wallace (1958) and Bhattacharya and Ghosh
(1978).

19See Chebyshev (1860), Chebyshev (1890), Gram (1883), Charlier (1905) and Charlier (1906).
20An asymptotic expansion is defined in Wallace (1958) as one where the error of approximation approaches

zero as one of its parameters, e.g. the sample size for approximations of the sampling distribution of a random
sample of size T , approaches infinity. Furthermore, Wallace (1958) calls the Edgeworth expansion a ’formal’
asymptotic expansion.

21See Jasche (2002) and Wallace (1958).
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is its kth derivative, and τx and κx denote the skewness and kurtosis of fx. For our purposes

fx will be the density of the normalised forward returns.

A random variable x is said to follow a Johnson SU distribution (Johnson, 1949) if:

z = γ + δsinh−1
(
x−ξ
λ

)
,

where z is a standard normal variable. The four parameters γ, δ, ξ and λ may be estimated

using the moment-matching algorithm described in Tuenter (2001). Although flexible, the

main disadvantage of this approach is that a Johnson SU distribution is not guaranteed to

exist for any set of mean, variance, skewness and (positive) excess kurtosis.

5.2 Evaluation Methods

To assess how well these approximate distributions serve their purpose we should investigate

whether they provide an adequate representation of the conditional distributions of forward

returns. But these distributions are not observable, even ex-post, so we shall use simulated

distributions as proxies. The null hypothesis is H0: Fm = Fs, where Fm is the cumulative dis-

tribution function for the approximate distribution constructed using the first four moments

and a specific approximation method, and Fs is the distribution function for the simulated

forward returns based on the GARCH process. The simulated distribution Fs is given by the

step-function of the sample. Thus, Fs (xi) = T−1i, where i is the number of returns less than

or equal to xi, with xi being an increasingly ordered sample for i ∈ {1, ..., T}, and T is the

number of simulations.

The Kolmogorov-Smirnov (KS) and Anderson Darling (AD) tests are standard hypoth-

esis tests where the null is the equality of two distributions.22 The KS test, proposed by

Kolmogorov (1933) and Smirnov (1939), is based on the maximum difference D between an

empirical and a hypothetical cumulative distribution. The test statistic is KS =
√
TD, where

D = max
x
|Fm (x)− Fs (x)| . For practical implementations, we use the following version:23

22For alternatives and extensions of these tests see Diebold et al. (1999), Clements and Smith (2000 and
2002) and Corradi and Swanson (2006a and 2006b).

23See Anderson and Darling (1952) and Pearson and Hartley (1972).
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KS =
√
T max

1≤i≤T

{
max

[
Fm (xi)− i−1

T
, i
T
− Fm (xi)

]}
.

When comparing alternative models, the one with the lowest KS value is deemed the most

accurate for predicting the distribution in question.

The framework proposed by Anderson and Darling (1952) is more flexible, allowing for

different weighting of the observations. They propose two distance measures, which are

actually generalisations of the KS and Cramer von Mises (CVM) statistics.24 The respective

test statistics are given by:

AD1 = T 1/2 max
x
|Fm (x)− Fs (x)|

(
ψ(Fm (x))1/2

)
, (15)

AD2 = T

ˆ

x

[
(Fm (x)− Fs (x))2ψ (Fm (x))

]
, (16)

where ψ is a weighting function. Following convention we refer to the Anderson-Darling (AD)

test as (16) with a weighting function ψ (x) = (x (1− x))−1.25

Conducting these tests in our setting requires the simulation of critical values. The

statistics only have standard distributions if the distribution under the null hypothesis is

entirely pre-specified, but in our case the Fm distribution relies on estimated parameter

values so the theoretical critical values are no longer applicable.

5.3 Data and Methodology

The performance of our proposed distribution forecasts is tested using daily observations

on an equity index (S&P 500), a foreign exchange rate (Euro/dollar) and an interest rate

(3-month Treasury bill). These series represent three major market risk types and within

each class they represent the most important risk factors in terms of volumes of exposures.

Data were obtained from Datastream and each comprise almost 30 years of daily data from

24The KS and Cramer-von Mises tests are obtained when ψ(t) = 1 in (15) and (16) respectively.
25For practical implementations and for an increasingly ordered sample, we use the following versions of

the CVM and AD test statistics (see Anderson and Darling, 1952 and Pearson and Hartley, 1972):

CVM =
T∑

i=1

[
Fm (xi)− 2i−1

2T

]2
+ 1

12T , AD = −
T∑

i=1

2i−1
T [ln (Fm (xi)) + ln (1− Fm (xT+1−i))]− T.

24



1st January 1990 to 30th March 2018.26 Figure 7 plots the daily log returns for the equity

and exchange rate data and the daily changes in the interest rate.27

Figure 7: Returns The equity and exchange rate daily (log) returns are computed as the first differences
of the logarithm of the S&P 500 index values and Euro/dollar exchange rates, respectively. The interest rate
returns are computed as first differences in interest rate values.

