
   

 

A University of Sussex DPhil thesis 

Available online via Sussex Research Online: 

http://sro.sussex.ac.uk/   

This thesis is protected by copyright which belongs to the author.   

This thesis cannot be reproduced or quoted extensively from without first 
obtaining permission in writing from the Author   

The content must not be changed in any way or sold commercially in any 
format or medium without the formal permission of the Author   

When referring to this work, full bibliographic details including the 
author, title, awarding institution and date of the thesis must be given 

Please visit Sussex Research Online for more information and further details   



 

 
 

 

 

 

THE CONSERVATION AND LANDSCAPE GENETICS OF THE 

SAND LIZARD Lacerta agilis  

 

Liam Russell 

 

 

 

 

 

 

 

 

Thesis submitted for the Degree of Doctor of Philosophy 

 

School of Life Sciences 

University of Sussex 

 

December 2012 



 

 
 

 

 

…this ‘aristocrat’ needs our special care, a quiet large castle to live in and 

plenty of time to grow old. Only then can we preserve it for our children. 

H. Strijbosch, Nijmegen, 1988 
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The Conservation and Landscape Genetics of the Sand Lizard Lacerta agilis 

 

SUMMARY 

Lacerta agilis is a widespread lizard which reaches the western edge of its range in Britain 

where it is restricted to three geographically separated areas. Recent habitat loss and 

fragmentation have resulted in a significant decline and it is now a UK conservation priority. 

Sand lizards from across the Britain were genotyped at 15 microsatellite loci and the resulting 

dataset used to address questions regarding the conservation genetics, phylogeography and 

influence of landscape on patterns of genetic diversity.  

Genetic diversity of Dorset populations compared favourably to European examples. However, 

diversity was significantly lower in Surrey and Merseyside. Significant genetic structuring 

occurred across small geographical distances even in relatively unfragmented landscapes. 

Lacerta agilis colonised Britain via a land bridge across the North Sea and reached the limits of 

its current distribution approximately 5,000 years BP. Subsequent climate cooling has resulted 

in a range contraction to areas where the habitat is suitable for the successful incubation of 

eggs. 

A resistance surface was used to investigate the effect of landscape configuration on patterns 

of genetic diversity at multiple scales in Dorset. At a local scale, habitat type and rivers were 

the best predictors of genetic diversity. At a regional scale, rivers were most important, 

whereas habitat type and artificial barriers were less important. Artificial barriers may be more 

significant than the results suggest as their true effect has not yet been realised due to a 

genetic time-lag. 

Male lizards from Merseyside exhibited significant differences in colour and pattern to the 

Dorset and Surrey populations. However, despite difference in colour, all populations were 

equally green, which is in keeping with the importance of ‘greenness’ as a sexual signal. 

The implications of these findings for the conservation of L. agilis are discussed in the context 

of current challenges and predicted future global climate change. 
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1 INTRODUCTION 

 

1.1 Introduction 

Species are currently becoming extinct at a rate several times that of prior background levels 

due to an anthropogenic biodiversity crisis (Myers 1993; Pimm et al. 1995; Chapin et al. 2000; 

Woodruff 2001). The reasons for this are manifold: competition and predation by alien species 

(Mack et al. 2000; Clavero & Garcia-Berthou 2005); direct human exploitation (Rowcliffe et al. 

2003; Brook & Sodhi 2006); global and local climate change (Thomas et al. 2004; Stork 2010); 

disease (Brito et al. 2012; McCallum 2012); and combinations of these (Kiesecker et al. 2001; 

Pounds et al. 2006), have all been implicated in contributing to extinctions of populations and 

species. However, habitat loss and fragmentation are considered to be leading causes in many 

habitats and species groups (Fahrig 2001; Brooks et al. 2002; Fahrig 2002, 2003; Cushman 

2006).  

 

1.2 Habitat Loss and Fragmentation 

1.2.1 Introduction 

Anthropogenic activity has increasingly modified natural landscapes creating small, isolated 

and fragmented populations in the remnants of previously extensive habitats. The effects of 

habitat loss and fragmentation, by which large areas of habitat or ecosystem are divided into 

smaller ‘patches’ surrounded by an inhospitable ‘matrix’ have been widely documented in 

many different parts of the world and in a wide variety of habitat types (Saunders et al. 1991; 

Debinski & Holt 2000; Hanski & Ovaskainen 2000; Fahrig 2002, 2003). Fragmented habitat also 

has a greater proportion of edges than a single large area of equivalent size, which leads to 

more ‘edge effects’ when edge habitat is less suitable than that nearer the centre of the patch 

(Ries et al. 2004). 

As well as the direct impacts of habitat loss, fragmentation can also have a negative effect on 

the viability of a population by preventing migration between populations leading to 

inbreeding and genetic drift (Saunders et al. 1991; Mills & Allendorf 1996; Hanski 1998; 

Debinski & Holt 2000; Couvet 2002; Allendorf & Luikart 2007). 
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1.2.2 The Consequences of Isolation and Small Population Size 

The size of a population of plants or animals can have significant implications for its long-term 

persistence. Small populations are at far greater risk of extinction than large ones as their long-

term survival is dependent on the ability of relatively few individuals to survive and 

successfully reproduce. Isolation from other populations exacerbates this situation by 

preventing recruitment and the introduction of new genetic material from surrounding 

populations (Couvet 2002). This leaves them much more vulnerable to stochastic events, from 

which larger populations are better able to recover (Lande 1993). Stochastic events which 

affect population persistence fall into four categories (Shaffer 1981; Boyce 1992; Caughley 

1994): 

 Genetic stochasticity – changes in gene frequencies within a population brought about 

by processes such as genetic drift and inbreeding, which often result in reduced 

variability. 

 Demographic stochasticity – changes in demographic parameters of a population such 

as random variation in survival and reproductive success between generations or 

random variation in sex ratios. 

 Environmental stochasticity – changes in weather, climate, habitat and predation, 

parasitisation and disease, which affect survival and reproduction rates. 

 Natural (or anthropogenic) catastrophes – such as fires, floods, etc. These are 

essentially an extreme form of environmental stochasticity that occur infrequently and 

affect a very high proportion of a population. This category includes anthropogenic 

habitat loss. 

In wild populations stochastic events are often interlinked, for example, genetic stochasticity 

within a population may increase its vulnerability to environmental stochasticity by reducing 

its ability to adapt to changing environmental conditions. 

It is widely recognised that small populations are vulnerable to genetic drift and inbreeding, 

which can lead to a reduction in genetic diversity, the fixing of deleterious mutations, 

inbreeding depression and reduced levels of fitness (Lynch & Gabriel 1990; Lande 1995; 

Frankham 1996; Reed & Frankham 2003; Allendorf & Luikart 2007), all of which have 

contributed to extinctions of wild populations (Frankham 1995; Saccheri et al. 1998). In wild 

populations, numerous measures of reduced fitness (weight at birth, survival rates, 
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reproduction and growth rates, resistance to predation, disease and environmental stress) 

have been linked to inbreeding depression (Keller & Waller 2002; Shikano & Taniguchi 2002). 

Isolation from other populations exacerbates the effects of small population size as it restricts 

gene flow by preventing immigrants from introducing new genetic material (Saccheri et al. 

1998; Higgins & Lynch 2001; Couvet 2002). Species which have specific habitat requirements 

and low vagility are of increased vulnerability to habitat fragmentation as individuals are often 

unable to disperse across the matrix. In this situation gene flow between different patches is 

prevented, effectively creating a number of small isolated populations from a previously large 

continuous one. Mills & Allendorf (1996) suggested that at least one immigrant per generation 

would be necessary to maintain genetic viability in most wild populations.  

The potential impacts of isolation and small population size were graphically illustrated by a 

long-term study of a population of adders Vipera berus from Smygehuk in Sweden, which has 

provided compelling evidence of the detrimental effects of isolation due to habitat loss upon 

reptiles. The V. berus population at Smygehuk became isolated due to habitat loss and 

destruction and by the 1980s numbered approximately 30 animals, with an effective 

population size (the number of breeding adults required to maintain observed levels of genetic 

variability in a theoretical ideal population) of less than 15. At this time, genetic diversity 

measured using various genetic markers was significantly lower than in three other non-

isolated populations (including one of a similar size), indicating high levels of inbreeding. This 

had a manifest effect on the reproductive success of the population; females there were 

producing significantly smaller broods, a high proportion of which were deformed or stillborn 

(Madsen et al. 1996). In an effort to prevent the probable extinction of the population, 

conservationists proposed a ‘genetic restoration’ of the population. In 1992, 20 adult male 

adults were captured from larger, more genetically variable populations and released in 

Smygehuk, with surviving individuals removed after four breeding seasons. By 1999 the 

number of males in the population (excluding the introduced snakes) had risen from less than 

five to nearly 35 with an associated increase in genetic variability, and the proportion of 

stillborn young fell rapidly (Madsen et al. 1999). By 2003, the number of males had risen to 39 

(Madsen et al. 2004). 

Related species can show markedly different response to fragmentation. Chiucchi & Gibbs 

(2010) investigated levels of historic and contemporary gene flow in the eastern Massasauga 

rattlesnake Sistrurus catenatus and found that recent fragmentation had had a limited effect 



Chapter 1 - Introduction 

4 
 

on the population genetics. This was attributed to the species existing in small isolated, yet 

inbreeding-resistant populations prior to anthropogenic influence on the landscape. 

1.2.3 Natural Causes of Small Population Size and Low Genetic Diversity 

Small, genetically impoverished populations can arise naturally as a result of biogeography. 

Populations on the edge of a species’ range are often significantly less genetically diverse than 

those nearer the centre of the range as a result of population expansion patterns (Nichols & 

Hewitt 1994; Allendorf & Luikart 2007; Bohme et al. 2007; Eckert et al. 2008; Ramakrishnan et 

al. 2010). For example, the natterjack toad Bufo calamita reaches the western edge of its 

range in Britain and has low genetic diversity across the country (Hitchings & Beebee 1996; 

Rowe et al. 1999), with evidence that some populations have undergone genetic bottlenecks 

(Beebee & Rowe 2001a). Whilst the small population size and low genetic variability of some 

populations can be attributed to anthropogenic activities, even relatively large populations in 

extensive undisturbed areas of habitat exhibit low genetic diversity compared to similar 

European populations. Genetic diversity within European B. calamita populations is correlated 

with distance from an ice-age refugium in the Iberian Peninsula (Beebee & Rowe 2000) and the 

low diversity within Britain as a whole is in part attributable to biogeography and colonisation 

history. This pattern is reflected within Britain with populations near the edge of the range 

having low genetic diversity regardless of population size (Rowe et al. 1999). Whilst low 

genetic diversity across a country or region may be a result of colonisation history, differing 

levels of diversity between populations within these areas may be as result of anthropogenic 

activity. B. calamita in Denmark also have a low overall genetic diversity which can be 

attributed to its colonisation history, however subsequent habitat fragmentation has 

prevented gene flow between remaining populations resulting in high levels of differentiation 

(Allentoft et al. 2009). 

Given the potential for different causes of low genetic variability and small population size, it is 

important to gain a clear understanding of the contemporary and historical reasons underlying 

observed patterns in genetic variability and population structure. False assumptions about the 

causes of levels of genetic variability and degree of structuring could result in the misallocation 

of resources for the conservation management of species. Although edge populations often 

show reduced genetic variation they can be particularly important for long-term species 

persistence as they often exist in extreme environmental conditions. This can mean they are 

better able to respond to environmental change and therefore may be particularly important 

with respect to the  future evolution of species (Lesica & Allendorf 1995). 
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1.2.4 Habitat Fragmentation and Lizards 

Lizards typically exhibit low vagility (Bennett 1983) and small body size, both of which decrease 

dispersal ability and therefore potentially increase vulnerability to adverse fragmentation 

effects (Gibbons et al. 2000; Jenkins et al. 2007). However, they have often been found to 

persist in small habitat patches for longer than other taxonomic groups (Burkey 1995; Prugh et 

al. 2008) provided the remaining habitat is of sufficient quality (Santos et al. 2008). 

Habitat fragmentation can affect lizard populations via a number of different mechanisms. The 

size of a habitat patch can influence the likelihood of occupancy and density of individual lizard 

species, including Lacerta viridis (Maura et al. 2011), Coleodactylus amazonicus and Gonatodes 

humeralis (Carvalho et al. 2008), Uma inornata (Barrows & Allen 2007), Psammodromus 

algirus (Diaz et al. 2000) and Gehyra variegata (Sarre 1998), and the species-richness of the 

patch in lizard communities from a variety of habitats (Bell & Donnelly 2006; Michael et al. 

2008; Watling & Donnelly 2008). However, the opposite effect has been recorded in Podarcis 

siculus as smaller habitat patches were less likely to support predatory snakes (Maura et al. 

2011). 

Patch size also has a demographic effect on lizard populations, for example survival rates in 

Sceloporus woodi (Hokit & Branch 2003a, b) and Gnypetoscincus queenslandiae (Sumner et al. 

2004) were lower in smaller habitat patches. Reproductive output of P.  algirus in the 

Mediterranean and Tropidurus spp. from the Amazon rainforest was correlated with patch 

size, with females from smaller habitat fragments producing fewer eggs and a smaller clutch 

mass (Vitt 1993; Diaz et al. 2005), a pattern which reflects that seen in naturally small island 

populations of lacertid lizards when compared to mainland populations (Siliceo & Diaz 2010). 

Smaller adult body size was observed in G. queenslandiae from small forest fragments, which 

also contained a smaller proportion of adults within the population (Sumner et al. 1999). The 

explanation for these patterns is not always clear, however prey availability and the loss of 

suitable microclimates due to edge effects have been suggested (Sumner et al. 1999).  

Edge effects due to fragmentation resulted in an increase in predation on Australian skinks as 

the greater proportion of edge habitat within the landscape meant that the skinks more 

frequently came into contact with predatory bird species not found nearer to the centre of 

habitat patches (Anderson & Burgin 2008). In addition to the risk of predation, lizards in a 

habitat where the number of predators was artificially increased became less mobile and 

showed a dietary shift to smaller prey items which had a lower handling time (Hawlena & 

Perez-Mellado 2009). 
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Demographic impacts can occur when dispersal between habitat patches is prevented. 

Dispersal in viviparous lizards Lacerta (Zootoca) vivipara is density-dependent; when 

population density reaches a critical level, juvenile lizards will disperse to other neighbouring 

populations. Using experimental manipulation of connectivity between populations, Lecomte 

et al. (2004) observed that the size of connected populations became increasingly 

homogenised over time. By contrast, isolated populations typically underwent a population 

explosion followed by a rapid decline. Juvenile lizards which were ‘forced’ to disperse from 

lower connectivity patches had a lower likelihood of surviving hibernation than those from 

connected habitat (Boudjemadi et al. 1999). 

The genetic implications of habitat fragmentation have been demonstrated in a number of 

species of lizards. Berry et al. (2005) and Levy et al. (2010) investigated the fragmentation 

effects caused by agricultural land use in the grand skink Oligosoma grande from New Zealand 

and the agamid Ctenophorus ornatus in Australia respectively. Both studies showed that 

populations from fragmented agricultural landscapes were less genetically diverse and more 

highly structured than those from areas with natural vegetation. A similar effect was also 

noted in fragmented Lacerta agilis populations from Sweden (Gullberg et al. 1998).  

Many studies have demonstrated reduced variability and greater genetic structuring in lizards 

from fragmented habitats. However, a number of other studies have found no apparent effect. 

Habitat fragmentation in the form of deforestation inhibited dispersal in the skink Egernia 

cunninghami, resulting in higher levels of genetic similarity within clusters within deforested 

areas compared to adjacent naturally vegetated areas (Stow et al. 2001). However, this did not 

result in increased levels of inbreeding as the species was able to avoid mating with close kin 

and therefore levels of genetic variability were maintained (Stow & Sunnucks 2004). Similar 

apparent resistance to inbreeding and loss of genetic diversity has been recorded in a number 

of lizard species (Sumner et al. 2004; Smith et al. 2009; McCoy et al. 2010; Maldonado et al. 

2012; Remon et al. 2012). This has been attributed to relatively long generation times causing 

a time-lag before genetic effects are observable (Richmond et al. 2009; McCoy et al. 2010), or 

to reproductive strategies which avoid inbreeding and the resultant loss of genetic diversity 

due to preferential selection of genetically different (Olsson et al. 1999; Olsson et al. 2003; 

Stow & Sunnucks 2004) or genetically diverse mates (Laloi et al. 2011). 
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1.3 Landscape Genetics 

1.3.1 Introduction 

Landscape genetics is a relatively new field which combines genetic and spatial data to 

investigate how the landscape affects genetic processes such as gene flow and genetic drift 

(Manel et al. 2003; Holderegger & Wagner 2008). In a landscape where populations of an 

organism exist as ‘islands’ in a matrix of permeable habitat, one would expect to see a simple 

linear relationship between geographic and genetic distance, with genetic distance between 

populations increasing proportionately to geographic distance. This effect is commonly known 

as Isolation by Distance (IBD) (Wright 1943; Kimura & Weiss 1964) and occurs when genetic 

drift and gene flow are in equilibrium. In more complex landscapes, IBD effects can be 

obscured due to the differences in permeability of the matrix to migrants. This prevents gene 

flow between populations and therefore disrupts the equilibrium between gene flow and 

genetic drift. For example two populations separated by a barrier which prevented gene flow 

such as a river or a road would become genetically differentiated due to genetic drift despite a 

small geographic distance. Conversely there is likely to be a degree of gene flow between two 

populations separated by a relatively permeable habitat and therefore these are likely to be 

less genetically different over a larger geographic distance (Vignieri 2005).  

Hutchison & Templeton (1999) investigated the effects of landscape history and configuration 

in the population genetics of the eastern collared lizard Crotaphytus collaris. As expected, in an 

unfragmented landscape with long-established lizard occupancy, they found gene flow and 

genetic drift to be in equilibrium, producing a linear relationship between genetic and 

geographic distance (Figure 1.1a). In an unfragmented landscape which had been relatively 

recently colonised by the lizards, gene flow was found to be dominant over genetic drift with 

low variance in genetic differentiation (Figure 1.1b). This was due to insufficient time for 

significant genetic drift to affect individual populations, which remained relatively similar to 

each other. In a highly fragmented landscape with lizard populations separated by large 

geographic distances, no IBD relationship was observed and there was high variance in genetic 

differentiation (Figure 1.1c). The high degree of long-established fragmentation in this 

landscape prevented migration between populations and therefore gene flow, meaning that 

genetic drift dominated. In a more recently fragmented landscape there was some correlation 

between genetic and geographic distance when geographic distance was small, whereas at 

larger distances this relationship was lost and variance of genetic differentiation increased 

(Figure 1.1d). This pattern of equilibrium between gene flow and genetic drift at a small local 

scale and dominant genetic drift at a larger regional scale was interpreted as a result of recent 
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fragmentation gradually reversing a regional equilibrium by preventing migration between 

populations. In time, this region is likely to develop a pattern seen in the highly fragmented 

landscape.   

 

 

Figure 1.1. Relationship between geographic distance (X axis) and genetic distance (Y axis) in the eastern collared 
lizard Crotaphytus collaris in different landscape configurations. The black line is the hypothetical line of best fit; 
the shaded area denotes the spread of the data. a) Gene flow and genetic drift are in equilibrium in an 
unfragmented landscape. b) Gene flow is dominant but genetic differentiation is low in a recently colonised 
unfragmented landscape. c) Genetic drift is dominant and genetic differentiation is high in a highly fragmented 
landscape. d) Gene flow and genetic drift are in equilibrium over short geographic distances whereas genetic drift 
is dominant at large genetic distances due to increasing fragmentation disrupting equilibrium. After Hutchison & 
Templeton (1999). 

 

Understanding the effect of the landscape on genetic processes can be extremely useful for 

conservation practitioners. Straightforward applications of landscape genetics may include the 

identification of natural discontinuities in gene flow patterns (Millions & Swanson 2007; 

Neaves et al. 2009; Quemere et al. 2010) as well as anthropogenic barriers (Liu et al. 2009; 

Clark et al. 2010; Davis et al. 2010), or revealing cryptic spatial genetic structuring (Latch et al. 

2011). It can also be used to investigate factors which facilitate migration in particular species, 

such as correlating patterns in genetic differentiation with woodland corridors in roe deer 

Capreolus capreolus (Coulon et al. 2004), riparian corridors in the Pacific jumping mouse Zapus 

trinotatus (Vignieri 2005) and percentage of canopy cover in green spaces between 

populations of white-footed mice Peromyscus leucopus in New York City (Munshi-South 2012).  

Landscape genetics can also be used to investigate distribution patterns of species, for 

example Giordano et al. (2007) found a negative correlation between genetic variation and 

altitude in the long-toed salamander Ambystoma macrodactulym, which shed light on the 

factors which limit its range, whilst Selkoe et al. (2010) found that kelp bed distribution 

accurately predicted genetic patterns in one fish and two marine invertebrate species. 

Angelone & Holderegger (2009) used a landscape genetics approach to assess the 
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effectiveness of measures to improve connectivity of European tree frog Hyla arborea habitat 

in Switzerland and found that these were facilitating migration between sites.  

1.3.2 Resistance Surfaces 

In complex landscapes, the IBD relationship between genetic and geographic distance is 

limited in its usefulness for describing population structure and genetic processes. In order to 

investigate such scenarios, many studies have used a resistance surface which quantifies the 

‘effective distance’ between two populations to test the effect of landscape on the movement 

and migration of individuals and gene flow between populations (Adriaensen et al. 2003; 

Sutcliffe et al. 2003; Spear et al. 2010; Zeller et al. 2012). A resistance surface is a hypothetical 

representation of a landscape divided into individual cells or pixels, each of which has a cost (a 

resistance value) assigned to it which reflects how difficult it is for an organism to disperse 

through it. Resistance values can be assigned to each pixel according to many different 

geographical or environmental factors which affect an organism’s dispersal (see Sawyer et al. 

(2011) and Zeller et al. (2012) for a review). Resistance surfaces can provide answers to a 

variety of landscape genetics questions such as the identification of landscape features which 

particularly influence gene flow, the identification of barriers to gene flow, the identification 

and designation of movement corridors for conservation purposes and the prediction of 

species’ reactions to environmental change (Spear et al. 2010). 

There are two commonly used methods of calculating effective distance of an organism 

moving through a resistance surface: Least Cost Path (LCP) and Isolation by Resistance (IBR). 

The LCP (Adriaensen et al. 2003) is the path between two points on the resistance surface 

which has the least cumulative resistance value of all the pixels through which it passes (Figure 

1.2). IBR (McRae 2006; McRae et al. 2008) is based on the theory of electrical circuits where 

gene flow is analogous to an electrical current (McRae & Beier 2007). The current flows across 

all of the pixels of the resistance surface and is able to flow more easily across wide areas of 

low resistance and less easily across areas of high resistance (Figure 1.3). The distance metric is 

the total resistance value across the entire surface. IBR offers advantages over LCP because the 

current follows many routes across the surface, whereas LCP assumes that any organism 

moving across a landscape has prior knowledge of the optimal path. This is unlikely to reflect 

true between-population migration patterns as gene flow is unlikely to follow a single linear 

path and therefore IBR is more likely to reflect patterns of gene flow across a landscape.  
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Figure 1.2. Example of Least Cost Path (LCP) on a hypothetical resistance surface. In this example, if the resistance 
of the white cells = 1, the light grey cells = 2 and the dark grey cells = 5 the dashed line represents the LCP with a 
total cost of 18, compared to 23 of the solid line.  If the resistance values are changed so that the white cells = 1, 
the light grey cells = 4 and the dark grey cells = 10, the solid line becomes the LCP with a cumulative cost of 25, 
whist the dashed line has a cumulative cost of 27 

 

Figure 1.3. Example of Isolation by Resistance (IBR) on a hypothetical resistance surface. Darker colours are cells 
with higher resistance; the strength of the arrows represents the approximate relative importance of the 
pathway. 
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Accurately parameterising a resistance surface is vital if it is to provide useful estimates of 

species movement and gene flow across a landscape (Koen et al. 2012). There are a number of 

different approaches to quantifying resistance (see Spear et al. (2010) and Zeller et al. (2012) 

for reviews). Many studies use ‘expert opinion’ to parameterise the resistance surface and this 

technique remains the most commonly used (Zeller et al. 2012). Whilst this can prove accurate 

for species which are well studied or with which the investigator has extensive experience, it 

has obvious limitations (Murray et al. 2009; Sawyer et al. 2011) as knowledge of a species’ 

ecology may not translate to information about gene flow.  

Resistance surfaces can be parameterised using non-genetic field data which inform the 

investigator about the dispersal and migration patterns of the species. This may include data 

from radiotracking (Cushman & Lewis 2010), mark-recapture or satellite telemetry (Shafer et 

al. 2012) which track the movements of individual organisms. Stevens et al. (2006a) conducted 

behavioural experiments to assess the permeability of various habitat types and barriers to B. 

calamita. The results were later used to quantify a resistance surface which found that LCP 

better explained dispersal patterns than Euclidean distances (Stevens et al. 2006b). Such data 

can be difficult to obtain for many species, particularly those with cryptic behaviour, and the 

movements of individual organisms may not necessarily reflect gene flow. Resistance surfaces 

can also be parameterised on the basis of habitat and environmental suitability for a particular 

species. Ecological Niche Factor Analysis (Hirzel et al. 2002) can be used to determine the 

suitability of pixels on a resistance surface, to which a resistance value can be assigned, on the 

basis of occurrence records of the study species (Wang et al. 2008; Row et al. 2010).  

A common approach is to construct several resistance surfaces with different resistance values 

for different features within a surface and then select the surface which best fits the genetic 

data. This approach identified sea lochs a significant barrier to gene flow and river corridors 

and woodland as facilitators of gene flow in red deer Cervus elaphus in Scotland (Perez-Espona 

et al. 2008). 

Genetic data can be used to parameterise resistances surfaces. For example Garroway et al. 

(2011) used genetic data to parameterise a resistance surface for fishers Martes pennanti by 

creating a network of genetic connectivity and then fitting this to a habitat resistance surface 

which found that roads, rivers and deep snow impeded gene flow.  

1.3.3 Examples of use of Resistance Surfaces 

Amphibians have frequently been studied using resistance surfaces (Zeller et al. 2012) as they 

typically have specific environmental and habitat requirements, such as the need for ponds for 
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breeding, and therefore often exist in metapopulations (Gill 1978; Marsh & Trenham 2001). 

Goldberg & Waits (2010) used a resistance surface parameterised by habitat type and 

environmental gradients to investigate the population genetics of two pond-breeding 

amphibians: Columbia spotted frogs Rana luteiventris and long-toed salamanders Ambystoma 

macrodactylum. Developed land had the highest resistance for both species whilst agricultural 

and scrub habitat was the least resistant for R. luteiventris, and A. macrodactylum followed a 

moisture gradient where forest was the least resistant habitat. Spear et al. (2005) found an IBD 

pattern of genetic differentiation in blotched tiger salamanders Ambystoma tigrinum, when 

open shrub habitat and stream crossings occurred between populations, genetic 

differentiation between them was decreased, and where the populations were separated by 

areas of higher elevation, genetic differentiation was increased. Chaparral habitat was found 

to have the lowest resistance for dispersing California tiger salamanders Ambystoma 

californiense compared to grassland and oak woodland (Wang et al. 2009). Landscape 

resistance was used to investigate population differentiation in the Moor frog Rana arvalis and 

showed that roads were a significant barrier to dispersal between ponds, whereas habitat type 

had a relatively limited effect (Arens et al. 2007). The habitat of the Red Hills salamander 

Phaeognathus hubrichti has been highly fragmented by agriculture and forestry. Using habitat 

resistance, Apodaca et al. (2012) found that fragmentation was limiting present-day gene flow 

when compared to historical levels. 

Gene flow across a landscape can be affected by different features at different scales. Murphy 

et al. (2010b) found that a variety of environmental and habitat conditions including 

precipitation during growth, habitat affected by previous fires, availability of cover, 

temperature, roads and development, and topographic complexity all influence connectivity in 

western toad Bufo boreas populations in Yellowstone National Park. However, different 

variables had a varying effect at different scales: habitat permeability was most important at a 

local scale, whilst temperature and moisture were more important across multiple scales. 

Different landscape features were demonstrated to affect gene flow at different spatial scales 

in H. arborea. At distances < 2 km large rivers were a significant barrier to gene flow, at 

distances > 2 km roads and forests were significant barriers whilst hedgerows and other 

landscape features with suitable structure facilitated gene flow (Angelone et al. 2011).  

Timber rattlesnakes Crotalus horridus hibernate communally and individuals typically remain 

faithful to a hibernation site for life with offspring showing a high degree of philopatry (Brown 

et al. 2007). Inbreeding is avoided by matings during seasonal migration in the summer 
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months (Brown 1993). Clark et al. (2008) found that LCP, defined by the availability of basking 

habitat was highly correlated with genetic differentiation between hibernacula. 

Environmental gradients may be less apparent than physical geography or habitat type, 

however they can influence the resistance of an environment to an organism and therefore 

have a significant influence on patterns of gene flow. For example, Jorgensen et al. (2005) 

showed that genetic differentiation patterns of herrings Clupea harengus in the North Sea 

were significantly associated with salinity and sea surface temperature. Dispersal routes of the 

wolverine Gulo gulo as defined by LCP based on spring snow cover was found to explain 

patterns in genetic differentiation (Schwartz et al. 2009).  

Resistance surfaces can be applied to the practical conservation management of species, for 

example by identifying migration corridors. Epps et al. (2007) used a resistance surface to 

elucidate migration routes of bighorn sheep Ovis canadensis and identify where these were 

affected by anthropogenic barriers such as roads. This enabled the effectiveness of proposed 

mitigation measures such as translocation to be evaluated. A similar approach investigated 

dispersal pathways of the tiger Panthera tigris in India and identified areas where sub-optimal 

habitat could be improved (Rathore et al. 2012). 

Reptiles are underrepresented in landscapes genetics studies. In a recent review, Zeller et al. 

(2012) identified only eight attempts to produce a resistance surface for reptiles, compared to 

83 for mammals, 17 for amphibians, 16 for birds and 10 for invertebrates; only fish had fewer 

studies with one resistance surface produced. 

1.3.4 Data Requirements for use of a Resistance Surface 

The ability of any landscape genetics study to accurately predict the effect of landscape on 

genetic processes is limited by the strength and depth of the genetic data used to test the 

hypotheses. The number and variability of the genetic markers used has a significant influence 

on the power of any analysis undertaken; using a greater number of markers with higher 

variability will give more statistical power than increasing sample size (Landguth et al. 2012). 

Neutral genetic markers (i.e. those which are not under direct selection pressure) are ideal for 

landscape genetics studies as they allow the investigator to directly test the influence of 

various landscape features on processes such as gene flow, migration and dispersal 

(Holderegger et al. 2006). Microsatellites are highly variable neutral genetic markers 

commonly used in population genetics studies (Hedrick 1999; Zane et al. 2002; Ellegren 2004). 

Consequently they are ideal for testing landscape genetics hypotheses (Wang 2011) and are 

the most frequently used marker in landscape genetics studies (Storfer et al. 2010). 
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1.4 Loss and Fragmentation of Lowland Heathland 

1.4.1 Lowland Heathland in Northwest Europe 

Lowland heathland habitat is a plagioclimax community dominated by dwarf shrub species, 

particularly heathers such as Calluna vulgaris and Erica spp. which is found in northwest 

Europe. Heathland was created by forest clearances in areas with sandy soils 3000-4000 years 

BP (Chapman et al. 1989) and maintained by subsequent clearance of successional vegetation 

for fuel and by grazing (Webb 1986). It has suffered significant levels of decline across much of 

its range in the past 200 years (Moore 1962; Webb 1990; Piessens et al. 2005; Tsaliki & 

Diekmann 2010) and it is estimated that heathland now covers < 10% of its previous extent 

(Rose et al. 2000). Lowland heathland is considered of particular biodiversity value as it 

supports a high number of specialised plant and animal species, and consequently it has been 

afforded a high level of protection under European legislation (Joint Nature Conservation 

Committee 2007). 

1.4.2 Heathland Loss and Fragmentation in Dorset 

Loss and fragmentation of lowland heathland in Dorset in the United Kingdom has been 

particularly well documented (Figure 1.4 and Figure 1.5). In 1796, heathland habitats covered 

an estimated 40,000 ha of the Poole Basin area of Dorset (Haskins 1978). Using historical 

mapping, Moore (1962) estimated the extent of heathland in Dorset as 30,000 ha in 1811. By 

1896 this had declined to 26,000 ha, falling to 18,000 ha in 1934 and 10,000 ha in 1960. In 

1978 it was estimated that only 6,000 ha of heathland remained (Webb & Haskins 1980). 

Webb (1990) estimated heathland cover in Dorset as 7,977 ha in 1987, however this was 

calculated using a different methodology to previous studies and corresponded to a decline of 

5% since 1978.  A further decline of 7% continued until 1996 (Rose et al. 2000). Hooftman & 

Bullock (2012) compared remotely sensed habitat data from 2007 to habitat maps from the 

1930s which were compiled from field surveys and recorded that the total area of heathland in 

Dorset had decreased from 13,722 ha in the 1930s to 6,004 ha in 2000, a decline of 56%. In 

addition to direct loss, the remaining heathland has become increasingly fragmented; between 

1987 and 1996 the number of heathland fragments in Dorset increased from 142 to 151, whilst 

the total area continued to decrease (Rose et al. 2000). Hooftman & Bullock (2012) recorded 

an 88% decrease in the mean patch size of heathland fragments and measured a significant 

loss of connectivity between heathland patches since the 1930s. 
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Figure 1.4. Estimated loss of heathland in Dorset from various studies. Diamonds = Haskins (1978), filled squares 
= Moore (1962), triangles = Hooftman & Bullock (2012), crosses = Webb & Haskins (1980), open squares = Webb 
(1990) and Rose et al. (2000) 

 

Figure 1.5. Current and historical extent of heathland in Dorset. In the main part of the figure the current extent 
of lowland heathland is shown as the shaded areas. Inset a) extent of heathland in the Poole basin in 1759; inset 
b) extent of heathland in 1962. The dashed line represents the boundary of the Tertiary deposits on which 
heathland develops. Insets reproduced from Webb & Haskins (1980). 
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The major cause of heathland loss has been identified as changes in land use such as urban 

expansion, conversion to agricultural use, commercial afforestation and mineral extraction 

(Moore 1962; Webb & Haskins 1980). However, significant losses have been attributed to 

natural succession as a result of declines in traditional management practices such as grazing 

and burning (Moore 1962; Webb 1990; Rose et al. 2000) which eventually result in changes to 

the soil chemistry and prevent future recolonisation by heathland species (Mitchell et al. 

1997).  

Where heathland loss and fragmentation has been caused by urbanisation, increased human 

use can have a further detrimental effect on the remaining habitat and fauna due to 

disturbance, increased incidence of fires and predation by domestic pets, effectively further 

reducing patch size for some species (van den Berg et al. 2001; Liley & Clarke 2003). 

1.4.3 Effects of Fragmentation on Heathland Flora and Fauna 

The effects of heathland fragmentation have been demonstrated in a number of plant, 

invertebrate and bird species. Plant diversity assessed by multiple indices decreases relative to  

patch size in heathland fragments in Britain (Webb & Vermaat 1990) and Germany (Dieckhoff 

et al. 2006), and the degree of patch isolation in Britain (Webb & Hopkins 1984) and Belgium 

(Piessens et al. 2005).  

Similar effects have been recorded for invertebrates, with beetle diversity decreasing with 

patch size and the quantity of heathland within 2 km of the occupied patch (Webb & Hopkins 

1984). This effect was not recorded in spiders in the same study, however Hopkins & Webb 

(1984) found that spiders with a poor dispersal ability were confined to larger patches of 

heathland and a similar pattern was found in ground beetles in the Netherlands (de Vries et al. 

1996). The likelihood of occupation of heathland patches by the silver-studded blue Plebejus 

argus was linked to patch size in lowland heathland in Southern Britain (Thomas et al. 1998), 

where 100% of heathland patches larger than 50 ha were occupied compared to 50% of 

patches smaller than 33 ha. Webb et al. (1984) also found that the quality of the matrix 

affected invertebrate diversity on heathland with heathland patches surrounded by 

structurally diverse vegetation having a greater invertebrate diversity. Smaller and more 

isolated patches of heathland had a lower rate of occupation by breeding Dartford warblers 

Sylvia undata, as they were less likely to be found by dispersing juvenile birds seeking to 

establish new territories (van den Berg et al. 2001).  

Heathland fragmentation has been demonstrated to have an effect at a molecular level in the 

flightless beetle Poecilus lepidus in Germany where allelic richness, number of alleles and 
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expected heterozygosity all had a significant relationship with patch size and it was therefore 

recommended that a minimum patch size of 50 ha was necessary to maintain genetic diversity 

(Drees et al. 2011). Conversely, a heathland bee species Andrena fuscipes did not seem to be 

affected by fragmentation with insignificant genetic structure between heathland patches 

(Exeler et al. 2010). This is likely to be a result of its greater dispersal ability when compared to 

flightless insects. 

