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Abstract

Radial basis functions are well known for their applications in scattered data approxima-
tion and interpolation. They can also be applied in collocation methods to solve partial
differential equations. We develop and analyse a mesh-free discretization method for
Darcy’s problem. Our approximation scheme is based upon optimal recovery, which leads
to a collocation scheme using divergence-free positive definite kernels. Besides producing
analytically incompressible flow fields, our method can be of arbitrary order, works in arbi-
trary space dimension and for arbitrary geometries. Firstly we establish Darcy’s problem.
To introduce the scheme we review and study divergence-free and curl-free matrix-valued
kernels and their reproducing kernel Hilbert spaces. After developing the scheme, we find
the approximation error for smooth target functions and the optimal approximation or-
ders. Furthermore, we develop Sobolev-type error estimates for target functions rougher
than the approximating function and show that the approximation properties extend to
those functions. To find these error estimates, we apply band-limited approximation.

Finally, we illustrate the method with numerical examples.
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1. Introduction

Darcy’s problem models flow in porous media, i. e. it is important in engineering and
science. In particular, it can be applied to describe the creeping flow of a Newtonian fluid
in porous media [6]. Moreover, in some projection methods for solving the Navier-Stokes
equations, a numerical solution of Darcy’s problem is essential [45].
Darcy’s law is given by
u=-KVp

where u is the velocity, p the pressure and K describes the porous media and the viscosity
of the fluid. The original version of Darcy’s law was obtained experimentally. However,
in the case of anisotropic homogeneous flow Darcy’s law can also be obtained from the
Navier-Stokes equations [43]. Darcy’s problem is an extension of Darcy’s law. It is the

partial differential equation given by

u+ KVp=f in Q,
V.u=0 in Q,
u-n=g-n on 0f).

Here, n denotes the outer unit normal vector of the boundary 9 C R?. The right hand
sides f and g - n and the permeability tensor K are given. The velocity u and pressure p
are sought.

The goal of this thesis is to find a high-order method to solve Darcy’s problem efficiently.
This approximation scheme is mesh-free and deals with Darcy’s problem directly. It is
also of arbitrary order, works in arbitrary space dimension and for arbitrary geometries.
The scheme leads to an analytically divergence-free reconstruction of the velocity. The
error analysis will be done. Since the standard error analysis is limited to smooth target
functions, we present new ideas which extend the ideas from interpolation problems to
our collocation method for Darcy’s problem. To validate the theoretical results, numerical

experiments are carried out.
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1.1. Numerical Approximation of Partial Differential Equations

Classical numerical techniques for solving partial differential equations such as finite ele-
ments or finite volumes require a mesh of the underlying domain. This mesh can be difficult
to generate, in particular for complex geometries like aircrafts or in moving frameworks.
Furthermore, finite element methods suffer from the fact that the solution is usually not
analytically divergence-free. Similar problems appear in other methods like finite differ-
ences. Finite element methods for Darcy’s problem can be found for example in [5, 8, 10].

Radial basis functions can be applied to solve partial differential equations by collo-
cation, see for example [13, 15, 16]. Our scheme follows the framework presented by
WENDLAND for Stokes problem [55]. The approximation scheme for Darcy’s problem,
which we present here, is therefore a collocation method, which applies matrix-valued

positive definite radial basis functions.

Radial Basis Functions

Radial basis functions are well-known in scattered data approximation [54], but are also
applied in image processing, computer graphics and many other areas. A function ¢ :
R? — R is said to be radial if a function ¢ : [0,00) — R exists, such that ¢(x) =
o(||x|l2) for all x € RY. There are many examples of radial basis functions; for instance
Gaussians, Hardy’s multi-quadrics and thin-plate splines. In 1995, WENDLAND developed
compactly supported, piece-wise polynomial radial basis functions [53]. These positive
definite functions are called Wendland functions.

Note that a continuous function ¢ is positive definite if and only if it is even and for

pair-wise distinct x1,...,xy and all non-vanishing & € RY it holds that

N N
ZZO[ arp(x; —xp) > 0.

J=1k=1

Recently, matrix-valued radial basis functions were developed. Although these matrix-
valued kernels are not radial in the sense presented above, they are commonly called
radial basis functions, since they are usually constructed from radial basis functions. Of
particular importance for the construction of the scheme and its error analysis are the
divergence-free and curl-free matrix-valued kernels. The divergence-free kernel has been
developed in [38] and further studied in [17, 18, 19, 20, 33, 34]. The curl-free kernel has
been studied in [17, 18, 19, 20].
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Reproducing Kernel Hilbert Spaces

Reproducing kernel Hilbert spaces are an important tool in scattered data approximation
with radial basis functions. Since most kernels are radial, all relevant positive definite
kernels are real-valued. Therefore we will only look at real function spaces.

Let © C R? be a domain which contains at least one point. A real Hilbert space F of
functions f : Q — R is called a reproducing kernel Hilbert space if there exists a function
¢ :QxQ — R, such that

(1) ¢(-,y) € Fforally € Q,
(2) f(y)=(f.9(,y))F forall f € F and ally € Q.

The function ¢ is uniquely determined and called the reproducing kernel of the space F.
A reproducing kernel Hilbert space can be constructed for every positive definite kernel.
In particular, radial basis functions are often used as reproducing kernels.
Further information about reproducing kernel Hilbert spaces can be found in [54]. The

case when the reproducing function is matrix-valued will be discussed later.

Native Spaces

Native spaces are of particular importance in the theory of generalised interpolation with
radial basis functions. Besides providing the interpolation or approximation space, they
are also essential in the error analysis.

Let ¢ : Q x Q — R be a positive definite kernel and  C R?. We define the space

Zajgb(-,xj) cx; €0, a5 €R

equipped with the inner product

N M N M
D aidlx), > BedCoyr) | =D aiBrd(x;, yi)-
j=1 k=1

® 7j=1 k=1

The native space Ny(Q) of the function ¢ is the completion of the space Fjs(£2) with respect
to the norm associated to the inner product. The native space of a positive definite kernel
is a reproducing kernel Hilbert space. Information about native spaces can be found in
[54].

Many Sobolev spaces can be characterised as reproducing kernel Hilbert spaces. Certain

of these spaces coincide with the native space of Wendland functions [54].
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The idea of native spaces can be extended to matrix-valued kernels, which is a recent
development, cf. [17, 55].

Discretizing Partial Differential Equations by Collocation

We aim for a collocation scheme, i. e. the right hand side of the partial differential equation
is only prescribed at particular discrete points. Therefore the partial differential equation
will be solved by using the information at those points only. Note that the solution of a
partial differential equation will often only be approximated, since limited information is
given.

We will use functionals to describe our collocation method for solving the partial dif-
ferential equation. For example, assume that we want to solve the differential equation
Lu = fin Q. For simplicity we will neglect boundary conditions for the time being. Then,

we could use discrete data sites X = {x1,...,xy} C Q, and define the functionals

Aj(u) = (Lu)(x;),

where 1 < j < N. The goal is to find an approximating function s which satisfies the

collocation conditions
Aj(s) = fj = f(x)

forall 1 <j < N.
A first approach could be to choose

N
s =2 a0l = x),
j=1

like in an interpolation problem. Then the linear system of equations Aa = f has to be
solved to determine the a;. The matrix A is defined via A;; = X¥(¢(x — x;)), where the
functional )\; is only applied to the first or x-argument of the function ¢. This method
is often referred to as Kansa’s method, see [25, 26]. The system of equations is often
non-symmetric, since A¥(¢(x — x;)) is usually not equal to AY(é(x — x;)). Moreover, the
system could be non-invertible.

