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Abstract

Quantum electrodynamic theory (QED) in the vicinity of macroscopic structures has

achieved new importance due to its applicability, particularly in nanotechnology. There

are many powerful methods for studying QED near media with diverse properties and

geometries. However, applying them to a particular problem generally necessitates

extensive numerical calculations. This is not the case for simple systems of high sym-

metry, in which the electromagnetic field can be quantised by explicit mode expansion,

allowing exact analytic calculations.

In the present thesis, we calculate the energy-level shift of a ground state atom near

a non-dispersive and non-dissipative dielectric slab. The shift is due to the interaction

of the atom with electromagnetic field fluctuations, which in turn are affected by the

presence of the slab. Thus, a quantisation of the electromagnetic field in the presence of

a layered system is required. We derive the field modes, which comprise of a continuous

set of travelling modes (with incident, reflected and transmitted parts) and trapped

modes, subject to repeated total internal reflection and emerge as an evanescent field

outside the slab, they only exist at certain discrete frequencies. The shift is obtained by

means of second-order perturbation theory. It splits up naturally into two contributions,

due to the different nature of the modes, and a problem arises when we have to add

them all. We have come up with a convenient method of summing over all modes, and

its validity has been demonstrated by proving the completeness. The calculation of the

shift follows as an application of our method. The result is analysed asymptotically for

various regions, reducing to simple formulas that can be utilised in recent experiments,

in which the thickness of the substrate matters.
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Notation

Variable Definition Equation

ro = (0, 0, zo) Atom position -

Z Surface-atom distance -

L Slab thickness -

ε(r) Dielectric permitivity -

k Wave vector in free-space (2.25)

kd Wave vector in dielectric (2.26)

λ Polarisations: TE, TM -

ν Mode, with polarisation λ and wave vector k -

êTE TE polarisation vector (2.17)

êTM TM polarisation vector (2.18)

N Normalisation constant for travelling modes (2.30)

MTE Normalisation constant for TE trapped modes (2.49)

MTM Normalisation constant for TM trapped modes (2.56)

Rλ Reflection coefficient (2.31)

Tλ Transmission coefficient (2.31)

rλ Fresnel coefficient (single interface) (2.32)

LS
TE Decay coefficient for S trapped modes (2.41)

LA
TE Decay coefficient for A trapped modes (2.42)

LS
TM Decay coefficient for S trapped modes (2.50)

LA
TM Decay coefficient for A trapped modes (2.51)

α Fine structure constant α = e2/4πǫoh̄c -

ix



Chapter 1

General Introduction

1.1 The Casimir-Polder Force

It might come as a surprise that the ability of a gecko to walk across ceilings — in

apparent defiance of gravity — is simply a manifestation of the zero-point energy.

Amazingly, that talent does not rely on any sticky secreted substance or any other

special biological effect, as would be the case for some other climbing animals. This

ability arises from the intermolecular forces produced between their tiny foot hairs and

the surfaces upon which they walk [1], even if they are smooth polished glass. This

attractive force is known as the van der Waals force and it is also responsible for other

curious phenomena in nature. A closely related attractive force, whose nature too

comes from the fluctuations of the vacuum field is the so-called Casimir-Polder force

— the force between an atom and a perfect conductor — as first predicted by Casimir

and Polder in 1948 [2]. To date it is still a source of interesting research, probably

due to its wide applicability particularly in nano-technology. This interesting quantum

vacuum effect is the main subject of the present dissertation, and our motivation and

particular interests in the matter will be manifested in the next section. First of all,

we shall start with a brief review on the history of its discovery, including both the

relevant theoretical and experimental contributions to date1.

1For a general review on quantum vacuum effects, see for instance Ref. [3]
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Chapter 1. General Introduction 2

1.1.1 History

For a better understanding of the nature of the Casimir-Polder force, it is convenient to

go back to the origin of its discovery, to the point where these ideas emerged: the more

basic problem of the interaction between two neutral molecules, which is well known

as van der Waals forces. This has been a more widely studied phenomenon and an

extensive number of books devoted to this interaction can be found in the literature.

For instance, one can find a very good description of such interactomic forces in Ref.

[4–6].

Besides the more obvious forces that involve charged or dipolar molecules and arise

straightforwardly from their electrostatic interaction, there is one that exists between

all neutral but polarisable atoms and molecules. This force has been given many names,

but the most widely used is dispersion force, in relation to the dispersion of light in the

visible and UV regions of the spectrum. The literature on this specific subject is also

very extensive, and one of the most recent and complete reviews on dispersion forces

can be found in Ref. [7].

The dispersion forces represent one of three contributions to the van der Waals force

and may be considered the most important contribution to the total force between

atoms and molecules2. They are responsible for many interesting phenomena in nature

such as adhesion, capillarity, surface tension [8], adsorption of inert gas atoms to solid

surfaces [9], wetting properties of liquid on surfaces [10], the properties of gases, liquids

and thin films, the strengths of solids and the structures of condensed macromolecules

such as proteins and polymers [4].

These long-range forces may be repulsive or attractive. As will be explained in

more detail later in this section, the interaction between two bodies is affected by the

presence of other bodies nearby. In this sense, this force is not analogous to Coulombic

interactions, where the superposition principle may be utilised. This is known as the

non-additivity of an interaction.

The dispersion force has a quantum mechanical origin but there is a simple intuitive

2The other two contributions are the induction force and the orientation force.
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R

E

p1

p2

Figure 1.1: Two neutral molecules located a distance R apart. A fluctuating dipole p1 in one of
them, produces an electric field E which induces a dipole p2 in the second molecule.

explanation that gives us a qualitative understanding of this physical problem [5]. Let

us consider two neutral and non-polar molecules separated by a distance R, as it is

shown in Fig. 1.1. Even though these molecules are neutral and have on average zero

dipole moment, by the Heisenberg uncertainty principle we know that the position of the

electrons belonging to each molecule is a fluctuating quantity and thus, a spontaneous

fluctuating dipole p1 could exist in, lets say, the molecule 1. In other words, although

〈p1〉t = 0, in general 〈p2
1〉 6= 0 because instantaneously p1 6= 0. What is more interesting

to note is that this fluctuating dipole produces an electric field E that can polarise the

second molecule, inducing a dipole p2 = α2E. In this expression α2 is the polarisability,

which is a function of the frequency, and the electric field is given by E = Tp1, where

T is the dipolar interaction tensor, which is proportional to 1/R3. From classical

electrodynamics it is known that the interaction energy for an induced dipole is given

by3 U = −p2 ·E/2 (see for instance Eq. (4.93) in [11]), obtaining thus U = −α2〈p2
1〉/R6,

which is the above mentioned dispersion energy4. As expected, this interaction increases

as much as the fluctuations 〈p2
1〉 do, depending on how quickly the molecule 1 gets

3For time-independent E fields.
4Since p1 has an arbitrary direction, one may take the average of the squared dipolar tensor Tij =

(3RiRj − R2δji)/R5, thus 〈TijTik〉 = (2/R6)δjk
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polarised. We can therefore say that 〈p2
1〉 is proportional to α1, thus obtaining an

interaction energy U ∝ −α1α2/R
6.

The instantaneous interaction of these two dipoles gives rise to an attractive force

between the two molecules, which decays as R−7. The exact result was derived by

London in 1930 [12] by using quantum mechanical perturbation theory. His theory

emerged due to his concern about the incorrect treatment that had been given to the

dispersion forces at that time, indiscriminately based on additive central forces, which

is not true at all. He also emphasized that the elementary units of the dipole-dipole

interactions are not spherically symmetrical central forces, but have rather to be built

up by highly anisotropic force centres [13]. The dispersion energy that he obtained for

two identical molecules is given by

U = −3

4

α2
ohν

(4πǫo)2
1

R6
, (1.1)

where αo is the electronic polarisability of a Bohr atom. In 1963 McLachlan [14]

presented a more generalised theory of van der Waals forces, obtaining one expression

that included all the three contributions: induction, orientation and dispersion forces.

His formula is written in terms of the polarisabilities of the interacting molecules (as

in the example given above) and the dielectric permittivity of the medium in which

they are embedded, which can be easily related to measurable properties so that the

calculation of the interaction can be performed. In fact, London’s formula can be seen

as a particular case of McLachlan’s theory; merely by treating molecules as simple

harmonic oscillators, one can recover London’s result.

A further interesting effect that one may consider is the one due to retardation5 .

As it has been shown, the force between two molecules will depend on the separation

between them. If they are close enough to each other (as we have considered so far),

their interaction arises from the electrostatic force between the fluctuating dipoles.

Nevertheless, if they are located an appreciable distance apart, the time taken for the

5For a deeper review on this subject see for instance Chapter 5 in Ref. [5]
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electric field produced by the first molecule to travel to the second molecule and get

back becomes comparable to the period of the fluctuating dipole. This implies that by

the time the E field comes back to the first molecule, it may find the fluctuating dipole

pointing out in a different direction, which means that it would be less favourable for an

attractive interaction6. When this happens, the dispersion energy begins to decay even

faster with distance and goes from R−6 to R−7. For example, for two Bohr atoms this

change starts at distances greater than 100 nm. This is called the retardation effect.

But how did scientists realise that it was important to take into account the re-

tardation of the electromagnetic field? The original idea was suggested by Overbeek,

in 1948. He was studying colloidal solutions and realised that in order to account for

the stability of suspensions of large particles it was necessary to include such retarda-

tion. Inspired by that insight, Casimir and Polder obtained the retarded dispersion

energy between two molecules, and their results were published in a series of three

papers [2, 15, 16]. They considered the interaction with the radiation field and used

fourth order perturbation theory to conclude that the energy depends on the molecules

polarisability αm and is given by,

U = −23h̄c

4π

α2
m

R7
. (1.2)

Later on, other attempts to calculate the force between two neutral but polarisable

molecules were made. Among them we can find an approach given by Power and Zienau

in [17]. In their approach they use a Hamiltonian in which each atom is replaced

by an electric dipole. Other simpler formulations were given by Dzialoshinskii [18],

Mavroyannis and Stephen [19] and MacLachlan [14].

The consequences of retardation become more important in the presence of other

media — where the speed of light is slower — and it is particularly interesting when

macroscopic bodies or surfaces come into play. The simplest example of this can be

illustrated by the typical problem of an atom in front of a perfect conductor (see Fig.

6The maximum strength is obtained when there is no retardation, i.e., no change in orientation.
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Eν = h̄ω

Z

Figure 1.2: Atom located a distance Z in front of a perfect mirror, in the retarded regime, where
the time a photon travels a round trip to the interface must be taken into account. The figure shows
schematically how the fluctuating dipole changes during that time.

1.2). This problem was also solved by Casimir and Polder [2]. Following basically

the same mechanism — as an illustration of the more complicated calculation for the

interaction between two molecules — they found that the interaction energy decreases

with distance as

U = −3h̄c

8π

αa

Z4
, (1.3)

where Z is the atom-surface separation and αa is the static polarisability of the atom.

The equation above gives rise to the famous Casimir-Polder force, in their honour. We

have included in Appendix A a derivation of the formula above.

In the calculation of the force between an atom and a interface, one has to take into

account the fact that the principle of additivity that is allowed in Coulombic interactions

does not apply in this case. The non-additivity is a result of the fact that neighbouring

atoms influence the interaction between any pair of atoms, and this is simply because

the polarisability of an atom changes when it is surrounded by other atoms. This can

be understood by going back to our example (Fig. 1.1). If we consider a third atom, it

will feel an electric field produced by the first atom, and thus a dipole will be induced

in it as well, and that must have an effect on the second atom. In summary, the field
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from atom 1 reaches atom 2 both directly from atom 1 and by reflection from atom

3. Obviously the problem gets more complicated if several atoms are involved and the

additivity procedure breaks down. However, a näıve deduction of the Casimir-Polder

potential is presented in [20], in which a ground-state atom at a distance Z from a

dielectric half-space consisting of N continuously distributed atoms per unit volume,

is considered. Taking the interaction between the atom outside the dielectric and one

atom inside being proportional to −1/r7 (exactly as in Eq. (1.2)), one can thus add up

all the pairwise interactions to obtain

U = − 69h̄c

160π

αa

Z4
, (1.4)

which is surprisingly similar to the exact result, despite the fact that we are assuming

pairwise additivity. This is not a problem in the Lifshitz theory [21], which treats large

bodies as continuous media and the forces can be derived in terms of bulk properties

such as dielectric constants. This theory, developed in 1956 and based on complicated

quantum field theory, currently represents a very powerful and widely used formulation.

It is especially devoted to the calculation of another related force: the famous Casimir

force [22], which is the attractive force between two parallel plates (perfectly conduct-

ing, in the original derivation by Casimir). In his paper, he calculates the dispersion

force between two half-spaces at finite temperature. The force is obtained through the

average of the stress tensor of the fluctuating electromagnetic field at the surfaces of the

half-spaces. The essential idea in this calculation is to relate the current fluctuations

to the imaginary part of the permittivity7 via the fluctuation-dissipation theorem. One

could cite hundreds of papers in which the Lifshitz formula has been applied to several

systems; including the controversial problem of finite temperature [23], surface rough-

ness [24], and spatial dispersion [25], and even reformulated and generalised [26, 27].

As a particular case, Lifshitz used his approach to calculate the force between a wall

and an atom by taking the latter as a dilute gas of atoms.

7The permittivity is a complex function of frequency, with the real and imaginary parts responsible
for dispersion and absorption, respectively.
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Eν = h̄ω

Z ǫ(r) = n2

Figure 1.3: Atom in front of a dielectric half-space, in the retarded regime.

Many other variations have been provided to the problem of atom-surface interac-

tions. Among them we can first mention the problem regarding an ideal wall and its

interaction with excited atomic energy eigenstates [28], and with an electron [29]. If we

instead want to get more realistic by describing the wall by an imperfect reflector, the

next step would be to consider a dielectric wall, as illustrated in Fig. 1.3. Pioneering

work was done by Mavroyannis in 1956, who studied the interaction of neutral molecules

with dielectric walls [30]. Notice that in this situation the photons reaching the interface

can also be transmitted through it, and hence they must be included in the calculation.

Moreover, we shall take into account the waves coming from the dielectric, and thus,

the evanescent waves outside the half-space.

This system could be turned into a more complicated problem if one wishes to

include other physical properties and use more sophisticated models to describe the

metallic surface. For instance, Babiker and Barton used the hydrodynamic model in

order to describe the metallic interfaces in a more realistic way, and calculated the

frequency shifts of an atom near a plasma surface [31].

Unsurprisingly, if one wishes to go further in the geometry of the system or include

other properties, i.e. absorption [32], one might not be able to solve the problem
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analytically anymore, due to the expected complexity that perturbative calculations

based on normal-mode QED involves. For that reason, other methods based on linear-

response theory have been utilised [33]; presumably overcoming those difficulties and

extending results in such a way that practicability is gained. Nevertheless, the results

obtained through these methods are given in terms of Green functions, and the problem

lies in obtaining them. Thus, the price paid for this apparent wide applicability implies

extensive numerical calculations for each particular problem.

1.1.2 Experimental observation

We have given so far a brief overview on the theoretical approaches that lead us to the

famous formula for the Casimir-Polder force, beginning with the one that describes the

interaction between two neutral and non-polar atoms (most commonly known as van

der Waals) to finally obtain a formula for the dispersion energy between a perfectly

reflecting plate and an atom, which is the origin of the motivation of this thesis. As

theory and experimental research must go always together, we shall give a short list of

the experiments built through the last thirty years, when they started to be successful,

concentrating on those devoted to the study of atom-surface interactions.

It might be surprising to find numerous experimental papers in the literature,

though what is truly astounding is that after 60 years of the discovery of the Casimir

forces8 new results and more interesting ideas are still produced, which can now be ex-

tended to other areas of physics and most importantly, that can be applied to improve

technologies.

Many attempts have been made to detect this force; by using different types of ex-

periments people have been able to measure first in the non-retarded regime (sometimes

referred to in the literature as van der Waals interaction), and later in the retarded

regime, the so-called Casimir-Polder interaction, which corresponds to greater atom-

surface separations.

One of the first records that can be found on measuring the van der Waals interaction

8See the feature article in Physics Today, published by Lamoreaux [34].
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between neutral atoms and a surface is an experiment performed by Raskin and Kusch

[35], and later by Shih and Raskin for molecules [36]. By passing a thermal atomic

beam near a metallic cylinder9, they studied the deflection of the atomic beam. In a

similar scheme, the deflection of atoms passing between two metal plates was monitored

by observing the atom flux losses due to the sticking of atoms to the plates, finding a

strong enhancement of the force when excited atoms were utilised [37].

A different type of experiment was performed in 1992 by Haroche and co-workers via

spectroscopic means [38]. They used high resolution spectroscopy on Rydberg atoms

inside a micron-sized parallel-plate metallic cavity to measure the energy shift due to

the van der Waals interaction.

However, the first experiment that went further in distance into the retarded regime

and certainly provided a confirmation of the Casimir-Polder force as predicted by quan-

tum electrodynamics was performed by Hinds and his co-workers at Yale University

[39]. In this elegant experiment, they studied the deflection of ground-state sodium

atoms passing through a parallel plate cavity, of order microns in size. They measured

the intensity of the beam transmitted through the cavity as a function of the separation

between the cavity plates. The reason for this reflection is due to the variation of the

vacuum field with position within the cavity. Thus the atoms are pushed towards the

cavity walls, experiencing a Casimir-Polder force.

Other modern techniques have been used in order to get more precise experimen-

tal results. Advances in laser cooling [40] were applied ten years ago to increase the

sensitivity of measurements by better control of atomic trajectories. That is the case

of the atom-scattering experiment performed by Landragin et al. [41], in which a laser

beam is incident on the surface of a dielectric from the inside at a sufficiently shallow

angle, such that total reflection leads to an exponentially decaying electric field at its

exterior. This artefact is called an evanescent-wave mirror, and the central purpose of

the experiment is to place an atom in the vicinity of such a body, interacting therefore

with this evanescent field and leading to an optical potential. If the laser frequency is

9Note that in such experiments the minimum atom-surface separation obtained is so small that the
cylinder surfaces can be regarded as planar.
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larger than the relevant atomic transition frequency (blue detuning), then this potential

is repulsive; thus, one can in principle create the required compensating force which

can be controlled by varying the laser frequency and intensity. Hence, the dispersion

forces on ground-state atoms can be measured by monitoring the reflection of the atoms

incident on evanescent-wave mirrors.

Other experiments were built on the idea of another wave phenomenon: diffraction,

in which the van der Waals interaction is studied by measuring the diffraction intensity

of atoms passing through a transmission grating [42, 43].

Experiments to measure the Casimir-Polder force by using ultracold atoms [41, 44–

48] form a new age of experiments that are worth reviewing in more detail, since they

could offer a much better precision and are sensitive to other geometrical characteristics

of the system that have not been taken into account before. As an example, it has been

recently suggested by Dalvit et al. [49] that using cold atoms would be useful to probe

quantum-vacuum geometrical effects.

In the next section of this chapter the motivation and outline of this work is provided

and thus it will certainly be appropriate to get back to the most recent experimental

contribution. In that way, the practical reasons of our interest into this specific subject

will become apparent. But first of all, let us conclude this section by showing from a

more theoretical point of view the origin of this interesting phenomenon.

1.1.3 A different perspective

One of the most famous and intriguing vacuum effects, very closely related to those

explained in the previous section, is the Lamb shift [50]. It was discovered in 1947 and

its explanation, in words of Dirac, “changed fundamentally the character of theoretical

physics” [51]. However, such vacuum effects were first explored in terms of intermolec-

ular interactions due to their more intuitive character with relatively down-to-earth

considerations having to do with the stability of colloids, as it has been explained.

The Schrödinger equation for hydrogen atoms predicts that the energy levels depend

only on the quantum number n. From the Dirac equation it can be concluded that
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states with the same n and same total angular momentum quantum number j, such

as 2s1/2 and 2p1/2 remain degenerate. Nevertheless, experiments performed in the

1930’s showed that the energy in such states differ slightly, but they were not accurate

enough to draw formal conclusions. It was not until 1947 when Lamb and Retherford

[50], utilizing microwave techniques, proved that those two energy states are actually

non-degenerate and moreover, that the difference between them is approximately 1000

MHz.

Schwinger and Oppenheimer suggested that the explanation might be the shift of

energy levels by the interaction of the electron with the radiation field. Since the

Dirac theory ignores this interaction, one could partially understand the problem by

modifying the Schrödinger equation to include the coupling of the atom to the radiation

field.

Since the Lamb shift is a non-relativistic effect we can consider the Hamiltonian

H = Hrad + Hatom − e

m
A · p +

e2A2

2m
, (1.5)

where Hrad is the field Hamiltonian and Hatom is the Hamiltonian operator for the

atomic electron. As it will be explained with more detail in Chapter 3, A is the

electromagnetic vector potential and we make use of the electric dipole approximation.

It is clear that we are dealing with a quantum electrodynamic effect because in

classical theory A = 0 in vacuum and thus it would not contribute to perturb the

atomic levels. However, when the field is quantised, standard perturbation theory

gives the shift in the atomic level i due to the interaction −(A · p)e/m

∆E = − e2

m2

∑

ν

∑

j 6=i

|〈j; 1ν |p · A(r, t)|i; 0〉|2
Ej − Ei + ων

. (1.6)

The state |i; 0〉 represents an atom in the state i and the field in vacuum state of no

photons, and the state |j; 1ν〉 represents an atom in the state j and the field with one

photon in mode ν. If we quantise the field by normal-mode expansion of A, in terms

of the creation and annihilation operators, we can make further simplifications. After
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some algebraic manipulations we get10

∆Ei = − 2α

3πm2

∑

j

|pij |2
∫ ∞

0

dE E

Ei − Ej − E
, (1.7)

which is infinite. This is problematic, as it presumably corresponds to the Lamb shift,

which should be small instead, as the experiments had shown. This problem remained

without answer until Bethe [52], after a Conference in Shelter Island and by using some

ideas by Kramers, solved this dilemma. He identified the most strongly (linearly) di-

vergent term in the level shift with the energy of a free electron due to its coupling to

the field, and subtracted it from the above expression. This procedure is called renor-

malization, and it could be shown that such a difference corresponded to the observable

Lamb shift. The result was still divergent, but only logarithmically divergent. Thus,

by introducing a cut off in the upper limit of integration (assuming that the main part

of the Lamb shift was due to the interaction of the electron with vacuum field modes of

frequency small enough to justify a non-relativistic approach), Bethe obtained a level

shift for the 2s state of H of ∼ 1040 MHz, in agreement with experiments. It is interest-

ing to recall that Bethe’s estimate was considered by Feymann11 “the most important

discovery in the history of QED”.

The way to connect this with the van der Waals forces follows from interpreting

them as a result of the fluctuations of the zero-point energy, which is actually the idea

that London originally followed.

Now, if the fluctuations of the electromagnetic field are constrained, i.e. by the

presence of conducting media, the vacuum effects are enhanced. This manifests itself

macroscopically in a modification of both the rate of spontaneous emission and the

Lamb shift. The latter is the one that we have been referring to as the Casimir-Polder

force, and it will be particularly interesting if we also add other constraints to this

system. In this work we are especially interested in the variation of the force due to a

finite slab. A more detailed description of the geometry we are interested in, together

10For a more detailed description of this procedure see Ref. [3].
11In his Nobel Lecture, see Ref. [53]
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with the reasons for why it is important to solve such a problem, will be given in the

following sections.

1.2 Motivation and outline

Section 1.1.2 reviewed a series of experiments that have been relevant in order to

show the existence of the Casimir-Polder interaction. Nevertheless, nowadays simply

detecting such forces is not as interesting and challenging as, for example, probing their

wide ranging applicability and discovering other unusual behaviour12.

As experiments become increasingly precise, corrections, such as finite temperature,

roughness and other geometrical details, etc., become more important in the theoretical

calculations. The levels of precision are becoming commonplace now more so than ever

due to the motivations in developing nanotechnology and furthering quantum science

[56, 57]. That is the case of the so-called microtraps, which when used in conjunction

with chip technology, have promising areas of application like quantum information

processing with neutral atoms, integrated atom optics, matter-wave interferometry,

precision force sensing, and most importantly for the theoretical purpose of this thesis;

studies of the interaction between atoms and surfaces. Thus, the control and manipu-

lation of cold atoms have become fundamental, and it seems feasible to control them

on the µm length scale by utilizing such microstructured surfaces, also known as atoms

chips. In very general terms, magnetic traps on atom chips are commonly produced

either by microfabricated current-carrying wires or by poled ferromagnetic films at-

tached to some dielectric or metallic surface. Therefore, more sophisticated theories

that include such geometries are required. For instance, Eberlein and Zietal obtained

results for an atom in front of a cylinder [58], which would simulate the wires in those

microstructures.

Furthermore, one can identify another characteristic of the system that has become

sensitive to modern experiments, which is the thickness of the layer of material that

12Recently, people have been intrigued by the possibility of using left-handed metamaterials in order
to detect repulsive Casimir forces. See for instance Ref. [54, 55]
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is located near the atom in such microtraps. This is because, typically, the dielectric

substrate utilised in those experiments contains a very thin top layer of other material.

So far, in rigorous theories, this finite thickness has been neglected and the system has

been treated as a semi-infinite half-space. Nevertheless, we believe that it is important

to develop more accurate approaches and take the thickness correction into account.

In section 1.2.2, we will give a brief review on the theoretical work done so far

involving an atom near a dielectric slab. To date, only some limiting cases for specific

numerical examples have been obtained explicitly. We instead want to provide an exact

analytical expression, which can be utilised practically in current experimental research.

In the following section we shall review the very latest experiments that have been

developed using cold atoms techniques. This is essential in order to support our motiva-

tion for performing this thesis, and to make evident the importance of our calculations.

1.2.1 Experimental application

Trapping neutral particles is not a new field. The first neutral atoms were trapped

in 1985 [59] in the magnetic field of electromagnets. Later on, the idea was extended

to gases of alkali-metal atoms, which were magnetically trapped and cooled down be-

low the critical temperature for Bose-Einstein condensation. For this achievement,

the Nobel Prize was awarded to Cornell, Wieman and Ketterle [60, 61]. With these

experiments a new generation of Casimir-Polder force measurements emerged. They

realised that, by using cold atoms, potentially very high precision experiments could be

performed13. Therefore they employed the Bose-Einstein Condensates (BEC), which

consist of a cloud of ultracold atoms that are joined into a single quantum-mechanical

state14. The advantage of using a BEC is that it is much easier to deal with rather

than trying to manipulate a single atom.

A pioneering experiment was performed by Cornell’s group [65]. To measure the

Casimir-Polder force they created a horizontal cigar-shaped BEC of rubidium atoms

several microns in diameter and set it within a magnetic trap, so it would oscillate

13And thus the possibility of investigating fundamental forces at the submicron scale [62].
14For a general review on BEC’s see for instance Ref. [63, 64].
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vertically. This trap was located just below a plate, in such a way that the oscillation

frequency changed. This is because the Casimir-Polder force pulls more strongly on

the upper edge of the cloud than on the lower one. This experiment was carried out

at a range of distances between 6 and 10 microns (including the region where thermal

effects become important [66]) and the force could be calculated from the frequency

measurements. The dielectric surface utilised in this experiment was made of silica.

However, in their second experiment, to measure the temperature dependence [66],

they used a dielectric substrate topped with ∼ 100µm thick opaque layer of graphite.

The beauty of this experiment emerges from the fact that is one of the first applications

of BEC’s, surprising due to the actual complexity of the condensate. The perturbation

on the frequency of center-of-mass oscillation of the BEC detected was first predicted

theoretically by Antezza et al. [67].

A similar experiment, in which ground-state rubidium atoms were utilised, was

performed by Mohapatra and Unnikrishnan [68]. The purpose of this experiment was

to measure the van der Waals force between them and a metallic surface (cobalt),

by using a technique that involved the reflection of laser-cooled atoms from magnetic

thin-film atom mirrors.

Following the same line there is an experiment performed by Spreeuw and co-workers

[69]. Their experiment was the first in which modified radiative properties in the

vacuum near a dielectric surface were observed. They used a magneto-optical trap

to create a cloud of cold 87Rb atoms, and observed a distance-dependent absorption

linewidth when locating the atoms near a glass surface (with refractive index n = 1.51).

Several experiments have been developed to date, intending to measure the Casimir-

Polder force with high precision15, becoming thus more evident the success on accurate

measurements. It might therefore be worth trying to understand how to trap and ma-

nipulate ultracold atoms (and degenerate quantum gases) in magnetic micropotentials.

Fortagh and Zimmermann [70] have recently published a review, in which they give an

overview on fabrication techniques and history of pioneering experiments. Also, though

15For instance, in experiments by Hinds group [39], it was obtained that Utheory/Uexp = 1.02 ± .13
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in less detail, they devote a section to atoms in the proximity of the microtrap surface,

which is of particular interest to us.

As we explained earlier, atoms interact with fluctuations in the electromagnetic

field. In this case, the fluctuations are modified in the vicinity of a trap surface, and

this has other important consequences that some people have already analysed. The

reason is that magnetic field fluctuations in a microtrap can induce transitions between

internal spin states, which produce decoherence and loss of the atom16. This effect

was predicted by Henkel et al. [71] and first observed by Ed Hind’s group [72] for a

cylindrical wire and by Cornell’s group [73] for a thick metal slab.