Although it has been considered a factor in the decline of the sand lizard Lacerta agilis and 

smooth snake Coronella austriaca in southern Britain (Corbett & Tamarind 1979; Beebee & 

Griffiths 2000), the effects of heathland fragmentation on reptiles are less well studied than 

other groups. However, Pernetta (2009) found that patch size was an important determinant 

of occupancy by C. austriaca. The same study looked at the population genetics of smooth 

snakes in fragmented heathland and detected some degree of structuring between 

populations in different fragmented heathland patches; it however did not unambiguously 

attribute this effect to fragmentation. 

 

1.5 Sand Lizards 

1.5.1 Introduction 

The sand lizard Lacerta agilis in Britain is an ideal organism in which to investigate the effects 

of natural and anthropogenic processes on population genetics. Lacerta agilis (Figure 1.6 and 

Figure 1.7) is a widely distributed reptile with a range that stretches from northwest Europe 

across Asia into Mongolia (Gasc et al. 2004). The United Kingdom contains the westernmost L. 

agilis populations which are restricted to sites with specific habitats in the south and 

northwest, making it one of the country’s rarest reptile species (Beebee & Griffiths 2000). It 

has declined significantly as a result of habitat loss (Corbett 1988b) and consequently is a 

target of significant conservation action (Corbett 1988a; Corbett & Moulton 1998; Moulton & 

Corbett 1999; Herpetological Conservation Trust 2009). 



Chapter 1 - Introduction 

18 
 

 

Figure 1.6. Male sand lizard Lacerta agilis in breeding colouration from Bergherbos, the Netherlands. 

 

 

Figure 1.7. Female sand lizard Lacerta agilis from Wareham Forest, United Kingdom 
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1.5.2 Range, Distribution and Habitats 

Throughout much of its range L. agilis inhabits a wide variety of habitat types including 

agricultural margins, grassland, steppe and hedgerows (Arnold & Ovenden 2002; Gasc et al. 

2004). However at the north-western edge of the range it is restricted to specific habitats, 

typically on sandy substrates such as heathland, open woodland and coastal sand dunes 

(Strijbosch & Creemers 1988; Stumpel 1988; Beebee & Griffiths 2000; Berglind 2000; Ceirans 

2008). Experiments into egg incubation suggest that the current northern limit of their range is 

determined by the climatic conditions required for successful incubation (Rykena 1987) and 

the amount of sunshine also appears to play a role in determining the species’ range in Britain 

(Jackson 1978) and distribution at a local scale (Dent & Spellerberg 1987). Within Britain, L. 

agilis is particularly associated with long-established mature heathland habitats, dominated by 

dwarf shrub species, particularly heather Calluna vulgaris between 3 cm and 50 cm in height 

where there are frequent discontinuities in vegetation height resulting in many interfaces 

between areas of taller and shorter vegetation (House & Spellerberg 1983; Dent & Spellerberg 

1987). Nicholson (1980) suggested that such structurally diverse habitats were preferred by L. 

agilis as they are richer in invertebrate prey, whereas House & Spellerberg (1983) attribute this 

to a requirement for a variety of basking sites for thermoregulation. Within such habitats, 

microhabitat features are particularly important, especially for basking, with south-facing 

banks utilised as well as individual features such as logs, stones and bushes (House & 

Spellerberg 1983). Suitable hibernation sites are also an important habitat feature (Spellerberg 

1975) and a proportion of bare sand is required for egg-laying (Corbett & Tamarind 1979; 

Wouters et al. 2012). Habitat must also provide cover from terrestrial and aerial predators 

(van Bree et al. 2006). 

1.5.3 Phylogeography 

The main routes by which fauna and flora recolonised Europe from glacial refugia subsequent 

to the last ice-age are well illustrated in a number of species (Taberlet et al. 1998). Hewitt 

(1999, 2000) confirmed that the three southern peninsulas of Europe (Iberia, Italy and the 

Balkans) acted as glacial refugia and proposed three main post-glacial recolonisation routes 

illustrated by the meadow grasshopper Chorthippus parallelus, hedgehogs Erinaceus spp. and 

the brown bear Ursus arctos (Figure 1.8). Sand lizards colonised Europe from the Balkan-

Carpathian glacial refugium (Kalyabina et al. 2001) following an earlier radiation from the 

Caucasian/Black Sea area (Joger et al. 2007). This reflects the ‘grasshopper’ paradigm (Hewitt 

1999, 2000), where Northern Europe was rapidly colonised from a Balkan refugium during the 

most recent warm period, with dispersal from the Iberian and Italian refugia blocked by the 
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Pyrenees and Alps respectively, and expansion from Greece prevented by the presence of the 

species expanding from the east. A number of other species/species complexes show a similar 

pattern of post-glacial recolonisation to C. parallelus including the crested newts Triturus spp., 

(Wallis & Arntzen 1989) and common beech Fagus sylvatica (Demesure et al. 1996). The 

‘grasshopper’ pattern of post-glacial recolonisation results in reduced levels of genetic 

diversity in the rapidly expanding northern species/populations when compared to those from 

southern refugium areas (Hewitt 1996), a pattern which is also seen in L. agilis and closely 

related species (Godinho et al. 2005). Sand lizards are able to exist in a much wider variety of 

habitats and altitudes throughout most of their range than related species and Godinho et al. 

(2005) suggested that the extensive present-day range of L. agilis could be explained by its 

superior dispersal ability when compared to closely related species such as L. schreiberi and L. 

strigata which are restricted to Iberia and the Caucasus respectively. 

 

Figure 1.8. The three paradigms for the postglacial recolonisation of Europe (Hewitt 1999). Lacerta agilis mirrors 
the ‘grasshopper’ Chorthippus parallelus paradigm with dispersal from a Balkan refugium. Other closely related 
species were restricted to the Iberian and southern Balkan peninsulas. Reproduced from (Hewitt 1999). 

 

It is not clear how L. agilis colonised the British Isles. The last glacial period came to an end 

approximately 18,000 years BP and by 12,500 years BP, average temperatures in Britain were 

warmer than the present day, allowing species which are now restricted to the Mediterranean 

to survive (Atkinson et al. 1987). This was followed by another period of cooling 11,000-10,000 

years BP (the Younger Dryas) where mean daily average temperatures in Britain were between 

-5 °C and -2 °C, which ended in a short period of rapid warming (Dansgaard et al. 1989). Britain 

was connected to mainland Europe by a substantial land bridge across the North Sea and 

English Channel 10,300 years BP, which had disappeared by 8,700 years BP. However between 

8,300 and 7,800 years BP a second bridge existed across the North Sea (Jelgersma 1979). Given 

the thermal requirements of L. agilis (Jackson 1978; Rykena 1987), they must have colonised 
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the British Isles subsequent to the Younger Dryas cooling period, and these land bridges offer 

potential routes for colonisation. The present day British fauna arrived via a variety of different 

routes, for example Zeisset & Beebee (2001) suggested the pool frog Rana lessonae colonised 

the Britain via a land bridge across the North Sea. Many species in Britain including the land 

snail Cepaea nemoralis (Davison 2000), natterjack toad Bufo calamita (Rowe et al. 2006) and 

water vole Arvicola terrestris (Piertney et al. 2005) show genetic evidence of an east-west split, 

suggesting they colonised from two separate glacial refugia.  

1.5.4 Reproductive Ecology 

The reproductive ecology of L. agilis is particularly well studied as it has been used as a model 

organism to test a number of hypotheses on reproductive strategy. This work has shed light 

onto the ecology of the species in the wild including the thermal requirements for successful 

reproduction. Sand lizards in northwest Europe emerge from hibernation in late March and 

April, females emerge later to avoid mating with functionally infertile males who have not had 

sufficient basking time for spermatogenesis (Olsson & Madsen 1996). Females are typically 

promiscuous and mate with several males in a season, leading to multiple paternity egg 

clutches (Gullberg et al. 1997a) which can result in higher quality offspring (Olsson & Madsen 

2001a; Olsson et al. 2011b). Following copulation, males will guard their mates in order to 

prevent other males from mating with them (Olsson et al. 1996a). Male sand lizards will 

preferentially mate with large females (Olsson 1993a) and although females may mate with 

many males, the larger males are more successful at post-copulation mate-guarding and tend 

to sire a high proportion of the clutch (Gullberg et al. 1997a). Males with higher UV reflectivity 

(de Lanuza & Font 2007; Olsson et al. 2011a) and brighter green flank colouration (Anderholm 

et al. 2004), which correlate with fighting ability (Olsson 1994b) and other fitness related traits 

(Molnar et al. 2012), have greater reproductive success. Females exhibit a preference for 

males who are more distantly related, as assessed by Major Histocompatability Complex 

(MHC) genes (Olsson et al. 2003). The MHC is involved in immune response and male L. agilis 

with a particular MHC genotypes have lower levels of parasite infection, and higher mating and 

mate-guarding success (Olsson et al. 2005b). In L. agilis, females are the heterogametic sex and 

therefore more likely to be affected by recessive sex-linked genetic disorders. As a mechanism 

to avoid such conditions in their offspring, female sand lizards are more likely to produce 

daughters when they have mated with a high quality male (Olsson et al. 2005a; Olsson et al. 

2005c). 

External temperature during the spring mating season (April and May) plays an important role 

in the mating system of L. agilis. Warmer spring temperatures resulted in an increased number 
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of matings and a higher proportion of clutches with multiple paternity (Olsson et al. 2011c). 

Warm spring temperatures also result in earlier egg clutches which has a positive effect on 

hatchling condition (Olsson & Shine 1997b) and hatchlings from early clutches disperse further 

than those from later clutches in some lizard species (Warner & Shine 2008). As female sand 

lizards increase in size, the size of their offspring at hatching increases and large hatchlings 

have a higher survival rates in poor years than smaller ones (Olsson & Madsen 2001b). 

1.5.5 Home Range and Dispersal 

The maximum home range of L. agilis has been quantified at up to 648 m2 for males and 398 

m2 for females (Nicholson & Spellerberg 1989). In displacement exercises, most sand lizards 

displaced by 100 m would return to their home range, whereas none returned home after a 

displacement of more than 150 m (Strijbosch et al. 1983). Male L. agilis generally disperse over 

wider distances than females; however both sexes show dispersal patterns related to 

reproductive success. From one breeding season to the next, males in poorer body condition 

tend to disperse further than other males and females with low reproductive success disperse 

further than successful breeders (Olsson et al. 1997). Following hatching, female L. agilis will 

disperse away from their offspring (Ryberg et al. 2004).  

Triggers for dispersal between populations have not been investigated in L. agilis, however in 

the viviparous lizard Lacerta (Zootoca) vivipara, juvenile dispersal is triggered in response to 

increasing population density (Lecomte et al. 2004). Cote & Clobert (2010) suggested that the 

dispersal decisions of L. vivipara are influenced by their knowledge of the surrounding habitat, 

such as connectivity, ascertained from immigrants into their population. As with many reptiles 

(e.g. Johansson et al. 2008; Urquhart et al. 2009; Pernetta et al. 2011), L. agilis shows sex-

biased dispersal patterns with male juveniles dispersing significantly further than females from 

their natal sites (Olsson et al. 1996b). 

1.5.6 Population Genetics 

A number of previous studies have investigated the population genetics of L agilis. Many of 

these have focused on Swedish populations where, as in Britain, L. agilis is at the edge of its 

range and is restricted to parts of the country where suitable habitat is present (Gullberg et al. 

1998; Berglind 2000). Sand lizards colonised Sweden via a land bridge between Scandinavia 

and mainland Europe which was flooded by rising seawater approximately 9,000 years BP. 

Following this they spread throughout southern and central parts of the country until a drop in 

temperature in the late Holocene 5,000 years BP caused them to retreat to their current 

relictual distribution in particularly favourable habitats (Gullberg et al. 1998, 1999). As would 
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be expected from populations on the edge of a species’ range (Lesica & Allendorf 1995), 

Swedish L. agilis from across the country were significantly less genetically diverse than a 

population from closer to the centre of the range in Hungary, in studies using microsatellites 

(Gullberg et al. 1997b; Gullberg et al. 1998; Madsen et al. 2000; Schwartz & Olsson 2008), 

minisatellites (Madsen et al. 2000) and DNA fingerprinting (Gullberg et al. 1999) (Table 1.1).  

Gullberg et al. (1998) sampled L. agilis from ten sites in Sweden with varying degrees of 

isolation. Average heterozygosity in microsatellites varied between 0.21 and 0.69 (average 

0.45), compared to 0.70 in a reference population from Hungary. Subdivision between the 

Swedish populations was also high with FST estimates between 0.192 and 0.299. The authors 

attributed the high levels of subdivision to a lack of gene flow between populations, and small 

population sizes and the low overall genetic diversity to a bottleneck of the founder 

population. Using minisatellite DNA fingerprinting, Gullberg et al. (1999) reported 

heterozygosity varying between 0.32 and 0.59 in Swedish L. agilis populations and 0.89 in a 

Hungarian one and observed higher levels of bandsharing (0.61) in the Swedish populations 

compared to the Hungarian one (0.19, typical of an outbred population). FST estimates within 

populations varied between 0.141 and 0.412 between the Swedish populations using 

microsatellites. In a genetic assessment of British L. agilis populations expected heterozygosity 

was between 0.500 and 0.691 and there were significant levels of subdivision with FST 

estimated between 0.133 and 0.241 (Beebee & Rowe 2001b) (Table 1.1). 

Inbreeding has been attributed as the cause of a high incidence of malformed L. agilis offspring 

in a highly fragmented and isolated site in Sweden (Olsson et al. 1996b). Matings between 

siblings under laboratory conditions resulted in deformities such as short skulls and jaws, fused 

or missing toes and deformed or twisted limbs and tails. Similar deformities were recorded in 

10% of wild hatchlings, which had a zero survival rate and the normal-looking siblings of 

deformed hatchlings also had a significantly lower survival rate compared to broods where all 

the neonates were normal. 

Madsen et al. (2000) investigated the relationship between genetic diversity and population 

size in Swedish L. agilis and found different relationships depending on the type of loci used. 

Using loci under selection pressure (MHC Class I, which are involved in the immune response) 

genetic diversity was positively correlated with population size (i.e. larger and less isolated 

populations had higher levels of diversity). However, genetic diversity as assessed by 

minisatellite and microsatellite loci (neutral genetic markers not under selection) was 

surprisingly negatively correlated with population size and degree of isolation. The opposite 
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effect was observed in British L. agilis, where microsatellite heterozygosity was positively 

correlated with population size (Beebee & Rowe 2001b). 

Table 1.1. Genetic diversity of Lacerta agilis from previous studies. Ho = observed heterozygosity, He = expected 
heterozygosity. Where multiple populations are considered the figures reported are an average across all 
populations. 

Country Marker type No. of 
populations 

Mean no. 
of alleles 
per locus 

Average 
Ho 

Average 
He 

Reference 

Sweden microsatellites 10 3.3 0.468 0.451 Gullberg et al. (1998) 

Sweden DNA fingerprinting 6 - - 0.450 Gullberg et al. (1999) 

Sweden microsatellites 5 - - 0.461 Madsen et al. (2000) 

Sweden microsatellites 1 4.3 0.510 0.539 Schwartz & Olsson 
(2008) 

Hungary microsatellites 1 8.0 0.67 0.70 Gullberg et al. (1998) 

Hungary DNA fingerprinting 1 - - 0.891 Gullberg et al. (1999) 

Hungary microsatellites 1 - - 0.70 Madsen et al. (2000) 

Hungary microsatellites 1 11.2 0.677 0.828 Schwartz & Olsson 
(2008) 

United 
Kingdom 

microsatellites 3 4.17 0.514 0.623 Beebee & Rowe 
(2001b) 

 

1.5.7 Sand Lizards in Britain 

Sand lizards naturally occur in three distinct geographic areas of Britain (Figure 1.9): 

Merseyside in the northwest of England where they occur on coastal sand dune habitats; the 

Weald in Surrey in the southeast of England where they occur on lowland heathland habitats; 

and Dorset in the southwest of England where they also occur on lowland heathland (Beebee 

& Griffiths 2000). Sand lizards from the different geographic areas of Britain are genetically 

distinct (Beebee & Rowe 2001b) and appear to exhibit differences in colour and pattern 

(Simms 1970; Corbett 1988b), although this has not been demonstrated empirically. 

Within Britain, its restricted distribution and specific habitat requirements have left L. agilis 

particularly vulnerable to the effects of habitat loss and fragmentation and the species has 

suffered significant declines (Corbett 1989). In addition to the significant loss of heathland in 

Dorset (section 1.4.2), similar levels of habitat loss have occurred within the other parts of the 

L. agilis range in Britain. Approximately 85% of heathland habitat was lost from the Weald in 

Surrey and the surrounding counties between the late 18th Century and the 1970s  (Webb 

1986). Between 1801 and the 1970s the coastal sand dunes of Merseyside decreased by 50%, 

with a further 12% modified (Figure 1.10). The remaining habitat existed in small patches 

divided by urban areas, roads, intensive agriculture and dense conifer plantations (Jackson 

1979). British sand lizard population sizes have been estimated at 200-500, < 1,000 and 6,000-
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8,000 adults in Merseyside, Surrey and Dorset respectively (Wheeler et al. 1993; Corbett 

1994), although it is difficult to obtain accurate estimates for sand lizard populations sizes due 

to their cryptic behaviour (Fearnley 2009; Kery et al. 2009; Sewell et al. 2012) and these 

population estimates are based on a number of assumptions. Although habitat loss has been 

the primary driver of sand lizard decline in Britain, the role of climatic fluctuations has been 

debated (Jackson 1978; Langton 1988), predation by domestic cats Felis catus (Larsen & 

Henshaw 1998) and recent introductions of alien species such as wall lizards Podarcis muralis 

have been identified as potential concerns (Mole 2010). 

 

 

Figure 1.9. Distribution of Lacerta agilis in Britain, showing the three distinct geographic areas where it naturally 
occurs. Reproduced from Beebee & Rowe (2001b). 

 

The declining status of L. agilis in Britain was recognised in the late 1960s (Corbett 1969) and 

by the early 1970s conservation action in the form of site management and population 

monitoring was being taken in response (Corbett & Tamarind 1979). Sand lizards received legal 

protection under the Wildlife & Countryside Act in 1981 and protection was extended to 

include their habitat under the Conservation (Natural Habitats &c) Regulations 1994 (the 
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United Kingdom’s response to EU Directive in the Conservation of Habitats and Wild Fauna and 

Flora (92/43/EEC)). In 1994, a captive breeding programme was started with the aim of 

reintroducing L. agilis to many sites within its former range (Corbett 1994). Current 

conservation effort is governed by a Species Action Plan (Herpetological Conservation Trust 

2009) under the auspices of the UK Biodiversity Framework (Joint Nature Conservation 

Committee 2012) and management activities include site protection and management, 

research and monitoring as well as captive breeding and reintroductions to restore its former 

range (Corbett & Moulton 1998; Moulton & Corbett 1999). 

 

 

Figure 1.10. Building development and afforestation (shaded areas) on wind-blown sand between Southport and 
the River Alt. a) 1841, b) 1974. Reproduced from Jackson (1979). 

 

1.6 Aims of this Thesis 

The sand lizard has been the focus of significant conservation action within Britain which in 

many respects has been successful (Corbett & Moulton 1998). However, there are ongoing 

challenges in maintaining the conservation of the species in Britain, particularly relating to 

habitat fragmentation and degradation of heathland habitats due to recreational use, fire and 



Chapter 1 - Introduction 

27 
 

natural succession (Moulton & Corbett 1999), and it is unknown how sand lizards may react to 

global climate change.  

Some preliminary investigation of the conservation genetics of L. agilis in Britain has been 

undertaken (Beebee & Rowe 2001b). This thesis aims to increase the understanding of the 

conservation genetics of sand lizards in Britain, including their biogeography, levels of genetic 

variability and landscape genetics, in order to inform ongoing conservation management of 

the species. The specific aims of this thesis are: 

1. To assess the genetic diversity of Lacerta agilis populations across the United Kingdom 

and compare this with populations from Europe. Chapter 3 assesses the genetic 

diversity of British sand lizard populations using a variety of indices and compares this 

with a population sampled from the Netherlands as well as published values from 

other studies. 

2. To investigate the phylogeography of sand lizards in Britain and determine how this 

accounts for their disjunct range within the country. Chapter 3 uses different 

methodologies to produce phylogenies of sand lizard populations across Britain and 

estimates historical divergence times between sand lizards in Britain and mainland 

Europe as well as between populations within Britain. The divergence times are then 

compared to data relating to historical climate and biogeography. 

3. To assess the genetic diversity of a mature translocated population and discuss the 

implications of this for current conservation management. Chapter 3 quantifies genetic 

variation within sand lizards at Crooksbury Common in Surrey which were translocated 

here from Dorset in the late 1960s and early 1970s. 

4. To determine the origins of the population at Aberffraw. Chapter 3 compares the 

recently discovered Aberffraw population from Anglesey with the nearest natural 

population in Merseyside and uses a variety of methods to assess genetic distance and 

differentiation as well as estimate divergence times between Aberffraw and the other 

populations. 

5. To determine the effects of heathland fragmentation on the genetics and population 

structure of sand lizards at various geographical scales. Chapter 3 compares genetic 

variation and differentiation between populations within fragmented and 

unfragmented landscapes. Chapter 4 attempts to quantify the effects of the various 

landscape features, including, natural barriers such as rivers, anthropogenic barriers 

and habitat cover based on remotely sensed data, on the population genetics of sand 

lizards in Dorset at different geographical scales using a resistance surface. It also 
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investigates correlations between genetic population structure and historical 

landscape configuration. 

6. To investigate the apparent differences in colour and pattern between the different 

geographical areas of the Britain. Chapter 5 quantifies variation in the pattern and 

colour of sand lizards from different geographic areas of Britain and compares this to 

genetic differences between the populations. 
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2  GENERAL MATERIALS AND METHODS 

 

2.1 Introduction 

General materials, methods and analytical processes relevant to all parts of this thesis are 

detailed in this chapter as are details of the study sites. Specific materials, methods and 

statistical analyses which are only applicable to parts of the study are contained within the 

relevant chapters. 

 

2.2 Sampling Strategy 

The study entailed investigating the genetics of Lacerta agilis at three differing geographic 

scales, therefore a sampling strategy which ensured the specific questions of the study could 

be addressed at each scale was employed. A nested sampling strategy (Haining 2003) was used 

which is appropriate for species with a naturally clustered distribution and allows analysis at 

different spatial scales (Storfer et al. 2007). This entails dividing the landscape into a series of 

sampling areas, which are then further subdivided (Figure 2.1). 

 

Figure 2.1. Diagrammatic representation of a nested sampling strategy. Areas 1 and 2 represent broad-scale 
sampling zones, Areas 2a, 2b and 2c represent smaller scale sampling zones. 

 

At the national scale, the aims of the study were to allow a broad comparison between the 

three regions where L. agilis occurs (Dorset, Weald and Merseyside) (Figure 2.2) and 

investigate the phylogeography of sand lizards across Britain. Within each region, individual 

sample sites were selected on the basis of the size of the population and of ease of collecting 
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sufficient samples. Samples were also obtained from a site in the Netherlands (Bergherbos) to 

allow a comparison between British and mainland European populations 

 

Figure 2.2. Location of sample sites at the national scale. AB = Aberffraw, AF = Ainsdale Frontal Dunes, FR = 
Frensham Common, CC = Crooksbury Common, NL = Bergherbos. Sampling locations within Dorset are shown in 
Figure 2.3 

 

At the regional and local scales, the aim of the study was to investigate the effects of the 

landscape on L. agilis population structure. The range of L. agilis in Dorset is crossed by six 

rivers of differing sizes; these were used to define the boundaries of the sampling areas at a 

broad scale, creating six different areas. Two of these sampling areas were then subdivided to 

allow a comparison between fragmented (East Dorset between the River Stour and River 

Avon) and unfragmented (Wareham Forest) landscapes (Figure 2.3 and Figure 2.4). The largest 

populations within each sampling area were sampled. Many L. agilis populations within Britain 

have been affected by conservation action including translocations from sites threatened by 

fire or development. The sampling strategy avoided any sites which may be a result of 

anthropogenic processes and with the exception of Crooksbury Common and Aberffraw, all of 

the sampled populations are thought to be of natural origin. 
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Figure 2.3. Locations of sampling sites within Dorset showing the main rivers. NH = Newton Heath, HM = Hartland 
Moor, MP = Master’s Pit, WF = Wareham Forest, LH = Lytchett Heath, BC = Branksome Chine, FC = Ferndown 
Common, WP = West Parley, MH = Merritown Heath, HF = Hurn Forest, RD = Ramsdown, TC = Town Common. 

 

Figure 2.4. Schematic diagram of the nested sampling strategy showing all the sites sampled as part of this study. 
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2.3 Sample Sites 

2.3.1 Town Common and Ramsdown 

Town Common (173 ha) and Ramsdown (33 ha) are part of a formerly extensive area of dry 

and wet heath. Ramsdown was separated from the larger Town Common in the late 1970s by 

the construction of the four-lane A338 Bournemouth Spur Road. Further areas of heathland lie 

to the north, the River Avon valley to the east and agricultural land lie to the west. Ramsdown 

and part of Town Common are now managed for wildlife with a specific focus on reptiles. 

2.3.2 Hurn Forest 

Hurn Forest is a coniferous plantation on a former area of heathland, which was planted in the 

1940s. Although much of the site is unsuitable for L. agilis, there are some areas of heathland 

within the forest matrix along ride edges and in former plantation areas which have been 

reclaimed for conservation purposes. Larger areas of heathland are still present to the east of 

the site. 

2.3.3 Merritown Heath 

Merritown Heath is a small heathland remnant to the north of Bournemouth (Hurn) Airport. It 

is separated from Hurn Forest by the small Moors River and from West Parley by 

approximately 2 km of agricultural land. Bournemouth Airport was built on primarily 

agricultural land to the south in 1941 and subsequently expanded. The site is currently 

managed for wildlife. 

2.3.4 West Parley 

West Parley Common is an isolated 145 ha remnant of lowland heathland which was formerly 

part of a much larger area of common land. Building between the 1930s and 1960s 

significantly reduced the extent of the site and the adjacent East Parley Common was 

converted to pasture in the 1970s. It is currently managed as a nature reserve, with an 

emphasis on reptiles. 

2.3.5 Ferndown Common 

Ferndown Common is an isolated fragment of heathland approximately 64 ha in area, 

surrounded by suburban development to the north and east and agricultural land to the south 

and west. It was initially separated from West Parley from by development in the 1950s, which 

increased until the 1980s. The site is currently managed for wildlife although is subject to a 

high level of public disturbance.  
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2.3.6 Lytchett Heath 

Lytchett Heath is a small area of heathland on the northern shore of Poole Harbour. It is 

isolated by the town of Upton, most of which was built in the 1950s, and the A35 road built in 

the 1970s. Prior to this, the majority of the land surrounding the site was agricultural although 

other areas of heathland previously existed to the east. 

2.3.7 Branksome Chine 

The L. agilis population at Branksome Chine exists in a small area of sandy cliff on the seafront 

in Poole.  It was connected to a formerly extensive area of heathland until the 1950s, although 

this was isolated from other heathland areas inland as early as the 1910s. Other similar small 

fragments of suitable habitat have persisted along the Poole and Bournemouth seafront, 

although these have become increasingly fragmented and this may be the last L. agilis 

population along the coastal strip (D. Bird, pers. comm.). Several introduced common wall 

lizard Podarcis muralis and at least one western green lizard Lacerta bilineata populations are 

now found along the seafront (Mole 2010) and P. muralis are encroaching into L. agilis areas. 

2.3.8 Wareham Forest and Morden Bog 

Wareham Forest is a large heathland/plantation mosaic which is ostensibly managed as a 

commercial conifer plantation, although also for recreational use and for conservation 

purposes. Morden Bog is a 149 ha National Nature Reserve containing dry and wet heathland 

habitats which lies to the northwest of Wareham Forest with which it forms a large continuous 

area of habitat. Most of Wareham Forest was heathland until afforestation began in the late 

1930s, creating large areas of plantation interspersed with remnants of predominantly wetter 

heath, which were unsuitable for forestry. Despite the loss of heathland, L. agilis persisted in 

small remnant areas and along ride edges (Dent & Spellerberg 1987). Since the 1980s, 

activities such as selective clearance of small areas of trees and ride widening have been 

undertaken within Wareham Forest to improve the extent, quality and connectivity of the 

habitats for L. agilis and other reptile species (D. Bird, pers. comm.). Six sites were sampled 

within Wareham Forest and Morden Bog, generally comprising areas of dry heath and adjacent 

areas of grassland. 

2.3.9 Master’s Pit 

Master’s Pit is an active sand extraction site within an area of former heathland. The lizards 

sampled from the site were caught as part of an ongoing relocation project to remove them 

from areas affected by quarrying. Sand extraction began in the area in the 1950s and the area 
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affected by quarrying has been regularly extended since. The majority of the land surrounding 

the site remains as heathland. 

2.3.10 Hartland Moor 

Hartland Moor is a large (243 ha) area of wet and dry lowland heathland and bog which lies 

adjacent to other heathland sites making it part of the largest remaining heath in Dorset. It is 

National Nature Reserve. 

2.3.11 Newton Heath 

Newton Heath is part of a formerly extensive area of heathland which up until the 1940s 

covered most of the north of the Isle of Purbeck and would have been continuous with 

Hartland Moor. Planting of conifers began as early as the 1910s; however most of the area was 

not afforested until the 1940s. The plantation is interspersed with a number of small areas of 

heathland and heathland rides which support L. agilis populations. 

2.3.12 Frensham Common 

Frensham Common in Surrey is an area of approximately 400 ha of lowland heathland divided 

by a single carriageway road. Most of the original extent of the heathland remains, although 

some marginal areas were lost to afforestation in the 1940s. The surrounding area is a mixture 

of agricultural land and woodland with small villages. The site is currently managed to benefit 

wildlife, however some areas are subject to very high levels disturbance from recreational use. 

2.3.13 Ainsdale Frontal Dunes 

The Ainsdale and Birkdale sand dunes are part of the Sefton Coast sand dune system, which at 

4,605 ha is the largest in England, although this is fragmented and much of the former extent 

has been lost to development and afforestation (Jackson 1979). The Ainsdale dunes contain 

vegetation at all successional stages, however sand lizards are primarily found in the embryo 

dunes which are characterised by marram grass Ammophila arenaria and a large proportion of 

open sand. Much of the development on the Sefton sand dune system has occurred further 

inland and therefore the Ainsdale frontal dunes remain relatively well connected to other 

frontal dunes areas along the coast. 

2.3.14 Bergherbos 

Bergherbos is a nature reserve located approximately 20 km southeast of Arnhem on the 

Dutch border with Germany and north of the River Rhine. It is an extensive area of woodland 

containing areas of agricultural land and heathland. Sand lizards are present within areas of 

heathland and forest rides. 
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2.3.15 Crooksbury Common 

Crooksbury Common is an area of heathland located within a coniferous plantation in Surrey. 

The L. agilis population on the site derives from several sites within the centre of the Dorset 

range from which lizards were translocated in the early 1970s (J. Webster, pers. comm.) when 

their original sites were developed. Prior to the translocations, sand lizards were not present 

on the site, although smooth snakes Coronella austriaca were. It is now managed to improve 

the quality of the site for reptiles, particularly L. agilis. 

2.3.16 Aberffraw 

Aberffraw is an extensive but isolated sand dune system on the south west of the Isle of 

Anglesey, Wales. Sand lizards were first recorded at the site in 2010 (D. Cowley, pers. comm.) 

despite not being detected during previous surveys of the site. The lizards at the site are 

similar in appearance to those from nearest known natural populations in Merseyside; 

however the origin of the population is unknown. 

 

2.4 Field Sampling 

Sand lizards were captured in the field using a nylon noose and occasionally by hand. Between 

30 and 37 lizards were sampled at each site (with the exception of Aberffraw which appears to 

have a very small population size), including at least ten animals of each sex, and all sampled 

lizards were in their third year or older. Once captured, the location of each animal was 

marked using a handheld GPS Unit (Garmin eTrex Legend HCx) and the reported accuracy of 

the GPS unit was noted; the location was not recorded until the reported accuracy was +/- 5 m 

or better and coordinates were subsequently checked for accuracy against large scale maps 

using ARCGIS v10 (ESRI, Redlands, California). A photograph of the dorsal pattern (and any 

other distinguishing marks) was taken to allow the individual identification of each lizard 

(Sacchi et al. 2010) and prevent resampling of the same animal. A DNA sample was obtained 

using a buccal swab (Cambio, Cambridge, UK); each lizard was encouraged to bite the swab 

and allowed to chew it for approximately one minute; the swab was then air-dried for ten 

minutes before being resealed in its tube and subsequently stored at -20 °C until required for 

DNA extraction. DNA was extracted using the BuccalAmpTM DNA Extraction Kit as per the 

manufacturer’s instructions. This method for obtaining DNA samples was preferable to tissue 

or blood samples due to its reliability (Beebee 2008) and to take account of the welfare of the 

animals sampled (Parris et al. 2010).  
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2.5 Genotyping 

2.5.1 Microsatellites 

Microsatellite loci were amplified by the Polymerase Chain Reaction (PCR) using a series of 

primers developed specifically for L. agilis (Gullberg et al. 1997b; Schwartz & Olsson 2008) 

(Table 2.1). Samples were amplified using each of the primer pairs, with the exception of La7, 

which failed to amplify in previous studies of Swedish (Gullberg et al. 1997b) and British 

(Beebee & Rowe 2001b) L. agilis. PCR reaction mixes of 20 µl final volume contained 4 µl of the 

DNA extraction solution, 20 mM Tris-HCl, 10 mM (NH4)2SO4, 120 mM KCl, 2 mM MgSO4, 0.2 µM 

of forward and reverse oligonucleotide primers, 100 µM dGTP, dCTP and dTTP, 10 µM 

unlabelled dATP, 3.7 KBq [α-33P]dATP and 0.5 units of NEN Taq DNA polymerase (New England 

Biolabs). Where possible, loci were multiplexed using appropriate pairs (Table 2.1). The PCR 

reactions were carried out using either a Techne TC412 or Techne Genius thermal cycler, using 

one of three programs depending on the annealing temperature of the primer (Table 2.2). The 

PCR products were then electrophoresed through a 6% w.v. polyacrylamide gel alongside an 

M13 sequence marker. Gels were then visualised using autoradiography and the size of the 

alleles scored against the M13 marker. Any samples which failed to amplify at any locus were 

repeated once under the original PCR conditions and a second time using a PCR cycle with a 

lower annealing temperature if required. Following genotyping, 100 samples were randomly 

selected and blindly re-genotyped at one locus or multiplex pair each in order to allow an 

assessment of the genotyping error rate (Bonin et al. 2004). 

2.5.2 Mitochondrial DNA 

A subset of samples (12 each from Frensham Common, Ainsdale and Bergherbos, 12 randomly 

selected from sites in the west of Dorset, 12 randomly selected from sites in the east of Dorset 

and all seven from Aberffraw) were amplified in the presence of universal cytochrome b 

primers (Kocher et al. 1989). PCR reaction mixes of 20 µl final volume contained 4 µl of the 

DNA extraction solution, with reagent concentrations as per the microsatellite PCR (excluding 

the radiolabelled dATP). The PCR conditions were 94 °C x 4 min (94 °C x 1 min, 55 °C x 1 min, 

72 °C x 1 min) x 35 cycles, 72 °C x 1 min. Following amplification, PCR products from one 

sample from each geographical area were electrophoresed through a 1.5% agarose gel to 

check for successful amplification and size differences in the PCR products between the 

different areas. The remaining samples were purified using Qiagen™ kits as per the 

manufacturer’s protocol, purified products were sequenced by Macrogen Sequencing Services 

and the sequences were then scrutinised for errors and aligned using BIOEDIT (Hall 1999).  
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Table 2.1. Details of PCR primers used in this study. Details of the PCR programs referred to are given in a separate 
table (Table 2.2). 