S&P 500 EUR/USD 3M Bill

Mean 0.00028 -7.9E-06 -8.3E-06
Maximum 0.11 0.0384 0.0074
Minimum -0.0947 -0.0462 -0.0081
Volatility 0.176 0.097 0.0074
Skewness -0.262*** -0.084*** -0.888***

Excess kurtosis 8.88*** 2.48*** 50.4***

Table 1: Summary statistics. Sample statistics for the equity and exchange rate daily log returns, and
for the daily basis point changes in interest rates from 1990 to 2018. Asterisks denote significance at 5% (*),
1% (**) and 0.1%(***). The standard error of the sample mean is equal to the sample standard deviation,

divided by sample size, while the standard errors are approximately (6/T )
1/2

and (24/T )
1/2

for the sample
skewness and excess kurtosis, respectively, where T is the sample size. We used 252 risk days per year to
annualize the standard deviation into volatility.

Table 1 presents the sample statistics of the empirical unconditional daily returns distri-

bution over the entire sample. In accordance with stylized facts the mean of every series is not

26The Euro was only introduced in 1999, so the ECU/dollar exchange rate is used before this date.
27First differences in fixed maturity interest rates are the equivalent of log returns on corresponding bonds.
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statistically different from zero and the unconditional volatility is highest for the equity and

lowest for the interest rates. Skewness is negative and low (in absolute value) but significant

for all three series, so extreme negative returns are more likely than extreme positive returns

of the same magnitude, while excess kurtosis is always positive and highly significant, so the

unconditional distributions of the series have a greater probability mass in the tails than the

normal distribution with the same variance.

For each time series we repeatedly estimate four different GARCH models, namely the

baseline GARCH(1,1) and the asymmetric GJR, each with normal and Student t error distri-

butions. For each model we estimate the parameters using ten years (approximately 2500) of

observations on each time series. The estimation window is then rolled daily and parameters

are re-estimated until the entire dataset is exhausted. The resulting time series of estimated

model parameters are subsequently used to compute corresponding time series for the higher

moments of forward and aggregated returns, based on the formulae derived in Section 2.28

This way, we construct time series of conditional moments for the forward and aggregated

returns and variances, for any time horizon s, from 3rd January 2000 to 30th March 2018.

Next, we apply the two approximation methods summarised in Section 5.1 to derive

distributions for the s-day forward and aggregated returns for each of the four GARCH

models, yielding eight approximate distributions to evaluate and compare with distributions

based on 10,000 simulations. Then we test the accuracy of our approximations using the KS

distance, the CVM and AD test statistics described in Section 5.2. To capture any differences

between market regimes the tests are performed for 150 days from a low volatility period

(i.e. January to August 2006), 150 days from a high volatility period (i.e. August 2008 to

March 2009) and the current period from 2nd January to 30th March 2018. In Tables 2 and

4 these periods are labelled ‘low vol’, ‘high vol’ and ‘current’ respectively. The label ‘total’

refers to results obtained for all three periods considered together.

28Recall that only the normal and Student t GJR lead to non-zero skewness forecasts for the forward
and aggregated returns, but the skewness of the forward and aggregated variances is non-zero even for the
symmetric models. All four models yield non-zero, positive excess kurtosis for all time series.
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Data Normal GARCH Normal GJR t-GARCH t-GJR
S&P 500 total low vol high vol current total low vol high vol current total low vol high vol current total low vol high vol current
µ̂× 103 0.228 0.296 0.074 0.440 -0.105 -0.015 -0.281 0.109 0.335 0.359 0.200 0.608 0.088 0.137 -0.079 0.378
ω̂ × 105 0.129 0.126 0.096 0.220 0.162 0.188 0.108 0.230 0.090 0.106 0.058 0.126 0.126 0.152 0.078 0.180

α̂ 0.082 0.075 0.068 0.135 -0.011 -0.005 -0.016 -0.012 0.078 0.062 0.068 0.138 -0.014 -0.009 -0.019 -0.012

λ̂ - - - - 0.146 0.137 0.125 0.219 - - - - 0.148 0.126 0.129 0.251

β̂ 0.910 0.917 0.927 0.850 0.924 0.921 0.945 0.878 0.920 0.930 0.931 0.866 0.928 0.932 0.947 0.872
degrees of freedom - - - - - - - - 8.485 9.120 9.267 5.000 10.291 11.164 11.376 5.475
long term volatility 34.3% 12.2% 50.4% 18.3% 36.3% 12.6% 53.2% 20.4% 35.1% 12.1% 51.7% 19.0% 37.0% 12.5% 54.4% 21.3%

Data Normal GARCH Normal GJR t-GARCH t-GJR
Euro/Dollar total low vol high vol current total low vol high vol current total low vol high vol current total low vol high vol current

