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Supplemental Information 

 

 

Figure S1: Schematic diagram of the deposition process, A, showing the setup including 

ultrasonic bath, and electrode positions. B Shows typical deposition current over time, 
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integrated to calculate charge density. C Shows the cyclic voltammetry with three electrode 

setup, used to determine the goethite potential, inset shows a slower scan speed linear sweep 

for greater accuracy.1 Electrode deposition potential was determined by the difference between 

Voc (-0.70) and goethite deposition potential (-0.14) as 0.56 V. 

 

 

Figure S2: A Shows the integrated total charge density deposited and the nanosheet width 

against the duration of deposition. B Shows the charge density plotted against nanosheet width.  
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Figure S3: A Shows EDX mapping of the sample area of the 30 min deposition, with composite 

image of Zn and Fe (left) and component elements (right). B Shows an EDX line scan of  Fe2O3 

/ FeOOH aggregates on the surface. 
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Figure S4: Shows the XPS high resolution scans for Fe2p and O1s in the Fe2O3 / FeOOH 

sample. 

 

 

Figure S5: A Shows the equivalent circuit used to fit the Nyquist plots, and B shows the different 

Rct values plotted against deposition duration, along with pure samples.  
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Figure S6: Shows the light/dark stepped linear sweep voltammetry of a comparative selection 

of anodes, with pristine ZnO A, and 5 minutes electrodeposition on pure ZnO B. C Shows the 

top performing sample, 5 minutes deposition on Y doped nanowires. Finally D shows the 

normalised logarithm of current decay from the chronoamperometry measurements. 
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Figure S7: Shows the comparison of all the dark currents for the optimisation. 

 

 

Table S1: Displays a literature comparison of relevant structures and devices. 

No. Sample Description Photocurrent Density 

at 1.23 VRHE 

Reference 

1 NiO-ZnO on Fe2O3 films Negligible Zhang et al.2 

2 ZnO quantum dots on Fe2O3 films Negligible Ikram at al.3 

3 ZnO NRs covered in Fe2O3 

nanoparticles 

Negligible Chakraborty et al.4 

4 ZnO NRs coated with Fe2O3, prior to 

Fe2PO4 encapsulation 

0.85 mA cm−2 Qin et al.5 

5 ZnO NRs coated with Fe2O3 1.27 mA cm−2 Hsu et al.6 

6 This Work 0.91 mA cm−2 n/a 

7 Silicon doped nanostructured Fe2O3 

films 

2.2 mA cm−2 Kay et al.7 
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8 Co-doped ZnO nanorods with a 

transparent functionalizing MOF 

0.15 mA cm−2 Galan-Gonzalez et 

al.8 

9 Sn doped Fe2O3 from FTO 1.0 mA cm−2 Annamalai et al.9 

10 Zinc Ferrite modified Al-doped ZnO 

NR Arrays 

1.72 mA cm−2 Xu et al.10 

 

 

 

Figure S8: A shows the Mott-Schottky plot of the anodic deposition of Fe2O3, yielding VFB 
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value of 0.69 VRHE and dopant density of 1.19 × 1026
 m

-3. B shows the XPS survey scan of 

the hybrid junction and valence band determination, finally C shows the chopped illumination 

chronoamperometry test over a five minute period. 

References 

(1)  Martinez, L.; Leinen, D.; Martín, F.; Gabas, M.; Ramos-Barrado, J. R.; Quagliata, E.; 

Dalchiele, E. A. Electrochemical Growth of Diverse Iron Oxide (Fe3O4, α-FeOOH, and 

γ-FeOOH) Thin Films by Electrodeposition Potential Tuning. J. Electrochem. Soc. 2007, 

154 (3), D126. 

(2)  Zhang, C.; Fan, W.; Bai, H.; Yu, X.; Chen, C.; Zhang, R.; Shi, W. Sandwich-

Nanostructured NiO-ZnO Nanowires@α-Fe2O3 Film Photoanode with a Synergistic 

Effect and p-n Junction for Efficient Photoelectrochemical Water Splitting. 

ChemElectroChem 2014, 1 (12), 2089–2097. 

(3)  Ikram, A.; Sahai, S.; Rai, S.; Dass, S.; Shrivastav, R.; Satsangi, V. R. Enhanced 

Photoelectrochemical Conversion Performance of ZnO Quantum Dots Sensitized α-Fe 2 

O 3 Thin Films. Int. J. Hydrogen Energy 2015, 40 (16), 5583–5592. 

(4)  Chakraborty, M.; Roy, D.; Biswas, A.; Thangavel, R.; Udayabhanu, G. Structural, 

Optical and Photo-Electrochemical Properties of Hydrothermally Grown ZnO Nanorods 

Arrays Covered with α-Fe 2 O 3 Nanoparticles. RSC Adv. 2016, 6 (79), 75063–75072. 

(5)  Qin, D. D.; Tao, C. L. A Nanostructured ZnO–ZnFe2O4 Heterojunction for the Visible 

Light Photoelectrochemical Oxidation of Water. RSC Adv. 2014, 4 (33), 16968. 

(6)  Hsu, Y. K.; Chen, Y. C.; Lin, Y. G. Novel ZnO/Fe2O3 Core–Shell Nanowires for 

Photoelectrochemical Water Splitting. ACS Appl. Mater. Interfaces 2015, 7 (25), 14157–

14162. 

(7)  Kay, A.; Cesar, I.; Grätzel, M. New Benchmark for Water Photooxidation by 

Nanostructured α-Fe2O3 Films. J. Am. Chem. Soc. 2006, 128 (49), 15714–15721. 

(8)  Galán-González, A.; Sivan, A. K.; Hernández-Ferrer, J.; Bowen, L.; Di Mario, L.; 

Martelli, F.; Benito, A. M.; Maser, W. K.; Chaudhry, M. U.; Gallant, A.; et al. Cobalt-

Doped ZnO Nanorods Coated with Nanoscale Metal-Organic Framework Shells for 

Water-Splitting Photoanodes. ACS Appl. Nano Mater. 2020, 3 (8), 7781–7788. 

(9)  Annamalai, A.; Subramanian, A.; Kang, U.; Park, H.; Choi, S. H.; Jang, J. S. Activation 

of Hematite Photoanodes for Solar Water Splitting: Effect of FTO Deformation. J. Phys. 

Chem. C 2015, 119 (7), 3810–3817. 

(10)  Xu, Y. F.; Rao, H. S.; Wang, X. D.; Chen, H. Y.; Kuang, D. Bin; Su, C. In Situ Formation 

of Zinc Ferrite Modified Al-Doped ZnO Nanowire Arrays for Solar Water Splitting. J. 

Mater. Chem. A 2016, 4 (14), 5124–5129. 

 


	Goethite and hematite hybrid nanosheet-decorated YZnO NRs for efficient solar water splitting