Locus Primer sequence Microsatellite 
repeat motif 

PCR program Multiplex pair Reference 

La1 AGGTTTCCTGGCTTGGAG  
ATTTGCACAAAACAGCAGC 

(GT)16 1 1 Gullberg et 
al. (1997b) 

La2 GCTTAAATTGGAACCAGATTG 
AAGCAGCCAGAACACAGAG 

(GT)16 1 1 Gullberg et 
al. (1997b) 

La3 ACTAGGAGCGAGAAGAATCAG 
GACATATGGCAGAAGAGCAG 

(GA)28 1 2 Gullberg et 
al. (1997b) 

La4 CATGAGCAAAGCAATGAGC 
TGGAATGTGTCATTGAACTCTG 

(GT)19 1 3 Gullberg et 
al. (1997b) 

La5 TAGATGCACTCAGAATGACTTC 
AACACTATTCTAAGGCTGTTC 

(GA)20 2 - Gullberg et 
al. (1997b) 

La6 GACTGGCGCATTCTATAAAAC 
GCCTTAAAGGGCCATCAG 

(GT)17 1 3 Gullberg et 
al. (1997b) 

La7 CCTTTGTGGTCTCTTCCAAC 
CCTCATAGGGTTGTCGTGAG 

(GT)16 - - (Gullberg et 
al. 1997b) 

La8 AACCACTAGCAGAAATCTCATTC 
GACCTTGGAATTTTCACCTG 

(GT)14 2 - Gullberg et 
al. (1997b) 

La9 AGATGCTTTTATATATGCAACTTC 
GTGCCTTCATTTGTTTACTTC 

(GT)12 3 4 Gullberg et 
al. (1997b) 

La10 CCCTGATAAAGCCCCAC 
CACTAGCTGAAATAAGAATGAGG 

(GT)15 2 - Gullberg et 
al. (1997b) 

La01 AACGGAGGTAGAATGTCATAGC 
CTTGAAGGGAAAGAGCTACTGC 

(GT)2AT(GT)15 2 - Schwartz & 
Olsson (2008) 

La02 TGCCTGCAAGACTATAATCCAAG 
GGAATGGCATGAGATATGGTG 

(GT)23 2 - Schwartz & 
Olsson (2008) 

La3E AAAGTTGGTCTGCACTGACG 
CAATTCAAAATGCACACAACG 

(GT)13AT(GT)10 2 - Schwartz & 
Olsson (2008) 

La04 CTAGGCATGGAGAATGGATGTG 
AGCCACTTCCCTAAGTGTGTCC 

(CA)20 3 5 Schwartz & 
Olsson (2008) 

La10 TAATAAAGCAGGCGCAAACC 
TGCAGCTAATCTTCATTTAGGATG 

(CA)5(GA)4GGGA 
(GACA)9(CA)9(GA)17 

2 - Schwartz & 
Olsson (2008) 

La12 CAGAGTTCATGGAAAGTGAAGG 
GGAGACTCTGCTGGTCATTC 

(CA)18 1 6 Schwartz & 
Olsson (2008) 

La27 AAATGCAAGCGAGCAACAAT 
ATCTGGCGGAGGGATGAG 

(GT)11(AT)26 1 6 Schwartz & 
Olsson (2008) 

La37 TTTGCTTGGAGCTTCTGTCC 
GATGCAGGACGGAGAGTAGC 

(GT)19 1 - Schwartz & 
Olsson (2008) 

La40 GGGAACCGTTGTACTAAGTTTGG 
ATGCATTCAGATGTCTCCCAAG 

(CA)19 3 5 Schwartz & 
Olsson (2008) 

La45 CAGAGTTCATGGAAAGTGAAGG 
AAGGAGACTCTGCTGGTCATTC 

(CA)18 2 - Schwartz & 
Olsson (2008) 

La47 CCCACTAGAGAAATGAGCTTCTG 
CAAACAAGGAGGGTAAGGAATG 

(GT)18 1 - Schwartz & 
Olsson (2008) 

La50 AGGTAGCCCAGGTGTCATACAG 
TGGGTCTTACATGAGCTGAATC 

(GT)21 1 2 Schwartz & 
Olsson (2008) 

La55 TCCCTCATTACAGGCATAGGAG 
TCTGAACAAAACATGGGACTTG 

(CA)19 2 - Schwartz & 
Olsson (2008) 

La58 CAGTTCTGGGGATTTTCTCCTAC 
CATTGTAATTGGAGCACAAAGC 

(CA)18 2 - Schwartz & 
Olsson (2008) 

La64 AGATGCTGAACTACCAGCTTGC 
GCTATCCTGGCTGACCATTAAG 

(CA)16 3 4 Schwartz & 
Olsson (2008) 
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Table 2.2. PCR conditions for each microsatellite primer used within the study.  

PCR Program Conditions 

1 1): 94 °C x 4 min (x1); 2): 94 °C x 1 min, 58 °C x 1 min, 72 °C x 1 min (x35); 3): 72 °C x 1 min; 4): 4 °C 

2 1): 94 °C x 4 min (x1); 2): 94 °C x 1 min, 54 °C x 1 min, 72 °C x 1 min (x35); 3): 72 °C x 1 min; 4): 4 °C 

3 1): 94 °C x 4 min (x1); 2): 94 °C x 1 min, 50 °C x 1 min, 72 °C x 1 min (x35); 3): 72 °C x 1 min; 4): 4 °C 

 

2.6 Analysis of Microsatellite Data 

2.6.1 Screening for Scoring Errors and Loci under Selection 

Allele sizes for each individual at each locus were initially recorded in a standard GENEPOP v4 

(Raymond & Rousset 1995) file format and converted into file formats suitable for other 

programs using CREATE v1.35 (Coombs et al. 2008) software. The dataset was then screened for 

scoring errors caused by stuttering and the likely presence of null alleles using the Brookfield 1 

method (Brookfield 1996) implemented in MICRO-CHECKER (Van Oosterhout et al. 2004) as it 

was likely that some alleles failed to amplify as a result of DNA degradation. Compliance with 

Hardy-Weinberg Equilibrium (HWE) expectations was tested using GENEPOP v4.0 (Raymond & 

Rousset 1995), as was linkage disequilibrium using a Markov chain method. Population 

genetics studies frequently adjust critical P-values using the Bonferroni correction for multiple 

comparisons. This approach has been criticised as the power to correctly reject false null 

hypotheses is reduced. Therefore P-values were adjusted using a False Discovery Rate (FDR) 

procedure (Narum 2006), a less conservative correction for multiple comparisons. This is 

calculated by dividing the desired critical level (e.g. 0.05) by the sum of one divided by the 

number of tests for each test (e.g. for five tests,  = 0.05/(1/1 + 1/2 + 1/3+ 1/4 + 1/5) = 0.022). 

Prior to undertaking full analysis of the dataset, each microsatellite locus was screened for its 

suitability for use in the study using samples from a lizard population close to the centre of the 

range in Dorset (Wareham Forest 1). 

During the initial screening La37 failed to amplify and La47 produced three alleles for some 

individuals; these loci were consequently excluded from further use. Loci La5, La8, La10 

(Gullberg et al. 1997b),  La01, La45 and La55 (Schwartz & Olsson 2008) showed significant 

evidence of null alleles and did not conform to Hardy-Weinberg expectations after applying 

the FDR test, therefore these loci were also excluded from use within the study. Although not 

excluded after this initial screening, La58 failed to amplify consistently and subsequently 

showed evidence of null alleles and Hardy-Weinberg non-conformity in several other 

populations and was consequently excluded from the data analysis. This left a suite of 15 

microsatellite loci: La1, La2, La3, La4, La6, La9 (Gullberg et al. 1997b), La02, La3E, La04, La10, 



Chapter 2 - Methods 

39 
 

La12, La27, La40, La50 and La64 (Schwartz & Olsson 2008). These results reflected those of 

Gullberg et al. (1997b) who reported the potential presence of null alleles in La5, La8 and La10 

in Swedish L. agilis. Schwartz & Olsson (2008) found that all the loci they described were in 

HWE in Swedish sand lizard populations, but not in populations from Hungary. However, La6 

successfully amplified in this study whereas in a previous study of British L. agilis it produced 

no PCR products (Beebee & Rowe 2001b). 

2.6.2 Assessment of Genetic Variation 

Using the 15 remaining loci, standard measures of genetic diversity were calculated for each 

sample site. Observed and expected heterozygosity (Ho and He) were estimated using ARLEQUIN 

v3.5.1.2 (Excoffier & Lischer 2010) and Allelic richness (AR) for each sample site was calculated 

using FSTAT v2.9.3 (Goudet 1995), as was the inbreeding coefficient (FIS) for each population. 

Significant differences in measures of genetic diversity were tested for between all populations 

and between all Dorset populations using a Kruskal-Wallis one way analysis of variance 

implemented in MYSTAT v12 (Systat Software, Chicago, USA). The effective population size (Ne) 

for each population was calculated using a linkage disequilibrium method (Hill 1981) 

implemented in NeESTIMATOR v1.4 (Peel et al. 2004). Recent genetic bottlenecks were tested 

for using the program BOTTLENECK v1.2.02 (Cornuet & Luikart 1996); 1000 iterations were run of 

a two-phase mutation model comprising 90% stepwise mutation model and significance 

assessed using mode-shift analysis of allele frequencies and by the Wilcoxon test. 

2.6.3 Assessment of Population Structure 

Genetic differentiation and structuring between populations was assessed using a number of 

different metrics. Pairwise FST values (Weir & Cockerham 1984), a measure of population 

structure, between each pair of sampled populations were estimated. There has been recent 

criticism of the use of FST and its analogs (particularly with microsatellites) due to their reliance 

on within-population diversity which means they can approach zero even when two 

populations are completely differentiated, especially when using highly polymorphic markers 

(Jost 2008; Ryman & Leimar 2009; Meirmans & Hedrick 2011). Therefore G’ST (Hedrick 2005), a 

standardised measure of structuring which accounts for the high heterozygosity of 

microsatellites, and D (Jost 2008), a differentiation measures which uses the effective number 

of alleles rather than expected heterozygosity in calculating differentiation, were also 

calculated. Other authors have defended FST and criticised G’ST and D as insensitive when 

mutation is high relative to migration (Whitlock 2011). Calculating FST values is also useful, not 

least because it has been widely used in population genetics studies and therefore its 

calculation allows comparisons to be made with previous work. Most of the discussion relating 
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to measures of genetic differentiation is based on modelling and theoretical datasets, however 

using empirical data Raeymaekers et al. (2012) found that different measures of genetic 

differentiation were useful at different scales with D more useful at determining broader scale 

colonisation history, and GST having greater sensitivity when investigating more recent 

demography. FST values between each pair of sampled populations were estimated using FSTAT 

v2.9.3 (Goudet 1995). Pairwise G’ST and D values between each population pair were calculated 

using SMOGD (Crawford 2010). The similarity of FST, G’ST and D was investigated using a series of 

Spearman's rank correlations. 

2.6.4 Defining Populations using Bayesian Methods 

Population structure was assessed using two different Bayesian assignment methodologies 

implemented by the programs STRUCTURE v2.3.3 (Pritchard et al. 2000; Falush et al. 2003) and 

BAPS v5.3 (Corander et al. 2003; Corander et al. 2008), both of which had have high success in 

identifying true numbers of subpopulations when levels of genetic differentiation are low 

(Latch et al. 2006). STRUCTURE uses Markov chain Monte Carlo (MCMC) algorithms to infer the 

probability of predefined numbers of subpopulations (K). BAPS uses a greedy stochastic 

optimisation algorithm to estimate the most likely value of K. Separate analyses were carried 

out at each geographic scale with the Crooksbury Common and Aberffraw sites included in the 

national scale analysis which used Town Common as a representative Dorset site. The regional 

(Dorset) scale analysis included Town Common, West Parley, Lytchett Heath, Wareham Forest 

5, Master’s Pit, Hartland Moor and Newton Heath. 

In STRUCURE three iterations of each value of K (from K = 1 to K = 10) were performed with an 

MCMC chain length of 1x106 and a burn-in period of 1x105 used for each run. Low standard 

deviations for log likelihood values for each probability of K indicated that further replicated 

runs were unnecessary. Where possible the true value of K was determined using the ΔK 

method (Evanno et al. 2005) implemented in STRUCTURE HARVESTER (Earl & Vonholdt 2012) and 

by visual inspection of the graphical output of the program. The ΔK method identifies the 

highest level of structure within a dataset (Waples & Gaggiotti 2006) and therefore will often 

give a result of K = 2 when the graphical output of STRUCTURE indicates the presence of more 

than two populations, suggesting a hierarchical population structure. When this occurred 

during the analyses, STRUCTURE was rerun using each of the subgroups identified within the first 

analysis as per Coulon et al. (2008) and Murphy et al. (2010b) until no further subdivision 

occurred. Initially the programme was run without using any prior information about the 

location of each sample, if this failed to produce a clear value of K, the analysis was repeated 

with USELOCPRIOR selected (USELOCPRIOR=1), which allows a priori specification of groups of 
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samples. All simulations were run using the default correlated alleles model (which assumes 

allele frequencies maybe similar in populations with a shared ancestry or migration). 

Admixture was excluded from analysis at the national scale due to the large geographic 

distances and unsuitable habitat separating the three different areas. Separate analyses 

allowing and excluding admixture were carried out for the regional scale and admixture was 

included at the local scale. BAPS was run in both individual mode which uses genotype data 

alone to determine the most likely value for K and group clustering mode which uses genotype 

data and sample group information to determine the most likely value for K. The maximum 

value of K was set to 20 in both modes.  

2.6.5 Detection of Migrants 

After the most likely value of K had been determined, an additional STRUCTURE run with a burn-

in of 1x106 and a run length of 1x106 was undertaken with K fixed at the most likely value 

determined by the previous STRUCTURE analysis to detect migrants at each geographic scale 

(Latch et al. 2011). The value of q (the proportion of each individual’s genome assigned to each 

population) was used to assign an each individual to a population at a 90% and 50% threshold.  

2.6.6 AMOVA 

An analysis of molecular variance (AMOVA) (Excoffier et al. 1992) was undertaken using 

ARLEQUIN v3.5 (Excoffier & Lischer 2010). Separate analyses were carried out at a national scale 

(including Town Common from Dorset) and at a regional scale using all the sample sites from 

within Dorset. AMOVA requires the population structure to be defined in advance and 

therefore the populations defined by the STRUCTURE and BAPS analysis were used. At the 

national scale, two groups of populations were defined, one containing all the British 

populations and one containing Bergherbos only. For the Dorset scale analysis groups were 

defined on the basis of the nested sampling strategy (section 2.2, Table 2.3). 

Table 2.3. Groups of populations defined for the Dorset scale AMOVA. 

Group Populations 

1 Hurn Forest, Town Common, Ramsdown 

2 Merritown Heath, West Parley, Ferndown Common 

3 Lytchett Heath, Branksome Chine 

4 Wareham Forest (all sample sites as a single population) 

5 Masters Pit 

6 Hartland Moor, Newton Heath (as a single population) 
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3 CONSERVATION GENETICS AND PHYLOGEOGRAPHY OF 

BRITISH SAND LIZARDS 

 

3.1 Introduction 

Populations at the edge of a species’ range often show lower genetic diversity and are more 

vulnerable to inbreeding and genetic drift than those from nearer the centre (Allendorf & 

Luikart 2007; Bohme et al. 2007), and consequently are at greater risk of becoming extinct 

(Lande 1988; Frankham 1995). The vulnerability of such populations can be increased by 

anthropogenic habitat loss and fragmentation which causes further reductions in population 

size, prevents migration between populations and can increase the likelihood of stochastic 

genetic events (Mills & Allendorf 1996; Couvet 2002). Edge populations may also have 

particular conservation value as they often have to adapt to less favourable conditions and are 

therefore subject to stronger selection pressures than populations nearer the centre of a 

species’ range, consequently they may be important for the survival of the species in the event 

of environmental change (Lesica & Allendorf 1995). 

The sand lizard Lacerta agilis reaches the western edge of its distribution in Britain where it 

occurs in three widely separated geographically and genetically distinct regions: Merseyside, 

Surrey and Dorset (Beebee & Griffiths 2000; Beebee & Rowe 2001b). Within Britain, L. agilis is 

restricted to sandy habitats such as lowland heathland and coastal sand dunes (Beebee & 

Griffiths 2000) and therefore its distribution reflects the availability of these habitats. 

However, some areas of apparently suitable habitat, particularly in the east of the country are 

not occupied. Climatic factors also influence the distribution of British sand lizards as all extant 

populations occur to the southwest of the 6.5 hour May isohel where the mean daily bright 

sunshine typically exceeds this figure (Jackson 1978). Although the role of fluctuating sunshine 

hours in the decline of L. agilis in north-west England has been disputed (Langton 1988), 

temperature plays an important role in reproduction (Olsson et al. 2011b; Olsson et al. 2011c). 

Warm spring temperatures also allow lizards to emerge from hibernation earlier and 

consequently produce earlier egg clutches which tend to be larger, have higher hatching 

success and higher hatchling survival (Olsson & Shine 1997b) and Rykena (1987) suggested the 

temperature required for egg incubation limits the range of the species. 

Sand lizard habitat in Britain has suffered significant loss and fragmentation in the past 200 

years (Jackson 1979; Webb 1986; Rose et al. 2000) and populations have declined as a result 
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(Jackson 1979; Corbett 1988b) making the species a conservation priority within the UK 

(Corbett & Moulton 1998; Moulton & Corbett 1999). 

In Sweden, L. agilis is also at the edge of its range and as in Britain it exists in relatively isolated 

populations where particularly favourable habitat persists (Berglind 2000). Swedish sand 

lizards showed reduced genetic diversity when compared to a Hungarian population from near 

the centre of the species’ range (Gullberg et al. 1998, 1999; Madsen et al. 2000). In 

comparison, L. agilis populations from Britain were found to typically have greater genetic 

variability than in Sweden, and in the same study, variability was significantly correlated with 

estimated population size (Beebee & Rowe 2001b). Of the three geographic areas, Merseyside 

was found to have the lowest variability and showed evidence of a genetic bottleneck. 

This chapter investigated the population and conservation genetics of L. agilis populations 

within Britain. It builds upon the preliminary investigation of Beebee & Rowe (2001b) which 

provided some initial estimates of genetic variability of British sand lizards and the 

differentiation between the three geographic areas occupied by the species. The genetic 

variability of a number of populations from across Britain was assessed and compared to a 

population from mainland Europe. Population structure was investigated in sites across the 

core part of the sand lizard’s British range in Dorset, comparing structure within fragmented 

and unfragmented landscapes. The phylogeography of British sand lizards was also 

investigated in order to establish possible explanations for their current disjunct range. In 

addition, a mature translocated population was investigated as well as a newly discovered 

population of unknown origins. 

 

3.2 Materials and Methods 

3.2.1 Introduction 

General materials and methods relating to field sampling, genotyping and initial analysis of the 

genetic data are given in Chapter 2. The materials and methods given below relate to 

analytical methods specific to this chapter. 

3.2.2 Construction of Phylogenetic Trees 

General materials and methods for field sampling, genotyping and the initial analysis of the 

microsatellite data are detailed within Chapter 2. Following these initial processes 

phylogenetic relationships between sample sites were inferred using the PHYLIP v3.69 

(Felsenstein 2009) software package. Data were bootstrapped 1000 times in the SEQBOOT 



Chapter 3 – Conservation Genetics and Phylogeography 

44 
 

program and trees were constructed using Maximum Likelihood, Neighbour-joining and 

UPGMA. Cavalli-Sforza chord distances (Cavalli-Sforza & Edwards 1967) were used for all trees 

as this measure is particularly effective at identifying the correct topology of trees for closely 

related populations using microsatellites (Takezaki & Nei 1996). In order for a tree to indicate 

the direction of evolution it requires rooting, typically using an outgroup which is most 

distantly related to all the other populations. Sand lizards colonised Europe from the Balkans in 

a rapid westward expansion (Joger et al. 2007), reaching Northern Europe 10,000-12,000 years 

BP (Gullberg et al. 1998; Kalyabina et al. 2001). They are not found in northern France and 

southern Belgium despite the presence of suitable habitat (Gasc et al. 2004). As recently as 

10,000 years BP, climatic conditions in Britain were unsuitable for sand lizards (Atkinson et al. 

1987; Dent & Spellerberg 1987; Rykena 1987; Dansgaard et al. 1989), so colonisation must 

have occurred since this time. Jelgersma (1979) identified land bridges across the North Sea 

and English Channel approximately 10,000 BP and across the North Sea approximately 8,000 

years BP. The timing and location of the land bridges by which sand lizards could reach Britain 

indicate colonisation across the North Sea and therefore, in the absence of samples from a 

more distantly related population, trees were rooted using the Bergherbos population from 

the Netherlands as the outgroup. This assumes a single colonisation event, which given the 

narrow period in which a land bridge existed and climatic conditions were suitable, is the most 

likely scenario. Once constructed, trees were visualised using TREEVIEW software (Page 1996). 

3.2.3 Estimation of Divergence Times and Historical Population Sizes 

Historical divergence times were investigated at a national scale (using Town Common from 

Dorset, Frensham Common, Ainsdale, Bergherbos and Aberffraw) using the program IMa2 (Hey 

2010a, b). IMa2 uses a MCMC algorithm to simulate genealogies from genetic data from which 

maximum likelihood estimates of population splitting times, effective population sizes and 

migration rates are derived. When analysing microsatellite data IMa2 uses a stepwise mutation 

model (Kimura & Ohta 1978) which precludes the use of complex loci which may violate this 

model. Three loci (La6, La3E, La10) had complicated repeat units and were therefore excluded 

from the analysis, two additional loci (La9, La27) had allele sizes which differed by one base 

pair implying a mutation in the flanking region, which may also violate the stepwise mutation 

model. Consequently, only loci with simple repeat units (La1, La2, La3, La4, La02, La04, La12, 

La40, La50 and La64) were used in the analysis. None of the loci used in the IMa2 analysis 

showed any evidence of linkage disequilibrium (Table 3.1) in the populations analysed. A 

phylogenetic tree based on the Neighbour-joining and UPGMA trees produced by PHYLIP (which 
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agreed on the arrangement of these populations relative to each other) was specified when 

running the model.  

IMa2 also requires a mutation rate (u) for each locus to be specified. Estimates of microsatellite 

mutation rates for squamate reptiles include 0.0002 – 0.004 per generation in Mauritian skinks 

Gongylomorphus spp. (Nichols & Freeman 2004) and 0.01 in the Australian lizard Egernia 

stokesii (Gardner et al. 2000). There are no published estimates of microsatellite mutation 

rates for Lacerta agilis; however estimates are available for other members of the Lacertidae. 

A rate of 0.009 per locus per generation was estimated for an unstable tetranucleotide 

microsatellite in the Lacertid lizard Darevskia unisexualis (Tokarskaya et al. 2004). This is within 

published microsatellite mutation rate estimates (Weber & Wong 1993; Ellegren 2000), 

however this species exhibits parthenogenic reproduction, which may affect mutation rates 

(Badaeva et al. 2008). In a study of gene flow between island populations of the Skyros wall 

lizard Podarcis gaigeae, Runemark et al. (2012) used a figure of 0.0001 mutations per 

generation, an intermediate value between estimates of divergence time between  P. gaigeae 

gaigeae and the subspecies P. gaigeae weigandi (Poulakakis et al. 2005) and between P. 

gaigeae and the closely related P. milensis. Male L. agilis typically breed in their second year, 

whilst females first breed in their third year (Simms 1970). Strijbosch & Creemers (1988) 

reported than the majority of net reproduction in a Dutch L. agilis population was supplied by 

females in their 4th, 5th and 6th years and recorded a maximum age of 8 for males and 12 for 

females. Therefore assuming a 1:1 sex ratio (Strijbosch & Creemers 1988), average generation 

time (g) was estimated at 5 years. Consequently the mutation rate of u = 0.0001/5 = 0.00002 

per locus per year was used for all loci when running IMa2. 

Due to the large geographic distances and unsuitable habitat between each of the populations 

and the results of a STRUCTURE analysis to detect migrants, a model with no migration between 

populations was run. The upper bound for the prior distribution of the time of divergence (t) 

was set at t = 1. Therefore, with the assumed mutation rate of 0.0001 and generation time of 5 

years, time of divergence T = t x g/u = 50,000 years. Given that during the peak of the 

Pleniglacial 22,000-18,000 years BP, summer temperatures in Britain were below 10°C 

(Atkinson et al. 1987) and therefore unsuitable for L. agilis (Rykena 1987), Britain must have 

been colonised since that time. 

The upper bounds of prior distribution of the population size parameter when running IMa2 

was set using the geometric mean of estimates of 4Nu (), where u is the mutation rate and N 

is the population size. 4Nu for each of the loci in each population was estimated using a MCMC 
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method implemented in the program MISAT v1.0 (Nielsen 1997; Nielsen & Palsboll 1999) and 

the geometric mean 4Nu was calculated for each population. The largest value of the 

geometric means was then multiplied by five to give an upper bound for the prior distribution 

of population size of 66.07 (Hey 2010b). 

IMa2 can have extremely long run times when analysing microsatellite data and therefore 20 

individuals (40 gene copies) were randomly selected from each population used in the analysis 

(with the exception of Aberffraw where only seven individuals were sampled). When analysing 

large datasets IMa2 utilises multiple metropolis-coupled Markov chains (Geyer 1991) where 

swapping between the chains improves the overall level of mixing. Initial runs of the program 

were undertaken to assess the appropriateness of the priors and whether the heating terms 

were leading to adequate swap rates between 150 metropolis-coupled chains. After the 

heating terms were optimised, an ‘M-mode’ run with an indefinite burn-in period was started 

and monitored by visual inspection of trend plots of splitting time. Stationarity was reached 

after approximately 300,000 steps when no discernible trends were observable (Hey 2010b), 

at which point the burn-in period was terminated and sampling runs commenced. Two 

independent runs were conducted, each simulating in excess of 20,000 genealogies which 

were used in the final analysis. Maximum likelihood estimates of population parameters were 

averaged across the two runs to give a final estimate. 

 

3.3 Results 

3.3.1 Genotyping Errors and Microsatellite Screening 

A total of 691 sand lizards were sampled across the 22 sample sites. Of these, 664 (96.09%) 

samples successfully amplified at sufficient loci to be included within the subsequent analysis. 

The blind re-genotyping identified four mis-scored alleles out of 224 giving a genotyping error 

rate of 1.78%. Bonin et al. (2004) recommend that an error rate of 2% or less is unlikely to 

significantly bias the results of population genetics studies and the estimation of genetic 

diversity, especially for large datasets and therefore the 1.78% error rate was considered 

acceptable. However, the estimation of some parameters, such as effective population size 

(Ne), can be particularly affected by genotyping errors (Paetkau 2003) and therefore this was 

considered when evaluating population size estimates. 

Of the loci retained for analysis, MICRO-CHECKER indicated the possible presence of null alleles at 

a number of loci and some were also found to deviate from HWE after an FDR correction 
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(adjusted nominal 5% level for P = 0.00784, for 1% level, P = 0.00157) in some populations 

(Table 3.1). Some pairs of loci also showed evidence of linkage disequilibrium in some 

populations (Table 3.1) after an FDR correction (adjusted nominal 5% level for P = 0.00601, for 

1% level, P = 0.00120). However, no patterns in the loci and sampling sites affected were 

discernible and the affected loci were not consistent across sampling sites. Therefore all the 

remaining loci were retained for use within the study. It is likely that the identification of some 

possible null alleles was due to DNA degradation after defrosting during transport. 

Table 3.1. Loci showing potential evidence of null alleles, deviation from Hardy-Weinberg Equilibrium and linkage 

disequilibrium. Loci indicated show significant evidence of deviation from HWE or linkage disequilibrium at the 5% 
level, * = significant at a 1% level. For HWE, adjusted nominal 5% level for P = 0.00784, for 1% level, P = 0.00157, for 
linkage disequilibrium adjusted nominal 5% level for P = 0.00601, for 1% level, P = 0.00120. 

Sample site Evidence of null alleles Deviation from HWE Evidence of Linkage 

Disequilibrium 

Hurn Forest - - - 

West Parley La12 La02, La12 La1/La6 

Lytchett Heath La40 La40* La3/La02, La3E/La10 

Wareham Forest 1 - La27 - 

Masters Pit La9, La3E, La12, La50 La9*, La3E, La12* - 

Hartland Moor La27 La1 - 

Newton Heath - La9 - 

Town Common - - - 

Ramsdown La40 - La3/La27 

Merritown Heath La6, La9, La10, La12 La6*, La9, La10 La6/La64* 

Ferndown Common La2, La3, La4, La3E La6* - 

Branksome Chine - - La02/La04, La12/La64 

Wareham Forest 2 La1, La6, La9, La10, La27 La1, La6*, La10, La27 La2/3E 

Wareham Forest 3 La2, La02, La12 La2, La27* - 

Wareham Forest 4 La6, La3E, La10, La12 La6*, La12* - 

Wareham Forest 5 La9, La02, La10, La27 La2, La3E*, La10*, La12 La9/La40 

Wareham Forest 6 La6 La9, La10, La12 La6* La12/La64 

Frensham Common La6, La9, La10 La6*, La9*, La02, La3E - 

Ainsdale Frontal Dunes La6, La02, La3E, La10, La27, La50 La6*, La02*,La10, La27 La3E/La27 

Bergherbos La4, La6, La3E, La27 La4*, La6*, La3E - 

Crooksbury Common La02, La10 La10* - 

Aberffraw La02 La02* - 

 

3.3.2 Mitochondrial DNA 

Of the 65 samples sent for sequencing, 51 were successful and three different genotypes of 

307 base pairs were identified. However, two genotypes were found in only one individual 
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each, with all the remaining samples sharing the same genotype. The most commonly found 

genotype is shown in Table 3.2, the others consisted of single base substitutions: G to A at 

position 104 was found in a lizard from Newton Heath in Dorset, and: T to A was detected at 

position 235 in a lizard from Frensham Common in Surrey. 

Given the low levels of variation, no further analysis of the mitochondrial DNA was 

undertaken. It is noteworthy that Godinho et al. (2005) also found very low levels of variation 

across five nuclear and mitochondrial markers (including cytochrome b) in L. agilis from 

Holland, Austria and Germany which was attributed to the rapid colonisation of Northern 

Europe from a glacial refuge in the Balkans and is typical of rapidly colonising species (Nichols 

& Hewitt 1994). 

Table 3.2. Cytochrome b sequence found in 49 of 51 successfully amplified samples. Other sequences were identical 
except of a G to A substitution at position 104 in one genotype and a T to A substitution at position 235 in one 
genotype. 

1 11 21 31 41 51 

CTTTG GATCA CTACT AGGCC TATGC CTCAT TATTC AAACC ATTAC AGGTC TCTTC TTAGC 

61 71 81 91 101 111 

CATAC ATTAT ACTGC AGACA TCTCC TCTGC ATTTT CATCT GTAGC CCATA TTCAC CGAGA 

121 131 141 151 161 171 

TGTAC AACAT GGATG ATTAA TTCGT AATCT ACACG CTAAC GGCGC ATCCA TATTC TTTAT 

181 191 201 211 221 231 

CTGCA TTTAC CTCCA CATTG GACGT GGATT ATACT ATGGC TCCTA CATCT ATACT GAAAC 

241 251 261 271 281 291 

CTGAA ACATT GGAAT CCTCC TCCTT CTAAT AGTGA TAGCC ACAGC TTTCA TAGGC TATGT 

301      

ATTAC CG      

 

3.3.3 Genetic Diversity 

Mean allelic richness (which, in this study is more appropriate than the mean number of alleles 

per locus as it compensates for sample size), observed and expected heterozygosities, FIS and 

effective population size were calculated for each sample site (Table 3.3). Significant 

correlations were observed between all pairwise combinations of AR, Ho and He (Table 3.4). 

Genetic diversity was high across Dorset (average AR = 5.322, Ho = 0.6949, He = 0.7448) and did 

not vary significantly between the populations (Kruskal-Wallis one-way test: AR: H = 16.728, P = 

0.403; Ho: H = 17.292, P = 0.367; He: H = 9.805, P = 0.877). These levels of diversity were 

comparable to those observed in Bergherbos (AR = 5.444, Ho = 0.6580, He = 0.7473). All 
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measures of genetic diversity were lower in Frensham Common (AR = 3.780, Ho = 0.5514, He = 

0.6245) and lower still in Ainsdale (AR = 3.505, Ho = 0.4555, He = 0.5470). Crooksbury Common 

(AR = 4.518, Ho = 0.5931, He = 0.6981) exhibited lower levels of diversity than populations from 

Dorset from where it originated, but higher then Frensham Common in Surrey, the nearest 

natural population to where it was translocated to. Aberffraw exhibited the lowest levels of 

diversity by all measures (AR = 3.400, Ho = 0.4381, He = 0.5011).  

Table 3.3. Standard indices of genetic diversity for each sampling location. n = number of samples, N = average 
number of alleles per locus, AR = allelic richness, Ho = observed heterozygosity, He = expected heterozygosity, FIS = 
inbreeding coefficient, Ne = effective population size. Notes: 1. Newton Heath is considered to be the same 
population as Hartland Moor for some analyses. 2. All Wareham Forest sites are considered to be the same 
population for some analyses. 

Sample site n N AR Ho He FIS Ne (95% confidence limits) 

Hurn Forest 28 7.867 5.508 0.7315 0.7695 0.049 112.3 (76.2-203.8) 

West Parley 32 8.733 5.583 0.7396 0.7701 0.040 105.2 (78.1-157.1) 

Lytchett Heath 33 5.867 4.478 0.6780 0.6958 0.026 112.3 (72.9-226.1) 

Wareham Forest 1 32 8.467 5.632 0.7458 0.7541 0.119 788.7 (569.0-1147.3) 

Master’s Pit 33 8.933 5.786 0.6989 0.7854 0.112 220.5 (133.1-591.4) 

Hartland Moor 33 8.067 5.228 0.7393 0.7265 0.029 154.9 (124.1-203.3) 

Newton Heath
1 

32 7.600 5.135 0.7102 0.7318 - - 

Town Common 33 8.800 5.635 0.7465 0.7674 0.028 280.4 (151.6-1487.4) 

Ramsdown 31 7.733 5.184 0.7259 0.7509 0.034 194.4 (112.7-622.7) 

Merritown Heath 31 8.467 5.645 0.6816 0.7615 0.107 145.4 (96.2-283.1) 

Ferndown Common 33 7.800 5.351 0.6681 0.7588 0.121 117.2 (81.4-201.0) 

Branksome Chine 30 5.133 4.131 0.7177 0.6899 -0.041 46.7 (35.8-65.7) 

Wareham Forest 2
2 

30 7.867 5.292 0.6178 0.7322 - - 

Wareham Forest 3
2 

32 8.200 5.366 0.6217 0.7077 - - 

Wareham Forest 4
2 

29 8.333 5.594 0.6596 0.7526 - - 

Wareham Forest 5
2 

31 7.933 5.374 0.6717 0.7493 - - 

Wareham Forest 6
2 

32 8.400 5.559 0.6590 0.7576 - - 

Frensham Common 34 5.000 3.780 0.5514 0.6245 0.118 135.1 (77.9-417.9) 

Ainsdale Frontal Dunes 29 4.929 3.505 0.4555 0.5470 0.170 38.6 (29.1-55.3) 

Bergherbos 34 8.333 5.444 0.6580 0.7473 0.121 156.3 (104.2-298.8) 

Crooksbury Common 25 6.267 4.518 0.5931 0.6981 0.153 59.0 (42.5-92.5) 

Aberffraw 7 4.000 3.400 0.4381 0.5011 0.135 14.4 (8.7-34.4) 

Average (Dorset) 31.47 7.894 5.322 0.6950 0.7450 0.067 - 

Average (total) 30.18 7.367 5.051 0.6595 0.7172 0.088 - 
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Table 3.4. Spearman's rank correlations between various genetic diversity measures. AR = allelic richness, He = 
expected heterozygosity, HO = observed heterozygosity. 

Correlation Spearman’s  P 

AR x He 0.8927 <0.0001 

AR x Ho 0.5155 0.0150 

He x Ho 0.6093 0.0031 

 

Significant variation between sample sites was found for all measures of genetic diversity 

regardless of whether the non-natural sites (Crooksbury Common and Aberffraw) were 

included (Kruskal-Wallis one-way test: AR: H = 56.833, P < 0.001; Ho: H = 52.075, P < 0.001; He: 

H = 42.135, P = 0.004; FIS: H = 46.768, P = 0.001) or excluded (Kruskal-Wallis one-way test: AR: H 

= 43.75, P = 0.001; Ho: H = 38.549, P = 0.005; He: H = 33.191, P = 0.023; FIS: H = 44.503, P = 

0.001) from the analysis (Figure 3.1). No significant differences in allelic richness, observed and 

expected heterozygosities were found between sites within Dorset (Kruskal-Wallis one-way 

test: AR: H = 16.728, P = 0.403; Ho: H = 17.292, P = 0.367; He: H = 9.805, P = 0.877), however 

there was significant variation in FIS (H = 42.739, P < 0.001). Sites from the fragmented East 

Dorset landscape did not differ significantly in AR from the unfragmented Wareham Forest 

landscape (Student’s t-test: t = 0.157, P = 0.879), however Ho and He were significantly different 

(Ho: t = 2.291, P = 0.048; He: t = 2.481, P = 0.045). 

a

 

b 

 

Figure 3.1. Allelic richness (a) and expected heterozygosity (b) across sampled populations. Error bars encompass 
100% of data values for Dorset. 
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Inbreeding was low across populations with an average FIS across Dorset of 0.067, and FIS in 

Frensham Common was within the range of that of the Dorset populations. The highest level 

of inbreeding was observed in Ainsdale (0.170). There was significant variation in FIS estimates 

across all sites (Kruskal-Wallis one-way test: H = 34.366, P = 0.005) and across all Dorset sites 

(H = 23.579, P = 0.015). There was no significant difference in FIS between sites from the 

fragmented East Dorset landscape and the unfragmented Wareham Forest landscape 

(Student’s t-test: t = -1.736, P = 0.115). 