µ̂× 103 -0.090 -0.014 -0.184 -0.050 -0.088 -0.010 -0.162 -0.101 -0.036 0.069 -0.136 -0.048 -0.036 0.070 -0.129 -0.072
ω̂ × 105 0.021 0.027 0.020 0.011 0.020 0.027 0.020 0.006 0.020 0.025 0.020 0.009 0.019 0.025 0.020 0.004

α̂ 0.028 0.027 0.029 0.032 0.028 0.029 0.033 0.012 0.030 0.031 0.028 0.035 0.029 0.032 0.031 0.015

λ̂ - - - - -0.001 -0.004 -0.010 0.025 - - - - 0.001 -0.002 -0.006 0.025

β̂ 0.966 0.966 0.967 0.966 0.968 0.966 0.967 0.974 0.965 0.963 0.967 0.964 0.966 0.963 0.968 0.973
degrees of freedom - - - - - - - - 9.069 8.966 10.036 6.942 9.124 8.961 10.120 7.076
long term volatility 12.4% 8.7% 16.6% 7.1% 12.5% 8.7% 16.8% 6.5% 12.4% 8.7% 16.5% 7.1% 12.4% 8.7% 16.6% 6.5%

Data Normal GARCH Normal GJR t-GARCH t-GJR
3M Treasury Bill total low vol high vol current total low vol high vol current total low vol high vol current total low vol high vol current

µ̂× 103 4.167 5.014 4.615 0.983 2.993 3.775 3.074 0.869 2.637 2.978 2.944 1.042 2.423 2.852 2.580 0.982
ω̂ × 105 4.372 6.131 4.191 0.493 4.747 6.293 4.931 0.493 6.161 8.902 5.677 0.613 6.350 9.024 6.007 0.621

α̂ 0.271 0.260 0.313 0.191 0.161 0.163 0.156 0.170 0.181 0.168 0.199 0.167 0.145 0.148 0.139 0.154

λ̂ - - - - 0.187 0.176 0.257 0.040 - - - - 0.077 0.047 0.126 0.033

β̂ 0.763 0.760 0.743 0.817 0.770 0.765 0.756 0.818 0.803 0.799 0.800 0.818 0.799 0.796 0.795 0.815
degrees of freedom - - - - - - - - 5.472 5.452 5.277 6.000 5.630 5.549 5.560 6.000
long term volatility 156.6 52.0 235.2 49.9 159.4 50.3 240.1 48.7 142.7 52.3 213.0 47.0 146.1 51.6 218.7 46.0

Table 2: GARCH model parameter estimates We report an average of the time series of parameter estimates from the four different GARCH
models for each of the three datasets. Each model is re-estimated daily using the last ten years of daily log returns. Averages reported are labelled
‘low vol’, ‘high vol’ and ‘current’ and these refer to the sub-periods: January to August 2006, August 2008 to March 2009 and observations from 2018,
respectively. The label ‘total’ refers to the average over all three sub-periods considered together.
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5.4 Empirical Results

First consider the parameter estimates obtained for each model and each dataset. Parameters

are re-estimated daily, so to depict all the estimates would require 12 pages, each displaying

between 4 and 6 time series over 17 years. Therefore, because we lack space here, Table 2

simply summarises the model parameter estimates as averages taken over the different sub-

samples described above.29 There is nothing particularly remarkable about these parameter

estimates; they largely conform to those found by other researchers in the field, see Harvey

and Lange (2017), Herwartz (2017) and many other empirical studies cited above.

Turning now to the accuracy tests for our distribution approximations, we proceed as

follows: (i) Fix a model and its parameter estimates and the value of s for the horizon of

interest;30 (ii) Use these model parameters to generate exact values for the first four moments

of s-day forward and aggregated returns, based on our analytic moment formulae; (iii) Fit

two types of distribution approximation to these moments, i.e. (a) Johnson SU and (b) the

Edgeworth expansion, as described in Section 4.1; (iv) use the same value of s and the same

model parameters to generate 10,000 simulations of s-day forward and aggregate returns,

whence we obtain an empirical distribution; and finally (v) apply the evaluation methods for

equality of the two distributions described in 4.2.

This very comprehensive and extensive exercise is impossible to report in detail, so the

only time horizon reported here is s = 5 days. The results we report here are qualitatively

similar to our results for s = 10 and 20 trading days, which are available on request. Tables

3 and 4 summarize the results of the distribution tests for each of the eight approximate

distributions considered.31 The AD test gave results very similar to the CVM test, hence

we only report the results for the KS and CVM tests. We report the mean values and the

29The conditional mean µ is assumed constant here, but note our earlier remarks about filtering through
an autoregressive model if this is necessary to remove autocorrelation in daily returns.

30For instance, take the normal GJR model estimated using ten years of daily log returns on the S&P 500
ending on 31 December 2008, and examine the moments of s-day forward and aggregated returns distributions
for s = 10.

