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Mathematical Models of Retinitis Pigmentosa: The Trophic Factor
Hypothesis

Journal of Theoretical Biology
Supplementary Material

Paul A. Roberts∗1

1School of Life Sciences, University of Sussex, John Maynard Smith Building, Brighton, BN1
9QG, UK

S1 Justification of parameter values
• Retinal radial position, R: chosen to be 1.2 × 10−2 m, the average radius of the human eye (Oyster, 1999).

• Eccentricity of the ora serrata, Θ: chosen to be 1.33 rad, the extent of the retina along the horizontal meridian
in the temporal direction, as measured by Curcio et al. (1990).

• Trophic factor diffusivity, D f : the protein RdCVF has been found to come in four forms, two short forms,
RdCVF-S and RdCVF2-S (produced by rods, but not by cones), and two long forms, RdCVF-L and RdCVF2-L
(produced by rods and cones; Chalmel et al., 2007; Léveillard et al., 2004). It is the short forms that enhance cone
glucose uptake and for which cones rely upon rods for a supply, and the first of these, RdCVF-S, which is the
more effective of the two, RdCVF2-S acting in an additive (as opposed to a synergistic) fashion (Chalmel et al.,
2007; Léveillard et al., 2004). Therefore, we include only the RdCVF-S form in our models. To the best of our
knowledge, no measurements have been published for the diffusivity of RdCVF in any of its forms; however,
the molecular weight of RdCVF-S has been measured to be 17 kDa (Léveillard et al., 2004). The protein
myoglobin also has a molecular weight of 17 kDa (Zaia et al., 1992), and its diffusivity has been measured;
therefore, we assume that the diffusivity of RdCVF-S is the same as that of myoglobin. Jürgens et al. (1994)
have measured myoglobin diffusivity to be 1.17 × 10−11 m2s−1 at 22◦C in diaphragm muscle. Using the Q10
rule1 with Q10 = 1.3, gives a value of 1.73 × 10−11 m2s−1 at 37◦C (body temperature, Jürgens et al., 1994),
which is the value we choose for D f (see also, McGuire and Secomb, 2001).

• Rate of trophic factor decay, η: to the best of our knowledge, this parameter has not been measured; however,
Eden et al. (2011) have measured the half-life dynamics for a range of proteins in living human cells. In
their experiments, cells were treated with the drug cisplatin, which reduces cell growth by 85%, such that
the measured reduction in protein concentration is mainly due to degradation, rather than cell growth-induced
dilution. Protein half-lives in the range 0.9–20.5 hr were measured, corresponding to exponential decay rates
in the range 9.39×10−6–2.14×10−4 s−1. Similarly, Dörrbaum et al. (2018) measured protein half-lives in rat
primary hippocampal, neuron-enriched and glia-enriched cultures ranging from 17 hr–110 days, the majority
lying in the range 1–20 days, corresponding to exponential decay rates in the range 4.01× 10−7–8.02× 10−6

s−1. These values are smaller than (though of a similar order of magnitude to) those measured by Eden et al.
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(2011). We assume the values measured by Eden et al. (2011) to be more typical of the human retina since they
were measured in human cells, taking the rate of trophic factor decay to be 5.13× 10−5 s−1 (the mean of the
rates corresponding to the half-lives measured by Eden et al., 2011).

• Rate of trophic factor consumption by cones, β : to the best of our knowledge, this parameter has not been
measured. We choose the rate of trophic factor consumption such that its dimensionless value is four orders of
magnitude greater than the rate of trophic factor decay, η , ensuring that the trophic factor consumption term
dominates over the decay term, as would be expected biologically. Thus, we choose the dimensionless value
β ∗ = 1.79×106, which corresponds to a dimensional value of β = 4.62×10−12 m2photoreceptors−1s−1.

• Rate of trophic factor production by rods, α: to the best of our knowledge, this parameter has not been
measured. In the absence of further information, we choose α such that the trophic factor production term
is of the same order of magnitude as (and hence balances with) the consumption term, as would be expected
biologically. This leaves a degree of freedom, and we choose α such that the mean trophic factor concentration
f̃A = 1×10−4 M, for numerical convenience. Thus, we choose α = 1.81×10−17 Mm2photoreceptors−1s−1.

• Rate of trophic factor supply from treatment, ξ : to the best of our knowledge, this parameter has not been
measured. Therefore, we choose values on the order of magnitude of the critical treatment rate, ξcrit, as predicted
by numerical and analytical solutions to the steady-state problem (see Section 3.2.2).

• Rate of mutation-induced rod degeneration, φr: the rate of rod degeneration in the healthy human retina has
been investigated by Curcio et al. (1993), who measured a 31% reduction in the total number of rods in the
central 28.5 degrees of vision between the ages of 34 and 90 yr, corresponding to an exponential decay rate
of 2.10 × 10−10 s−1. Since the rate of rod degeneration is accelerated in RP we take this value as a lower
bound and assume that the rate of mutation-induced rod degeneration is two orders of magnitude higher, that
is φr = 2.10× 10−8 s−1. This places the timescale of the resultant cone loss on the order of decades (see Fig.
9(a)), in line with in vivo progression rates.