Only one sample site (Branksome Chine) showed signs of a recent population bottleneck with a 

significant one-tailed Wilcoxon test for heterozygote excess (P = 0.00418). However, in 

common with all the other sites, this site showed a normal L-shaped allele frequency 

distribution. The FIS estimate for Branksome Chine was -0.041. Negative FIS estimates occur 

when there is heterozygote excess, typical of a bottlenecked population. Allelic richness was 

also lower in this population compared to other Dorset populations whilst heterozygosity was 

comparable. This pattern would be expected in a bottlenecked population as AR is more 

sensitive to the loss of rare alleles which occurs in a bottleneck (Nei et al. 1975). 

3.3.4 Genetic Differentiation and Structuring 

With the exception of two comparisons within Wareham Forest, all pairwise FST estimates 

were significant (Table 3.6). At the national scale high levels of differentiation were observed 

between the three geographic areas of Britain and the Netherlands although the three 

different estimators used disagreed in which populations where most highly differentiated 

from each other, with G’ST and D most often in agreement (Table 3.7). Two of the estimators 

agreed that the least differentiated populations were Dorset (average) and Frensham Common 

(G’ST = 0.476, D = 0.324), whereas FST predicted that Dorset and Bergherbos were least 

differentiated (0.132 compared to 0.158 between Dorset and Frensham Common). Frensham 

Common and Bergherbos were the most highly differentiated populations according to G’ST 

(0.636) and D (0.510) estimates, however according to FST, Frensham Common and Ainsdale 

were the most highly differentiated (0.244 compared to 0.210 between Frensham Common 

and Bergherbos). All measures agreed that Ainsdale was more differentiated from Dorset (FST = 

0.204, G’ST = 0.561, D = 0.395) than from Bergherbos (FST = 0.211, G’ST = 0.547, D = 0.381). 

Low to moderate levels of differentiation were observed among populations across Dorset (FST 

= 0.034 – 0.130, G’ST = 0.181 – 0.446, D = 0.081 – 0.323), with the small and isolated population 

of Branksome Chine the most highly differentiated (average FST = 0.109, G’ST = 0.376, D = 

0.240). At the local scale, differentiation between populations was typically lower, although 
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significantly higher in the fragmented East Dorset Area (average FST = 0.051, G’ST = 0.216, D = 

0.126) than the unfragmented Wareham Forest Area (average FST = 0.016, G’ST = 0.081, D = 

0.029) (Mann-Whitney test: FST: U = 219, P < 0.0010; G’ST: U = 218, P < 0.001; D: U = 217, P < 

0.001). Each of the genetic differentiation metrics were highly correlated with FST and D 

showing the closest relationship (Table 3.5). 

Table 3.5. Spearman's rank correlations between FST, G'ST and D. 

Correlation Spearman’s  P 

FST x G’ST 0.8510 <0.0001 

FST x D 0.9161 <0.0001 

G’ST x D 0.8831 <0.0001 
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Table 3.6. Pairwise matrix of intersite FST estimates for all sites in the study. HF = Hurn Forest, WP = West Parley, LH = Lytchett Heath, WF = Wareham Forest, MP = Master’s Pit, HM = Hartland 
Moor, NH = Newton Heath, TC = Town Common, RD = Ramsdown, MH – Merritown Heath, FeC = Ferndown Common, BC = Branksome Chine, FrC = Frensham Common, AFD = Ainsdale Frontal 
Dunes, BNL = Bergherbos, CC = Crooksbury Common, AB = Aberffraw. 

  HF WP LH WF1 MP HM NH TC RD MH FeC BC WF2 WF3 WF4 WF5 WF6 FrC AFD BNL CC AB 

HF - 0.062 0.118 0.073 0.069 0.111 0.101 0.035 0.037 0.039 0.080 0.092 0.057 0.069 0.063 0.052 0.059 0.146 0.183 0.121 0.078 0.156 

WP 
 

- 0.116 0.084 0.053 0.105 0.108 0.047 0.063 0.030 0.052 0.114 0.079 0.080 0.077 0.072 0.070 0.155 0.190 0.119 0.091 0.192 

LH 
  

- 0.099 0.109 0.129 0.126 0.115 0.115 0.119 0.129 0.099 0.092 0.120 0.103 0.087 0.091 0.173 0.223 0.155 0.158 0.228 

WF1 
   

- 0.048 0.093 0.105 0.093 0.095 0.077 0.086 0.099 0.033 0.025 0.016 0.034 0.017 0.136 0.200 0.132 0.096 0.187 

MP 
    

- 0.077 0.078 0.068 0.071 0.061 0.083 0.111 0.067 0.076 0.059 0.057 0.058 0.138 0.201 0.115 0.085 0.200 

HM 
     

- 0.046 0.097 0.110 0.099 0.120 0.124 0.107 0.104 0.099 0.091 0.097 0.196 0.239 0.171 0.136 0.225 

NH 
      

- 0.106 0.102 0.096 0.117 0.130 0.109 0.112 0.108 0.094 0.107 0.204 0.240 0.162 0.148 0.224 

TC 
       

- 0.018 0.043 0.073 0.099 0.067 0.083 0.077 0.058 0.069 0.144 0.208 0.119 0.073 0.189 

RD 
        

- 0.048 0.093 0.105 0.074 0.081 0.080 0.061 0.070 0.160 0.208 0.123 0.082 0.188 

MH 
         

- 0.043 0.098 0.065 0.069 0.071 0.063 0.066 0.149 0.184 0.109 0.068 0.183 

FeC 
          

- 0.115 0.096 0.104 0.091 0.097 0.086 0.154 0.238 0.127 0.105 0.224 

BC 
           

- 0.077 0.100 0.090 0.086 0.086 0.216 0.224 0.134 0.129 0.226 

WF2 
            

- 0.015 0.020 0.009 0.009 0.148 0.186 0.124 0.084 0.179 

WF3 
             

- 0.007 0.016 0.009 0.157 0.186 0.152 0.097 0.183 

WF4 
              

- 0.014 0.003 0.135 0.196 0.127 0.093 0.177 

WF5 
               

- 0.006 0.140 0.177 0.133 0.087 0.178 

WF6 
                

- 0.138 0.179 0.120 0.084 0.169 

FrC 
                 

- 0.244 0.210 0.198 0.252 

AFD 
                  

- 0.211 0.223 0.135 

BNL 
                   

- 0.097 0.183 

CC 
                    

- 0.198 

AB 
                     

- 
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Table 3.7. Pairwise matrix of intersite D (top half) and G'ST (bottom half) estimates for all sites in the study. HF = Hurn Forest, WP = West Parley, LH = Lytchett Heath, WF = Wareham Forest, 
MP = Master’s Pit, HM = Hartland Moor, NH = Newton Heath, TC = Town Common, RD = Ramsdown, MH – Merritown Heath, FeC = Ferndown Common, BC = Branksome Chine, FrC = 
Frensham Common, AFD = Ainsdale Frontal Dunes, BNL = Bergherbos, CC = Crooksbury Common, AB = Aberffraw. 

  HF WP LH WF1 MP HM NH TC RD MH FeC BC WF2 WF3 WF4 WF5 WF6 FrC AFD BNL CC AB 

HF - 0.156 0.335 0.203 0.208 0.272 0.242 0.080 0.085 0.120 0.192 0.191 0.140 0.169 0.164 0.151 0.185 0.281 0.363 0.373 0.205 0.329 

WP 0.277 - 0.324 0.264 0.136 0.276 0.277 0.110 0.160 0.052 0.128 0.272 0.189 0.185 0.217 0.163 0.198 0.371 0.384 0.356 0.212 0.370 

LH 0.440 0.446 - 0.225 0.276 0.296 0.289 0.320 0.315 0.336 0.352 0.166 0.189 0.257 0.242 0.189 0.204 0.348 0.406 0.413 0.346 0.413 

WF1 0.321 0.381 0.354 - 0.101 0.207 0.266 0.311 0.280 0.234 0.251 0.244 0.056 0.049 0.041 0.072 0.033 0.247 0.404 0.348 0.225 0.334 

MP 0.330 0.259 0.399 0.199 - 0.208 0.231 0.230 0.210 0.179 0.249 0.323 0.137 0.149 0.127 0.142 0.153 0.310 0.483 0.361 0.207 0.481 

HM 0.419 0.407 0.431 0.351 0.324 - 0.081 0.223 0.282 0.257 0.297 0.260 0.217 0.225 0.224 0.190 0.251 0.383 0.470 0.509 0.251 0.431 

NH 0.387 0.432 0.430 0.399 0.341 0.181 - 0.258 0.263 0.235 0.279 0.282 0.229 0.252 0.239 0.210 0.278 0.419 0.467 0.435 0.330 0.446 

TC 0.151 0.219 0.406 0.397 0.318 0.360 0.396 - 0.032 0.101 0.191 0.198 0.182 0.230 0.238 0.144 0.228 0.299 0.429 0.367 0.172 0.371 

RD 0.167 0.278 0.403 0.386 0.313 0.432 0.391 0.090 - 0.130 0.256 0.247 0.178 0.185 0.202 0.149 0.187 0.335 0.415 0.349 0.181 0.374 

MH 0.187 0.147 0.435 0.360 0.276 0.387 0.377 0.175 0.203 - 0.094 0.225 0.131 0.127 0.194 0.130 0.180 0.351 0.374 0.307 0.157 0.361 

FeC 0.314 0.226 0.458 0.373 0.370 0.432 0.426 0.291 0.370 0.182 - 0.303 0.239 0.245 0.236 0.250 0.247 0.340 0.580 0.401 0.269 0.530 

BC 0.341 0.428 0.316 0.365 0.420 0.404 0.438 0.339 0.376 0.381 0.432 - 0.152 0.208 0.208 0.179 0.207 0.452 0.378 0.342 0.275 0.377 

WF2 0.252 0.326 0.318 0.138 0.256 0.368 0.372 0.289 0.292 0.268 0.376 0.261 - 0.015 0.041 0.008 0.018 0.283 0.303 0.283 0.120 0.266 

WF3 0.271 0.317 0.380 0.114 0.275 0.366 0.396 0.312 0.280 0.267 0.373 0.322 0.065 - 0.008 0.028 0.015 0.260 0.280 0.326 0.136 0.259 

WF4 0.280 0.333 0.368 0.095 0.252 0.386 0.405 0.333 0.311 0.320 0.371 0.313 0.110 0.049 - 0.026 0.007 0.265 0.389 0.316 0.195 0.304 

WF5 0.238 0.298 0.297 0.149 0.243 0.338 0.349 0.240 0.234 0.256 0.374 0.284 0.048 0.068 0.087 - 0.011 0.291 0.277 0.366 0.138 0.283 

WF6 0.289 0.310 0.317 0.095 0.259 0.385 0.414 0.312 0.287 0.298 0.361 0.313 0.060 0.050 0.045 0.042 - 0.265 0.313 0.307 0.178 0.267 

FrC 0.448 0.487 0.492 0.424 0.456 0.549 0.582 0.442 0.477 0.464 0.473 0.606 0.458 0.441 0.423 0.441 0.429 - 0.388 0.510 0.347 0.397 

AFD 0.536 0.546 0.582 0.567 0.620 0.625 0.635 0.587 0.586 0.542 0.690 0.542 0.486 0.472 0.553 0.473 0.488 0.581 - 0.381 0.372 0.054 

BNL 0.507 0.482 0.533 0.490 0.475 0.617 0.565 0.464 0.473 0.438 0.517 0.471 0.424 0.473 0.461 0.479 0.432 0.636 0.547 - 0.209 0.243 

CC 0.300 0.347 0.484 0.359 0.339 0.427 0.480 0.278 0.297 0.276 0.396 0.414 0.265 0.272 0.333 0.277 0.297 0.520 0.558 0.351 - 0.274 

AB 0.489 0.539 0.585 0.515 0.626 0.601 0.617 0.547 0.560 0.539 0.652 0.553 0.471 0.456 0.494 0.479 0.448 0.589 0.233 0.460 0.493 - 
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3.3.5 Bayesian Assignment of Population Structure 

STRUCTURE and BAPS showed high levels of agreement in most of the analyses carried out (Table 

3.8). Using the ΔK method (Evanno et al. 2005) STRUCTURE identified the most likely value of K 

as five at the national scale. The graphical output (Figure 3.2) showed that Morden Bog, 

Frensham Common, Bergherbos and Crooksbury Common were well separated, however the 

program was unable to separate samples from Ainsdale and Aberffraw regardless of whether 

USELOCPRIOR was selected or not. BAPS identified six populations in the individual clustering 

analysis but did not separate Ainsdale and Aberffraw in the group analysis (Figure 3.2).  

At the regional (Dorset) scale, the no admixture model in STRUCTURE identified the most likely 

value for K as six using the ΔK method, failing to separate Hartland Moor and Newton Heath 

(Figure 3.3). Using an admixture model, the Evanno procedure identified the most likely value 

for K as two. The ΔK method identifies the highest level of population structure (Waples & 

Gaggiotti 2006) and as the graphical output of STRUCTURE showed six well defined populations 

for all values of K > 5, in agreement with the no admixture model, it is likely that the East 

Dorset populations exhibit a hierarchical structure. Rerunning the analysis with USELOCPRIOR = 1 

resulted in the same arrangement of populations. As the graphical output enabled the 

differentiation of the populations and the clusters coincided with those of the no admixture 

model, no further simulations were run. In group clustering mode BAPS identified six 

populations, in agreement with STRUCTURE, failing to separate Hartland Moor and Newton 

Heath (Figure 3.3). In individual clustering mode eight populations were identified, however 

most individuals were grouped into six main clusters corresponding with the clusters found in 

the group clustering analysis and the remaining groups comprising single individuals. 

Using the ΔK method, STRUCTURE analysis of the data from the fragmented East Dorset area 

gave the most likely value for K as two for both admixture and no admixture models and when 

USELOCPRIOR = 1. However, the graphical output from the program indicated the potential 

presence of more than two populations (Figure 3.4) indicating a hierarchical structure (Waples 

& Gaggiotti 2006). Therefore the STRUCTURE analysis was repeated on each of the subgroups 

identified within the previous analysis. Using this method five populations were identified with 

STRUCTURE unable to separate Town Common and Ramsdown. BAPS identified the most likely 

value of K as three in group clustering mode (Figure 3.4) and five in individual clustering mode. 

However the arrangement of individuals in the individual clustering mode output 

corresponded with the arrangement on the group clustering mode with a few individuals 

assigned to additional populations. 
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At the local scale STRUCTURE was unable to distinguish any clear population structure within the 

unfragmented landscape of Wareham Forest (ΔK method, USELOCPRIOR = 0, K = 2; USELOCPRIOR = 

1, K = 3, however the clusters did not correspond to the geographic locations of the samples). 

BAPS failed to identify any separate populations in group mode and gave a most likely value of 

K as eight in the individual mode with most individuals in a large single cluster and the 

remaining clusters comprising single individuals (Figure 3.5). 

Table 3.8. Most likely arrangement of populations given by STRUCTURE and BAPS. 

Scale of Analysis Sample Site Population Assignment 

 STRUCTURE BAPS 

National Morden Bog (Dorset) 1 1 

 Frensham Common  2 2 

 Ainsdale Frontal Dunes 3 3 

 Bergherbos 4 4 

 Crooksbury Common 5 5 

 Aberffraw 3 6 

Regional (Dorset) Town Common  1 1 

 West Parley 2 2 

 Lytchett Heath 3 3 

 Morden Bog 4 4 

 Master’s Pit 5 5 

 Hartland Moor  6 6 

 Newton Heath 6 6 

Local (Wareham Forest) Wareham Forest 1 (Cold Harbour) 1 1 

 Wareham Forest 2 1 1 

 Wareham Forest 3 1 1 

 Wareham Forest 4 (Phil Shillitoes) 1 1 

 Wareham Forest 5 (Morden Bog) 1 1 

 Wareham Forest 6 1 1 

Local (East Dorset) Hurn Forest 1 1 

 Town Common 2 2 

 Ramsdown 2 2 

 Merritown Heath 3 3 

 West Parley 4 3 

 Ferndown Common 5 3 
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a 

 

b

 

Figure 3.2. Results of the STRUCTURE (K = 5) and BAPS (K = 6) analysis at the national scale. a) Both STRUCTURE 
(top) and BAPS (below) outputs showed well defined populations (individual BAPS analysis shown). STRUCTURE 
indicated the true value of K as 5, failing to separate Ainsdale from Aberffraw, whereas BAPS showed these as 
separate populations (K = 6). b) Graph of the log likelihood of each value of K including standard deviation bars. 
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Figure 3.3. Results of the STRUCTURE (K = 6) and BAPS (K = 6) analysis at the regional scale.  a) Both STRUCTURE 
(top) and BAPS (below) outputs showed well defined populations, with K = 5. b) Graph of the log likelihood of 
each value of K including standard deviation bars. 
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a 
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Figure 3.4. Results of the STRUCTURE (K = 6 after a hierarchical analysis) and BAPS (K = 3) analysis at the local 
scale in East Dorset (fragmented landscape). a) Both STRUCTURE (top) and BAPS (below) did not separate Town 
Common and Ramsdown; BAPS did not separate Merritown Heath, West Parley and Ferndown Common, which 
STRUCTURE identified as separate populations in a hierarchical analysis. b) Graph of the log likelihood of each 
value of K including standard deviation bars from the initial STRUCTURE run. 
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Figure 3.5. Results of the STRUCTURE (K = 2) and BAPS (K = 1) analysis at the local scale in Wareham Forest 
(unfragmented landscape). Both STRUCTURE and BAPS were unable to identify any subpopulations. b) Graph of 
the log likelihood of each value of K including standard deviation bars. 
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3.3.6 Detection of Migrants 

No migrants were identified between populations at the national scale with 100% of 

individuals assigned to their sample site. At the regional scale (Table 3.9), no migrants were 

identified at the 90% threshold, although there were a number of individuals that could not be 

unambiguously assigned to any population; at the 50% threshold, two potential migrants were 

identified (Figure 3.6). At the local scale within East Dorset (Table 3.10), two potential migrants 

were identified at the 90% threshold, with several individuals unassigned. A total of 23 

potential migrants were identified at the 50% threshold. Merritown Heath and Ferndown 

Common exchanged the most migrants with two moving in each direction. Lizards assigned to 

Hurn Forest were detected at all sample sites, only one potential migrant originating from 

Town Common/Ramsdown was detected (Figure 3.6). No subpopulations were identified 

within Wareham Forest and therefore no attempt was made to detect migrants in this area.  

Table 3.9. Assignment of individuals to populations at the regional (Dorset) scale using STRUCTURE. Individuals are 
assigned at a 50% (and 90%) threshold. TC = Town Common, WP = West Parley, LH = Lytchett Heath, WF5 = 
Wareham Forest 5, MP = Master's Pit, HM = Hartland Moor, NH = Newton Heath. Hartland Moor and Newton Heath 
are considered to be one population. 

Sample site Assigned population Total 

 TC WP LH WF5 MP HM/NH Not 
assigned 

 

Town Common 32 (26)    1  (7) 33 

West Parley 1 31 (31)     (1) 32 

Lytchett Heath   33 (33)     33 

Wareham Forest 1    30 (27)   1 (4) 31 

Master’s Pit    1 32 (31)  (2) 33 

Hartland Moor      33 (33)  33 

Newton Heath      32 (32)  32 

 

Table 3.10. Assignment of individuals to populations at the local (East Dorset) scale using STRUCTURE. Individuals 
are assigned at a 50% (and 90%) threshold. HF = Hurn Forest, TC = Town Common, RD = Ramsdown, MH = 
Merritown Heath, WP = West Parley, FC = Ferndown Common. Town Common and Ramsdown are considered to be 
one population. 

Sample site Assigned population Total 

 HF TC/RD MH WP FC Not 
assigned 

 

Hurn Forest 25 (20) 1  1  1 (8) 28 

Town Common 2 26 (21) 1 2 1 1 (12) 33 

Ramsdown 1 29 (24) 1   (7) 31 

Merritown 1  26 (16) 1 2 1 (15) 31 

West Parley 1 (1)   29 (26) 1 1 (5) 32 

Ferndown Common 1  2 (1)  29 (24) (8) 33 
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Figure 3.6. Diagram of movement of migrants identified by STRUCTURE, all migrants identified at the 50% 
threshold are shown. NH = Newton Heath, HM = Hartland Moor, MP = Master’s Pit, WF = Wareham Forest 5, LH = 
Lytchett Heath, BC = Branksome Chine, FC = Ferndown Common, WP = West Parley, MH = Merritown Heath, HF = 
Hurn Forest, TC = Town Common, RD = Ramsdown, small arrowheads = one migrant, medium arrowheads = two 
migrants, large arrowheads = three migrants, blue lines represent rivers. The figure is based on separate local 
(East Dorset, sites within the dashed line) level and the regional (Dorset) level analyses in which East Dorset was 
represented by Town Common. Therefore not all possible combinations of populations were investigated. 

 

3.3.7 AMOVA 

The AMOVA of sites at the national scale showed insignificant variation between the British 

sites and Bergherbos in the Netherlands (Table 3.11). Most of the variation (81.91%) was 

within populations, with 18.54% among the British populations. At the regional scale in Dorset 

(Table 3.12) the highest level of variation was again observed within populations (91.82%), 

whilst the lowest level of variation (3.41%) was observed among populations within the 

groups. 

Table 3.11. AMOVA of sample sites at a national scale. 

Source of variation d.f. Sum of squares % of variation P 

Among groups 1 73.439 -0.45 0.7507 

Among populations within groups 2 145.331 18.54 < 0.0001 

Within populations 256 1203.776 81.91 < 0.0001 

Total 259 1422.546   
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Table 3.12. AMOVA of all Dorset sample sites. 

Source of variation d.f. Sum of squares % of variation P 

Among groups 5 363.805 3.41 < 0.0001 

Among populations within groups 5 116.973 4.78 < 0.0001 

Within populations 1059 5815.925 91.82 < 0.0001 

Total 1069 6296.703   

 

 

3.3.8 Phylogeography 

Each of the three tree production methods showed a similar arrangement of the populations, 

with one significant difference in the Maximum Likelihood tree, which nested Frensham 

Common within the Dorset populations. Within Dorset the three methods differed in the 

location of Master’s Pit, which was grouped with the Wareham Forest populations in the 

UPGMA tree (Figure 3.7) and Hartland Moor and Newton Heath in the Neighbour-joining 

(Figure 3.8) and Maximum Likelihood trees (Figure 3.9). Both arrangements are feasible when 

the landscape and site locations are considered. The trees also differed in the arrangement of 

some of the sites within Wareham Forest and in the Neighbour-joining tree many of the nodes 

within Wareham Forest had low support. Given the low genetic distances between them this is 

unsurprising. Bootstrap values were highest for the UPGMA tree with most nodes supported 

by more than 500 replicates. Bootstrap support was lowest for the Maximum Likelihood tree. 

Both the Neighbour-joining and UPGMA trees grouped Ainsdale and Aberffraw together with 

100% support. 
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Figure 3.7. UPGMA tree of all sample sites based on Cavalli-Sforza genetic distances. Figures below the nodes 
refer to the percentage bootstrap support for each node. 
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Figure 3.8. Neighbour-joining phylogram of all sample sites based on Cavalli-Sforza genetic distances. Figures 
below the nodes refer to the percentage support for each node. 
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Figure 3.9. Maximum Likelihood phylogram of all sample sites based on Cavalli-Sforza genetic distances. Figures 
below the nodes refer to the percentage support for each node. The arrangement of Frensham Common differs 
to the UPGMA and Neighbour-joining trees. 
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3.3.9 Historical Divergence and Population Sizes 

Estimates of historical divergence times and present and historical population sizes produced 

by IMa2 are shown in Table 3.13 and Table 3.14 respectively. The phylogenetic tree specified 

when running IMa2 is given in Figure 3.10 and shows the parameters estimated by the 

program. Estimates of t are converted to the divergence time in years (T) by multiplying t by 

the mutation rate per generation (u) over the generation time in years (g). Using the mutation 

rate of 0.0001 of Podarcis gaigeae (Runemark et al. 2012) and the generation time of 5 years 

discussed in section 3.2.3, T = t x 50,000. The population size (N) was estimated from the 

population size parameter estimate (q) by dividing with 4u (N = q⁄4u). Therefore N = q/0.0004. 

Estimates of q for Ainsdale and Aberffraw were highly correlated implying they are in effect a 

single population, and consequently the estimates were considered unreliable. The upper 95% 

confidence estimate for q7 exceeded the upper bound of the prior estimate of maximum 

population size. 

Table 3.13. Maximum likelihood estimates of historical divergence times. BP = before present. Divergence times are 
shown in Figure 3.10. 

Parameter  Estimate of t 

 (95% confidence limits) 

Divergence time  

(95% confidence limits) (years BP) 

t1 (Ainsdale x Aberffraw) 0.01325 (0.00075 – 0.03) 662.5 (37.5 – 1500) 

t2 (Frensham Common x Town Common) 0.023945 (0.005 – 0.0475) 1197.25 (250 – 2375) 

t3 (q6 x q7) 0.06877 (0.026 – 0.1195) 3438.5 (1300 – 5975) 

t4 (q8 x Bergherbos) 0.1607 (0.0575 – 0.2865) 8035 (2875 – 14325) 

 

Table 3.14. Maximum likelihood estimates of population sizes (N). q1 – q5 are present day populations, q6 – q9 are 
historical populations (Figure 3.10). * Estimates of q for Ainsdale and Aberffraw were highly correlated indicating 
that these are in effect one population; therefore estimates of q are not reliable. § The upper 95% confidence limit 
for q7 exceeded the prior for the upper bound of population size. 

Parameter  Estimate of q (95% confidence limits) Population size (95% confidence limits)  

q1 (Aberffraw)* - - 

q2 (Ainsdale)* - - 

q3 (Frensham Common) 0.155 (0.05 – 0.371) 387.5 (125 – 927.5) 

q4 (Town Common) 0.566 (0.2025 – 1.7925) 1390 (506.25 – 4481.25) 

q5 (Bergherbos) 1.409 (0.729 – 2.599) 3522.5 (1822.5 – 6497.5) 

q6 0.238 (0.0735 – 0.604) 595 (183.75 – 1510) 

q7 42.7955 (1.167 – >66.07)§
 

106988.8 (2917.5 – >165175)§ 

q8 1.385 (0.0935 – 4.0635) 3462.5 (233.75 – 10158.75) 

q9 36.8285 (23.9085 – 58.973) 92071.25 (59771.25 – 147432.5) 
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Figure 3.10. Phylogenetic tree specified when running IMa2. The tree was derived from the Neighbour-joining 
and UPGMA trees produced in PHYLIP. t1 – t2 are historical divergence times, q1 – q5 are present day 
populations, q6 – q9 are historic ancestral populations. 

 

3.4 Discussion 

3.4.1 Genetic Diversity and Differentiation 

Expected heterozygosity in sand lizards from Dorset (average 0.7448) compared favourably 

with the continental population of Bergherbos (0.7473) and a large population in Hungary 

(0.67) (Gullberg et al. 1998; Schwartz & Olsson 2008); it was considerably higher than in a 

number of populations in Sweden which averaged 0.451 across ten sites (Gullberg et al. 1998). 

Within Dorset, even isolated populations with a small effective population size and which may 

have experienced a possible bottleneck such as Branksome Chine (Ne = 46), exhibited relatively 

high levels of genetic diversity (He = 0.6899). However, the populations from Surrey and 

Merseyside, which have had historically lower population sizes, were significantly less diverse. 

Surprisingly high levels of genetic diversity have been observed in other very small populations 

of Lacertid lizards including the closely related L. viridis (Bohme et al. 2007) and the Iberian 

rock lizard Iberolacerta monticola (Remon et al. 2012) and it has been demonstrated that 

many reptiles, including L. agilis, are able to avoid mating with close kin (Olsson et al. 2003), 

which may enable small populations to maintain high levels of genetic diversity. The 

differences in the degree of diversity between British and Swedish L. agilis could be a result of 
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the colonisation history of the areas and implies the British founder population may have been 

larger than that which colonised Sweden.  

The genetic diversity of sand lizards makes an interesting comparison with that other 

restricted amphibian and reptile species in Great Britain. Throughout large parts of its range in 

Britain L. agilis is sympatric with the smooth snake Coronella austriaca (Beebee & Griffiths 

2000). Smooth snakes in Wareham Forest exhibited lower levels of genetic diversity than sand 

lizards from the same site (Ar = 2.559, Ho = 0.428, He = 0.532) (Pernetta et al. 2011). The 

natterjack toad Bufo calamita also has a similar disjunct distribution in Britain and like L. agilis, 

has undergone recent declines (Beebee & Griffin 1977). Various studies have given very low 

estimates of genetic variability in British B. calamita; expected heterozygosity ranged from 0 – 

0.021 (Hitchings & Beebee 1996) as assessed by allozymes, and between 0.291 and  0.391 

using microsatellites (Beebee & Rowe 2000). 

Levels of inbreeding as assessed by FIS estimates were low in most of the populations in the 

study, the highest value of 0.170, being recorded in Ainsdale. Excluding one population where 

a negative value was recorded, FIS estimates for Dorset ranged between 0.026 and 0.121 

(average 0.067). By contrast, a range of 0.056 – 0.354 (average 0.192) was recorded in C. 

austriaca from sites across Dorset 

Only one population (Branksome Chine) exhibited any evidence of having undergone a genetic 

bottleneck. This population is the most isolated of all the populations sampled within Dorset 

and has been separated from most other populations for over 100 years due to the urban 

expansion of Poole. This is the last remaining sand lizard population on the Poole seafront (D. 

Bird, pers. comm.), although other small populations persisted until recently. No evidence of a 

bottleneck was found in the Frensham Common or Ainsdale populations which is in contrast to 

the results of Beebee & Rowe (2001b). The samples for that study were collected from wild-

caught animals which were part of the captive breeding programme at the time and their 

results were based on a small sample size. 

The relatively high genetic diversity and low inbreeding of L. agilis in apparently small and 

fragmented populations may be in part attributable to reproductive strategies which minimise 

inbreeding. This has been observed in the skink Gnypetoscincus queenslandiae (Stow & 

Sunnucks 2004) as well as L. agilis in Sweden where females exhibit a mating preference for 

males with dissimilar MHC genes (Olsson et al. 1999; Olsson et al. 2003). 
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3.4.2 Genetics of a Translocated Population 

The Crooksbury Common population exhibited lower levels of genetic diversity than all the 

sampled populations from Dorset (where its founder animals were translocated from), 

including the small isolated population from Branksome Chine, and had a smaller effective 

population size than all Dorset populations with the exception of Branksome Chine. However, 

it exhibited significantly more variation and had a larger effective population size than the 

nearest natural population at Frensham Common and the degree of inbreeding was not 

significantly different from populations in Dorset.  

Genetic bottlenecks occur due to a sudden decline in breeding adults within a population. No 

evidence of such a bottleneck was found in the sand lizards from Crooksbury Common 

indicating that the capture part of the translocation was successful with a significant 

proportion of the adults translocated from the donor populations. 

These results imply that the translocation has resulted in a loss of genetic diversity compared 

to the source population(s). However, this loss seems unlikely to have a significant effect on 

the long-term persistence of the population. The absence of evidence of a bottleneck and the 

comparable levels of genetic diversity to the Dorset populations suggests that a sufficient 

number of animals were translocated to avoid a founder effect and levels of genetic diversity 

are sufficient to limit the effects of genetic stochasticity. 

Both STRUCTURE and BAPS identified Crooksbury Common as a separate population from the 

nearest native population and from Dorset populations near to its geographic origin. No 

migrants were identified within the Crooksbury samples and no lizards from other sample sites 

were identified as being from Crooksbury. This implies that the population has remained 

isolated from the natural populations within the wider vicinity. 

3.4.3 Population Structure 

As would be expected considering the large geographic distances and unsuitable habitat 

between them, sand lizards from the three geographic areas of Britain are well differentiated 

from each other and no migrants could be detected at the national scale. Across Dorset, most 

populations were well differentiated and at the regional scale few migrants were identified. 

Neither STRUCTURE nor BAPS could separate Hartland Moor and Newton Heath, although the 

genetic distance between them was significant as assessed by the estimate of FST. This is 

perhaps unsurprising as these sites were part of the same large heathland area until the 1940s 

and unlike many of the sample sites; they have been separated by afforestation rather than 

development, which may allow higher levels of migration between the populations. 
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In the comparison between the fragmented East Dorset and unfragmented Wareham Forest 

areas, differences in population structure were marked. Although there was significant genetic 

structuring between most of the sample sites within Wareham Forest, all the sample sites 

were part of the same population.  

In East Dorset, STRUCTURE was able to identify each sample site as a true population with the 

exception of Town Common and Ramsdown, whereas BAPS did not separate Merritown Heath, 

West Parley and Ferndown Common. Several potential migrants were identified between 

populations. Merritown Heath, West Parley and Ferndown Common were previously part of 

the same large extent of heathland which was fragmented between the 1930s and 1980s; 

Hurn Forest, is separated from these sites by a similar geographic distance, but also by the 

relatively small Moors River. This implies that L. agilis population structure within the East 

Dorset more closely reflects natural historic barriers than recent habitat fragmentation. The 

effect of current and historical landscape on the population genetics of L. agilis in Dorset is 

considered further in Chapter 4. 

Although it was not possible to separate Town Common from Ramsdown using the methods 

implemented by STRUCTURE or BAPS, the construction of a four-lane road between them in the 

late 1970s means that there is an extremely low likelihood of individuals being able to pass 

between them and the genetic similarity between them is likely to be a result of genetic ‘time-

lag’. Landguth et al. (2010) used a variety of migration models to quantify the time it would 

take before a barrier to dispersal could be detected using genetic methods and found that it 

may take up to 200 generations to detect the effect of a barrier using population-based 

approaches based on FST estimates. Given a generation time for L. agilis of 4-5 years, 

approximately 7-9 generations would have passed since the construction of the road and 

therefore genetic effects would not yet be detectable, as was the case in fragmented 

populations of the Florida sand skink Plestiodon reynoldsi after a similar number of generations 

(Richmond et al. 2009; McCoy et al. 2010). It may be possible to detect the effect of such 

barriers using an individual-based approach (Murphy et al. 2010a; 2010b; Latch et al. 2011), 

for example Murphy et al. (2008) were able to detect barriers to gene flow after just five 

generations. 

The phylogenetic trees offered two slightly different arrangements of the populations within 

Dorset. The UPGMA tree grouped Master’s Pit with the Wareham Forest populations (77.7% 

bootstrap agreement), whereas the Neighbour-joining tree grouped it with the Purbeck 

populations of Hartland Moor and Newton Heath (55.0% bootstrap agreement). The UPGMA 
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tree also indicated an earlier divergence of the Lytchett Heath and Branksome Chine 

populations compared to the Neighbour-joining tree, which grouped these with the Wareham 

Forest populations (albeit with low bootstrap support). Both trees showed a high level of 

congruence with the geographic locations of the sampled populations and the rivers which 

separate them, particularly the Neighbour-joining tree. 

3.4.4 Colonisation History of Sand Lizards in Britain 

The majority of the genetic variation of British L. agilis was found within populations rather 

than between them and variation between British sand lizards and the population from 

Bergherbos was insignificant when compared to variation within the populations. This pattern 

of high within population variation compared to between population variation implies a 

relatively recent divergence time between the populations. The lack of variation in the 

cytochrome b gene also supported a relatively recent separation from mainland European 

populations. 

The maximum likelihood estimate for the time of divergence between British and continental 

European L. agilis populations (8,035 years BP) approximately coincides with the presence of a 

land bridge across the North Sea 8,300 – 7,800 years BP (Jelgersma 1979) and this offers the 

most likely explanation for how L. agilis colonised the Britain. During the mid-Holocene 8,500 – 

5,500 years BP, a ‘Thermal Maximum’ occurred when during which sea surface temperatures 

were 1.5 °C warmer than today (Calvo et al. 2002; Matthews & Dresser 2008). Following the 

initial colonisation of Britain, it is likely that L agilis spread rapidly throughout the country 

reaching the northern limits of their current range in Merseyside during this warmer period. 

Warmer temperatures are likely to have allowed the species to occupy a wider variety of 

habitats than they currently do in Britain, thus facilitating their spread through the country. 

