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Abstract: Two of the most widely emphasized contenders for carbon emissions reduction in the 

electricity sector are nuclear power and renewable energy. While scenarios regularly question the 

potential impacts of adoption of various technology mixes in the future, it is less clear which 

technology has been associated with greater historical emission reductions. Here, we use multiple 

regression analyses on global datasets of national carbon emissions and renewable and nuclear 

electricity production across 123 countries over 25 years to examine systematically patterns in how 

countries variously using nuclear power and renewables contrastingly show higher or lower carbon 

emissions. We find that larger scale national nuclear attachments do not tend to associate with 

significantly lower carbon emissions while renewables do. We also find a negative association between 

the scales of national nuclear and renewables attachments. This suggests nuclear and renewables 

attachments do tend to crowd each other out.  
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1. Introduction  

 

While it is unmistakable that climate change mitigation must occur, it is less clear which 

particular strategies, infrastructures and practices offer the greatest potential in the energy sector.  

Pacala and Socolow argued more than a decade ago that a series of “stabilization wedges” would 

enable humanity to maintain quality of life while avoiding catastrophic climate change.1  They 

discussed more than a dozen such potential wedges ranging from energy efficiency and fuel switching 

from coal to natural gas to the advanced deployment of renewable electricity, nuclear power, and 

carbon capture and storage.2  Other studies similarly note the importance of renewable energy and 

nuclear power in climate mitigation pathways and/or for achieving net-zero emissions energy systems 3  

4  5  .6  

With approaching three decades of dedicated climate protection interventions in many 

countries’ energy strategies , we closely examine in this paper the extents to which scales of national 

attachments to either nuclear power or renewables associate with each other, and with effective 

aggregate reductions in national carbon emissions. Despite many contingencies and complexities, this 

offers a first order test of conventional background assumptions that each strategy is comparably 

effective, and without significant opportunity costs or antagonistic effects on other strategies.  

Accordingly, this paper uses regression analyses to interrogate relevant and consistent global 

datasets extending over 25 years and 123 countries, and test three interconnected hypotheses related to 

carbon emissions reduction with nuclear power and renewable energy, as well as one about crowding 

out and technological lock-in.  One core finding is that countries with nuclear power attachments do 

not tend to have lower levels of national carbon emissions. A second core finding is that lower levels of 

carbon emissions do associate more strongly with the relative scales of national attachments to 

renewable energy than with nuclear attachments. In other words, it is renewable (more than nuclear) 

attachments that tend to be associated in practice with significantly lower levels of carbon emissions.  

This is in line with recent work such as that of Jin and Kim, who find, using data from a sample of 30 

countries, that “nuclear energy does not contribute to carbon reduction unlike renewable energy.”7  A 

third core finding is that the scales of nuclear and renewable attachments do tend to vary negatively 

with each other. This is broadly consistent with a finding that nuclear and renewables commitments do 

crowd each other out. We then rigorously test and seek to validate these findings through further 

multiple regression analyses as well as an investigation of possible moderating effects. It is important 
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to note here that carbon emission trends observed may not necessarily be because of the choice 

between renewable or nuclear energy but that the choice might be one result of a broader policy 

program that leads to less carbon emissions (or not).  

2. The nuclear climate mitigation hypothesis  

 Emphasizing the widely discussed carbon emissions abatement potential of nuclear power, this 

hypothesis holds that “the relative scale of national attachments to nuclear electricity production will 

vary negatively with carbon emissions.” In simpler terms, emissions are expected to decline the more a 

country adopts nuclear electricity supply. Elements of this proposition are prominent in both energy 

policy and academic literatures. 8 9 10 11 12 13.  For instance, the International Energy Agency includes 

nuclear power as one of its select “low-carbon technologies” and argues that if the world is to see a 50 

percent drop in energy-related carbon dioxide emissions, then nuclear energy must expand rapidly to 

where it reaches, 1,200 GWe of installed capacity in 2050 when it also becomes the single largest 

source of electricity that year14  Achieving this level of nuclear capacity would require about $4 trillion 

of additional investment, larger than any other source of electricity.15   

  