The first promising steps to resolve this problem were done by LORENTZ et al. and
BERENTZ and ISKE, cf. [7, 31]. The idea is to choose the approximating function by the

following ansatz

N
s =Y apAL((- —y)),
k=1
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which leads to a symmetric collocation matrix

XAY AR,
A= A : P(x—y).
XA AN,

Furthermore, a unique solution of Aax = f exists if the functionals are linearly indepen-
dent. Then A is indeed positive definite and s is the unique norm-minimal approximating
function in the native space of ¢.

This concept can be carried over to matrix-valued kernels. We will apply combined ker-
nels to establish the discretization scheme for Darcy’s problem. We will use a divergence-
free matrix-valued kernel to model the velocity and a general scalar-valued kernel for the
pressure. The idea of using combined kernels together with optimal recovery has been
developed by WENDLAND in [55].

Error Analysis and Approximation Orders

The error estimates of collocation methods with radial basis functions are usually expressed
in terms of the fill distance.

The fill distance of a set of points X = {x1,...,xx} C Q for a domain Q C R? is defined
to be

hxq = sup min ||x — x;||2.
sup i [ = x|

It can be interpreted as the radius of the largest open ball in the domain 2 which does

not contain any point from X. This means that it is the largest hole in the data set, see
figure 1.1 (a).

Q . Q
L} . - L} \zq -
. X - "X
(a) Fill distance (b) Separation radius

Figure 1.1: Measures of the data set.

The other relevant measure is the separation radius. For of a discrete set of points
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X ={x1,...,xn} it is defined to be

ax = 5 min [ — e
The separation radius is therefore half the minimal distance between two points in X.
An illustration is given in figure 1.1 (b). This means in particular that in the case of
an equidistant grid we have that the fill distance is equal to the separation radius, i. e.
hxo=qx.

Error estimates express the worst variation of the approximating function s; from the

true solution f. They are often of the form

If = ssllx < ch™|[flly-

Here, 7 is the approximation or convergence order and h is the fill distance of the set of
collocation points. Usually both norms are Sobolev norms. To reduce the computational
complexity, a small number of collocation points is desired which implies a large h. This
means that a large 7 is wanted such that the number of points can be reduced while the

error is sufficiently close to zero.

Approximation Rates for Target Functions Outside the Native Space

The standard error analysis suffers from a major difficulty: The convergence can only be
proven for target functions which are in the native space of the underlying radial basis
function ¢. This means in particular that the smoother ¢ is, the smaller is its native
space, i. e. the class of functions, where the approximation rates apply, is rather limited.
This problem has been partly solved, since the target functions must still satisfy some
weak smoothness conditions. First steps were done by LIGHT and VAIL in [30]. One
approach has been done by NARCOWICH, SCHABACK and WARD in [36], an other ansatz
was presented from BROWNLEE and LIGHT in [11]. NARCOWICH and WARD presented
an alternative approach for functions outside the native space on the sphere [39]. Other
work on R™ followed in [28, 29, 40, 41]. An overview can be found in [35]. Recently
FUSELIER presented error estimates for interpolation problems with divergence-free or
curl-free matrix-valued kernels, where the target function is rougher than the interpolant,
see [17, 20]. Finding these error estimates is sometimes referred to as ’escaping the native
space’.

Sobolev-type approximation rates for target functions outside the native space show
that smooth approximating functions also provide good fits to rougher functions. The
main benefit from the theoretical point of view is that there is a larger class of functions,

where the error estimates apply. In practise, error estimates for a more flexible choice of
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the underlying basis function are available. However, these error estimates still require a
minimal smoothness of the target function depending on the space dimension.

Until now, the Sobolev-type approximation rates for target functions outside the native
space were limited to interpolation problems. We will show that this concept can be
extended to collocation methods for solving partial differential equations. In particular,
we establish new Sobolev-type approximation rates for the discretization scheme of Darcy’s
problem, where the velocity and the pressure are not in the native space of the underlying
function ¢.

The idea of the proof is to apply band-limited functions. To bound the error between
the true solution and the approximating function, we add and subtract a band-limited
function. This band-limited function is chosen such that it approximates and interpolates
the true solution. Therefore the error between it and the true solution can be bounded.
Furthermore, the difference between the approximating function and the band-limited
function can be bounded via the application of standard error analysis, since both functions
are sufficiently smooth and the approximating function also approximates the band-limited

function.

1.2. Outline of the Thesis

In chapter 2 we will state the necessary definitions and introduce the notation. In partic-
ular, we will review the standard function spaces and the Fourier transform. Our method
relies on positive definite kernels, therefore these are studied in more detail.

Darcy’s problem will be introduced in chapter 3. Since it models flow in porous media,
we provide some background in fluid dynamics before stating Darcy’s law. Then we state
Darcy’s problem. Moreover, the most important properties of this partial differential
equation will be studied.

To establish our approximation scheme, some technical background about reproducing
kernel Hilbert spaces is required. The important results are provided in chapter 4. Besides
the formal definition of reproducing kernel Hilbert spaces, some of their properties are
established and certain examples are studied in more detail. After this, native spaces
of scalar-valued and matrix-valued functions are formally introduced and their relation
to Sobolev spaces is shown. Finally, the native spaces of three kernels and their most
important properties will be presented.

Chapter 5 is devoted to the approximation scheme. Firstly, the application of optimal
recovery to solve partial differential equations will be explained. Then combined kernels
will be introduced and their native spaces built. After this, the approximation scheme will

be stated. For clarification, the two-dimensional scheme will be presented explicitly.
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The standard error analysis of our approximation scheme is covered in chapter 6. The
proof of the error estimates relies on an extension operator and uses sampling inequalities
and a smoothness result of the solution of Darcy’s problem.

New Sobolev-type approximation rates for target functions outside the native space will
be developed in chapter 7. They extend the error analysis to rougher target functions.
Before establishing the error estimates, band-limited functions and their function spaces
are introduced and band-limited interpolation and approximation is studied.

In chapter 8, we will give numerical examples to corroborate our theoretical approxima-
tion rates. Furthermore, the implementation of the method will be described and tested
in several situations.

We will provide a summary of our studies in chapter 9.

In the appendix we give the important derivatives of certain Wendland functions.

1.3. Technical Details

We now give details about the tools used for this thesis.

All implementations have been done in the programming language C++; for the par-
allel implementation MPI (Message Passing Interface) was used. To avoid any negative
influence from possibly ill-conditioned systems, all computations were carried out in quad-
double precision as a precaution.

All simulations were undertaken on the Archimedes computing cluster at the University
of Sussex, supported by funds from SRIF3.

The graphs have been built with MATLAB. All illustrations were created with Xfig.




2. Notation and Definitions

We will now introduce the notation and symbols used in this thesis. Furthermore, we will
review the standard function spaces: The spaces of differentiable functions, the Lebesgue
spaces and the Sobolev spaces. The Fourier transform is essential for the theory of re-
producing kernel Hilbert spaces. We will give its definition and state its main properties.
Since kernels are of particular importance, we will study them in more detail. We will
therefore discuss positive definite functions and their properties. Then we will give some
examples, which include Bessel and Wendland functions. Finally, we will introduce the

divergence-free and curl-free matrix-valued kernels.

2.1. General Notation

The symbols N, R and C indicate the sets of natural, real and complex numbers. The
letter d refers to the dimension of a point in a discrete set X C R%, while N is the number
of points; n is often used for the dimension of the image of a function.

A vector or a vector-valued function is always bold printed, for example x € R The
Jth component of a vector x is denoted by x;. The complex conjugate of a number z is
z and the absolute value is denoted by |z|. Throughout the whole thesis, e; refers to the
1th unit vector.

Capital Latin letters generally refer to function spaces, for instance C, F', H, L and W.
Exceptions are A, which denotes a matrix, and I, which is always the identity matrix. We
use the standard notation for the transposed vector or matrix A7 and denote by A* the
transposed and complex conjugate of the matrix A.