Lacerta agilis are able to utilise many different habitats and occur up to 2,200 m in altitude 

over much of their range (Gasc et al. 2004). Cooling of the climate subsequently caused sand 

lizards to retreat to areas of particularly favourable habitat, similar to that in which they are 

found today, resulting in the divergence of the Merseyside populations from the southern 

populations between 5,975 and 1,300 years BP, during a period of change from a warmer, 

drier climate to a cooler, wetter one (Barber 1982; Dark 2006). This pattern of range expansion 

during the mid-Holocene followed by a contraction to a relictual range is mirrored by Swedish 

L. agilis (Gullberg et al. 1998) and explains the similarity in the species’ distribution between 

the two countries.  
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IMa2 estimated that the Surrey and Dorset populations diverged 1,197.25 years BP (95% 

confidence range of 250 – 2,375 years BP). This range encompasses the ‘Little Ice Age’ when 

average temperatures across north-west Europe were 0.9 °C cooler than today and levels of 

precipitation increased (Grove 1988; Wigley & Kelly 1990; Seppa & Birks 2002; Nesje & Dahl 

2003; Moberg et al. 2005; Dong et al. 2012). This has been implicated in extinctions and range 

contractions in a number of invertebrates (Girling 1984; Thomas 1993), potentially in 

combination with the effects of habitat destruction (Buckland & Wagner 2001). It also appears 

to have caused changes in the population dynamics of small rodent communities (Henden et 

al. 2009). The Little Ice Age followed a period of warmer temperatures in Europe (Moberg et 

al. 2005; Dong et al. 2012). IMa2 estimated an historical effective population for L. agilis in 

southern Britain of approximately 107,000 at this time and may have occupied large areas in 

between Surrey and Dorset, including much of the New Forest from where it persisted until 

the 1970s (Corbett 1988b). The present combined size of the Dorset and Surrey populations 

was estimated at < 10,000 (Corbett 1994). 

The limit of the range of many species of reptile is determined by the environmental 

conditions required for successful incubation of their eggs (Fitch & Fitch 1967; Ultsch 2006) 

and many reptiles have evolved viviparity as an adaptation to cold climates (Tinkle & Gibbons 

1977; Shine 1983). Of the six reptile species native to Britain, only L. agilis and the grass snake 

Natrix natrix are oviparous. Natrix natrix typically lays its eggs in compost or manure heaps 

where the heat generated by decomposition aids the incubation of the clutch (Lowenborg et 

al. 2012) which enables the species to extend its range further north than other oviparous 

reptile species (Lowenborg et al. 2010). Climate is very important to the successful 

reproduction of L. agilis. The link between offspring viability and spring temperatures was 

demonstrated by Olsson et al. (2011b), who showed that higher temperatures in April and 

May increased the incidence of females mating with multiple males, resulting in increased 

sperm competition and healthier offspring (Olsson et al. 2011c). Cloudier weather has also 

been shown to result in smaller offspring in Swedish sand lizards (Olsson & Shine 1997a), 

which have a lower survival rate than larger ones (Olsson & Madsen 2001b). Even in a 

continental climate with comparatively more sunshine hours than northwest Europe, up to 

90% of adult and 75% of juvenile active time is spent basking (Nemes 2003). 

The climatic conditions required for successful egg incubation may be particularly important. 

The northern limit of the range of L. agilis appears to be limited by the minimum requirements 

for egg incubation (Rykena 1987) and cold, wet summers with low sunshine have coincided 
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with the failure of almost all sand lizard egg clutches in some years within an isolated Swedish 

population (Berglind 2000). 

The hydrology and thermal properties of sand offer a possible explanation for the distribution 

of L. agilis within Britain. Female sand lizards exhibit careful selection of nest sites, often 

excavating several nest burrows which are abandoned before depositing a clutch in a burrow 

with suitable conditions. Nest sites are typically in unshaded areas of bare sand, within the 

nests sand humidity typically ranges between 15-18% and average temperature between 16.5 

°C and 20 °C (Elbing 1993; Beebee & Griffiths 2000). Sand lizards in Britain are typically found 

in habitats with sandy soils characterised by low organic matter and large particle size 

(Chapman 1979; Webb 1986; Beebee & Griffiths 2000). Such soils have lower water retention 

than soils with higher organic matter content and smaller particles (Hollis et al. 1977). Sandy 

soils also typically have a greater thermal diffusivity (thermal conductivity relative to density 

and specific heat capacity) than clay soils (Abu-Hamdeh 2003) and therefore a clutch of eggs 

buried in a sandy soil would heat up more quickly and attain a higher temperature on a warm 

day than in  a clay soil. Conversely they would also cool more quickly on a cold day or at night. 

The water balance of reptile eggs during incubation can have a significant impact on egg and 

hatchling viability (Packard 1991; Phillips & Packard 1994; Marco et al. 2005) and the rate of 

water exchange between reptile eggs and the nest medium is significantly influenced by 

temperature and the thermal conductivity of the medium (Ackerman 1994). Tracy (1980) 

demonstrated a significant relationship between egg mortality and the saturation of the 

medium in which they are incubated, in particular, eggs reared under wet conditions had a 

high incidence of mortality and a greater rate of infection by fungi, itself a cause of mortality. 

The climate of north-west Europe, in particular Britain, is heavily influenced by the North 

Atlantic Oscillation (NAO) weather system which typically results in higher precipitation than 

central and eastern Europe (Wibig 1999). It is hypothesised that sandy soils provide suitable 

hydrological conditions for the incubation of sand lizard clutches with the precipitation levels 

of Britain, however given their high thermal diffusivity such soils can only reach, and more 

importantly maintain, suitable temperatures for incubation in areas with a high sunshine 

index. This offers an explanation of the current range of L. agilis in Britain, accounting for the 

apparent relationship between distribution and spring sunshine (Jackson 1978). In central 

European parts of the range with less precipitation, soil humidity is likely to fluctuate less and 

therefore L. agilis are not restricted to certain soil types for egg incubation, allowing the 

species to occupy a wider variety of habitats across much of its range (Gasc et al. 2004). This 

could also account for the pattern of range expansion during warmer, drier periods and 
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contraction into sandy areas under cooler, wetter conditions in Britain and Sweden since the 

colonisation of these countries. 

The recent biogeography of L. agilis is reflected in other reptile species with a dependence on 

the climate for successful reproduction. For example the European pond terrapin Emys 

orbicularis, which is dependent on warm summer temperatures for egg incubation 

(Schneeweiß 2004), expanded from a Balkan glacial refuge as per the ‘grasshopper’ paradigm 

(Hewitt 1999) reaching both Britain and Scandinavia before climatic cooling caused its 

extinction in northern parts of its range (Joger et al. 2007; Sommer et al. 2009). Adult E. 

orbicularis can survive in Britain, however there are no records of successful breeding (Langton 

et al. 2011). 

3.4.5 Provenance of the Aberffraw population 

Based on the analyses undertaken, it seems highly unlikely that the Aberffraw population is of 

a natural origin. Anglesey became tidally separated from mainland Britain 8,800-8,400 years 

BP and the tidal causeway completely submerged between 5,800 and 4,600 years BP (Roberts 

et al. 2011). Given the estimates of divergence time between the Aberffraw and Ainsdale 

populations (37.5 – 1,500 years BP), for it to be a natural population, Aberffraw must have 

been colonised at several thousand years subsequent to this. It is not inconceivable that L. 

agilis reached Anglesey by rafting, for example several species of Lacertidae are thought to 

have crossed the Strait of Gibraltar between Iberia and North Africa in both directions (Harris 

et al. 2004; Carranza et al. 2006; Paulo et al. 2008). However, levels of differentiation between 

Aberffraw and Ainsdale were low (FST = 0.1354, G’ST = 0.2328, D = 0.0540) when compared with 

other pairwise comparisons between sample sites, for example similar levels of differentiation 

were observed between sample sites within the unfragmented landscape of Wareham Forest 

(as estimated by G’ST and D), which both STRUCTURE and BAPS assigned to the same population. 

Given the low genetic diversity and small effective population size of both populations, and the 

relatively large geographic distance between Aberffraw and Ainsdale, if these populations had 

been separated for any length of time it would be expected that high levels of genetic drift 

would result in high levels of differentiation given the geographic distance and unsuitable 

habitat (including sea water) between the two sites. Low levels of differentiation combined 

with the failure of STRUCTURE to separate Aberffraw from Ainsdale and the grouping of 

Aberffraw and Ainsdale with 100% support in both the Neighbour-joining and UPGMA trees 

implies high similarity between the populations. This supports the hypothesis of a recent 

unnatural origin for the Aberffraw population, most likely an introduction of animals 

originating from Merseyside. This is further supported by the results of the IMa2 analysis which 
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implies that Aberffraw and Ainsdale are in effect the same population. However, the Aberffraw 

lizards were found to possess some alleles which were not found in the Ainsdale population 

(but were found on Dorset populations). This may be due to them originating from a 

Merseyside population other than Ainsdale where these alleles are present, or from captive 

stock where one or more of their ancestors were lizards from outside of Merseyside. 

The population at Aberffraw is within the theoretical historical range of L. agilis in Britain, as 

indicated by habitat type and climate (Jackson 1978; Corbett 1994) and other anthropogenic 

populations, such as a population introduced to the Outer Hebridean island of Coll, have 

persisted despite being much further north than the natural range (Beebee & Griffiths 2000). 

However, despite suitable climate and habitat conditions, small population size and low 

genetic variation of the population mean that it is at high risk of genetic stochasticity, which 

may have an influence on its long-term persistence. 

3.4.6 Conclusion 

Although many edge populations exhibit low levels of genetic diversity, this appears not to be 

the case in British sand lizards over much of their range. Despite considerable recent habitat 

loss and fragmentation, populations in Dorset compare favourably in terms of genetic diversity 

to populations from mainland Europe, and are more diverse than other edge populations in 

Sweden, as well as being higher than in other species with similar distribution patterns in 

Britain. The smaller populations of Surrey and Merseyside are notably less diverse than the 

Dorset populations, a pattern which is closer to expectations of small, isolated edge 

populations. 

Habitat fragmentation appears to be having some effect on sand lizard populations by 

increasing genetic differentiation between them, although this may not be significant when 

compared with natural historic barriers (this topic is considered in detail in Chapter 4).  

The current disjunct range of L. agilis in Britain is a result of its colonisation history and 

subsequent climatic changes which have caused a restriction in range, possibly as a result of 

the conditions required for successful egg incubation. When considered in conjunction with 

landscape genetics data, the pattern of range expansion during warm periods and contraction 

during cooler ones may enable predictions to be made about how sand lizards will react in the 

face of climate change and this is discussed in Chapter 6. 
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4 LANDSCAPE GENETICS OF SAND LIZARDS IN DORSET 

 

4.1 Introduction 

Understanding the processes that influence patterns of genetic diversity is a crucial aim in 

conservation biology and vital to the effective conservation of species, particularly in the face 

of anthropogenic threats such as global climate change (Thomas et al. 2004; Stork 2010), and 

habitat loss and fragmentation (Fahrig 2001; Brooks et al. 2002; Fahrig 2002, 2003). Patterns of 

genetic diversity within species are influenced by colonisation history (Hewitt 1999; Beebee & 

Rowe 2000; Hewitt 2000; Bernatchez 2001), landscape configuration (Hutchison & Templeton 

1999; Storfer et al. 2007) and environmental gradients (Jorgensen et al. 2005; Schwartz et al. 

2009). 

Anthropogenic habitat loss and fragmentation have been cited as the most significant drivers 

of biodiversity loss (Fahrig 1997; Hanski & Ovaskainen 2000; Fahrig 2003; Stuart et al. 2004). In 

addition to the direct impacts of the physical removal of habitat, habitat loss and 

fragmentation render the remaining small populations more vulnerable to destructive 

stochastic events (Shaffer 1981; Caughley 1994). Small fragmented populations are more likely 

to be affected at a molecular level due to disruption to genetic process such as gene flow, 

resulting loss of diversity, the accumulation of harmful genetic mutations, inbreeding 

depression and reduced fitness (Saccheri et al. 1998; Higgins & Lynch 2001; Keller & Waller 

2002; Reed & Frankham 2003). 

Assessing the effect of habitat fragmentation on genetic diversity poses a challenge for 

conservation biologists. Although it is relatively easy to quantify levels of genetic diversity 

(Frankham 1995, 1996), the degree of inbreeding within populations and genetic 

differentiation between populations (Wright 1931; Nei 1972), it is more difficult to quantify 

the underlying causes of the observed patterns. Landscape genetics (Manel et al. 2003; Storfer 

et al. 2007; Holderegger & Wagner 2008) uses a combination of genetic and spatial data to 

investigate the effect of landscape configuration on processes of gene flow and genetic drift, 

and provides an approach to explaining patterns of genetic diversity. Landscape genetics 

approaches can be used to assess levels of gene flow across different habitat types (Wang et 

al. 2009; Murphy et al. 2010b), identify natural and anthropogenic barriers (Arens et al. 2007; 

Epps et al. 2007; Millions & Swanson 2007; Moore et al. 2011) and corridors for gene flow 

(Vignieri 2005; Clark et al. 2008; Perez-Espona et al. 2008; Zhu et al. 2010), investigate the 

effect of environmental conditions (Schwartz et al. 2009; Murphy et al. 2010b) and disentangle 
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the relative effect of historical versus contemporary gene flow (Moore et al. 2008; Zellmer & 

Knowles 2009; Apodaca et al. 2012). 

Different aspects of a landscape can influence genetic diversity at different spatial scales 

(Galpern et al. 2012; Ortego et al. 2012). For example, habitat cover was the most important 

factor affecting gene flow at a local scale in the western toad Bufo boreas, whilst 

environmental gradients were more important at larger scales (Murphy et al. 2010b). In the 

European tree frog Hyla arborea, large rivers were significant barriers to gene flow at a large 

scale whilst roads and forests were more important locally (Angelone et al. 2011). Failure to 

address issues of scale in landscape genetic studies may result in incorrect conclusions 

(Cushman & Landguth 2010a; Wasserman et al. 2010). 

Many landscape genetics studies utilise a resistance surface (Adriaensen et al. 2003; Zeller et 

al. 2012) to quantify the ‘effective’ or ‘ecological’ distance between populations or individuals. 

A resistance surface typically uses a Geographical Information System (GIS) approach to 

construct a representation of the landscape divided into pixels, each of which is assigned a 

resistance value which relates to the relative difficulty for an organism (and therefore genetic 

information) to pass through it. The resistance surface can then be used to calculate a distance 

metric which gives a more meaningful estimate of the effective distance between populations 

than Euclidean distance. The two most commonly used distance metrics are Least Cost Path 

(LCP) and Isolation by Resistance (IBR). An LCP is defined as the path between two populations 

which has the lowest cumulative cost (i.e. resistance) along its entire length (Adriaensen et al. 

2003). Whereas LCP defines a single pathway between populations, IBR assesses gene flow 

between populations across an entire landscape. IBR is based on electrical circuit theory where 

the resistance of landscape features to gene flow is analogous to electrical resistance (McRae 

2006; McRae et al. 2008). Pairwise geographic distance metrics between populations can be 

compared to genetic differentiation or distance metrics in order to investigate hypotheses 

about the influence of various landscape variables on gene flow. 

The number of published landscape genetics studies has rapidly increased over the past ten 

years (Storfer et al. 2010) as conservation biologists have sought to gain greater insight into 

genetic processes at a landscape level. A great many of these studies have focused on 

mammals, which account for 86% of published works using a resistance surface between 2000 

and 2011. Amphibians and birds have also been popular subjects (18% and 17% respectively), 

whilst reptiles account for only 8% (Zeller et al. 2012). Reptiles, and lizards in particular, are 

potentially interesting subjects for landscape genetics studies as they typically exhibit low 
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vagility and small body size which may render them more vulnerable to the effects of habitat 

fragmentation (Gibbons et al. 2000; Jenkins et al. 2007). 

The sand lizard Lacerta agilis is a widely distributed reptile which reaches the edge of its range 

in Great Britain where its specific habitat requirements have left it restricted to a few small 

areas of the country (Beebee & Griffiths 2000). The largest L. agilis populations in Britain are 

found in lowland heathland habitat in Dorset, which has suffered extensive loss and 

fragmentation  in the past 200 years and currently covers less than 15% of its original extent 

(Moore 1962; Rose et al. 2000; Hooftman & Bullock 2012). Habitat loss and fragmentation 

have been identified as the primary cause of the significant decline of L. agilis (Corbett 1969, 

1988b), and the species is now a conservation priority in the United Kingdom (Corbett & 

Tamarind 1979; Corbett 1988a; Moulton & Corbett 1999; Herpetological Conservation Trust 

2009). 

The genetic effects of habitat fragmentation have been investigated in Swedish L. agilis where 

small fragmented populations show low diversity and a high level structuring (Gullberg et al. 

1998, 1999; Madsen et al. 2000) resulting in inbreeding and a loss in fitness of offspring 

(Olsson et al. 1996b). Similarly a closely related species, the green lizard Lacerta viridis in 

Germany, shows high levels of genetic differentiation between isolated populations within a 

relatively limited geographical range (Bohme et al. 2007). This was attributed to genetic drift 

arising due to habitat fragmentation and isolation in small populations. Chapter 3 of this thesis 

investigated the population genetics of L. agilis across Great Britain. It showed that whilst 

there is a significant degree of genetic structuring between populations, even over short 

geographic distances, levels of genetic diversity within populations remain relatively high when 

compared to populations from Sweden and are similar to larger populations in Europe. 

This chapter investigated the effect of landscape configuration on patterns of genetic diversity 

in L. agilis across Dorset at different geographic scales, and specifically whether habitat type 

and potential barriers to gene flow between populations were a better predictor of patterns of 

genetic diversity than a null (Isolation by Distance) hypothesis. A resistance surface was 

created encompassing the entire Dorset range of the species and used to assess the relative 

effects of habitat cover and potential natural and artificial barriers on gene flow. A number of 

different parameterisation models were compared to enable the selection of the resistance 

surface which explained the greatest proportion of the pattern of genetic diversity across the 

study area and within smaller areas of fragmented and unfragmented landscape. This was then 

used to identify significant barriers to gene flow and the relative importance of landscape 
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features to facilitate dispersal. The parameterisation of the resistance surface also allowed 

inferences about the relative importance of historical and recent gene flow to be made. The 

relative ability of different genetic distance and differentiation markers to detect recent 

landscape change was also investigated. 

 

4.2 Materials and Methods 

4.2.1 Introduction 

General materials and methods relating to the field sampling, sampling strategy, and the 

collection and initial analysis of DNA samples is provided in Chapter 2. The materials and 

methods presented here are specific to the analysis conducted in this chapter, particularly the 

use of a resistance surface to investigate the landscape genetics of L. agilis in Dorset. 

4.2.2 Genetic Distance Metrics 

The majority of landscape genetics studies have used traditional genetic differentiation and 

distance metrics from population genetics such as FST (and its analogs) to assess the effect of 

the landscape on genetic processes (Storfer et al. 2010). However, measures of structure such 

as FST and distance measures such as D and their analogs assume equilibrium when assessing 

gene flow and therefore, in anthropogenically fragmented landscapes, such assumptions may 

not hold true. Consequently, Storfer et al. (2010) recommended the use of DPS (Bowcock et al. 

1994) which is based on the proportion of shared alleles between populations and avoids 

assumptions of equilibrium. DPS was found to be more effective at detecting recent landscape 

changes than FST (Murphy et al. 2010b). Therefore, in addition to FST (Weir & Cockerham 1984), 

G’ST (Hedrick 2005) and D (Jost 2008) used elsewhere in this thesis, pairwise DPS was calculated 

for each pair of populations using MICROSATELLITE ANALYSER (Dieringer & Schlotterer 2003). 

Populations were defined by their sampling location. 

4.2.3 Parameterisation of the Resistance Surface 

Resistance surfaces have been parameterised using a number of variables relevant to the 

ecology of the study species such as habitat type (Wang et al. 2009; Angelone et al. 2011), 

topography (Spear et al. 2005; Murphy et al. 2010b) or environmental conditions (Jorgensen et 

al. 2005; Schwartz et al. 2009). However, the geographic area considered within this study is 

relatively small compared to many other studies and all the sample sites were contained 

within a 20 km by 30 km area with little variation in elevation and climate. The habitat 

requirements of L. agilis in north-west Europe have been studied in depth and it is well 
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documented that the species is highly associated with lowland heathland and sand dune 

habitats, whilst rarely being found in other habitat types (Spellerberg 1975; Corbett & 

Tamarind 1979; House & Spellerberg 1983; Dent & Spellerberg 1987; Nicholson & Spellerberg 

1989; Spellerberg 1989; Moulton & Corbett 1999; Berglind 2000; Wouters et al. 2012). Habitat 

type is also known to be an important factor in the dispersal behaviour of L. vivipara 

(Zajitschek et al. 2012). Therefore it was considered that the primary determinant of sand 

lizard distribution and dispersal in the study area was likely to be habitat type. 

The resistance surface used in this study was based on the Land Cover Map 2007 (LCM2007) 

(Morton et al. 2011), which maps land cover across the United Kingdom at a 25 m resolution 

based on satellite imagery combined with digital cartography (Figure 4.1). LCM2007 

categorises land cover into 23 different habitat types using spectral remote sensing and has a 

reported accuracy of 83% (Morton et al. 2011). As the resolution of LCM2007 is 25 m, any 

features < 0.5 ha in area or linear features < 20 m in width, including most rivers and all roads 

within the study area, are typically not recorded on the map. As linear features such as roads 

and rivers may be significant barriers to gene flow, Ordnance Survey Meridian™2 data 

(Ordnance Survey, Southampton, UK) containing major and minor roads and rivers were 

incorporated into the resistance surface (Figure 4.1). Both LCM2007 and Meridian™2 data 

were supplied in a vector format which was converted to a raster layer with a 25 m x 25 m 

pixel size using ARCGIS v10 (ESRI, Redlands, California). 

The Amphibian and Reptile Conservation Trust (ARC) maintains a database of reptile and 

amphibian records which, as of September 2011, contained 15,906 records of L. agilis in 

Dorset recorded post 1990. The records were from a number of sources including presence-

absence surveys, population monitoring and casual observations. Records with duplicate co-

ordinates were removed from the dataset and the remaining 14,553 records were plotted in 

ARCGIS (Figure 4.1). In order to define the study area, a minimum convex polygon was created 

which encompassed all the ARC database records (with the exception of two outliers) to which 

a 1 km buffer was added. Where the study area met the sea, the boundary was defined by 

excluding sub-tidal marine habitats. The number of L. agilis records within each LCM2007 

habitat type was recorded and the proportion of pixels of each habitat type within the study 

area containing a record was calculated (Figure 4.2). 
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Figure 4.1. Data components of the resistance surface. Detail of the study area from East Dorset, top: LCM2007 
habitat data; middle: OS Meridian™2 data; bottom: ARC database L. agilis records. Blue stars are sample sites. 

1 km 
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Figure 4.2. Number of Lacerta agilis records in each LCM2007 habitat type (filled bars) found within the study 
area and the proportion of pixels of each habitat type within the study area containing an L. agilis record (open 
bars). 

 

The resistance surface was parameterised on the basis of the number of L. agilis records 

occurring within each habitat type. However, there are a number of potential sources of 

inaccuracy in the data which need to be considered: 

1. Absence data not recorded. Therefore, absence of records in a particular habitat type 

does not necessarily mean that the habitat is not used by L. agilis. 

2. Spatial resolution of the data varies from 10 m to 100 m: The spatial location of each 

record is stored in British National Grid format. Where data were recorded at a 100 m 

resolution, the co-ordinates for the bottom left corner of the 100 m x 100 m square 

were stored. As the resolution of the habitat data was 25 m, this could result in the 

record appearing in a different habitat type. For example, there were 94 L. agilis 

records in the “freshwater” habitat type which was primarily due to the presence of a 

lake in the bottom left corner of a 100 m x 100 m square which otherwise contained 

mostly heathland habitat types. 
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3. Recording biased to areas close to human habitation: The proportion of records from 

urban and suburban areas was likely to be artificially high. Lacerta agilis occurs within 

suitable habitats in some urban areas of Dorset and due to the high levels of human 

activity in such areas, these animals have a greater likelihood of being observed and 

recorded than those on more rural sites. 

4. Recording biased to known sites: Much of the data were collected during routine 

monitoring of known L. agilis sites. This may result in a disproportionate number of 

records from the habitat types found on these sites. 

5. The proportion of each habitat type was not equal or evenly distributed: Therefore 

records were more likely to occur in common habitat types regardless of L. agilis 

habitat preferences. 

In order to address these concerns, three different parameterisation models were used: 

1. Total Occupancy (TO): Resistance values for each habitat type were assigned in direct 

proportion to the total number of L. agilis records within that habitat type (Figure 4.2). 

This assigned relatively low resistance to habitat types with lots of records and high 

resistance to habitat types with few records and therefore may result in the 

overestimation of resistance in habitat types with few records. This is likely to be an 

accurate method for parameterising the resistance surface if L. agilis is as dependent 

on heathland and sand dune habitats as believed. 

2. Rank Occupancy (RO): Resistance values for each habitat type were assigned on the 

basis of the order of habitat types ranked by the number of records within each type. 

The habitat type with the highest number of records was assigned a resistance value, R 

= 1, the habitat type with the second highest number of records was assigned a 

resistance value R = 2 and so on. This removed the effect of oversampling in certain 

habitat types; however it may underestimate resistance in habitat types with few 

records. This is likely to be an accurate method for parameterising the resistance 

surface if L. agilis is able to easily disperse through non-heathland habitat types. 

3. Proportional Occupancy (PO): Resistance values were assigned to each habitat type on 

the basis of the proportion of pixels of each habitat type containing a record of L. agilis 

(Figure 4.2) relative to the total number of pixels of that habitat type in the entire 

resistance surface. This was most likely to reflect true resistance values, for example; 

using the TO and RO parameterisation models “supra-littoral sediment”, the LCM2007 

habitat type which includes sand dunes, had the sixth lowest resistance, whereas using 
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PO it had the third lowest resistance and a comparable occupancy rate to heathland 

habitats.   

In each parameterisation model the resistance value of areas beyond the study area, including 

seawater, was set to “NoData” which means it formed an edge to the resistance surface 

beyond which LCP and IBR analysis could not proceed. The resistance value (R) for each pixel 

was determined by its relative difference from the least resistant habitat for which R = 1. In 

order to control for recording bias and low resolution records, all marine and aquatic habitats 

(“freshwater”, fen, marsh and swamp”, “saltmarsh”, “littoral rock” and “littoral sediment”) and 

the “urban and “suburban” habitat types were set to a high resistance value regardless of the 

number of records within that habitat type. 

Table 4.1. Resistance values assigned to each LCM2007 Habitat type in each occupancy model. TO = Total 
Occupancy, RO = Rank Occupancy, PO = Proportional Occupancy. 

LCM2007 Habitat type No. of pixels No. of L. agilis records  Resistance (R) 

   TO RO PO 

Heather grassland 43,976 4,975  1 1 1 

Heather 34,921 3,860  1,116 2 27 

Coniferous woodland 103,371 2,352  2,624 3 904 

Arable and horticulture 276,509 882  4,094 4 1,100 

Suburban 189,397 803  4,173 12 1,132 

Supra-littoral sediment 6,963 645  4,331 5 206 

Broadleaved woodland 115,291 352  4,624 6 1,101 

Rough grassland 36,152 288  4,688 7 1,052 

Inland rock 8,650 129  4,847 8 983 

Improved grassland 314,794 104  4,872 9 1,129 

Freshwater 7,219 94  4,976 12 1,132 

Urban 19,993 30  4,976 12 1,132 

Neutral grassland 16,522 16  4,960 10 1,122 

Fen, marsh and swamp 2,537 15  4,976 12 1,073 

Saltmarsh 9,898 5  4,976 12 1,132 

Calcareous grassland 3,856 1  4,975 11 1,129 

Acid grassland 417 0  4,976 12 1,132 

Supra-littoral rock 37 0  4,976 12 1,132 

Littoral rock 33 0  4,976 12 1,132 

Littoral sediment 782 0  4,976 12 1,132 

Total 1,191,318 14,551     
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Euclidean geographic distance, LCP and IBR distance metrics were then calculated between 

each pair of sample sites on each resistance surface. Geographic distances and LCP effective 

distances were calculated using a specifically designed Python-based ARCGIS toolbox 

(Etherington 2011). The total accumulated cost of the path was used as the distance metric. 

The distance metric for IBR was calculated using CIRCUITSCAPE v3.5.8 (McRae 2006) in which 

habitat data were specified as resistance, a four-neighbour cell joining scheme was used and 

the cell connection calculation was set to average resistance. If measured using a straight line, 

some of the geographic distances would cross areas of seawater in Poole Harbour. Therefore 

an equivalent Euclidean distance was calculated between each pair of populations by setting 

all features of the resistance surface to a resistance value of 1 and calculating an LCP which 

avoided seawater and other areas of the resistance surface set to “NoData”. 

Direct comparisons between genetic distance and effective distance in landscape genetics 

studies can result in spurious correlations as they do not account for any IBD effect or the 

effect of other landscape variables (Cushman & Landguth 2010b; Cushman et al. 2012). The 

partial Mantel test (Mantel 1967; Smouse et al. 1986) allows comparisons to be made between 

genetic data and a predictor landscape variable whilst ‘partialling out’ the effect of other 

variables. In a partial Mantel test the effect of one pair-wise matrix is controlled for before 

assessing the correlation between the remaining matrices by permuting the rows and columns 

of the residuals in a second Mantel test. The reliability of Mantel and partial Mantel tests in 

landscape genetics has been questioned by Balkenhol et al. (2009), who found that they have a 

higher type-I error rate than other statistical methods. However, Cushman & Landguth (2010b) 

found partial Mantel tests to be accurate when assessing landscape resistance hypotheses and 

suggested that type-I errors may be due to the confounding effect of different landscape 

variables. Legendre & Fortin (2010) also found Mantel tests accurate when testing hypotheses 

relating to distance (which is the case in this thesis) and Mantel and partial Mantel tests 

remain the most commonly used statistic in landscape genetics studies (Storfer et al. 2010). In 

order to address some of the concerns over partial Mantel tests, Legendre et al. (1994) 

proposed an approach where the original matrices are permuted prior to the regression, and 

this has also been used in landscape genetics (Holzhauer et al. 2006; Balkenhol et al. 2009). 

To test the significance of the relationship between habitat type and distance, Mantel tests 

were undertaken between pairwise matrices of genetic distance metrics and geographic 

distance metrics. Partial Mantel tests were undertaken to ‘partial out’ any IBD effect. All 

Mantel and partial Mantel tests to compare the landscape and genetic data were conducted in 

the program PASSaGE v2 (Rosenberg & Anderson 2011). This program allows a significance 
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testing approach as per Legendre et al. (1994), where one of the original matrices is permuted 

prior to the regression (or multiple regression), the regression for that matrix is repeated and 

then the partial Mantel correlation determined. This leads to more accurate estimates of the 

significance of partial Mantel statistics (Legendre 2000) and addresses concerns over the use 

of this method in landscape genetics. The significance of each Mantel test undertaken was 

assessed using a permutation test with 9,999 permutations. 

4.2.4 Parameterisation of High-Cost Features 

The study area contained several features likely to act as significant barriers to lizard dispersal 

which could not be parameterised using the models outlined above. These fell into two 

categories: artificial barriers including high-resistance “urban” and “suburban” habitats and 

linear barriers such roads and natural barriers, particularly rivers. The number of L. agilis 

records falling within the “urban” and “suburban” habitat types was relatively high; however 

this was likely to be a result of recording effort in this habitat type rather than actual use by L. 

agilis relative to other habitat types. Urbanisation has been shown to have a particularly 

strong fragmentation effect in lizards (Delaney et al. 2010; Hamer & McDonnell 2010).  

No specific data were available regarding the ability of L. agilis to cross roads; however they 

have been observed crossing open spaces such as forestry tracks (pers. obs.). The ocellated 

lizard  

Lacerta (Timon) lepidus is closely related to L. agilis (Arnold et al. 2007) although significantly 

larger. A motorway passing through its habitat in Spain showed no evidence of being a 

significant barrier, whereas the opposite effect was observed in the smaller-bodied sympatric 

lacertid Psammodromus algirus (Telleria et al. 2011). Meek (2009) investigated the 

relationship between traffic volume and reptile roadkill for a number of species, including 

Lacerta bilineata, in western France. Roadkill numbers generally increased with traffic volume 

with the exception of a very high-volume road, which had lower than expected roadkill (no 

observations of L. bilineata), attributed to a lack of adjacent suitable habitat. Two of the 

sample sites within this study (Town Common and Ramsdown) were previously part of the 

same extensive area of heathland but were separated by a high-volume four-lane road in the 

late 1970s. In Chapter 3 of this thesis, two different Bayesian assignment methods, STRUCTURE 

(Pritchard et al. 2000) and BAPS (Corander et al. 2008), were used to identify true populations 

of L. agilis in the study area; both methods assigned individuals from Town Common and 

Ramsdown to the same population despite significant genetic distance (FST = 0.0184, D = 
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0.0318, G’ST = 0.0898). However, this may be a result of a genetic time-lag (Richmond et al. 

2009; Landguth et al. 2010) rather than contemporary migration across the road. 

Rivers are known to act as a barrier to gene flow in a number of lizard species including L. agilis 

(Bahl et al. 1997). However, L. agilis is known to swim as an escape behaviour (Blanke 2004) 

and to cross small expanses of water (Gollmann & Gollmann 2008) and therefore the 

effectiveness of a river as a barrier is likely to depend on its size. In Chapter 3 of this thesis, the 

population structure of L. agilis from a number of sites across Dorset was investigated, many 

of which were separated by rivers. The majority of sample sites were identified as separate 

populations by both STRUCTURE and BAPS where a river occurred between them. However, this 

did not attempt to separate the isolation effect of the rivers from isolation effects due to IBD 

or other intervening unsuitable habitat types. 

Koen et al. (2012) suggested that the parameterisation of low quality habitat features could be 

optimised by creating several surfaces in which high quality features (i.e. areas of low 

resistance) are held at a constant low resistance value whilst the resistance value of low 

quality features is increased. When LCP and IBR distance metrics are calculated this produces a 

pattern of linear increase in effective distance which can be compared with genetic distance to 

select the most accurate values. 

Two sets of resistance surfaces were parameterised to assess the effect of high resistance 

features within the surface, one to test the effect of artificial barriers such as roads, suburban 

and urban habitat, and one to test the effect of natural barriers such as rivers and aquatic and 

marine habitats. The Meridian™2 dataset includes three categories each for rivers (“large”, 

“medium” and “small”) and roads (“A roads”, “B roads” and “minor roads”).  A resistance 

surface was parameterised with the resistance value of all habitat types set to 1, and the 

resistance value of “small” rivers (R) = 2, “medium” rivers = 2R and “large” rivers = 4R. This 

process was repeated with R = 4, R = 8, R = 16 and so on until R = 1024. A similar process was 

undertaken for the anthropogenic features where initially all habitats were set to a resistance 

value of 1, the resistance value of the “suburban” habitat (R) was set to 2, “urban” habitat and 

“minor roads” = 2R, “B roads” = 4R and “A roads” = 8R. The resistance values of any roads 

could not be set lower than the value for the suburban or urban habitat types as this would 

result in the roads acting as corridors through higher resistance areas.  

LCP and IBR distance metrics were calculated for each resistance surface and compared to 

genetic distance metrics using Mantel tests with a permutation test to assess the significance 

of the relationship. The optimum value for each barrier type was selected on the basis of the 
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Mantel correlation coefficient (r). As the resistance value of the habitats between the barriers 

was set to 1 these resistance surfaces effectively incorporate a distance effect and therefore it 

was not necessary to separately partial out IBD effects. 

4.2.5 Creating and Selecting the Optimum Resistance Surface 

The optimum resistance surface was selected using a series of multiple regression models 

based on the three different habitat occupancy models in combination with natural and 

artificial barriers. The optimal model was selected using Akaike’s Information Criterion (AIC) 

(Burnham & Anderson 2002) which selects a model on the basis of goodness of fit with a 

penalty for high numbers of parameters, and is calculated by the formula:  

AIC = -2ln(likelihood) + 2K 

where K is the number of parameters in the model. Models were compared using AIC, which 

is calculated by subtracting the AIC score of the model with the lowest score from the AIC 

score of the model being tested. The significance of the individual parameters within each 

model supported by the AIC analysis was investigated using partial Mantel tests with a 

permutation test to assess the significance. This process was repeated at a local scale in 

fragmented (East Dorset) and unfragmented (Wareham Forest) landscape scenarios, however 

as the number of samples for these analyses was relatively low (n/K < 40)  the second order 

AICC value (Burnham & Anderson 2002) was used, calculated as: 

  AICC = -2ln(likelihood) + 2*K + (2*K*(K+1))/(n-K-1) 

where K is the number of parameters and n is the number of data points, was used to select 

the best fitting model. All multiple regressions and AIC scores were calculated in MYSTAT v12 

(Systat Software, Chicago, USA). 