3. The renewables climate mitigation hypothesis  

This hypothesis holds that “the relative scale of national attachments to renewable electricity 

production will vary negatively with carbon emissions”.  In simpler terms, emissions are expected to 

decline the more a country adopts renewable electricity supply. This hypothesis is grounded in the wide 

diversity of renewable technologies and resources across different national circumstances and core 

competencies, such that most nations are able to achieve high levels of renewable energy contribution 

to electricity supply, and many achieve a surplus. For example, Jacobson et al. argue that 139 countries 

around the world can meet all of their energy needs with wind, water, and solar based energy systems.16  

Bogdanov et al. similarly depict a 100% global renewable electricity system which can be achieved by 

2050 and provide low-carbon electricity without social disruption.17 With the current unprecedented 

pace of technology development and cost reduction in many renewable, energy storage and grid 

management technologies, 18 19 it is clear that the picture over time is becoming rapidly more favorable 

to renewable energy based strategies.20 Perhaps reflecting this unfolding paradigm change, local 

commitments to push for 100% renewable energy systems at the scale of cities and regions—54 
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counties and 8 U.S. states have mandated a transition to 100% renewable electricity— is also 

accelerating investment in batteries, flexible storage, and demand management.21 

 

4. The crowding out hypothesis  

Our final hypothesis is that “the relative scale of nuclear attachments will tend to associate 

negatively with renewables attachments, and vice versa”. In simpler terms, the two options are 

mutually exclusive, and create lock-ins or path dependencies that crowd out the other.  

There exists no shortage of candidates for the kinds of mutual incompatibility, reciprocal 

tension and active antagonism that might (in one direction or another) serve to drive this “crowding 

out”. Take the configuration of electricity transmission and distribution systems, for instance. It is well 

recognized that a grid structure optimized for larger scale centralized power production (like much 

conventional nuclear power) will tend on balance to make it more difficult, time-consuming and costly 

to introduce small-scale distributed power (like many renewables). The same is true of the associated 

norms, protocols, contracts, and operating codes and expert cultures necessary to make these structures 

work.22 Likewise, although the limited relevant history of existing electricity systems around the world 

make this more uncertain, it is probably the case on each of these points that the reverse may also be 

true (that optimization around renewables would impede nuclear).  

In broadly comparable ways, finance markets, regulatory institutions and employment practices 

structured around large-scale, base-load, long-lead time construction projects for centralized thermal 

generating plant will not handle so well a multiplicity of much smaller short term distributed initiatives 

– and vice versa. The particular necessity for nuclear power of elaborate governance arrangements 

around potentially catastrophic safety risks, security against attack, long run waste management and 

safeguarding against proliferation also tends to sideline resources and attention from other options.23 

On the other hand, the erosion by renewables of the funding base for these expensive arrangements will 

tend to raise the unit costs falling on nuclear power. Finally, whatever the detail may be of particular 

interdependencies, the undoubted military connections and security repercussions displayed by nuclear 

power but not renewables mean (depending on context), that each will tend to be favored under 

contrasting political circumstances and perspectives – thus introducing another mutual tension.24 

Indeed, there is a wider sense in which nuclear power and renewables each reflect “technological 

aesthetics” that are valued by contrasting socio-political communities, such that whatever the 
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operational merits may be judged to be, either will incur the antagonism of the constituency associated 

with the other.25  

5. Historical carbon emissions reductions 

 With our three hypotheses thus grounded in longstanding literatures on energy choices and 

technology dynamics more widely, we then proceeded to design and execute a research strategy to 

offer a rigorous and tolerably robust first order picture of this important field (see Methods). Results of 

our empirical analysis are displayed in Table 1 and Table 2. Table 1 shows bivariate and partial 

correlations of our research variables per country sample and timeframe. Table 2 shows the results of 

four hierarchical regression analyses conducted, with CO2 emissions as the dependent variable. Based 

on this research design, our analysis does not confirm the “nuclear climate mitigation” hypothesis. On 

the other hand, it does confirm the “renewables climate mitigation” hypothesis, and partially confirms 

the “crowding out” hypothesis. Even as a first stage result with a need for further confirmatory and 

interrogating research, this holds important practical implications.   