31For the interest rate sample, fitting the Johnson SU distribution using the moments of the aggregated
returns estimated for the Student t GJR was problematic and hence, for this sample, we do not report results
for the Johnson SU Student t GJR in Table 3.
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associated standard deviations of the test statistics and also the percentage of times when the

computed test statistic was higher than the asymptotic 5% critical value. Since we perform

the tests at the 5% significance level we expect a 5% rejection rate.

The 5% critical values are 0.0136 for the KS distance and 0.461 for the CVM statistic.32

Although the asymptotic critical values do not apply exactly in our case, the model produc-

ing the lowest values is still the best among the alternatives.33 We now discuss the results in

greater detail for the equity, exchange rate and interest rate distributions in turn.

(a) S&P 500 Index

The Johnson SU approximation appears to be a more suitable approximation than the

Edgeworth expansion for the forward returns, especially when applied in combination with

the moments produced by the Student t GARCH(1,1) and GJR models. For the normal

GARCH(1,1) and GJR models the average values of both the KS and CVM test statistics

are still greater, but only marginally, for the Edgeworth approximations, compared with their

Johnson SU counterparts. Indeed, if the Edgeworth expansion is used, then the models with

normal innovations fit the simulated distributions significantly better than their Student t

counterparts. This is not the case for the Johnson SU distribution, where all four GARCH

specifications provide very close fits to the simulated distributions (although again the normal

models, and especially the normal GARCH(1,1), do give slightly better fits than the Student

t models). Overall, the Johnson SU normal GARCH(1,1) model produces the lowest average

values of both the KS distance (0.0087) and CVM test statistic (0.1687). For the aggregated

returns, the results improve even further, with the Johnson SU methodology still proving

32These are asymptotic results for a test where the distribution being tested for is continuous, fully known
and generic (no particular family of distributions assumed). Stephens (1970) derives modified statistics for
the finite sample case; however, with a sample size of 10,000 these modifications are not actually needed and
the asymptotic results would apply, if the hypothetical distribution were fully specified. However, in our case
this distribution is based on estimated results and we would need to simulate the correct critical values if we
were to properly carry out the tests. Still, we report the percentage of times the test statistics are greater
than the asymptotic critical values, so that we can infer, approximately, if the test results are at least in the
vicinity of these asymptotic critical values. We also note that the results have to be interpreted with care
since it is likely that the appropriate (simulated) critical values for this testing exercise are lower than the
asymptotic critical values reported above (see Massey, 1951).

33What we mean by ”best among alternatives” here means ”closest to the (respective) simulated distribu-
tion”. However, one has to interpret the results with care since the simulated distribution is obviously not
the same for all alternative approximate distributions.
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superior overall to the Edgeworth expansion (when combined with the Student t models),

but to a lesser extent than in the case of the forward returns.

(b) Euro/Dollar Exchange Rate

From the results in Table 2 there is not much to choose between the two alternative approx-

imation methods when the innovations are normal. Indeed, the results for both distribution

tests are virtually identical (and good) for the normal GARCH(1,1) and GJR, using either

the Johnson SU or Edgeworth expansion. For the Johnson SU approach, the fit is closest

when the innovations are normal but the fit is almost as good based on the Student t models.

However, when the Edgeworth expansion is employed, the results obtained with the Student

t models are significantly worse than when the innovations are normal. For the distributions

of aggregated Euro/dollar returns, all models produce similar and good results.

(c) 3-month Treasury Bill Rate

As in (a), the Johnson SU should be preferred to the Edgeworth expansion. The Johnson

SU approximation yields the lowest average KS distance as well as the lowest value for the

CVM test statistic for the normal GARCH(1,1) model, the normal GJR model being second

best. The fits deteriorate when innovations have a Student t distribution.

To summarize, the predictive distributions of forward and aggregated returns on major

risk factors may be well approximated using the analytic expressions for the first four con-

ditional moments that we have derived in this paper. The best distribution approximation

method overall is the Johnson SU and all four GARCH models that we have tested have

predictive forward and aggregated returns distributions that can be well approximated, the

easiest being that generated by the normal GARCH(1,1).
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Normal GARCH(1,1) Student t GARCH(1,1) Normal GJR Student t GJR

total low vol high vol current total low vol high vol current total low vol high vol current total low vol high vol current

S&P 500 Johnson SU

KS-average 0.0087 0.0088 0.0086 0.0087 0.0123 0.0091 0.0091 0.0281 0.0089 0.0088 0.0087 0.0095 0.0118 0.0090 0.0089 0.0255
KS-stdev 0.0027 0.0027 0.0026 0.0030 0.0077 0.0028 0.0026 0.0040 0.0027 0.0027 0.0025 0.0030 0.0071 0.0028 0.0025 0.0056