Since trapped atoms are very sensitive to magnetic field fluctuations, such effects

have recently been a subject of great interest, especially the spin-flips produced near

surfaces. The problem has been analysed several times and the length-scales of the

system that appear to be most important are: the thickness of the metal, the atom-

surface distance and the skin depth. Thus, the lifetime of the atom has been calculated

in terms of those variables for different interesting regimes. Very importantly for our

purposes, they emphasize the results obtained when a thin slab is used, stressing that it

characterizes more precisely what has been done recently in the lab, i.e. most microtraps

used today have a film, not an infinitely thick surface. It is important to remark that

although the nature of this problem has completely different physics, the reason we are

including these experiments is because in them the thickness becomes an important

parameter. As the combined Casimir-Polder interaction and the one produced by

fluctuating magnetic fields will both be responsible for the behaviour of the atom, a

correct theoretical calculation of the energy-shift, including such thickness, is essential.

The stability of magnetically trapped BEC was studied by Lin et al in [47]. They

gave experimental values for the loss rate of 87Rb atoms near a thin surface. In this

experiment, a 2 µm-thick copper layer with a final top layer of 100 nm Au was utilised.

The latter was deposited by electron beam evaporation (all of these on a substrate of

nitride-coated silicon). The behaviour of the atom was studied at small distances of

16Only low-field-seeking states are confined in the magnetic trap
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Table 1.1: Latest experiments

Authors atom-surface Thickness L Material of atoms Ref.
separation Z of top layer top layer used

Obrecht et al. 10µm 100µm graphite 87Rb [66]

Jones et al. ∼ 30µm 200nm Gold 87Rb [72]

Lin et al. .5 − 10µm 100nm Gold 87Rb [47]

Leanhardt et al. ∼ 70µm 1.25µm Gold 23Na [74]

Sukenik et al. ∼ .5µm 40nm Gold 23Na [39]

.5µm - 10µm from the microfabricated silicon chip.

At this stage, it has become more evident that the accuracy of recent experiments

allow high sensitivity to length scales of the system that were not taken into account

before. That includes, undoubtedly, the film thickness i.e., in a microtrap.

The table 1.1 shows the Casimir-Polder experiments that are relevant for our pur-

pose; where a thin layer of material is placed on the top of the dielectric substrate

commonly used. In this way, one can note that the thickness of the material near

the atom should not be treated as infinite, since it is of the order of the atom-surface

separation.

1.2.2 Variations of this problem

We are interested in the calculation of the Casimir-Polder interaction of an atom with a

dielectric slab. In this way, we would like to generalise the analytical formulae derived

by Wu and Eberlein for the simpler case of a dielectric half-space [75, 76]. The geometry

of an atom in front of a dielectric slab, even though seems to be quite simple, has

been studied earlier but only simpler problems have been analysed (i.e. spontaneous

emission), and no analytical formulae have been obtained so far.

Only a few papers, in which quantum electrodynamic concepts based on normal

mode expansion of the quantised electromagnetic field are used, can be found in the

literature. We shall first mention Khosravi and Loudon’s work [77], who in an extension

to their calculation for a dielectric half-space [78], utilised exactly the same model we
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are using and quantised the field in order to evaluate the vacuum field fluctuations and

spontaneous emission rates as functions of positions both inside and outside the slab.

However, some calculational errors were made, including the normalisation constant for

the TM polarisation and the density of modes. This affected particularly the results

for a thin slab, as affirmed in [79].

Żakowicz and B lȩdowski [79], re-calculated the spontaneous emission by using the

same quantum approach and standard perturbation theory. Unlike in [77], they utilised

different parametrization of the travelling modes, by the outgoing waves. This was done

with the purpose of describing angular properties of spontaneous emission. They cor-

rected the normalisation constant miscalculated in Ref. [77], and regarding the second

mistake, they obtained the energy density of trapped modes for the situation under

consideration, as needed for their calculation of the radiation intensity distribution.

They realised that in the region far away from the slab their density of modes would

become very much simpler (but only in that region), and such a density of modes was

the same as that adopted by Khosravi for the calculation in the whole space, with

no proper arguments provided. That made their results doubtful, and actually their

oversimplification caused their calculated decay rates to be incorrect. We shall come

back to this point and provide more details in the following chapter.

Another related piece of work was done later on by Urbach and Rikken [80]. They

calculated the spontaneous emission rate of an atom from inside a dielectric slab,

bounded by two dielectric half-spaces. Their interest in this specific model had the

purpose of being applied to the electron-hole recombination in GaAs slabs studied in

[81] and to experiments in [82] for the radiative transition rate of Eu3+ complexes in

polystyrene films on various dielectric substrates. Thus, they obtain numerical results

for those particular problems.

A slightly different geometry was studied by Zhou and Spruch [83]. They consid-

ered two multilayered plane parallel walls of arbitrary thickness and permittivities and

analysed their van der Waals (and retarded) interaction with a particle, either atom

or electron, located between them; treating each multilayered wall as a single wall de-
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scribed by an effective reflection coefficient. They quantised the surface modes in order

to evaluate this force, and taking certain limits, they recovered well known results and

provided others not previously obtained, in such a way that they could give quantitative

estimates of the errors due to approximating a wall of finite thickness by one of semi-

infinite thickness. Since they consider the limits to obtain the atom-wall interaction,

we shall compare our final expressions with theirs, which consist of a double integral,

unlike the explicit formulae that we are able to obtain. Bostrom and Sernelius [84]

extended this calculation by examining the van der Waals energy of an atom placed

between thin metal films at finite temperature. In order to study the effect of finite

thickness, they evaluated their result numerically for ground-state hydrogen and helium

atoms between silver films.

As was explained in the previous section, the Casimir-Polder theory is based on

quantum electrodynamics, in which the electromagnetic field is quantised in terms of

normal modes. Thus, the coupling energy for a ground-state atom with the field can

be calculated in lowest order of perturbation theory, and the retarded van der Waals

force arises as the gradient of this energy. This elegant approach is very convenient if

we are dealing with systems of high symmetry, because the electromagnetic field can

be quantised by explicit mode expansion (in a relatively easy way) facilitating exact

analytical calculations. However, this formalism becomes far more complicated if we

want to apply it to other geometries.

On the other hand, by taking into account imperfect reflectors in a cavity [85] would

become apparent that it is not easy to obtain the field modes for dielectric cavities.

In fact, it would not be favourable to use a normal-mode expansion. For this reason,

a new range of very powerful general methods for studying quantum electrodynamics

near dielectrics, reflecting, or absorbing boundaries, emerged [7]. The main problem

is that applying them to a particular problem usually requires extensive numerical

calculations. Since those different methods are based on different assumptions, their

range of applicability varies in each case. In order to understand the main idea in

such calculations, let us get back to Lifshitz theory. As we said, he expressed the
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dispersion force in terms of response functions. They can be achieved by expressing

the results obtained by normal-mode expansion in terms of the Green tensor of the

electromagnetic field, which contains all the relevant information of the system, like

its shape. This implies that we could, in principle, calculate the Casimir force for any

geometry. We can also extend this linear response formalism to the force on an atom.

Thus, in this approach, the coupling energy is expressed in terms of the linear response

functions of the atom and the electromagnetic field [33],

U(r) =
h̄µo

2π

∫ ∞

o
dη η2α(iη)Tr G(1)(r, r, iη), (1.8)

i.e., the atomic polarisability α(ω) and the scattering Green tensor of the electromag-

netic field. The latter is related to the susceptibilities via the dissipation-fluctuation

theorem. It is worth emphasizing that the concepts of linear-response theory no longer

use an explicit quantisation and employ the fluctuation-dissipation theorem from the

beginning. The simplest case of a ground-state atom placed in front of a perfectly

conducting half-space was first obtained by McLachlan in [14] and then extended for a

dielectric half-space in [86] by the same author, and by Agarwal later on [87, 88] em-

ploying, in addition, Master equation techniques. A slight variation of this problem was

investigated by Wylie and Sipe in [89] in which a ground-state atom interacting with

a dielectric two-layer system was considered, and then extended to atoms in excited

energy eigenstates [90]. Many other modifications to this problem have been studied

to date, but we will not refer to them since they are not particularly of interest to

us. This formalism has been successfully widely used in parallel with the more elegant

formalism that gives us a QED treatment in terms of normal modes. Nevertheless, as

the essential point is to construct expressions for the shift in terms of the appropriate

response functions of the interface (i.e. through the complex impedances), only nu-

merical results for specific cases can be obtained explicitly. For example, in [89] their

general expressions are utilised to get the energy shift and transition rates of an atom

close to a dielectric waveguide made of ZnO/sapphire.
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More recent work following the same approach was carried out in [33]. In this paper,

Buhmann et al. study the van der Waals force acting on a ground-state atom in the

presence of planar, dispersive and absorbing magneto-dielectric bodies. Considering an

arbitrary planar multilayer system (described in terms of generalised reflection coeffi-

cients, which depend on the complex permittivities of the layers), they obtain a general

expression that can be applied to the case of an atom in front of a magneto-dielectric

plate and between two such plates, and then analyse the result for limiting cases such

as thick and thin plates in the long- and short-distance regimes. By simply discarding

the magnetic properties from their expressions, we will be able to compare with our

results.

As we are utilising the quantum approach and perturbation theory to calculate the

energy-level shift on an atom in front of a dielectric slab, in the following chapter we

shall quantise the electromagnetic field as in [79]. In chapter 3, we will obtain the shift

analytically, and hence the final result will be expressed as a very handy formula with

high applicability to current experiments.



Chapter 2

Field quantisation in the

presence of a dielectric slab

The reason an atom changes its atomic properties, such as the rate of spontaneous

emission and energy levels, is because it couples to the fluctuating electromagnetic field.

It is well-known that in order to study the quantum theory of a free electromagnetic

field, it is convenient to expand the electromagnetic field in terms of plane waves. Such

expansion coefficients oscillate sinusoidally and quantisation is achieved by changing

those time-dependent coefficients to quantum operators. This quantisation of the field

will certainly depend on the constraints, i.e. the presence of any material media. In the

present work, the constraint under consideration is a dielectric slab, and thus we shall

proceed with a complete quantisation of the field in the presence of such a slab. This

has been done previously by Khosravi and Loundon [77]. Thereby, we know that for this

case the solutions to the field equations — the normal modes of the electromagnetic field

— are divided into travelling and trapped modes, and together these form a complete

set of orthogonal transverse modes for this system. The first class consists of incoming,

reflected and transmitted parts, exactly as for a single interface geometry. The second

type, the trapped modes, behave as in a dielectric waveguide. This means that they

experience repeated total internal reflections and come out as an evanescent field on

either side of the slab. We intend, in the first two sections of the present chapter, to

23
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give further explanation and details on how these modes are obtained. However, it

is important to emphasize from this early stage the fact that travelling modes have a

continuous range of frequencies, unlike the trapped modes, which only appear at certain

discrete frequencies. This will have important consequences that we shall discuss in the

following.

The main purpose of this dissertation is to work out the energy-level shift of an

atom in front of a dielectric slab, and hence the Casimir-Polder force. We will explain

in detail hereafter, that the second-order perturbation-theory procedure required for

this calculation will lead us to a sum over all electromagnetic field modes. The problem

that one encounters is summing over all modes with their correct relative weightings,

i.e. density of states. This is not normally problematic, and the usual way to solve it is

by looking at the modes infinitely far away from a scatterer and then infer the correct

weighting by reference to the electromagnetic field modes in free space. In the case of

a slab we shall need to proceed with more insight.

As one can imagine, because of the contrasting nature of the spatial modes of this

system, the crucial difficulty emerges when one has to decide how to add the continuous

spectrum of travelling modes, in terms of an integral, and the discrete set over trapped

modes, that corresponds to a sum, because there is no obvious way to know how to

add them together.

Khosravi and Loudon [77] included the factor 2π/L in front of the trapped modes

and did not give any reasons or formal derivations. This appeared doubtful to us,

as it did for Żakowicz and B lȩdowski [79], who revisited the problem of spontaneous

emission. They claimed that Khosravi and Loudon had probably not correctly taken

into account the density of trapped modes, which they concluded to be important for

thin slabs and close to the dielectric-vacuum interfaces. They also claimed to have

corrected that mistake, but they only calculated the density of modes for their own

purposes and did not produce a general expression, so unfortunately, their result is not

very useful for our calculation.

Due to the uncertainty in the validity of the results obtained so far, the first purpose
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Figure 2.1: Non-dispersive and non-dissipative dielectric slab, characterised by a refractive index n
and a thickness L.

of the present work is to derive the electromagnetic field modes of the system and discuss

their general properties; establishing both travelling and trapped modes. This will be

achieved in section 2.2. Then, we shall deduce the correct way of summing over all the

electromagnetic mode functions. We will show that the most convenient method will

follow from the proof of the completeness of the modes, as it involves the same sum

over modes. Section 2.4 will be devoted to this proof. In chapter 3 we will then apply

this result to the calculation of the energy shift, facilitating the procedure. But first of

all, let us start with the description of the model to be utilised.

2.1 Description of the system

The system under consideration consists of a dielectric slab of finite thickness L sur-

rounded by vacuum, as is shown in Fig. 2.1. We consider a non-dispersive and non-

absorbing dielectric, as a good model for an imperfectly reflecting material. In such a

way, one can still use a simple model for the material, characterizing the slab by its re-

fractive index n, which is real and the same for all frequencies. Although we know that

any real material has to be transparent at infinite frequencies, this model is better than

the unrealistic perfect reflector, because it allows imperfect reflectivity and evanescent
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waves.

Even though this seems to be an oversimplified model, it can be applied to systems

whose dynamics are determined by a finite frequency range, for which the dielectric

response of the material can be approximated by a constant [91]. This is the case for

Casimir-Polder problems, in which the relevant frequencies are of the order of 2π/Z.

This is a very small number because the atom-surface separation Z is normally much

greater than the optical wavelengths, and hence only the static dielectric response

ε(ω = 0) matters for the interaction.

Moreover, the model works fine for the description of the atom-surface interaction

away from absorption resonances of the material. This means that the model can be

utilised unless an important transition in the atom lies in a region of strong dispersion of

the dielectric, in such a way that the atom would strongly couple to a surface excitation

of the dielectric.

We have placed our system in such a way that it is translation-invariant in the x

and y direction. Hence, the dielectric permittivity of the configuration only depends

on the z direction and it is given by

ε(r) =











n2 for − L/2 ≤ z ≤ L/2

1 for |z| ≥ L/2

2.2 Electromagnetic field modes

The behaviour of the electromagnetic field is described by the Maxwell equations [11]

∇ · D = ρ, (2.1)

∇ · B = 0, (2.2)

∇× E +
∂B

∂t
= 0, (2.3)

∇× H − ∂D

∂t
= J. (2.4)
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As we can see, they consist of coupled first-order partial differential equations, relating

the components of the electric and magnetic fields. In order to solve them the most

convenient way is by introducing potentials [92]. The purpose is to obtain a smaller

number of second-order equations, that also satisfy Maxwell equations identically. Since

we want Eq. (2.2) to hold, we can simply define the magnetic field B in terms of a

vector potential

B = ∇× A. (2.5)

Substituting this definition into Faraday’s law, Eq. (2.3) gives

∇×
(

E +
∂A

∂t

)

= 0, (2.6)

which implies that the quantity in brackets can be written as the gradient of some

scalar function, as it is the case for any function with vanishing curl. Thus, we shall

define the scalar potential Φ, such that the electric field can be written as

E = −∇Φ − ∂A

∂t
. (2.7)

These new definitions for E and B in terms of the potentials A and Φ satisfy identically

the two homogeneous Maxwell equations. The dynamic behaviour of A and Φ will be

determined by the two inhomogeneous Maxwell equations. Thus, if we write them in

terms of such potentials, we can reduce the set of four Maxwell equations to only two

equations, which are coupled. In order to uncouple them, we shall take advantage of

the arbitrariness of the definition of the potentials. According to the definition of B,

Eq. (2.5), the vector potential is arbitrary to the extent that the gradient of some scalar

function can be added. To preserve the other definitions, we need simultaneously to

transform the scalar potential. Such transformations of the potentials are called gauge

transformations. A gauge for the electromagnetic field is specified by some condition

on the potentials A and Φ, which can be realised by a gauge transformation, in which

the physically measurable fields, E and B, do not depend on the choice of gauge. The
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gauge that is particularly useful in quantum electrodynamics is the so-called Coulomb

or transverse gauge. The name comes from the fact that transverse radiation fields

are given by the vector potential alone. For our system, we choose to work in the

generalised Coulomb gauge

∇ · [ε(z)A(r)] = 0, (2.8)

which is convenient because anywhere except right on the boundaries of the dielectric

slab, it is equivalent to the Coulomb gauge ∇ · A = 0. This means that we shall only

make sure that the physical fields satisfy the appropriate matching conditions at the

boundary. Furthermore, since we are considering an overall neutral system, we can set

the scalar potential Φ(r, t) = 0. By using this conditions, the inhomogeneous Maxwell

equations (2.1) and (2.4), written in terms of the potentials, can be reduced to the wave

equation for the vector potential

∇2A− ε(r)
∂2A

∂t2
= 0, (2.9)

which must satisfy appropriate conditions on the dielectric boundaries. The solutions of

the Maxwell equations can be seen to be travelling waves, which represent the transport

of energy. The simplest and most fundamental electromagnetic waves are transverse,

plane waves. The general solution of Eq. (2.9) forms a set of modes; which in the

classical case allow the expression of an arbitrary electromagnetic field, and in the

quantum case give an expansion of the quantum electromagnetic field operators, after

following a standard quantisation procedure. We can thus achieve quantisation by

expanding the vector field A(r, t) in terms of normal modes, in the same way that

one can express the field in free space in terms of the free-space modes, e.g., the plane

waves1. Thus,

A(r, t) =
∑

kλ

1√
2ω

[

akλe−iωtfkλ(r) + a†
kλeiωtf∗kλ(r)

]

. (2.10)

1The vector potential for the free electromagnetic field is given in Eq. (A.1).
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Note that we have introduced the variable λ, in order to account for the two polarisation

directions of the electromagnetic waves: TE and TM. Further details will be given in

the following. Since we are requiring solutions with harmonic time dependence, the

wave equation for the vector potential (2.9) can be reduced to the Helmholtz equation

for the normal modes fkλ(r)

[

ε(z)ω2 + ∇2
]

fkλ(r) = 0, (2.11)

that can also be written as an eigenvalue problem

[

1√
ε
∇2 1√

ε

]√
εfkλ(r) = −ω2 √

εfkλ(r). (2.12)

As the operator in the square brackets in Eq. (2.12) is Hermitian, it follows that its

eigenfunctions
√

εfkλ(r) must form an orthonormal and complete system. For travelling

modes all components of k are continuous variables, so that the orthogonality relation

is
∫

d3r ε(z)f∗kλ(r) · fk′λ′(r) = δ(3)(k − k′)δλλ′ , (2.13)

where δλλ′ is the Kronecker delta. For trapped modes the normal component kz is a

discrete variable, and thus the orthogonality relation is changed slightly to

∫

d3r ε(z)f∗k,λ(r) · fk′λ′(r) = δ(2)(k‖ − k′
‖)δkzk′

z
δλλ′ . (2.14)

The completeness relation reads

∫

d2k‖
∑

kz

∫ √
εf i

kλ(r)
√

εf∗j
kλ(r′) = (δij − ∆−1∂i∂j)δ

(3)(r − r′), (2.15)

where the sum over all modes consists of an integral over the wave vector k‖ = (kx, ky)

that lies parallel to the interface, and an integral and a sum over the normal component

kz for travelling and trapped modes, respectively, because travelling modes have a con-

tinuous spectrum but trapped modes occur only at certain discrete kz. The transverse
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delta function that appears on the right-hand side of the completeness relation reflects

the fact that, away from the interface, the gauge condition (2.8) requires the vector

field to be transverse. Concerning the transversality of the set, this can be achieved by

introducing polarisation vectors, such that the mode functions can be written as

fkλ(r) = êλfkλ(r). (2.16)

Such vectors arise from the fact that the electromagnetic waves have two transverse

polarisation directions, which we have denoted by λ. These can be chosen as the trans-

verse electric polarisation (TE), for which the electric field vector lies perpendicular

to the plane of incidence, and the transverse magnetic polarisation (TM), for which

the magnetic field vector lies perpendicular to the plane of incidence. In the general-

ized Coulomb gauge the direction of the electromagnetic field can be described by the

following choice of polarisation vectors:

êTE(∂r) = (−∆‖)
−1/2(−i∂y, i∂x, 0) (2.17)

êTM(∂r) = (∆∆‖)−1/2(−∂x∂z,−∂y∂z, ∆‖), (2.18)

when acting on plane waves or parts thereof. Here ∆ = ∂2
x + ∂2

y + ∂2
z is the Laplacian

in three dimensions and ∆‖ = ∂2
x + ∂2

y the Laplacian in two dimensions parallel to

the surface of the dielectric. Applying the polarisation vectors on a plane wave eik·r

propagating to the right (+), one can express these modes in terms of the wave vector

components, i.e.,

êTE(k+) =
1

|k‖|
(ky,−kx, 0), (2.19)

êTM(k+) =
1

|k‖||k|
(kxkz , kykz,−k2

‖). (2.20)

However, we must realise that the explicit representation in k space is different, and

thus, the incident, reflected and transmitted parts have polarisation vectors that point

out in different directions (more details below). For that reason and to avoid confusion,
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we have found it quite useful to keep the first notation (Eqs. (2.17) and (2.18)),

which describes them in a more general way. It is also important to emphasize that

for travelling waves the polarisation vectors together with the wave vector form an

orthonormal triplet. Thus, the set of polarisation vectors must satisfy the following

relations

êTE(k) · ê∗TE(k) = 1, êTM(k) · ê∗TM(k) = 1, (2.21)

êTE(k) · ê∗TM(k) = 0, êTM(k) · ê∗TE(k) = 0, (2.22)

where the asterisk denotes complex conjugation, and obey the completeness relation

∑

λ

êi
λêj

λ +
kikj

|k|2 = δij . (2.23)

The modes, defined as elementary solutions of the field equations satisfying proper

boundary conditions on the vacuum-dielectric interfaces, are not unique. A particular

set of modes is obtained by taking combinations of incident, reflected and refracted

waves; and taking into account both left- and right-incident modes. The boundary

conditions that these mode functions fkλ(r) must satisfy, can be derived from classical

electrodynamics. From Eqs. (2.3), (2.1) and (2.4), respectively, we get the following

conditions:

E‖, D⊥, and B continuous (2.24)

across the interface between dielectric and vacuum. In order to distinguish waves

propagating in the positive and negative z directions, we have adopted a notation very

similar to the one used in Ref. [77], where k± is the wave vector in vacuum

k± = (kx, ky,±kz) = (k‖,±kz), (2.25)

adding the subscript d in order to refer to the corresponding wave vector inside the
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fL
kλ(r)

z

k−
d

k+

dk−

k+

k+

−L/2 L/2

Figure 2.2: Geometrical details of the dielectric slab showing the wave vectors that appear in the
left-incident travelling mode functions fL

kλ(r). Note that inside the dielectric, there will be repeated
internal reflections.

dielectric slab

k±
d = (k‖,±kzd). (2.26)

Thus the propagation direction of the wave in the z axis is specified by the superscripts

(+) and (−). Fig. 2.2 shows the geometrical arrangement of the dielectric slab with

the interfaces perpendicular to the z-axis. We have included some incoming waves to

make the notation completely clear. We have only shown the x-z plane, as it is the

only relevant plane. In the expressions above, k‖ is the wave vector component that is

parallel to the interface, and its magnitude is given by k‖ =
√

k2
x + k2

y . The continuity

requirements from Maxwell’s equation imply that both the parallel wave vector k‖ and

the frequency are the same on both sides of the interface. Since the wavelength is

|k| = k = ω/c in free space, and kd = nω/c inside the dielectric, one can immediately

get from the definitions above a very useful expression that relates the z-components

of the wave vectors in free-space and dielectric,

kzd =
√

(n2 − 1)k2
‖ + n2k2

z , (2.27)



Chapter 2. Field quantisation in the presence of a dielectric slab 33

and in reverse

kz =
1

n

√

k2
zd − (n2 − 1)k2

‖ , (2.28)

which are always positive. The relation (2.28) shows again that we get two types of

modes. If the argument of the square root is positive then kz is real and the modes are

travelling; if the argument turns out to be negative then kz is purely imaginary and

the modes are evanescent outside the dielectric, in the z-direction, and trapped inside

the slab. Khosravi and Loundon [77] have named them travelling and trapped modes,

though they can also be identified as radiation and waveguided modes, respectively.

We will follow the former convention. A consequence of the discussion above becomes

apparent when we write down a general z-dependence solution of the Helmholtz Eq.

(2.11) outside the slab

fkλ(z) = Ae
iz

q

ω2−k2
‖ + Be

−iz
q

ω2−k2
‖ . (2.29)

Thus the two types of modes will arise depending on the argument ω2−k2
‖ being either

positive (travelling modes) or negative (evanescent modes).

2.2.1 Travelling modes

The most common choice for the travelling modes, which we will use through out this

work, assumes the incident wave impinging on one side of the slab. To form a mode,

the incident wave must be accompanied by two other waves (for each interface), the

reflected and the transmitted one, and their wave vectors are related according to laws

of wave transmission across the boundary.

For each set of wave vectors, and for each transverse polarisation λ, there are two

distinct mode functions corresponding to plane waves incoming from the left and from

the right towards the dielectric slab. We denote them as fL
kλ(r) and fR

kλ(r), respectively.

We have sketched the left-incident travelling modes in Fig. 2.3. According to Eq.
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kzd

kz

kz

n

Rλ

Tλ

z

x

Figure 2.3: Left-incident travelling modes. Notice that to form a mode, the incident wave must be
accompanied by a reflected and a transmitted wave, for each interface.

(2.16), the spatial dependence of the left-incident modes reads

fL
kλ(r) = N























eik+·r + Rλeik−·r z ≤ −L/2

Iλeik+
d
·r + Jλeik−

d
·r |z| ≤ L/2

Tλeik+·r z ≥ L/2

The right-incident modes can be obtained straightforwardly from the left-incident

modes. Due to the symmetry of the system, it is possible to obtain them simply

by inverting the z-axis, i.e. by letting z → −z. Their spatial dependence is thus given

by

fR
kλ(r) = N























Tλeik−·r z ≤ −L/2

Iλeik−
d
·r + Jλeik+

d
·r |z| ≤ L/2

eik−·r + Rλeik+·r z ≥ L/2

As we stated earlier, these modes must be orthonormal. Following the condition (2.13)

we obtain the normalisation factor

N =
1

(2π)3/2
, (2.30)

which is independent of the polarisation and, due to the symmetry, the same for both

left- and right-incident modes. The reflection and transmission coefficients Rλ and Tλ,
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as well as the coefficients Iλ and Jλ are determined through the conditions of continuity

of E‖, D⊥ and B that arise from Maxwell’s equations. We will not give any further

details on how to calculate these coefficients, since they have been correctly calculated

before for the same system [77, 79], and more generally, for a three different materials

system [80]. The reflection and transmission coefficients are given by

Rλ = rλ
1 − e2ikzdL

1 − r2
λe2ikzdL

e−ikzL and Tλ =
1 − r2

λ

1 − r2
λe2ikzdL

ei(kzd−kz)L (2.31)

where

rTE =
kz − kzd

kz + kzd
and rTM =

n2kz − kzd

n2kz + kzd
(2.32)

are the well-known Fresnel coefficients from basic geometrical optics, for a single in-

terface, for the transverse electric and transverse magnetic polarisations, respectively.

Notice that the coefficients (2.31) are the same for both left- and right-incident modes.

This is clearly due to the symmetry of the system, and the symmetric choice of reference

frame is reflected in the phase e−ikzL that appears in the reflection and transmission

coefficients. Therefore, if we had chosen to work with a system where one of the slab

interfaces is located at z = 0, the coefficients for the modes fL
kλ(r) would differ from to

those for fR
kλ(r) only by a phase factor, in such a way that the relation

|Rλ|2 + |Tλ|2 = 1 (2.33)

still holds, and thus the conservation of energy. We have stated in Eq. (2.13) that the

travelling modes are orthogonal. More specifically, all of the modes incident from the

right are orthogonal to all of the modes incident from the left. This reads

∫

d3r ε(z)fL∗
kλ (r) · fR

kλ(r) = 0, (2.34)

and the relation

RλT ∗
λ + R∗

λTλ = 0 (2.35)
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helps to ensure the orthogonality. The coefficients for the spatial modes inside the slab

are calculated by using the continuity conditions (2.24). Hence,

Iλ = (rλ + 1)
ei(kzd−kz)L

1 − r2
λe2ikzdL

and Jλ = −Iλ rλ eikzdL, (2.36)

which satisfy the relation

kzd(|Iλ|2 − |Jλ|2) = kz|Tλ|2. (2.37)

2.2.2 Trapped Modes

The slab forms a planar dielectric waveguide. The Maxwell’s equations describing the

electromagnetic field are exactly solvable for this simple system, and the solutions, par-

ticularly the waveguiding solutions, have been described in several books on dielectric

waveguides or surface excitations [93, 94]. In order to explain how this class of modes

is produced, I have considered it worth reviewing briefly what we know about it in

basic geometrical optics2. The reason is simply because light rays have intuitive appeal

since a narrow beam is a good approximation to the more complex concept of light

rays. We shall first explain the phenomenon of total internal reflection [11]. The word

internal implies that both incident and reflected waves are in a medium of index of

refraction n1, which is larger that the index n2 of the medium in which the refracted

wave propagates (see Fig. 2.4). When n1 > n2 is satisfied, the angle of refraction θr is

larger than the angle of incidence θi, as it can be shown from Snell’s law. If we want

θr = π/2, the incident wave should have an angle of incidence θc, as it is shown in Fig.