The k-th derivative of a function f(x) is denoted by di—kk f(x), in case of a multivariate
function by OJ’-“ f(x) with respect to the jth component of x. The short notation 0;; f(x) :=
0;0; f(x) is also used. Let a € N¢ be a multi-index and |a| := a1 +...+ag4. Then, D*f(x)
denotes 07 ...977 f(x). The gradient of a function is Vf(x) := (91 f(x),...,0af(x))T.
The Laplace operator is denoted by Af(x) := Z?Zl 8]2 f(x).

The closure of a set § is denoted by Q. The support of a function f : R — R is the

closure of the set of points where the function is not zero, i. e.

supp f = {x € R? : f(x) # 0}.
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A function is compactly supported, if the support is bounded.

Let x be a real number. Then the truncated function ()4 is defined to be zero, if x < 0
and x otherwise. The floor function |z| gives the largest integer i with ¢ < z. The ceil
function [z] gives the smallest integer ¢ with z < i.

The Greek letters o, 7 and p refer to real numbers. The letters ¢, ® and i are used for
kernels, where ® denotes a matrix-valued kernel and ¢ and 1 are radial basis functions.
These functions are usually multivariate functions.

A linear and continuous map A from a Hilbert space to the real numbers is called a
functional, i. e. X is an element of the dual space H*. The domain  is a subset of R%.
The statement \Y (f(x —y)), f : R — R, indicates that the functional X is applied to the
y-component of the function f(x —y). We denote the point evaluation functionals by dx,
where x € R%. Hence dx(f) = f(x) for all functions f : R? — R™.

Finally, y, denotes the characteristic function of the ball B(0,0) with radius o and

centre 0. Hence x,(x) is equal to one if x € B(0,0) and zero otherwise.

2.2. Standard Function Spaces

We now give a brief overview over the function spaces of interest. The focus is on the
usual definitions of standard spaces, alternative characterisations and certain non-standard
spaces will be given later.

Let F1(Q), ..., F,(R2) be normed linear function spaces. Then a tensor product function

space is defined via
F(Q):=F(Q) x...x F(), x—f(x)=(f1(x),...,[fn(x)T

and can be equipped with the norms

" , 1/r .
(S Il ) i 1< < oo,

maxi<j<n || fjllFy),  if r= o0

£l =

The norm || - ||, denotes the standard vector norm on R, it is also referred to as £,-norm.
In the case that the spaces F;(Q2), 1 < i < n, are Hilbert spaces and that r = 2,
the space F(Q) is also a Hilbert space. If F1(Q) = ... = F,(Q) we equivalently define
F(Q) := (F1(Q)™.
Let k be an integer. The space C*(Q) consists of all functions f : © — R which are
k-times continuously differentiable in Q C R¢. The space of all infinitely many times in €
continuously differentiable functions is denoted by C*°(2). A vector-valued function is in

Ck(Q) if and only if each of its components is an element of C*(Q).

10
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For a Hilbert space H its dual will be denoted by H* = {A : H — R | X is linear and

continuous}. The norm in the dual space is defined via

In the case of an vector-valued Hilbert space H, the dual is defined to be H* = {aTX :
A :H — R" is linear and continuous and a € R"}.

Let © be an open subset of R?, where Q denotes its closure, k be a nonnegative integer
and 0 < s < 1. We denote by C**(Q) the space of all functions f : Q — R", which satisfy

(1) D°f is continuous and bounded in Q for all |a| < k,

(2) for all || = k there exists a constant ¢ < oo such that
[DE(x) = DE(y)[| < cllx = yIl*,

where x,y € Q, i. e. D®f is uniformly Hélder-continuous with exponent s. In the

special case that s = 1, the function D“f is also called Lipschitz-continuous.

A Lipschitz boundary has almost everywhere a unit normal vector n. If £k > 1 and a
domain has a C*! boundary, then the normal vector belongs to C*~11(9Q). If Q is also
bounded, then this normal vector can be extended to function n € CF=11(Q), cf. [22].

The proof can be done with the inverse trace theorem, cf. [57].

2.2.1. Lebesgue Spaces

The Lebesgque spaces L,(f) are established in the usual way. Let © be a subset of R?
and 1 < r < oco. A function f : @ — R is said to be an element of L,(€) if the
integral [, |f(x)["dx is finite. In the case r = oo, the norm is defined by || fl|._ () =

ess Supycq | f(x)]-
The vector-valued Lebesgue spaces are tensor product spaces of the scalar-valued ones,

i. e. Ly(Q) := (L,(€2))". The norm is therefore defined by [|f||r, () = ([q Hf(x)||§dx)1/r.
The discrete L,-norm for a point set X = {x1,...,xn} is
1/r

| N
1], (x) = NZ [1£G¢5) 1
j=1

We recall the Cauchy Schwarz inequality. For two vectors x,y in R? we have

|Gy < I lyll-

11
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Let f and g be square-integrable functions. Then,

f(X)g(X)dX2§ [fx)Pdx [ |g(x)*dx.
/ o |

2.2.2. Sobolev Spaces

We will work with the usual scalar-valued Sobolev spaces. Let @ C R? r > 1 be a real
number or 7 = co and k € Ny an integer. Then we denote by WX () the space of all
functions f € L,(2) having weak derivatives D*f € L, () for every multi-index o € N¢

with |af < k. Let 1 <r < oo then the semi-norm and the norm are given by

1/r 1/r

ulwry = [ D ID%ull], 0 and  ullwr) = | Y 1D%ul%, q
=k <k

provided k is an integer. This means in particular that W2(Q2) = L,.(Q).
We also work with fractional order Sobolev spaces W (2). Let 7 = k+ s, where k € Ny
and 0 < s < 1, then

1/r

|D°‘ — D%u(y)|
’u‘WrI-C+S(Q) = Z // |d+rs dx dy ’

x| =F

1/r
lelles y 2= (lullivaey + el )) :

We set H™(2) := W7 (£2). The case r = oo is dealt with in the usual way by taking
the essential supremum over all derivatives. For an introduction of such fractional order
Sobolev spaces we refer to [2, 9, 51].

The following result is taken from [49]. It shows that if 7 > d/2 then all functions in

the Sobolev space are continuous.

Corollary 2.1. If 7 > d/2 then each f € H™(R?) is bounded and continuous. Moreover,
if > d/2+ k with k € Ny, then

H™(RY) c C*(RY).

We are interested in the relation between Sobolev spaces. The proof of the following

lemma can be found, for example, in [55].

Lemma 2.2. Let Q C R% be bounded, having a Lipschitz boundary.

12



2 Notation and Definitions

(1) Let 1 <p<r <ooandT > % - %, then we have the continuous embedding

_d
T p+

W7(Q) C W,

3l

(€2).
(2) Let 1 < r < p, then we have the continuous embedding

W, () C W ().

Since the pressure p in the solution of Darcy’s problem is determined only up to a

constant, we will work with the quotient spaces W (€2)/R equipped with the norm
T = i f T . 21
IPllwz(9)/m = f lip + cllwr @ (2.1)

The vector-valued Sobolev space W7 () := (W (2))™ consists of all vector-valued
functions u = (u1,...,u,)T : @ — R", where each component u; belongs to W/ ().
A norm on W7 () can be defined by taking the discrete ¢,-norm of the W (€2) norms of

the components, i. e. by

n , 1/r .
(S i) i1 <7< o0,

||UHW;(Q) = .
maxi<j<p ||[ujllwz @), i r=o0.

Note that we do not use an index to indicate the dimension n since it will become clear from
the context. We only distinguish between scalar-valued function spaces and vector-valued

ones. Finally, in the case r = 2, we also use the notation H™(Q2) := WZ(Q).

2.3. The Fourier Transform

The Fourier transform is of particular importance in the field of mathematical analysis,
it also plays a crucial role in the theory of positive definite functions. Furthermore, some
Sobolev spaces can be characterised with Fourier transformations, see section 4.1.2. We
now recall the definition of the Fourier transform and some of its properties. All results
in this section are taken from [54, Section 5.2].