KS-rejections@5% 6.09% 6.00% 4.67% 9.84% 22.99% 8.67% 6.00% 100.00% 6.65% 6.67% 5.33% 9.84% 22.16% 8.00% 4.67% 100.00%
CVM-average 0.1687 0.1765 0.1577 0.1768 0.5000 0.1935 0.1809 1.1257 0.1421 0.1803 0.1593 0.0867 0.5397 0.1896 0.1688 2.3126
CVM-stdev 0.1565 0.1628 0.1298 0.1971 0.9540 0.1664 0.1346 1.4510 0.1595 0.1635 0.1284 0.1690 0.9216 0.1652 0.1296 1.0680

CVM-rejections@5% 6.93% 8.00% 4.67% 9.84% 21.88% 8.00% 4.00% 100.00% 7.20% 8.67% 4.67% 9.84% 21.88% 8.00% 4.00% 100.00%

Edgeworth

KS-average 0.0088 0.0088 0.0086 0.0091 0.0544 0.0163 0.0168 0.2409 0.0093 0.0089 0.0088 0.0113 0.0453 0.0142 0.0139 0.1992
KS-stdev 0.0027 0.0027 0.0026 0.0031 0.0860 0.0029 0.0031 0.0431 0.0029 0.0027 0.0025 0.0034 0.0723 0.0028 0.0030 0.0486

KS-rejections@5% 6.09% 6.00% 4.00% 11.48% 85.87% 80.67% 85.33% 100.00% 10.25% 8.00% 5.33% 27.87% 60.66% 54.67% 50.67% 100.00%
CVM-average 0.1727 0.1768 0.1579 0.1990 36.6829 0.7698 0.8121 108.4669 0.1599 0.1846 0.1614 0.1337 31.6104 0.5516 0.5059 184.4710
CVM-stdev 0.1589 0.1629 0.1296 0.2062 97.1201 0.2887 0.2912 143.6736 0.1797 0.1647 0.1284 0.2289 76.5282 0.2440 0.2278 80.9503

CVM-rejections@5% 7.20% 8.00% 4.67% 11.48% 90.86% 86.67% 91.33% 100.00% 10.25% 8.67% 4.67% 27.87% 62.33% 59.33% 50.00% 100.00%

Euro/dollar Johnson SU

KS-average 0.0086 0.0088 0.0086 0.0084 0.0091 0.0090 0.0088 0.0099 0.0086 0.0088 0.0086 0.0084 0.0091 0.0090 0.0088 0.0099
KS-stdev 0.0027 0.0027 0.0026 0.0028 0.0027 0.0028 0.0025 0.0030 0.0027 0.0027 0.0026 0.0028 0.0027 0.0027 0.0025 0.0030

KS-rejections@5% 4.93% 4.67% 4.67% 6.15% 7.67% 8.00% 4.00% 15.38% 4.93% 4.67% 4.67% 6.15% 7.67% 8.00% 4.00% 15.38%
CVM-average 0.1661 0.1754 0.1571 0.1655 0.1869 0.1883 0.1636 0.2372 0.1661 0.1754 0.1571 0.1654 0.1880 0.1886 0.1646 0.2408
CVM-stdev 0.1549 0.1618 0.1302 0.1887 0.1628 0.1647 0.1290 0.2123 0.1549 0.1618 0.1303 0.1886 0.1638 0.1648 0.1297 0.2147

CVM-rejections@5% 6.03% 7.33% 4.67% 6.15% 8.49% 9.33% 4.67% 15.38% 6.03% 7.33% 4.67% 6.15% 6.85% 7.33% 3.33% 13.85%

Edgeworth

KS-average 0.0086 0.0088 0.0086 0.0084 0.0161 0.0151 0.0122 0.0275 0.0086 0.0088 0.0086 0.0084 0.0159 0.0150 0.0122 0.0262
KS-stdev 0.0027 0.0027 0.0026 0.0028 0.0062 0.0029 0.0029 0.0028 0.0027 0.0027 0.0026 0.0028 0.0058 0.0030 0.0029 0.0029

KS-rejections@5% 4.93% 4.67% 4.67% 6.15% 57.53% 67.33% 29.33% 100.00% 4.93% 4.67% 4.67% 6.15% 57.26% 66.67% 29.33% 100.00%
CVM-average 0.1661 0.1754 0.1571 0.1655 0.8909 0.6435 0.3761 2.6497 0.1661 0.1754 0.1571 0.1654 0.8380 0.6440 0.3735 2.3576
CVM-stdev 0.1549 0.1618 0.1302 0.1887 0.8838 0.2735 0.1876 0.5287 0.1549 0.1618 0.1303 0.1886 0.7798 0.2754 0.1878 0.5101

CVM-rejections@5% 6.03% 7.33% 4.67% 6.15% 63.29% 78.67% 32.00% 100.00% 6.03% 7.33% 4.67% 6.15% 58.36% 74.67% 24.00% 100.00%

3M Bill Johnson SU

KS-average 0.0101 0.0103 0.0104 0.0091 0.1614 0.1315 0.2498 0.0176 0.0115 0.0113 0.0127 0.0093 0.0229 0.0212 0.0263 0.0188
KS-stdev 0.0030 0.0031 0.0029 0.0026 0.1071 0.0238 0.0996 0.0031 0.0033 0.0032 0.0030 0.0031 0.0051 0.0041 0.0046 0.0031