2.4. In this case, the refracted wave propagates parallel to the surface and there is no

energy flow across the surface. This implies that at such an angle of incidence there

must be total reflection (no light can emerge, so all of the light is completely reflected).

θc is called the critical angle and is given by

θc = arcsin(n2/n1); (2.38)

2See for instance Ref. [95]
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θi θ′i

θr

θc

n2

n1

Figure 2.4: The rays depicted by the blue dashed lines show the incident and reflected waves in
a medium with refractive index n1, and the refracted wave in a medium with refractive index n2,
satisfying the condition n1 > n2, such that it permits total internal reflection for all angles greater
than θc. The latter is shown in red rays.

which by convention is measured with respect to the normal to the surface, as it is

shown in the Fig. 2.4. An interesting phenomenon occurs when θi > θc. The refracted

wave is propagated only parallel to the surface and is attenuated exponentially beyond

the interface, along the z-direction. This is known as an evanescent wave. Satisfying the

same physics, trapped modes exist only when the internal modes reach the dielectric-

vacuum interface with polar angles that are larger than the critical angle, producing

total internal reflection. Because of the symmetry of the slab, once it happens at one

interface it will then also happen on the opposite side, and so forth. This will cause

the light to stay confined in the dielectric, and the system will form what is called a

waveguide. Therefore, it is natural to expect standing waves inside the slab. Outside

the slab, these modes have imaginary wave vector z−components,

kz = ±iκ with κ =
1

n

√

(n2 − 1)k2
‖ − k2

zd, (2.39)

and the positive sign is chosen such that the amplitudes of the modes propagating

parallel to the dielectric decay exponentially with distance from the surface of the slab,
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kzd

kz = iκ

n

z

x

Figure 2.5: Illustration of the evanescent behaviour of the modes, as a result of the internal polar
angles being θ > arctan(1/n)

along the z-direction, as shown in the Fig. 2.5. This evanescent behaviour characterizes

the guided or trapped modes of the slab. From Snell’s law, it can be concluded that

the trapped modes have internal wave vectors that satisfy

kzd <
ω

c

√

n2 − 1, (2.40)

thus they only exist in certain region of the (ω,k) space, well defined.

Before introducing the expressions for the trapped modes, let us get back to the con-

cept of spatial modes as solutions of the Helmholtz equation (2.29) for the specific case

ω < |k‖|, and emphasize that this implies that the solutions in free-space are decaying

exponentials. One can show that it is not possible to have solutions with imaginary

wave vector both inside and outside the dielectric slab, satisfying the boundary condi-

tions (2.24). Therefore, we will have oscillating solutions of Eq. (2.11) inside the slab.

As we are looking for the simplest solutions, we shall consider purely symmetric fields

or purely antisymmetric fields, behaving, respectively as cosine or sine functions inside

the dielectric. Adopting this designation by parity, we shall divide the trapped modes

into symmetric and antisymmetric modes, and label them with the superscripts S and
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A, respectively. They are given by

f
S,A
kλ (r) = êλ























PS,A
λ eik−·r z ≤ −L/2

Mλ

(

eik+
d
·r ± eik−

d
·r
)

|z| ≤ L/2

QS,A
λ eik+·r z ≥ L/2

with k± = (k‖,±iκ). The calculation of the coefficients PS,A
λ , QS,A

λ and Mλ is done

following the same procedure used for the travelling modes. However, we have decided

to give more details in this case because there is an issue with how the polarisation

vectors are chosen.

Let us commence with the treatment of the TE polarisation, in which the electric

field is perpendicular to the plane of incidence. Since we want to use the continuity

condition for the parallel component of the electric field E‖, we shall use the definition

of the TE polarisation vector (Eq. (2.17)) in order to write the required component of

the field. For simplicity and since only the z direction is relevant, we will reduce our

expressions to that component. Then, from the continuity condition, it turns out that

one can redefine the coefficients to PS,A
TE = ±MTELS,A

TE and QS,A
TE = MTELS,A

TE (and the

same relations will hold for the TM polarisation). Thus, the spatial dependence of the

electric field simply reads

E‖(z) ∼ MTE























±LS,A
TE eκz z ≤ −L/2

eikzdz ± e−ikzdz |z| ≤ L/2

LS,A
TE e−κz z ≥ L/2

with coefficients LS,A
TE given by

LS
TE = 2 cos

(

kzdL

2

)

eκL/2 (2.41)

LA
TE = 2i sin

(

kzdL

2

)

eκL/2 (2.42)

Using Faraday’s Eq. (2.3), we can also obtain the parallel component of the magnetic
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field. Hence,

B‖(z) ∼ MTE























±κ LS,A
TE eκz z ≤ −L/2

ikzd

(

eikzdz ∓ e−ikzdz
)

|z| ≤ L/2

−κ LS,A
TE e−κz z ≥ L/2.

For a given value of the frequency ω, there are trapped modes only for a limited number

of discrete values of kzd, which depend on both the polarisation and the parity of the

modes. The allowed values of kzd are determined through the dispersion relations, which

are obtained by using simultaneously the continuity conditions for the magnetic and

electric field at the dielectric-vacuum interface. For instance, if we use the symmetric

field, it must be satisfied at z = L/2 such that

ikzd

(

eikzdL/2 − e−ikzdL/2
)

= −κ LS
TE e−κL/2 (2.43)

eikzdL/2 + e−ikzdL/2 = LS
TE e−κL/2 (2.44)

Thus, by solving simultaneously these equations, we obtain the following dispersion

relation

κ = kzd tan

(

kzdL

2

)

TE, S. (2.45)

In order to show the allowed values of kzd for each frequency ω or, more conveniently,

for each wave vector parallel component k‖, we shall use Eq. (2.39) to express κ as a

function of kzd and k‖. Thus, the dispersion relation above reads

k‖ =
kzd√
n2 − 1

√

1 + n2 tan2(kzdL/2). (2.46)

We can rescale this equation in order to hide the L-dependence and plot for an arbitrary

value of n. As shown in Fig. 2.6, for a particular value of k‖, there exists only a few

values of kzd, limited by the condition (2.40). The same procedure follows for the
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kzd

k‖

π/L 3π/L 5π/L

travelling modes

TE, S

Figure 2.6: The region in gray shows the space where travelling modes exist. The blue branches
represent the dispersion relation for the TE symmetric trapped modes: κ = kzd tan(kzdL/2)

antisymmetric modes. At the interface, the continuity of B‖ implies that

ikzd

(

eikzdL/2 + e−ikzdL/2
)

= −κLA
TEe−κL/2, (2.47)

so we can simply substitute the coefficient LA
TE given in Eq. (2.42) (which implies

the continuity condition for E‖ that must be satisfied simultaneously), and obtain the

dispersion relation

− κ = kzd cot

(

kzdL

2

)

TE, A. (2.48)

Furthermore, we can obtain the normalisation constant MTE by using condition (2.14).

For this polarisation it was calculated correctly by Khosravi and Loudon [77]. We get,

MTE =
1

4π

√

n2L
2 + 1

κ

(

k‖

k

)2
. (2.49)

A very similar procedure is needed for the TM polarisation, in which the electric field

E lies parallel to the plane of incidence. Therefore, the magnetic field is given by

expressions similar to those for the electric field in the TE polarisation. Thus, one

could start from the magnetic field, and derive E through the Maxwell’s equation.
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Alternatively, by using the polarisation vector (2.18), we can write the z-component of

the electric field, which is needed in order to apply the first continuity condition. We

will only focus on what happens at the interface z = L/2, as it is easy to intuit, from

the symmetry of the system, the behaviour of the field in the rest of the space. It reads

Ez(z) ∼ MTM











1
kd

(

eikzdz ± e−ikzdz
)

|z| ≤ L/2

1
kLS,A

TMe−κz z ≥ L/2.

The coefficients shall be calculated by using the continuity of the electric displace-

ment z−component, which can be written in terms of the electric field by using the

relation D(z) = ε(z)E(z). Thus,

LS
TM = 2n cos

(

kzdL

2

)

eκL/2 (2.50)

LA
TM = 2ni sin

(

kzdL

2

)

eκL/2. (2.51)

In order to calculate the dispersion relations, we shall employ the continuity condition

of E‖. By using the required component of the polarisation vector in the general

expressions for the trapped modes, we get

E‖(z) ∼











kzd
kd

(

eikzdz ± e−ikzdz
)

|z| ≤ L/2

iκ
k LS,A

TMe−κz z ≥ L/2.

Using the symmetric electric field, the continuity condition at the interface z = L/2

reads

kzd

kd

(

eikzdL/2 + e−ikzdL/2
)

=
iκ

k
LS

TMe−κL/2, (2.52)

and by substituting the coefficient (2.50), we obtain the following dispersion relation

n2κ = kzd tan

(

kzdL

2

)

TM, S. (2.53)
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For the antisymmetric modes we get

kzd

kd

(

eikzdL/2 − e−ikzdL/2
)

=
iκ

k
LA

TMe−κL/2, (2.54)

and by substitution of Eq. (2.51), we obtain a fourth dispersion relation

− n2κ = kzd cot

(

kzdL

2

)

TM, A (2.55)

The normalisation constant for the TM polarisation modes is also calculated by using

the condition (2.14). After some algebraic manipulation it turns out to be

MTM =
1

4πn

√

L
2 + 1

κ

k2
‖

(k2
‖
+n2κ2)

, (2.56)

in agreement with [79], reaffirming that it was calculated incorrectly in [77].

2.3 Quantisation

Once we have obtained the spatial modes, one can proceed with the quantisation of the

electromagnetic field [96]. This is achieved by introducing for each mode the annihila-

tion and creation operators denoted by

âL†
kλ and âL

kλ for the left-incident mode fL
kλ

âR†
kλ and âR

kλ for the right-incident mode fR
kλ

for the travelling modes, and

âS†
kλ and âS

kλ for the symmetric mode fS
kλ

âA†
kλ and âA

kλ for the antisymmetric mode fA
kλ
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for the trapped modes. The traveling modes satisfy the following commutation rela-

tions,

[

âL
kλ, âL†

k′λ′

]

=
[

âR
kλ, âR†

k′λ′

]

= δλλ′δ(3)(k − k′) (2.57)

[

âL
kλ, âR†

k′λ′

]

=
[

âR
kλ, âL†

k′λ′

]

= 0, (2.58)

and similarly, the discrete trapped modes satisfy,

[

âS
kλ, âS†

k′λ′

]

=
[

âA
kλ, âA†

k′λ′

]

= δλλ′δkz ,kz′
δ(2)(k‖ − k′

‖) (2.59)

[

âS
kλ, âA†

k′λ′

]

=
[

âA
kλ, âS†

k′λ′

]

= 0. (2.60)

All the traveling modes operators commute with all the trapped mode operators.

[

âL,R
kλ , âS,A†

k′λ′

]

=
[

âS,A
kλ , âL,R†

k′λ′

]

= 0. (2.61)

Using such creation and annihilation operators one can express the field operator Ê(r, t)

in terms of the normal modes. The Heisenberg electric field operator is written as a

sum of hemitian-conjugate creation and destruction operator parts as

Ê(r, t) = Ê−(r, t) + Ê+(r, t), (2.62)

where

Ê+(r, t) = i
∑

λ

∫

kz>0
d3k

(

h̄ω

2ǫo

)1/2
(

fL
kλ(r)âL

kλe−iωt + fR
kλ(r)âR

kλe−iωt
)

+ i
∑

λ

∑

kz

∫

d2k‖

(

h̄ω

2ǫo

)1/2
(

fS
kλ(r)âS

kλe−iωt + fA
kλ(r)âA

kλe−iωt
)

,(2.63)

and Ê−(r, t) is given by the hermitian conjugate expression.
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2.4 Completeness

2.4.1 Motivation: How to add all the modes?

We have derived the electromagnetic field modes by solving the Helmholtz equation and

imposing boundary conditions at the dielectric-vacuum interface. Also, we have made

sure that the orthonormality condition is satisfied for our set of normal modes. The

other indispensable condition that we have only mentioned so far is the completeness of

the solutions of Helmholtz equation. In previous papers [77, 79], it has been assumed

to be satisfied, but not proven, possibly because it is a highly non-trivial exercise.

However, there is a deeper reason to our proof of completeness of the modes: to

come up with an efficient way to sum over all field modes, as required in the energy shift

calculation. We shall explain in detail in the next chapter how to obtain the latter, but

in brief, it is achieved by using second-order perturbation-theory, and involves a product

of mode functions and a sum over intermediate photon states. Due to the nature of the

modes, the shift naturally splits into two contributions, so clearly, this sum consist of

a sum over the discrete trapped modes and an integral over the continuous travelling

modes,

∆E =

∫

d2k‖





∫

dkz (Travelling modes) +
∑

kz

(Trapped modes)



 . (2.64)

At first glance, we can intuitively think of analysing the two contributions separately,

which we initially tried. The method we followed was very similar to the one applied

in Wu and Eberlein’s calculation [76], which is based on an asymptotic analysis of

Fourier integrals [97]. The problem with calculating separately travelling and trapped

modes is that they have parts that diverge if calculated separately. This appears in

the calculation for the half-space, but by combining travelling and evanescent modes

contributions into one single expression [75] it is possible to eliminate such divergences.

In our case, we expected to find a similar way, but this exercise seemed impossible.

The vital idea on how to solve the problem of summing over the travelling and
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trapped modes is to transform the integral over the continuous set into a sum over

discrete modes, so the shift can be written as a single expression from the beginning

∆E =

∫

d2k‖





∫

dkz +
∑

kz



 →
∫

d2k‖

(

∑

trav

+
∑

trap

)

=

∫

d2k‖
∑

all

. (2.65)

We shall bear in mind that the system is translation-invariant in the direction parallel

to the slab interface, and hence, the parallel wave vector k‖ is not affected by any

assumption that will be described in the following sections and remains always contin-

uous. In order to obtain a whole discrete set of modes, we need to place our system

in a quantisation volume. Then, since the completeness relation (2.15) involves the

same sum that we need, checking that it is satisfied will lead us to the correct way of

summing all modes without ambiguities. Furthermore, by taking the limit of an infinite

quantisation limit we shall recover the modes as calculated in free space, and hence the

right way to sum them, i.e. the correct relative weightings should come up. The rest

of this section is organised as follows: In 2.4.2, we shall explain in detail the procedure

to quantise the electromagnetic field in the presence of a slab, when it is placed in a

quantisation box. In section 2.4.3, we shall present the proof of the completeness of the

electromagnetic modes. Finally, in section 2.4.4, we shall derive the method that will

allow us to add both travelling and trapped modes in a more convenient way. This will

be done by introducing a new integration path in the complex kz plane.

2.4.2 Quantisation box

With the purpose of obtaining a discrete sum over all the modes, as shown in (2.65),

we shall make all the modes discrete. This can be achieved by placing our system into

a large quantisation volume and imposing boundary conditions at the edges. We have

chosen the quantisation box as it would help us to avoid ambiguities. Once we have

obtained the modes inside the box, we will consider the limit of an infinite quantisation

volume, and thus, we will be able to see in a natural way how the travelling modes

emerge, transforming into an integral over continuous modes.
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−L/2 L/2−a/2 a/2

z

Figure 2.7: The quantisation box used, with edges at z = ±a/2. The slab is centred so interfaces are
located at z = ±L/2.

We thus place our system inside a box of width a in the z direction, as it is drawn

in Fig. 2.7. We follow a standard procedure: solve Helmholtz Eq. (2.12) in each region

and apply the corresponding continuity conditions. But in this case, in addition to what

we have done so far to obtain the spatial modes for this system, we have to include

the boundary conditions imposed by the edges of the box. We shall apply Dirichlet

boundary conditions

fkλ(z = ±a/2) = 0. (2.66)

However, the left- and right-incident modes that we introduced in the previous section,

are incompatible with the vanishing conditions at the edge of the box. This is because

by definition, the travelling modes represent running waves, contrary to the standing

waves confined inside a quantisation box. Therefore, we shall form symmetric and

antisymmetric combinations which corresponds to a rotation in the Hilbert space of

these modes

fS,A
kλ (r) =

1√
2

(

fL
kλ(r) ± fR

kλ(r)
)

, (2.67)

where the + and − signs are associated with the symmetric and antisymmetric mode

functions. Thus, substituting in the right- and left-incident modes we get the travelling
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modes inside a box

fS,A
kλ (r) =

Nλ√
2























eik+·r + (Rλ ± Tλ) eik−·r z ≤ −L/2

(Iλ ± Jλ)
(

eik+
d
·r ± eik−

d
·r
)

|z| ≤ L/2

eik−·r + (Rλ ± Tλ) eik+·r z ≥ L/2

where the coefficients Rλ, Tλ, Iλ Jλ are exactly the same as before, and N is the new

normalisation constant. Since the travelling modes now form a discrete set, we shall

calculate their dispersion relation. Thus, applying Dirichlet boundary conditions (2.66)

and using relations (2.33) and (2.35) to simplify, we can obtain the general dispersion

relation for the discrete modes. For any polarisation λ = TE, TM we have

− e−ikza = Rλ ± Tλ. (2.68)

If we substitute the reflection and transmission coefficients (2.31) for the TE polarisa-

tion into the equation above, after some algebraic manipulation, we find an alternative

way of writing the dispersion relations. Thus, for symmetric and antisymmetric modes,

respectively, they read

kzd tan

(

kzdL

2

)

= kz cot

(

kz

2
(a − L)

)

TE, S (2.69)

−kzd cot

(

kzdL

2

)

= kz cot

(

kz

2
(a − L)

)

TE, A. (2.70)

One can also get the corresponding dispersion relations for the TM polarisation by

using RTM and TTM .

Let us get back to the expressions for the symmetric travelling modes, as given

on page 48. One can use the dispersion relation (2.68) to rewrite the reflection and

transmission coefficients in terms of the width of the box a. Then, for any polarisation



Chapter 2. Field quantisation in the presence of a dielectric slab 49

λ, the modes are given by

fS,A
kλ (r) =

√
2Nλ eik‖·r‖ ×























i e−ikza/2 sin(kz(a/2 + z)) z ≤ −L/2

(Iλ ± Jλ)
(

eikzdz ± eikzdz
)

/2 |z| ≤ L/2

±i e−ikza/2 sin(kz(a/2 − z)) z ≥ L/2

where the coefficients Iλ and Jλ are given by Eq. (2.36), and can also be written in

terms of a by using the dispersion relations. In order to calculate the normalisation

constant Nλ, we shall use the normalisation condition (2.14), which is valid for discrete

kzd components. By substituting the modes (for any polarisation λ) in each region of

space (vacuum-dielectric-vacuum) into Eq. (2.14), and then integrating over the whole

of space, we obtain a lengthy expression for the normalisation constant. Nevertheless,

what is important to note — as we are particularly interested in the limit of an infinite

quantisation volume — is that only one term rises linearly and the rest vanish as a → ∞.

In such a limit, the normalisation constant is given by

|Nλ|2 ∼ 1

(2π)2
1

a − L
. (2.71)

In order to obtain the trapped modes that arise from the quantisation box, the

procedure is the same. However, it is much easier in this case because it is more

natural to think of them as a discrete set, and we have already classified them into

symmetric and antisymmetric modes (page 39). To write a complete solution to the

Helmholtz equation, we must add the exponentially rising solutions that we neglected

in our previous analysis (with the purpose of obtaining well behaved functions, i.e.,

that vanish far away from the surface of the slab). For instance, to the right of the

slab, where the solution was ∼ e−κz, we have to add eκz. Therefore, we can express
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the modes outside the slab in terms of hyperbolic functions, as follows

fS,A
kλ (r) =

√
2Nλ eik‖·r‖ ×























−eκa/2 sinh(κ(a/2 + z)) z ≤ −L/2

(Iλ ± Jλ)
(

eikzdz ± eikzdz
)

/2 |z| ≤ L/2

∓ eκa/2 sinh(κ(a/2 − z)) z ≥ L/2

Note that they can alternatively be obtained from the expressions for the travelling

modes, by replacing kz = iκ (i.e., by analytic continuation). We can see that, intro-

ducing a quantisation volume only shifts the frequencies of the trapped modes by an

amount that vanishes in the limit a → ∞, recovering thus the modes given on page 39.

If we apply the continuity conditions (2.24) at the dielectric-vacuum interface, we get

the following dispersion relations

kzd tan

(

kzdL

2

)

= κ coth
(κ

2
(a − L)

)

TE, S (2.72)

−kzd cot

(

kzdL

2

)

= κ coth
(κ

2
(a − L)

)

TE, A. (2.73)

These equations look very similar to the dispersion relations for the travelling modes

(Eqs. (2.69) and (2.70), respectively). We can recover them simply by replacing kz = iκ,

which implies the analytic continuation that we mentioned previously. Furthermore, if

we take the limit a → ∞ (i.e. use limx→∞ coth(x) = 1), we can recover the dispersion

relations for free space, as given in Eqs. (2.45) and (2.48). Clearly, the same applies for

the TM polarisation, and similiar equations are obtained. We can thus intuit another,

more general way to write them. After some simple but extensive algebra we obtain a

general formula for any polarisation or parity,

−eκa = (Rλ ± Tλ) |kz = iκ . (2.74)

2.4.3 The proof of the completeness

So far, we have discretized the spatial modes of the system by using the quantisation

box, and our goal is how to prove the completeness of the modes for the original system.
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Thus, we shall calculate first the product fkλ(z)f∗
kλ(z′), sum over all the modes as in

(2.15) and then take the limit of an infinite quantisation volume. We shall concentrate

in the region that is to the right of the slab, on z, z′ ≥ L/2. The calculation of the

contribution to completeness from the trapped modes is obtained straightforwardly,

as taking the limit does not cause any difficulty and one can easily recover the old

expressions. Thus, the product of the trapped modes that exist to the right of the slab,

inside the box, is given by

fS,A
kλ (z)fS,A∗

kλ (z′) = 2|Nλ|2 sinh(κ(a/2 − z)) sinh(κ(a/2 − z′))eκa (2.75)

a→∞−→ |Mλ|2
∣

∣

∣
LS,A

λ

∣

∣

∣

2
e−κ(z+z′). (2.76)

The total contribution to completeness from the trapped modes is obtained by adding

both polarisations

∫

d2k‖
∑

kz ,λ

√
εf i

kλ(r)
√

εf∗j
kλ(r′)

∣

∣

∣

∣

∣

∣

evan.

=
∑

λ

êi
λ(∂r)êj

λ(∂r′)

∫

d2k‖
∑

kz

|Mλ|2
∣

∣

∣L
S,A
λ

∣

∣

∣

2
e
−κ(z+z′)+ik‖·(r‖−r

′
‖
)
. (2.77)

Since the coefficients Mλ and LS,A
λ do not depend on the position r, we can substitute

their values from Eqs. (2.49), (2.41) and (2.42) for the TE polarisation and (2.56),

(2.50) and (2.51) for the TM polarisation, to obtain a more explicit expression,

∫

d2k‖
∑

kz,λ

√
εf i

kλ(r)
√

εf∗j
kλ(r′)

∣

∣

∣

∣

∣

∣

evan.

=
êi
TE(∂r)êj

TE(∂r′)

(2π)2(n2 − 1)

∫

d2k‖ e
ik‖·(r‖−r

′
‖
)
∑

κTE

k2
zd e−κ(z+z′−L)

n2 L
2 k2 + k2

‖/κ

+
êi
TM (∂r)êj

TM (∂r′)

(2π)2(n2 − 1)

∫

d2k‖ e
ik‖·(r‖−r′

‖
)
∑

κTM

k2
zd e−κ(z+z′−L)

L
2 (k2

‖ + n2κ2) + k2
‖/κ

. (2.78)

From Eqs. (2.41) and (2.42) we see that
∣

∣LS
TE

∣

∣ =
∣

∣LA
TE

∣

∣ (and the same for the TM

polarisation), and thus the expressions look the same regardless the parity. However,
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the sum over κ includes both symmetric and antisymmetric modes, as they satisfy

different dispersion relations.

The treatment for the travelling modes contribution is not so simple since it is not

obvious what happens in the limit of an infinite quantisation volume, and thus we have

to proceed with more insight. For instance, it is not evident what happens to the

functions f
S,A
kλ (r) or to the dispersion relations (2.69) and (2.70) in such a limit, where

we get very rapid oscillatory functions containing information related to the density of

modes. It is important to bear in mind that this formalism, in which we have classified

travelling modes into symmetric and antisymmetric modes, is indeed equivalent to the

one in terms of right- and left-incident modes. However, it is essential to express the

modes in this way, in order to make them compatible with the boundary conditions at

the edge of the box. Thus, we will be able to obtain the factor that correctly transforms

a sum over the discrete modes into an integral, in the limit a → ∞. This misleading

factor, given in Ref. [78], was introducing divergences into our results when we were

just basing our calculations on those published results.

The dispersion relations tell us the allowed values of kz for each value of the fre-

quency ω. This of course must be related to the density of modes, which describes

the number of states at each energy level that are available to be occupied, as it is

normally defined in solid state physics [98]. Furthermore, the density of modes is used

to transform from a discrete summation over field modes to a continuous one.

To understand how to calculate such a density of states, let us consider first a

much simpler system: the particle propagating freely in a zero or constant potential.

In this case it would be difficult to deal with the normalisation of the momentum or

energy eigenfunctions. This is why it is convenient to constrain the particle in a finite

volume V , i.e., a cubic box of linear dimension a. In such a way, in the limit V → ∞

we can recover the free moving particle, and moreover, before taking the limit we are

allowed to do calculations using properly normalised states. What we have to do next

is solve Schrödinger’s equation, describing the particle by the wave function Ψ(x, y, z).

Its solutions are plane waves Ψ(x, y, z) ∼ eik·r, and we shall apply appropriate periodic
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boundary conditions which are the periodic conditions, i.e. Ψ(x, y, z+∆z) = Ψ(x, y, z),

and the same for the other coordinates. This implies that the components ι = x, y, z

of the wave vector k must be of the form

kι =
2πn

a
n = 1, 2, 3 . . . (2.79)

Taking differentials of this expression, we find that the number of modes between kz

and kz +∆kz is dnz = a
2π dkz. That means that the sum over modes can be transformed

into an integral in the limit a → ∞ by using

∞
∑

n=0

a→∞−→
∫ ∞

0
dn =

a

2π

∫ ∞

0
dkz. (2.80)

We want to do exactly the same for our system; and the relation analogous to (2.79)

would be, for instance, the dispersion relation (2.69) for the TE symmetric modes. It

is convenient to first rewrite it in terms of the two independent variables, kz and k‖.

Eq. (2.69) becomes

√

(n2 − 1)k2
‖ + n2k2

z tan

(

L

2

√

(n2 − 1)k2
‖ + n2k2

z

)

= kz cot

(

kz

2
(a − L)

)

. (2.81)

Hence, in order to find its solutions, we can plot the left- and right-hand side functions,

as shown in Fig. 2.8 in red and blue, respectively. Note that we have used L to rescale

our variables and taken an arbitrary value of a. We have set a to be much bigger than

the width of the slab L. Then, for a fixed k‖, the solutions are the intersections of the

blue and red plots.

It can be seen that the right-hand side function of Eq. (2.81), plotted in blue,

oscillates very rapidly. Thus, increasing the argument by a factor of π implies

∆kz

2
(a − L) = π ⇒ ∆kz =

2π

a − L
, (2.82)

which is a much shorter period than the one for the left-hand side function in Eq. (2.81),
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Figure 2.8: The intersections of the left- and right-hand side functions of Eq. (2.81), plotted in blue
and red, respectively, show the solutions to the dispersion relation for the TE symmetric travelling
modes.

and it vanishes in the limit a → ∞. This illustrates the fact that the spacing between

eigenvalues diminishes as the size of the boundary increases, until eventually kz is a

continuous variable and the summation over n becomes an integral in kz. Therefore, if

we number the solutions of the dispersion relations by m, and sum them in the limit

a → ∞, it should transform in the following way,

∞
∑

m=1

a→∞−→
∫ ∞

0
dm =

∫ ∞

0
dkz

(

∂m

∂kz

)

=

∫ ∞

0
dkz

(

∂kz

∂m

)−1

. (2.83)

From Eq. (2.81) we can define

F (kz) ≡

√

(n2 − 1)k2
‖ + n2k2

z

kz
tan

(

L

2

√

(n2 − 1)k2
‖ + n2k2

z

)

, (2.84)

which is a slowly varying function. Let us suppose that we know the mth solution to

the dispersion relation (2.81). Thus we can write,

F (k(m)
z ) = cot

(

k
(m)
z

2
(a − L)

)

. (2.85)
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From Eq. (2.82) we know that its next solution is given by

k(m+1)
z = k(m)

z + ∆kz (2.86)

= k(m)
z +

2π

a − L
+ δkz , (2.87)

therefore one can write the function F (kz), as a Taylor expansion

F (k(m+1)
z ) ≈ F (k(m)

z ) +
∂F

∂kz
∆kz, (2.88)

and the same for the right-hand side of Eq. (2.85), round the phase δkz

cot

(

k
(m+1)
z

2
(a − L)

)

= cot

(

k
(m)
z

2
(a − L)

)

− (a − L) δkz

2 sin2
(

k
(m)
z

2 (a − L)
) , (2.89)

where the last term in the equation above is the derivative in kz of the cotangent

function times δkz . Comparing the two equations above we can thus conclude that

∂F

∂kz

(

2π

(a − L)
+ δkz

)

= − (a − L) δkz

2 sin2
(

k
(m)
z

2 (a − L)
) (2.90)

and simply obtain δkz from this expression. Also, it can be seen from Eq. (2.87) how

the solutions change

∂kz

∂m
=

2π

a − L
+ δkz , (2.91)

so we can simply substitute the obtained value of δkz and calculate the inverse of

∂kz/∂m, as required in Eq. (2.83). Hence the factor that transforms a sum into an

integral in the limit a → ∞ is given by

∞
∑

m=1

a→∞−→
∫ ∞

0
dkz

[

a − L

2π
+

1

π

∂F

∂kz
sin2

(

kz

2
(a − L)

)]

, (2.92)

where the derivative ∂F/∂kz must come from Eq. (2.84). One can see that the second

term inside the square brackets is finite for real kz and thus it can be neglected.