• Growth rate of cone OS (phases 1 and 2), µ1 and µ2: Guérin et al. (1993) measured cone OS regrowth in
rhesus monkeys following a 7-day retinal detachment period. In their study, rod and cone OS regrowth occurred
simultaneously. In the absence of further information, we assume cone OS regrowth dynamics are the same
whether rod OS are present or absent initially. RdCVF treatment only aids cone regeneration since rods remain
unhealthy due to their expression of a mutant gene; therefore, we only consider cone regeneration here. As
described in Section 2, we found that cone OS regrowth is well-described by a two-phase model. Phase 1,
constant growth, occurs for cone OS lengths between 0 and 0.33 as a proportion of their full length, while
phase 2, hyperbolic growth, occurs for cone OS lengths between 0.33 and 1 as a proportion of their full length
(see Section 2 for more details). Cone OS length was zero immediately following reattachment (at 0 days) and
reached 33% of its healthy length after 7 days. Thus, we can directly calculate the phase 1 constant growth
rate as µ1 = 1.60× 10−11 ms−1. The phase 2 growth term was fitted to the data using the Matlab routine
fminsearch, taking the data point at 7 days (33% length) as the initial condition and seeking to minimise the
mean squared error between the model and the remaining data points to give µ2 = 3.07×10−12 ms−1 (see Fig.
S1). We note that it takes much longer to regrow a cone OS following the re-establishment of RdCVF supply
than to completely shed it during RdCVF deprivation since in the latter case shedding occurs in the absence of
regeneration while in the former case regeneration is accompanied by shedding for lengths greater than 33%,
slowing the recovery of OS length (which reaches 80% of the healthy length by day 150, Guérin et al., 1993).

• Rate of trophic factor starvation-induced cone OS degeneration, δL: while the rate of cone OS degeneration
due specifically to RdCVF starvation has not, to the best of our knowledge, been measured, the rate of cone OS
shedding under healthy conditions in humans and a number of animal species has been measured. We assume
that, in the absence of sufficient RdCVF, cone OS regeneration ceases, while cone OS shedding continues at
its healthy rate. Kocaoglu et al. (2016) studied cone OS shedding in the living human eye. They found that
it takes between 12.67 and 16.7 days to shed (and hence renew) an entire cone OS. Based on the values given
in Kocaoglu et al. (2016), we assume an average time of 14.5 days (1.25× 106 s) to shed a full cone OS,
corresponding to a rate of δL = 2.34×10−11 ms−1. These measurements agree well with the rates of cone OS
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Figure S1: Graph to show model fit to cone OS regrowth data from Guérin et al. (1993). Mean data are plotted as
crosses, while the error bars demarcate the standard deviation. Phase 1 — constant growth: ṗL

c = µ1; and phase 2
— hyperbolic growth: ṗL

c = µ2(1− pL
c/ p̃L

c ), where dot( ˙ ) denotes the temporal partial derivative. Parameter values:
µ1 = 1.60×10−11 ms−1, µ2 = 3.07×10−12 ms−1 and p̃L

c = 2.93×10−5 m.

regeneration measured by Jonnal et al. (2010, 2012) and Pircher et al. (2011) in living humans, which balances
shedding to maintain a roughly constant OS length.

• Rate of trophic factor starvation-induced cone degeneration, δ : the rate of cone degeneration due specif-
ically to RdCVF starvation has not, to the best of our knowledge, been measured; however, given that cone
OS would be lost in about 14.5 days (see discussion above, Kocaoglu et al., 2016) and given that cones may
be assumed to be mostly healthy immediately following OS loss, taking further time for the rest of the cell to
degenerate, a half-life of 28 days seems reasonable. This results in a cone degeneration rate of 2.87 × 10−7 s−1

(noting that half-lives from 10–100 days all result in rates of degeneration of ∼ O(10−7) s−1).

• Healthy cone OS length, p̃L
c : Kocaoglu et al. (2016) measured cone OS lengths in the eyes of three healthy

human subjects, the average lengths being 25.5±1.7×10−6 m, 30.9±1.8×10−6 m and 31.6±1.5×10−6 m.
We take the healthy cone OS length to be the mean of these values, p̃L

c = 29.3×10−6 m. We note that while we
have chosen a biologically realistic value for this parameter for the dimensional model, the value chosen makes
no difference to the parameter values in the non-dimensional model due to the way in which the parameter is
cancelled out through non-dimensionalisation.

• Trophic factor threshold concentration, fcrit: the minimal RdCVF concentration required to maintain cones
in health has not, to the best of our knowledge, been measured. In the absence of further information, we choose
two possible values for fcrit. The first value ( fcrit = 3×10−9 M) is taken to lie just below the minimum RdCVF
concentration at steady-state under healthy conditions and in the absence of treatment (i.e. where pr = p̃r(θ),
pc = p̃c(θ) and ξ = 0), which occurs at the centre of the fovea (θ = 0 rad). The second value ( fcrit = 3×10−5

M) is taken to be 104 times larger than the first value, lying just below the minimum trophic factor concentration
away from the fovea (θ > 0.13×Θ rad). See Section 3.2 for more details.

• Rod and cone profile parameters, B1, B2, B3, b1, b2, b3: determined by fitting the functions pr = p̃r(θ) and
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pc = p̃c(θ) to Curcio et al. (1990)’s measurements of the mean rod and cone distributions along the temporal
horizontal meridian in healthy humans using the Trust-Region Reflective algorithm in Matlab’s curve fitting
toolbox.

• Mean trophic factor concentration, f̃A: calculated as the mean RdCVF concentration in the dimensional
model at steady-state under healthy conditions and in the absence of treatment (i.e. where pr = p̃r(θ), pc = p̃c(θ)
and ξ = 0).

• Mean photoreceptor density, p̃A: calculated as the mean photoreceptor density across the retina under healthy
conditions, that is, the mean of p̃r(θ)+ p̃c(θ).

• Degenerate patch boundaries (rods and cones), θr1 , θr2 , θc1 and θc2 : chosen to explore disease progression
following the loss of patches of rods and/or cones. Selected such that 0 ≤ θr1 < θr2 ≤ Θ (rad) and 0 ≤ θc1 <
θc2 ≤Θ (rad).

• Position of left- and right-hand limits of local treatment, θtreat1 and θtreat2 : chosen to explore the effects of
local trophic factor treatment upon cone degeneration and cone OS recovery. Selected such that 0 ≤ θtreat1 <
θtreat2 ≤Θ (rad).

• Time at which treatment first applied, tcrit: chosen to explore the effect of trophic factor treatment at a given
stage of retinal degeneration. Selected such that tcrit > 0 s.