Note that there is not only one definition of the Fourier transform. The definition may
have influence on the norm of a Sobolev spaces. However, this concerns only constants.

We only use the following symmetric definition.

13



2 Notation and Definitions

Definition 2.3. For f € L1(R?) we define its Fourier transform by

~

) = (@2m) 2 | flw)e ™ Ydw
R4
and its inverse Fourier transform by
P =@n)7 4 | fw)e™ “dw.
Rd

The Fourier transform extends to vector- or matrix-valued functions in the natural way,
i. e. component-wise.

The following result establishes some properties of the Fourier transform.
Theorem 2.4. Suppose f,g € L1(R%); then the following is true.

(1) Joa FVg)X = fa F(x)5(x)dx.

(2) For Taf(x) := f(x —a), a € RY, we have ij(x) = e*ixTa]?(x).

(3) If, in addition, 9;f € L1(R%) then f is differentiable with respect to x; and

— ~

Br7(x) = —iz; 7).
(4) The Fourier transform of the convolution

fxg(x):= /Rd f(y)g(x —y)dy

is given by m = (27F)7d/2f§-

Due to the linearity of the integral, the Fourier transform is also linear. Furthermore,
the Fourier transform of an integrable function is continuous.
The following result provides a possibility to recover a function from its Fourier trans-

form.

Corollary 2.5. If f € L1(R?) is continuous and has a Fourier transform fe L1(RY) then

f can be recovered from its Fourier transform:

Fx)=@2n) 9 | flw)e™* “dw, xeR%
R4

14



2 Notation and Definitions

2.4. Kernels

If Q = RY, the reproducing kernel of a reproducing kernel Hilbert space is often translation

invariant in the sense that it can be written as

o(x,y) = p(x—y)

with a function ¢ : R? — R. In this context, we will rather speak of a function than
a kernel and identify ¢ with . All radial kernels are translation invariant and also the
matrix-valued kernels constructed from them.

Throughout this thesis we are only interested in positive definite kernels. Besides the
definition of positive definite functions, we will review some of their properties. After this
we will give examples for positive definite kernels. This includes, besides three scalar-
valued radial basis functions, two matrix valued kernels: The divergence-free and the
curl-free matrix-valued kernels. Both matrix-valued kernels are built from scalar-valued

radial basis functions. Further information can be found for example in [17, 32, 54].

2.4.1. Positive Definite Functions

Our main requirement on kernels is that they are positive definite. Since we are also
interested in matrix-valued kernels, the following definition covers both scalar- and matrix-
valued functions, cf. [54, 55].

Definition 2.6. Suppose that ¢ : R* — R is continuous. Then ¢ is called positive definite
if and only if ¢ is even and we have, for all N € N, for all o € RN\{0}, and for all pair-

wise distinct x1,...,Xy, that

N N
ZZ@ apd(x; —xi) > 0.

Jj=1k=1

More generally, a matriz-valued function ® : R4 — R™ ™ is said to be positive definite, if
it is even ®(—x) = ®(x), symmetric ®(x) = ®(x)T and satisfies

N
Z aJT<I>(Xj —xg)o >0
k=1
for all pair-wise distinct x; € R? and all a; € R™ such that al = (a{, .. .,a%) s not

vanishing.

A positive definite matrix-valued kernel ® is not necessarily positive definite in the

usual matrix sense. Therefore the eigenvalues of ® need not be positive. For instance, the

15



2 Notation and Definitions

kernel

. (=029 Oi2¢
(I)dlv(x) - ( 812(;5 —311¢) (X)v (2'2)

where ¢(x) := (1 — ||x||2)% (4]|x]|2 + 1), is positive definite in the sense of definition 2.6 as

—20 0
cI)diV(O):( 0 —20)’

i. e. the kernel is not positive definite in the usual matrix sense, cf. the appendix for the

we will see later. If x = 0, then

derivatives of ¢. However, the block matrix (As x)ij = ®(x; — x;) is indeed positive
definite if ® is a positive definite kernel. We will clarify this later.

The matrix-valued kernels are in general not radial in the usual sense. Even if ¢ is radial,
we can not find a ®g;, such that for the kernel ®4;, defined in (2.2) yields ®q;(x) =
@4, (||x])) for all x € R2. Nevertheless, matrix-valued kernels are called radial since they
are built from radial basis functions.

The following result gives a criterion for positive definiteness. It is taken from [54,
Corollary 6.9].

Corollary 2.7. Suppose that f € L1(R?) is continuous, nonnegative and non-vanishing
then

p(x) = | flwe ™ “dw,  xeRY
R4

s positive definite.

This means in particular, that if the function ¢ in the corollary above is continuous and
integrable we can apply corollary 2.5 to recover f = $

We now state another important result for positive definite functions. Its proof can be
found in [54, Corollary 6.12].

Corollary 2.8. If $ € C(RY) N Ly (RY) is positive definite then its Fourier transform is

nonnegative and in Ly (R%).
The following kernel will play an important role later.

Proposition 2.9. Suppose ¢ € C2(RY)NWE(R?) is a positive definite function. Then the
kernel defined by
(CRERANY

1s integrable and positive definite, provided that its Fourier transform 12 = ||w|]%$(w) 18

integrable and non-vanishing.

16



2 Notation and Definitions

Proof. One can see that with ¢ € C?(RY)NW2(RY), v is indeed integrable and continuous.
Furthermore, its Fourier transform J(w) = -A¢(w) = HwH%gg(w) is nonnegative, since ¢
is nonnegative according to corollary 2.8.

We can now apply corollaries 2.5 and 2.7 to conclude that

Y(x) = | plw)e ™ “dw,  xeR
]Rd

is indeed positive definite. O

2.4.2. Wendland Functions

In 1995, WENDLAND developed piece-wise polynomial compactly supported functions, see
[53]. These functions are called Wendland functions. We discuss them, due to the fact that
they satisfy all requirements necessary to a kernel in this thesis, i. e. they are an example
for the basis functions in this thesis. All numerical examples have been computed with a

kernel constructed from Wendland functions.

Definition 2.10. Let d € N and k € Ng. We define Wendland functions by
Tk
¢d,k =1 ¢L%J+k+1a

where ¢p == (1 —r)% and (Z¢)(r) = [ t(t)dt for allr € RY.

The Wendland functions are positive definite radial basis functions with support [0, 1].
On their support, the Wendland functions are polynomials. A detailed construction of
these functions can be found in [53, 54].

Table 2.1 contains examples of the Wendland functions depending on the space dimen-
sion. The table is taken from [54]. The notation = indicates equality up to constant.

Here, 7 is the ¢o-norm of the argument, i. e. we have ¢(x,y) = ¢q(||x — yll2) = Pae(r).

Space dimension Function Smoothness

d=1 Pro(r) =(1—r)y c°
p1a(r) =1 —=r)33r+1) C?
p12(r) =(1— r)i(8r2 +5r+1) c*

d<3 p31(r) = (1—r)t(4r+1) Cc?
qbg}g(?“) = (1 — T)(_ai_(357“2 + 18r + 3) c4
¢33(r) = (1 —r)8(32r% + 252 4 8r 4+ 1) Cs
¢34(r) = (1 —r)1°(429r* 4 45073 4 210r* 4 50 4 5) c®

Table 2.1: The Wendland functions.
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2 Notation and Definitions

(C) 89089(152,3(7.) (d) az4ay2 ¢2’3 (T’)

Figure 2.1: The Wendland function ¢ 3(r) with r = /22 + y2.

The derivatives of certain Wendland functions can be found in the appendix. Figure

2.1 illustrates the C6-Wendland function and some of its derivatives.

2.4.3. Modified Bessel Functions

In chapter 4 we will see that some Sobolev spaces are reproducing kernel Hilbert spaces.
However, in this case the reproducing kernels of the Sobolev spaces are built from modified
Bessel functions of the second kind.