For this derivation we have considered the dispersion relation (2.69) for TE sym-
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metric modes, but the same result would be obtained for the other modes.

An alternative way of deriving the prescription of how to turn the sum over modes

into an integral over kz in the limit a → ∞, would be to consider the relations between

Rλ and Tλ given in Eqs. (2.33) and (2.35) to conclude that |Rλ + Tλ| = 1, which is

equivalent to

Rλ + Tλ = e2iδs , (2.93)

with δs real. Note that this relation agrees with the dispersion relation obtained in

Eq. (2.68). Replacing the expression above into the symmetric modes at z > L/2 we

obtain,

fS
kλ(z ≥ L/2) =

√
2Nλeik‖·r‖+iδs cos(kzz + δs). (2.94)

It can be seen that the presence of the slab in the quantisation volume manifests itself

as a phase shift δs of the modes calculated in the empty quantisation box. Applying

the boundary condition (2.66) we get

kza

2
+ δs =

(

m +
1

2

)

π, (2.95)

where m is an integer. This, together with the relation (2.93), is equivalent to the

dispersion relation (2.68) obtained previously. As was explained, in the limit of a very

large quantisation box, these discrete modes move closer and closer together, until we

get a continuous distribution. Therefore, in order to transform the sum into an integral

we shall simply calculate the derivative of the equation above, as needed in Eq. (2.83)

∞
∑

m=1

a→∞−→
∫ ∞

0
dkz

(

a

2π
+

1

π

∂δs

∂kz

)

. (2.96)

Since the derivative of the phase shift stays finite as a → ∞, one can ignore the second

term.

We can now proceed with the calculation of the contribution to completeness from

the travelling modes. We shall first calculate the product fkλ(z)f∗
kλ(z′), using the

normal modes that we obtained through the quantisation box. For any polarisation λ
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we have

fS,A
kλ (z)fS,A∗

kλ (z′) = 2|Nλ|2 sin(kz(a/2 − z)) sin(kz(a/2 − z′))

=
1

2
|Nλ|2

(

eikz(z−z′) − eikz(z+z′−a) + C.C
)

. (2.97)

As we need to sum over symmetric and antisymmetric travelling modes, we find it

convenient to substitute their respective dispersion relation (2.68) into Eq. (2.97), to

hide the a-dependence before taking the limit. In that way, the expressions above do

not contain explicitly the width of the box. Thus, the contribution to completeness

from travelling modes reads

∑

kz ,λ

fkλ(z)f∗
kλ(z′) =

∑

kz ,λ

(

fS
kλ(z)fS∗

kλ (z′) + fA
kλ(z)fA∗

kλ (z′)
)

(2.98)

=
∑

kz ,λ

|Nλ|2
(

eikz(z−z′) + Rλeikz(z+z′) + C.C
)

, (2.99)

which can be transformed into an integral in kz in the limit of an infinite quantisation

volume, by using Eq. (2.92). Notice that the factor a−L appearing in the normalisation

constant, cancels with the a − L that appears in the factor that transforms the sum

into an integral. Thus, in the limit we can write

∑

kz

fkλ(z)f∗
kλ(z′)

a→∞−→ 1

(2π)3

∫ ∞

0
dkz

(

eikz(z−z′) + Rλeikz(z+z′) + C.C
)

=

∫ ∞

−∞
dkz

(

fR
kλ(z) fR∗

kλ (z′) + fL
kλ(z) fL∗

kλ (z′)
)

, (2.100)

and adding the integral in k‖ and the sum over polarisations we get,

∫

d2k‖
∑

kz,λ

∫ √
εf i

kλ(r)
√

εf∗j
kλ(r′)

∣

∣

∣

∣

∣

∣

trav.

= (δij − ∆−1∂i∂j)δ
(3)(r − r′)

+
1

(2π)3

∑

λ

êi
λ(∂r)êj

λ(∂r′)

∫

d2k‖

∫ ∞

−∞
dkz Rλ(kz ,k‖) e

ikz(z+z′)+ik‖·(r‖−r′
‖
)
.

(2.101)
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2.4.4 New integration path

Since we want to prove the completeness relation (2.15), we need to sum over the

travelling and trapped modes. We have utilised a finite quantisation volume to obtain

the field modes, and hence there is no ambiguity in how to carry out such a sum,

because all modes are discrete. We have obtained so far that, in the limit of an infinite

quantisation volume, that the contribution to completeness coming from travelling

modes is given by Eq. (2.101) and from trapped modes by Eq. (2.77). Adding both

contributions

∫

d2k‖
∑

kz ,λ

∫ √
εf i

kλ(r)
√

εf∗j
kλ(r′)

∣

∣

∣

∣

∣

∣

all

= (δij − ∆−1∂i∂j)δ
(3)(r − r′) +

∑

λ

êi
λ(∂r)êj∗

λ (∂r′)

∫

d2k‖e
ik‖·(r‖−r

′
‖
)

×





1

(2π)3

∫ ∞

−∞
dkz Rλ(kz,k‖) eikz(z+z′) +

∑

kz

|Mλ|2
∣

∣

∣L
S,A
λ

∣

∣

∣

2
e−κ(z+z′)



 .

(2.102)

We have realised that this expression is the same that we would have originally obtained

by simply using the modes obtained in sections 2.2.1 and 2.2.2, without any quantisation

box. In that case the sum over modes comprises an integral over travelling modes and

a discrete sum over trapped modes, with travelling modes normalised as in the plane-

wave case. This means that travelling and trapped modes should be added together

without any additional weighting factor, in contrast to the suggestion made by Khosravi

and Loudon in Eq. (4.13) of Ref. [77], that a factor 2π/L should be used in front of

the trapped modes. They do not give any arguments or explanation on how to derive

it, and we shall stress that it is not very clear from their paper to which part of the

calculation that factor was applied.

One can see from Eq. (2.102), that the first term in this expression is already the

transverse delta function that we require. However we still have to prove that the terms

inside the round brackets cancel out each other. Finding out the right way to do it will
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Figure 2.9: Integration contour in the kz plane. The branch cut is due to the square root of kz, thus
Γ =

√
n2 − 1k‖/n

be crucial to figure out the most convenient way to add discrete and continuous modes.

For the simpler system of a semi-infinite dielectric half-space the quantisation was

first achieved by Carniglia and Mandel [99], although they left unsolved the proof of

the completeness of the electromagnetic field modes, which was shown later on in a

paper by Bialynicki-Birula and Brojan [100]. In their calculation, Bialynicki-Birula

and Brojan manage to combine the contribution from travelling modes (in the form

of an integral in the real kz−axis) and the one from evanescent modes (which is an

integral in the imaginary kz−axis), into one single expression: a contour integral in

the complex kz plane. This contour, as illustrated in Fig 2.9, consists of two halves

of the real axis and part of the imaginary axis up to the branch point of the function

(2.28). Their calculation has inspired us to do something similar, especially as we have

learned, from frustrating attempts at calculating the travelling and trapped modes

contributions separately, about the importance of having a single equation. Choosing

the right integration path, one analogous to Fig. 2.9, will make a meaningful difference,

guiding us to possibly the easiest method of tackling the problem of adding travelling

and trapped modes in an unambiguous way.

The chief problem will be solving the integral in kz contained in Eq. (2.102). Since

the TE and TM polarisations are independent, and the procedure followed for each one

is very similar, we will provide a more detailed description of the procedure only for
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the TE modes. We are thus interested in the calculation of the integral

∫ ∞

−∞
dkz RTE(kz,k‖) eikz(z+z′), (2.103)

where RTE is the reflection coefficient (2.31). One can work out this integral in kz by

using complex analysis and closing the contour in the complex plane. As the argument

of the exponential in the integrand is z + z′−L > 0 (where we have taken into account

the phase that comes up from Rλ), and we are only looking at the case z, z′ ≥ L/2, we

must close the contour in the upper half-plane. In order to proceed with the evaluation

of the integral (2.103) we have to understand its analytic properties. These will become

more evident if we substitute the Fresnel coefficient (2.32) into the reflection coefficient

(2.31), obtaining

RTE =
(k2

z − k2
zd) e−ikzL

[kz − ikzd tan(kzdL/2)] [kz + ikzd cot(kzdL/2)]
. (2.104)

In such a way, it can be seen that the reflection coefficient has poles in the upper

half-plane, at kz = iκ given by Eqs. (2.45) and (2.48), where the trapped modes

occur. In other words, the poles correspond to the location of the bound states [101],

which are solutions of the dispersion relations. One might find it surprising the fact

that the bound states are mathematically related to the reflection coefficients this way.

However, this is a well know fact [102]. Also, it was shown by Wylie and Sipe [89] in

a paper about the quantum electrodynamics near an interface, that the surface effects

depend only on the appropriate Fresnel coefficient. More specifically, contributions of

surface excitations can be easily investigated because they are indicated by poles in

those coefficients. We can hence generalise this idea for our case.

As shown in Fig (2.10), these poles are located on the complex kz-axis, at κS =

kzd tan(kzdL/2) and κA = −kzd cot(kzdL/2), appearing, periodically, one symmetric

solution κS after an antisymmetric solution κA, up to kz = i
√

n2 − 1k‖/n. Thus, by

closing the contour in the upper half-plane, we pick up residues from those poles.

It is well-known from complex variable techniques that a set of isolated singularities
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Figure 2.10: Integration contour for the travelling modes contribution. The figure shows the location
of the poles of Rλ on the posive complex kz plane, which are located up to kz = iΓ = i

√
n2 − 1k‖/n.

Thus, by closing the contour in the upper half-plane, we pick up residues from these poles.

can be handled very nicely by deforming the contour. From the residue theorem [103],

we know that the circular integral around a simple pole is given by,

∮

f(z)dz = 2πia−1 (2.105)

where a−1 is the residue and the contour integral is taken in the clockwise direction.

Since we have closed the contour in the upper-half plane, and the integral is otherwise

analytic, one can thus deform this contour, enclosing each pole κn = κA, κS in small

circles. Therefore, the problem of evaluating one contour integral is replaced by the

algebraic problem of computing residues at the enclosed singular points.

The procedure to calculate these residues is a standard one, bearing in mind that

kz and k‖ are independent variables, and that kzd is a function of them, as shown in

Eq. (2.28). Thus, to calculate the residue of the nth pole of RTE at kz = iκn that

corresponds, for instance, to a symmetric trapped mode, we shall write Eq. (2.104)

more conveniently as a product of the denominator that has the pole and some function

H(kz,k‖),

RTE =
H(kz ,k‖)

kz − ikzd tan(kzdL/2)
. (2.106)
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As the residues are typically obtained using

Res[Rλ(kz ,k‖)]kz=iκn
= lim

kz→iκn

(kz − iκo)Rλ(kz ,k‖), (2.107)

we can use L’Hospital’s rule [104] to take the limit when calculating the residue,

Res[RTE(kz,k‖)]kz=iκn
= lim

kz→iκn

H(kz,k‖)

kz − ikzd tan(kzdL/2)
(kz − iκn) (2.108)

= lim
kz→iκn

H(kz ,k‖)

1 − i ∂
∂kz

[kzd tan(kzdL/2)]
. (2.109)

We can calculate the residues around the second set of poles, the corresponding to the

antisymmetric trapped modes. Thus, in total for the TE polarisation we get

∫ ∞

−∞
dkz RTE(kz ,k‖) eikz(z+z′) = 2πi Res

[

RTE(kz ,k‖) eikz(z+z′)
]

(2.110)

= − 2π

n2 − 1

∑

κ

k2
zd e−κ(z+z′−L)

n2 L
2 k2 + k2

‖/κ
, (2.111)

where the sum runs over the location of the poles.

In order to calculate the integral (2.103), for the TM polarisation, we shall rewrite

the reflection coefficient as

RTM =
(n4k2

z − k2
zd) e−ikzL

[n2kz − ikzd tan(kzdL/2)] [n2kz + ikzd cot(kzdL/2)]
, (2.112)

in such a way that it has the same form as (2.106) and the residues can be calculated

by using the same procedure. In this case, the poles correspond to the solutions of the

dispersion relations (2.53) and (2.55). Taking into account both sets of poles, for the

symmetric and antisymmetric modes, the integral finally reads

∫ ∞

−∞
dkz RTM (kz ,k‖) eikz(z+z′) = 2πi Res

[

RTM (kz,k‖) eikz(z+z′)
]

(2.113)

= − 2π

n2 − 1

∑

κ

k2
zd e−κ(z+z′−L)

L
2 (k2

‖ + n2κ2) + k2
‖/κo

, (2.114)
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where the sum runs over the location of the poles, as shown in Fig. 2.10. It can be

seen that the integrals (2.111) and (2.114), times the factor 1/(2π)3, are equal to the

contribution from the evanescent modes (2.78), but with opposite signs,

1

(2π)3

∫ ∞

−∞
dkz Rλ(kz ,k‖) eikz(z+z′) = −

∑

kz

|Mλ|2
∣

∣

∣
LS,A

λ

∣

∣

∣

2
e−κ(z+z′). (2.115)

Therefore, the term in round brackets in Eq. (2.102) is zero for each polarisation,

leaving only the desired transverse delta function, as required in Eq. (2.15) to prove

the completeness of the field modes.

2.5 Discussion

In this chapter we have quantised the electromagnetic field in the presence of a finite

width dielectric slab. We have derived the modes and checked their orthonormality and

completeness. Even though this system has been studied previously, the completeness

of the modes was not proven, probably because, as it was shown, the procedure is not

trivial. Clearly, this is due to the fact that the spectrum of modes includes a set of

continuous travelling modes and a set of discrete trapped modes, and thus it is difficult

to know a priori how to add them with the correct relative weightings. Therefore

we introduced a quantisation box. Since all modes become discrete in a quantisation

box, one can add them in an unambiguous way. By taking the limit of an infinite

quantisation volume, we can recover our original modes, as obtained in free space, and

hence a correct way to sum them.

Although the proof of the completeness relation (2.15) is very important in order

to demonstrate that we are working with the correct set of modes (and not missing

any of them), we shall remember that the original reason that we had, to embark

on the completeness calculation, was to understand how to add all modes. This is

because a typical second-order perturbative calculation in quantum electrodynamics,

like the one of the Casimir-Polder force between an atom an a dielectric slab, involves a

product of mode functions and a sum over intermediate photon states. Clearly, this sum
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Figure 2.11: The red dotted line shows the new integration path in the complex kz-plane. The
sum over trapped modes can be transformed into a contour integral that goes round the poles on the
imaginary axis.

consists of a continuous and a discrete part, corresponding to the travelling and trapped

modes, respectively, and that is why the results obtained are of vital importance. Thus,

following in reverse the procedure described in section (2.4.4), one can transform the

sum over trapped modes into a contour integral in the complex kz plane and then

combine it with the integration path for the travelling modes (along the real kz axis),

obtaining one single integration path, as shown in Fig. 2.11. These results have been

presented recently in [105].

In general, for any function Q(kz ,k‖) in the integrand, assuming that such a function

is analytic in the vicinity of the poles of the reflection coefficients RTE and RTM on

the positive imaginary kz axis, one can calculate the sum over all modes by writing it

in the following way,

∫

d2k‖
∑

kzλ

∫

Q(kz,k‖)
√

εf i
kλ(r)

√
εf∗j

kλ(r′)

∣

∣

∣

∣

∣

∣

all modes

=
1

(2π)3

∫

d3k Q(kz,k‖) eik·(r−r′)

+
1

(2π)3

∑

λ

∫

d2k‖

∫

C
dkz Q(kz ,k‖) Rλ(kz,k‖) e

ikz(z+z′)+ik‖·(r‖−r
′
‖
)
. (2.116)

The resulting integral can be evaluated by using complex variable techniques, by de-
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forming the integration path C, shown in Fig. (2.11), in the most convenient way. As

can be seen, it encloses all poles of Rλ. Note that in the equation above, the first term

on the right-hand side corresponds to the free-space contribution and thus it will be

eliminated in the energy-level shift calculation through renormalisation. More details

will follow in the next chapter, where we will apply our main result (as given in Eq.

(2.116)) to the calculation of the Casimir-Polder force on an atom near a dielectric slab.



Chapter 3

Energy-level shift of an atom in

front of a dielectric slab

Though the calculation of the energy-level shift of an atom near a dielectric slab may

seem to be a basic problem, its solution has not yet been obtained in an exact way. In

fact, only a few systems of high symmetry have been studied by means of an explicit

mode expansion of the electromagnetic field, which is the procedure that would facilitate

obtaining analytical formulae. Nevertheless, if one wishes to consider more complex

systems, e.g., atoms near absorbing boundaries, it will require other methods to study

quantum electrodynamics [7]. However, applying such results1 to a particular case

might require extensive numerical calculations. Using those formalisms, the energy-

level shift of atoms due to the presence of conducting or permeable media has been

calculated for several systems, including spheres, cylinders, and dielectric half-spaces

[86].

As we have emphasized, we are interested in a calculation based on the explicit

mode expansion of the electromagnetic field, which should lead us to a very simple and

practical result. The field quantisation for this system has been achieved in chapter 2.

A much simpler calculation of another quantum effect that arises from the atom-field

interaction that also necessitates such a quantisation, is the one for the radiative decay

1Generally in terms of Green functions.

66
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rate of the atom. The standard way to calculate it is through the Fermi’s Golden Rule2,

though it can also be obtained based on the nonlocal treatment of optical response. A

brief explanation of the latter is presented in Ref. [107], where some graphs for the

radiative decay of the atom as a function of its distance from the surface of the slab

are given. It is shown that the contribution due to the wave guide modes is very large

when the atom is placed inside and just outside the slab. Also, as expected, the effect

of the slab vanishes at large atom-surface separations.

We have given in the introduction, in section 1.2.2, a review on the work done to

date to calculate the spontaneous emission (i.e., the radiative rate) for the same system.

Several researchers have attempted this calculation. Nevertheless, the problem that

they encounter is to figure out the proper way to sum over all photon states, as arises

from perturbation theory. Of course, the same problem emerges for the calculation of

the energy-level shift. As people have not found the most convenient way to perform

such summation, a complete analytical calculation has not been successful. We have

explained in the previous chapter that the complication arises from having to sum over

a discrete set of trapped modes and a continuous spectrum of travelling modes. Now,

we have came up with the correct way to sum over all modes. We have shown that

the sum over discrete trapped modes can be seen as a sum of residues of an integral in

the complex kz plane, where such residues are located on the imaginary axis. Thus, by

combining this with the integral in kz that arises from the travelling modes contribution,

one can obtain an integration path in the complex kz plane that facilitates the sum

over all modes. This trick is summarised in Eq. (2.116), and it is not difficult to apply

it to the energy-shift calculation. Such a procedure will be shown is section 3.5. Then,

we can use complex-variable techniques and deform the integration contour in order to

calculate the integral in a more efficient and suitable way.

In chapter 1 we introduced the concept of retardation, and its importance depends

on how appreciably the atoms evolve during the time-scale of the interaction. It is clear

then, that only two regimes matter in this problem. The most interesting one is the

2See for instance Ref. [106].
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Figure 3.1: Atomic dipole and its image in the other side of the interface of a perfect conductor.

retarded regime, in which we take into account the coupling of the atom to the fluctu-

ating electromagnetic field. On the other hand, we know that when the atom is close

to the surface we can neglect the fluctuations of the field and thus the dispersion forces

are dominated by the Coulomb interaction between the fluctuating dipole moment of

this atom and the solid dielectric. This is called the non-retarded regime. In this chap-

ter we shall demonstrate how to obtain a general formula that describes the shift as

a function of the atom-surface separation Z and the thickness of the slab L. Then,

we shall proceed with an asymptotic analysis for both the retarded and non-retarded

regimes. In such a way, we can obtain explicit expressions for the energy-shift in terms

of the thickness, and thus make apparent the variation of the Casimir-Polder due to the

thickness of the slab. More details on the criteria for retardation and how to perform

this analysis will be given in section 3.6.

Alternatively, we can calculate the non-retarded or electrostatic interaction by using

an electrostatic treatment. As it was shown by Lennard-Jones [108] for an atom in front

of a conducting plate, this interaction can be calculated by using the image method,

considering the dipole-dipole interaction of this atom with its image on the other side

of the interface (see Fig. 3.1). The resulting energy reads
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∆E = − 1

64πǫoZ3
(|µ2

‖| + 2|µ2
⊥|), (3.1)

where µ‖ and µ⊥ are the parallel and perpendicular components of the electric-dipole

moment operator, respectively. Later on McLachlan [14] showed that the image method

can be extended for the interaction of an atom with a solid dielectric. The interaction

energy is given by

∆E = −ε − 1

ε + 1

1

64πǫoZ3
(|µ2

‖| + 2|µ2
⊥|), (3.2)

where ε is the dielectric permittivity. A detailed explanation on the calculation of the

electrostatic interaction will be given in section 3.6.2.

First of all, in section 3.1, we shall describe the model utilised in the present work.

In section 3.2, a description of the interaction hamiltonian that we have adopted will

be provided. Then, the application of second-order perturbation theory will follow in

order to obtain the energy-level shift of the atom. Contributions from travelling and

trapped modes will be initially treated separately, until section 3.5, where the trick

that we derived (Eq. (2.116)) will be necessary in order to achieve the final result. In

the last section of this chapter we shall calculate the double-integral that arises from

the calculation, but only for certain interesting limits in both the retarded and the

non-retarded regimes.

3.1 The model

We consider only a neutral atom in its ground state. We use the electric dipole approx-

imation [109, 110], which is adequate because, for the relevant modes, the electromag-

netic field varies slowly over the size of the atom. We assume that the atom’s centre is

fixed at the position ro = (0, 0, zo), which is a distance Z = zo−L/2 from the surface of

the dielectric slab as shown in Fig. 3.2. The slab’s interfaces are located at z = ±L/2,

and its properties are as described in the previous chapter.

In this work we have only considered the system at zero temperature though one

can relatively easily extend this calculation to a system at finite temperature, as was
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Figure 3.2: Single-electron atom in front of a dielectric slab

done for the simpler system of a semi-infinite dielectric half-space [111].

Furthermore, the model assumes that the interaction between the atom and the

surface is purely electromagnetic, i.e. that the overlap of the surface with the wave

function of the atomic electron is negligible. One is allowed to make this assumption

because the distance Z is much greater than the size of the atom. In fact, if we do

not consider this assumption, we have to take into account the interaction of the atom

with the solid-state of the surface potential. The latter has been done in [112], for the

calculation of the van der Waals interaction between an atom and a planar surface. In

this work, they employed the retarded surface response function to describe the metal,

which allowed them to obtain the binding energies of helium on simple metal surfaces.

We are only concerned by the energy-level shift of an atom located in free-space.

The problem of an atom embedded in a material medium is far more complicated to deal

with. Nevertheless, some theoretical work can be found in the literature [80], especially

motivated by experiments that were performed previously [82]. When one considers

an atom inside a dielectric, a microscopic theory might be required to calculate the

polarisability of the atom. This gives the response of the atom to the effective or local

field. The value of such a local field that acts at the site of an atom is significantly
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different from the value of the macroscopic electric field. A classical treatment of the

local-field corrections can be obtained by using the Clausius-Mossotti model [98]. In

this model, the local electric field is written in terms of the macroscopic electric field

and the commonly used induced polarisation field. However, it was proven in a paper

by Scheel et al [113] that the polarisation fluctuations in the local field can dramatically

change the spontaneous decay rate, compared with the familiar result obtained from

the classical local-field correction. In order to avoid such complications, we shall restrict

ourselves to the study of the effects of an atom located in free space.

3.2 The Hamiltonian

Quantum electrodynamics deals with the interaction of radiation and charges. The

Hamiltonian can be obtained from the Lagrangian, like in classical mechanics, as the

Hamiltonian corresponds to the Legendre transform of the Lagrangian[114]. Then, for

a quantum mechanical treatment, we shall replace the classical variables with the quan-

tum operators. The Hamiltonian of an atom coupled to any quantised electromagnetic

field has three main components: Hrad + Hatom
o + H int. The first one refers to the free

electromagnetic radiation field, and it is given by

Hrad =

∫

dτ(E2 + B2). (3.3)

Note that in the gauge in that we are working it is sufficient to quantise only the trans-

verse electromagnetic field. The longitudinal field energy is replaced by instantaneous

Coulomb interactions among particles [3]. The remaining terms refer to the atomic

hamiltonian

H = Hatom
o + H int =

(p − eA)2

2m
+ VCoul(r) + Ves(r). (3.4)

In this expression, the first term includes the coupling of the atom to the electro-

magnetic field; VCoul(r) refers to the non-retarded electron-nucleus potential, i.e. the
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Coulomb interaction between the ion core and the electron within the atom, given by

VCoul(r) =
α

|r − ro|
, (3.5)

where α is the fine structure constant. Note that we set c = 1 = h̄ and use Heaviside-

Lorentz units for electromagnetic quantities ǫo = 1 = µo. Thus the free structure

constant is α = e2/4πǫoh̄c = e2/4π ≃ 1/137. In the eq. above, Ves is the electrostatic

interaction between the atomic dipole and its image charges due to the presence of the

dielectric. This interaction can normally be obtained by using the image method [11].

However, for this system the calculation turns out to be more complicated, since we

have to deal with two interfaces.

As was explained in chapter 2, we have chosen to work in the generalised Coulomb

gauge. Since the dielectric function ε(r) is constant over the whole of space, with a

discontinuity at the interface, this gauge is equivalent to the Coulomb gauge ∇ · A =

0. We shall only make sure that the physical fields satisfy the appropriate matching

conditions at the boundary. The advantage is that one could simplify the atomic

Hamiltonian above

H =
p2

2m
+ VCoul(r) − e

m
(A · p) +

e2A2

2m
+ Ves(r), (3.6)

and identify from that expression the unperturbed Hamiltonian, which corresponds to

the Hamiltonian of a free atom (without field)

Hatom
o =

p2

2m
+ VCoul(r). (3.7)

Hence, we can also recognise the remaining terms as the interaction Hamiltonian

H int = − e

m
(A · p) +

e2A2

2m
+ Ves(r), (3.8)

and thus apply perturbation theory in order to calculate the effects of the interaction
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of the atom with the dielectric slab.

An extensive calculation for the half-space case was done in [76] by applying first

and second-order perturbation to the the minimal coupling Hamiltonian of Eq. (3.8).

However, it is possible to transform the conventional interaction Hamiltonian (3.8) to

HI = −µ · E(r, t). (3.9)

Such a procedure is achieved through the Power-Zienau-Wooley transformation [115]

and an explanation in detail is given in Appendix B. This is the lowest-order in the

multipole Hamiltonian and corresponds to the electric-dipole interaction [114, 116]. In

this equation, µ = e(r − ro) is the electric-dipole moment operator and E(r, t) the

transverse electric field.

As an example of the use of the alternative interaction Hamiltonian (3.9) we can

cite Barton’s paper [28], in which he calculated the force between an atom and a wall,

obtaining the same result as the one using the minimal-coupling Hamiltonian. A com-

plete proof of the equivalence of these Hamiltonians was first done by Göpper and

Mayer and then generalised by Power and Zienau [115]. They showed that a canoni-

cal transformation on the minimal-coupling Hamiltonian (for an atom with radiation

confined in a cavity) leads to a new Hamiltonian, which is written in a multipolar form.

The advantage of working with this new Hamiltonian is that it does not contain

explicitly either the interatomic potential or the electrostatic interaction between the

atomic dipole and its image charges inside the dielectric. The generator that gives us

this transformation eliminates them, leaving only the intra-atomic electrostatic binding

energies [117]. Therefore the calculations are usually much easier.

The problem of an atom in front of a dielectric half-space was analysed by Wu

and Eberlein in [76] and revisited in [75] by using the electric-dipole interaction (3.9)

instead. In the latter, they reduced considerably the amount of calculation involved,

though I shall emphasize that an even more ingenious procedure was required. From

that experience and motivated by such a work, we are interested in the calculation of



Chapter 3. Energy-level shift of an atom in front of a dielectric slab 74

the energy-shift of an atom in front of a dielectric slab. We shall thus apply second-

order perturbation theory to the alternative interaction Hamiltonian (3.9). We assume

that the system is initially in the composite state |i; 0〉, with the atom in state |i〉 and

zero-point electromagnetic field in the vacuum state |0〉 (no photons).

3.3 Perturbative calculation

In the theory of quantum electrodynamics, the atom-photon interactions are treated

perturbatively. In stationary perturbation theory, HI causes shifts of the eigenvalues

of the unperturbed Hamiltonian Hatom
o described above, given as a series expansion in

HI . Thus, the shift of energy in the initial state |i; 0〉 of Hatom
o is given by

∆E = 〈i; 0|HI |i; 0〉 +
∑

j 6=i

∑

ν

〈i; 0|HI |j; ν〉 〈j; ν|HI |i; 0〉
Ei − (Ej + ων)

+ . . . (3.10)

where |j; ν〉 is the composite state for an atom in the excited state |j〉 and the electro-

magnetic field carrying one photon of energy ων . The initial state |i〉 has been excluded

in the sum over intermediate states |j〉. In order to simplify our notation, we have intro-

duced the variable ν = (k, λ) which comprises the wave vector k and the polarisation

λ.