 

Table 1: Correlations between research variables on carbon emissions and electricity pathways  

 

  

 
Timeframe 1 (1990-2004) 

 
Nuclear countries (n=30) Renewable countries (n=117) 

 [1] [2] [3] [1]  [2]  [3] 

GDP per capita .52**   .69**   

Nuclear electricity production (%) .12 .32  .31** .38**  

Renewable electricity production (%) -.26 .08 -.30 -.47** -.16 -.29** 

Renewable electricity production (%) – 

GDP per capita excluded (partial corr.) 

  -.34   -.25** 

 
 

Timeframe 2 (2000-2014) 

 

 
Nuclear countries (n=30) Renewable countries (n=123) 

 
[1]  [2]  [3]  [1]  [2] [3] 

GDP per capita .51**   .61**   

Nuclear electricity production (%) -.04 .22  .21* .31**  

Renewable electricity production (%) -.23 .10 -.23 -.38** -.12 -.25** 

Renewable electricity production (%) – 

GDP per capita excluded (partial corr.) 

  -.26   -.22* 

Notes: [1] = CO2 emissions per capita; [2] = GDP per capita; [3] = Nuclear electricity production 

(%); *** p < .001; ** p < .01; * p < .05 
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Table 2: Results of multiple regression analyses for carbon emissions and electricity pathways  

 

 

 
 Timeframe 1 (1990-2004) Timeframe 2 (2000-2014)  

 Nuclear countries 

(n = 30) 

Renewable 

countries (n = 117) 

Nuclear coun-

tries (n = 30) 

Renewable coun-

tries (n = 123) 

 Δ R2 β Δ R2 Β Δ R2 β Δ R2 β 

Step 1 .27**  .48***  .26**  .38***  

GDP per Capita   .52**   .69***   .51**  
 .61*** 

Step 2  .00  .00  .02  .00  

GDP per Capita   .54**   .67***   .54**   .61*** 

Nuclear electricity prod. (%)  -.05   .05  -.16   .02 

Step 3  .11*  .13***  .11*  .10***  

GDP per Capita   .61**   .65***   .60**   .59*** 

Nuclear electricity prod. (%)  -.18  -.05  -.25  -.05 

Renewable electricity prod. (%)  -.36*  -.38***  -.34*  -.32*** 

Step 4 .12  .05***  .09  .03*  

GDP per Capita   .66***   .71***   .57**   .61*** 

Nuclear electricity prod. (%)  -.22   .08  -.29   .04 

Renewable electricity prod. (%)  -.24  -.35***  -.26  -.31*** 

Moderator GDP x Nuclear  -.37*  -.28***  -.31  -.18* 

Moderator GDP x Renewable   .01  -.06   .05  -.08 

Total .51**  .66***  .48**  .50***  

Notes: *** p < .001; ** p < .01; * p < .05 

 

6. Rejection of “nuclear climate mitigation” hypothesis 

 It is interesting, given the intense debates with which this paper began, that we were unable to 

confirm the hypothesis that “the relative scale of national attachments to nuclear electricity production 

will vary negatively with carbon emissions.”.  As Table 2 indicates, when analyzing the influence of 

relative nuclear electricity production as independent variables on CO2 emissions per capita, we do not 

observe any significant effects. For both country samples and in both timeframes, step 2 of the 

hierarchical regression analyses does not provide any significant increase in R2. The β coefficients of 

relative nuclear electricity production also never reach significance.  

An additional result regarding this hypothesis is shown in step 4 of the conducted regression 

analyses: The effect of nuclear electricity production on CO2 emissions per capita is significantly 

moderated by GDP per capita in three of four conducted regression analyses (once, it misses the 
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significant level by a very small margin). Figure 1 shows that in countries with a high GDP per capita, 

nuclear electricity production has a negative effect on CO2 emissions (that is, emissions decline), while 

in countries with a low GDP per capita, the reverse is true: there nuclear electricity production seems to 

have a positive effect on CO2 emissions (that is, emissions rise).  