We give the definition of the function and a few results here. Further information about

Bessel functions can be found, for example, in [1, 52, 54].

Definition 2.11. The modified Bessel function of the second kind of order v is defined
by
K, (z) = / e~ 2501 cosh(vt) dt
0

18



2 Notation and Definitions

for z € C with |arg(z)| < 7/2; cosh(t) = (el +e7t)/2.

For these Bessel functions, the following recursive formulae apply

From (2.4) and

T

i (Ilxll2 Ko (lIxll2)) = =[llz K1 (lIx]l2) = —aillx[l;7 Ko (xl2), 1<i<d,

[[x]]2
we have the second derivatives

Oii (x5 Ko (Ixl12)) = = lxll3 K1 (lxll2) + 27 |x5* Ky—2([x]2), 1<i<d, (2.5)
0ij (Ix[I5 K (|Ix]12)) = i |x5 7> Koz (lx]|2), l<ij<d, i#j (2.6)

The following result gives an upper bound for the modified Bessel function. It can be

proved by combining corollary 5.12 and lemma 5.13 from [54].

Lemma 2.12. For every v € R the function r — r"K,(r) is non-increasing on (0,00)

and
TV|KI/(T)| < rV—l/Qme—reu2/(2r)

for every r >0 and v € R.

2.4.4. Divergence-free Matrix-valued Kernels

The divergence of a function f : R* — R? is given by

d
divf:=V-f=>0,fix).

J=1

A function is divergence-free if and only if
divf = 0.

NArcowICH and WARD were the first to introduce matrix-valued divergence-free kernels
in [38]. Then LowITzSCH introduced compactly supported divergence-free kernels in [32].
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2 Notation and Definitions

The divergence-free kernel of a positive definite kernel ¢ € C?(R%) N W2(R?) is

— >y 0 O12¢ . Oin
0 =N 0ud ... Oon
@div — (*AI + va)¢ — 12¢ Z’L—lil#Q ¢ . 2. (Zs (27)
d1nd Bon = Oad

Every column or row of the kernel ®4;, is obviously divergence-free since

n

div ((®aiv);) = Zak(q’div)kj = Z Ok Okjd — 0; Z dii¢ = 0.

k=1 k=1, k+#j i=1,i#]

It is well-known that the matrix-valued kernel defined by (2.7) is positive definite, cf.
[17, 38, 55]. The proof of the following lemma can be found in [32].

Lemma 2.13. Suppose ¢ € C*(R?) N WE(R?) is a positive definite function. For the
kernel defined by (2.7) we have that ® g, and its Fourier transform ﬁ,(w)a = (lw||3 -
wa);ﬁ\(w)a are in Ly (RY) for every oo € RY. Furthermore, ®g4;, is positive definite in the
sense of definition 2.6.

The kernel ®4;, enables us to construct analytically divergence-free approximating func-

tions for Darcy’s problem.

2.4.5. Curl-free Matrix-valued Kernels

The rotation or curl of a function f = (f1, f2, f3)7 € HY(R?) is

02 f3 — 03 f2
curlf :=V x f = | 951 — 01 f3
O1fa — O fa

This definition can be used to state the curl for two dimensional functions. The curl
of f € H}(R?) is defined by taking the cross-product of the gradient and the function
f(x1,22) = (fi(x1,22), fo(z1,22),0)7T, it follows that curl f = J1 fo — 0o f1.

Let d = 2,3. A function f € H*(R?) is called curl-free if and only if

curlf = 0.

An alternative definition states that a function f € H™(RY) is curi-free on R if and only
if there exists a function g € H™(R?)/R such that Vg = f. This means in particular

that if the Fourier transform exists, then /f\(w) = —iwg(w).
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2 Notation and Definitions

Proposition 2.14. Let d = 2,3 and 7 > 1. Then, both definitions of curl-free are
equivalent for all £ € HT(RY).

Proof. We will show the equivalence for the three-dimensional case. The two dimensional
case can be shown similarly.

Suppose that curl f(x) = 0 for all x € R3, then we have the following three equalities:

ds3f1(x) = 01 f3(x), (2.8)
O f2(x) = 02 f1(x), (2.9)
82f3(X) = 83f2(X). (210)

We now integrate both sides of (2.8) and receive the equivalent equality

/_Z dsfi(z1, 22,t) dt = fi(x) = /_9: O1f3(z1, 22, 1) dt. (2.11)

Similarly, we derive
fa(x) = /_1 Oz f1(t, x2, x3) dt, (2.12)
Fo(x) = Z Os folx1, 1, w3) dt. (2.13)

Substituting the right hand side of (2.13) for f3 in (2.11) gives

fi(x) =0 /OE3 f3(x1,22,t) dt = O /I3 </m2 D3 fa(1, 5,1) ds> dt

T2
:al f2($1787$3) d37
—o0
e [*2 fa(z, @2, t)dt 4+ c3 = [*2 fo(x1,t,x3) dt + c2. Analogues, substituting (2.11) for
f1in (2.12) leads to [* fi(t, w2, 23)dt +c1 = [*2_ f3(21,32,t) dt + c3. Therefore

1 2 3
g(x) Z:/ fl(t,l'g,.%'g) dt—i—cl :/ f2($1,t,$3) dt+02 :/ fg(a?l,l'g,t) dt+C3

satisfies f = Vg.

Suppose now that there exists a function g € H™(R?)/R with Vg = f. Then sub-
stituting Org for fr, 1 < k < 3, and evaluating the cross-product gives curlf = 0, since
0;0;9 = 0;0;9 for all 1 <4,5 < 3. Ol

The second definition also gives a criterion when vector-valued function f : R — R? of

dimension d € N is curl-free. Due to the equivalence in the cases d = 2,3 and the fact
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2 Notation and Definitions

that we wish to establish an approximation scheme and its error analysis for arbitrary
dimensions, we will only use the second definition.

The following curl-free kernel was introduced by FUSELIER in [17]. It is defined by
B = —VVI0, (2.14)

where ¢ is a sufficiently smooth, positive definite function. We give the proof of the
positive definiteness for the convenience of the reader. Before proving the main result, we
will prove the following lemma. Both proofs have been given by FUSELIER in [17]. The
first proof follows from [54, Lemma 6.7].

Proposition 2.15. Suppose that U C R? is open. Suppose, further, that X1, ...,xy € R?
are pair-wise distinct and that c; € C4, 1 < j < N. If f(w) = Z;VZI chje_ixJT“’ =0 for
allwe U thenc; =0 forall1 <j < N.

Proof. One can easily see that f is analytic in U. It is indeed analytic in all of C%.
Hence we can extend it to f : R — C, f(w) = Z;VZI chje_ixJT “, by successive analytic
continuation in every component. The set of zeros of f in U has a limiting point. Therefore
we can apply the identity theorem component-wise to conclude that f is identically zero
in U, cf. [44, Theorem 15.8].

Now we take a test function g € W2(R%) and can conclude from Z;Vﬂ chje_ix? “ =0,
w € R?, that

N
0= Zchjefix;"ng\(w)
j=1
N
= Z chw’g\(w — X;)
j=1
N —~
=—i Z c]TVg(w - X;)
j=1

N
= =i ] Vg(-—x%;) | (w)

j=1
for all w € R%. This implies
N N d
Zc?Vg(x — X;) ZZ ¢i)rokg(x —x5) =0
j=1 j=1k=1

for all x € R% and every test function g.
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We now show that (c;); = 0 for every fixed ¢ and {. Hence c¢; = 0 for all i. To see
this, we choose g such that supp g C B(0,€), where € < minj; [|x; — x;||2, dg(0) =1 and
0rg(0) = 0 for all k # I. Since the support is less than min;; [|x; — x;||2, we have that
Okg(x; —x;) = 0 for all j # ¢ and all k. Therefore

N d d
= DD (eihglxi = x) = Y (ci)idhg(xi — xi) = (ei)idhg(0) = (el
= k=1

7=1 k=1
which finishes the proof. ]

Lemma 2.16. Suppose ¢ € C2(RY) N WZ(RY) is a positive definite function. The kernel
defined by (2.14) is curl-free for every column. The kernel is also positive definite in

the sense of definition 2.6. Furthermore, ® .y and its Fourier-transform <fcu\r1(w)a =
wagg(w)a are in Ly (R?) for every a € R,

Proof. The jth column is given by ®.1€j, i. e.
P yne; = —VVige; = V(-VT(ge;)) = Vg,

where g = —0;¢ is a scalar-valued function. By the symmetry of @1, its columns are
also curl-free.