Since the interaction Hamiltonian (3.9) is linear in the electron charge e, we must

calculate the shift up to the second order of perturbation theory if we want to obtain it

to first order in the fine-structure constant α. To calculate the first-order energy shift

we utilise the first term of Eq. (3.10). This contribution vanishes because being linear

in the electric field, HI creates or annihilates one photon from the state it operates on.

Hence, only the second-order shift survives and the total shift is given by

∆E = −
∑

j 6=i

∑

ν

∣

∣

∣

〈

j; ν|µ · Ê(r, t)|i; 0
〉∣

∣

∣

2

Ej − Ei + ων
, (3.11)

where Ê(r, t) is given by Eq. (2.62) on page 44. If we now apply the creation â†
kλ and
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annihilation operators âkλ onto the field states, one can see that only the creation part

(Ê−(r, t) of Eq. (2.62)) contributes. Thus the shift can be simplified

∆E = −
∑

j 6=i

∑

ν

∣

∣

∣

〈

j; ν|µ · Ê−(r, t)|i; 0
〉∣

∣

∣

2

Ej − Ei + ων
(3.12)

where

Ê−(r, t) = i
∑

λ

∫

kz>0
d3k

(

h̄ω

2ǫo

)1/2 (

fL∗
kλ (r)âL†

kλeiωt + fR∗
kλ (r)âR†

kλeiωt
)

+ i
∑

λ

∑

kz

∫

d2k‖

(

h̄ω

2ǫo

)1/2 (

fS∗
kλ (r)âS†

kλeiωt + fA∗
kλ (r)âA†

kλeiωt
)

, (3.13)

and the expressions for the travelling modes f
L,R
kλ (r) and the trapped modes f

S,A
kλ (r)

are given in the previous chapter, on pages 34 and 39, respectively. As we mentioned

before, we are working within the electric dipole approximation. That means that we

can assume that the electric field at the electron position is roughly the same as it is

in the centre of the atom, and write

〈j|f(r) · µ|i〉 ≃ f(ro) · 〈j|µ|i〉 , (3.14)

where ro is the position of the centre of the atom. Thus the shift is given by

∆E = −
∑

j 6=i

∑

ν

h̄ων

2ǫo

|f∗ν (ro) · 〈j|µ|i〉|2
Eji + ων

(3.15)

= −
∑

j 6=i

∑

ν

∑

ι=x,y,z

h̄ων

2ǫo

f∗
νι(ro)fνι(ro)

Eji + ων
|µι|2 , (3.16)

since the crossed terms f∗
αfβ 〈i|µα|j〉〈j|µβ |i〉 are zero for α 6= β. We have defined

Eji = Ej − Ei and abbreviated the moduli squares of the matrix elements of the

dipole-moment operator between the ground state i and the excited states j by

|µι|2 ≡ |〈j|µι|i〉|2 with ι = x, y, z. (3.17)
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We have also introduced the parallel and perpendicular parts of µ as they will be very

useful in the following sections,

|µ|||2 ≡ |〈j|µx|i〉|2 + |〈j|µy |i〉|2 and |µ⊥|2 ≡ |〈j|µz |i〉|2. (3.18)

Let us get back to Eq. (3.15). By substituting the electric field E−(r, t) into Eq.

(3.15), we can obtain a more explicit expression for the energy-level shift of an atom

in front of a dielectric slab. Since the form of the quantised electric field depends

on the boundary conditions, one can see clearly that the shift depends on how the

electromagnetic fluctuations are constrained by the presence of any media.

In the previous chapter it became evident that solving the Helmholtz equation

outside the slab will give us two different kind of solutions, i.e. spacial modes. The

consequence is that the energy-level shift naturally splits into two contributions: one

that comes from the continuous spectrum of travelling modes, and one arising from the

discrete spectrum of trapped modes. As a first attempt, one could think of analysing

them separately. We tried this, but we realised that this procedure was not the most

convenient.

It is quite useful to first write the contributions from the travelling and from the

trapped modes separately, although what we are actually aiming for is to obtain one

single expression for the total energy-shift, as was done in [75]. This will be achieved

by using Eq. (2.116). This expression will allow us to change the sum over trapped

modes into an integration path in the complex plane. The procedure will be shown

in detail in the following sections. Let us start with the contribution from travelling

modes.

3.3.1 Contribution from travelling modes

We can proceed with the calculation of the shift by substituting the first part of Eq.

(3.13), which corresponds to the travelling modes, into Eq. (3.15). Thus, the energy-
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level shift is given by

∆Etrav = −
∑

ι

∑

j 6=i

∑

λ

∫

d3k
h̄ω

2ǫo

{

|fL
νι(ro)|2 + |fR

νι(ro)|2
} |〈j|µι|i〉|2

Eji + ω
, (3.19)

where the sum over ι runs over the x, y and z components of the electric field, and

the subscript ν = (λ,k) includes both the polarisation λ and the corresponding wave

vector k. This expression can be put into a more explicit form by substitution of the

left- and right-incident mode functions given in section (2.2.1). Since we are interested

in the energy-shift of an atom located in front of the dielectric slab, at z > L/2, we

shall only substitute the spatial modes for that region. Thus,

∆Etrav = − h̄

2(2π)3ǫo

∑

j 6=i

∑

λ, ι

∫

d3k
ω

Eji + ω
|〈j|µι|i〉|2

×
{

êι
λ(k−)êι∗

λ (k−) +
(

|R|2 + |T |2
)

êι
λ(k+)êι∗

λ (k+) +

êι
λ(k+)êι∗

λ (k−)Rλ(kz,k‖) e2ikzzo + êι
λ(k−)êι∗

λ (k+)R∗
λ(kz,k‖) e−2ikzzo

}

. (3.20)

Note that we have used a notation for the polarisation vectors as given in Eqs. (2.19)

and (2.20) for êTE(k+) and êTM(k+), respectively. The notation êλ(∂r) is no longer

useful as we had to apply the vectors into the plane waves first, and then evaluate

the result at the position of the atom ro = (0, 0, zo). In Eq. (3.20), êλ(k−) is the

polarisation vector for a wave moving to the left, and thus, it is obtained by changing

kz → −kz in Eqs. (2.19) and (2.20). Moreover, it can be proven that êι
λ(k−)êι∗

λ (k−) =

êι
λ(k+)êι∗

λ (k+) and êι
λ(k+)êι∗

λ (k−) = êι
λ(k−)êι∗

λ (k+). Also, by using the relation (2.33),

one can make further simplifications to Eq. (3.20). Finally, the contribution from

travelling modes is given by,

∆Etrav = − h̄

2(2π)3ǫo

∑

j 6=i

∑

λ, ι

∫

d3k
ω

Eji + ω

{

2êι
λ(k+)êι∗

λ (k+) +

êι
λ(k+)êι∗

λ (k−)
[

Rλ(kz,k‖) e2ikzzo + R∗
λ(kz,k‖) e−2ikzzo

]}

|〈j|µι|i〉|2 . (3.21)
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3.3.2 Contribution from Trapped Modes

In the same way we can calculate the contribution to the energy-level shift due to the

trapped modes. They correspond to the second part of Eq. (3.13). Substituting into

Eq. (3.15), we can get the energy-shift

∆Etrap = −
∑

ι

∑

j 6=i

∑

λ

∫

d2k‖
h̄ω

2ǫo

{

|fS
νι(ro)|2 + |fA

νι(ro)|2
} |〈j|µι|i〉|2

Eji + ω
, (3.22)

which can be written in a more explicit form by substituting the trapped modes to the

right of the slab,

∆Etrap = − h̄

2ǫo

∑

j, ι

∑

kz λ

∫

d2k‖
ω

Eji + ω
êι
λ(k+)êι∗

λ (k−) |Mλ|2
∣

∣

∣
LS,A

λ

∣

∣

∣

2
e−2κzo |µι|2 ,

(3.23)

where the definition (3.17) has been used. We have followed the same convention for

the polarisation vectors as described below Eq. (3.20). However, we shall bear in mind

that in this case the z-component of the wave vector is purely imaginary, and thus we

must substitute kz = iκ into Eqs. (2.19) and (2.20) in order to obtain the polarisation

vectors for the waves decaying in the positive z direction. We shall remark that these

vectors are no longer unit vectors.

Unlike the travelling modes contribution, Eq. (3.23) contains a sum over the z-

component of the wave vector, with a maximum allowed value of kz given by Eq. (2.40).

Since the total shift is obtained by adding the contributions from both travelling and

trapped modes, Eqs. (3.21) and (3.23), and they have a completely different nature,

we first thought of analysing them separately. However, we will instead use a more

ingenious procedure, that was developed in the previous chapter, in which we derived

the convenient way to sum a continuous and a discrete set of modes, as required.

In order to calculate the integral in k‖ of Eq. (3.23), it is convenient to use polar

coordinates; thus, we shall express the integrand in terms of the appropriate variables.

First of all, it is useful to sum over the two polarisation directions, writing explicitly

all the components ι = x, y, z of the field. For this, we shall substitute the polarisation
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vectors components in terms of kx, ky and kz. We get,

∆Etrap − h̄

2ǫo

∑

j

∫

d2k‖
∑

kz

ω

Eji + ω

{k2
‖

k2
|MTM|2

∣

∣

∣
LS,A

TM

∣

∣

∣

2
|µz|2 e−2κzo

+ |MTE|2
∣

∣

∣
LS,A

TE

∣

∣

∣

2
(

k2
y|µx|2 + k2

x|µy|2
) 1

k2
‖

e−2κzo

+ |MTM|2
∣

∣

∣L
S,A
TM

∣

∣

∣

2
(

k2
x|µx|2 + k2

y |µy|2
) κ2

k2
‖k

2
e−2κzo

}

. (3.24)

The integral in k‖ is transformed by using

∫

d2k‖ →
∫ ∞

0
dk‖ k‖

∫ 2π

0
dφ, (3.25)

where kx = k‖ cos φ and ky = k‖ sin φ. Substituting these into Eq. (3.24) and using Eq.

(A.2), it is possible to carry out the integration in the azimuthal angle φ. Hence,

∆Etrap = −πh̄

ǫo

∑

j

∫ ∞

0
dk‖

∑

kz

k‖ω

Eji + ω

{k2
‖

k2
|MTM |2

∣

∣

∣
LS,A

TM

∣

∣

∣

2
|µ⊥|2 e−2κzo

+
1

2

(

|MTE |2
∣

∣

∣L
S,A
TE

∣

∣

∣

2
e−2κzo + |MTM |2

∣

∣

∣L
S,A
TM

∣

∣

∣

2 κ2

k2
e−2κzo

)

|µ‖|2
}

, (3.26)

where we have used the definitions (3.18).

3.4 Renormalisation

Before any other attempt on evaluating the expressions for the energy-shift, we shall

first remove all contributions due to the interaction of the atom and the electromagnetic

field in general (Lamb Shift). We must do this in order to obtain the change in the

energy levels of the atom due solely to the presence of the dielectric slab, which is

the correction that we are interested in. At the same time, this procedure removes

all divergences from the formulas [76]. One way to proceed is by subtracting the

contribution for a transparent slab (n = 1). An equivalent way to renormalise is by

subtracting the extremely far-field limit (Z → ∞). The only surviving terms at this

limit are the Z-independent terms, which are the free-space contributions. We shall
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follow the former.

For the travelling modes contribution, it is evident that the reflection coefficients

Rλ will vanish at the limit n = 1. Thus, the energy-shift due merely to the presence of

the dielectric slab is given by

δEtrav ≡ ∆Etrav − ∆Etrav(n = 1)

= − h̄

16π3ǫo

∑

j ι

∑

λ

∫

kz>0
d3k

ω

Eji + ω
êι
λ(k+)êι∗

λ (k−)
(

Rλe2ikzzo + R∗
λe−2ikzzo

)

|µι|2 .

(3.27)

For the trapped modes this renormalisation procedure is meaningless, and this is simply

because they only exist when the dielectric slab is present, so there is nothing to

subtract. Thus

δEtrap = ∆Etrap. (3.28)

The total shift is then given by δE = δEtrav + δEtrap.

The following is simply more algebraic manipulation for Eq. (3.27), in order to

obtain an expression analogous to (3.26). Firstly, by summing over the two polarisations

and writing the polarisation vectors in terms of kz and k‖ we get,

δEtrav = − h̄

16π3ǫo

∑

j

∫ ∞

0
d2k‖

∫ ∞

0
dkz

ω

Eji + ω

{

(

RTE(kz ,k‖) e2ikzzo + R∗
TE(kz,k‖) e−2ikzzo

)

(

k2
y |µx|2 + k2

x|µy|2
) 1

k2
‖

−
(

RTM (kz,k‖) e2ikzzo + R∗
TM (kz ,k‖) e−2ikzzo

)

(

k2
x|µx|2 + k2

y|µy|2
) k2

z

k2
‖k

2

+
(

RTM (kz,k‖) e2ikzzo + R∗
TM (kz,k‖) e−2ikzzo

) k2
‖

k2
|µz|2

}

. (3.29)

Note that we have split up the three-dimensional integral in k into its parallel and

perpendicular components, k‖ and kz, This has the purpose of obtaining a common

factor with the contribution from the trapped modes, i.e. the integral in k‖. Thereafter,

one can utilise the transformation (2.116) to add the integral and the sum in kz. As the
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reflection coefficients Rλ do not depend on the azimuthal angle, we can easily perform

the integral in φ. In that way, we are able to regroup the x and y components of µ.

Finally the energy-shift reads,

δEtrav = − h̄

8π2ǫo

∑

j

∫ ∞

0
dk‖ k‖

∫ ∞

0
dkz

ω

Eji + ω

{

|µ⊥|2RTM (kz,k‖)
k2
‖

k2
e2ikzzo

+
1

2
|µ‖|2

(

RTE(kz ,k‖) e2ikzzo − RTM (kz,k‖)
k2

z

k2
e2ikzzo

)

+ C.C.
}

, (3.30)

where C.C. corresponds to the complex conjugate of the function within curly brackets.

3.5 Adding travelling and trapped modes

So far we have managed to obtain expressions for the energy-level shift, calculating

separately the contributions from travelling and trapped modes (Eqs. (3.30) and (3.26),

respectively). As it can be seen, they have in common the integral in k‖, so we can

write a single expression for the shift by factorizing the integral in k‖, followed by
∫

dkz . . . +
∑

kz
. . ., in such a way that it looks similar to Eq. (2.102)

δE = −πh̄

ǫo

∑

j 6=i

∫ ∞

0
dk‖ k‖{|µ⊥|2

×





∫ ∞

−∞
dkz

ω

Eji + ω

RTM

(2π)3

k2
‖

k2
e2ikzzo +

∑

kz

ω

Eji + ω

k2
‖

k2
|MTM |2

∣

∣

∣
LS,A

TM

∣

∣

∣

2
e−2κzo





+
1

2
|µ‖|2

{ 1

(2π)3

∫ ∞

−∞
dkz

ω

Eji + ω

(

RTE e2ikzzo − RTM
k2

z

k2
e2ikzzo

)

+

∑

kz

ω

Eji + ω

(

|MTE |2
∣

∣

∣L
S,A
TE

∣

∣

∣

2
e−2κzo + |MTM |2

∣

∣

∣L
S,A
TM

∣

∣

∣

2 κ2

k2
e−2κzo

)

}}. (3.31)

Note that the limits of integration in kz in Eq. (3.30) are from 0 to kz = ∞. However, as

Rλ(kz) = R∗
λ(−kz), we have conveniently changed these limits to calculate the integral

from kz = −∞ to ∞ instead.

We shall bear in mind that in Eq. (2.102) for the proof of the completeness (see

page 58), the sum of the terms inside the round brackets turned out to be zero, and
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therefore we could draw the conclusion shown in Eq. (2.116). This means that it is

possible to transform the sum over trapped modes in Eq. (3.31), into a contour integral

in the complex plane, as shown in Fig 2.11 on page 64. Then, by adding the integration

in kz that corresponds to the travelling modes, we obtain the path C that we described

previously (Fig. 2.11). Thus, the energy-shift (3.31) can be written in a very much

simplified form and reads,

δE = − h̄

2π2ǫo

∑

j 6=i

∑

σ=‖,⊥
E3

jiSσ |〈j|µσ|i〉|2 , (3.32)

with parallel S‖ and perpendicular contributions S⊥ given by

S‖ ≡
1

8E3
ji

∫ ∞

0
dk‖ k‖I‖ and S⊥ ≡ 1

4E3
ji

∫ ∞

0
dk‖ k‖I⊥, (3.33)

where the integrals in kz are included in the following functions

I‖ =

∫

C
dkz

ω

Eji + ω
RTE(kz,k‖) e2ikzzo −

∫

C
dkz

ω

Eji + ω

k2
z

k2
RTM (kz ,k‖) e2ikzzo

(3.34)

I⊥ =

∫

C
dkz

ω

Eji + ω

k2
‖

k2
RTM (kz,k‖) e2ikzzo . (3.35)

A similar procedure was followed by Robaschik and Eberlein [118] in the calculation

of the Wightman functions for a field quantised in the presence of a dielectric half-space.

They included the contribution from evanescent waves in two different ways: first as

a separate integral in k and then as part of an integration path in the complex plane,

which is similar to ours. The solutions to those integrals however follow a different

method.

In a completely different way, Eberlein and Wu [75] managed to join into one single

integral the contribution from travelling and evanescent modes for the same system.

They showed that this way to express the energy-level shift is particularly helpful only

in the retarded regime. Fortunately, that will not be the case for our system, and we

will be able to analyse the shift in both the retarded and the non-retarded regime from
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Rekz

Imkz

iΓk‖/n

ik‖

Figure 3.3: Closing the contour allows us to choose a more suitable integration path. In the figure,
Γ =

√
n2 − 1

Eq. (3.32).

In the following we will explain in detail how to deal with the integration path C,

that is used to calculate the integrals I‖ and I⊥. Let us start with the first integral

in Eq. (3.34). Note that Eqs. (3.34) and (3.35) are in terms of the position zo of the

atom, measured from the centre of the slab. Nevertheless, it would be more useful to

express our equations in terms of the variable Z, which is the surface-atom distance.

We shall thus define

R̃λ = rλ
1 − e2ikzdL

1 − r2
λe2ikzdL

, (3.36)

in such a way that we are now interested in the calculation of

∫

C
dkz

ω

Eji + ω
R̃TE e2ikzZ , (3.37)

where Z = zo − L/2. As it can be seen in Eq. (3.32), apart from the integral in kz,

we shall also perform an integration in k‖. Therefore, we shall rewrite Eq. (3.37) in

terms of these two variables. Since the frequency is given by ω =
√

k2
‖ + k2

z , one can

identify a branch point in the integrand at kz = ±ik‖. We choose to place the cuts

from kz = ik‖ to i∞ and from kz = −ik‖ to −i∞. Since the integral is convergent in

the upper half-plane (due to the rapidly decaying exponential in the limit kz → ∞),
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Rekz

Imkz

ik‖

Figure 3.4: Final contour.

we close the contour as shown in Fig 3.3.

This will give us a more convenient path to calculate the integral in kz. The region

enclosed in Fig. 3.3 does not contain singularities and hence, from Cauchy theorem3,

we know that the integral along the closed contour must be zero. Since the integral

vanishes along the big semicircle, the integration along the original path C is equivalent

to integrating along the path that goes round the cut, as shown in Fig 3.4.

In order to calculate the integral (3.37) along such a path, it is necessary to treat

separately the contour that goes down to the left of the cut and the one that goes up

from ik‖ to i∞ around the right of the cut. Due to earlier definitions for kz (Eq. (2.28)),

the choice of branch is taken in such a way that, on the real axis for kz > 0 we have

ω > 0, and then, going along that branch to kz < 0, we get ω > 0. The integration

3A review in this subject can be found in Chapter 4 of Ref. [119].
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around the branch cut can be decomposed as

∫

C
dkz

√

k2
‖ + k2

z

Eji +
√

k2
‖ + k2

z

R̃TE e2ikzZ (3.38)

=

∫ i∞

ik‖

dkz

√

k2
‖ + k2

z

Eji +
√

k2
‖ + k2

z

R̃TE e2ikzZ −
∫ ik‖

i∞
dkz

√

k2
‖ + k2

z

Eji −
√

k2
‖ + k2

z

R̃TE e2ikzZ

(3.39)

= 2Eji

∫ i∞

ik‖

dkz

√

k2
‖ + k2

z

E2
ji − (k2

‖ + k2
z)

R̃TE e2ikzZ . (3.40)

The final integral can be solved by performing a π/2 rotation in the complex plane,

such that kz = iq

= −2Eji

∫ ∞

k‖

dq

√

q2 − k2
‖

E2
ji − k2

‖ + q2
R̃TE e−2qZ . (3.41)

Note that we have chosen the branch of the frequency ω =
√

k2
‖ + k2

z = +i
√

q2 − k2
‖ in

such a way that it satisfies the conditions given above. In order to get an expression

which is easier to deal with, we have decided to make a second change of variable. Defin-

ing u2 = q2 − k2
‖ and calculating the corresponding Jacobian to get dq = u

q

u2+k2
‖

du,

one can write Eq. (3.37) as

= −2Eji

∫ ∞

0
du

1
√

u2 + k2
‖

u2

E2
ji + u2

R̃TE e
−2Z

q

u2+k2
‖ . (3.42)

With the purpose of making our work easier to compare with previous results, we have

followed the notation used in [75]. Thus, the definition of the parameter

ξ = 2ZEji (3.43)

is required. This parameter is the time that a photon takes in travelling to the dielectric

surface and back, times the inverse of the frequency of an atomic transition. It will

characterize the retardation of the system, as we will explain in detail in section 3.6.

For now, we are only concerned about obtaining an expression that is mathematically
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the simplest. Therefore, we shall scale our variables with the transition energy Eji,

defining the normalised variables thus

s ≡ u

Eji
and v ≡ k‖

Eji
(3.44)

to get finally that Eq. (3.37) reads

= −2Eji

∫ ∞

0
ds

1√
s2 + v2

s2

1 + s2
R̃TE e−ξ

√
s2+v2

, (3.45)

and the reflection coefficients can be obtained in terms of s and v by substituting the

wave vector z-components kz = iEji

√
s2 + v2 and kzd = iEji

√
n2s2 + v2, thus

R̃TE =
−(n2 − 1)s2

(n2 + 1)s2 + 2v2 + 2
√

(s2 + v2)(n2s2 + v2) coth(LEji

√
n2s2 + v2)

(3.46)

R̃TM =
(n2 − 1)

[

n2s2 + (n2 + 1)v2
]

(n2 + 1)n2s2 + (n4 + 1)v2 + 2n2
√

(s2 + v2)(n2s2 + v2) coth(LEji

√
n2s2 + v2)

.

(3.47)

In order to write S‖, we shall follow the same procedure for the second integral in

Eq. (3.34). We finally obtain,

S‖ =
1

4

∫ ∞

0
dv

∫ ∞

0
ds

v√
s2 + v2

1

1 + s2

[

(s2 + v2)R̃TM − s2R̃TE

]

e−ξ
√

s2+v2
. (3.48)

The same procedure works for the perpendicular contribution of the shift. After making

the same change of variables we obtain,

S⊥ =
1

4E3
ji

∫ ∞

0
dk‖ k‖

∫

C
dkz

√

k2
‖ + k2

z

Eji +
√

k2
‖ + k2

z

k2
‖

k2
z + k2

‖
R̃TM e2ikzZ (3.49)

=
1

2

∫ ∞

0
dv

∫ ∞

0
ds

v3

√
s2 + v2

1

1 + s2
R̃TM e−ξ

√
s2+v2

. (3.50)

It is surprising to realise that these expressions have exactly the same form as those

given in Eberlein and Wu’s paper for the dielectric half-space problem (Eqs. (2.22) and
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(2.23) in Ref. [75]); the only difference lies on the reflection coefficients R̃λ, Eqs. (3.46)

and Eqs. (3.47), which replace the Fresnel coefficients rF
λ that arise in the case of one

single interface.

As limx→∞ coth x = 1, in the limit L → ∞ one can recover the Fresnel reflection

coefficients for a single interface. Hence, it can be seen straightforwardly how we recover

the expressions that allowed Eberlein and Wu [75] to calculate the energy-shift of an

atom in front of a dielectric half-space.

Since we want to obtain expressions that easily recover results for the half-space

as given in [75], it might also be useful to convert the matrix elements of the dipole-

moment operator of Eq. (3.32) into those of the momentum operator. We can perform

this transformation by considering first the identity

[z,Ho] =
1

2m
[z, p2

z ] =
1

2m
([z, pz]pz + pz[z, pz]) =

ih̄

m
pz, (3.51)

where Ho is the Hamiltonian (3.7). Hence,

〈j|pz |i〉 =
m

ih̄
〈j|[z,Ho]|i〉 = − im

eh̄
〈j|[µz ,Ho]|i〉 , (3.52)

where we have used the electric dipole moment operator µ ≡ er, previously defined.

Then, applying Ho into the atomic states we get

〈j|pz|i〉 = − im

eh̄
(〈j|µzHo|i〉 − 〈j|Hoµz|i〉) =

im

eh̄
Eji 〈j|µz|i〉 . (3.53)

The same procedure is valid for the other components of µ and thus we can generalise

the expression above as

|〈j|µσ|i〉|2 =
4πα

m2E2
ji

|〈j|pσ |i〉|2 , (3.54)

in terms of the fine structure constant α = e2/4π. In this way, the energy-shift is thus
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given by

δE = − 2α

πm2

∑

j 6=i

∑

σ=‖,⊥
EjiSσ|pσ|2, (3.55)

with S‖ and S⊥ as given in Eqs. (3.48) and (3.50), and the reflection coefficients by

Eqs. (3.46) and (3.47).

3.6 Asymptotics

We have obtained so far a general expression that describes the energy-shift of an

atom in front of a dielectric slab. The nature of the interaction of the atom with the

slab depends on the separation between them, and this is because the electromagnetic

interaction can be retarded or non-retarded.

We have explained that if the atom is very close to the surface, the interaction

is much faster than the internal evolution of the atom, and we can assume that it

occurs instantaneously. In this case the interaction is non-retarded and thus it will be

dominated by electrostatics, i.e. the Coulomb force between the atomic dipole and its

image charges on the other side of the surface. On the other hand, if the atom is placed

further away from the surface, the retardation plays an important role and we must

take it into account [2, 15]. The reason is that the state of the atom evolves appreciably

during the time-scale of the interaction.

In order to analyse our system, it is necessary to define a measurement for the re-

tardation. Hence, we shall first identify the characteristic time-scales. We can compare

the time a photon takes to travel from the atom to the interface and back tph = 2Z

with the time-scale of the atomic evolution tat. The latter will be defined by the in-

verse of the average level spacing, 1/ 〈|Eji|〉, weighted by the strength of the transition.

Therefore the ratio tph/tat = 2ZEji gives a suitable criterion for characterizing these

regimes. Note that this is exactly the dimensionless variable ξ defined earlier, in Eq.

(3.43).

In summary, the retarded regime will be characterised by a very large ξ and the

non-retarded regime by a very small ξ. In order to understand the behaviour of the
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atom near a slab, it is essential to study these two regimes. Hence, we shall concentrate

on the asymptotic analysis of the integrals in Eq. (3.32) in the large or small-ξ limit.

3.6.1 Retarded regime

In the non-retarded regime, the interaction between the atom and the dielectric slab

is purely Coulombic, and a simple electrostatic treatment will suffice to obtain it.

Therefore, we shall start by studying the retarded regime ξ ≫ 1, which clearly will

come up with more interesting results. The fact that we have combined both travelling

and trapped modes into one single expression facilitates the asymptotic analysis of δE,

as concluded in Ref. [75]. Also, we do not have to deal with the divergences that would

come up the alternative way4. As we are taking into account the finite width of the

dielectric, we shall need to consider the thickness L of the slab into the asymptotic

analysis, as a third characteristic length scale of the system.

We note that it is possible to distinguish three asymptotic limits, depending on the

relative size of L in comparison with the other relevant length scales of the system:

2Z and Eji. Thus, it seems more natural to re-define L as L̃ = LEji, so we can just

compare L̃ with ξ and unity. The three asymptotic cases are:

Thin slab: ξ ≫ 1 ≫ L̃ or 2Z ≫ λ̄ji ≫ L (3.56)

Thick slab: ξ ≫ L̃ ≫ 1 or 2Z ≫ L ≫ λ̄ji (3.57)

Half-space: L̃ ≫ ξ ≫ 1 or L ≫ 2Z ≫ λ̄ji (3.58)

Note that we have introduced another measurable quantity, which is the wavelength of

an atomic transition

λ̄ji =
λji

2π
=

h̄c

Eji
. (3.59)

In this section we shall obtain the energy-level shift of an atom in front of a thin

or thick slab, using the limits (3.56) and (3.57), respectively. In chapter 4 — as an

important proof of the validity of our results — we will recover important known limits,

4Note that such divergences disappear by combining all of the contributions [76].
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such as the dielectric half-space (by using the asymptotic limit (3.58)) and the perfect

conductor case.

Finite slab

We are particularly interested in the correction due to a finite thickness of the dielectric,

not only due to the application that it would have in recent experiments, but also

from the theoretical point of view. We intend to show that some papers about the

interaction of a charge with a thin plasma sheet, by Michael Bordag [120, 121], are using

inappropriate arguments and giving a misleading result for the interaction of a charge

with a thin plasma sheet. In [121], Bordag claimed that different boundary conditions

must be applied to a thin and a thick conductor while quantising the electromagnetic

field. His reason is, apparently, the fact that the boundary conditions E‖ = 0 = B⊥

allow for a freedom in the normal component of the electric field on the surface of the

conductor. For a thick conductor this is fulfilled by applying Gauss’law. Nevertheless,

for a thin conductor (whose surface is assumed to be mathematically thin, i.e., purely

two dimensional) no additional condition on E⊥ is assumed. What Bordag states, is that

for thin conductors there is an interaction of classical charges across the surface which

is absent for thick conductors. This would of course have measurable consequences.