KS-rejections@5% 12.74% 16.67% 12.00% 4.92% 99.17% 100.00% 100.00% 95.08% 27.70% 26.00% 34.67% 14.75% 98.89% 98.67% 100.00% 96.72%
CVM-average 0.2340 0.2478 0.2360 0.1950 165.5821 85.8680 312.3000 0.9257 0.3175 0.3038 0.3786 0.2007 1.7315 1.4011 2.3533 1.0150
CVM-stdev 0.1687 0.1865 0.1548 0.1511 187.7128 33.3990 211.8000 0.3475 0.2070 0.2006 0.1921 0.2048 0.9261 0.6283 0.9624 0.3218

CVM-rejections@5% 10.25% 13.33% 8.00% 8.20% 99.72% 100.00% 100.00% 98.36% 21.05% 19.33% 27.33% 9.84% 98.61% 98.00% 100.00% 96.72%

Edgeworth

KS-average 0.0235 0.0187 0.0325 0.0129 0.2526 0.2097 0.3491 0.1209 0.0276 0.0217 0.0395 0.0128 0.1892 0.1496 0.2540 0.1270
KS-stdev 0.0090 0.0033 0.0054 0.0028 0.1032 0.0247 0.0824 0.0060 0.0117 0.0035 0.0068 0.0031 0.0642 0.0179 0.0471 0.0080

KS-rejections@5% 88.09% 95.33% 100.00% 40.98% 100.00% 100.00% 100.00% 100.00% 88.37% 99.33% 100.00% 32.79% 100.00% 100.00% 100.00% 100.00%
CVM-average 2.1521 1.0831 3.9245 0.4223 268.2238 181.8000 438.1000 63.0850 3.2588 1.5392 6.1278 0.4327 175.9010 99.3500 295.4000 70.1893
CVM-stdev 1.7811 0.4047 1.3952 0.2045 184.2778 40.5100 163.1000 5.9685 2.8813 0.5157 2.2873 0.2612 123.1241 25.0800 105.4000 8.4955

CVM-rejections@5% 88.37% 98.00% 100.00% 36.07% 100.00% 100.00% 100.00% 100.00% 89.47% 100.00% 100.00% 37.70% 100.00% 100.00% 100.00% 100.00%

Table 3: Distribution tests for the approximate distributions of 5-day forward returns
We report the average KS distance (KS-average) and CVM test statistic (CVM-average), with associated standard deviations (KS-stdev and CVM-stdev,
respectively) and the percentage of cases where the test statistics are greater than the asymptotic 5% CVs(KS-rejections@5% and CVM-rejections@5%,
respectively) for the 5-day forward returns for the S&P 500, Euro/dollar and 3-month Treasury Bills, respectively. Labels ‘low vol’, ‘high vol’ and ‘current’
refer to the sub-periods: January to August 2006, August 2008 to March 2009 and observations from 2018, respectively. The label ’total’ refers to all
three sub-periods, considered together.
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Normal GARCH(1,1) Student t GARCH(1,1) Normal GJR Student t GJR

total low vol high vol current total low vol high vol current total low vol high vol current total low vol high vol current

S&P 500 Johnson SU

KS-average 0.0086 0.0085 0.0086 0.0086 0.0102 0.0086 0.0090 0.0170 0.0096 0.0095 0.0097 0.0097 0.0131 0.0108 0.0114 0.0232
KS-stdev 0.0025 0.0025 0.0024 0.0029 0.0040 0.0025 0.0026 0.0030 0.0027 0.0026 0.0027 0.0029 0.0058 0.0028 0.0029 0.0058

KS-rejections@5% 5.26% 4.67% 4.67% 8.20% 20.22% 6.00% 5.33% 91.80% 7.48% 8.00% 6.67% 8.20% 32.96% 18.00% 21.33% 98.36%
CVM-average 0.1600 0.1554 0.1608 0.1694 0.2719 0.1592 0.1740 0.7897 0.2028 0.1950 0.2051 0.2165 0.5288 0.2626 0.3007 1.7443
CVM-stdev 0.1396 0.1351 0.1396 0.1517 0.2931 0.1397 0.1382 0.3018 0.1537 0.1483 0.1552 0.1641 0.6858 0.1729 0.1850 0.9238

CVM-rejections@5% 4.99% 4.00% 5.33% 6.56% 18.28% 4.67% 4.00% 86.89% 7.48% 8.00% 6.00% 9.84% 27.42% 12.00% 15.33% 95.08%

Edgeworth

KS-average 0.0088 0.0086 0.0087 0.0097 0.0199 0.0102 0.0111 0.0656 0.0109 0.0108 0.0105 0.0125 0.0237 0.0142 0.0145 0.0695
KS-stdev 0.0026 0.0025 0.0025 0.0029 0.0210 0.0028 0.0028 0.0071 0.0030 0.0027 0.0029 0.0033 0.0220 0.0029 0.0032 0.0170