 

Figure 1: Graphical display of the moderating influence of GDP per capita on the effect of 

nuclear electricity production on CO2 emissions. A Nuclear countries in timeframe 1, B Renewable 

countries in timeframe 1, C Nuclear countries in timeframe 2, D Renewable countries in timeframe 2. 

“Timeframe 1” is 1990-2004, “timeframe 2” is 2000-2014. “Nuclear countries” included all countries 

which have at least some nuclear electricity production per timeframe. Likewise “renewable countries” 

pursue at least some production from renewable electricity. The solid and dotted lines together with 

their colored endpoints represent regression lines between nuclear electricity production (%, 

independent variable) and CO2 emissions per capita (average kilotons, dependent variable). “Low” and 

“high” with respect to nuclear electricity production and GDP per capita have to be understood as 

follows. Low value of nuclear electricity production means average value minus one standard deviation 

(likewise: high value means plus one standard deviation). “Low” for the GDP regression line means the 

regression line originating from the multiple regression with a low value of the GDP (as described). 

“High” for the GDP regression line applies in an analogous manner. 
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7. Confirmation of renewables climate mitigation hypothesis 

 Approaching our hypothesis in an exactly symmetrical way to the corresponding nuclear 

hypothesis, we did confirm that “the relative scale of national attachments to renewable electricity 

production will vary negatively with carbon emissions”.  When analyzing the influence of relative 

renewable electricity production as an independent variable on CO2 emissions per capita in Table 3, we 

observe that step 3 of all conducted hierarchical regression analyses shows a significant increase in R2 

(medium effect sizes). The corresponding β coefficients are always negative and reach significance in 

all timeframes and country samples. This negative effect of renewable electricity production on CO2 

emissions (emissions decline) does not seem to be moderated by GDP per capita: the corresponding 

moderator effect in step 4 fails to reach significance in all conducted regression analyses.  

8. Partial confirmation of crowding out hypothesis 

Our final hypothesis was that “the relative scale of national nuclear attachment will tend to be 

associated with a lower level of renewables commitment, and vice versa.” As Table 1 indicates, we 

partially confirm this hypothesis. The corresponding correlation coefficients are always negative, and 

equal small to medium effect sizes. Importantly, the coefficients do not change much when the effect of 

GDP per capita is excluded (partial correlation). However, the correlations only reach significance in 

the renewable country samples, and not in the nuclear country samples, possibly due to smaller sample 

sizes in the latter group. The bivariate relationships between nuclear and renewable electricity 

production per sample and timeframe are displayed in figure 2. 

Figure 2: Graphical display of bivariate relationships between nuclear and renewable electricity 

production.  A Nuclear countries in timeframe 1, B Renewable countries in timeframe 1, C Nuclear 

countries in timeframe 2, D Renewable countries in timeframe 2. For Figure 2, “Timeframe 1” is 1990-

2004, “timeframe 2” is 2000-2014. “Nuclear countries” included all countries which have at least some 

nuclear electricity production per timeframe. Likewise, “renewable countries” pursue at least some 

renewables. The displayed points represent the data points. The dotted line represents the simple 

regression line between renewable electricity production (%, independent variable) and nuclear 

electricity production (%, dependent variable). 
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In the category “renewable country,” we address those countries that pursue renewable energy – 

and the degree to which they do so. By “nuclear country” we address those countries that pursue 

nuclear power. The two categories obviously partly overlap (see Table 4 in methods section).  The 

negative nature of this correlation suggests that higher political, institutional, infrastructural or wider 

cultural attachments to either nuclear power or renewable energy tend to associate with a lower 

attachment to the other technology. An interpretation of the asymmetry in this negative correlation may 

simply reflect substantive factors or some feature of the more encompassing nature of the “renewable 

country” as compared with the “nuclear country” category. 