Thus, in order to show them, he calculates the interaction of the electromagnetic field

with a thin plasma sheet, which represents the pi-electrons of a carbon nanotube or

a C60 molecule. He finds that the Casimir-Polder force for a thin conductor is about

13% smaller than for a thick one, and he believes that the result agreess with the

experiments. However, that difference could correspond to the 13% of uncertainty

in those experiments [39]. A disagreement with these arguments has been shown by

Gabriel Barton, who comes up with a different conclusion for the Casimir-Polder force

acting between an atom and a flat plasma sheet [122, 123].

Even though we have defined two different cases in order to consider the width

of the slab: an extremely thin sheet (3.56) and thick slab (3.57), it is not possible to

distinguish mathematically between them at the beginning of the calculation. We could
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thus expect that as it corresponds to a second-order correction. Therefore, we shall

study both cases in one go, without any initial distinction, and try to find the limit

afterwards.

In order to calculate the energy-shift, it is convenient to transform the expressions

(3.48) and (3.50) into polar coordinates s = r cos φ and v = r sin φ. Then, we shall per-

form a second change of variable by defining t = cos φ. Finally, the parallel contribution

to the energy-shift can be written as

S‖ =
1

4

∫ ∞

0
dr

∫ 1

0
dt

r3

r2t2 + 1

(

R̃TM − t2R̃TE

)

e−ξr, (3.60)

with reflection coefficients given by

R̃TE =
−(n2 − 1)t2

2 + (n2 − 1)t2 + 2
√

1 + (n2 − 1)t2 coth(L̃r
√

1 + (n2 − 1)t2)
, (3.61)

R̃TM =
n4 − 1 − (n2 − 1)t2

n4 + 1 + (n2 − 1)t2 + 2n2
√

1 + (n2 − 1)t2 coth(L̃r
√

1 + (n2 − 1)t2)
. (3.62)

Another convenient way of writing Eq. (3.60) is in terms of the physical variables Z

and L. Thus, by introducing the variable y = rEji and performing a second change

of variable t → τ =
√

1 + (n2 − 1)t2 with dt = dτ τ/(
√

τ2 − 1
√

n2 − 1), the integrand

reads

S‖ =
1

4E2
ji

√
n2 − 1

∫ ∞

0
dy

∫ n

1
dτ

y3

(n2 − 1)E2
ji + y2(τ2 − 1)

τ√
τ2 − 1

×
(

(n2 − 1)(n4 − τ2)

n4 + τ2 + 2n2τ coth(Lyτ)
+

(τ2 − 1)2

τ2 + 1 + 2τ coth(Lyτ)

)

e−2Zy. (3.63)

In this way, we can see more clearly that for 2Z ≫ L the term e−2Zy damps the integral

long before coth(Lyτ) varies appreciably. Therefore, we can approximate the reflection

coefficients for the small argument for coth, by using [124]

coth(z) ≃ 1

z
+

z

3
− z3

45
+ ... (3.64)
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The integrand can thus be approximated as

S‖ =
1

4
(n2 − 1)

∫ ∞

0
dr

∫ 1

0
dt

r3

r2t2 + 1

×
(

n2 + 1 − t2

n4 + 1 + (n2 − 1)t2 + 2n2/L̃r
+

t4

2 + (n2 − 1)t2 + 2/L̃r

)

e−ξr. (3.65)

This expression is again in terms of the original variables, as τ would make the integral

more complicated. The previous equation was helpful to decide how to proceed with the

analysis of the integral, and it will be useful in order to study other limits. Fortunately,

the integral in t in Eq. (3.65) turns out to be elementary, and it is possible to solve it

analytically. However, the result is not a simple expression and so, in order to perform

the integral in r we shall consider the fact that we are analysing the limit ξ → ∞.

Thus, e−ξr will strongly suppress the integrand, and the only significant contributions

to the integral will come from small r. Note that this limit in Eqs. (3.61) and (3.62)

would also lead to coth z ≃ 1/z, provided L̃ is not infinite. Therefore, we can expand

the remaining integrand around r = 0

S‖ ≈
L̃

4n2
(n2 − 1)(5 + 9n2)

∫ ∞

0
dr r4e−ξr, (3.66)

and solve the simple integral in r that we get from such a series expansion, to obtain

the parallel part of the shift in terms of L and Z

S‖ ≈
(n2 − 1)(5 + 9n2)

80n2E4
ji

L

Z5
. (3.67)

The same procedure works for the perpendicular part, which in polar coordinates

can be written as

S⊥ =
1

2

∫ ∞

0
dr

∫ 1

0
dt

r3(1 − t2)

r2t2 + 1
R̃TM e−ξr. (3.68)

Analogous to the parallel contribution, it can be expressed in terms of the variables Z

and L, and we can apply the same arguments as used above for S‖ in the limit Z ≫ L.
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The integrand can thus be approximated to

S⊥ ≈ 1

2
(n2 − 1)

∫ ∞

0
dr

∫ 1

0
dt

r3

r2t2 + 1

(1 − t2)(n2 + 1 − t2)

n4 + 1 + (n2 − 1)t2 + 2n2/L̃r
e−ξr, (3.69)

where the integration in t can be carried out analytically. As before, we shall perform

a series expansion around r = 0 and then calculate the integral in r. We get that the

perpendicular part of the shift is given by

S⊥ ≈ L̃

15n2
(n2 − 1)(4 + 5n2)

∫ ∞

0
dr r4e−ξr =

(n2 − 1)(4 + 5n2)

40n2E4
ji

L

Z5
. (3.70)

We have obtained the coefficients S‖ and S⊥, and in order to draw the final con-

clusion, we shall plug them into the expression for the energy-level shift (3.55). The

interaction reads

δE = − (n2 − 1)αL

40πm2n2Z5

∑

j 6=i

(5 + 9n2)|p‖|2 + 2(4 + 5n2)|p⊥|2
E3

ji

. (3.71)

What is interesting to note is that if one calculates analytically the integral in t in

Eqs. (3.65) and (3.69) (exactly as we did), and then expand for r → 0 and L → 0,

regardless which limit we consider first, we would obtain the same result for the energy-

shift (3.71). This proves that the result for the retarded Casimir-Polder force is the

same regardless how thick the slab is, provided 2Z ≫ L.

3.6.2 Non-retarded regime

The non-retarded Casimir-Polder interaction arises when the atom is very close, in

comparison with a wavelength of an atomic transition, to the surface of the object

under consideration. For instance, for two neutral molecules located very close to each

other, the interaction is purely due to the Coulomb force between the fluctuating electric

dipole moments. As first shown by London and Eisenschitz [12, 125], it gives an energy

proportional to 1/R6, where R is the distance between them. This interaction energy

was given in Eq. (1.1), on page 4.
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In order to calculate the non-retarded interaction between an atom and a dielectric

slab, we can analyse asymptotically the general formula (Eq. (3.55)), as we did for the

retarded regime. Unfortunately, the calculation is not straightforward since expressions

(3.48) and (3.50) contained in Eq. (3.55) make difficult an asymptotic analysis for the

parameter ξ, as it followed quite directly in the retarded regime. Actually, the same

problem was encountered in the half-space calculation [75], when the same route was

intended to be taken. As it was pointed out in Ref. [75], no matter how they rescaled

their corresponding integral, it was not possible to take the limit ξ → 0 because that

would lead to divergences. Since our expression for the shift has the same form, it is

obvious that the same argument applies and hence Eqs. (3.48) and (3.50) will be not

useful in the specific way that they are written.

Motivated by what was suggested in Ref. [75], we should consider the expression of

the energy-shift before it is transformed into one single expression. In [75], that meant

taking travelling and trapped modes contributions separately, for which the asymptotic

analysis for small ξ was very simple. In our case, it would not be convenient to go that

far back, because the treatment of discrete trapped modes would make the calculation

far more complicated. What we actually want in order to avoid those divergences,

is an integrand with a higher order in the integration variable. It can be seen that

expression (3.39) is a good candidate to get what we need (note that in the following

step the denominator changes due to the addition of the two integrals). Mathematically,

what we would be doing is simply integrating over the path in Fig. 2.11 on page 64,

but separately over the branch that goes from ik‖ to i∞ (along right to the cut) and

then over the remaining branch, performing the same change of variables that we have

done so far. This will automatically lead us to an asymptotic analysis for ξ small.

Alternatively, one can start from the final expressions, where S‖ and S⊥ are given

by Eqs. (3.60) and (3.68), respectively (but rescaling r with Eji). Thus, we would only

need to use complex-variables to rewrite the denominator as follows,

− 2Ejii

y2t2 + E2
ji

=
1

yt + iEji
− 1

yt − iEji
. (3.72)
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Figure 3.5: The part a) of this illustration shows the pole in the t integration. In the non-retarded
regime Eji → 0 one can shift the pole to the origin an work with the path shown in b). The contribution
along the negative real axis cancels out with the positive side.

Therefore, the perpendicular contribution of the shift becomes

S⊥ =
i

4E3
ji

∫ ∞

0
dy y3

∫ 1

0
dt (1 − t2)

(

1

yt + iEji
− 1

yt − iEji

)

R̃TMe−2Zy. (3.73)

For a further simplification of this integral, one can note that the reflection coefficients

(Eqs. (3.61) and (3.62)) do not depend linearly on t but on t2, which suggests to us to

perform the change of variable t → −t in the second term. In that way, we add both

terms inside the round brackets by changing the integration limits,

S⊥ =
i

4E3
ji

∫ ∞

0
dy y2

∫ 1

−1
dt

1 − t2

t + iEji/y
R̃TM e−2Zy. (3.74)

It seems convenient to begin with the integral in t. We can identify one pole at t =

−iEji/y. The integration path is shown in Fig. 3.5. Since we are interested in the non-

retarded regime, which is given by the limit Eji → 0, we can simplify the integration

by shifting the pole to the origin of the complex plane. Thus, in order to perform the

integral in t that goes from −1 to 1 on the real axis, we shall deform the contour going

round the pole, as it is shown in Fig. 3.5. Therefore we can easily calculate the integral

by calculating the residue at that pole. We shall be careful about the direction of the

integration path and the sign conventions. Since it only goes half a circle, the integral
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would be −iπ times the residue around the origin, which is

S⊥ =
π

4E3
ji

∫ ∞

0
dy y2 Res[R̃TM ] e−2Zy

=
π

4E3
ji

n2 − 1

n2 + 1

∫ ∞

0
dy

(n2 + 1)2y2

n4 + 1 + 2n2 coth(yL)
e−2Zy. (3.75)

We proceed by rewriting the hyperbolic cotangent in the integrand in terms of expo-

nential functions, to get a more useful expression that can be interpreted in terms of

the reflection coefficient for a single interface r defined previously. The perpendicular

contribution of the shift reads

S⊥ =
π

4E3
ji

n2 − 1

n2 + 1

∫ ∞

0
dy y2 1 − e−2yL

1 −
(

n2−1
n2+1

)2
e−2yL

e−2Zy. (3.76)

It can be seen straightforwardly that the same procedure works for S‖, given in Eq.

(3.60). Using the transformation given in Eq. (3.72), and then joining both terms into

a single integral we get

S‖ =
i

8E3
ji

∫ ∞

0
dy y2

∫ 1

−1
dt

(R̃TM − t2R̃TE)

t + iEji/y
e−2Zy (3.77)

in which the integral in t can be solved using the integration path shown in Fig. 3.5

and rearranged in a similar way as before. Thus,

S‖ =
π

8E3
ji

n2 − 1

n2 + 1

∫ ∞

0
dy y2 1 − e−2yL

1 −
(

n2−1
n2+1

)2
e−2yL

e−2Zy. (3.78)

To recover the electrostatic shift, we substitute plug the expressions for S⊥ and S‖ that

we just obtained into our general equation for the energy-shift (3.55). One finally gets

δEes = − α

m2

n2 − 1

n2 + 1

∫ ∞

0
dy y2 1 − e−2yL

1 −
(

n2−1
n2+1

)2
e−2yL

e−2Zy
∑

j

2|p⊥|2 + |p‖|2
E2

ji

. (3.79)
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R1

R2

qq′

ǫ1ǫ2

Figure 3.6: The diagram shows the three regions of the system. The atom is located in region III, at
a distance Z from the interface.

Electrostatic calculation

We have mentioned in chapter 1, that the non-retarded Casimir-Polder force between

an atom and a plate is given by the Coulombic interaction between the electric dipole

and its image on the other side of the interface, in reference to the well-known image

method from electrostatics. As the method works fine for very simple systems, it has

been used to calculate the non-retarded Casimir-Polder force on an atom in front of a

perfect conductor [108] and near a dielectric [14].

The method of images [11] is concerned with the problem of one or more point

charges in the presence of boundary surfaces, and consists of replacing such boundaries

by charges of the appropriate magnitude that can simulate the required boundary

conditions. This is sometimes possible to infer from the geometry of the problem. One

can illustrate in a few steps the image method for dielectrics if we consider a point

charge q embedded in a semi-infinite medium of dielectric permittivity ǫ1, located in

front of a second medium with dielectric permittivity ǫ2, as shown is Fig.3.6. From

classical electrodynamics, we know that the system must satisfy the Poisson equation

∇
2Φ = −ρ

ǫ
(3.80)

and the boundary conditions (2.24) at the interface. In this equation, ρ is the charge
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density distribution and ǫ is the permittivity of the medium. Then, by solving Eq.

(3.80), one can obtain the electric potential Φ in each medium. We can use the image

method to obtain the potential Φ1 in the medium 1, as we can intuit that, in order

to replace the interface, there should be an image charge q′ inside the medium 2, in a

symmetric position. Thus, the potential at any point P within the first region is given

by

Φ1(r) =
1

4πǫ1

(

q

R1
+

q′

R2

)

, (3.81)

where R1 and R2 are the distances from q and q′, respectively, to the point P . One

could also obtain the potential at any point inside the dielectric medium 2. Since we

do not have any charges, we shall solve Laplace equation ∇
2Φ = 0. We obtain that the

electric potential Φ2(r) in region 2 is equivalent to the potential produced by a charge

q′′ at the same position of q. Thus,

Φ2(r) =
1

4πǫ2

q′′
R1

. (3.82)

Finally, in order to get the value of the images charges, we shall apply the continuity

conditions (2.24),

q′ = −
(

ǫ2 − ǫ1

ǫ2 + ǫ1

)

q and q′′ =
2ǫ2

ǫ2 + ǫ1
q. (3.83)

For our system it is not possible to use the method of images. In principle, it would

just turn out more complicated to guess where the images should be located, as we have

to consider the two dielectric-vacuum interfaces (two mirrors) and hence, we have to

take into account the images of the image charges. However, the difficulty arises when

we seem to require images on the side where the atom is located. This is because the

method does not allow images in the region for which one is calculating the potential.

We are interested in an electrostatic calculation for the interaction between an atom

and a dielectric slab. The result will serve as a good check for the validity of our gen-

eral formula for the energy-shift, which lead us to the non-retarded interaction (3.79).
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Figure 3.7: The diagram shows the three regions of the system. The atom is located in region III, at
a distance Z from the interface.

Thus, by solving the Laplace equation in each region (vacuum-dielectric-vacuum) and

imposing the corresponding boundary conditions (2.24), we shall obtain the electric

potential in region III, as shown in Fig. 3.7. Note that in this diagram we have shifted

the reference system used before; though we have kept the same notation so that the

atom is placed at a distance Z from the slab of thickness L. Having the interfaces at

z = 0 and z = −L will be slightly more convenient at the moment of applying the

boundary conditions.

We need to find the harmonic functions Φ1, Φ2 and Φ3, which are the electric

potential in regions I (vacuum), II (dielectric slab), and III (vacuum), respectively,

as shown in Fig. 3.7. They are solutions to the three-dimensional Laplace equation,

which in Cartesian coordinates reads

∂2Φ

∂2x2
+

∂2Φ

∂2y2
+

∂2Φ

∂2z2
= 0. (3.84)

A detailed explanation on how to deal with this differential equation can be found in

Ref. [119]. It can be conveniently solved by the method called separation of variables5,

which consists on solving this partial differential equation in terms of three ordinary

5See for instance Chapter 5.1 in [119].
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differential equations, because the potential Φ can be expressed by a product of three

independent functions, one for each coordinate: Φ(x, y, z) = X(x)Y (y)Z(z). After

substitution of this into Eq. (3.84) one can split up the equation into

1

X

d2X

dx2
= −k2

x,
1

Y

d2Y

dy2
= −k2

y and
1

Z

d2Z

dz2
= k2, (3.85)

with k2 = k2
x + k2

y. These simple equations have well known solutions, and hence it

comes straightforward to conclude that the electric potential can thus be built up from

the product solutions

Φ(x, y, z) = eikxxeikyye±kz. (3.86)

At this stage, the variables kx and ky are completely arbitrary and hence Φ, given

above, represents a complete system of solutions of Laplace equation. In order to obtain

a unique solution, we shall apply the continuity conditions (2.24) and also require that

the solutions vanish at infinity. Thus, we can write more specifically for each region

the electric potential as follows

Φ1(x, y, z) =

∫ ∞

−∞
dkx

∫ ∞

−∞
dky f1(kx, ky)eikxx+ikyy+kz, (3.87)

Φ2(x, y, z) =

∫ ∞

−∞
dkx

∫ ∞

−∞
dky

[

a2(kx, ky)eikxx+ikyy+kz + b2(kx, ky)eikxx+ikyy−kz
]

,

(3.88)

Φ3(x, y, z) =

∫ ∞

−∞
dkx

∫ ∞

−∞
dky c3(kx, ky)eikxx+ikyy−kz. (3.89)

which have the form of Fourier integrals (see page 453 in Ref. [119]). The sign for k

is chosen so that Φ1(z → −∞) and Φ3(z → ∞) are well behaved. In order to obtain

the electric potential in region III, we shall add to Φ3(x, y, z) the Coulombic potential

generated by the point charge at (0, 0,Z)

Φq =
1

4πǫo

q
√

x2 + y2 + (z −Z)2
. (3.90)

The coefficients f1, a2, b2 and c3 can be calculated by applying the continuity condition
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for the potential at the interface z = 0,

Φ2(x, y, 0) = Φ3(x, y, 0) +
1

4πǫo

q
√

x2 + y2 + Z2
. (3.91)

One can thus substitute Eqs. (3.88) and (3.89) to get

∫ ∞

−∞
dkx

∫ ∞

−∞
dky(c3 − a2 − b2)eikxx+ikyy = − 1

4πǫo

q
√

x2 + y2 + Z2
. (3.92)

Note that the left hand-side term represents the inverse Fourier transform of those

coefficients and hence we could apply the Fourier integral in order to obtain them

c3 − a2 − b2 = − q

4πǫo

1

(2π)2

∫ ∞

−∞
dx

∫ ∞

−∞
dy

e−ikxx−ikyy

√

x2 + y2 + Z2
. (3.93)

Applying to the same boundary the continuity condition of the normal dielectric dis-

placement we have

ǫ
∂Φ2

∂z
(x, y, 0) =

∂Φ3

∂z
(x, y, 0) +

q

4πǫo

Z
(x2 + y2 + Z2)3/2

, (3.94)

and again, by substitution of Eqs. (3.88) and (3.89) for the potentials Φ2 and Φ3, and

using the Fourier integral as we did before we get

k(c3 + ǫa2 − ǫb2) =
q

4πǫo

Z
(2π)2

∫ ∞

−∞
dx

∫ ∞

−∞
dy

e−ikxx−ikyy

(x2 + y2 + Z2)3/2
. (3.95)

It is obvious that these two equations are not enough to obtain the four constants.

Therefore we must utilise the same continuity conditions through the other interface,

at z = −L, in order to get two more equations. The continuity condition for the electric

potential at such an interface reads

Φ1(x, y,−L) = Φ2(x, y,−L) (3.96)

f1e
−kL = a2e

−kL + b2e
kL. (3.97)
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Using the continuity of the normal dielectric displacement at z = −L we obtain

∂Φ1

∂z
(x, y,−L) = ǫ

∂Φ2

∂z
(x, y,−L) (3.98)

kf1e
−kL = ǫk

(

a2e
−kL − b2e

kL
)

. (3.99)

Finally, in order to obtain the coefficients, we shall use Eqs. (3.93), (3.95), 3.97) and

(3.99). Let us start with the equations that came from the boundary at z = −L.

Multiplying Eq. (3.97) by kz and then subtracting the result from Eq. (3.99), we

derive the coefficient b2

b2 =
ǫ − 1

ǫ + 1
a2 e−2kL. (3.100)

One can thus substitute it into Eq. (3.93) in order to obtain a2, which will still appear

in terms of c3

a2 =
1

1 + ǫ−1
ǫ+1e−2kL

(

c3 +
q

16π3ǫo

∫

d2ρ
e−ik·ρ

√

ρ2 + Z2

)

. (3.101)

Similarly to k, we have introduced the two-dimensional spatial variable ρ2 = x2 + y2

in order to simplify our notation. And finally, to obtain explicitly the coefficient c3 we

shall utilise Eq. (3.95), which came up from the continuity condition at z = 0. Using

Eqs. (3.100) and (3.101) for the coefficients b2 and a2, we get

c3 =
q

16π3ǫo

1

1 + ǫ
1− ǫ−1

ǫ+1
e−2kL

1+ ǫ−1
ǫ+1

e−2kL

(

Z
kz

∫

d2ρ
e−ik·ρ

(ρ2 + Z2)3/2
− ǫ

1 − ǫ−1
ǫ+1 e−2kL

1 + ǫ−1
ǫ+1 e−2kL

∫

d2ρ
e−ik·ρ

√

ρ2 + Z2

)

(3.102)

Since we are looking particularly for the electric potential in region III, this is the only

coefficient that we need to calculate. Apart from some simple algebra simplification,

we still have to solve the double integral in ρ. In order to do so, it is quite convenient
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to transform into polar coordinates,

∫

d2ρ
e−ik·ρ

√

ρ2 + Z2
=

∫ ∞

0
dρ

ρ
√

ρ2 + Z2

∫ 2π

0
dφ e−ikρ cos φ

= 2π

∫ ∞

0
dρ ρ

Jo(kρ)
√

ρ2 + Z2
=

2π

k
e−kZ , (3.103)

where we have first calculated the integral in φ in terms of Bessel functions and then

used the tabulated integral (C.1) in order to obtain the remaining integral.

For the other integral in Eq. (3.102) it is convenient to rewrite the integrand in the

form of a derivative in Z, in such a way we only need to know the integral calculated

above, as it is shown

∫

d2ρ e−ik·ρ Z
(ρ2 + Z2)3/2

= − ∂

∂Z

∫

d2ρ
e−ik·ρ

√

ρ2 + Z2
= 2πe−kZ . (3.104)

The final expression for the coefficient c3 can be obtained after substitution of these

results,

c3 =
q

8π2ǫok

(

1 − ǫ

1 + ǫ

)

1 − e−2kL

1 −
(

ǫ−1
ǫ+1

)2
e−2kL

e−kZ , (3.105)

which must be plugged into the expression for the electric potential Φ3, felt in region

III (Eq. (3.89)),

Φ3(x, y, z) =
q

8π2ǫo

(

1 − ǫ

1 + ǫ

)∫ ∞

−∞
dkx

∫ ∞

−∞
dky

(1 − e−2kL) e−k(z+Z)

1 −
(

ǫ−1
ǫ+1

)2
e−2kL

eikxx+ikyy

k

(3.106)

We can transform it into polar coordinates, and solve the integral in φ first to obtain

Φ3(x, y, z) = − q

8π2ǫo

ǫ − 1

ǫ + 1

∫ ∞

0
dk

1 − e−2kL

1 − ( ǫ−1
ǫ+1)2e−2kL

e−k(z+Z)

∫ 2π

0
dφ e−ikρ cos φ

= − q

4πǫo

ǫ − 1

ǫ + 1

∫ ∞

0
dk Jo(kρ)

1 − e−2kL

1 − ( ǫ−1
ǫ+1)2e−2kL

e−k(z+Z). (3.107)

As a verification of our result, we shall try to recover well-known results. In this

case, we know what the potential is for an atom in front of a dielectric half-space (as
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in the example given above, taking ǫ2 = 1). Then, if we take the limit L → ∞, all the

exponentials vanish and the only term that remains in the integrand can be calculated

exactly,
∫ ∞

0
dk Jo(kρ) e−kz′ =

1
√

ρ2 + z′2
. (3.108)

Therefore, if we substitute this result into Eq. (3.107), it is clear that it corresponds to

the potential due to one image charge of dimension q(ǫ− 1)/(ǫ + 1) located at z = −Z,

as we expected.

Now, it could be convenient to rewrite Eq. (3.107) in terms of a sum, as we can

identify in the integrand the geometric series (Eq. 0.112 in [126]), and thus re-express

the term in the integrand as

1

1 − ( ǫ−1
ǫ+1)2e−2kL

=

∞
∑

n=0

[

(

ǫ − 1

ǫ + 1

)2

e−2kL

]n

. (3.109)

In this way, it could refer to the potential produced by individual charges. The electric

potential in region III reads,

Φ3(x, y, z) = − q

4πǫo

ǫ − 1

ǫ + 1

∫ ∞

0
dk Jo(kρ)e−k(z+Z)

∞
∑

n=0

(

ǫ − 1

ǫ + 1

)2n
(

e−2nkL − e−2(n+1)kL
)

.

(3.110)

A more convenient way to write this potential can be obtained after playing around

with the first term in the sum (m=0) and rearranging it (e.g. shifting the summation

index to n + 1 in the first sum). The potential is hence given by

Φ3(x, y, z) = − q

4πǫo

ǫ − 1

ǫ + 1

∫ ∞

0
dk Jo(kρ)e−k(z+Z)

×
{

1 − 4ǫ

(ǫ + 1)2

∞
∑

n=0

(

ǫ − 1

ǫ + 1

)2n

e−2(n+1)kL

}

. (3.111)

The first term in the brackets refers to the image due to the first interface that the

charge sees. The first term of the sum (n = 0) gives us the image due to the reflection

in the second interface, as we guessed. The rest of the images are located consecutively
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Z−Z−Z − 2L−Z − 4L

qq1q2q3

−L

Figure 3.8: Illustrative diagram of some of the image charges produced by a charge q placed at
a distance Z from a dielectric slab of thickness L. Those images that are not drawn are located
consecutively at a distance 2L farer away from the latest image found.

every 2L after the latest image encountered and their magnitudes are given by

q1 = −ǫ − 1

ǫ + 1
q at −Z,

q2 =
4ǫ(ǫ − 1)

(ǫ + 1)3
q at − (Z + 2L),

q3 =
4ǫ(ǫ − 1)3

(ǫ + 1)5
q at − (Z + 4L)

and so on, as it is shown if Fig. 3.8. The charge q1 corresponds to the first reflection

at z = 0 and q2 corresponds to the first reflection at z = −L. The location of q2, q3

and further images, can be interpreted as the multiple reflections inside the slab. For

q2 there would be just one reflection at z = −L; for q3 there would be an additional

reflection at z = 0 and then again at z = −L; and so on.

So far, as it is shown in Eq. (3.107), we have calculated the electrostatic potential

due to the images generated by a charge sitting in front of a dielectric slab, at a distance

Z from its surface. As it was explained at the beginning of this section, these image

charges have the same effect as the boundary conditions due to the presence of the

slab, and that is why we can replace them for the electrostatic calculation. However,
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we are not directly interested in the potential, but in the electrostatic shift of the atomic

dipole. It can be derived from the electric potential,

∆Ees =
1

2
(µ · ∇)(µ · ∇o)Φ3(r, ro)

∣

∣

∣

∣

r = ro

(3.112)

=
1

2

(

|µx|2
∂

∂x

∂

∂xo
+ |µy|2

∂

∂y

∂

∂yo
+ |µz|2

∂

∂z

∂

∂zo

)

Φ3(r, ro)

∣

∣

∣

∣

r = ro

,(3.113)

where the terms µαµβ are zero for α 6= β. Thus, by using the expression for Φ3 (Eq.

(3.107)), one can simply calculate the derivatives in each coordinate. For a charge

located at the position r = (xo, yo, zo), the electric potential will be described by the

same Eq. (3.107), but taking ρ =
√

(x − xo)2 + (y − yo)2. Therefore, for the derivative

in z one gets

∂

∂z

∂Φ3

∂zo

∣

∣

∣

∣

r = ro

= − q

4πǫo

ǫ − 1

ǫ + 1

∫ ∞

0
dk k2 1 − e−2kL

1 −
(

ǫ−1
ǫ+1

)2
e−2kL

e−2Zk. (3.114)

The derivatives of Φ3 in x and y turn out to be slightly more complicated, and this

is because one has to consider the derivative of the Bessel function, which depends on

the two-dimensional coordinate ρ. We have explained the procedure in Appendix C.1,

Eqs. (C1)-(C7). Hence, for the derivative in x of the potential we obtain

∂

∂x

∂Φ3

∂xo

∣

∣

∣

∣

r = ro

= − q

4πǫo

ǫ − 1

ǫ + 1

∫ ∞

0
dk

k2

2

1 − e−2kL

1 −
(

ǫ−1
ǫ+1

)2
e−2kL

e−2Zk (3.115)

and the same procedure will apply for the derivative in y, obtaining consequently exactly

the same result. Therefore, the energy-shift can be written as

∆Ees = − 1

4πǫo

ǫ − 1

ǫ + 1

(

|µz|2Q⊥ +
(

|µx|2 + |µy|2
)

Q‖
)

(3.116)
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with the functions Q⊥ and Q‖ given by the following integrals

Q⊥ =
1

2

∫ ∞

0
dk k2 1 − e−2kL

1 −
(

ǫ−1
ǫ+1

)2
e−2kL

e−2Zk (3.117)

Q‖ =
1

4

∫ ∞

0
dk k2 1 − e−2kL

1 −
(

ǫ−1
ǫ+1

)2
e−2kL

e−2Zk. (3.118)

It is also convenient to use the identity given in Eq. (3.54) to write the electrostatic

contribution in terms of the momentum operator

∆Ees = − α

m2

ǫ − 1

ǫ + 1

∑

j

|p⊥|2Q⊥ + |p‖|2Q‖
E2

ji

, (3.119)

in agreement with Eq. (3.79), obtained from our general formula for the energy-shift.