KS-rejections@5% 6.65% 6.00% 4.67% 13.11% 28.81% 11.33% 17.33% 100.00% 14.40% 11.33% 12.67% 26.23% 66.48% 60.00% 59.33% 100.00%
CVM-average 0.1729 0.1595 0.1643 0.2270 3.2707 0.2354 0.2904 18.0636 0.2893 0.2687 0.2594 0.4135 3.8444 0.5348 0.5863 19.9947
CVM-stdev 0.1463 0.1372 0.1389 0.1739 6.8926 0.1659 0.1692 4.1463 0.2072 0.1784 0.1886 0.2671 8.2122 0.2550 0.2897 9.2289

CVM-rejections@5% 6.09% 4.67% 4.00% 14.75% 27.42% 9.33% 16.00% 100.00% 13.30% 11.33% 8.00% 31.15% 65.65% 54.00% 63.33% 100.00%

Euro/dollar Johnson SU

KS-average 0.0085 0.0084 0.0086 0.0086 0.0087 0.0085 0.0087 0.0089 0.0085 0.0084 0.0086 0.0085 0.0087 0.0085 0.0088 0.0091
KS-stdev 0.0025 0.0025 0.0024 0.0027 0.0025 0.0025 0.0025 0.0028 0.0025 0.0025 0.0024 0.0027 0.0025 0.0025 0.0025 0.0028

KS-rejections@5% 5.48% 4.67% 4.67% 9.23% 4.66% 3.33% 4.00% 9.23% 4.93% 4.00% 4.67% 7.69% 4.93% 4.00% 4.00% 9.23%
CVM-average 0.1600 0.1560 0.1617 0.1655 0.1651 0.1591 0.1645 0.1804 0.1602 0.1561 0.1613 0.1673 0.1676 0.1590 0.1654 0.1927
CVM-stdev 0.1418 0.1381 0.1411 0.1533 0.1442 0.1391 0.1404 0.1646 0.1421 0.1382 0.1402 0.1566 0.1468 0.1398 0.1392 0.1765

CVM-rejections@5% 4.66% 4.67% 4.67% 4.62% 4.66% 4.00% 4.67% 6.15% 4.66% 4.67% 4.67% 4.62% 4.38% 3.33% 4.00% 7.69%

Edgeworth

KS-average 0.0085 0.0084 0.0086 0.0086 0.0093 0.0089 0.0090 0.0110 0.0085 0.0084 0.0086 0.0086 0.0093 0.0089 0.0091 0.0107
KS-stdev 0.0025 0.0025 0.0024 0.0027 0.0027 0.0025 0.0025 0.0030 0.0025 0.0025 0.0024 0.0027 0.0027 0.0026 0.0025 0.0029

KS-rejections@5% 5.48% 4.67% 4.67% 9.23% 7.67% 6.67% 4.00% 18.46% 5.21% 4.67% 4.67% 7.69% 7.95% 6.67% 4.67% 18.46%
CVM-average 0.1601 0.1559 0.1617 0.1657 0.1932 0.1722 0.1730 0.2886 0.1603 0.1560 0.1612 0.1683 0.1934 0.1720 0.1756 0.2838
CVM-stdev 0.1418 0.1382 0.1408 0.1536 0.1603 0.1448 0.1407 0.1999 0.1422 0.1384 0.1395 0.1583 0.1622 0.1458 0.1396 0.2115

CVM-rejections@5% 4.66% 4.67% 4.67% 4.62% 6.58% 4.00% 4.67% 16.92% 4.66% 4.67% 4.67% 4.62% 6.85% 4.00% 4.00% 20.00%

3M Bill Johnson SU

KS-average 0.0085 0.0084 0.0087 0.0083 0.0306 0.0144 0.0158 0.1069 0.0105 0.0097 0.0120 0.0086 - - - -
KS-stdev 0.0024 0.0024 0.0024 0.0023 0.0359 0.0042 0.0031 0.0232 0.0031 0.0027 0.0029 0.0027 - - - -

KS-rejections@5% 4.16% 4.00% 4.67% 3.28% 73.96% 59.33% 78.00% 100.00% 14.96% 7.33% 26.67% 4.92% - - - -
CVM-average 0.1559 0.1520 0.1645 0.1441 8.5074 0.6000 0.6860 47.1848 0.2570 0.2100 0.3398 0.1689 - - - -
CVM-stdev 0.1277 0.1233 0.1349 0.1208 18.8022 0.3659 0.2650 17.0440 0.1831 0.1468 0.1973 0.1431 - - - -

CVM-rejections@5% 4.43% 4.00% 4.67% 4.92% 75.90% 60.67% 81.33% 100.00% 15.79% 8.67% 26.00% 8.20% - - - -