The kernel ®.,,1 is continuous, since ¢ € CQ(Rd). Moreover, we have

d d
[®cunce||L, ra) :/ Z Z(q)curl(x))ijaj dx

L )
/ Z|_ Dijp(x)ayj| dx
R 5

—Z|a]|/ 19450() dx < oo,
1,j=1

due to the fact that ¢ € Wf(Rd). Hence ® . is integrable, therefore the Fourier

transform exists. Applying theorem 2.4 gives

—

(Bewn(w)er); = (—VVTd(wer); = rd;d(w) = wpw; d(w),
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2 Notation and Definitions

thus ‘I’curl( )= waa(w). Keeping this in mind, we have

d d
H(I)curla‘HLl(Rd) :/]Rdz Z (I)curl)Jk aj dw

k=1|j=1

<3 o [ Jesdto)]

k,j=1

= 3 Iyl [ [0r80() | dw < o0
k=1 R?
since ¢ € C2(RY) N WZ(RY).
The kernel ®.,,,1 is even and symmetric since ¢ is even and radial.
Let all x; € R? be pair-wise distinct and aj € R? such that not all «j are vanishing.

Applying corollary 2.5 and the Fourier transform of the kernel leads us to

N
Z a?q)curl( ) 27T —d/2 Z / Curl xj_xk) wdwak’
k=1 k=1
= d/2/ Z a ww? )ake"(xj*xk)T“’dw
2
= (2w d/Q/ Zw aje —ixjw d(w)dw.
2

Note that the integral in the first two steps is applied component-wise. Since ¢ is positive
definite and ¢ € C(R%) N L1 (RY) and with corollary 2.8, $ is nonnegative. Furthermore, a
norm is always nonnegative. Together with proposition 2.15 we have that ®., is indeed

positive definite. 0
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3. Darcy’s Problem

We now establish Darcy’s problem. Since it models flow in porous media, we will start
with a brief introduction to porous media flow. Besides the definition of porous material,
we will give some real-life examples and establish the main properties. After this we will
introduce fluid flow and explain how it can be measured.

Before stating Darcy’s problem, we will establish Darcy’s law. Then we will look at the
existence, uniqueness and regularity of the partial differential equation. Finally, we will

give examples for the application of Darcy’s problem.

3.1. Fluid Dynamics in Porous Media

Porous media flow is a topic in engineering and science. It is of particular importance in
ground water hydrology, reservoir engineering, soil science, soil mechanics and chemical
engineering.

Usually the goal in fluid dynamics is to recover the welocity u of the fluid and the
pressure p. In the case of porous media flow Vp is called the hydraulic gradient.

There are two kinds of properties, which we want to distinguish; the properties of the
media and the properties of the fluid. Both are important for the mathematical modelling
of a particular experimental set-up.

The material in the present section is taken from [6, 24].

3.1.1. Porous Media

Porous media are materials with interconnected pores with at least several continuous
paths from one side of the medium to the other. That portion of material, for example
rock, not occupied by solid matter is the void space or pore space. It contains fluids or
gases. Only connected pores can act as elementary conduits within the formation. The
porosity is the ratio of volume of the void space to the bulk volume of a porous medium.
An example for porous media is given in figure 3.1.

Oil or gas reservoirs are instances of porous media. They are porous geological forma-
tions filled with oil or gas respectively. Ground water flow is another example which is of

particular importance since 30.1% of the freshwater on Earth is found below the Earth’s
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Gravel

Sandstone
Void space

Figure 3.1: An example of porous media.

surface while more than two-thirds are frozen in glaciers, [24]. In some parts of the world,
ground water is the only freshwater source. Therefore the study of ground water flow is
essential for the water supply in those areas. Darcy’s problem is often applied in ground
water hydrology.

All water found beneath the ground surface are referred to ground water. The ground is
partitioned into four different types of layers: Aquifer, aquiclude, aquitard and aquifuge.

An aquifer is a geological formation or stratum that contains water and permits signifi-
cant amounts of water to move through it under ordinary field conditions. Often it consists
of unconsolidated or partly consolidated gravel or sand. Sandstone and conglomerate are
the consolidated equivalent to sand and gravel. In many parts of the world, limestone
formations are important aquifers. Volcanic rock may form permeable aquifers. The main
properties of an aquifer are to transmit, store and yield water.

In contrast to an aquifer, an aquiclude is a formation that may contain water, but is
incapable of letting significant amounts pass through it. An example is clay, which has high
porosity, but is relatively impervious due to small pores. Aquicludes are here considered
impervious formations.

A semi-pervious geologic formation transmitting water at a very slow rate is called
an aquitard. This layer often separates aquifers from each other, it allows water to leak
through. Impervious formations neither contain nor transmit fluid. They are referred to
as aquifuges.

If the porosity does not depend on the direction, then the material is isotropic, other-
wise the medium would be anisotropic. Consider fractured rock with mainly horizontal
fractures. The permeability in the horizontal direction is higher than in the vertical direc-
tion. Hence the rock is anisotropic, while sandstones are an example of isotropic material.
Figure 3.1 displays an anisotropic medium.

We distinguish between homogeneous and inhomogeneous porous media. Homogeneous
means that the porosity is the same at all points, i. e. independent from the position. For
example pure fine sand is homogeneous. If the medium consists of more than one kind of

material or has varying porosity, it is called inhomogeneous. Therefore virtually all natural
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materials are inhomogeneous; for instance the porous medium displayed in figure 3.1.

3.1.2. Flow in Porous Media

All fluids considered in this thesis are Newtonian fluids, i. e. the viscosity v is independent
of the velocity u. This is true for all gases and the most common liquids. The dynamic
viscosity or absolute viscosity p determines the dynamics of an incompressible Newtonian
fluid. Moreover, the kinematic viscosity v of a Newtonian fluid is the dynamic viscos-
ity divided by the density, i. e. the kinematic viscosity combines the two relevant fluid
properties.

A flow is said to be incompressible, if the density of a fluid element does not change
during its motion. This means in particular that the fluid density, which is the mass of
the fluid per unit volume, is constant.

Newton’s second principle states that matter can neither be created nor destroyed. This
means that any increase or decrease in mass must be due to the flux of matter through the
surface bounding the volume. This principle is also referred to as conservation of mass.

In the case of an incompressible flow, it is given by
divu =0.

The hydraulic conductivity indicates the ability of aquifer material to conduct water
through it under hydraulic gradients. More generally, it is the ease of fluid transportation
though the porous matrix. It is therefore a combination of the properties of the fluid, i.
e. the density and the viscosity, and of the porous medium which are the grain/pore size
and shape, tortuosity, specific surface and porosity.

An observation well or piezometer is a tool to measure porous media flow. Usually it
is a vertical pipe with a small diameter. The elevation of the fluid in the piezometer is
referred to as the piezometric or hydraulic head.