Once the optimum resistance surface model had been selected, a new resistance surface 

based on this model and containing all significant features was created. Resistance for the 

barriers was recalibrated so that R was relative to the average resistance of all habitat pixels 

across the study area. Current maps were created in CIRCUITSCAPE to visualise gene flow across 

the landscape. These can be used identify areas or features of the landscape which are 

particularly important for gene flow (McRae et al. 2008). LCPs were also calculated as these 

may indicate potential dispersal corridors between sites. 
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4.2.6 Bayesian Analysis of Migration 

As the statistical assumptions of Mantel tests have been questioned, a second additional 

approach to relating genetic and geographic distances was used. Gene flow between 

populations was inferred using the program BIMr (Faubet et al. 2007; Faubet & Gaggiotti 2008) 

which uses a Markov chain Monte Carlo (MCMC) method to identify the environmental factors 

(in this case geographic or effective distance related to specific landscape features) most likely 

to explain observed patterns in genetic diversity using a generalised linear model estimated by 

a Bayesian method. In a comparison of methods for analysing simulated landscape genetics 

data, BIMr performed well with a good balance between type-I error rate and power to detect 

significant landscape features (Balkenhol et al. 2009). The program uses FST values and 

therefore the LCP and IBR distance metrics for natural and artificial barriers optimised for FST 

were used in the analysis. Separate analyses were performed for each habitat occupancy 

model using LCP and IBR distance metrics. BIMr was run in its default settings (Balkenhol et al. 

2009) with a burn-in of 20,000 steps, MCMC chain length of 1,000,000 steps and a thinning 

interval of 50. Ten replicate runs were performed for each analysis and the mean posterior 

likelihood estimate was used to select the optimum model. The migration rates inferred by 

BIMr at the regional Dorset level were very low and consequently the environmental models 

had little support. The BIMr method can be less effective when the number of populations is 

relatively high (Faubet & Gaggiotti 2008) and therefore the analysis was abandoned at the 

regional level and undertaken at the local level within East Dorset, using the same method as 

above. In Chapter 3 of this thesis, 23 potential migrants were identified in this area, compared 

to two at the regional level at the 50% threshold using STRUCTURE. Separate analyses were 

carried out for each habitat occupancy model and geographic distance metric. The 

environmental factors included in each analysis were Euclidean geographic distance 

(accounting for the avoidance of marine habitats), habitat type, natural barriers and artificial 

barriers. 

  

4.3 Results 

4.3.1 Isolation by Distance 

Mantel tests showed that the unmodified genetic distance was significantly associated with 

geographic distance at the regional scale (within Dorset); however there was not a similar 

significant relationship at the local scale in either fragmented or unfragmented landscapes 

using any genetic distance metric. Of the significant results, DPS showed the best fit of the 
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three genetic distance metrics and FST the least at the regional scale (Table 4.2). Rousset (1997) 

recommended that a correlation of FST/(1-FST) and log distance better explains IBD effects in 

habitats other than narrow corridors than direct correlations of FST and distance and this was 

calculated to investigate IBD. Where a significant IBD relationship was shown, correlating 

genetic distance/(1-genetic distance) with log geographic distance explained more variation 

for all genetic distance measures. At the local level there were significant correlations between 

genetic distance/(1-genetic distance) and log geographic distance using D and DPS in East 

Dorset. 

Table 4.2. Isolation by Distance results at a regional scale across Dorset and at a local scale in an unfragmented 
(Wareham Forest) and fragmented (East Dorset) landscape. P values shown are for a Mantel test, significance levels 
have been adjusted for multiple test using a False Discovery Rate (FDR) procedure (Narum 2006) and are shown at 
the nominal 0.05% level (P = 0.009 for Dorset and P = 0.015 for Wareham Forest and East Dorset).  

Scale  FDR   Genetic distance x 
 geographic distance 

Genetic distance/(1-genetic distance) 
x log geographic distance

 

   r P r P 

Dorset FST 0.009 0.4417 <0.0001 0.6277 <0.0001 

 G’ST 0.009 0.5429 <0.0001 0.6646 <0.0001 

 D 0.009 0.5468 <0.0001 0.6912 <0.0001 

 DPS 0.009 0.5769 <0.0001 0.7072 <0.0001 

Wareham Forest FST 0.015 0.5149 0.0277 0.4383 0.0640 

 G’ST 0.015 0.3974 0.1099 0.3369 0.1843 

 D 0.015 0.3662 0.1324 0.3074 0.2135 

 DPS 0.015 0.4104 0.0916 0.3397 0.1592 

East Dorset FST 0.015 0.6196 0.0241 0.5971 0.0168 

 G’ST 0.015 0.5933 0.0277 0.5676 0.0144 

 D 0.015 0.5986 0.0190 0.5613 0.0286 

 DPS 0.015 0.5971 0.0168 0.6393 0.0117 

 

4.3.2 Habitat Occupancy Models  

Using LCP distances, all habitat occupancy models gave an improved correlation with genetic 

distance over a null (IBD) model. In contrast with expectations, the RO model gave the highest 

Mantel’s r value, and PO the lowest (Table 4.3). However, none of the occupancy models gave 

a significant correlation (using an adjusted P value of 0.009 to denote significance at the 5% 

level after a False Discovery Rate (FDR) procedure (Narum 2006) for multiple comparisons) 

once distance had been accounted for in a partial Mantel test. The IBR distance metric gave a 

higher correlation than IBD for all habitat occupancy models, with the TO model having the 

highest r value and PO the lowest (Table 4.3). IBR models always produced greater correlations 

and higher significance than their equivalent LCP model. Within the LCP models, DPS was the 
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most sensitive genetic distance metric for all IBD and all habitat occupancy models, however, 

when the effect of distance was partialled out, FST offered an improved fit. FST was the best 

genetic distance metric for all IBR models with the exception of IBR_PO, where DPS performed 

better. FST generally produced more significant results than G’ST or D except in IBD models and 

the LCP_TO model (Table 4.3). 

Table 4.3. Results of Mantel and partial Mantel tests between genetic and geographic distances for each habitat 
occupancy model. Dist = distance, TO = Total Occupancy, RO = Rank Occupancy, PO = Proportional Occupancy. 
TO|IBD indicates a partial Mantel test with IBD partialled out of a TO model. Significance was assessed after an FDR 
procedure where the nominal 5% significance level of P = 0.009. The best correlation for each occupancy model is 
shown in bold. 

   Habitat occupancy model 

   Dist TO RO PO TO|IBD RO|IBD PO|IBD 

LCP FST r
 

0.44168 0.59876 0.55730 0.52118 0.45574 0.42915 0.47325 

  P <0.0001 <0.0001 <0.0001 <0.0001 0.0122 0.0239 0.0209 

 G’ST r
 

0.54291 0.60331 0.60602 0.59084 0.35715 0.32366 0.31334 

  P <0.0001 <0.0001 <0.0001 <0.0001 0.0404 0.0750 0.0533 

 D r
 

0.54680 0.59876 0.60444 0.58978 0.47383 0.30897 0.29080 

  P <0.0001 <0.0001 <0.0001 <0.0001 0.0106 0.1007 0.0655 

 DPS r 0.57692 0.63213 0.63349 0.62027 0.34907 0.32089 0.30451 

  P <0.0001 <0.0001 <0.0001 <0.0001 0.0488 0.0819 0.0506 

IBR FST r
 

 0.70520 0.66746 0.61123 0.62447 0.56052 0.47325 

  P  <0.0001 <0.0001 <0.0001 0.0019 0.0018 0.0193 

 G’ST r
 

 0.68624 0.62432 0.61208 0.50199 0.44354 0.36324 

  P  <0.0001 <0.0001 <0.0001 0.0068 0.0134 0.0484 

 D r
 

 0.67041 0.60131 0.59302 0.47383 0.40695 0.32335 

  P  <0.0001 <0.0001 <0.0001 0.0113 0.0320 0.0642 

 DPS r  0.70166 0.63840 0.63815 0.50228 0.44068 0.37346 

  P  <0.0001 <0.000 <0.0001 <0.0051 0.0133 0.0385 

 

4.3.3 Parameterisation of High Resistance Features 

The optimum value of R for natural barriers was 128 using LCP effective distances for all 

genetic distance metrics (FST, r = 0.48766, P < 0.0001; G’ST, r = 0.57808, P < 0.0001; D, r = 

0.57432, P <0.0001; DPS, r = 0.61520, P < 0.0001). Mantel’s r value increased until it reached a 

plateau at 128, at which point setting R any higher did not increase the cumulative resistance 

of the LCP as it circumnavigated the barriers wherever possible (Figure 4.3a). For 

anthropogenic barriers, the optimum value of R was 16 for FST (r = 0.51375, P < 0.0001), 8 for 

G’ST (r = 0.56656, P < 0.0001) and D (r = 0.57833, P < 0.0001) and 4 for DPS (r = 0.59519, P < 

0.0001) (Figure 4.3b). Using the IBR effective distance, the optimum value of R for natural 

barriers was 8 for FST (r = 0.67281, P < 0.0001), G’ST (r = 0.69226, P < 0.0001) and DPS (r = 
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0.71985, P < 0.0001), and 4 for D (r = 0.66678, P < 0.0001) (Figure 4.3c). The optimum value of 

R for anthropogenic barriers was 2 for all of the genetic distance metrics (FST, r = 0.63647, P < 

0.0001; G’ST, r = 0.61401, P < 0.0001; D, r = 0.59212, P < 0.0001; DPS, r = 0.63088, P <0.0001) 

and increasing the value of R caused a rapid decline in the correlation coefficient (Figure 4.3d). 

All correlations at the optimum R value were significant following an FDR correction (adjusted 

5% significance value, P = 0.009). DPS was the most sensitive genetic distance metric to both 

natural and artificial barriers using the LCP metric and to natural barriers using the IBR distance 

metric. However, FST was the most sensitive to artificial barriers using the IBR metric. The full 

results of the barrier resistance optimisation are provided in Appendix 2. 

a

 

 b

 
 
 
c

 

 
 
d

 
 

Figure 4.3. Parameterisation of high resistance features. a) natural barriers, LCP; b) artificial barriers, LCP; c) 
natural barriers, IBR; d) artificial barriers, IBR. X axis = resistance value (R), Y axis = Mantel’s correlation 
coefficient (r). Solid diamonds = FST, solid squares = G’ST, open triangles = D, crosses = DPS. 
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4.3.4 Selection of the Optimal Resistance Surface 

The optimum model using the multiple regression approach was FST_IBR + RO + natural 

barriers + artificial barriers (Table 4.4). Within this model, none of the parameters were 

individually significant to the nominal 5% level (P = 0.009 following an FDR procedure) 

following a partial Mantel test with a permutation test of significance (Table 4.5), although 

natural barriers were significant at a non-adjusted level. Typically, models with a AIC of more 

than 10 compared to the best fitting model are not supported (Burnham & Anderson 2002) 

and therefore the only other models supported by the analysis were FST_IBR + distance + 

natural barriers + artificial barriers and FST_IBR + distance + natural barriers. Within these 

models, none of the individual parameters were significant with the exception of natural 

barriers in the FST_IBR + distance + natural barriers model (Table 4.5). Models including RO + 

natural barriers + artificial barriers were most often selected over models using the same 

genetic distance and geographic distance metrics. All FST models were preferentially selected 

over models based on G’ST, D and DPS, and IBR models were better than LCP (all the FST models 

are shown in Table 4.4 along with the best G’ST, D and DPS models for LCP and IBR, the 

complete set of G’ST, D and DPS models is shown in Appendix 3).  

The optimum resistance surface was constructed using R values from the RO habitat 

occupancy model (Table 4.1). The optimised values of R for natural and artificial barriers was 

calculated relative to the average pixel resistance of all habitat types (R = 7). Therefore, for 

natural barriers, “small rivers” (8R), R = 56; and for artificial barriers, “suburban” habitat (2R), R 

= 14 (Figure 4.4 and Figure 4.5). The CIRCUITSCAPE current map for this resistance surface is 

shown in Figure 4.6. 
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Table 4.4. Multiple regression model selection using Akaike's Information Criterion (AIC) for all sites in Dorset. All FST 

models are shown and the best G'ST, D and DPS LCP and IBR models. All models not shown can be found in Appendix 
3. LCP = Least Cost Path, IBR = Isolation by Resistance, TO = Total Occupancy, RO = Rank Occupancy, PO = 
Proportional Occupancy. Distance is the shortest geographical distance avoiding marine habitats and is equivalent 
to an Isolation by Distance model. 

No. Model AIC AIC Adjusted r
2 

Rank 

1 FST_LCP + distance -577.929 74.959 0.189 30 

2 FST_LCP + TO -594.246 58.642 0.281 21 

3 FST_LCP + RO -598.995 53.893 0.305 19 

4 FST_LCP + PO -568.310 84.578 0.310 31 

5 FST_LCP + distance + natural barriers -588.818 64.070 0.257 26 

6 FST_LCP + TO + natural barriers -593.490 59.398 0.282 22 

7 FST_LCP + RO + natural barriers -597.676 55.212 0.304 20 

8 FST_LCP + PO + natural barriers -585.475 67.413 0.238 29 

9 FST_LCP + distance + artificial barriers -588.124 64.764 0.253 28 

10 FST_LCP + TO + artificial barriers -592.581 60.307 0.277 23 

11 FST_LCP + RO + artificial barriers -600.128 52.760 0.316 18 

12 FST_LCP + PO + artificial barriers -588.350 64.538 0.254 27 

13 FST_LCP + distance + natural barriers + artificial barriers -600.438 52.450 0.323 17 

14 FST_LCP + TO + natural barriers + artificial barriers -591.504 61.384 0.277 25 

15 FST_LCP + RO + natural barriers + artificial barriers -607.624 45.264 0.357 16 

16 FST_LCP + PO + natural barriers + artificial barriers -592.385 60.503 0.281 24 

17 FST_IBR + TO -641.952 10.936 0.494 4 

18 FST_IBR + RO -628.613 24.275 0.441 11 

19 FST_IBR + PO -612.031 40.857 0.369 15 

20 FST_IBR + distance + natural barriers -643.577 9.311 0.503 3 

21 FST_IBR + TO + natural barriers -641.691 11.197 0.496 5 

22 FST_IBR + RO + natural barriers -639.444 13.444 0.488 8 

23 FST_IBR + PO + natural barriers -628.393 24.495 0.444 12 

24 FST_IBR + distance + artificial barriers -617.062 35.826 0.396 14 

25 FST_IBR + TO + artificial barriers -641.663 11.225 0.497 6 

26 FST_IBR + RO + artificial barriers -629.669 23.219 0.450 10 

27 FST_IBR + PO + artificial barriers -619.555 33.333 0.407 13 

28 FST_IBR + distance + natural barriers + artificial barriers -644.381 8.507 0.510 2 

29 FST_IBR + TO + natural barriers + artificial barriers -641.514 11.374 0.499 7 

30 FST_IBR + RO + natural barriers + artificial barriers -652.888 0 0.539 1 

31 FST_IBR + PO + natural barriers + artificial barriers -632.139 20.749 0.463 9 

42 G’ST_LCP + RO + artificial barriers -289.325 363.563 0.403 104 

61 G’ST_IBR + RO + natural barriers + artificial barriers -313.471 339.471 0.503 94 

73 D_LCP + RO + artificial barriers -347.798 305.090 0.371 73 

91 D_IBR + TO + natural barriers + artificial barriers -369.680 283.208 0.469 51 

108 DPS_LCP + RO + natural barriers + artificial barriers -378.192 274.696 0.441 42 

122 DPS_IBR + RO + natural barriers + artificial barriers -402.474 250.414 0.532 32 
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Table 4.5. Results of a partial Mantel test to assess the significance of each parameter in the three best multiple 
regression models. Nominal 5% significance value following an FDR procedure, P = 0.009. 

Model no. Parameter  r P 

30 Habitat type (Rank Occupancy Model) 0.39038 0.0686 

 Natural barriers (R = 16) 0.41140 0.0493 

 Artificial barriers (R = 2) -0.32764 0.8881 

28 Distance -0.30247 0.9148 

 Natural barriers (R = 16) 0.44037 0.0428 

 Artificial barriers (R = 2) 0.19519 0.2971 

20 Distance -0.30207 0.9138 

 Natural barriers (R = 16) 0.61702 0.0014 

 

 

Figure 4.4. Optimised resistance surface for the whole study area. Yellow indicates areas of low resistance such as 
heathland and resistance increases with the shade to high resistance areas such as urban habitats and linear 
barriers which are coloured red. Least Cost Paths are shown in blue. A detailed section area of the resistance 
surface is shown below (Figure 4.5). 

10 km 
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Figure 4.5. Detail of the optimised resistance surface covering the same area as in Figure 4.1. Areas of low resistance such as heathland are coloured yellow and the shade darkens as 
resistance increases, red areas have high resistance and generally indicate towns or linear barriers such as roads or rivers. Blue stars indicate the locations of the sample sites, from left to 
right: Ferndown Common, West Parley, Hurn Forest, Merritown Heath, Ramsdown and Town Common. The runway of Bournemouth Airport is visible to the bottom right of the centre, 
and the town of Ferndown is shown as the dark area left of the centre. 

1 km 
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Figure 4.6. Current map produced in CIRCUITSCAPE. Warm colours indicate higher current density and therefore 
areas which are more important for gene flow. Cooler colours indicate a lower current density. CIRCUITSCAPE 
measures current between sites and therefore some areas known to be occupied by L. agilis show low current 
density as they were not important for gene flow between sampled sites. 

 

4.3.5 Local-scale Resistance 

Given its significantly greater power to predict the effect of various landscape features on 

patterns of genetic diversity at the regional scale, only FST based models were investigated at 

the local scale. In addition, the unfragmented Wareham Forest landscape does not include any 

mapped artificial barriers, so these were not included in any models. A small river and area of 

marshland were present in the area and were included as natural barriers. 

Within the fragmented East Dorset landscape the most supported model was FST_LCP + RO + 

artificial barriers (Table 4.6) and within the unfragmented Wareham Forest landscape, the 

optimal model was FST_LCP + PO + natural barriers (Table 4.7). However, in both scenarios AICC 

values were typically high and many of the models had a AICC score of less than 10 (10 of 15 

models in Wareham Forest and 26 of 31 models in East Dorset) implying a little difference 

between them. As the relationship between FST and distance was not significant in East Dorset 

(Table 4.2) and the FST_distance model had a AICC score of 6.077, implying some degree of 

10 km 
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support (Burnham & Anderson 2002), it is not considered that any of the multiple regression 

models offer a significant explanation of the observed patterns of genetic diversity within the 

East Dorset area. Within Wareham Forest, the optimal model did offer an improvement over 

the null IBD model and also had a high r2 value (0.783 compared to 0.209). Unlike the regional 

analysis, the top two ranked models were based on the PO occupancy model (Table 4.7). 

Table 4.6. Multiple regression model selection using Akaike's Information Criterion (AIC) for East Dorset. LCP = Least 
Cost Path, IBR = Isolation by Resistance, TO = Total Occupancy, RO = Rank Occupancy, PO = Proportional Occupancy. 
Distance is the shortest geographical distance avoiding marine habitats and is equivalent to an IBD model. 

No. Model AICC AICC Adjusted r
2 

Rank 

1 FST_distance -74.861 6.077 0.336 15 

2 FST_LCP + TO -79.741 1.197 0.521 2 

3 FST_LCP + RO -79.033 1.905 0.524 4 

4 FST_LCP + PO -79.633 1.305 0.517 3 

5 FST_LCP + distance + natural barriers -71.256 9.682 0.291 25 

6 FST_LCP + TO + natural barriers -76.336 4.602 0.495 12 

7 FST_LCP + RO + natural barriers -76.702 4.236 0.507 10 

8 FST_LCP + PO + natural barriers -76.662 4.276 0.506 11 

9 FST_LCP + distance + artificial barriers -72.222 8.716 0.336 23 

10 FST_LCP + TO + artificial barriers -77.651 3.287 0.537 6 

11 FST_LCP + RO + artificial barriers -80.938 0 0.628 1 

12 FST_LCP + PO + artificial barriers -76.872 4.066 0.513 8 

13 FST_LCP + distance + natural barriers + artificial barriers -68.019 12.919 0.297 31 

14 FST_LCP + TO + natural barriers + artificial barriers -73.416 7.522 0.510 20 

15 FST_LCP + RO + natural barriers + artificial barriers -77.584 3.354 0.629 7 

16 FST_LCP + PO + natural barriers + artificial barriers -73.581 7.357 0.515 18 

17 FST_IBR + TO -76.738 4.200 0.415 9 

18 FST_IBR + RO -79.003 1.935 0.497 5 

19 FST_IBR + PO -73.996 6.942 0.297 16 

20 FST_IBR + distance + natural barriers -71.051 9.887 0.282 26 

21 FST_IBR + TO + natural barriers -73.083 7.855 0.373 22 

22 FST_IBR + RO + natural barriers -75.334 5.604 0.460 13 

23 FST_IBR + PO + natural barriers -71.674 9.264 0.311 24 

24 FST_IBR + distance + artificial barriers -73.449 7.489 0.388 19 

25 FST_IBR + TO + artificial barriers -73.624 7.314 0.395 17 

26 FST_IBR + RO + artificial barriers -75.258 5.680 0.457 14 

27 FST_IBR + PO + artificial barriers -73.331 7.607 0.383 21 

28 FST_IBR + distance + natural barriers + artificial barriers -69.136 11.802 0.348 29 

29 FST_IBR + TO + natural barriers + artificial barriers -69.245 11.693 0.352 28 

30 FST_IBR + RO + natural barriers + artificial barriers -70.670 10.268 0.411 27 

31 FST_IBR + PO + natural barriers + artificial barriers -69.116 11.822 0.347 30 
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Table 4.7. Multiple regression model selection using Akaike's Information Criterion (AIC) for Wareham Forest. LCP = 
Least Cost Path, IBR = Isolation by Resistance, TO = Total Occupancy model, RO = Rank Occupancy Model, PO = 
Proportional Occupancy model. Distance is the shortest geographical distance avoiding marine habitats and is 
equivalent to an Isolation by Distance model 

No. Model AICC AICC Adjusted r
2 

Rank 

1 FST_distance -95.173 16.760 0.209 9 

2 FST_LCP + TO -102.316 9.617 0.508 3 

3 FST_LCP + RO -97.421 14.512 0.319 5 

4 FST_LCP + PO -107.308 4.625 0.648 2 

5 FST_LCP + distance + natural barriers -92.704 19.229 0.216 13 

6 FST_LCP + TO + natural barriers -102.179 9.754 0.583 4 

7 FST_LCP + RO + natural barriers -93.882 18.051 0.276 11 

8 FST_LCP + PO + natural barriers -111.933 0 0.783 1 

17 FST_IBR + TO -95.826 16.107 0.242 7 

18 FST_IBR + RO -93.120 18.813 0.093 12 

19 FST_IBR + PO -95.841 16.092 0.243 6 

20 FST_IBR + distance + natural barriers -95.451 16.482 0.348 8 

21 FST_IBR + TO + natural barriers -94.125 17.808 0.287 10 

22 FST_IBR + RO + natural barriers -89.847 22.086 0.052 14 

23 FST_IBR + PO + natural barriers -65.732 46.201 0.360 15 

 

 

4.3.6 Bayesian Analysis of Migration 

The migration rates estimated by BIMr for East Dorset were generally low, and consequently 

the posterior probabilities of the environmental models to predict migration were also low 

(Table 4.8). However, consistent results were obtained across all the different habitat 

occupancy and geographic distance metric models and therefore the environmental factors 

identified as best predicting the genetic data are likely to be significant. The model with the 

highest posterior probability in all of the analyses undertaken included natural barriers as the 

only factor. 
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Table 4.8. Mean posterior probabilities for each environmental model estimated by BIMr. Dist = Euclidean distance 
avoiding marine habitats, Hab = LCM2007 habitat cover, NB = natural barriers, AB = artificial barriers. 

Model LCP IBR 

 TO RO PO TO RO PO 

None 0.044 0.030 0.047 0.052 0.033 0.033 

Dist 0.085 0.091 0.071 0.053 0.050 0.048 

Hab 0.034 0.037 0.039 0.036 0.040 0.018 

Dist + Hab 0.053 0.054 0.050 0.036 0.034 0.032 

NB 0.149 0.114 0.164 0.111 0.133 0.131 

Dist + NB 0.085 0.085 0.098 0.083 0.087 0.087 

Hab + NB 0.083 0.065 0.081 0.070 0.086 0.095 

Dist + Hab + NB 0.063 0.058 0.062 0.051 0.065 0.070 

AB 0.028 0.023 0.033 0.083 0.063 0.065 

Dist + AB 0.060 0.054 0.051 0.068 0.048 0.049 

Hab + AB 0.028 0.026 0.026 0.051 0.041 0.048 

Dist + Hab + AB 0.043 0.046 0.035 0.042 0.033 0.035 

NB + AB 0.082 0.110 0.085 0.088 0.092 0.087 

Dist + NB + AB 0.061 0.069 0.060 0.073 0.071 0.071 

Hab + NB + AB 0.059 0.077 0.057 0.059 0.068 0.075 

Dist + Hab + NB + AB 0.045 0.062 0.043 0.046 0.059 0.059 

 

 

4.4 Discussion 

4.4.1 Genetic Distance Metrics 

Both G’ST and D showed a stronger IBD effect than FST, and DPS showed the strongest IBD effect 

of all the genetic distance metrics. DPS also proved most effective at detecting the effect of 

barriers in the absence of other landscape features. However, when the different elements of 

the landscape (habitat type and both natural and artificial barriers) were combined in the 

same model, FST showed the best fit. Raeymaekers et al. (2012) found that GST (an analog of 

FST) was more sensitive to recent demographic events than D, whilst D better explained 

phylogenetic relationships due to postglacial recolonisation in the three-spined stickleback 

Gasterosteus aculeatus. Murphy et al. (2010b) found DPS more effective than FST at predicting 

the effect of recent landscape change on patterns of genetic diversity in the western toad Bufo 

boreas in Yellowstone National Park and Spear & Storfer (2008) found G’ST to be the most 

effective of several genetic distance metrics (including FST and DPS) in predicting the effect of 

forest cover on genetic connectivity in the coastal tailed frog Ascaphus truei. 
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The comparative sensitivity of FST to landscape observed in this study supports the thesis of 

Whitlock (2011) who argued that FST is better at elucidating population structure and that  G’ST 

(Hedrick 2005) and D (Jost 2008) are of limited use in inferring demographic and evolutionary 

processes from which genetic variation arises. Whitlock (2011) highlighted that FST is affected 

by all evolutionary processes, it is increased by genetic drift as a result of small population size, 

bottlenecks or founder effects; and it is reduced by migration between populations. Mutation 

may result in a reduction of differentiation between populations by increasing heterozygosity 

or due to homoplasy (of particular relevance to microsatellites). However, mutation varies 

significantly between loci whilst genetic drift and migration have similar effects upon all loci 

and therefore spatial patterns across all loci are only significantly affected by drift and 

migration. This gives FST very useful properties for landscape genetics studies. By contrast, G’ST 

and D do not share these properties and whilst they provide a good measure of differentiation 

between populations, they are less affected by evolutionary processes which are of 

importance in landscape genetics. 

The relatively low power of DPS to detect recent landscape change compared to FST in this study 

is in contrast to recent empirical landscape genetics studies (Murphy et al. 2010a; Murphy et 

al. 2010b) and simulations (Landguth et al. 2010). Landguth et al. (2010) simulated a variety of 

dispersal strategies to determine the time taken for a barrier to gene flow to become 

established and found FST to be much less sensitive than DPS using an individual-based 

approach. However, Landguth et al. (2010) acknowledged a number of limitations in their 

study: firstly the simulations were based on non-overlapping generations, which would not be 

the case in L. agilis populations and is likely to have an effect on population structure. 

Secondly, the simulated populations had a constant size whereas the rate of genetic change in 

a small or fluctuating population may be significantly greater. The effective population size (Ne) 

of the L. agilis populations within the study area varied between 105 and 280 (Chapter 3 of this 

thesis), considerably lower than the Ne of 1,000 of the simulated populations, in addition, 

many of the studied populations are likely to have undergone reductions in size in recent years 

(Corbett 1969, 1988a). Given these considerations, the greater sensitivity of FST observed in 

this study may be a result of its behaviour in relation to demographic processes such as genetic 

drift, the response of DPS to which is not yet fully understood (Landguth et al. 2010). 

4.4.2 Isolation by Distance Effects 

A significant IBD effect was observed at the regional scale across Dorset, however no 

significant IBD effects were recorded at the local scale in either the fragmented or 

unfragmented landscapes, and distance was not identified as a significant factor within East 
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Dorset at a local scale in the BIMr analysis. Hutchison & Templeton (1999) investigated IBD in 

eastern collared lizards Crotaphytus collaris which inhabited areas with different landscape 

histories and degrees of fragmentation (see section 1.3.1). In an anthropogenically fragmented 

landscape they observed a typical IBD relationship between genetic and geographic distance 

over a shorter geographic distances, whilst at larger geographic distances this relationship was 

not apparent. This was explained by gene flow and genetic drift being in equilibrium at short 

distances, whilst at larger distances gene flow was prevented by fragmentation, and genetic 

drift was dominant. This effect was also observed in Jerusalem crickets Stenopelmatus spp. in 

California, another species which has been affected by recent anthropogenic habitat 

fragmentation (Vandergast et al. 2007). A similar pattern was observed in this study at the 

regional level when genetic distance was correlated with geographic distance (Figure 4.7). 

When the data were transformed to genetic distance/(1-genetic distance) correlated with log 

geographic distance as recommended by Rousset (1997), more of the variation was explained 

(r = 0.628, as opposed to 0.442 in the untransformed data, Figure 4.8). Whilst still discernible, 

the relationship observed by Hutchison & Templeton (1999) between genetic and geographic 

distance observed in C. collaris in a fragmented landscape is not as clear in plot of the 

transformed data. 

 

 

Figure 4.7. Relationship between FST and geographic distance across Dorset. This reflects the results of Hutchison 
& Templeton (1999) for the eastern collared lizard Crotaphytus collaris in a fragmented landscape which showed 
an IBD relationship over short distances and a more complex pattern at larger distances. 
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Figure 4.8. Relationship between FST/(1-FST) and Ln(geographic distance). The relationship between genetic and 
geographic distance observed by Hutchison & Templeton (1999) for the eastern collared lizard Crotaphytus 
collaris in a fragmented landscape is still apparent, although less clear than the untransformed data. 

 

4.4.3 Relative Importance of Habitat Type 

Habitat type was a significant component of the optimum multiple regression model, but not 

in the optimum models of the BIMr analysis. The AIC model selection procedure identified the 

Rank Occupancy (RO) habitat occupancy model as the closest fitting to the genetic data as a 

component of the optimal multiple regression model at the regional and local scales. It was 

also selected above the Total Occupancy (TO), Proportional Occupancy (PO) and null (distance 

only) models in multiple regression models which excluded other features such as barriers. 

These results suggest that habitat type does have a significant impact on gene flow between L. 

agilis populations. However, the RO model reduced the difference in resistance between 

habitat types when compared to the TO and PO models. 

At the local scale within Wareham Forest, the optimal multiple regression models were based 

on a PO occupancy model. This landscape contains no artificial barriers and only one natural 

barrier (a “small” river with some associated wetland habitat). This implies that the PO model 

may offer the best explanation of on the relative permeability of different habitat types. 

However, when the study area is expanded, habitat type has less effect on patterns of genetic 

diversity than barriers such as roads or rivers. 
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In the TO model, the relative importance of heathland habitats is exaggerated compared to 

other habitat types. Although L. agilis is particularly associated with heathland habitat in 

Britain (Corbett 1988b; Beebee & Griffiths 2000), this association may be a result of the 

requirement for a sandy substrate for egg incubation in the climate of northwest Europe 

(Beebee & Griffiths (2000) and see Chapter 3 of this thesis). Throughout other parts of its 

range in Europe, L. agilis is found in a variety of different habitat types including grassland, 

forests, steppe and marginal habitat within agricultural areas (Gasc et al. 2004). Given its 

ability to utilise these habitats in other parts of its range, it is likely that they provide sufficient 

food and have an appropriate physical structure for thermoregulation and shelter for L agilis in 

Britain. Although successful reproduction within these habitats may not be possible, they may 

provide sufficient resources for dispersing lizards to move through, therefore facilitating a 

certain degree of migration between optimal heathland sites.  

As the RO model was preferentially selected over the null model at the regional level and the 

PO model selected at the local level, it cannot be assumed that all habitat types are equally 

permeable and some, such as arable, improved grassland or dense plantation without rides, 

are likely to be significant barriers as they lack the structural diversity necessary for successful 

thermoregulatory behaviour. The PO model was based on the proportion of pixels of each 

habitat type which contained an L. agilis record (Table 4.1). This model most closely reflects 

the recorded habitat use of L. agilis within the study area compared to the TO model which 

exaggerates the relative resistance of habitat types with few records and the RO model which 

reduces the difference in resistance between all habitat types. Within the PO model, the most 

important habitat types were heathland (LCM habitat “heather grassland” and “heather”, with 

a resistance of 1 and 27 respectively) and sand dune (LCM2007 habitat “supra-littoral 

sediment” with a resistance of 206). Other habitat types were relatively similar in their 

resistance with values ranging between 904 and 1,132 for the least resistant habitat. 

Heathland habitats were also the least resistant in the RO model. Coniferous woodland was 

the third least resistant habitat in the RO model and the fourth least resistant in the PO model. 

Although this is not particularly suitable for L. agilis, many of the plantations within the study 

area have been managed for wildlife and contain small areas of heathland along ride edges 

and in small plots of land which are not commercially viable for timber production. “Arable and 

horticulture” was the fourth least resistant habitat in the RO model, however this likely to be a 

result of the high proportion of this habitat within the study area.  
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4.4.4 Relative Importance of Contemporary and Historical Landscape Features 

Both natural barriers (rivers and other aquatic habitats) and artificial barriers (roads and 

development) were important components of the optimum multiple regression model. The 

optimisation procedure identified a higher resistance value in the natural barriers (from R = 8 

for small rivers to R = 32 for large rivers) than artificial barriers (from R = 2 for suburban habitat 

to R = 16 for major roads). In addition, the optimum models estimated in the BIMr analysis 

included natural barriers only and therefore, individually, natural barriers are more significant 

barriers to gene flow than artificial barriers. The identification of rivers as a significant barrier 

to gene flow is supported by a number of studies of lizard population genetics and 

phylogeography which have reported similar results in the common ground skink Scincella 

lateralis in North America (Jackson & Austin 2010), the lacertids Eremias argus and E. 

brenchleyi in China (Zhao et al. 2011), the mountain lizard Liolaemus monticola in the Andes 

(Torres-Perez et al. 2007) and also for L. agilis in Europe (Bahl et al. 1997).  

At an individual level, roads appear to have less effect on between-population gene flow than 

rivers; for example the resistance of a large river was identified as twice that of large road. The 

primary example of this within the study area is Town Common and Ramsdown, which are less 

than 1 km apart but separated by a large road. Genetic structuring between them as assessed 

by FST was significant, but both Bayesian assignment methods used in Chapter 3 (STRUCTURE and 

BAPS) failed to identify them as separate populations, implying significant migration between 

them. The road which separates the sites comprises two carriageways, each approximately 6.5 

m in width, and has a mean traffic volume of 1,936 vehicles per hour over a 24 hour period 

(Transport Statistics Division 2012). Assuming a burst speed between 1.66 ms-1 (Avery et al. 

1987) and 2.68 ms-1 (Vanhooydonck et al. 2002), recorded for the slightly larger L. viridis and L. 

bilineata respectively, any lizards crossing this road would be likely to encounter between 

three and seven vehicles (although this is likely to be significantly higher as the majority of 

traffic movements would occur during the day when lizards are most likely to attempt to 

cross), and therefore such a road is likely to be a significant barrier. The efficacy of roads as a 

barrier to dispersal and gene flow in lizards is less well understood than that of rivers, 

especially at a molecular level. Roads have been identified as a significant cause of mortality in 

lizards, many of which will take advantage of retained heat within the road’s surface for 

thermoregulation (Koenig et al. 2002; Tanner & Perry 2007; Meek 2009). However, Telleria et 

al. (2011) found that whilst a motorway was a significant barrier to the small lacertid 

Psammodromus algirus, it was not for the larger Lacerta (Timon) lepidus. Roads were not 

found to be a significant cause of mortality in the northern alligator lizard Elgaria coerulea and 
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western skink Eumeces skiltonianus, as these species tend not to move over long distances 

(Rutherford & Gregory 2003).  

The difference in the relative effect of roads and rivers on patterns of genetic diversity within 

the study area is likely to be a result of a genetic time-lag. Although the likelihood of an 

individual lizard being able to cross a major road may be similar to that of it crossing a large 

river, rivers are long-established features of the landscape which would have acted as barriers 

restricting migration for many hundreds of generations resulting in the divergence of 

populations either side (Piertney et al. 1998; Pellegrino et al. 2005; Gehring et al. 2012). By 

contrast, roads are relatively recent additions to the landscape and sufficient traffic to prevent 

animals from crossing is even more recent. For example, the road separating Town Common 

and Ramsdown was constructed in the late 1970s, a time period which represents less than 

ten L. agilis generations to the present day. 