9. Contextualizing diverging nuclear and renewable pathways 

What might explain these patterns? We posit possible technological, policy, and social 

considerations.  

Technologically, nuclear systems have been prone over the past few decades to greater 

construction cost overruns, delays, and longer lead times than  renewable energy projects. One dataset 

of real construction time data from 273 electricity projects over a fifty-year period shows a 90-month 
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average lead-time for nuclear power, compared with a 40 month average for solar and wind.  The 

finding that nuclear (and hydro) are more prone to cost overruns holds true even when normalized to 

scale, per unit of MWe installed. Thus, per dollar invested, the modularity of renewables projects offers 

quicker emissions reductions than large-scale, delay-prone, nuclear projects (See Figure 3).26 Solar 

energy even has a mean average cost underrun as a percentage of expected budget. Nuclear waste, 

especially management of long-term waste at permanent geologic repositories, are – like costs of 

periodic accidents 27 28 – not reflected in these construction costs, and would further add to the lifetime 

cost of nuclear power plants in ways that further erode their economic competitiveness.29 

Figure 3: Construction lead times and opportunity costs for nuclear and renewable power plants.  

The figure shows the mean construction time in months for various sources of electricity supply, based 

on data from 30.  It shows the full range of the data, with some nuclear reactors taking more far more 

than ten years (120 months) to construct.   

 

 
Furthermore, renewables tend to display higher rates of “positive learning” where increased 

deployment results in lower costs and improved performance31, especially for wind farms32 and solar 

energy parks.33  This contrasts with the experience of nuclear power in France which has been prone to 

“negative learning,”34 rising costs or reduced performance with the next generation of technology.  

Similarly, a historical examination of the nuclear reactor fleet in the United States noted two broad 

problems: dependence on operational learning, a feature not well suited to nuclear capital investment; 

and difficulty in standardizing units, including the idiosyncratic problems of relying on large generators 

whose specific site requirements do not allow for mass production,35 unlike most renewables.    
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 In terms of policy, after each of the serious incidents or accidents at Three Mile Island (1979), 

Chernobyl (1986), and Fukushima (2011), regulatory requirements were significantly tightened for 

both operational and under construction nuclear reactors. Each time, this “regulatory ratcheting”36 had 

significant impacts on equipment needs, construction designs, labor, and materials, resulting in 

significant and unexpected price increases, longer shutdowns, and delays to ongoing projects. Other 

than large hydroelectric dams, where some major failures were experienced in the 1970s and 1980s, no 

other source of renewable electricity is subject to such catastrophic accident risks or consequent 

regulatory ratcheting. Research on the governance of nuclear safety, the risk of possible future 

accidents, and the politicized nature of reactor safety assessments all strongly suggest that such 

unexpected failures and accidents will continue well into the future.37 38 39 

 Finally, wider social factors may also work against nuclear energy, and for renewable energy, 

facilitating faster acceptance, permitting and deployment.40 41 42 Public attitudes typically afford greater 

attention than does much policymaking to some distinctive features of nuclear infrastructures, 

perceiving nuclear tendencies to be connected to weapons of mass destruction, polluting, risky and 

technocratic. 43 Some research has even shown that nuclear accidents have severe psychological or 

psychosocial impacts alongside their environmental or technical ones,44 resulting in stigmas associated 

with the technology. Moreover, nuclear waste facilities in particular often lack “a social license to 

operate” in many regions.45 Renewables, on the other hand, often have the opposite image, with higher 

levels of public acceptance, even when accounting for “not-in-my-backyard” (NIMBY) sentiments in 

some communities.46 For example, a survey in the United Kingdom shows higher levels of acceptance 

for further investment of renewable energy (two-thirds of the public support it) compared to nuclear 

power (only one-third of the  public support it).47  One study explicitly asking respondents to choose 

between them found “discriminatory levels of public support” with 77% of a representative national 

sample preferring the increased deployment of renewable energy technologies to new fossil-fuel or 