An important measure in fluid dynamics is the Reynolds number. In porous media flow,
it is given by

Re = @,
v
where v is the kinematic viscosity, and D is some length dimension. In porous media flow,
D is usually the mean diameter of the grains. The Reynolds number gives a criterion
of the type of flow - laminar or turbulent flow. The flow is laminar if the fluid flows in
parallel layers and the layers do not interfere. However, in turbulent flow there are no such

layers.
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3.2. The Experimental Law of Darcy

In 1856, Darcy’s law has been published by the French engineer Henry Darcy. He ran a
sequence of experiments to develop design parameters for sand filters. Figure 3.2 gives a

sketch of his experimental set-up. The figure is inspired by [6]. In his apparatus Darcy

lU Scr ﬁ
L - Reservow
hy
J T , HF
S N

Figure 3.2: A sketch of Darcy’s experimental set-up.

varied the length L and cross-sectional area A of a sand-packed column and also the eleva-
tions of constant-level water reservoirs connected to the upper k1 and lower ho boundaries
of the column. Combining his observations, Darcy obtained the following relationship

(h1 — h2)
U=KA——=~
L )

(3.1)
where U is the rate of flow, which is the volume per unit time, K is the hydraulic conduc-
tivity, and (hy — he)/L is called the hydraulic gradient. In figure 3.2 the piezometric head
is the level of the water in the pipes left of the filter marked by h; and he. Dividing both

sides of (3.1) by the cross-sectional area A gives the experimental version of Darcy’s law

(h1 —ha)

=K h =
U J, where J 7

The experiment of Darcy can be extended to flow through an inclined porous medium

column. Further information about Darcy’s experiment can be found in [6, 24].
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3 Darcy’s Problem

3.3. The Generalised Darcy’s Law

The experimental law of Darcy is limited to homogeneous, incompressible, one-dimensional
flow. We now give the formal generalisation to obtain Darcy’s law for d-dimensional flow
in various kinds of porous material. A detailed description and further approaches can be
found in [6].

The most obvious formal generalisation of Darcy’s law is

K

where the kinematic viscosity v > 0 and the permeability tensor K are given and the
velocity u and the pressure p have to be determined. This version of Darcy’s law can be
obtained from the experimental version, cf. [6]. For homogeneous media, it can also be
obtained from the Navier-Stokes equations [43].

In the case of isotropic and homogeneous media, the permeability is a scalar constant,
i. e. the vectors u and Vp are collinear. If we have inhomogeneous media, equation (3.2)
remains valid, but K := K (x) depends on the porosity of the domain.

The case of isotropic media does not appear very often in nature. Soils are for example
usually stratified, i. e. anisotropic. To model anisotropic porous media we only need to

change the permeability to a matrix-valued function K in (3.2).

3.4. Darcy’s Problem

We will incorporate the viscosity into the permeability tensor. Furthermore, we will as-
sume that the velocity field is incompressible. Then we combine Darcy’s law with the
conservation of mass. Appropriate boundary conditions are Neumann-boundary condi-
tions, which ensure that the partial differential equation is well-posed [5]. Then Darcy’s

problem or the div-grad problem can be stated in the following way

u+ KVp=f in Q, (3.3)
V-u=0 in Q, (3.4)
u-n=g-n on 0. (3.5)

Here, n denotes the outer unit normal vector of the boundary 99 C R?. The right hand
sides f and g - n and the tensor K are given. For technical reasons, the tensor K is

supposed to be symmetric, thus K = K7, and strongly elliptic in the sense that there is
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3 Darcy’s Problem

a constant o« > 0 such that
TE(x)E > algl;, EeRixeq. (3.6)

The velocity u : Q — R? and the pressure p : Q — R are sought.

Darcy’s problem is equivalent to an elliptic second-order problem with Neumann bound-
ary data. This immediately follows from taking the divergence of (3.3) and incorporating
(3.4). The boundary conditions follow by taking the inner product of (3.3) with the unit
outer normal vector n of 92 and to use also (3.5). In doing so, we see that (3.3)-(3.5) is

equivalent to solving

V- (KVp)=f:=V-f in €, (3.7)
(KVp) n=g:=(f—-g)n on 0N (3.8)

and defining
u:=f— KVp. (3.9)

We have with the divergence theorem, cf. [14, Chapter 15], and (3.4) that

/gdS—/FdXZ/ (f—g)~ndS—/V‘fdx
o0 Q o0 Q
—/ g-ndS
oN
:/ u-ndS
o0
:/divudx
Q

0,

i. e. the compatibility conditions of the Neumann problem are satisfied.
The other direction of the equivalence follows from rearranging (3.7) and (3.8) such that

f — K'Vp can be replaced by u and from rearranging (3.9) for f.

3.5. Existence and Regularity

For the elliptic Neumann problem (3.7) and (3.8) the following existence and smoothness
result is well-known. For integer order 7 and K = I, its proof can be found in [22, Theorem
1.10], the general integer case follows from [23] and the general fractional order case follows
by interpolation theory in Sobolev spaces. Though the result was originally derived for

weak solutions, the higher regularity assumption on the given data implies that it also
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holds for classical solutions.

Proposition 3.1. Let Q be a bounded open subset of R® with a CI™1+L1 boundary 9
and T > 0. Assume that the permeability tensor K = (K;;) satisfies (3.6), K = K1 and
K;j € WITH(Q). Assume further for the data that FeWT(Q) and § € WTTH_I/T(@Q) for
1<r<ooand [,o8dS= [ fdx. Then there exists a function p € WIT2(Q)/R solving
(3.7) and (3.8), which satisfies

Pllwg+2ym < € {1 Wz @) + 11y 11m o |
with a constant ¢ = ¢(7,r,Q).

Applying this to our special situation, the existence and smoothness of the solutions of

Darcy’s problem follow.

Theorem 3.2. Let Q be a bounded open subset of R® with a CI™1T11 boundary 9.
Assume that the data satisfies f € WITL(Q) and g € WZH_l/T(@Q) for1 < r < oc.
Assume further, that the permeability tensor K = (K;;) satisfies (3.6), K = KT and
Kij € WIL(Q). Then there exist a velocity u € WITH(Q) and a pressure p € W T2(Q)/R,
solutions to (3.3)—(3.5), which satisfy

lallyyr+ ) + 1Pz r < ¢ (Hwa:“(Q) +llg- nHWﬁl—l/r(aQ)) :

Proof. Our assumptions on the given data immediately yield f: V-f € W7 (Q). Since the
boundary is also assumed to be smooth enough, we have g = (f —g)-n € AR (09).
Furthermore, we have the obvious estimates HfHWTT(Q) <||f HW;H(Q) and

||§||WI+1_1/T(8Q) ||(f - g) ' n”WT"""‘l—l/T(aQ)

IN

||f”W:+l_1/T(8Q) + Hg : n”WTT‘H—l/T(aQ)?

where we have used the standard trace theorem for Sobolev spaces, see [57, Theorem 8.7].
From (3.9), we see that

allwriq) < Ifllwr+ ) + 1K VDl g

< fllwr+r ) + cllplwr+2q)r:

This all, together with proposition 3.1, gives

< ||vav:,+1(Q) + C||pHW7T+2(Q)/R

¢ (Il + g Bllyreisr g ) -

lallywr1 ) + Il o) /r

IN
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3 Darcy’s Problem

which is the desired estimate. O

Darcy’s problem is well-posed, if only the normal velocity is prescribed at the boundary
0. This can be concluded from the equivalence to the elliptic Neumann problem (3.7)
and (3.8) which is well-posed. Therefore a unique solution of Darcy’s problem exists.

However, the pressure can only be unique up to an additive constant.

3.6. Applications and Restrictions

Darcy’s law is widely used for almost all situations involving motion of fluid through soil
or rock in the natural environment [24]. It can also be applied to describe the creeping
flow of a Newtonian fluid in porous media [6]. In ground water hydrology Darcy’s problem
is used to model and predict the ground water flow in aquifers. Unfortunately there are
some restrictions when Darcy’s law models the reality.