The electrostatic shift can be calculated analytically in the limit L/Z → 0, which can

be interpreted as the case of a very thin slab. In order to obtain it, we shall first re-scale

Q⊥ as follows

Q⊥ =
1

16Z3

∫ ∞

0
dx x2 e−x 1 − e−xL/Z

1 −
(

n2−1
n2+1

)2
e−xL/Z

, (3.120)

and then simply approximate the exponentials for small arguments. The resulting

integral is trivial and gives us

Q⊥(L/Z → 0) =
L

16Z4

∫ ∞

0
dx

x3 e−x

1 −
(

n2−1
n2+1

)2 =
3L

32Z4

(n2 + 1)2

n2
. (3.121)

Thus, substituting into Eq. (3.119), we finally get the electrostatic interaction of an

atom in front of a thin dielectric slab

∆Ees = −3α(n4 − 1)

16m2n2

L

Z4

∑

j

2|p⊥|2 + |p‖|2
E2

ji

(3.122)

We can note that an analogous result was obtained for the retarded regime: the position

of the atom dependence changes from 1/Z3 for a dielectric half space to L/Z4 for a

very thin slab.



Chapter 4

Analysis of results

We have obtained the energy-level shift produced in an atom as a consequence of

the presence of a dielectric slab. In order to calculate the shift, we applied second

order perturbation theory to the interaction hamiltonian µ · E. Thus, for a quantum

mechanical treatment, the quantisation of the electromagnetic field — in the presence

of such a slab— was required and achieved in chapter 2. This procedure allowed us to

expand the electric field in terms of normal modes, which were classified into travelling

and trapped modes. From the second order in perturbation theory calculation, a sum

over intermediate photon states arises and, which was problematic because we had

to figure out first the most convenient method to perform such a summation. The

reason is that we obtain a sum over discrete trapped modes and an integral over the

continuous set of travelling modes, and there is not an a priori way to know how to

add them together. We derived a good method in section 2.4, and it could be applied

quite straightforwardly to the calculation of the energy shift. Moreover, by utilising

complex-variable techniques, we succeeded in obtaining a general formula for the atom-

slab interaction, as a function of the distance Z between the atom and the slab, the

thickness L and the refractive index n of the slab. The expression for the energy shift

is given in Eq. (3.55), with parallel and perpendicular contributions, S‖ and S⊥, given

by Eqs. (3.48) and (3.50), respectively.

We have pointed out that two regions are physically interesting: the retarded and

108
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the non-retarded regime. Therefore we proceeded with an asymptotic analysis of such

integrals: The former was characterised by the limit ξ → ∞, and the electrostatic

interaction was obtained by considering ξ very small. In both cases we assumed L ≪ Z.

Hence, we obtained simple formulae, which in principle should be easily applied to

particular cases. Thus, if one knows the value of the variables involved, one can simply

get a numerical result.

The formulas obtained so far have been summarised in a table, in section 5.1. In the

retarded regime the shift is given by Eq. (3.71), for L ≪ Z, regardless of how thin the

slab is (contrary to conclusions drawn in [120]). This is because the calculation includes

the limit L → 0. From this result and the one obtained for the non-retarded regime

(Eq. (3.122)), one can conclude that the Casimir-Polder force decays even faster than

the one predicted for a half-space, by a factor of L/Z. Thus it should be considered,

particularly in recent experiments, where the thickness of the first layer on the top of

the substrate utilised for Casimir-Polder measurements1 has a size that is comparable

or much smaller than Z, and can not simply be ignored in theoretical calculations.

Note that we have separated the calculation of the energy shift into retarded and

non-retarded regimes in order to obtain more explicit formulae. However, we can take

more advantage of Eq. (3.55) and see how the shift varies at any atom-surface separa-

tion. We shall calculate numerically (for a fixed thickness L) the integrals contained in

the expression for the shift and plot for any separation distance Z. We shall emphasize

that the numerical calculations that would be required to obtain the energy-shift for a

specific case, can be solved very easily by using standard packages like Mathematica or

Maple.

Then, one could simply plot the energy shift as a function of the atomi-surface

separation, however, in order to see more evidently the correction that we have obtained,

the convenient method is factorise out a well known result: the force between an atom

and a perfect reflector. In such a way, it becomes evident how the correction varies

from the non-retarded to the retarded regime. A comparison with the interaction with

1See table in section 1.1, of the latest experiments.
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a dielectric half-space will be useful as well. We know what the results are for these two

cases, so that they would provide us with a verification of the validity of our calculation.

We shall derive such limiting cases directly from Eqs. (3.48) and (3.50). By taking

the limit L → ∞ we should recover the dielectric half-space result [75] and by letting

n → ∞ one should be able to obtain the famous Casimir-Polder result. The former case

will be derived in section 4.1 and the latter in section 4.2. Both cases will be analysed

in the retarded and non-retarded regimes. Then we shall proceed with some relevant

plots, in section 4.3.

4.1 Recovering the dielectric half-space limit

In this section, we intend to recover the results obtained by Wu and Eberlein in [75, 76],

where they considered a half-space made of a dielectric that is characterised by a

refractive index n, like in our case. We shall treat the retarded and non-retarded

regimes separately.

4.1.1 Retarded Regime

In order to analyse this regime, we shall consider the third limit suggested previously:

L̃ ≫ ξ ≫ 1. Within these limits, it will be possible to calculate analytically the

integrals contained in S‖ and S⊥. Since it is easier to work in polar coordinates we

shall start from Eqs. (3.60) and (3.68) for the parallel and perpendicular contributions,

respectively.

First of all, we note that the thickness dependence is contained only in the reflection

coefficients Rλ. It can be seen from Eq. (2.31) that, in the limit L → ∞, one recovers

the Fresnel coefficients for a single interface. Alternatively, we can use the expressions

(3.61) and (3.62) for the reflection coefficients in polar coordinates, and thus approxi-

mate the hyperbolic cotangent function appearing in the denominator by a constant2.

One can see that, once we have taken this approximation, the expressions are identical

to those in Wu’s calculation, and thus the derivation will be as described in [76].

2See for instance section 4.5 in Ref. [124].
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Concerning the limit ξ ≫ 1 that describes the retarded regime, we shall apply Wat-

son’s lemma [127]. This is because the parameter ξ is only included in the argument of

the exponential function e−ξr, and thus, one can conclude that the important contribu-

tion to the integral comes from small r only. Watson’s lemma is equivalent to replacing

the numerator by its Taylor series,

1

x2 + 1
≈ 1 − x2 + x4 − ... (4.1)

Note that even though the denominator contains the factor t2 multiplying the variable

r2, it does not do any harm to the approximation (4.1), since t goes from 0 to 1.

After approximating the coth function, the reflection coefficients R̃λ only depend on

the variable t. Hence, the initial double integral in Eq. (3.60) separates into a product

of two single integrals, which are analytically solvable. For the parallel contribution of

the shift we get, in the retarded regime,

S‖(L → ∞) =
1

4
(n2 − 1)

∫ ∞

0
dr r3 e−ξr

×
{

∫ 1

0
dt

t4

(1 +
√

1 + (n2 − 1)t2)2
+

∫ 1

0
dt

n2 + 1 − t2

(n2 +
√

1 + (n2 − 1)t2)2

}

. (4.2)

The integral in r can be solved straightforwardly, but for the integration over t it is

convenient to do some algebraic manipulation. We shall perform the change of variable

that we suggested in page 91: t → τ =
√

1 + (n2 − 1)t2. In such a way that the integral

in τ can be calculated analytically (see page 98 of Ref. [126]). One finally gets that

the parallel contribution to the energy shift reads

S‖(L → ∞) =
C

‖
4

ξ4
, (4.3)
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with the coefficient C
‖
4 defined as

C
‖
4 = −1

2

{2n2 + 3n − 8

n2 − 1
− 3(2n4 − 2n2 − 1)

(n2 − 1)3/2
ln(
√

n2 − 1 + n)

− 6n4

(n2 − 1)
√

n2 + 1
ln

( √
n2 + 1 + 1

n(
√

n2 + 1 + n)

)

}

, (4.4)

as it was shown in [76]. Exactly the same procedure follows for the perpendicular

contribution of the energy-level shift of the atom S⊥. The integral (3.50), after the

same approximations for L large and r small, can be written as

S⊥(L → ∞) =
1

2
(n2 − 1)

∫ ∞

0
dr r3 e−ξr

∫ 1

0
dt

(1 − t2)(n2 + 1 − t2)

(n2 +
√

1 + (n2 − 1)t2)2
. (4.5)

The integral in r can be calculated easily, and the integral in t is performed by changing

to the variable τ . Finally, we get that the perpendicular part of the energy-level shift

is given by

S⊥(L → ∞) =
C⊥

4

ξ4
, (4.6)

where the coefficient C⊥
4 is exactly the same as the one defined in [76]

C⊥
4 =

6n4 − 3n3 − 2n2 + 2

n2 − 1
− 3n2(2n4 − 2n2 + 1)

(n2 − 1)3/2
ln(
√

n2 − 1 + n)

− 6n6

(n2 − 1)
√

n2 + 1
ln

( √
n2 + 1 + 1

n(
√

n2 + 1 + n)

)

. (4.7)

By substituting these results into Eq. (3.55), we can obtain a final expression for the

retarded energy shift of an atom near a dielectric half-space, as obtained in [76],

δEret = − α

8πm2Z4

∑

j

C
‖
4 |p‖|2 + C⊥

4 |p⊥|2
E3

ji

. (4.8)

4.1.2 Non-retarded regime

In section 3.6.2 we calculated the non-retarded energy shift of an atom near a dielectric

slab. We did it first by following a standard electrostatic calculation, and secondly, by
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taking the corresponding limits to out general expression for the shift (3.55). In both

cases we obtained that the shift ∆Ees is given by Eq. (3.79). Thus, in order to obtain

the shift of an atom near a dielectric half-space, it suffices to consider the limit L → ∞

in such an expression. The function Q⊥ defined in page 107 gets simplified after this

approximation, and the integral can be trivially solved,

Q⊥(L → ∞) =
1

2

∫ ∞

0
dk k2 e−2Zk =

1

8Z3
. (4.9)

Substituting this result into Eq. (3.119) one gets that the electrostatic energy reads

∆Ees =
α

16m2Z3

n2 − 1

n2 + 1

∑

j

2|p⊥|2 + |p‖|2
E2

ji

, (4.10)

as calculated by Wu and Eberlein [76].

4.2 Recovering Casimir and Polder’s result: Force on an

atom near a perfect reflector

We have included in Appendix A a detailed derivation of the interaction between an

atom and a perfect reflector. Thus, we know that the force between them is given by

Eq. (A.30), as Casimir and Polder originally obtained. By expanding asymptotically

this equation, one can obtain the force in the retarded (A.32) and the non-retarded

regimes (A.31).

As a first attempt on recovering the (retarded) Casimir-Polder force, we can simply

consider the results obtained in section 4.1.1 for a dielectric half-space, and take the

limit n → ∞ in the coefficients C‖ and C⊥ (Eqs. (4.4) and (4.7), respectively), as

performed in Wu and Eberlein’s paper. In the limit those coefficients are reduced to

C
‖
4 (n → ∞) ∼ 2 − 3

n
and C⊥

4 (n → ∞) ∼ 2 − 3

2n
, (4.11)

and substituting them into the expressions for Sσ we can finally recover the well known
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Casimir-Polder result

δEret = − α

4πm2Z4

∑

j

|p‖|2 + |p⊥|2
E3

ji

+ O

(

1

n

)

. (4.12)

This procedure was performed quite straightforwardly. However, one could also

recover the same result from our general formula for the energy shift — for an arbitrary

thickness of the dielectric slab. Thus, what we should do, is to consider the limit n → ∞

in Eq. (3.55). As it can be seen, the refractive index-dependence is only included in

the reflection coefficients Rλ. Thus, we shall take the limit n → ∞ to Eqs. (3.46) and

(3.47). The coth function that appears in the coefficients goes to one (as far as L stays

finite), and thus,

Rλ(n → ∞) =⇒ rλ(n → ∞), (4.13)

where rλ is the Fresnel coefficient for one single interface, and such a limit is -1 for the

TE polarisation direction and 1 for the TM one. If we substitute the corresponding

values in Eq. (3.48) for the parallel part of the energy shift, we solely need to solve

S‖(n → ∞) =
1

4

∫ ∞

0
dv

∫ ∞

0
ds

v√
s2 + v2

2s2 + v2

1 + s2
e−ξ

√
s2+v2

, (4.14)

which in polar coordinates can also be written as

S‖(n → ∞) =
1

4

∫ ∞

0
dr

∫ 1

0
dt

1 + t2

r2t2 + 1
r3e−ξr. (4.15)

It seems convenient to start with the integration in t, and especially after some algebraic

rearrangements in the integrand we obtain

S‖ =
1

4

∫ ∞

0
dr re−ξr +

1

4

∫ ∞

0
dr r(r2 − 1) e−ξr

∫ 1

0
dt

1

r2t2 + 1
. (4.16)

where the first term turned out to be a trivial integration in t. In the second term we

have a relatively simple integral in t, given in Eq. (C.8). Thus the parallel part of the
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shift remains in terms of the integral in r

S‖ =
1

4

∫ ∞

0
dr
[

r + (r2 − 1) arctan(r)
]

e−ξr. (4.17)

The integration for the first term gives simply 1/ξ2. The remaining integrals can be

integrated by parts, as it is shown in Eqs. (C.9) and (C.10). Moreover, we can identify

in those expressions the auxiliary function, defined in section C.3, and thus write S‖ in

terms of its first and second derivatives, given in Eqs. (C.12) and (C.13). The parallel

part of the shift is finally written as

S‖ =
1

2

(

f(ξ)

ξ3
− f ′(ξ)

ξ2
− f(ξ)

ξ
+

1

ξ2

)

. (4.18)

Following the same procedure, we can calculate the perpendicular part of the energy

shift

S⊥ =
1

2

∫ ∞

0
dv

∫ ∞

0
ds

v√
s2 + v2

v2

1 + s2
e−ξ

√
s2+v2

, (4.19)

which in polar coordinates reads

S⊥ =
1

2

∫ ∞

0
dr

∫ 1

0
dt

1 − t2

r2t2 + 1
r3e−ξr. (4.20)

We can rewrite the integrand as we did before, in such a way that the integral in t

gets simplified. It turns out to be the same integral given in Eq. (C.8). The remaining

integrals in r are exactly Eqs. (C.9) and (C.10). Using the auxiliary functions and its

derivatives as we did before we get

S⊥ =
1

2

∫ ∞

0
dr r(r2 + 1) e−ξr

∫ 1

0
dt

1

r2t2 + 1
− 1

2

∫ ∞

0
dr re−ξr (4.21)

=
1

2

∫ ∞

0
dr
[

(r2 + 1) arctan(r) − r
]

e−ξr (4.22)

=
f(ξ)

ξ3
− f ′(ξ)

ξ2
. (4.23)

Thus, the total result for the Casimir-Polder force, after some further algebraic manip-
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ulation in the coefficients S‖ and S⊥ is given by

δE = − α

πm2

∑

j

Eji

[

|p‖|2
(

∂2

∂ξ2

1

ξ
+

∂

∂ξ

1

ξ2
+

1

ξ3

)

f(ξ) − 2|p⊥|2
(

∂

∂ξ

1

ξ2
+

1

ξ3

)

f(ξ)

]

,

(4.24)

in agreement with Eq. ( A.26). Performing an asymptotic expansion for the auxiliary

functions for ξ → ∞ (see Eq. (C.15)) in order to obtain the result in the retarded

regime, we find that both S‖ and S⊥ leading terms are 2/ξ4, recovering thus the famous

expression (4.12). Also, by expanding the auxiliary functions around 0 (see Eq. (C.15)),

one can recover the electrostatic interaction of an atom with a perfect reflector as

calculated in previous chapter and given in Eq. (3.1)

4.3 Plots

The expression for the energy-level shift (4.24), as calculated by Casimir and Polder

[2], will be very useful in order to show the correction due to the finite thickness of the

dielectric that is located near the atom. As we said, by factorising out such a force from

our general result (3.55), we can plot a useful parameter that shows how the correction

varies with the distance Z.

First of all, with the purpose of understanding the procedure that we will follow,

we shall start with a simpler case: the perfect reflector. In order to obtain some useful

plots, we shall rewrite the Casimir-Polder interaction in a more convenient way. Then,

in section 4.3.2, a similar procedure will be applied to obtain the correction for the

atom-slab interaction.

4.3.1 Perfect reflector

In order to rewrite Eq. (4.24) in a more favourable way, we shall bear in mind that the

definition of certain parameters, like ξ and L̃, was necessary in previous calculations

because they would lead us to an asymptotic analysis of they integrals in play. Nev-

ertheless, at this stage it is more effective to utilise the variables that relate directly
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to experiments. Thus, it seems more convenient to use the measurable variables Z, L

and the wavelenth of an atomic transition λ̄ji, as defined in Eq. (3.59). In such a way,

we can define the parameter ξ̃ ≡ Z/λ̄ji and use the relation (3.54), given in page 87,

in order to transform the expression in terms of the dipole-moment operator. For a

perfect reflector we thus have

δEPR = − 1

4πǫo

∑

j

1

λ̄3
ji

(

V PR
‖ |µ‖|2 + V PR

⊥ |µz|2
)

, (4.25)

with

V PR
‖ =

1

8π

(

∂2

∂ξ̃2

1

ξ̃
+

∂

∂ξ̃

1

ξ̃2
+

1

ξ̃3

)

f(2ξ̃) (4.26)

V PR
⊥ = − 1

4π

(

∂

∂ξ̃

1

ξ̃2
+

1

ξ̃3

)

f(2ξ̃). (4.27)

If we expand the auxiliary functions and its derivatives in Eq. (4.25) for ξ̃ large

(use Eq. (C.15)), we obtain that both perpendicular and parallel parts approximate

to 1/4πξ̃4. On the other hand, if we expand the expressions for ξ̃ small, by using Eq.

(C.16), one gets that in the non-retarded regime the functions are V PR
‖ → 1/16ξ̃3 and

V PR
⊥ → 1/8ξ̃3. We have chosen to divide the functions V PR

‖ and V PR
⊥ given above by

their functional dependence as ξ̃ → ∞. This implies that such a product will approach

asymptotically to one for large atom-surface separations. On the other hand, as the

atom gets closer to the dielectric surface, the product will approach to the lines πξ̃/4

and πξ̃/2, respectively for the parallel and the perpendicular parts. We shall label these

new functions as

WPR
‖ = 4πξ̃4V PR

‖ and WPR
⊥ = 4πξ̃4V PR

⊥ , (4.28)

in such a way that the energy shift can be written as

δEPR = − 1

4πǫo

∑

j

1

4πEjiZ4

(

WPR
‖ |µ‖|2 + WPR

⊥ |µz|2
)

. (4.29)
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Figure 4.1: The graph shows the functions W PR
‖ and W PR

⊥ for a perfect reflector, as a function of
the atom-surface separation (rescaled with Eji). As predicted, the correction approaches to 1 at large
distances and to πξ̃/4 and πξ̃/2, respectively in the so called non-retarded regime.

We know that the energy shift for the perfect reflector δEPR behaves like −1/Z3

in the non-retarded regime, and like −1/Z4 for large atom-surface separations. Thus,

plotting simply δEPR would make difficult to see any difference. Furthermore, it can

be seen from Eq. (4.29) that the shift depends on atomic properties. For this reason, it

is more convenient to plot the functions WPR
‖ and WPR

⊥ written beside the parallel and

perpendicular component of the dipole moment, respectively. Since the shift δEPR in

Eq. (4.29) has a factor of −1/Z4, this implies that for small atom-surface separations,

where δEPR ∼ −1/Z3, the functions WPR
‖ and WPR

⊥ go like Z (with different slope

for each polarisation), and in the retarded regime, where δEPR ∼ −1/Z4, the function

WPR
σ is a constant. In addition, we can see in Fig 4.1 how this correction behaves in

between.
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4.3.2 Dielectric slab

Following a similar procedure, one can get a more useful expression for the energy shift

of an atom due to the presence of the slab. This will be obtained by factoring out the

Casimir-Polder dependence, in order to see what the correction is.

The choice of functions Wσ is such that they are dimensionless. They, now labeled

as W slab
σ in reference to the dielectric slab, play a role analogous to the functions

WPR
σ in the previous section: they are simply the functions Sσ in Eq. (3.55) but with

the Casimir-Polder term ∼ ξ̃4 factored out. Thus, after transforming in terms of the

dipole-moment operator, the energy-level shift given in Eq. (3.55) reads

δEslab = − 1

4πǫo

∑

j 6=i

1

4πEjiZ4

(

W slab
‖ |µ‖|2 + W slab

⊥ |µz|2
)

, (4.30)

with parallel part

W slab
‖ = 8ξ̃4S‖ =

2ξ̃4

√
n2 − 1

∫ ∞

0
dr

∫ n

1
dτ

r3

n2 − 1 + r2(τ2 − 1)

τ√
τ2 − 1

×
(

(n2 − 1)(n4 − τ2)

n4 + τ2 + 2n2τ coth(rLEjiτ)
+

(τ2 − 1)2

τ2 + 1 + 2τ coth(rLEjiτ)

)

e−2rξ̃ (4.31)

and perpendicular part given by

W slab
⊥ = 8ξ̃4S⊥ =

4ξ̃4

√
n2 − 1

∫ ∞

0
dr

∫ n

1
dτ

τ√
τ2 − 1

× r3(n2 − τ2)

n2 − 1 + r2(τ2 − 1)

n4 − τ2

n4 + τ2 + 2n2τ coth(rLEjiτ)
e−2rξ̃. (4.32)

As we did for the perfect reflector case, one can plot the parallel and perpendicular

corrections W slab
‖ and W slab

⊥ , as a function of the surface-atom separation (scaled with

the wavelength of an atomic transition λji, in order to get a dimensionless variable).

However, since the shift also depends on the thickness of the dielectric slab L (that

we shall scale in the same way) and the refractive index n, we shall do this heedfully.

Thus, in order to calculate numerically the integrals in Eq. (4.30), by simply using

Maple, we must separate the graphs into two sets:
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Figure 4.2: The graph shows the function W slab
⊥ . The slab is taken to have a thickness LEji = 1,

and we have varied the value of the refractive index n = 1.5, 3, 5, 10. In light blue it is shown the result
W PR

z for the perfect reflector (n → ∞).

Fixed thickness

First, by fixing the value of scaled thickness LEji, one can plot the functions W slab
σ of

the energy shift for different values of the refractive index n. As it is shown in Fig. 4.2,

we have chosen LEji = 1 and calculated numerically Eq. (4.32), by using Mathematica,

for n = 1.5, 3, 5, 10. As we have also plotted the function W PR
⊥ for a perfect reflector,

it can be clearly seen how they approach to the latter as n → ∞.

The same procedure is followed in order to calculate the parallel correction. By

fixing the thickness of the slab and solving numerically Eq. (4.31) for the same values

of n, one can plot W slab
‖ as shown in Fig. 4.3. Note that this plot looks very similar to

the previous one, however it has a different slope.

Using the same values for n, we have also plot W slab
⊥ and W slab

‖ for LEji = 10, in

Fig. 4.4 and 4.5, respectively, and for LEji =0.1 in Fig. 4.6 and 4.7, respectively.
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Figure 4.3: The graph shows the function W slab
‖ . The slab is taken to have a thickness LEji = 1,

and we have varied the value of the refractive index n = 1.5, 3, 5, 10. In light blue it is shown the result
W PR

‖ for the perfect reflector (n → ∞).

Fixed refractive index

For the second set of graphs, it is necessary to fix the value of the refractive index n.

We have arbitrarily chosen first n = 2 in order to calculate numerically the integrals in

Eqs. (4.32) and (4.31), and then plot separately for a scaled thickness LEji = 0.1, 1,

5, 10. The functions W slab
⊥ and W slab

‖ , are shown in Fig. 4.8 and 4.9, respectively.

Furthermore, we have taken the limit L → ∞ in Eq. (4.32), in such a way that

we can approximate the cotangent function by one. Note that in that limit, coth(rL)

will be one except at r = 0, but this term would be negligible compared to r3 in the

numerator and thus we can proceed without problem. The resulting integral in Eq.

(4.32) can be solved numerically in Mathematica for n = 2, and we have labeled it

as WHS
⊥ . In order to compare it with the graphs obtained for various thickness, we

have also plot the function WHS
⊥ in Fig. 4.8, in light blue. Note that as the value of

L increases, the branch gets closer to the result obtained for a dielectric half-space,

which in this case approaches asymptotically to .53. If we had chosen a larger value for
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Figure 4.4: The graph shows the function W slab
⊥ . The slab is taken to have a thickness LEji = 10,

and we have varied the value of the refractive index n = 1.5, 3, 5, 10. In light blue it is shown the result
W PR

z for the perfect reflector (n → ∞).

the refractive index n this asymptote would be shifted up, but never further than one

(which gives the perfect reflector result shown in Fig. 4.1). The corresponding graph

for WHS
‖ is added in Fig. 4.9.

Using the same values for LEji, we have plot W slab
⊥ and W slab

⊥ for n = 5, in Fig.

4.10 and 4.11, respectively.

4.4 Comparison with previous work

Only a very few works in which the interaction between an atom and a slab is calculated

can be found in the literature. The one that we could consider the most important, due

to its high applicability, is the work done by Buhmann et al [128]. We have given more

details of such a work in chapter 1 of this thesis. In summary, they utilised lowest-

order perturbation theory and linear response theory to calculate the van der Waals

potential of a ground-state atom placed within an arbitrary dispersing and absorbing

magnetodielectric multilayer system. Their general formula can be analysed for some
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Figure 4.5: The graph shows the function W slab
‖ . The slab is taken to have a thickness LEji = 10,

and we have varied the value of the refractive index n = 1.5, 3, 5, 10. In light blue it is shown the result
for the perfect reflector (n → ∞).

special cases and simplified, i.e., for one material half-space and for a plate of finite

thickness. They are particularly interested in the behaviour due to both the electric

and magnetic permittivities, and realised that there is an optimal plate thickness for

creating a maximum potential wall. They claimed that their expression for the Casimir-

Polder potential of an atom near a plate of finite thickness reduces to the result given

in Ref. [83], in the special case of a dielectric plate. In order to get a more explicit

formula, they consider the limit of an asymptotically thin plate, in the retarded regime.

The result obtained, as given in Eq. (218) in [7], reads

U(Z) = − h̄cα(0)

160π2ε0

L

Z5

[

14ε2(0) − 9

ε(0)
− 6µ2(0) − 1

µ(0)

]

, (4.33)

where α(0) is the static polarisability. They also calculated the interaction in the non-

retarded limit, where they could distinguish between a purely dielectric plate and a

purely magnetic one. For the dielectric case, by direct comparison with out results, it

can be seen that they have a dependence of the order L/Z5, as we do.
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Figure 4.6: The graph shows the function W slab
⊥ . The slab is taken to have a thickness LEji = 0.1,

and we have varied the value of the refractive index n = 1.5, 3, 5, 10. In light blue it is shown the result
W PR

z for the perfect reflector (n → ∞).

In order to reduce, from Eq. (4.33), to the case of a dielectric plate, we shall

substitute µ(0) = 1. Moreover, since the static refractive index of the medium is

n(0) =
√

ε(0)µ(0), we can simply substitute ε(0) = n2 into the expression above. Note

that, unlike our treatment, they have considered an atom with isotropic polarisability,

i.e, the same at all directions. Thus, Eq. (4.33) simply reduces to

U(Z) = − h̄cα(0)

160π2n2ε0

L

Z5
(n2 − 1)(9 + 14n2). (4.34)

We should be able to compare this formula with our result, by using Eq. (3.71) for the

interaction between an atom and a thin slab. Since it is written in terms of the matrix

elements of the momentum operator, it is convenient to use relation (3.54) to convert

them into those of the dipole moment operator,

δE = − (n2 − 1)

160π2n2εo

L

Z5

∑

j 6=i

(5 + 9n2)|µ‖|2 + 2(4 + 5n2)|µ⊥|2
Eji

. (4.35)
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Figure 4.7: The graph shows the function W slab
‖ . The slab is taken to have a thickness LEji = 0.1,

and we have varied the value of the refractive index n = 1.5, 3, 5, 10. In light blue it is shown the result
W PR

‖ for the perfect reflector (n → ∞).