In a simulation exercise, Landguth et al. (2010) found that it may take up to 200 generations 

before the presence of a barrier could be detected using FST. Keyghobadi et al. (2005) 

empirically demonstrated a genetic time-lag in the butterfly Parnassius smintheus, in which, 

although genetic structure as assessed by GST was highly correlated with contemporary canopy 

cover, genetic diversity (heterozygosity) showed a greater correlation with canopy cover 40 

years before the study. The habitat of the Florida sand skink Plestiodon reynoldsi has suffered 

increasing anthropogenic fragmentation in the past 60 years, which represents approximately 

15 generations (McCoy et al. 2010), a similar generation time to L. agilis. Despite this, 

Richmond et al. (2009) found no genetic evidence of isolation between sites. Due to this 

genetic time-lag, the pattern of genetic diversity of L. agilis in Dorset reflects a historical, 

rather than contemporary landscape. This pattern very closely mirrors that observed by 

Hutchison & Templeton (1999) in the eastern collared lizards Crotaphytus collaris in the 

southwestern Ozark region of Arkansas (Figure 1.1 and Figure 4.7) where large populations 

occupied extensive areas of habitat until recent human settlement resulted in habitat 

fragmentation. 

Zellmer & Knowles (2009) used historical mapping to separate the effect of recent habitat 

fragmentation from historical genetic process in the wood frog Rana sylvatica. The Land 

Utilisation Survey (LUS) of Britain (Stamp 1931) mapped land cover in Britain during the 1930s 

and covered the study area in 1936. The LUS map of the study area (Figure 4.9) shows 

extensive areas of heathland with river valleys the only significant barriers between the sample 

sites. Some roads are present, however traffic numbers at this time were considerably lower 
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(Hicks & Allen 1999) and therefore they are unlikely to be as effective as barriers as present-

day roads. This landscape appears to more closely reflect the observed patterns of genetic 

diversity in Dorset L. agilis than the contemporary landscape, however further research, such 

as creating a historical resistance surface from this map, is required to fully investigate this.  

 

Figure 4.9. Land Utilisation Survey map (Stamp 1931) of the study area dating from 1936. Heathland is shown as 
yellow, roads and developed land are red, sample sites are marked by black stars. 

 

4.4.5 Importance of Landscape Features at Different Scales 

Given the low support for all models at the local scale in East Dorset it is difficult to draw firm 

conclusions about the relative importance of different landscape features in this scenario. 

However, the optimal models at the local scale in Wareham Forest differed from the optimal 

regional model in the habitat occupancy model with the greatest support. At the regional 

scale, RO-based models were selected, implying that different habitat types have relatively 

similar resistance, whereas at the local scale, TO and PO-based models were selected, implying 

more marked differences in habitat resistance. Given the well documented habitat preferences 

of L. agilis in Britain, habitat type undoubtedly is a significant factor in patterns of dispersal. 

However, the effect of habitat type on patterns of genetic diversity is overwhelmed by the 

more significant effect of barriers and in particular rivers at broader spatial scales. Similar 

results have been observed in other landscape genetic studies, for example habitat cover was 
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the most important factor influencing gene flow at a local scale in both Bufo boreas (Murphy et 

al. 2010b) and Hyla arborea (Angelone et al. 2011), whereas at broader scales the most 

significant factors were environmental gradients and large rivers respectively. 

4.4.6 Gene Flow at a Landscape Level 

Least cost paths for the optimum resistance model (Figure 4.4) were within areas of high gene 

flow identified by the IBR modelling (Figure 4.6) and these areas can be considered as 

particularly important for the maintenance of genetic processes within Dorset L. agilis. As 

would be expected, these mostly coincided with heathland and this therefore reinforces the 

importance of this habitat type for this species in Britain. Heathland in Dorset has been 

particularly impacted by fires which have significantly impacted L. agilis in some areas (Corbett 

1988b; Edgar & Bird 2006). Gene flow was high within fire-affected heathland even though 

these may no longer support large populations (e.g. Canford Heath) and demonstrates that 

such sites may still be important for the conservation of L. agilis as a corridor between other 

populations. Other habitat types including some agricultural land also played a role in 

facilitating gene flow between the sampled populations and although no particular corridors 

were identified through agricultural land, current could flow fairly evenly across it. This was 

particularly important where heathland was rarer, and gene flow was high across 

predominantly agricultural land between the heathlands of Wareham Forest and Canford 

Heath to the north of the urban areas of Poole.  

Corridors which allowed gene flow between or around urban areas were important regardless 

of habitat type. Within the East Dorset area, a corridor facilitating gene flow between West 

Parley and Ferndown Common ran through a narrow area of agricultural land and a golf course 

to the south of the town of Ferndown and north of the River Stour. A similarly important 

corridor was identified to the north of Ferndown either side of the main A31 road between the 

suburban areas of Ferndown and West Moors. By comparison, current density was uniformly 

high across Wareham Forest, although avoiding the large wetland area within the centre, and 

no particularly important corridors were identified. 

The current map produced in CIRCUITSCAPE identified areas of relatively high gene flow to the 

north of the present range (Figure 4.6). Chapter 3 of this thesis examined the phylogeography 

of L. agilis in Great Britain and found evidence of range expansion during periods of climate 

warming followed by contraction during cooler and wetter periods. As well as thermal 

benefits, a warmer climate may enable L. agilis to occupy a broader range of habitat types and 

therefore these areas indicate potential routes of expansion in the event of predicted future 
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climate warming (Murphy et al. 2009). The potential effect of predicted climate change is 

discussed further in Chapter 6. 

4.4.7 Conclusions 

Habitat cover, natural and artificial barriers all significantly influence dispersal and migration 

between Lacerta agilis populations in Dorset. Patterns of genetic diversity more closely reflect 

the historical landscape than the present-day one with natural barriers, particularly rivers, 

having the most significant effect. However it is likely that roads and development are a 

significant barrier to dispersal and migration but their effect is not yet apparent at a molecular 

level due to a genetic time-lag. The IBR modelling indicated the possible areas for L. agilis to 

increase their range to the north should the climate become more suitable (see Chapter 6 for a 

more detailed discussion) but anthropogenic fragmentation may limit the potential for any 

expansion. Further genetic monitoring in future years is required to quantify the full effects of 

habitat fragmentation on L. agilis in Dorset and the implications for its conservation. 
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5 GEOGRAPHIC VARIATION OF COLOUR AND PATTERN IN 

BRITISH SAND LIZARDS 

 

5.1 Introduction 

Colour plays an important role in many aspects of the ecology of lacertid lizards including: 

thermoregulation (Diaz 1994; Raia et al. 2010); sexual selection (de Lanuza & Font 2007; 

Sullivan & Kwiatkowski 2007; Galan 2008; Martin & Lopez 2009); social interaction (Vercken & 

Clobert 2008a); crypsis and predator avoidance (Martin & Lopez 2001; Carretero et al. 2006; 

Capula et al. 2009; Font et al. 2009; Martin et al. 2009). 

Within-sex colour variation has been recorded in a number of species of Lacertidae and 

different colour morphs often exhibit different social and reproductive strategies. Female 

viviparous lizards Lacerta (Zootoca) vivipara occur in three different morphs, with orange, 

yellow or mixed ventral colouration. Different colour morphs display differing social, 

reproductive and dispersal behaviour and the outcome of interactions between differently 

coloured females is dependent on the colour of both parties (Vercken et al. 2007; Vercken & 

Clobert 2008b; Vercken et al. 2010; Vercken et al. 2012). Both sexes of the Dalmatian wall 

lizard Podarcis melisellensis also occur in different colour morphs and males with an orange 

ventral colour typically have a larger head and more powerful bite (Huyghe et al. 2007). 

Orange males always dominate over yellow and white morphs regardless of body size. 

However, females appear to select mates on the basis of size and body condition rather than 

colour or dominance (Huyghe et al. 2012). Orange males also tend to have a lower 

haemogregarine (a protozoan blood parasite) burden at the end of the season, whilst white 

males have the highest levels of infection (Huyghe et al. 2010). The common wall lizard P. 

muralis shows similar difference between ventral colour morphs. Calsbeek et al. (2010) found 

that different morphs allocated resources differently, with some preferentially investing in 

attaining a large body size and others in immune response. Unlike P. melisellensis, colour is not 

an indicator of social dominance in P. muralis where body size and residency were better 

predictors of victory in territorial fights between males (Sacchi et al. 2009). 

Intraspecific colour-based signalling in lacertids is often coupled with chemical signals 

(Bauwens et al. 1987; Martin & Lopez 2000; Lopez et al. 2002; Vercken & Clobert 2008a; 

Martin & Lopez 2010a; Kopena et al. 2011). Female Iberian rock lizards Iberolacerta monticola 

are able to distinguish between two distinct male colour morphs using chemical cues alone 
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(Lopez et al. 2009) and odour takes precedence over colour signals in mate selection in the 

Iberian wall lizard P. hispanica (Lopez & Martin 2001). 

The importance of male pigment and colouration in sexual signalling and selection is well 

documented in the green lizards of the genus Lacerta. Brighter flank colouration and UV 

reflectivity are indicators of breeding success in male sand lizards L. agilis (Anderholm et al. 

2004; de Lanuza & Font 2007; Olsson et al. 2011a). The importance of colouration and UV 

reflectivity as indicators of mate quality has been demonstrated in the green lizard L. viridis 

where the brightness of the blue throat of the male is positively correlated with body size and 

relative head size and negatively correlated with ectoparasite load (Vaclav et al. 2007; Molnar 

et al. 2012). Colour is also an indicator of health in L. agilis (Olsson et al. 2005b). The UV 

reflectivity of the males’ throat and flanks is correlated with fighting success in L. viridis (Bajer 

et al. 2011) and L. agilis (Olsson 1994b) respectively. Ultra-violet throat reflectivity is a 

predictor of territorial dominance in Schreiber’s green lizard L. schreiberi (Martin & Lopez 

2009) and female L. viridis exhibit a preference for males with higher throat reflectivity (Bajer 

et al. 2010). Producing these pigments is energy expensive and requires males to spend more 

time at an elevated body temperature (Olsson 1994a; Olson & Owens 1998; Bajer et al. 2012). 

Basking is also important as UV-deprived male L. agilis experience lower mating success 

(Olsson et al. 2011a). Many of the colours of lacertids are carotenoid-based and have been 

shown to fade in response to stress (Fitze et al. 2009; Cote et al. 2010) which would provide an 

indication of health to prospective mates and rivals (Martin & Lopez 2010a). Olsson et al. 

(2012) demonstrated that accumulated DNA damage, an indication of age, resulted in fading 

breeding colouration in the painted dragon Ctenophorus pictus. 

The significance of colour in relation to thermoregulation in lizards is comparatively less well 

studied. Melanism has been demonstrated to give individuals a thermoregulatory advantage in 

many snake species (Forsman 1993; Bittner et al. 2002; Tanaka 2005). However, whilst colour-

related difference in thermoregulatory behaviour has been recorded in the west Canarian 

lizard Gallotia galloti (Diaz 1994), Gvozdik (1999) found no advantage to melanism as assessed 

by heating rates, body size and body condition in L. vivipara. 

The colour and pattern in many lacertids represents a trade-off between conspicuous breeding 

colouration and crypsis (Carretero 2002). Fleeing from a potential predator may expose a lizard 

to increased risk of being discovered as well as having an energetic cost. Colour-related 

conspicuousness influences the fleeing time (the point when the risk of being predated equals 

the cost of fleeing) in the rock lizard Iberolacerta cyreni, with more conspicuous individuals 
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fleeing before drably-coloured conspecifics (Martin et al. 2009). Males of I. monticola and I. 

cyreni advertise their quality using blue lateral and ventral markings respectively. The more 

conspicuous I. monticola males engage in more anti-predator behaviours as assessed by 

readiness to flee and time spent inside refuges than the less conspicuous I. cyreni (Cabido et al. 

2009). Carretero et al. (2006) found differences in the escape behaviour of syntopic forms of 

the Moroccan rock lizard Lacerta (Tiera) perspicillata in which striped lizards were quicker to 

flee than spotted forms which relied more on crypsis. The two forms also differed in 

microhabitat selection with spotted lizards utilising larger rocks which offered more refuges 

from terrestrial predators but were more susceptible to avian attacks. 

Lacerta agilis occurs within three distinct and widely separated areas of Great Britain: 

Merseyside in the northwest, Surrey in the southeast and Dorset in the southwest. In Dorset 

and Surrey, sand lizards occupy lowland heathland habitat, whilst in Merseyside they are 

found in coastal sand dunes. (Beebee & Griffiths 2000). Lizards from these three areas are 

genetically distinct (Beebee & Rowe (2001b), and Chapter 3 of this thesis) and also appear to 

exhibit differences in colour and pattern (Simms 1970; Beebee & Griffiths 2000), although this 

has not been empirically demonstrated. Males from the southern heathland populations are 

typically a darker green with darker markings and ocelli on the flanks and overall, a more 

spotted appearance, whilst those from Merseyside are generally a paler green and tend to be 

more striped (Figure 5.1). Previous authors (Simms 1970; Beebee & Griffiths 2000) have 

speculated that these differences may have arisen due to camouflage in the different habitats 

in which the populations are found, with the spots of the southern populations blending in 

well with the heather Calluna vulgaris dominated heathland and the paler striped northern 

animals better suited to the marram grass Ammophila arenaria habitats of the coastal dunes. 

It should however be noted that L. agilis populations in the Netherlands do not appear to 

differ between heathland and sand dune sites (H. Strijbosch, pers. comm.). 

This chapter quantifies the variation in colour and pattern in L. agilis populations across Britain 

and uses univariate and multivariate statistics to investigate the differences between the three 

geographical areas. A Bayesian assignment technique is then used to assign individuals to 

populations on the basis of colour and pattern alone and using a combination of genotypic and 

phenotypic data.   
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Figure 5.1. Examples of variation in L. agilis colour and pattern across the study sites. a) male from Morden Bog, 
Dorset; b) female from Wareham Forest, Dorset; c) male from Frensham Common, Surrey; d) female from 
Frensham Common, Surrey; e) male from Ainsdale, Merseyside; f) female from Ainsdale, Merseyside; g) male 
from Bergherbos, the Netherlands; h) female from Bergherbos, the Netherlands; i) hypomelanistic male from 
Ainsdale, Merseyside. 
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5.2 Materials and Methods  

5.2.1 Introduction 

The materials and methods presented here are specific to the analysis conducted in this 

chapter, particularly with reference to the analysis of colour and pattern. Details of materials 

and methods relating to the sample sites, field sampling, collection and initial analysis of DNA 

samples are provided in Chapter 2. 

5.2.2 Data Collection 

Photographs were taken of the back patterns of all the lizards sampled for this study using a 

Canon PowerShot A720IS digital camera in automatic settings and without using a flash. The 

lizards were held in the hand and all photographs were taken in natural shade. As the initial 

purpose of the photograph was to enable identification of individuals in order to prevent 

resampling, no other attempt was made to control the lighting conditions of the photograph.  

The primary aim of this chapter was to investigate perceived differences in the colour and 

pattern of L. agilis from the three regions of Great Britain in which it occurs. Although both 

sexes appear to exhibit differences in colour and pattern, differences are more marked in the 

males, particularly their green breeding colouration, and therefore the analysis was restricted 

to male lizards. As the aim was to compare the main geographical areas, lizards from Ainsdale, 

Frensham Common and Bergherbos in the Netherlands were included. Merritown Heath and 

Wareham Forest were used to represent lizards from east and west Dorset respectively, with 

these sites selected on the basis of availability sufficient photos of post-slough male lizards. 

Twelve male lizards from each site were analysed excluding any that were younger than in 

their third year (as assessed by size and colouration) and therefore may not have developed 

their full breeding colours (Simms 1970).  When sand lizards emerge from hibernation they will 

bask extensively and then shed their skin before attaining their full breeding colouration 

(Olsson & Madsen 1996). Therefore, animals which had not yet shed their skin were also 

excluded, however the majority of males from Frensham Common were sampled prior to their 

first slough and as these were the only representatives from Surrey they could not be 

excluded. Therefore, only pattern was characterised for these animals. 

5.2.3 Characterisation of Colour and Pattern 

Colour for each animal was assessed using Adobe Photoshop Elements v8 (Adobe Systems 

Incorporated, California), which enables the measurement of the red, green and blue (RGB) 

components of each pixel within the digital image (Fitze & Richner 2002). The RGB colour 

model is an additive colour model in which a colour is composed from differing proportions of 
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red, green and blue light. Two green scales on each flank were selected and the RGB colour 

components recorded from the middle of the scale. As RGB colour scores are dependent on 

the system used (in this case AdobeRGB 1998) (Adobe Systems Incorporated 2005), they were 

averaged and converted to a percentage so that the total percentage of red, green and blue = 

100. Previous studies using this method to analyse colour have taken photographs under 

controlled lighting conditions (Fitze & Richner 2002). As the photographs for this study were 

taken under field conditions, the environmental light at the time of the photograph may 

influence the colour as recorded by the photograph. This was controlled for as much as 

possible by taking multiple measurements on both flanks so that the effect of any sources of 

reflected light on one side of the lizard was reduced. 

Six other characteristics of the dorsal and flank pattern were also recorded (Figure 5.2 and 

Table 5.1). Many of these were measured using a scale encoding technique (Sacchi et al. 2007) 

where the morphology of individual scales is recorded and the number of scales with a 

particular characteristic is expressed as a proportion of the total. For example, the presence 

and completeness of a dorsal line was recorded by counting the total number of scales along 

the centre of each lizard’s back between the pectoral and pelvic girdles. The completeness of 

the dorsal line was expressed as the quantity of white scales as a percentage of the total 

 

Figure 5.2. Pattern characteristics measured for each lizard, see Table 5.1 for a full explanation of each 
characteristic. 
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Table 5.1. Pattern and colour characteristics recorded in the study and how they were calculated. See Figure 5.2 for 
an illustration for each characteristic. 

Abbreviation Characteristic Description 

COLR Red colour % of red within the flank scale colour. 

COLG Green colour % of green within the flank scale colour. 

COLB Blue colour % of blue with the flank scale colour. 

DOLN Dorsal line % of the dorsal line complete between the pectoral and pelvic girdles. 

Measured as the number of scales along the centre of the back coloured white 

as a proportion of the total. 

DLST Dorsolateral 

stripes 

Width of the dorsolateral stripes. Measured as the number of light-coloured 

scales between the flank and dark-coloured dorsal band. Four counts were 

made at different locations along the stripe and an average used. 

DLSM Dorsolateral 

stripe markings 

Number of dark spots or other markings within the dorsolateral stripes 

between the pectoral and pelvic girdles. Such markings may be entirely within 

the stripe, but also include features such as scallops. Markings were counted if 

they crossed the centre of the dorsolateral. 

DOWS White spots Number of white spots or other white markings within the dorsal band 

between pectoral and pelvic girdles. 

DOBM Dorsal band 

markings 

Number of dark markings within the dorsal band between pectoral and pelvic 

girdles. 

BLKM Black flank 

markings 

Black (or dark-coloured) scales on the flanks, scales recorded as 1 (all black), 0.5 

(partially black) or 0 (all green). Scales were counted along a single line passing 

through any ocelli. Therefore, this characteristic also provides a measure of the 

number and intensity of ocelli. 

 

5.2.4 Data Analysis 

Significant differences in each colour and pattern characteristic between sample sites were 

investigated for each characteristic using a Kruskal-Wallis one way analysis of variance. 

Principal Components Analysis (PCA) was used to assess whether it was possible to distinguish 

between lizards from the different sites on the basis of colour and pattern. The PCA creates 

new sets of variables from the dataset which explain as much of the variation in the data as 

possible, these can then be plotted against each other to reveal clusters of related cases. As it 

was not possible to quantify the colour of lizards from Frensham Common, two separate PCAs 

were performed, one including all sample sites in which colour was excluded as a variable and 

a second including colour as a variable but excluding lizards from Frensham Common.  

In order to create a single variable to represent in colour (COLT) in the PCA, an initial PCA was 

conducted using the proportions of red, green and blue as the variables. The first Principal 

Component explained 79.568% of the variance in the colour data and this was used as a proxy 
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for colour in the subsequent PCA and Bayesian analysis. All statistical procedures were 

undertaken in MYSTAT v12 (Systat Software, Chicago, USA). 

Pattern and colour data were also analysed using GENELAND v4 (Guillot et al. 2005; Guillot et al. 

2008; Guillot et al. 2012), a Bayesian assignment program which uses genotypic, phenotypic 

and spatial data to determine the true number of populations (K). Three separate analyses 

were carried out: the first using only genotype data; the second only phenotype data; and the 

third using both phenotype and genotype data. Spatial data were not used. When running 

GENELAND, an uncorrelated alleles model was used with a Markov chain Monte Carlo (MCMC) 

chain length of 1,000,000 and a thinning factor of 100. Ten separate runs were carried out in 

each analysis and the one with the highest posterior log probability was resampled with a burn 

in of 20,000 to obtain the population membership probability of each individual. Previous 

Bayesian assignment analyses using STRUCTURE (Pritchard et al. 2000) and BAPS (Corander et al. 

2008) identified each of the populations analysed within this chapter as distinct (Chapter 3 and 

Figure 3.2), therefore the maximum number of K was set to 5. 

 

5.3 Results 

5.3.1 Colour Analysis 

No significant difference in the green component of the RGB colour model was observed 

between the sites (Kruskal-Wallis one-way test: H = 7.526, P = 0.057), however there were 

significant differences between sites in the proportion of red (H = 16.594, P = 0.001) and blue 

(H = 13.247, P = 0.004) (Figure 5.3). Lizards from Ainsdale had the lowest proportion of blue 

within their flank colour (and highest proportion of red) between all the sites and once the 

samples from Ainsdale were removed from the analysis, the difference in the proportion of red 

in the flank colour was significant between sites (H = 7.518, P = 0.023) and the proportion of 

blue was insignificant (H = 1.653, P = 0.438).  
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Figure 5.3. Proportion (percentage) of the red, green and blue (RGB) components in the flank colour of male 
Lacerta agilis from the sampled sites. 

 

5.3.2 Pattern Analysis 

All pattern characteristics exhibited significant differences between sites (Kruskal-Wallis one-

way test: DOLN, H = 26.08, P < 0.001; DLST, H = 27.40, P < 0.001; DLSM, H = 18.06, P = 0.001; 

DOWS, H = 16.87, P = 0.002; DOBM, H = 32.00, P < 0.001; BLKM, H = 38.98, P < 0.001). Ainsdale 

lizards typically had a more complete dorsal line, wider dorsolateral stripes containing fewer 

dark markings, and considerably less black on their flanks than lizards from the other sites 

(Figure 5.4a, b, c and f). Ainsdale lizards also typically had fewer white spots than those from 

Frensham Common and the two Dorset sites, but a similar number to lizards from Bergherbos 

(Figure 5.4d). The number of dark markings within the dorsal band was less variable across the 

sites with the exception of Merritown Heath where the sample included a number of animals 

with all the dorsal band markings joined into a single dark marking covering the entire dorsal 

band (Figure 5.4e). 
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Figure 5.4. Differences in pattern characteristics between sample sites, error bars = one standard deviation. a) 
completeness of the dorsal line (DOLN); b) width of dorsolateral stripes (DLST); c) number of markings within the 
dorsolateral stripes (DLSM); d) number of white spots (DOWS); e) number of markings within the dorsal band 
(DOBM); f) number of black scales per flank (BLKM). AF = Ainsdale, FC = Frensham Common, MH = Merritown 
Heath, WF = Wareham Forest, NL = Bergherbos. 
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5.3.3 Multivariate Analysis 

The PCA including colour as a variable (whilst excluding Frensham Common as a sample site) 

resulted in a reasonably clear separation of Ainsdale from the other sample sites along the first 

Principal Component. The two Dorset sites were also reasonably well separated from the other 

sites although with a slight overlap between them. BLKM was the most significant contributor 

to the PCA on the negative side and DOLN and DLST on the positive side (Table 5.2 and Figure 

5.5), therefore the PCA separates animals with more black on their flanks on the negative side 

and a more complete dorsal line and wider dorsolateral stripes on the positive side. The PCA 

which excluded colour but included the Frensham Common samples showed a similar pattern 

to the first PCA, however sample sites were less clearly separated (Table 5.3 and Figure 5.6). 

The relative importance of each characteristic was similar in both PCAs. 

Table 5.2. Results of the first PCA including colour as a variable but excluding samples from Frensham Common, the 
first four Principal Components are shown. 

  PC1 PC2 PC3 PC4 

Eigenvalue  3.198 1.289 0.906 0.563 

% of explained variance  45.684 18.408 12.940 8.047 

Cumulative % of explained variance  45.684 64.092 77.032 85.079 

Contribution of individual variables to the factor COLT 0.497 0.581 0.350 0.508 

 DOLN 0.763 0.146 -0.071 0.019 

 DLST 0.779 0.034 0.386 -0.389 

 DLSM -0.580 0.692 -0.119 -0.078 

 DOWS -0.661 0.570 0.067 -0.284 

 DOBM 0.517 0.189 -0.780 0.037 

 BLKM -0.849 -0.299 0.049 0.255 

 

Table 5.3. Results of the second PCA excluding colour as a variable but including samples from all sample sites, the 
first four Principal Components are shown. 

  PC1 PC2 PC3 PC4 

Eigenvalue  2.789 1.175 0.793 0.516 

% of explained variance  46.487 19.576 13.220 8.594 

Cumulative % of explained variance  46.487 66.063 79.283 87.877 

Contribution of individual variables to the factor DOLN -0.722 0.392 0.116 0.447 

 DLST -0.807 -0.130 0.346 -0.175 

 DLSM 0.675 0.452 0.324 0.309 

 DOWS 0.682 0.022 0.619 -0.213 

 DOBM -0.179 0.894 -0.171 -0.374 

 BLKM 0.815 0.022 -0.378 0.063 
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Figure 5.5. Scatterplots for the PCA including colour as a variable, but no samples from Frensham Common. PC1 x 
PC2 and PC1 shown. Filled squares = Ainsdale, open squares = Merritown Heath, open diamonds = Wareham 
Forest, filled diamonds = Bergherbos. 

 

 
Figure 5.6. Scatterplots for the PCA excluding colour as a variable, but including all sample sites. PC1 x PC2 shown. 
Filled squares = Ainsdale, filled triangles = Frensham Common, open squares = Merritown Heath, open diamonds 
= Wareham Forest, filled diamonds = Bergherbos. 
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5.3.4 Bayesian Assignment 

Using genotype data only, GENELAND identified five populations (Table 5.4). The assignment of 

each individual corresponded to its sample site with the exception of two from Merritown 

Heath, one of which was assigned to Frensham Common and one to Wareham Forest. Most 

lizards were assigned with a probability > 0.9 with the exception of two lizards each from 

Merritown Heath and Wareham Forest. Two populations were identified using phenotypic 

data; all Ainsdale lizards were assigned to one population and all the southern British animals 

were assigned to a second with the exception of four individuals. Bergherbos lizards were 

assigned with 50% in each population. The combined genotype and phenotype data identified 

Ainsdale and Bergherbos as well separated populations, however the three southern British 

populations were not well defined with most individuals having a probability of 0.49 – 0.52. 

Table 5.4. GENELAND assignment of individuals to populations. No genetic data was available for samples 558 and 
580. 

Sample no. Sample site Population assignment (probability) 

  Genotype Phenotype Genotype + Phenotype 

543 Ainsdale 1 (1) 1 (1) 1 (0.99) 

545 Ainsdale 1 (1) 1 (0.99) 1 (0.99) 

547 Ainsdale 1 (1) 1 (1) 1 (0.99) 

551 Ainsdale 1 (1) 1 (1) 1 (0.99) 

552 Ainsdale 1 (1) 1 (1) 1 (0.99) 

557 Ainsdale 1 (0.99) 1 (1) 1 (0.99) 

558 Ainsdale n/a 1 (1) 1 (0.99) 

563 Ainsdale 1 (1) 1 (1) 1 (0.99) 

564 Ainsdale 1 (1) 1 (0.99) 1 (0.99) 

566 Ainsdale 1 (1) 1 (1) 1 (0.99) 

567 Ainsdale 1 (1) 1 (1) 1 (0.99) 

572 Ainsdale 1 (0.99) 1 (1) 1 (0.99) 

455 Frensham Common 2 (1) 2 (0.99) 2 (0.52) 

456 Frensham Common 2 (1) 2 (0.85) 2 (0.52) 

458 Frensham Common 2 (1) 2 (0.99) 2 (0.52) 

461 Frensham Common 2 (1) 2 (0.99) 2 (0.52) 

463 Frensham Common 2 (1) 1 (0.98) 2 (0.52) 

464 Frensham Common 2 (1) 2 (0.99) 2 (0.52) 

465 Frensham Common 2 (1) 2 (0.98) 2 (0.52) 

466 Frensham Common 2 (0.99) 2 (0.99) 2 (0.52) 

467 Frensham Common 2 (1) 1 (0.93) 2 (0.52) 

471 Frensham Common 2 (1) 2 (0.99) 2 (0.52) 

475 Frensham Common 2 (1) 2 (0.99) 2 (0.52) 

616 Frensham Common 2 (1) 2 (0.99) 2 (0.52) 
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Table 5.4 cont. 

Sample no. Sample site Population assignment (probability) 

         Genotype        Phenotype Genotype + Phenotype 

451 Merritown Heath 3 (0.99) 2 (0.99) 3 (0.52) 

453 Merritown Heath 3 (0.92) 2 (1) 3 (0.52) 

454 Merritown Heath 3 (1) 2 (1) 3 (0.52) 

478 Merritown Heath 3 (0.99) 2 (0.99) 3 (0.52) 

479 Merritown Heath 3 (0.98) 2 (1) 3 (0.52) 

484 Merritown Heath 3 (0.91) 2 (1) 3 (0.52) 

487 Merritown Heath 3 (1) 1 (0.54) 3 (0.52) 

521 Merritown Heath 2 (0.73) 2 (0.99) 3 (0.52) 

522 Merritown Heath 3 (1) 2 (0.98) 3 (0.52) 

628 Merritown Heath 4 (0.78) 2 (0.99) 3 (0.50) 

631 Merritown Heath 3 (0.99) 2 (0.99) 3 (0.52) 

632 Merritown Heath 3 (0.90) 2 (0.99) 3 (0.52) 

501 Wareham Forest 4 (1) 2 (0.99) 2 (0.52) 

508 Wareham Forest 4 (1) 2 (1) 2 (0.52) 

510 Wareham Forest 4 (1) 2 (0.99) 2 (0.52) 

512 Wareham Forest 4 (0.99) 2 (0.95) 2 (0.52) 

513 Wareham Forest 4 (0.99) 2 (0.98) 2 (0.52) 

514 Wareham Forest 4 (0.99) 2 (0.73) 2 (0.52) 

515 Wareham Forest 4 (0.99) 2 (0.99) 2 (0.52) 

516 Wareham Forest 4 (1) 2 (0.99) 2 (0.52) 

518 Wareham Forest 4 (0.99) 2 (0.92) 2 (0.52) 

645 Wareham Forest 4 (0.60) 1 (0.99) 4 (0.97) 

646 Wareham Forest 4 (0.62) 2 (0.99) 2 (0.52) 

667 Wareham Forest 4 (0.95) 2 (0.99) 2 (0.52) 

578 Bergherbos 5 (0.99) 2 (0.99) 4 (0.98) 

580 Bergherbos n/a 2 (0.98) 2 (0.49) 

583 Bergherbos 5 (0.89) 2 (0.91) 4 (0.85) 

584 Bergherbos 5 (1) 1 (0.99) 4 (0.98) 

586 Bergherbos 5 (1) 1 (0.94) 4 (0.98) 

591 Bergherbos 5 (1) 1 (0.97) 4 (0.98) 

592 Bergherbos 5 (0.99) 1 (0.53) 4 (0.98) 

596 Bergherbos 5 (1) 2 (0.98) 4 (0.98) 

597 Bergherbos 5 (0.99) 2 (0.97) 4 (0.98) 

601 Bergherbos 5 (1) 1 (0.98) 4 (0.98) 

602 Bergherbos 5 (1) 1 (0.85) 4 (0.98) 

606 Bergherbos 5 (1) 2 (0.85) 4 (0.98) 
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5.4 Discussion 

5.4.1 Geographical Variation in Colour and Pattern  

British Lacerta agilis exhibited significant variation in colour and pattern across their range. In 

particular, lizards from Merseyside were distinct from the southern populations of Dorset and 

Surrey as assessed by multivariate statistics and Bayesian assignment. Ainsdale lizards typically 

had a smaller proportion of blue in their flank colour, were more striped with fewer black 

scales on their flanks and fewer white spots within their dorsolateral band than lizards from 

the southern British populations. There were some differences between the Dorset and Surrey 

populations; however there was a significant overlap in their characteristics. In both the 

multivariate and Bayesian assignment analysis, lizards from Bergherbos in the Netherlands 

were intermediate between the Merseyside and southern British populations.  

Lacerta agilis colonised Britain via a land bridge across the North Sea and diverged from 

continental European populations approximately 8,000 years BP. In Chapter 3 of this thesis, 

divergence times and ancestral population sizes for the British L. agilis populations were 

estimated using the program IMa2 (Hey 2010a). Since their divergence, the Bergherbos 

population has maintained a larger effective population size (Ne = 3522.5) compared to the 

British populations (Frensham Common, Ne = 387.5; Town Common (a Dorset population); Ne = 

1390; no reliable estimates were obtained for Ainsdale, although using a different estimation 

method (Peel et al. 2004) it was significantly lower than the other British populations). Given 

its location and large, stable population size, the Bergherbos population is likely to bear a 

closer resemblance to the ancestral British population as it would be less affected by genetic 

drift and therefore would be expected to share characteristics with all the British populations. 

Previous authors have suggested the difference in pattern and colouration between heathland 

and sand dune populations may be a result of selection for crypsis (Simms 1970; Beebee & 

Griffiths 2000). Sexual selection appears to be the primary driver for male flank colouration in 

L. agilis (Anderholm et al. 2004; Olsson et al. 2005b), however colouration in Lacertids often 

represents a trade-off between advertising fitness to mates and rivals and crypsis to reduce 

predation risk (Carretero 2002). Male Lacerta bilineata are more vulnerable than females to 

aerial predators due to their behaviour (Costantini et al. 2007) and therefore cryptic 

colouration may be beneficial, however Olsson (1993b) found no difference in predation risk 

for bright green male-patterned L. agilis models compared to cryptically coloured models. 

Characteristics such as the pattern of stripes and spots which differ between the Merseyside 

populations from sand dune habitat and the Dorset and Surrey populations from heathland 



Chapter 5 – Colour and Pattern Variation 

126 
 

habitat may play a role in camouflage adapted to suit their specific habitat. However, L. agilis 

which inhabit sand dune habitat in the Netherlands are not noticeably different to those from 

heathland sites (H. Strijbosch, pers. comm.), and lizards from the only large sand dune 

population in Dorset appear to bear a closer resemblance to those from nearby heathland sites 

than to Merseyside lizards (pers. obs.) with heavily marked flanks, narrow dorsolateral stripes 

and many white spots (Figure 5.7). The Merseyside population has a very low effective 

population size compared to populations from Surrey, Dorset and the Netherlands (Chapter 3 

of this thesis) and is also isolated from other non-sand dune populations. Therefore changes in 

phenotype could occur relatively quickly as a result of selection pressure. Further research is 

required to provide clear evidence of selection such as characterising the colour and pattern of 

larger sand dune populations or predation risk experiments such as those of Olsson (1993b). 

 

Figure 5.7. Male Lacerta agilis from Studland, a sand dune and heathland site in Dorset. Lizards from this site 
appear closer in colour and pattern to those from nearby heathland sites than those from sand dune sites in 
Merseyside. 

 

5.4.2 The Importance of Being Green 

Olsson et al. (2011a) demonstrated a spectral reflectance peak at a wavelength of 540 nm in 

the flanks of male L. agilis, which is in the centre of the range of green light in the visible 

spectrum. The primary function of the green flank colouration is as an intraspecific indicator of 

fitness, which is important for signalling fighting ability to rival males and is correlated with 
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breeding success (Olsson 1994b; Anderholm et al. 2004; Olsson et al. 2005b; Olsson et al. 

2011a). Consequently, should a male lizard be less ‘green’ than a rival, he would be at a 

reproductive disadvantage and there would be a significant selection pressure for ‘greenness’. 

Whilst there was a significant difference in the flank colour of Merseyside lizards compared to 

the other populations assessed, the green component of this colour did not differ significantly. 

Therefore, despite differences in other parts of the reflectance spectra of the males’ flanks, the 

importance of ‘greenness’ is consistent across all populations. 