S2 Asymptotic analyses (continued)
Here we consider St-st Cases 2-8 from Section 3.1. In each case the same approach is taken as in Appendix A. Where
the analysis differs from that in Appendix A we explain the difference, otherwise the results are simply stated.

In the sections that follow (S2.1–S2.7) we will use the following parameters (in addition to those defined in
Appendix A), defined here for ease of reference:

• K := eε−1√c1(θr2−θr1 );

• B := 1+ ε
1
2

√
η

D f c1
;

• B̄ := 1+ ε
1
2

√
η

D f c̄1
;

• Q := ε
1
2

√
η

D f c1
−1 = B−2;

• Q̄ := ε
1
2

√
η

D f c̄1
−1 = B̄−2;

• M := e
ε−1/2

√
η

D f
(θr2−θr1 ).

S2.1 St-st Case 2: narrow patch of rod loss without treatment
In this case there is no centre-outer region, and the left-centre-inner and right-centre-inner regions coalesce into a
single centre-inner region (see Fig. A.1(b)).

Left- and Right-Outer:

f0(θ) =
αB3θe−b3θ

βB2e−b2θ
, (S1)

Left-Inner:
f0(θ) = A1eε−1√c1(θ−θr1 )+

c2

c1
, (S2)
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Centre-Inner:
f0(θ) = A3e−ε−1√c1(θ−θr1 )+A4eε−1√c1(θ−θr2 ), (S3)

Right-Inner:

f0(θ) = A8e−ε−1√c̄1(θ−θr2 )+
c̄2

c̄1
, (S4)

where:

A1 =

(
1+
√

c1

c̄1

)−1 [ c2

2c1
K−2

(√
c1

c̄1
−1
)
+

c̄2

c̄1
K−1

]
− c2

2c1
,

A3 =
c2

2c1
,

A4 =

(
1+
√

c1

c̄1

)−1 [ c2

2c1
K−1

(√
c1

c̄1
−1
)
+

c̄2

c̄1

]
,

A8 =−
(

1+
√

c1

c̄1

)−1 [ c2

2c1
K−1

(√
c1

c̄1
−1
)
+

c̄2

c̄1

]√
c1

c̄1
+

c2

2c1

√
c1

c̄1
K−1,

Left-Composite:

f0le f t−comp(θ) =
αB3θe−b3θ

βB2e−b2θ
+A1eε−1√c1(θ−θr1 ), (S5)

Centre-Composite is identical with the centre-inner,
Right-Composite:

f0right−comp(θ) =
αB3θe−b3θ

βB2e−b2θ
+A8e−ε−1√c̄1(θ−θr2 ), (S6)

Minimal Cone Degenerate Patch Left Boundary:

θcrit1 = θr1 +
ε
√

c1
log
(

A−1
1

(
fcrit−

c2

c1

))
, for fcrit ≥ A1 +

c2

c1
, (S7)

fcrit = A3e−ε−1√c1(θcrit1−θr1 )+A4eε−1√c1(θcrit1−θr2 ), for fcrit ≤ A1 +
c2

c1
, (S8)

Maximal Cone Degenerate Patch Right Boundary:

fcrit = A3e−ε−1√c1(θcrit2−θr1 )+A4eε−1√c1(θcrit2−θr2 ), for fcrit ≤ A8 +
c̄2

c̄1
, (S9)

θcrit2 = θr2 −
ε√
c̄1

log
(

A−1
8

(
fcrit−

c̄2

c̄1

))
, for fcrit ≥ A8 +

c̄2

c̄1
, (S10)

where Eqs. (S8) and (S9) must be solved implicitly for θcrit1 and θcrit2 respectively,

• when fcrit ≥ A1 +
c2
c1

, θcrit1 ≤ θr1 ;

• when fcrit < A1 +
c2
c1

, θcrit1 > θr1 ;

• when fcrit ≥ A8 +
c̄2
c̄1

, θcrit2 ≥ θr2 ;

• when fcrit < A8 +
c̄2
c̄1

, θcrit2 < θr2 .
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S2.2 St-st Case 3: wide patch of rod and cone loss without treatment
In this case, G(θ) = H(θc1 − θ) +H(θ − θc2) (and F(θ) = H(θr1 − θ) +H(θ − θr2) as before), where θc1 = θr1
and θc2 = θr2 . The asymptotics for the rod and cone loss case, both here and in S2.3, is valid in the region θ ∈ (∼
0.16,1− ε).

We decompose into the same regions as in Appendix A (see Fig. A.1(c)); however, the left- and right-centre-inner
regions are O(ε1/2) width in this case. This is because, in the absence of cones in the central region, we must seek a
dominant balance between the diffusion and decay terms. Thus, the new scaling on θ in the left-centre-inner region is:
θ̂ ′ = ε−1/2(θ −θr1); while the new scaling on θ in right-centre-inner region is: θ̄ ′ = ε−1/2(θ −θr2); while the regular
perturbation expansion for f in the central region is

f (θ) = f0(θ)+ ε
1/2 f1(θ)+O(ε). (S11)

Perturbation expansions are not required for rods and cones in this region since they are absent here. The scalings on
θ and the regular perturbation expansions in the left-inner and right-inner regions are the same as in Appendix A.