nuclear power stations.48  

10. Limitations and future work 

Although only an initial study, we believe the findings discussed here to be sufficiently clear 

and robust to be considered directly salient to current policy debates on carbon emissions reduction 

strategies in the energy sector.  
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Nonetheless, it is a limitation that this study aggregates nuclear and renewable electricity 

technologies. We treat both “nuclear power” and “renewable energy” as a consolidated reference class 

for the purposes of our analysis. This framing allows us to achieve a requisite expansiveness and 

symmetry of scope – to encompass in a balanced way the full diversity of options currently available in 

electricity system planning and policymaking. However, it involves a coarse grain lumping together of 

all types of nuclear reactors, fuel cycles and respective institutional and geographical socio-political 

settings, as well as the radically divergent forms of renewable technology, even though these differ by 

resources, institutions, endowments and capabilities across contexts 49. Based on the available data, a 

sub-national or fuel cycle analysis is not possible yet for either nuclear power or renewables.  We 

strongly encourage nuclear and renewable energy related agencies (e.g., the Nuclear Energy Agency, 

World Nuclear Association, International Atomic Energy Agency, International Renewable Energy 

Agency) to begin to collect this form of data so that future research can explore and build on it. Second, 

our analysis has focused exclusively on carbon mitigation efficacy—the relative empirical propensities 

of nuclear and renewable sources of electricity supply to associate with contrasting scales of carbon 

emissions. Therefore, the scope of analysis is incomplete and potentially skewed with respect to a 

wider array of concerns. These include issues such as economic costs, integrated resource planning, 

reliability, lifecycle impacts, risk profiles, waste management, and ecological, political and security 

impacts. Future work ought to consider a broader spectrum of attributes across nuclear and renewable 

energy systems, among which carbon emissions represent only one (albeit compelling) issue. 

 Third, although we confirm the presence of some degree of mutual crowding out between 

nuclear and renewable energy, we are unable (based on this initial analysis) to say which side of the 

dynamic matters most in which ways – or exercises the greatest net effect. More specifically, we can 

say very little about the particular kinds of mechanism that are more or less important or about the 

spatial or material drivers and implications that lie behind this. In itself, this wide scope for further 

questioning does not negate the salience of the result that the crowding dynamic may lead to perverse 

effects, given the parallel finding that renewable-based strategies are evidently generally associated 

with more effective overall carbon emissions mitigation than is nuclear.  

 Fourth, our study focused only on renewables and nuclear power, when of course many other 

energy service options are available for generating electricity and modulating demand, in particular 

fossil fuel with carbon sequestration infrastructures and energy efficiency gains. Again, future research 
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should explore the comparative carbon emissions mitigation efficacies across these wider arrays of 

strategic options.  

 Fifth and lastly, our data extend only up to 2014 (incorporating time lags), and our analysis is 

merely correlative. While we deem it logical that nuclear and renewable electricity production might 

show similar relations in later years with carbon dioxide emissions, our design does not test this. Nor, 

of course, can it be assumed that past data is predictive of future developments.     

 Thus, while our study can be viewed as a starting point for robust research on the topic of 

nuclear power, renewables, and lock-in, it is not meant to be a finishing point. It is an anomaly that  the 

strong claims in favor of particular technologies with which this paper began, have for so long 

remained so under-evidenced, We encourage others also to address this gap in their future research.  

11. Conclusions and policy implications  

 

Notwithstanding these future possible orientations for research and limitations, our present 

conclusions are clear.  Crucially, renewable energy strategies are, to an evidently significant degree, 

associated with lower levels of national carbon emissions. Equally salient, the climate change 

mitigation rationales for new nuclear investments are called into question. This, in turn raises, the 

important finding that nuclear and renewable strategies evidently tend to display such significant 

mutual tensions or antagonisms that one of them tends to crowd the other out.  This confirms 

widespread literatures reviewed earlier holding that the two broad approaches coexist only uneasily.  