Edgeworth

KS-average 0.0208 0.0179 0.0269 0.0128 0.0740 0.0511 0.0747 0.1286 0.0297 0.0245 0.0417 0.0132 0.0524 0.0468 0.0627 0.0407
KS-stdev 0.0065 0.0030 0.0041 0.0031 0.0314 0.0069 0.0094 0.0352 0.0119 0.0034 0.0065 0.0029 0.0116 0.0065 0.0089 0.0036

KS-rejections@5% 87.26% 95.33% 100.00% 36.07% 100.00% 100.00% 100.00% 100.00% 90.03% 100.00% 100.00% 40.98% 100.00% 100.00% 100.00% 100.00%
CVM-average 1.4534 0.9387 2.3913 0.4129 25.4565 10.5500 23.4370 67.0785 3.4691 1.9313 6.2325 0.4553 11.0503 8.5839 15.4580 6.2775
CVM-stdev 0.9611 0.3213 0.7176 0.2115 23.1595 2.8720 5.6867 28.1144 2.6880 0.5429 1.8308 0.2374 5.0089 2.5548 4.3200 1.0276

CVM-rejections@5% 85.60% 93.33% 100.00% 31.15% 100.00% 100.00% 100.00% 100.00% 91.14% 100.00% 100.00% 47.54% 100.00% 100.00% 100.00% 100.00%

Table 4: Distribution tests for the approximate distributions of 5-day aggregated returns
We report the average KS distance (KS-average) and CVM test statistic (CVM-average), with associated standard deviations (KS-stdev and CVM-stdev,
respectively) and the percentage of cases where the test statistics are greater than the asymptotic 5% CVs(KS-rejections@5% and CVM-rejections@5%,
respectively) for the 5-day forward returns for the S&P 500, Euro/dollar and 3-month Treasury Bills, respectively. Labels ‘low vol’, ‘high vol’ and ‘current’
refer to the sub-periods: January to August 2006, August 2008 to March 2009 and observations from 2018, respectively. The label ’total’ refers to all
three sub-periods, considered together.
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6 Conclusions

We have derived analytical expressions for the moments of forward and aggregated returns

and variances for an established asymmetric GARCH specification, namely the GJR model,

with a generic innovations distribution. Special cases include the normal and Student t

GARCH(1,1) and GJR models. We found that the distribution of forward returns is skewed

only if the distribution of innovations is skewed, but the distribution of aggregated returns

is skewed even if the innovation distribution is symmetric. The other source of skewness in

this case is the asymmetric response of variance to positive and negative shocks (i.e. λ 6= 0).

There are two sources of kurtosis in forward returns: the degree of leptokurtosis of the

innovation distribution and the uncertainty in forward variance. Since the one-step-ahead

variance can be made with certainty in a GARCH setting, the kurtosis coefficient of the

one-step-ahead returns distributions is equal to that of the innovation distribution. However,

whenever we forecast s-steps ahead (with s > 1) using a GARCH(1,1) or GJR model, the

s-step-ahead returns distribution for s > 1 will have a higher kurtosis than the one-step-

ahead returns distribution, due to the positivity of the conditional variance of the conditional

variance, which increases the probability mass in the tails of the forward one-period returns

distribution. Also, the time-variability of the conditional variance of the conditional variance

introduces dynamics in the higher moments of the forward returns.

Provided the unconditional moments exist (i) the conditional moments of forward returns

converge to the corresponding unconditional moments as the time horizon increases, and (ii)

the conditional moments of aggregated returns converge to the corresponding moments of

a normal distribution. Otherwise, the moments of both the forward returns as well as the

aggregated returns generally diverge to (plus or minus) infinity.

A bootstrapping exercise uses a t-GARCH(1,1) base model to simulate an empirical dis-

tribution for the skewness and kurtosis of the aggregated returns, using our analytic formulae

and via bootstrapping. We compare this with the values given by our formulae applied to

the base parameters of the GARCH model. This way, we conclude: (a) the bootstrapped
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skewness is unbiased; (b) the bootstrapped kurtosis presents a downwards bias; the ‘true’

value of the kurtosis is outside the interquartile range, increasingly so for aggregated returns

over longer horizons; and (c) the kurtosis estimate computed using our formulae is unbiased.

An empirical application computed higher moments of both forward and aggregated re-

turns of the S&P 500 index, the Euro/dollar exchange rate and the 3-month US Treasury

bill rate, using our analytic expressions for the first four conditional moments based on

four different GARCH processes. Subsequently, we approximated predictive distributions for

forward and aggregated returns using these higher moment forecasts and the Johnson SU

distribution or the Edgeworth expansion. Using established statistical tests, we evaluated the

accuracy of these approximations, relative to the corresponding simulated GARCH returns

distributions. The results of these tests are in general very good for the vast majority of

the approximate distributions. Hence, our moment expressions may have useful applications

to financial problems which, until now, have required GARCH returns distributions to be

simulated.
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