

Sussex Research

The development of cobalt phosphide co-catalysts on BiVO4 photoanodes to improve H2O2 production

Yuntao Xu, Yanfei Cao, Li Tan, Qiao Chen, Yuanxing Fang

Publication date

01-05-2023

Licence

This work is made available under the Copyright not evaluated licence and should only be used in accordance with that licence. For more information on the specific terms, consult the repository record for this item.

Document Version

Accepted version

Citation for this work (American Psychological Association 7th edition)

Xu, Y., Cao, Y., Tan, L., Chen, Q., & Fang, Y. (2023). *The development of cobalt phosphide co-catalysts on BiVO4 photoanodes to improve H2O2 production* (Version 1). University of Sussex. https://hdl.handle.net/10779/uos.23493899.v1

Published in

Journal of Colloid and Interface Science

Link to external publisher version

https://doi.org/10.1016/j.jcis.2022.11.120

Copyright and reuse:

This work was downloaded from Sussex Research Open (SRO). This document is made available in line with publisher policy and may differ from the published version. Please cite the published version where possible. Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners unless otherwise stated. For more information on this work, SRO or to report an issue, you can contact the repository administrators at sro@sussex.ac.uk. Discover more of the University's research at https://sussex.figshare.com/

Supporting Information

The development of cobalt phosphide co-catalyst on BiVO₄ photoanode to improve H₂O₂ production

Yuntao Xu, ¹ Yanfei Cao, ¹ Li Tan, ^{1*} Qiao Chen² and Yuanxing Fang^{1*}

¹State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China

²Department of Chemistry, School of Life Sciences, University of Sussex, Brighton, BN1 9QJ, United Kingdom

Email: tan@fzu.edu.cn; yxfang@fzu.edu.cn.

Figure S1. SEM images of (a) CoP, (b) CoP/Co₂P-1, (c) CoP/Co₂P-2 and (d) Co₂P. (e) Particle size distribution of CoP, CoP/Co₂P-1, CoP/Co₂P-2 and Co₂P.

Figure S2. Top view and cross section view SEM images of (a)-(b) CPB-1, (c)-(d) CPB-2 and (e)-(f) CPB-3.

Figure S3. HR-TEM images of pristine BVO photoanode.

Figure S4. High resolution XPS spectra of (a) Co 2p and (b) P 2p of BVO and CPB photoanodes.

Figure S5. XRD patterns of BVO and CPB photoanodes.

Figure S6. (a) Absorbance curve of standard concentration obtained by UV-Vis-NIR spectrophotometer, (b) the standard curve.

Figure S7. XRD spectra of origin Co_2P and the Co_2P that soaked in 0.01 M H₂O₂ solution for 36 h.

Figure S8. (a) Photocurrent density of the Co_3O_4 -BVO photoanode for H_2O_2 production under AM 1.5 G illumination. (b) CA curve of the Co_3O_4 -BVO photoanode for H_2O_2 production with the applied voltage of 1.7 V_{RHE}. (c) The H_2O_2 production and selectivity of the Co₃O₄-BVO photoanode for H_2O_2 production with three times of independent repeated experiments.

Figure S9. UV-Vis DRS spectra of BVO and CPB photoanodes of Kubelka-Munk spectra.

Figure S10. The Mott-Schottky plots to measure the flat-band potentials of BVO photoanode and CPB samples.

Figure S11. Fluorescence intensity spectra of BVO photoanode and CPB samples.

Figure S12. The Nyquist plots of EIS measurements of BVO and CPB photoanodes of (a) under illumination, (b) in the dark, with (c) the fitting of the impedance spectrum of R_{HF} and C_{HF}.

Figure S13. CV curves of (a) BVO, (b) Co_2P , (c) CoP, (d) CoP/Co_2P -1 and (e) CoP/Co_2P -2.

In Figure S13a, no apparent peaks can be observed for BVO photoanode at 1.0 to 1.9 V vs. RHE. In Figure S13d and 13e, CoP/Co₂P-1 and CoP/Co₂P-2 presented peaks at 1.53 and 1.75 V_{RHE}, which are known as Co^{2+} to Co^{3+} and peaks of Co^{3+} to Co^{4+} .

Figure S14. UPS spectra that show the cutoff edge and fermi edge of (a)-(b) CPB-1, (c)-(d) CPB-2, (e)-(f) CPB-3 and (g)-(h) CPB-4.

The cutoff edge of CPB-1, CPB-2, CPB-3 and CPB-4 are 17.68, 17.48, 17.49 and 17.43 eV (Figure S14a, S14c, S14e, and S14g). The fermi level of CPB-1, CPB-2, CPB-3 and CPB-4 are 0.62, 0.58, 0.61 and 0.78 eV (Figure S14b, S14d, S14f, and S14h).

Figure S15. EPR spectra of BVO and CPB photoanodes.

Figure S16. H₂O₂ desorption curves of BVO, CPB and Co₃O₄-BVO photoanodes with three times of independent experiments.

photoanodes for photoanodic H2O2 production			
photoanodes	Electrolyte	Production rate (µmol min ⁻¹ cm ⁻²)	References
Co ₃ O ₄ /TiO ₂	0.5 M KHCO3	0.021 (1 mA at 0.4-1.2 V)	[1]
WO ₃ /BiVO ₄	2 M KHCO ₃	0.022 at 1.5 V vs. RHE	[2]
WO ₃ /BiVO ₄	2 M KHCO ₃	0.066 at 1.23 V vs. RHE	[3]
BiVO ₄ -Air/V	1 M NaHCO ₃	0.092 at 1.23 V vs. RHE	[4]
CPB	1 M KHCO ₃	0.16 at 1.7 V vs. RHE	This work

 Table S1. Summary of reported photoanodes and this work for photoanodic H₂O₂ production.

References

 J. Zhang, X. Chang, Z. Luo, T. Wang, J. Gong, A highly efficient photoelectrochemical H₂O₂ production reaction with Co₃O₄ as a co-catalyst, Chem. Commun. 54 (2018) 7026-7029.

[2] K. Fuku, K. Sayama, Efficient oxidative hydrogen peroxide production and accumulation in photoelectrochemical water splitting using a tungsten trioxide/bismuth vanadate photoanode, Chem. Commun. 52 (2016) 5406-5409.

[3] K. Fuku, Y. Miyase, Y. Miseki, T. Funaki, T. Gunji, K. Sayama, Photoelectrochemical Hydrogen Peroxide Production from Water on a WO₃ /BiVO₄ Photoanode and from O₂ on an Au Cathode Without External Bias, Chem. Asian J. 12 (2017) 1111-1119.

[4] L. Wang, Y. Lu, N. Han, C. Dong, C. Lin, S. Lu, Y. Min, K. Zhang, Suppressing Water Dissociation via Control of Intrinsic Oxygen Defects for Awakening Solar H₂Oto-H₂O₂ Generation, Small 17 (2021) 2100400.