When taken together with the finding that renewables seem significantly more positive for 

carbon abatement, important adverse implications arise for nuclear power. As the evidently less 

generally favorable of the two broad carbon emissions abatement strategies, a tendency of nuclear not 

to co-exist well with its renewable alternative, does (all else being equal) raise doubts about the 

opportunity costs of investments in nuclear power rather than renewable energy. The direction of cost 

and learning trends discussed here, intensify this point. 

Given the current state of climate debates internationally and in many countries, it is troubling 

that nuclear and renewable energy pathways appear (both historically and, here, empirically) to display 

such mutual tension. It appears that countries planning large-scale investments in new nuclear power 

are risking suppression of greater climate benefits from alternative renewable energy investments. That 

the converse may also be true (with renewables tending to suppress nuclear investments) is evidently 
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less important, because it is renewable strategies that are on balance evidently more effective at carbon 

emissions mitigation.  

In a world where the averting of catastrophic climate disruption is so imperative, energy 

diversity can play many crucial roles in achieving carbon emissions mitigation, but diversity comes in 

many forms and modes.50 The challenge is not one of “doing everything” in directions conditioned by 

any entrenched interest, but about societies rigorously, democratically, and deliberately “choosing what 

to do”. In light of this analysis, the implication for electricity planning is that diverse renewables are 

generally proving in the real world to be significantly more effective than nuclear power at reducing 

climate disruption. 

12. Methods 

 

12.1 Data sources and description 

Because we wanted to utilize data that was both rigorous (subject to internal peer review) but 

also accessible (open to the public for others who may want to verify our results), we used World Bank 

and International Energy Agency data for our analysis. This includes data on nuclear electricity 

production per year and country (% of total electricity output); renewable electricity output per year 

and country (% of total electricity output); GDP per capita in current US$ (gross domestic product 

divided by midyear population); and CO2 emissions per year and country (metric tons per capita), 

defined as “carbon dioxide emissions … stemming from the burning of fossil fuels and the manufacture 

of cement. They include carbon dioxide produced during consumption of solid, liquid, and gas fuels 

and gas flaring.”   

We chose to include GDP per capita as control variable since we deemed it one of the most 

influential confounding variables when testing our hypotheses (see also Jin and Kim51). Regarding the 

dependent variable in the “nuclear climate mitigation” and “renewables climate mitigation” hypotheses, 

we chose carbon emissions from fossil fuels and industry to capture the electricity and industrial 

applications of nuclear power and renewable electricity sources. Both nuclear and renewables are large 

sources of process heat or energy for industry. For example, nuclear is a major potential energy source 

for industrial applications relating to desalination, refining, and hydrogen manufacturing.  Renewables 

as a whole, especially bioenergy and solar energy, provide district heating, process heating, residential 

space heating, and cooling.  Hydroelectricity in particular is a primary energy source for aluminum 
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electrolytic plants as well as industrial irrigation and agricultural processing.  This convinced us it was 

best to select a metric that tracked emissions across electricity, heat, and industry, which is what our 

data choice does. It seems a nice middle ground between electricity only (excluding other sectors of 

energy use) or national carbon footprints as a whole (too general for analysis). 

 With our choices made, we collected relative data rather than absolute data in order to reduce 

potential distortion effects due to confounding variables such as country size and population per 

country. Metric characteristics of all research variables per sample and timeframe are displayed in table 

SOM1. We proceeded to utilize multiple forms of data analysis to test the hypotheses as rigorously as 

possible.  

12.2 Regression model 

Regarding the “nuclear climate mitigation” and the “renewable climate mitigation” 

hypotheses, we conducted four hierarchical regression analyses with CO2 emissions as the dependent 

variable. In the first step of all regression analyses, only the control variable GDP per capita was added 

to the model. In the second step, nuclear electricity production was included. In the third step, we 

added renewable electricity production. And in the fourth and last step of the hierarchical regression 

analysis, we included two possible moderator variables, namely an interaction term between GDP per 

capita and nuclear electricity production, as well as an interaction term between GDP per capita and 

renewable electricity production. All independent variables were z-standardized before being added to 

the model.  