Left- and Right-Outer:

f0(θ) =
αB3θe−b3θ

βB2e−b2θ
, (S12)

Left-Inner:

f0(θ) =
c2

c1

(
1+

[(
1+ ε

1/2
√

η

D f c1

)−1

−1

]
eε−1√c1(θ−θr1 )

)
, (S13)

Left-Centre-Inner:

f0(θ) =
c2

c1

(
1+ ε

1/2
√

η

D f c1

)−1

e
−ε−1/2

√
η

D f
(θ−θr1 ), (S14)

Centre-Outer:
f0(θ) = 0, (S15)

Right-Centre-Inner:

f0(θ) =
c̄2

c̄1

(
1+ ε

1/2
√

η

D f c̄1

)−1

e
ε−1/2

√
η

D f
(θ−θr2 ), (S16)

Right-Inner:

f0(θ) =
c̄2

c̄1

(
1+

[(
1+ ε

1/2
√

η

D f c̄1

)−1

−1

]
e−ε−1√c̄1(θ−θr2 )

)
, (S17)

Left-Composite:

f0le f t−comp(θ) =
αB3θe−b3θ

βB2e−b2θ
+

c2

c1

[(
1+ ε

1/2
√

η

D f c1

)−1

−1

]
eε−1√c1(θ−θr1 ), (S18)

Centre-Composite:

f0centre−comp(θ) =
c2

c1

(
1+ ε

1/2
√

η

D f c1

)−1

e
−ε−1/2

√
η

D f
(θ−θr1 )+

c̄2

c̄1

(
1+ ε

1/2
√

η

D f c̄1

)−1

e
ε−1/2

√
η

D f
(θ−θr2 ), (S19)

Right-Composite:

f0right−comp(θ) =
αB3θe−b3θ

βB2e−b2θ
+

c̄2

c̄1

[(
1+ ε

1/2
√

η

D f c̄1

)−1

−1

]
e−ε−1√c̄1(θ−θr2 ), (S20)
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Maximal Cone Degenerate Patch Left Boundary:

θcrit1 = θr1 +
ε
√

c1
log

[(1+ ε
1/2
√

η

D f c1

)−1

−1

]−1(
c1 fcrit

c2
−1
) , for fcrit ≥

c2

c1

(
1+ ε

1/2
√

η

D f c1

)−1

,

(S21)

θcrit1 = θr1 − ε
1/2

√
D f

η
log
((

1+ ε
1/2
√

η

D f c1

)
c1 fcrit

c2

)
, for fcrit ≤

c2

c1

(
1+ ε

1/2
√

η

D f c1

)−1

, (S22)

Minimal Cone Degenerate Patch Right Boundary:

θcrit2 = θr2 + ε
1/2

√
D f

η
log
((

1+ ε
1/2
√

η

D f c̄1

)
c̄1 fcrit

c̄2

)
, for fcrit ≤

c̄2

c̄1

(
1+ ε

1/2
√

η

D f c̄1

)−1

, (S23)

θcrit2 = θr2 −
ε√
c̄1

log

[(1+ ε
1/2
√

η

D f c̄1

)−1

−1

]−1(
c̄1 fcrit

c̄2
−1
) , for fcrit ≥

c̄2

c̄1

(
1+ ε

1/2
√

η

D f c̄1

)−1

,

(S24)

where the maximal and minimal labels above are the other way around to those in the rod loss only cases (which
estimate maximal cone degenerate patch width), since here, for the rod and cone loss case, we are estimating the
minimal cone degenerate patch width,

• when fcrit ≥ c2
c1

(
1+ ε1/2

√
η

D f c1

)−1
, θcrit1 ≤ θr1 ;

• when fcrit <
c2
c1

(
1+ ε1/2

√
η

D f c1

)−1
, θcrit1 > θr1 ;

• when fcrit ≥ c̄2
c̄1

(
1+ ε1/2

√
η

D f c̄1

)−1
, θcrit2 ≥ θr2 ;

• when fcrit <
c̄2
c̄1

(
1+ ε1/2

√
η

D f c̄1

)−1
, θcrit2 < θr2 .

S2.3 St-st Case 4: narrow patch of rod and cone loss without treatment
As in Section S2.1 there is no centre-outer region, and the left-centre-inner and right-centre-inner regions coalesce
into a single centre-inner region (see Fig. A.1(d)).

Left- and Right-Outer:

f0(θ) =
αB3θe−b3θ

βB2e−b2θ
, (S25)

Left-Inner:
f0(θ) = A1eε−1√c1(θ−θr1 )+

c2

c1
, (S26)

Centre-Inner:

f0(θ) = A3e
−ε−1/2

√
η

D f
(θ−θr1 )+A4e

ε−1/2
√

η

D f
(θ−θr2 ), (S27)

Right-Inner:

f0(θ) = A8e−ε−1√c̄1(θ−θr2 )+
c̄2

c̄1
, (S28)
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where:

A1 = (1+B−1Q)
B−1Q̄M−1 c2

c1
+ c̄2

c̄1

B̄M−B−1QQ̄M−1 +(B−1−1)
c2

c1
,

A3 = B−1

[
c2

c1
+Q

B−1Q̄M−1 c2
c1
+ c̄2

c̄1

B̄M−B−1QQ̄M−1

]
,

A4 =
B−1Q̄ c2

c1
+M c̄2

c̄1

B̄M−B−1QQ̄M−1 ,

A8 = (M+B−1QM−1)
B−1Q̄M−1 c2

c1
+ c̄2

c̄1

B̄M−B−1QQ̄M−1 +B−1M−1 c2

c1
− c̄2

c̄1
,

Left-Composite:

f0le f t−comp(θ) =
αB3θe−b3θ

βB2e−b2θ
+A1eε−1√c1(θ−θr1 ), (S29)

Centre-Composite is identical with the centre-inner.
Right-Composite:

f0right−comp(θ) =
αB3θe−b3θ

βB2e−b2θ
+A8e−ε−1√c̄1(θ−θr2 ), (S30)

Maximal Cone Degenerate Patch Left Boundary:

θcrit1 = θr1 +
ε
√

c1
log
(

A−1
1

(
fcrit−

c2

c1

))
, for fcrit ≥ A1 +

c2

c1
, (S31)

fcrit = A3e−ε−1√c1(θcrit1−θr1 )+A4eε−1√c1(θcrit1−θr2 ), for fcrit ≤ A1 +
c2

c1
, (S32)

Minimal Cone Degenerate Patch Right Boundary:

fcrit = A3e−ε−1√c1(θcrit2−θr1 )+A4eε−1√c1(θcrit2−θr2 ), for fcrit ≤ A8 +
c̄2

c̄1
, (S33)

θcrit2 = θr2 −
ε√
c̄1

log
(

A−1
8

(
fcrit−

c̄2

c̄1

))
, for fcrit ≥ A8 +

c̄2

c̄1
, (S34)

where Eqs. (S32) and (S33) must be solved implicitly for θcrit1 and θcrit2 respectively. The maximal and minimal labels
above are the other way around to those in the rod loss only cases (which estimate maximal cone degenerate patch
width), since here, for the rod and cone loss case, we are estimating the minimal cone degenerate patch width,

• when fcrit ≥ A1 +
c2
c1

, θcrit1 ≤ θr1 ;

• when fcrit < A1 +
c2
c1

, θcrit1 > θr1 ;

• when fcrit ≥ A8 +
c̄2
c̄1

, θcrit2 ≥ θr2 ;

• when fcrit < A8 +
c̄2
c̄1

, θcrit2 < θr2 .