Then we can use the relation for the polarisability of an isotropic atom 3

α(ω) =
2

3

∑

j

Eji|µ|2
E2

ji − ω2
, (4.36)

with |µ|2 = |µx|2 + |µy|2 + |µz|2 and |µx|2 = |µy|2 = |µz|2. Thus the static polarisability

can be written as

α(0) = 2
∑

j 6=i

|µz|2
Eji

, or α(0) =
∑

j 6=i

|µ‖|2
Eji

. (4.37)

With this our result reduces to

δE = − α(0)

160π2n2

L

Z5
(n2 − 1)(9 + 14n2), (4.38)

which agrees with Eq. (4.34) in our choice of units h̄ = 1 = c and εo = 1.

3See for instance page 243 in [3].



Chapter 4. Analysis of results 126

0 2 4 6 8 10
0.0

0.2

0.4

0.6

 

 

W
zsl

ab
(n

=2
)

ZE
ji

LE
ji
=0.1

LE
ji
=1

LE
ji
=5

LE
ji
=10

W
z
HS

Figure 4.8: The graph shows the function W slab
⊥ for different thickness of the slab. In this specific

case, the dielectric is characterised by a refractive index n = 2 so W slab
⊥ can be obtained numerically

for different thickness. We have chosen LEji = 0.1,1,5,10. The curve in light blue comes from the
dielectric half-space result.
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Figure 4.9: The graph shows the function W slab
‖ for different thickness of the dielectric slab (n = 2).

As above, numerical values LEji = 0.1, 1, 5, 10 are used.
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⊥ for a dielectric with refractive index n = 5. W slab
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is shown for different thickness LEji = 0.1,1,5,10. The curve in light blue comes from the dielectric
half-space result.
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‖ for different thickness of the dielectric slab (n = 5).

As above, numerical values LEji = 0.1, 1, 5, 10 are used.



Chapter 5

Summary and outlook

In this thesis, we have have calculated the energy-level shift of an atom located near a

non-dispersive and non-dissipative dielectric slab. We have considered an atom in its

ground state, and the system was studied at zero temperature. The dielectric slab is

characterised by a refractive index n, which is real and the same for all the frequencies.

Although this is a simplified model, it constitutes an improvement over the unrealistic

perfect reflector model, as it allows for imperfect reflectivity and evanescent waves.

Most importantly, the simplicity and high symmetry of the geometry utilised allow us

to quantise the electromagnetic field by explicit mode expansion, which facilitates exact

analytic calculations. Many powerful methods to study quantum electrodynamics near

media with diverse properties and geometries have been developed in the past [129].

We have mentioned some of them in section 1.2.2, emphasizing that their importance is

mainly due to their wide applicability (i.e., they are capable of including absorption and

dissipation). However, the problem that they present, unlike the treatment in terms

of an explicit mode expansion, is that applying these methods to a particular problem

generally necessitates extensive numerical calculations. As we are wishing to obtain

simple formulas that can be applied very easily to current experiments (see page 18),

it is convenient to follow a quantisation by explicit mode expansion.

The energy-level shift is a purely quantum mechanical effect and arises from the

interaction of the atom with the electromagnetic field fluctuations, which in turn are

128
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affected by the presence of the slab. Therefore, a quantisation of the electromagnetic

field in the presence of a layered system was vital in order to work out the shift. Even

though the field quantisation for this system has been analysed previously [78], we

decided to show in this work a complete derivation of the normal modes. The reason

for this is because there has been an ambiguity in the results presented so far (a wrong

normalisation constant was given for the TM polarisation in Ref. [78]). Also, the

absence of the proof of the completeness of the electromagnetic field modes and the use

of certain constants (i.e., the density of modes) without sufficient justification, made

their procedure unsuitable for indiscriminate copying.

By solving the Helmholtz equation and imposing the corresponding boundary con-

ditions that result from Maxwell’s equations, it could be shown that the field modes

comprise of travelling and trapped modes. The travelling modes have a continuous

range of frequencies, and are composed of incident, reflected and transmitted parts

(at each interface). The trapped modes arise due to the solutions of the Helmholtz

equation with purely imaginary normal wave vector outside the slab. They are subject

to repeated total internal reflection inside the dielectric, and emerge as an evanescent

field outside the slab. Also, they only exist at certain discrete frequencies which de-

pend on their polarisation direction and parity and are obtained through the dispersion

relations.

In order to calculate the energy-level shift, we applied second-order perturbation

theory to the interaction Hamiltonian HI = −µ ·E(r, t), corresponding to the electric-

dipole interaction, which is the lowest-order in the multipole Hamiltonian. In this

equation, µ = e(r − ro) is the electric-dipole moment operator of the atomic electron

and E(r, t) the transverse electric field, which can be expanded in terms of travelling and

trapped modes. The advantage of working with this Hamiltonian, over the conventional

minimal-coupling Hamiltonian HI = p · A, is that it does not explicitly contain the

electrostatic interaction between the atomic dipole and its image charges inside the

dielectric.

A typical second-order perturbative calculation in quantum electrodynamics, like
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the one required in this work for the Casimir-Polder interaction between the atom and

the dielectric slab, involves a product of mode functions and a sum over intermediate

photon states (as shown in Eq. (3.12)). As these modes have different nature, the shift

automatically splits into two contributions: one from the continuous set of travelling

modes and the other from the discrete set of trapped modes.

A problem arose when we had to add both contributions together, as it was difficult

to know a priori how to add the travelling and the trapped modes with the correct

relative weightings. As the completeness condition (2.15) — which must be satisfied

— contains such a sum over all the modes, we decided to embark on this calculation.

The procedure, as we hoped, would guide us to see the convenient way to treat such a

sum.

In order to perform the proof of the completeness in an unambiguous way, it was

necessary to introduce a quantisation box. In such a way, all modes became discrete,

and we could add them unequivocally. Then, by taking the limit of an infinite quan-

tisation volume, we recovered the original modes, as obtained in free space, and hence

a correct way to sum them (without guessing the weighting constants, in contrast to

previous work [78]).

What we found out is that the integral in kz, that corresponds to the contribution

from the travelling modes, could be transformed into a sum over residues around the

poles of the reflection coefficients RTE and RTM . This sum was equal (but with opposite

sign) to the contribution coming from the trapped modes, which allowed us to prove

the completeness of the modes.

However, the most important benefit that we got out of the completeness calculation

was that we realised that by following the procedure in reverse, one could see the sum

over trapped modes as a contour integral in the complex kz plane. This means that

we came out with a convenient method of summing over all modes. In general, for any
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function Q(kz,k‖) contained in the integrand

∫

d2k‖
∑

kzλ

∫

Q(kz ,k‖)
√

εf i
kλ(r)

√
εf∗j

kλ(r′)

∣

∣

∣

∣

∣

∣

all modes

(5.1)

in which fkλ(r) are the normal modes of the system, one can calculate the sum over all

modes by applying Eq. (2.116). Note that it is important to ensure that the function

Q(kz,k‖) is analytic in the vicinity of the poles of the reflection coefficients RTE and

RTM on the positive imaginary kz axis.

The calculation of the energy-level shift could then be achieved more easily, in a

clever and sophisticated way, as an application of our method. The shift, written as an

integral along the new path shown in Fig. 2.11, is given by Eq. (3.32). Furthermore,

in order to solve this integral we applied complex variable techniques, resulting in the

general expression (3.32), with parallel and perpendicular components given by Eqs.

(3.48) and (3.50) respectively.

Finally, in order to obtain more explicit expressions, we analysed the final result

by separating the analysis in two groups, depending on whether the retardation of

the electromagnetic interaction mattered. When the retardation can be neglected, the

interaction is purely electrostatic, and is due to the interaction between the atomic

dipole and its images on the other side of the interface (as drawn in Fig. 3.8). On the

other hand, when the separation Z between the atom and the slab is large compared

with the wavelength λij of an atomic transition, retardation had to be taken into

account. In order to analyse this regime, we proceeded with an asymptotic analysis

of the integral (3.32). It had been stated in Ref. [120], that the result should depend

on the thickness of the slab, as there was a discrepancy between the force due to a

thick slab and the one produced by a thin sheet. Nevertheless, we found that this was

not the case, and the result was the same for all thicknesses, including the limit of

an infinitely thin sheet. Also, we have managed to recover results obtained previously

for a dielectric half-space [75], and the well-known result of Casimir and Polder for a

perfect reflector. We have summarised all the results obtained in the following table
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5.1. Note that the formula that describes the energy-level shift between an atom and

a thin dielectric slab is a very simple expression and thus could be applied quite easily

to current experimental research. This is very important, as experiments that intend

to measure the Casimir-Polder force are becoming more precise, especially due to the

use of cold atoms. Moreover, they no longer simply use a thick dielectric substrate, but

utilise a very thin layer of other material on the top, and that layer interacts with the

atom.

5.1 Summary of results

The following table shows the results obtained

Atom-surface interaction Retarded General Non-retarded

δE(Z, n, L) regime formula regime

Finite slab with L ≪ Z (3.71) (3.55) (3.79) → (3.122)

Half-space (L → ∞) (4.8) (3.55) (4.10)

Perfect conductor (n → ∞) (4.12) (3.55) (A.31)

5.2 Outlook

Since we have found a very convenient way to add a discrete and a continuous set of

modes, in principle, the result (2.116) could be applied to a series of problems for the

same model and geometry. For instance, we could calculate the correction due to finite

temperature, by simply including the Planck distribution

Nν =
1

eων/T − 1
(5.2)

into the expression of the shift, as it was calculated for the dielectric half-space case

[111]. We have to be careful on how to apply the method though (i.e., checking that

the function Q in Eq. (2.116 is analytic)), as the calculation will also involve a sum

over the Matsubara frequencies (i.e., poles located on the imaginary ω-axis).



Appendix A

Casimir-Polder force for a plane

The force between a ground state atom and a perfect reflector was first calculated

by Casimir and Polder [2], by using perturbation theory. In order to facilitate the

understanding of the problem presented in this thesis, we shall reproduce Casimir and

Polder’s result. The reason is that the method followed here, for the ideal case, is

exactly the same required in our calculation for the interaction between an atom and a

slab. However, we shall describe the procedure with less detail in this Appendix, since

we have left those details for the main part of this thesis.

The Casimir-Polder force is due to the interaction of the atom with the electro-

magnetic field fluctuations, which are affected by the presence of the boundary, i.e.,

perfect reflector. Thus, a quantisation of the field in the presence of such a boundary

is required. For instance, it is well known that one can write the vector potential for

the free electromagnetic field in terms of plane waves

A(r, t) =
∑

λ

∫

d3k

(2π)3/2

1√
2ωǫo

(

êλakλe−iωt+ik·r + ê∗λa†
kλeiωt−ik·r

)

, (A.1)

where the polarisation vectors êλ are given by Eqs. (2.19) and (2.20), for the TE

and TM polarisation respectively (see page 30). For convenience in the rest of the

133
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calculation, we shall write them in the following way

ê1 =
1

k‖
(k × êz) and ê2 =

kz

k‖k
k‖ −

k‖
k

êz, (A.2)

where êz is the unit vector pointing out in the z direction, and k = (k‖, kz) is the wave

vector in free space (following the same notation as used before). The vector field, as

written in Eq. (A.1), describes the electromagnetic field in free space. However, in

order to take into account the chosen boundary, the field must satisfy the boundary

conditions imposed by the reflecting surface. From Maxwell Eqs. (2.1)–(2.4), these are

given by,

Ex = 0 = Ey and Bz = 0 (A.3)

at z = 0, where the interface is located.

It is necessary to obtain an expression for the vector potential A(r, t) in terms of

the normal modes fkλ(r), as in Eq. (2.10). For this we shall only make sure that

the electromagnetic field satisfies the boundary conditions (A.3), for each polarisation

direction λ. For example, for the TE polarisation we have,

e−iωt k× êz

k‖
eik‖·r‖ sin kzz (A.4)

in order to satisfy the condition E‖ = 0 at z = 0. The z-component of the magnetic

field can be obtained from the vector potential above, by using B = ∇× A. Thus,

Bz =
∂Ay

∂x
− ∂Ax

∂y
∼ sin kzz, (A.5)

ensuring the condition (A.3) for the magnetic field at the interface. A similar procedure

is done for the second polarisation, described by the vector ê2. In order to satisfy the

condition E‖ = 0 at z = 0 we get

e−iωt

(

kz

k‖k
k‖ sin kzz + i

k‖
k

êz cos kzz

)

eik‖·r‖, (A.6)
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and Bz = 0 will be satisfied anyway. Since we have now all expressions needed, we can

finally define the mode functions. We shall do this in the following section, and also,

introduce the electric field in terms of such normal modes.

A.1 Mode functions

The mode functions for an electromagnetic field bounded by a perfectly conducting

plate are divided in two, depending on the polarisation direction of the light. In the

TE polarisation, as concluded above, they read

f
(1)
k

= 2
k × êz

k‖
eik‖·r‖ sin kzz, (A.7)

and for the TM polarisation

f
(2)
k

= 2eik‖·r‖
(

kz

k‖k
k‖ sin kzz + i

k‖
k

êz cos kzz

)

, (A.8)

with k‖ ∈ ℜ2 and kz ≥ 0. The factor of 2 that we have added into their definitions is due

to the fact, as explained in chapter 2, that these mode functions must be orthonormal,

i.e., satisfy the condition

∫

d3r f∗kλ(r) · fk′λ′(r) = (2π)3δ(3)(k − k′)δλλ′ . (A.9)

It can be proven that f
(1)
k

and f
(2)
k

form a complete set of modes, i.e., that satisfy the

completeness relation

∫

d3kf i
kλ(r) f∗j

kλ(r′) = (δij − ∆−1∂i∂j)δ
(3)(r − r′), (A.10)

Then, we can finally write the vector potential in terms of the normal modes

A(r, t) =
∑

λ

∫

d2k‖

∫

dkz
1

(2π)3/2

1√
2ωǫo

akλe−iωt fkλ(r) + H.C., (A.11)



Appendix A. Casimir-Polder force for a plane 136

where H.C. is the hermitian conjugate, and the electric field is obtained straightfor-

wardly, by using Eq. (2.7), bearing in mind that we are working in the Coulomb gauge,

where Φ = 0, we get

E(r, t) = i
∑

λ

∫

d2k‖

∫

dkz
1

(2π)3/2

√

ω

2ǫo
akλe−iωt fkλ(r) − H.C. (A.12)

A.2 Perturbative calculation

We have now obtained the electric field in terms of the spatial modes, thus we can

proceed with the calculation of the energy-level shift. By applying second order per-

turbation theory to the interaction Hamiltonian

H int = −µ · E(r, t), (A.13)

we obtain

∆E = −
∑

λ

∫

d2k‖

∫

dkz

∑

j 6=i

∣

∣

∣

〈

j; 1ν |µ · Ê(r, t)|i; 0
〉∣

∣

∣

2

Ej − Ei + ων
, (A.14)

as it has been derived in chapter 3. Within the electric dipole approximation, we can

simplify the expression, for each component of the field, to

∆E = − 1

(2π)3

∑

ι

∑

j 6=i

∑

λ

∫

d2k‖

∫

dkz
ω

2ǫo

1

Eji + ω
|f (λ)

kι |2 |〈j|µι|i〉|2 (A.15)

We shall substitute each component of the mode functions. Then, in order to perform

the double integral in k‖, we use the polar coordinates

∫

d2k‖ =

∫ ∞

0
dk‖k‖

∫ 2π

0
dφ (A.16)

with k‖ = kx cos φ and k‖ = ky sin φ. The integral in the azimuthal angle φ can be

calculated straightforwardly, as we only need to know

∫ 2π

0
dφ sin2 π =

∫ 2π

0
dφ cos2 π = π. (A.17)
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Thus, the energy-level shift is given by

∆E = − 1

(2π)3

∑

j 6=i

∫ ∞

0
dk‖k‖

∫ ∞

0
dkz

ω

2(Eji + ω)

{

4π|µx|2
(

1 +
k2

z

k2

)

sin2 kzz

+4π|µy|2
(

1 +
k2

z

k2

)

sin2 kzz + 8π|µz|2
k2
‖

k2
cos2 kzz

}

, (A.18)

where, in order to simplify our notation, we have defined

|µι|2 ≡ |〈j|µι|i〉|2 with ι = x, y, z. (A.19)

A.3 Renormalisation

In order to obtain the energy-level shift due solely to the presence of the reflecting

surface, we shall remove the contribution that arises from the free space electromagnetic

fluctuations, i.e. the Lamb shift. It is given by,

∆Efree = − 1

(2π)3

∑

j 6=i

∫ ∞

0
dk‖

∫ ∞

0
dkz

k‖ω

2(Eji + ω)

×
(

2π|µx|2
(

1 +
k2

z

k2

)

+ 2π|µy|2
(

1 +
k2

z

k2

)

+ 4π|µz |2
k2
‖

k2

)

,

(A.20)

and thus the renormalised shift reads,

∆Eren = ∆E − ∆Efree

= − 1

2(2π)3

∑

j 6=i

∫ ∞

0
dk‖

∫ ∞

0
dkz

k‖ω

2(Eji + ω)

[

|µx|2
(

1 +
k2

z

k2

)

(2 sin2 kzz − 1)

+|µy|2
(

1 +
k2

z

k2

)

(2 sin2 kzz − 1) + 2|µz|2
k2
‖

k2
(2 cos2 kzz − 1)

]

. (A.21)

This equation can be solved analytically after performing some algebraic manipulation.

We shall derive an exact expression for the shift in the following section.
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A.4 Algebraic manipulation

In order to simplify the expression above we can use some identities for the trigono-

metric functions. Moreover, it can be seen that the x and y components of the shift

can be treated together if we define |µ‖|2 = |µx|2 + |µy|2. Thus,

∆Eren = − 1

2(2π)3

∑

j 6=i

∫ ∞

0
dk‖

∫ ∞

0
dkz

k‖ω

2(Eji + ω)

×
(

2|µz |2
k2
‖

k2
cos 2kzz − |µ‖|2

(

1 +
k2

z

k2

)

cos 2kzz

)

. (A.22)

To perform the double integral we shall transform to polar coordinates: k‖ = k sin θ

and kz = k cos θ, such that

∫ ∞

0
dk‖

∫ ∞

0
dkz =

∫ ∞

0
dk k

∫ π/2

0
dθ, (A.23)

thus

∆Eren = − 1

2(2π)3

∑

j 6=i

∫ ∞

0
dkk3

∫ π/2

0
dθ

sin θ

Eji + k

×
[

2|µz |2 sin2 θ cos(2kz cos θ) − |µ‖|2
(

1 + cos2 θ
)

cos(2kz cos θ)
]

. (A.24)

It is quite useful to make a final change of variable. If we define t = cos θ we get

∆Eren = − 1

8π2

∑

j 6=i

∫ ∞

0
dk

∫ 1

0
dt

k3

Eji + k

×
{

2|µz|2(1 − t2) cos(2kzt) − |µ‖|2(1 + t2) cos(2kzt)
}

. (A.25)

The integral in t can be solved analytically, and hence the expression for the energy-shift

is reduced to

∆Eren = − 1

8π2

∑

j 6=i

∫ ∞

0
dk

k3

Eji + k

{

|µz|2
(

sin(2kz)

2k3z3
− cos(2kz)

k2z2

)

+|µ‖|2
(

sin(2kz)

4k3z3
− cos(2kz)

2k2z2
− sin(2kz)

kz

)

}

. (A.26)



Appendix A. Casimir-Polder force for a plane 139

However, as we are expecting to find a solution in terms of the auxiliary function, as

defined in section 5.2.12 of Ref. [124]

f(x) ≡
∫ ∞

0
dt

sin t

x + t
, (A.27)

we can intuit that a quickly way to obtain them is by rewriting the sine and cosine func-

tions in Eq. (A.26), in terms of their derivatives in z. For example, the perpendicular

part of the shift can be rewritten as

∫ ∞

0
dk

k3

Eji + k

(

sin(2kz)

2k3z3
− cos(2kz)

k2z2

)

= −
∫ ∞

0
dk

1

Eji + k

(

sin(2kz)

2z3
+

∂

∂z

sin(2kz)

2z2

)

= −1

2

(

1

z3
+

∂

∂z

1

z2

)
∫ ∞

0
dk

sin(2kz)

Eji + k
. (A.28)

We shall do similar manipulation for the parallel component of the shift. After some

extensive algebraic manipulation we obtain,

∫ ∞

0
dk

k3

Eji + k

(

sin(2kz)

4k3z3
− cos(2kz)

2k2z2
− sin(2kz)

kz

)

=

∫ ∞

0
dk

k3

Eji + k

(

∂2

∂z2

sin(2kz)

4k3z
+

cos(2kz)

2k2z2
− sin(2kz)

4k3z3

)

=
1

4

(

1

z3
+

∂

∂z

1

z2
+

∂2

∂z2

1

z

)∫ ∞

0
dk

sin(2kz)

Eji + k
. (A.29)

Replacing the auxiliary function as defined in Eq. (A.27), we finally obtain

∆Eren = − 1

32π2

∑

j 6=i

{

|µ‖|2
(

1

z3
+

∂

∂z

1

z2
+

∂2

∂z2

1

z

)

− 2|µz |2
(

1

z3
+

∂

∂z

1

z2

)}

f(2zEji),

(A.30)

in agreement with Eq. (4.24)
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A.5 Asymptotics

Note that the equation above is a general expression for the energy-level shift of an

atom as a function of its distance from the surface of the reflecting plate. If we wish

to obtain separate expressions for the retarded and the non-retarded regime, as it is

normally presented, we shall expand the auxiliary function f(x) for large and small x.

In Appendix C we have given how the function f(x) behaves in these limits. At small

x, the expansion of the auxiliary function is given by Eq. (C.16). Thus, by substituting

this into Eq. (A.30) we get

∆Ees = − 1

64πǫoz3

(

|µ‖|2 + 2|µz|2
)

, (A.31)

which is the correct electrostatic result (3.1). In order to recover the retarded regime,

we shall substitute Eq. (C.15) into Eq. (A.30). The result is

∆ECP = − h̄c

16π2ǫoz4

∑

j 6=i

|µ‖|2 + |µz|2
Eji

, (A.32)

which is the correct Casimir-Polder limit, in agreement with Eq. (4.12).



Appendix B

Transformation of the interaction

Hamiltonian

In this appendix we shall explain how to transform the minimal coupling Hamiltonian

p · A into the electric-dipole interaction HI = −µ · E(r, t), which corresponds to the

lowest-order in the multipole Hamiltonian [114, 116].

B.1 The electric-dipole approximation

Let us consider a single bound electron with binding potential energy V (x) = eφ(x) and

suppose that the distances over which the bound electron can move in this potential

are small compared with the wavelength of any field with which the electron undergoes

a significant interaction. We can thus make what is called the electric-dipole approxi-

mation, which means that we can ignore the spatial variations of A in the interaction

and simply evaluate A at a fixed position e.g. at the centre of the region over which

the electron is free to move classically.

We can consider an overall neutral system, localized about the coordinate origin, and

assume that all particles are sufficiently near to one another so that the Coulomb inter-

action is a very good approximation to their interaction. If such a system corresponds

to an atom, which is small compared to the wavelength of the relevant electromagnetic

141
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field, we can thus assume that all charges within the atom see practically the same field

(or almost). This means that we can Taylor expand the fields around the centre of the

atom,

A(r) = A(0) + r · ∇A(0) + · · · (B.1)

φ(r) = φ(0) + r · ∇φ(0) + · · · (B.2)

This expansion gives rise to the multipole moments of increasing order. We shall

retain only the lowest order terms in this expansion and substitute these fields into the

Hamiltonian (3.4). Hence, it can be approximated to

H =
∑

α

1

2m
[pα − qαA(0)]2 + VCoul(r) +

∑

α

qαrα · ∇φ(0, t) (B.3)

where {qα} is the assembly of charges within the atom. The last term correspond to

the electrostatic interaction, and we shall note that the first term of the expansion for

φ, i.e.
∑

α qαφ(0, t) = 0 because the sum over all charges is zero. The lowest-order in

the expansion is the electric dipole moment, which is defined as

µ =
∑

α

qαrα (B.4)

to rewrite the Hamiltonian as

H =
∑

α

1

2m
[pα − qαA(0)]2 + VCoul(r) + µ · ∇φ(0, t) (B.5)

B.2 Electric Dipole interaction

Furthermore, we can use the generator X(r, t) defined by

X(r, t) = −r ·A(0, t) (B.6)
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Hence, the new potentials are given by

A(r, t) → A′(r, t) = A(r, t) −A(0, t) (B.7)

φ(r, t) → φ′(r, t) = φ(r, t) + r · Ȧ(0, t), (B.8)

which is the so-called Göpper-Mayer transformation. It yields to,

A′(0, t) = 0, (B.9)

∇φ′(0, t) = ∇φ(0, t) + Ȧ(0, t) = −E(0, t), (B.10)

where E(0, t) is the total electric field at 0. Substituting these potentials into the

Hamiltonian (B.5), we finally get

H =
∑

α

1

2m
[pα − qαA(0)]2 + VCoul(r) − µ · E(0, t). (B.11)

This equation has the advantage of making explicit the electric dipole interaction be-

tween d and E.

In quantum theory, the transition between the usual description and the Göpper-

Mayer transformation is realised by the unitary transformation

T (t) = exp

{

− i

h̄
µ ·A(0, t)

}

= exp

{

− i

h̄

∑

α

qαrα ·A(0, t)

}

. (B.12)

It is possible to study directly the effect of this unitary transformation on the initial

representation1.

A generalisation of the Göpper-Mayer transformation which no longer describes

the system of charges through their dipole moment, but takes into account the precise

distribution of charges and currents is the Power-Zienau transformation [115]. We can

use this approach to get a multipole expansion of the interaction between the system

of charges and the electric and magnetic field.

1See for instance page 121 in Ref. [3]



Appendix C

Some useful mathematics

C.1 Bessel Functions

Section 6.554, Eq. 1, in [126]

∫ ∞

0
dxx

Jo(yx)√
x2 + z2

=
e−yz

y
, (C.1)

In order to obtain Eq. (3.115) that leads us to the electrostatic interaction in 3.6.2, we

require the derivative of the Bessel function Jo(z), which can be found in Eq. 9.1.28 in

Ref. [124]

J ′
o(z) = −J1(z), (C.2)

using the chain rule we obtain

∂

∂xo
Jo(kρ) = −kJ1(kρ)

∂ρ

∂xo
= −kJ1(kρ)

xo − x

ρ
, (C.3)

and using the same formula again in order to obtain the second derivative

∂

∂x

(

∂

∂xo
Jo(kρ)

)

=
∂J1(kρ)

∂(kρ)
(x − xo)2

k2

ρ2
+ J1(kρ)

k

ρ
− J1(kρ)(x − xo)2

k

ρ3
. (C.4)
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By using the identity 9.1.27 in [124]

∂J1(x)

∂x
= Jo(x) − J1(x)

x
, (C.5)

one can further simplify the expression above, to obtain

∂

∂x

(

∂

∂xo
Jo(kρ)

)

=

(

Jo(kρ)
k2

ρ2
− 2J1(kρ)

k

ρ3

)

(x − xo)2 + J1(kρ)
k

ρ
(C.6)

As it can be seen in Eq. (3.113) of page 106, what we actually need is the limit ρ → 0.

We can use

lim
ρ→0

J1(kρ)

ρ
=

k

2

into the equation above to finally get

∂2Jo(kρ)

∂x ∂xo

∣

∣

∣

∣

ρ → 0
=

k2

2
, (C.7)

which gives us the result shown in Eq. (3.115).

C.2 Integrals

In order to recover the Casimir-Polder force between an atom and a perfect mirror, we

require the following integrals, taken from section 2.124 in Ref. [126],

∫ 1

0
dt

1

r2t2 + 1
=

1

r
arctan(r). (C.8)

In order to calculate Eq. (4.17) we shall integrate by parts

∫ ∞

0
dr arctan(r) e−ξr = arctan(r)

e−ξr

ξ

∣

∣

∣

∣

∞

0

+
1

ξ

∫ ∞

0
dr

e−ξr

1 + r2
(C.9)

∫ ∞

0
dr r2 arctan(r) e−ξr = −(r2ξ2 + 2rξ + 2) arctan(r)

e−ξr

ξ3

∣

∣

∣

∣

∞

0

+
1

ξ

∫ ∞

0
dr

r2e−ξr

1 + r2
+

2

ξ2

∫ ∞

0
dr

r e−ξr

1 + r2
+

2

ξ3

∫ ∞

0
dr

e−ξr

1 + r2
. (C.10)
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Notice that the first term in each integral vanishes after evaluation in the limits.

C.3 Auxiliary Function

The definition for the auxiliary function has been taken from section 5.2.12 in Ref.

[126],

f(z) =

∫ ∞

0
dy

e−zy

1 + y2
= ci(z) sin(z) − si(z) cos(z). (C.11)

Also, from the equation above, we can write its first and second derivatives,

∫ ∞

0
dy

y e−zy

1 + y2
= − ∂

∂z

∫ ∞

0
dy

e−zy

1 + y2
= −f ′(z) (C.12)

∫ ∞

0
dy

y2 e−zy

1 + y2
=

∂2

∂z2

∫ ∞

0
dy

e−zy

1 + y2
= f ′′(z) (C.13)

And we can rewrite the second derivative as follows,

∫ ∞

0
dy

y2 e−zy

1 + y2
=

∫ ∞

0
dy

(y2 + 1 − 1) e−zy

1 + y2

=

∫ ∞

0
dy e−zy −

∫ ∞

0
dy

e−zy

1 + y2
=

1

z
− f(z). (C.14)

C.3.1 Asymptotics

For large values of the argument of the auxiliary function, from Eq. 5.2.34 in [124]

f(z) ∼ 1

z

(

1 − 2!

z2
+

4!

z4
− ...

)

z ≫ 1 (C.15)

and for very small arguments we can approximate

f(z) ∼ π

2
z ≪ 1 (C.16)
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