We did four hierarchical regression analyses because we split the data into two timeframes 

(1990-2004 and 2000-2014) and two samples (nuclear countries and renewable countries) as a 

triangulation method. Timeframe 1 was measured as follows: It was tested whether the mean of the 

years 1990 to 1999 of the independent variables had an effect on the mean of the years 1995 to 2004 of 

the dependent variable. Accordingly, Timeframe 2 tested whether the mean of the years 2000 to 2009 

of the independent variables had an effect on the mean of the years 2005 to 2014 of the dependent 

variable. The lag of 5 years between the independent and dependent variables was chosen since it 

allowed optimal use of the available data (renewable energy figures were only recorded since the 

nineties), and it allowed for a more directional interpretation of our correlative dataset (higher 

electricity production per technology influences CO2 emission levels five years later).  This 

appreciation of a lag was further grounded in the idea that nuclear or renewables wouldn’t necessarily 
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result in immediate emissions reductions, they could take time, and the temporal nature of our analysis 

also enabled us to look at 5 year increments (rather than 1 year increments) to help even out the data 

and avoid outliers. 

“Nuclear countries” included all countries which have at least some nuclear electricity 

production per timeframe. Likewise “renewable countries” pursue at least some renewables. Countries 

without any nuclear (or renewable, respectively) electricity production in the given timeframes were 

omitted (as this indicates “nothing happened”), which typically excludes some microstates. Countries 

for which we did not have values in the given timeframes were omitted as well. Countries included per 

analysis are listed in Table SOM2. If the same effect occurs in both timeframes and both samples, it is 

less likely that patterns are caused by random factors.  

 Regarding the “crowding out” hypothesis, we used a similar approach. However, since the 

research design sought a bidirectional correlation between renewable and nuclear electricity production 

(rather than a directional effect), we used the same years for both variables per timeframe (1990-1999 

and 2000-2009), and used Pearson’s r as statistical procedure. Similar to the other two hypotheses, we 

did the analysis multiple times, due to different timeframes and different country samples. Per sample 

and timeframe, we tested the “crowding out” hypothesis two times; once as simple bivariate correlation 

and once as partial correlation while controlling for the effect of GDP per capita. 

For all analyses, the significance level was set on 5% (2-tailed). We treat r = .10 (R2 = .01) as a 

weak effect, r = .30 (R2 = .09) as a moderate effect, and r = .50 (R2 = .25) as a strong effect. 

12.3 Potential criticisms and justifications  

As always, there are limitations to these methods and these are fully discussed above. Given the 

partisan nature of these debates, it is possible other less well founded criticisms may be made. For 

instance, some may question a focus on national carbon emissions rather than looking at subsectors or 

emissions reductions. However, national level emissions give more complete pictures of trends and 

accord better with this key locus of policymaking.  

Some may question inclusion of countries with only small nuclear or renewable attachments 

(e.g., the Netherlands for nuclear or France for renewables). However, our multiple linear regression 

method does directly address such issues of proportionality and scale.  

Some may misconstrue our findings to suggest that GDP explains emissions trends more than 

adoption of nuclear power or renewables. However, this is addressed by the four stage model, which 
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shows how GDP only explains (or moderates) so much. No claims are made that any effect explains 

100% of emissions, but our results are consistent across two timeframes and two country classes (see 

Tables 1 and 2). In any case, that a more expensive carbon mitigation option tends to associate more 

with higher GDP, would itself be consistent with our overall findings.  

Some may question our inclusion of hydroelectricity along with solar and wind under the 

category of renewable electricity. However, this inclusion is important given that hydropower is the 

world’s leading source of renewable electricity; it competes directly with nuclear power over the 

provision of base-load power in many countries; and it is often pursued along with wind and solar as a 

portfolio.   

Finally, some may misinterpret our findings as conveying causality. This is not the case, with 

our methods attuned to revealing correlations only (albeit statistically significant ones).    

13. Data availability  

All data generated or analyzed during this study are included in this published article (and its 

supplementary information files). 
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