S2.4 St-st Case 5: wide patch of rod loss with global treatment
This case is the same as that in Appendix A, except that treatment is applied across the whole domain (T (θ) = 1) at
rate ξ . Thus, we decompose the domain into the same regions as in the untreated case (see Fig. A.1(a)). We rescale
ξ = ε−2ξ ′, where ξ ′ = O(1), here and in Sections S2.5–S2.7, dropping the dash.
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Left- and Right-Outer:

f0(θ) =
αB3θe−b3θ +ξ

βB2e−b2θ
, (S35)

Left-Inner:

f0(θ) =
c2

c1

(
1− 1

2
eε−1√c1(θ−θr1 )

)
+

ξ

D f c1
, (S36)

Left-Centre-Inner:

f0(θ) =
c2

2c1
e−ε−1√c1(θ−θr1 )+

ξ

D f c1
, (S37)

Centre-Outer:

f0(θ) =
ξ

βB2e−b2θ
, (S38)

Right-Centre-Inner:

f0(θ) =
c̄2

2c̄1
eε−1√c̄1(θ−θr2 )+

ξ

D f c̄1
, (S39)

Right-Inner:

f0(θ) =
c̄2

c̄1

(
1− 1

2
e−ε−1√c̄1(θ−θr2 )

)
+

ξ

D f c̄1
, (S40)

Left-Composite:

f0le f t−comp(θ) =
αB3θe−b3θ +ξ

βB2e−b2θ
− c2

2c1
eε−1√c1(θ−θr1 ), (S41)

Centre-Composite:

f0centre−comp(θ) =
c2

2c1
e−ε−1√c1(θ−θr1 )+

ξ

βB2e−b2θ
+

c̄2

2c̄1
eε−1√c̄1(θ−θr2 ), (S42)

Right-Composite:

f0right−comp(θ) =
αB3θe−b3θ +ξ

βB2e−b2θ
− c̄2

2c̄1
e−ε−1√c̄1(θ−θr2 ), (S43)

Minimal Cone Degenerate Patch Left Boundary:

θcrit1 = θr1 + sgn
(

fcrit−
c2

2c1
− ξ

D f c1

)
ε
√

c1
log
(

1−
∣∣∣∣2c1 fcrit

c2
− 2ξ

D f c2
−1
∣∣∣∣) , (S44)

Maximal Cone Degenerate Patch Right Boundary:

θcrit2 = θr2 − sgn
(

fcrit−
c̄2

2c̄1
− ξ

D f c̄1

)
ε√
c̄1

log
(

1−
∣∣∣∣2c̄1 fcrit

c̄2
− 2ξ

D f c̄2
−1
∣∣∣∣) , (S45)

• when fcrit ≥ c2/(2c1)+ξ/(D f c1), θcrit1 ≤ θr1 ;

• when fcrit < c2/(2c1)+ξ/(D f c1), θcrit1 > θr1 ;

• when fcrit ≥ c̄2/(2c̄1)+ξ/(D f c̄1), θcrit2 ≥ θr2 ;

• when fcrit < c̄2/(2c̄1)+ξ/(D f c̄1), θcrit2 < θr2 .
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We calculate the critical treatment rate, ξcrit, as the minimal treatment rate required to prevent cone loss, that is, to keep
f ≥ fcrit local to the patch of rod loss. The minimum TF concentration is achieved at some θcrit within the interval
θcrit ∈ [θr1 ,θr2 ]. Thus, ξcrit and θcrit can be found by setting ξ = ξcrit and θ = θcrit in both Eqn. (S42) and in the
equation obtained by setting f ′0centre−comp

(θ) = 0 from Eqn. (S42), to provide,
Critical treatment rate:

ξcrit = βB2e−b2θcrit

(
fcrit−

c2

2c1
e−ε−1√c1(θcrit−θr1 )− c̄2

2c̄1
eε−1√c̄1(θcrit−θr2 )

)
, (S46)

Eccentricity of the minimum TF concentration:

0 =−ε−1c2

2
√

c1
e−ε−1√c1(θcrit−θr1 )+

ξcritb2

βB2e−b2θcrit
+

ε−1c̄2

2
√

c̄1
eε−1√c̄1(θcrit−θr2 ), (S47)

solving Eqs. (S46) and (S47) simultaneously.

S2.5 St-st Case 6: wide patch of rod loss with local treatment
This case is the same as that in Section S2.4, except that treatment is only applied locally, within the degenerate rod
patch (T (θ) = 1−F(θ)), rather than globally, across the whole domain. We decompose the domain into the same
regions as in the untreated and global treatment cases (see Fig. A.1(a)).