Sexually selected colour (including UV) traits as indicators of fitness are common in the 

Lacertidae, including orange head coloration in Psammodromus algirus (Martin & Forsman 

1999; Salvador & Veiga 2001), blue throat colouration in Lacerta viridis (Bajer et al. 2011; 

Molnar et al. 2012) and L. schreiberi (Martin & Lopez 2009) and blue spots on the flanks of 

Timon lepidus (Font et al. 2009) and Iberolacerta monticola (Lopez et al. 2004). As with many 

sexual signals, bright colouration is a disadvantage as it is energetically expensive to produce 

(Olson & Owens 1998) and requires males to spend more time basking to maintain (Bajer et al. 

2012), leaving them more vulnerable to predation (Costantini et al. 2007) and therefore is an 

honest indicator of fitness (Molnar et al. 2012). 

5.4.3 Conclusions 

This study confirms the observations of Simms (1970) and Beebee & Griffiths (2000) who 

commented on the apparent differences in colour and pattern of Lacerta agilis between the 

three geographical areas of Great Britain in which they occur. Lizards from Merseyside are 

particularly distinct and whilst those from Dorset and Surrey do have some differences, there 

is a considerable overlap in characteristics. Despite geographical variation in colour, sexual 

selection for ‘greenness’ ensures that the green component of flank colouration is constant 

across the different areas. Further work is required to elucidate the underlying causes of the 

observed differences, however the small effective size of the Merseyside population means 

that phenotypic changes are likely to occur more rapidly. 
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6 GENERAL DISCUSSION 

 

6.1 Introduction 

Patterns of genetic diversity within a species are the result of historical biogeography and 

contemporary genetic processes such as gene flow and genetic drift. An understanding of the 

influences on the population genetics of a species will aid its practical conservation and enable 

conservation practitioners to target resources appropriately. The research presented in this 

thesis gives a comprehensive overview of the population genetics of Lacerta agilis in Great 

Britain. This chapter summarises the findings of the research and considers the implications for 

conservation of Lacerta agilis in the context of current habitat fragmentation and predicted 

global climate change. 

 

6.2 Summary of Thesis Aims and Results 

The primary objective of this research was to increase knowledge of the conservation genetics 

and inform the future conservation of L. agilis in Britain. Specifically it aimed to quantify 

genetic diversity within L. agilis populations, establish how Britain was colonised by sand 

lizards and explore the factors responsible for their current disjunct distribution and identify 

the effect of historical and contemporary landscape configuration of population genetics. In 

addition, the genetics of two anthropogenic populations were assessed and differences in 

colour and pattern between the British populations investigated. 

Dorset is the stronghold of L. agilis in Great Britain (Corbett 1988b, 1994; Beebee & Griffiths 

2000). All of the Dorset populations sampled as part of this study were genetically diverse, 

even those with a small effective population size. Levels of genetic diversity were similar to 

European populations nearer to their glacial refugium and were considerably higher than 

published values for populations in Sweden and for sympatric smooth snake Coronella 

austriaca populations occupying the same sites in Dorset. However, genetic diversity within 

the Surrey and Merseyside populations, which have historically had smaller population sizes, 

was significantly lower and comparable to small, fragmented populations in Sweden. Genetic 

structuring was significant across Dorset, even between populations which were 

geographically close with few obvious barriers to dispersal. However, there was greater 

evidence of migration within an unfragmented landscape where individual populations could 
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not be separated using a variety of Bayesian assignment methods, compared to a fragmented 

landscape where most populations were well separated. 

The divergence of British L. agilis from continental European populations was estimated at 

approximately 8,000 years BP which coincides with the last presence of a land bridge across 

the North Sea. Following colonisation, sand lizards underwent a range expansion during a 

period of climate warming which reached a peak approximately 5,000 years BP, by which time 

it had reached the limits of its current distribution. The timing of subsequent divergence of 

populations within Britain coincided with periods of cooler and wetter climate, which has 

restricted sand lizards to specific habitats such as heathland and sand dunes where the 

substrate and local climate provides suitable conditions for successful breeding and incubation 

of egg clutches. 

In Chapter 4, a resistance surface was used to demonstrate that contemporary patterns of 

genetic diversity across Dorset are influenced by distance and landscape features such as 

habitat type, natural barriers such as rivers and anthropogenic barriers such as roads and 

development. Natural barriers had a significant influence on patterns of genetic diversity at a 

local and regional scale. Habitat type was also an important component of multiple regression 

models to predict genetic distance between populations but its effect was more apparent at a 

local scale than at a regional scale. Artificial barriers were also important at a regional scale, 

however their effect was not as significant as that of natural barriers. This is likely to be the 

result of a genetic time-lag and their full effect of these is yet to be realised. These results are 

consistent with previous work where recent habitat fragmentation was demonstrated to be 

causing a shift from equilibrium between gene flow and genetic drift to the dominance of 

genetic drift (Hutchison & Templeton 1999). 

The colour and pattern of male L. agilis was shown to vary between the three geographical 

areas of Great Britain in which it occurs. Lizards from Merseyside were particularly distinct in 

colour and pattern with a smaller proportion of blue in their flank colour, more prominent 

stripes, fewer black scales on their flanks and fewer white spots within their dorsolateral band 

than lizards from the southern British populations. Some differences between the Dorset and 

Surrey populations were observed but there was a significant overlap in pattern 

characteristics. Lizards from Bergherbos in the Netherlands had shared pattern characteristics 

with the Merseyside and southern British populations but were more similar in colour to 

Dorset and Surrey animals. Green flank colouration is an important sexual signal in L. agilis and 

despite differences in the overall colour, the proportion of green in the flank colour was 
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constant across all populations. The distinctiveness of the Merseyside populations may be a 

result of an adaptation for crypsis which has occurred over a relatively short period of time 

due to the small effective population size. 

 

6.3 Current Challenges for the Conservation of Lacerta agilis 

The status of Lacerta agilis in Great Britain is currently considered stable, not in the least part 

due to the considerable effort of conservation practitioners (Edgar & Bird 2006). However, as 

they are dependent on a plagioclimax community for which there is no longer an economic or 

agricultural imperative to maintain, the conservation of sand lizards requires continuous input, 

particularly habitat management (Corbett & Moulton 1998; Moulton & Corbett 1999; 

Herpetological Conservation Trust 2009). As the majority of L. agilis habitat in Great Britain is 

now protected, provided this effort can be maintained, suitable habitat for this species is likely 

to persist. However, potential challenges remain. 

6.3.1 Low Genetic Diversity in the Surrey and Merseyside Populations 

Whilst genetic variability remains high within Dorset, populations from Surrey and particularly 

Merseyside are significantly less diverse and are therefore these populations are at a higher 

risk of genetic stochasticity. Many lizard species, including L. agilis, have reproductive 

strategies which avoid inbreeding such as the preferential selection of genetically different 

mates (Olsson et al. 1999; Olsson et al. 2003), and this may enable these populations to 

maintain current levels of genetic diversity provided environmental conditions remain 

favourable. However, in the event of environmental changes such as a shift to unfavourable 

climate conditions or habitat loss through anthropogenic activity or natural succession, these 

populations are less likely to possess sufficient variability to adapt. 

6.3.2 The Effects of Fragmentation and Isolation 

The habitat of L. agilis throughout Britain has become increasingly fragmented and isolated in 

recent years (Moore 1962; Jackson 1979; Webb 1986; Hooftman & Bullock 2012). However, 

the genetic effects of this appear limited at present, with populations in Dorset maintaining 

high levels of genetic diversity. Significant structuring was apparent between populations 

within Dorset and anthropogenic fragmentation has accentuated this despite significant 

structuring in unfragmented landscapes (Chapters 3 and 4). The full genetic effects of 

fragmentation may be obscured by a genetic time-lag which could become apparent in future 

generations (Richmond et al. 2009; Landguth et al. 2010; McCoy et al. 2010). Sand lizards may 

also be able to counter the potential consequences of fragmentation through inbreeding 
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avoidance mechanisms (Olsson et al. 1999; Olsson et al. 2003). The Branksome Chine 

population has been isolated from other large populations for approximately 100 years and 

may provide some indication of the effect of long-term isolation. This population shows 

evidence of a genetic bottleneck, a lower effective population size and slightly lower diversity 

than the other Dorset populations. However, genetic diversity within this population is still 

relatively high when compared to the Surrey and Merseyside populations and previously 

published estimates of diversity in Swedish populations (Gullberg et al. 1998; Madsen et al. 

2000). 

6.3.3 The Captive Breeding and Reintroduction Programme 

One of the main approaches to L. agilis conservation in Britain is the captive breeding and re-

introduction programme, which has been highly successful in re-establishing the species on 

sites within its former range (Corbett & Moulton 1998; Moulton et al. 2011). This study 

(Chapter 3) assessed the genetics of two anthropogenic populations: Crooksbury Common and 

Aberffraw. Although neither of these populations were created following the protocol of the 

captive-breeding and release programme, they do provide some insight into the genetics of 

translocated populations. The Crooksbury Common population in Surrey was created from 

animals translocated from development sites in Dorset during the 1960s and 1970s. Although 

genetic diversity was comparable with the local Surrey population, it was lower than for Dorset 

populations located close to the original donor sites and therefore genetic diversity may have 

been reduced as a result of the translocation. Genetic diversity within the Aberffraw 

population was considerably lower than all the natural populations. However, details of its 

origins, such as how long it has been established and the size of the founder population, are 

unknown. New sites within the captive breeding programme are established by the phased 

release of approximately 150 juvenile lizards bred from captive stock (Corbett & Moulton 

1998; Moulton & Corbett 1999). Given the relatively small number of adults from which the 

released animals are bred, it is possible that these populations may be vulnerable to founder 

effects (Fitzsimmons et al. 1997; Miller et al. 2009; Miller et al. 2011) and have less potential 

for adaptation to environmental change. Some lizard species including L. agilis are able to 

avoid inbreeding through various mechanisms such as mate selection and sperm competition 

(Olsson et al. 1999; Olsson et al. 2003) which may compensate for low genetic diversity to a 

certain extent. Nevertheless, an assessment of the genetic diversity of reintroduced 

populations is advisable and should diversity be low, measures such as supplementary releases 

of juveniles from different parents and the exchange of animals between release sites should 

be considered. 
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6.4 Potential Effects of Climate Change 

Global climate change is predicted to have a mixed effect on Europe’s reptile populations, 

however many species, particularly those with a northern distribution, are predicted to benefit 

from warmer conditions (Araujo et al. 2006). Recent climate projections (based on a medium 

increase in CO2 emissions) for Great Britain predict an increase in both summer and winter 

mean temperatures of 3.9 °C and 2.8 °C respectively (central estimate). Annual mean 

precipitation is predicted to remain similar to current levels. However, there will be a 

significant shift to wetter winters and drier summers (Murphy et al. 2009). 

Climate is vitally important for the successful reproduction of L. agilis, particularly for the 

incubation of egg clutches (Rykena 1987; Elbing 1993). Jackson (1978) implicated low May 

sunshine in a decline in sand lizard number in Merseyside in the 1960s and 1970s. Although 

the methodology of this research was later questioned (Langton 1988), the importance of 

spring temperatures and sunshine in many aspects of the reproductive ecology of L. agilis is 

undeniable. For example, warm temperatures and UV light are required by males post-

hibernation to produce breeding colouration (Olsson et al. 2011a; Bajer et al. 2012), warm 

spring temperatures lead to earlier clutches (Olsson & Shine 1997b) and more multiple 

paternity clutches (Olsson et al. 2011b) resulting in fitter hatchlings. Positive responses to 

warmer temperatures have been recorded in many lacertids including increased fitness 

(Chamaille-Jammes et al. 2006), improved feeding and digestion (Van Damme et al. 1991; 

Pafilis et al. 2007) and improved predation avoidance ability (Martin & Lopez 2010b; Steen et 

al. 2011).  

Thomas et al. (1999) predicted that a 2-3 °C increase in temperature could result in a sizable 

increase in suitable habitat for L. agilis in Dorset in terms of total area availability and temporal 

availability due to a slowing of the rate of vegetation succession. In other parts of its range, L. 

agilis is able to utilise a wider variety of habitats than in Great Britain including grassland, 

steppe and agricultural margins (Arnold & Ovenden 2002; Gasc et al. 2004) and Godinho et al. 

(2005) cited a high dispersal ability as an explanation for its rapid postglacial colonisation of 

Europe. Therefore, in a more favourable climate, the potential exists for British L. agilis to 

expand beyond its heathland habitat as the availability of suitable habitat increases and 

warmer temperatures enable colonisation of other, previously unoccupied habitat types. In 

addition, warmer spring and summer temperatures would confer reproductive advantages 

including earlier clutches and the possibility of females producing two clutches per year. 
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In order for L. agilis to benefit from range expansion due to climate change, it must be able to 

disperse into previously unoccupied habitat. Lacerta (Timon) lepidus inhabits the Iberian 

peninsula and southern France and, like L. agilis, it could potentially expand its range 

northward in a warmer climate. However, Grillet et al. (2006) found that its dispersal potential 

was limited by anthropogenic habitat fragmentation. Barriers preventing expansion to the 

north resulted in reduced genetic diversity in Lacerta schreiberi populations as the suitability of 

habitat to the south was reduced due to increasing temperatures (Roedder & Schulte 2010). 

Although warmer temperatures may increase the variety of habitats available to some species, 

its effects are not predictable and a potential link between warming temperatures and 

reduced dispersal behaviour has been observed in Lacerta (Zootoca) vivipara. Phenotypically 

different L. vivipara vary in their dispersal behaviour with reticulated individuals taking longer 

to cross open areas than those with stripes (Zajitschek et al. 2012). Furthermore, Lepetz et al. 

(2009) found a positive correlation between average mean temperature and the proportion of 

reticulated animals in a long-term study. A separate study also linked increasing temperatures 

to reduced dispersal behaviour in L. vivipara (Massot et al. 2008). 

The level of genetic structuring found within L. agilis populations in this study (Chapter 3) 

implies that dispersal ability in this species may be limited even within unfragmented 

landscapes, and rivers form a significant barrier to gene flow (Chapter 4). Despite the potential 

constraints to dispersal, Isolation by Resistance (IBR) modelling identified areas of low habitat 

resistance and high gene flow to the north of the current range (Chapter 4, Figure 4.6). Habitat 

in this area is primarily agricultural but contains a substantial network of hedgerows, and is 

within the range of habitat types in which L. agilis is found in continental Europe (Arnold & 

Ovenden 2002; Gasc et al. 2004; Ekner et al. 2008). This represents a potential area into which 

L. agilis could expand if current climate change predictions are realised. However, the IBR 

model may underrepresent the effectiveness of anthropogenic barriers such as development 

and particularly roads due to a genetic time-lag (Richmond et al. 2009; Landguth et al. 2010; 

McCoy et al. 2010). These barriers may therefore present a significant impediment to the 

natural range expansion of L. agilis in Britain. 

Although the projected increase in summer temperatures is likely to be advantageous to L. 

agilis, other aspects of the climate change predictions may be less beneficial. Drought 

conditions result in lower hatchling survivorship (Strijbosch & Creemers 1988) and can result in 

more fires which damage habitat causing the loss of heather as heathland is recolonised by 

grasses (Wessel et al. 2004). Warmer, wetter winters may also have negative implications. 

Hibernation is important in the life-cycle of many European reptiles and warmer winter 
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temperatures may affect the ability of L. agilis to hibernate successfully. Female L. vivipara 

require a sustained period of cold temperature (< 10 °C) in order to complete vitellogenesis 

(Gavaud 1983, 1991), and warmer-than-average winters have been linked with poorer body 

condition at emergence from hibernation in common toads Bufo bufo (Reading 2007) Whilst 

many Lacertids are able to tolerate temperatures approaching freezing during hibernation 

(Grenot et al. 2000; Burke et al. 2002; Voituron et al. 2006), survivorship is lower in wet 

conditions (Burke et al. 2002). A changing climate may also have detrimental effects on the 

habitat of L. agilis in Great Britain such as the loss of coastal sand dune habitats as a result of a 

predicted increase in the number and intensity of Atlantic storms (Clarke & Rendell 2011). 

 

6.5 Opportunities for Further Research 

This thesis has expanded current knowledge of Lacerta agilis population genetics and provided 

an insight into the effects of natural and anthropogenic processes on patterns of genetic 

diversity. However, as with any scientific research it asks as many questions as it answers. 

Chapter 3 offers a potential explanation for the current disjunct distribution of L. agilis in Great 

Britain in terms of the climatic conditions required for successful egg incubation and linked this 

to the potential for range expansion in the event of climate warming. In order to accurately 

predict how British L. agilis would react to climate change, it would be necessary to 

conclusively determine the factors, be they climatic or otherwise, which both restrict British 

sand lizards to their current habitat types and may enable them to expand their range should 

the predicted climate changes occur. Whilst climate warming may present an opportunity for 

range expansion, this may be restricted by anthropogenic habitat fragmentation. Further 

genetic monitoring and assessment in the future and the use of historical mapping may allow 

the quantification of the true effect of barriers such as roads as the genetic time-lag catches up 

with the present-day landscape. 

The sand lizard captive breeding and reintroduction programme has been successful and is 

highly regarded (Moulton et al. 2011). However, Chapter 3 highlighted the potential loss of 

genetic diversity in two introduced populations. Reintroductions began in the 1990s (Corbett & 

Moulton 1998) and to date, no assessment of the genetic diversity of introduced populations 

has been undertaken. Quantifying genetic diversity at reintroduction sites would provide 

another measure of the success of the programme and would inform ongoing population 

management decisions. 
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Gene flow across Dorset was mapped using CIRCUITSCAPE (McRae 2006) in Chapter 4 (Figure 

4.6). CIRCUITSCAPE can only estimate gene flow between sampled sites and therefore some 

areas, particularly at the periphery of the study area, were identified as having low current 

density, and therefore as unimportant for gene flow. Further genetic sampling in these areas 

would fill in gaps in the current map and allow gene flow across Dorset to be mapped in 

greater detail. This may reveal other, previously unidentified, areas which are important for 

gene flow but were not highlighted within this study. 

The existence of the Land Utilisation Survey Maps (Stamp 1931) presents an opportunity to 

investigate historical gene flow within the study area. Digitisation of the map would enable the 

creation of an historical resistance surface which would allow a detailed comparison between 

historical and contemporary patterns of gene flow and genetic variation. 

Chapter 5 identified significant geographic variation in the colour and pattern of male L. agilis, 

particularly in the Merseyside population. It is difficult to directly attribute this to a specific 

driver however, given the small effective population size, phenotypic changes may occur 

relatively quickly in response to selection pressure, such as that for crypsis. Further research is 

necessary to provide greater evidence for this hypothesis and predation-risk experiments using 

appropriately patterned models, as per Olsson (1993b), could be used to explore this further. 

 

6.6 Conclusion 

In many respects, sand lizards in Great Britain can be considered a conservation success story 

as the dramatic declines in the 19th and 20th Centuries have been halted, genetic diversity 

remains high as a whole and the species is now stable across much of its range. However, the 

species’ dependence on early successional habitats which require active management leaves 

them vulnerable to future declines and the full genetic effects of anthropogenic habitat loss 

and fragmentation may not yet be realised. Climate change could present opportunities for 

sand lizards to increase in both range and number, but their ability to colonise new areas may 

be limited by human modification of the landscape. This research will assist conservation 

practitioners in the maintenance of existing sand lizard populations and enable them to 

maximise any opportunities associated with climate change. Firm foundations have been laid 

for the conservation of British sand lizards, but ongoing management must build upon these to 

enable expansion and secure their future. 
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APPENDIX 1: PAIRWISE DPS VALUES BETWEEN DORSET SITES 

Table A1.1. Pairwise DPS values for all sites within Dorset. HF = Hurn Forest, LH = Lytchett Heath, WP = West Parley, WF = Wareham Forest, MP = Master’s Pit, HM = 
Hartland Moor, NH = Newton Heath, TC = Town Common, RD = Ramsdown, MH = Merritown Heath, FC = Ferndown Common, BC = Branksome Chine. 

 WP LH WF1 MP HM NH TC RD MH FC BC WF2 WF3 WF4 WF5 WF6 

HF 0.40161 0.53139 0.44770 0.46219 0.5025 0.50264 0.33809 0.33667 0.35691 0.44136 0.45801 0.39747 0.42671 0.42771 0.40347 0.42998 

WP - 0.53412 0.48125 0.39517 0.50054 0.52343 0.36481 0.42394 0.32748 0.36322 0.53014 0.44478 0.44877 0.46432 0.43994 0.44746 

LH  - 0.45625 0.48677 0.52551 0.52881 0.49693 0.51106 0.51979 0.52764 0.42237 0.42642 0.47795 0.46405 0.42968 0.44407 

WF1   - 0.3726 0.45979 0.50929 0.49014 0.50148 0.47411 0.46653 0.4784 0.30620 0.28505 0.27877 0.31620 0.26239 

MP    - 0.44242 0.46474 0.43076 0.43108 0.43027 0.46383 0.51687 0.39507 0.40986 0.40730 0.39477 0.40994 

HM     - 0.33054 0.47283 0.52670 0.49703 0.53356 0.50788 0.46127 0.46427 0.47562 0.44488 0.49372 

NH      - 0.49347 0.52647 0.49960 0.51940 0.53499 0.49471 0.50619 0.51281 0.47010 0.52686 

TC       - 0.25366 0.35267 0.41731 0.44600 0.42146 0.44797 0.45292 0.39309 0.44265 

RD        - 0.36715 0.47576 0.48874 0.42654 0.42741 0.45213 0.41007 0.43986 

MH         - 0.34384 0.47518 0.39606 0.40693 0.45319 0.39719 0.43897 

FC          - 0.52718 0.46489 0.47676 0.48706 0.48475 0.46425 

BC           - 0.40764 0.44892 0.44050 0.42003 0.45396 

WF2            - 0.24472 0.28972 0.24116 0.24704 

WF3             - 0.23866 0.26474 0.23784 

WF4              - 0.25626 0.22669 

WF5               - 0.23035 
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APPENDIX 2: PARAMETERISATION OF HIGH RESISTANCE 

FEATURES 

Table A2.1. Parameterisation of natural barriers in an IBR model. R = resistance of “small rivers”, r = 
Mantel’s correlation coefficient. Significance at the nominal 5% level after an FDR procedure, P = 0.009. 

R FST                 G’ST              D DPS 

 r P r P r P r P 

2 0.66833 <0.0001 0.69011 <0.0001 0.66621 <0.0001 0.71802 <0.0001 

4 0.67153 <0.0001 0.69178 <0.0001 0.66678 <0.0001 0.71941 <0.0001 

8 0.67281 <0.0001 0.69226 <0.0001 0.66578 <0.0001 0.71985 <0.0001 

16 0.67192 <0.0001 0.69148 <0.0001 0.66239 <0.0001 0.71930 <0.0001 

32 0.66815 <0.0001 0.68888 <0.0001 0.65744 <0.0001 0.71715 <0.0001 

64 0.66103 <0.0001 0.68280 <0.0001 0.64758 <0.0001 0.71151 <0.0001 

128 0.64648 <0.0001 0.67057 <0.0001 0.63089 <0.0001 0.69929 <0.0001 

256 0.62560 <0.0001 0.65005 <0.0001 0.60567 <0.0001 0.67794 <0.0001 

512 0.59935 <0.0001 0.62115 <0.0001 0.57233 <0.0001 0.64730 <0.0001 

1024 0.56952 0.0003 0.58603 <0.0001 0.53349 <0.0001 0.60985 <0.0001 

 

Table A2.2. Parameterisation of natural barriers in an LCP model. R = resistance of “small rivers”, r = 
Mantel’s correlation coefficient. Significance at the nominal 5% level after an FDR procedure, P = 0.009. 

R FST                 G’ST              D DPS 

 r P r P r P r P 

2 0.45314 0.0002 0.55134 <0.0001 0.55354 <0.0001 0.58537 <0.0001 

4 0.45481 <0.0001 0.55270 <0.0001 0.55477 <0.0001 0.58693 <0.0001 

8 0.45618 <0.0001 0.55404 <0.0001 0.55607 <0.0001 0.58851 <0.0001 

16 0.46064 <0.0001 0.55752 <0.0001 0.55981 <0.0001 0.59225 <0.0001 

32 0.46550 <0.0001 0.56070 <0.0001 0.56309 <0.0001 0.59616 <0.0001 

64 0.47872 <0.0001 0.57182 <0.0001 0.57103 <0.0001 0.60834 <0.0001 

128 0.48766 <0.0001 0.57808 <0.0001 0.57432 <0.0001 0.61520 <0.0001 

256 0.48766 <0.0001 0.57808 <0.0001 0.57432 <0.0001 0.61520 <0.0001 

512 0.48766 0.0003 0.57808 <0.0001 0.57432 <0.0001 0.61520 <0.0001 

1024 0.48766 <0.0001 0.57808 <0.0001 0.57432 <0.0001 0.61520 <0.0001 
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Table A2.3. Parameterisation of artificial barriers in an IBR model. R = resistance of the “suburban” 
LCM2007 habitat type, r = Mantel’s correlation coefficient. Significance at the nominal 5% level after an 
FDR procedure, P = 0.009. 

R FST                 G’ST              D DPS 

 r P r P r P r P 

2 0.63647 <0.0001 0.61401 <0.0001 0.59212 <0.0001 0.63088 <0.0001 

4 0.56596 <0.0001 0.51888 <0.0001 0.49631 <0.0001 0.52800 <0.0001 

8 0.49581 <0.0001 0.43465 <0.0001 0.41170 0.0019 0.43887 <0.0001 

16 0.44287 0.0027 0.37477 0.0009 0.35154 0.0248 0.37630 0.0018 

32 0.40710 0.0117 0.33620 0.0105 0.31279 0.0564 0.33637 0.0106 

64 0.38346 0.0286 0.31209 0.0328 0.28863 0.0920 0.31164 0.0282 

128 0.36700 0.0433 0.29639 0.0354 0.27298 0.0859 0.29571 0.0485 

256 0.35481 0.0573 0.28534 0.0771 0.26203 0.1048 0.28458 0.0667 

512 0.34580 0.0655 0.27733 0.0912 0.25415 0.1097 0.27563 0.0737 

1024 0.33958 0.0724 0.27180 0.0965 0.24873 0.1171 0.27097 0.0758 

 

Table A2.4. Parameterisation of artificial barriers in an LCP model. R = resistance of the “suburban” 
LCM2007 habitat type, r = Mantel’s correlation coefficient. Significance at the nominal 5% level after an 
FDR procedure, P = 0.009. 

R FST                 G’ST              D DPS 

 r P r P r P r P 

2 0.46833 <0.0001 0.55811 <0.0001 0.56666 <0.0001 0.59015 <0.0001 

4 0.48674 <0.0001 0.56434 <0.0001 0.57560 <0.0001 0.59519 <0.0001 

8 0.50629 0.0002 0.56656 <0.0001 0.57833 <0.0001 0.59485 <0.0001 

16 0.51375 0.0002 0.55060 <0.0001 0.56156 <0.0001 0.57487 <0.0001 

32 0.49738 <0.0001 0.51277 <0.0001 0.52091 <0.0001 0.53343 <0.0001 

64 0.47643 0.0004 0.47653 0.0003 0.48273 0.0002 0.49419 <0.0001 

128 0.46487 0.0008 0.45518 <0.0001 0.45861 0.0004 0.47080 0.0002 

256 0.45775 0.0016 0.44203 0.0004 0.44362 0.0007 0.45630 <0.0001 

512 0.45340 0.0015 0.43443 0.0005 0.43490 0.0005 0.44781 0.0003 

1024 0.45102 0.0027 0.43037 0.0008 0.43026 0.0006 0.44329 0.0005 
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APPENDIX 3: G’ST, D AND DPS MULTIPLE REGRESSION MODELS 

Table A3.1. Full list of all G’ST based multiple regression models. r
2
 = is the adjusted r

2
 value for the 

entire model. AIC and rank for all models includes the FST models (Table 4.4), D models (Table A3.2) 
and DPS models (A3.3). 

No. Model r
2 

AIC G’ST
 
 models all models 

    AIC rank AIC rank 

32 LCP + distance 0.289 -266.633 46.784 30 386.255 123 

33 LCP + TO 0.359 -280.687 32.730 19 372.201 112 

34 LCP + RO 0.363 -281.386 32.031 18 371.502 111 

35 LCP + PO 0.189 -248.585 64.832 31 404.303 124 

36 LCP + distance + natural barriers 0.337 -275.014 38.403 27 377.874 120 

37 LCP + TO + natural barriers 0.354 -278.691 34.726 24 374.197 117 

38 LCP + RO + natural barriers 0.361 -280.063 33.354 21 372.825 114 

39 LCP + PO + natural barriers 0.339 -275.488 37.929 26 377.400 119 

40 LCP + distance + artificial barriers 0.313 -270.281 43.136 29 382.607 122 

41 LCP + TO + artificial barriers 0.363 -280.562 32.855 20 372.326 113 

42 LCP + RO + artificial barriers 0.403 -289.325 24.092 11 363.563 104 

43 LCP + PO + artificial barriers 0.314 -270.343 43.074 28 382.545 121 

44 LCP + distance + natural barriers + artificial barriers 0.362 -279.272 34.145 22 373.616 115 

45 LCP + TO + natural barriers + artificial barriers 0.360 -278.840 34.577 23 374.048 116 

46 LCP + RO + natural barriers + artificial barriers 0.401 -287.915 25.502 12 364.973 105 

47 LCP + PO + natural barriers + artificial barriers 0.352 -277.150 36.267 25 375.738 118 

48 IBR + TO 0.467 -305.727 7.690 10 347.161 103 

49 IBR + RO 0.385 -286.321 27.096 15 366.567 108 

50 IBR + PO 0.370 -282.986 30.431 17 369.902 110 

51 IBR + distance + natural barriers 0.478 -307.614 5.803 5 345.274 98 

52 IBR + TO + natural barriers 0.491 -311.049 2.368 3 341.839 96 

53 IBR + RO + natural barriers 0.483 -308.814 4.603 4 344.074 97 

54 IBR + PO + natural barriers 0.474 -306.458 6.959 7 346.430 100 

55 IBR + distance + artificial barriers 0.396 -287.819 25.598 13 365.069 106 

56 IBR + TO + artificial barriers 0.473 -306.312 7.105 8 346.576 101 

57 IBR + RO + artificial barriers 0.381 -284.321 29.096 16 368.567 109 

58 IBR + PO + artificial barriers 0.390 -286.401 27.016 14 366.487 107 

59 IBR + distance + natural barriers + artificial barriers 0.476 -306.137 7.280 9 346.751 102 

60 IBR + TO + natural barriers + artificial barriers 0.496 -311.254 2.163 2 341.634 95 

61 IBR + RO + natural barriers + artificial barriers 0.503 -313.417 0 1 339.471 94 

62 IBR + PO + natural barriers + artificial barriers 0.478 -306.602 6.815 6 346.286 99 
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Table A3.2. Full list of all D based multiple regression models. r
2
 = is the adjusted r

2
 value for the entire 

model. AIC and rank for all models includes the FST models (Table 4.4), G’ST models (Table A3.1) and DPS 
models (Table A3.3). 

No. Model r2 AIC D  models all models 

    AIC rank AIC rank 

63 LCP + distance 0.294 -332.932 36.748 30 319.956 92 

64 LCP + TO 0.354 -345.001 24.679 17 307.887 78 

65 LCP + RO 0.361 -346.459 23.221 13 306.429 74 

66 LCP + PO 0.195 -315.181 54.499 31 337.707 93 

67 LCP + distance + natural barriers 0.325 -338.184 31.496 29 314.704 90 

68 LCP + TO + natural barriers 0.349 -343.010 26.670 23 309.878 84 

69 LCP + RO + natural barriers 0.358 -345.000 24.680 18 307.888 79 

70 LCP + PO + natural barriers 0.330 -339.085 30.595 26 313.803 87 

71 LCP + distance + artificial barriers 0.325 -338.194 31.486 28 314.694 89 

72 LCP + TO + artificial barriers 0.349 -343.101 26.579 22 309.787 83 

73 LCP + RO + artificial barriers 0.371 -347.798 21.882 12 305.090 73 

74 LCP + PO + artificial barriers 0.328 -338.658 31.022 27 314.230 88 

75 LCP + distance + natural barriers + artificial barriers 0.358 -343.997 25.683 19 308.891 80 

76 LCP + TO + natural barriers + artificial barriers 0.344 -341.102 28.578 25 311.786 86 

77 LCP + RO + natural barriers + artificial barriers 0.369 -346.283 23.397 14 306.605 75 

78 LCP + PO + natural barriers + artificial barriers 0.352 -342.691 26.989 24 310.197 85 

79 IBR + TO 0.445 -365.789 3.891 5 287.099 63 

80 IBR + RO 0.357 -345.651 24.029 16 307.237 77 

81 IBR + PO 0.347 -343.558 26.122 21 309.330 82 

82 IBR + distance + natural barriers 0.438 -363.022 6.658 8 289.866 66 

83 IBR + TO + natural barriers 0.459 -368.160 1.520 3 284.728 57 

84 IBR + RO + natural barriers 0.444 -364.568 5.112 6 288.320 64 

85 IBR + PO + natural barriers 0.439 -363.208 6.472 7 289.680 65 

86 IBR + distance + artificial barriers 0.379 -349.460 20.220 11 303.428 72 

87 IBR + TO + artificial barriers 0.456 -367.437 2.243 4 285.451 59 

88 IBR + RO + artificial barriers 0.352 -343.654 26.026 20 309.234 81 

89 IBR + PO + artificial barriers 0.363 -346.071 23.609 15 306.817 76 

90 IBR + distance + natural barriers + artificial barriers 0.435 -361.253 8.427 10 291.635 68 

91 IBR + TO + natural barriers + artificial barriers 0.469 -369.680 0 1 283.208 51 

92 IBR + RO + natural barriers + artificial barriers 0.046 -368.315 1.365 2 284.573 56 

93 IBR + PO + natural barriers + artificial barriers 0.439 -362.379 7.301 9 290.509 67 
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Table A3.3. Full list of all DPS based multiple regression models. r
2
 = is the adjusted r

2
 value for the entire 

model. AIC and rank for all models includes the FST models (Table 4.4) and G’ST (Table A3.1) and D 
models (Table A3.2). 

No. Model r2 AIC DPS
  models all models 

    AIC rank AIC rank 

94 LCP + distance 0.328 -355.171 47.303 30 297.717 71 

95 LCP + TO 0.395 -369.507 32.967 21 283.381 53 

96 LCP + RO 0.397 -369.898 32.576 19 282.990 50 

97 LCP + PO 0.210 -333.222 69.252 31 319.666 91 

98 LCP + distance + natural barriers 0.384 -366.132 36.342 27 286.756 62 

99 LCP + TO + natural barriers 0.392 -367.819 34.655 24 285.069 58 

100 LCP + RO + natural barriers 0.400 -369.585 32.889 20 283.303 52 

101 LCP + PO + natural barriers 0.389 -367.067 35.407 25 285.821 60 

102 LCP + distance + artificial barriers 0.345 -357.608 44.866 29 295.280 70 

103 LCP + TO + artificial barriers 0.420 -374.203 28.271 13 278.685 44 

104 LCP + RO + artificial barriers 0.406 -371.028 31.446 17 281.860 48 

105 LCP + PO + artificial barriers 0.355 -359.700 42.774 28 293.188 69 

106 LCP + distance + natural barriers + artificial barriers 0.404 -369.498 32.976 22 283.390 54 

107 LCP + TO + natural barriers + artificial barriers 0.418 -372.842 29.632 15 280.046 46 

108 LCP + RO + natural barriers + artificial barriers 0.441 -378.192 24.282 11 274.696 42 

109 LCP + PO + natural barriers + artificial barriers 0.390 -366.516 35.958 26 286.372 61 

110 IBR + TO 0.489 -392.321 10.153 10 260.567 41 

111 IBR + RO 0.399 -370.569 31.905 18 282.319 49 

112 IBR + PO 0.403 -371.248 31.226 16 281.640 47 

113 IBR + distance + natural barriers 0.515 -398.488 3.986 5 254.400 36 

114 IBR + TO + natural barriers 0.525 -401.331 1.143 2 251.557 33 

115 IBR + RO + natural barriers 0.518 -399.479 2.995 4 253.409 35 

116 IBR + PO + natural barriers 0.523 -397.996 4.478 6 254.892 37 

117 IBR + distance + artificial barriers 0.429 -376.401 26.073 12 276.487 43 

118 IBR + TO + artificial barriers 0.493 -392.648 9.826 9 260.240 40 

119 IBR + RO + artificial barriers 0.395 -368.566 33.908 23 284.322 55 

120 IBR + PO + artificial barriers 0.419 -374.026 28.448 14 278.862 45 

121 IBR + distance + natural barriers + artificial barriers 0.512 -396.827 5.647 8 256.061 39 

122 IBR + RO + natural barriers + artificial barriers 0.532 -402.474 0 1 250.414 32 

123 IBR + PO + natural barriers + artificial barriers 0.515 -397.583 4.891 7 255.305 38 
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