Left- and Right-Outer:

f0(θ) =
αB3θe−b3θ

βB2e−b2θ
, (S48)

Left-Inner:

f0(θ) =
c2

c1
+

(
ξ

2D f c1
− c2

2c1

)
eε−1√c1(θ−θr1 ), (S49)

Left-Centre-Inner:

f0(θ) =

(
c2

2c1
− ξ

2D f c1

)
e−ε−1√c1(θ−θr1 )+

ξ

D f c1
, (S50)

Centre-Outer:

f0(θ) =
ξ

βB2e−b2θ
, (S51)

Right-Centre-Inner:

f0(θ) =

(
c̄2

2c̄1
− ξ

2D f c̄1

)
eε−1√c̄1(θ−θr2 )+

ξ

D f c̄1
, (S52)

Right-Inner:

f0(θ) =
c̄2

c̄1
+

(
ξ

2D f c̄1
− c̄2

2c̄1

)
e−ε−1√c̄1(θ−θr2 ), (S53)

Left-Composite:

f0le f t−comp(θ) =
αB3θe−b3θ

βB2e−b2θ
+

(
ξ

2D f c1
− c2

2c1

)
eε−1√c1(θ−θr1 ), (S54)

Centre-Composite:

f0centre−comp(θ) =

(
c2

2c1
− ξ

2D f c1

)
e−ε−1√c1(θ−θr1 )+

ξ

βB2e−b2θ
+

(
c̄2

2c̄1
− ξ

2D f c̄1

)
eε−1√c̄1(θ−θr2 ), (S55)

Right-Composite:

f0right−comp(θ) =
αB3θe−b3θ

βB2e−b2θ
+

(
ξ

2D f c̄1
− c̄2

2c̄1

)
e−ε−1√c̄1(θ−θr2 ), (S56)
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Minimal Cone Degenerate Patch Left Boundary:

θcrit1 = θr1 + sgn
(

fcrit−
c2

2c1
− ξ

2D f c1

)
ε
√

c1
log

((
1− ξ

D f c2

)−1(
1− ξ

D f c2
−
∣∣∣∣2c1 fcrit

c2
−1− ξ

D f c2

∣∣∣∣)
)

, (S57)

Maximal Cone Degenerate Patch Right Boundary:

θcrit2 = θr2 − sgn
(

fcrit−
c̄2

2c̄1
− ξ

2D f c̄1

)
ε√
c̄1

log

((
1− ξ

D f c̄2

)−1(
1− ξ

D f c̄2
−
∣∣∣∣2c̄1 fcrit

c̄2
−1− ξ

D f c2

∣∣∣∣)
)

, (S58)

• when fcrit ≥ c2/(2c1)+ξ/(2D f c1), θcrit1 ≤ θr1 ;

• when fcrit < c2/(2c1)+ξ/(2D f c1), θcrit1 > θr1 ;

• when fcrit ≥ c̄2/(2c̄1)+ξ/(2D f c̄1), θcrit2 ≥ θr2 ;

• when fcrit < c̄2/(2c̄1)+ξ/(2D f c̄1), θcrit2 < θr2 .

Critical treatment rate:

ξcrit =

(
fcrit−

c2

2c1
e−ε−1√c1(θcrit−θr1 )− c̄2

2c̄1
eε−1√c̄1(θcrit−θr2 )

)
×(

1
βB2e−b2θcrit

− 1
2D f c1

e−ε−1√c1(θcrit−θr1 )− 1
2D f c̄1

eε−1√c̄1(θcrit−θr2 )

)−1

, (S59)

Eccentricity of the minimum TF concentration:

0 =−ε
−1√c1

(
c2

2c1
− ξcrit

2D f c1

)
e−ε−1√c1(θcrit−θr1 )+

ξcritb2

βB2e−b2θcrit
+ε
−1√c̄1

(
c̄2

2c̄1
− ξcrit

2D f c̄1

)
eε−1√c̄1(θcrit−θr2 ), (S60)

solving Eqs. (S59) and (S60) simultaneously for ξcrit and θcrit.

S2.6 St-st Case 7: narrow patch of rod loss with global treatment
This case is the same as that in Section S2.1, except that treatment is applied across the whole domain (T (θ) = 1) at
rate ξ . Thus, we decompose the domain into the same regions as in the untreated case (see Fig. A.1(b)).

Left- and Right-Outer:

f0(θ) =
αB3θe−b3θ +ξ

βB2e−b2θ
, (S61)

Left-Inner:

f0(θ) = A1eε−1√c1(θ−θr1 )+
c2

c1
+

ξ

D f c1
, (S62)

Centre-Inner:

f0(θ) = A3e−ε−1√c1(θ−θr1 )+A4eε−1√c1(θ−θr2 )+
ξ

D f c1
, (S63)

Right-Inner:

f0(θ) = A8e−ε−1√c̄1(θ−θr2 )+
c̄2

c̄1
+

ξ

D f c̄1
, (S64)
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where:

A1 =

(
1+
√

c1

c̄1

)−1 [ c2

2c1
K−2

(√
c1

c̄1
−1
)
+K−1

(
c̄2

c̄1
+

ξ

D f c̄1
− ξ

D f c1

)]
− c2

2c1
,

A3 =
c2

2c1
,

A4 =

(
1+
√

c1

c̄1

)−1 [ c2

2c1
K−1

(√
c1

c̄1
−1
)
+

(
c̄2

c̄1
+

ξ

D f c̄1
− ξ

D f c1

)]
,

A8 =−
(

1+
√

c1

c̄1

)−1 [ c2

2c1
K−1

(√
c1

c̄1
−1
)
+

(
c̄2

c̄1
+

ξ

D f c̄1
− ξ

D f c1

)]√
c1

c̄1
+

c2

2c1

√
c1

c̄1
K−1,

Left-Composite:

f0le f t−comp(θ) =
αB3θe−b3θ +ξ

βB2e−b2θ
+A1eε−1√c1(θ−θr1 ), (S65)

Centre-Composite is identical with the centre-inner.
Right-Composite:

f0right−comp(θ) =
αB3θe−b3θ +ξ

βB2e−b2θ
+A8e−ε−1√c̄1(θ−θr2 ), (S66)

Minimal Cone Degenerate Patch Left Boundary:

θcrit1 = θr1 +
ε
√

c1
log
(

A−1
1

(
fcrit−

c2

c1
− ξ

D f c1

))
, for fcrit ≥ A1 +

c2

c1
+

ξ

D f c1
, (S67)

fcrit = A3e−ε−1√c1(θcrit1−θr1 )+A4eε−1√c1(θcrit1−θr2 )+
ξ

D f c1
, for fcrit ≤ A1 +

c2

c1
+

ξ

D f c1
, (S68)

Maximal Cone Degenerate Patch Right Boundary:

fcrit = A3e−ε−1√c1(θcrit2−θr1 )+A4eε−1√c1(θcrit2−θr2 )+
ξ

D f c1
, for fcrit ≤ A8 +

c̄2

c̄1
+

ξ

D f c̄1
, (S69)

θcrit2 = θr2 −
ε√
c̄1

log
(

A−1
8

(
fcrit−

c̄2

c̄1
− ξ

D f c̄1

))
, for fcrit ≥ A8 +

c̄2

c̄1
+

ξ

D f c̄1
, (S70)

where Eqs. (S68) and (S69) must be solved implicitly for θcrit1 and θcrit2 respectively,

• when fcrit ≥ A1 +
c2
c1
+ ξ

D f c1
, θcrit1 ≤ θr1 ;

• when fcrit < A1 +
c2
c1
+ ξ

D f c1
, θcrit1 > θr1 ;

• when fcrit ≥ A8 +
c̄2
c̄1
+ ξ

D f c̄1
, θcrit2 ≥ θr2 ;

• when fcrit < A8 +
c̄2
c̄1
+ ξ

D f c̄1
, θcrit2 < θr2 .

Critical treatment rate:

ξcrit =

(
fcrit−

(
1+
√

c1

c̄1

)−1 [ c2

2c1
K−2

(√
c1

c̄1
−1
)
+K−1 c̄2

c̄1

]
eε−1√c1(θcrit−θr1 )− c2

2c1
e−ε−1√c1(θcrit−θr1 )

)
×

(
1

D f c1
+

(
1+
√

c1

c̄1

)−1

K−1
(

1
D f c̄1

− 1
D f c1

)
eε−1√c1(θcrit−θr1 )

)−1

, (S71)
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Eccentricity of the minimum TF concentration:

θcrit = θr1 −
ε

2
√

c1
log

(
2c1

c2

(
1+
√

c1

c̄1

)−1 [ c2

2c1
K−2

(√
c1

c̄1
−1
)
+K−1

(
c̄2

c̄1
+

ξcrit

D f c̄1
− ξcrit

D f c1

)])
, (S72)

solving Eqs. (S71) and (S72) simultaneously for ξcrit and θcrit.

S2.7 St-st Case 8: narrow patch of rod loss with local treatment
This case is the same as that in Section S2.6, except that treatment is only applied locally, within the degenerate rod
patch (T (θ) = 1−F(θ)), rather than globally, across the whole domain. We decompose the domain into the same
regions as in the untreated and global treatment cases (see Fig. A.1(b)).

Left- and Right-Outer:

f0(θ) =
αB3θe−b3θ

βB2e−b2θ
, (S73)

Left-Inner:
f0(θ) = A1eε−1√c1(θ−θr1 )+

c2

c1
, (S74)

Centre-Inner:

f0(θ) = A3e−ε−1√c1(θ−θr1 )+A4eε−1√c1(θ−θr2 )+
ξ

D f c1
, (S75)

Right-Inner:

f0(θ) = A8e−ε−1√c̄1(θ−θr2 )+
c̄2

c̄1
, (S76)

where:

A1 =

(
1+
√

c1

c̄1

)−1 [K−2

2

(
c2

c1
− ξ

D f c1

)(√
c1

c̄1
−1
)
+K−1

(
c̄2

c̄1
− ξ

D f c1

)]
− 1

2

(
c2

c1
− ξ

D f c1

)
,

A3 =
1
2

(
c2

c1
− ξ

D f c1

)
,

A4 =

(
1+
√

c1

c̄1

)−1 [K−1

2

(
c2

c1
− ξ

D f c1

)(√
c1

c̄1
−1
)
+

(
c̄2

c̄1
− ξ

D f c1

)]
,

A8 =−
(

1+
√

c1

c̄1

)−1 [K−1

2

(
c2

c1
− ξ

D f c1

)(√
c1

c̄1
−1
)
+

(
c̄2

c̄1
− ξ

D f c1

)]√
c1

c̄1
+

√
c1

c̄1

K−1

2

(
c2

c1
− ξ

D f c1

)
,

Left-Composite:

f0le f t−comp(θ) =
αB3θe−b3θ

βB2e−b2θ
+A1eε−1√c1(θ−θr1 ), (S77)

Centre-Composite is identical with the centre-inner.
Right-Composite:

f0right−comp(θ) =
αB3θe−b3θ

βB2e−b2θ
+A8e−ε−1√c̄1(θ−θr2 ), (S78)

The Left- and Right-Composite solutions are the same here as for the narrow patch without treatment (Eqs. (S5) and
(S6)), except that the expressions for A1 and A8 are different.
Minimal Cone Degenerate Patch Left Boundary:

θcrit1 = θr1 +
ε
√

c1
log
(

A−1
1

(
fcrit−

c2

c1

))
, for fcrit ≥ A1 +

c2

c1
, (S79)

fcrit = A3e−ε−1√c1(θcrit1−θr1 )+A4eε−1√c1(θcrit1−θr2 ), for fcrit ≤ A1 +
c2

c1
, (S80)
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Maximal Cone Degenerate Patch Right Boundary:

fcrit = A3e−ε−1√c1(θcrit2−θr1 )+A4eε−1√c1(θcrit2−θr2 ), for fcrit ≤ A8 +
c̄2

c̄1
, (S81)

θcrit2 = θr2 −
ε√
c̄1

log
(

A−1
8

(
fcrit−

c̄2

c̄1

))
, for fcrit ≥ A8 +

c̄2

c̄1
, (S82)

where Eqs. (S80) and (S81) must be solved implicitly for θcrit1 and θcrit2 respectively,

• when fcrit ≥ A1 +
c2
c1

, θcrit1 ≤ θr1 ;

• when fcrit < A1 +
c2
c1

, θcrit1 > θr1 ;

• when fcrit ≥ A8 +
c̄2
c̄1

, θcrit2 ≥ θr2 ;

• when fcrit < A8 +
c̄2
c̄1

, θcrit2 < θr2 .

Critical treatment rate:

ξcrit =

(
fcrit−

(
1+
√

c1

c̄1

)−1 [ c2

2c1
K−2

(√
c1

c̄1
−1
)
+K−1 c̄2

c̄1

]
eε−1√c1(θcrit−θr1 )− c2

2c1
e−ε−1√c1(θcrit−θr1 )

)
×

((
1+
√

c1

c̄1

)−1 [
−
(√

c1

c̄1
−1
)

K−2

2D f c1
− K−1

D f c1

]
eε−1√c1(θcrit−θr1 )− 1

2D f c1
e−ε−1√c1(θcrit−θr1 )+

1
D f c1

)−1

,

(S83)

Eccentricity of the minimum TF concentration:

θcrit = θr1−
ε

2
√

c1
log

(
2
(

c2

c1
− ξcrit

D f c1

)−1(
1+
√

c1

c̄1

)−1 [(c2

c1
− ξcrit

D f c1

)
K−2

2

(√
c1

c̄1
−1
)
+K−1

(
c̄2

c̄1
− ξcrit

D f c1

)])
,

(S84)
solving Eqs. (S83) and (S84) simultaneously for ξcrit and θcrit.

S3 Supplementary figures
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Figure S2: Distance between rod and minimum/maximum cone degenerate patch boundaries using the steady-state
model — wide rod degenerate patch (St-st Cases 1 and 3). Each panel shows the variation in the distances between
the left-hand rod and minimum cone degenerate patch boundaries, θr1 − θcrit1 , and between the right-hand rod and
maximum cone degenerate patch boundaries, θcrit2 −θr2 , with θr1 and θr2 respectively. (a) St-st Case 1(ii): rod loss
only with fcrit = 0.3; (b) St-st Case 1(i): rod loss only with fcrit = 3×10−5; (c) St-st Case 3(ii): rod and cone loss with
fcrit = 0.3; (d) St-st Case 3(i): rod and cone loss with fcrit = 3× 10−5. Note the different scales on the y-axes. The
maximum spatial extent of cone loss remains within the boundaries of rod loss in (b) and (d), but may exceed it close
to the fovea (centred at θ = 0) in (a) and (c). Curves are plotted using Eqs. A.22 and A.23 in (a) and (b), and using
Eqs. (S21)–(S24) in (c) and (d). The parameter ε = 10−2. Remaining parameter values as in Table 2.
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Figure S3: Analytical estimates of the eccentricity of the minimum TF concentration using the steady-state model —
wide and narrow rod degenerate patch with rod loss only (St-st Cases 5–8). All plots show the normalised eccentricity
of the minimum TF concentration, θ̂crit = (θcrit−θr1)/(θr2 −θr1). (a) and (c) St-st Case 5, and (e) St-st Case 7 global
treatment; (b) and (d) St-st Case 6, and (f) St-st Case 8 local treatment; (a)–(d) wide patch; (e) and (f) narrow patch;
(a), (b), (e) and (f) Subcase (ii): fcrit = 0.3; (c) and (d) Subcase (i): fcrit = 3× 10−5. (a)–(d) column 1: variation
in θ̂crit over (θr1 ,θr2) parameter space. (a)–(f) column 2: variation in θ̂crit with rod degenerate patch centre position,
(θr1 +θr2)/2; column 3: variation in θ̂crit with rod degenerate patch left boundary position, θr1 ; each curve represents
a constant rod degenerate patch width, θr2 −θr1 . θ̂crit increases monotonically with decreasing rod degenerate patch
width and with increasing rod degenerate patch centre/left boundary position in all cases. θ̂crit remains close to 0 for
patches of width θr2 − θr1 ≥ 0.2 ((a)–(d)) and close to 0.5 for narrow patches ((e) and (f)). Analytical solutions are
obtained by implicitly solving Eqs. (S46) and (S47) in (a) and (c), Eqs. (S59) and (S60) in (b) and (d), Eqs. (S71) and
(S72) in (e), and Eqs. (S83) and (S84) in (f). The parameter ε = 10−2. Remaining parameter values as in Table 2.
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Figure S4: Simulations of the effects of treatment upon RdCVF and cone OS dynamics following the complete removal
of rods from the interval (θr1 ,θr2) — dynamic model (Dyn Case 4). Panels show TF concentration, f (θ , t), and cone
OS length, pL

c (θ , t), for global treatment (columns 1 and 2), T (θ , t) = H(t − tcrit), and local treatment (columns
3 and 4), T (θ , t) = (1−F(θ))H(t − tcrit), following the removal of rods from wide (width O(1)) patches (rows 1
and 3), (a) (θr1 ,θr2) = (0.1,0.3) and (b) (θr1 ,θr2) = (0.2,0.4), and narrow (width O(ε)) patches (rows 2 and 4),
(a) (θr1 ,θr2) = (0.1,0.12) and (b) (θr1 ,θr2) = (0.2,0.22). Black and white horizontal lines mark the time point,
tcrit, at which treatment is introduced. (a) Dyn Case 4(i): fcrit = 3× 10−5; (b) Dyn Case 4(ii): fcrit = 0.3. All
simulations span the period of ∼2.2 years in dimensional variables. Treatment results in the complete recovery of
cone OSs in all cases. Eqs. (7), (8) and (10)–(12) were solved using the method of lines, with 401 mesh points,
F(θ) = H(θr1 −θ)+H(θ −θr2) and G(θ) = 1, and without mutation-induced rod degeneration. Parameter values:
ξ = 6×104 and tcrit = 4.53 (=1 year in dimensional variables). Remaining parameter values as in Table 2.
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