Firstly, Darcy’s law fails for turbulent flow. It can only be applied if the Reynolds
number for porous media, based on the average grain diameter, does not exceed 1-10,
cf. [6]. Moreover, for very high flow in very permeable material, Darcy’s law has been
found to be invalid. Darcy’s law may also fail if other forces have significant influence; for
instance acceleration can cause invalid results.

In a granular material, for instance sand, Darcy’s law is very reliable. It also models flow
in non-granular materials like clay, limestone, sandstone, and fractured crystalline well.
However, there are some restrictions on the material. Darcy’s law implies that even a very
small hydraulic gradient causes motion of the fluid. In some clays it has been observed
that below some threshold value, a small hydraulic gradient does not lead to fluid motion.
Nevertheless, in the case of unsaturated soils, Darcy’s law has been found to be valid.

To find the permeability of a medium, gas flow at low pressure is often used. This can
be modelled with Darcy’s law. Note that in this case the flow of gas is faster than one
can predict by using Darcy’s law. However, this is a well-known phenomenon in fluid
mechanics.

In the particular form of K = const - I, which refers to isotropic and homogeneous
material, Darcy’s law also plays an important role in projection methods for discretizing
the Navier-Stokes equations for incompressible Newtonian fluids [45]. For the projection
method, the Navier-Stokes equations are split into two problems. Darcy’s problem with
f = 0 and g = 0 is one of them. Both problems are solved in an iterative alternating
scheme to approximate the solution.

Furthermore, coupled free-flow and porous media flow is an important application of
Darcy’s problem since they appear often in the nature [50]. For example river beds are

usually porous media and the flow in the river and in the ground interact.
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4. Reproducing Kernel Hilbert Spaces

Before we can establish the approximation scheme for Darcy’s problem, we need to discuss
reproducing kernel Hilbert spaces in detail. These spaces provide the technical tools
required to establish the approximation scheme. Furthermore, these spaces and their
properties are essential in the error analysis.

We will start with the definition of matrix-valued reproducing kernel Hilbert spaces
and prove some general properties. After this, we introduce specific reproducing kernel
Hilbert spaces. Those spaces are Sobolev or Sobolev-like spaces, which are equipped with
a reproducing kernel.

Native spaces are reproducing kernel Hilbert spaces, which are constructed from a kernel.
Besides their definition, we study the relation between them and certain Sobolev spaces.
This includes in particular the native spaces of the divergence-free and the curl-free matrix-

valued kernels.

4.1. Hilbert Spaces with Matrix-valued Reproducing Kernels

We now give a partial survey of reproducing kernel Hilbert spaces. First of all, we will
give their definition and main properties. Then we have a look at certain examples.
4.1.1. Definition and Properties

Let Q C R be non-empty. The following definition is taken from [20]. It is a generalisation

of the usual scalar-valued version, cf. [54, Definition 10.1].

Definition 4.1. Let H be a Hilbert space of vector-valued functions f : Q@ — R". A
continuous n X n matriz-valued kernel ® is called a reproducing kernel for H if for all
x € Q) and a € R"™ we have

(1) ®(-,x)x € H,
(2) a'f(x) = (f,®(-,x)a)qy.

The following result is a vector-valued version of theorem 10.2 in [54]. The proof follows

from the proof of the scalar-valued case.
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4 Reproducing Kernel Hilbert Spaces

Theorem 4.2. Suppose that H is a Hilbert space of vector-valued functions f :  — R™.

Then the following statements are equivalent:

(1) the point evaluation functionals are continuous, i. e. a’dy € H* for all x € Q and

o € R,
(2) H has a reproducing kernel.

Proof. Suppose that the point evaluation functionals a’'d, are continuous. Then Aj o=
eJT5x, 1 < j < n, is an element of H*. Riesz’ representation theorem gives that we can
find for every x € 2, a ®,(-,x) : @ — R" such that ejréx(f) = (f,®,(-,x))g for all f € H,
cf. theorem 1.12 in [2].

Let a € R" and \ = al'éx. With a = > j—1oje; we have A = 31 a;jA;. Then,

A(F) :ZajAj(f) :Zaj(fv (I)j('7x))H = f,ZOéj‘I)j(',X) )
j=1 j=1 j=1

H

but also A(f) = (f,gx)u. Due to the uniqueness of the Riesz representer we can conclude
gr = )iy @;j®;(,x), thus gy = ®(-,x)a. Therefore the conditions of definition 4.1 are
satisfied and ® is the reproducing kernel.

Now, suppose that H has a reproducing kernel ®. This means that
ol ox(f) = o' f(x) = (£, ®(. x)a)n

for all x € Q2. Cauchy-Schwarz and the continuity of ® yield that

]aTéx — aT5y| = sup \(aTéx — aT5y)(f)|
(If]lz=1
= Ssup ‘(fa ‘I’(7X)a)H - (f7 ‘ﬁ(a Y)a)H’
If|lz=1
= sup [(f,®(,x)a—@(,y)a)H]
[If]l=1

< |®(,x)a - ®(,y)alu
— (| @( x)al} - 2®(, ), B, y)e)u + [B(,y)alk) "
= (aT(I)(X, x)a — 2l ®(x,y)a+ ol ®(y, y)o) 12

goes to zero if x goes to y. Hence a’ éx is continuous in x. ]

The following theorem gives the Riesz representer of a functional A € H*, where H is a

vector-valued reproducing kernel Hilbert space of functions. It is the extension of theorem
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4 Reproducing Kernel Hilbert Spaces

16.7 in [54] to vector-valued spaces. The scalar case can be recovered if one chooses a := 1

and thinks about the kernel as a 1 x 1-matrix.

Theorem 4.3. Suppose that H is a real, vector-valued Hilbert space of functions with
reproducing matriz-valued kernel ® : Q x Q — R™" where Q C R? is non empty. Let A
be an element of the dual space H*. Then \Y(®(-,y)a) € H and

for allf € H and all a« € R™. Moreover,
Al = [[AY(® (-, y)e) | (4.2)

Proof. Riesz’ representation theorem guarantees the existence of a gy € H such that
(f,gy)m = A(f) for all £ € H. Since fx := ®(-,x)a is an element of H, using the

reproducing property of the kernel, we see that

M) = (F, 80)u = (81 F)m = (81, (-, x)a)u = o’ g\ (x).

Since x is arbitrary and A\Y(®(-,y)a) = a’gy, we obtain \Y(®(-,y)a) € H, i. e. (4.1)
holds.

We define g)(x) such that its ith component is AY(®(-,y)e;), where e; is the ith unit
vector.

Note that (4.2) can be directly concluded from Riesz’ representation theorem. However,
we will show it for the convenience of the reader.

The definition of the norm in the dual space in combination with the first property and

the Cauchy Schwarz inequality gives

A(F f, £
e o POL_Eegnl Bl
rer [fllm fer  |Iflm rer |If]lu
but also D) Al
g
sup DL DIy
SUP Tl = Tealm

Thus ||A||g+ = ||gx||m and the Riesz representer for the functional A is given by gy(x). [

We will denote the reproducing kernel Hilbert space with reproducing kernel ¢ or ®
also by Hg(R?) or Hg (R?) respectively.
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4 Reproducing Kernel Hilbert Spaces

4.1.2. Examples

Some Sobolev spaces can be interpreted as reproducing kernel Hilbert spaces. We will
present these characterisations and introduce the related Sobolev-like space H" (R9) and
its divergence-free and curl-free subspaces. Furthermore, we will study the properties of

the introduced spaces. Note that all kernels in this section are translation invariant.

The Space H*(RY)

An alternative definition to the one in section 2.2.2 of Sobolev spaces on R? uses the

Fourier transform. It can be shown that

~

H(RY = {f € La(RY) 5 FO)+ | B)2 € LR

with the inner product
() = (202 [ Flo))(1 + [l ds

Let s > d/2, then this space is a subset of C(R?), cf. corollary 2.1. Furthermore, it can

be interpreted as the space

H]Cs(Rd) = {f S LQ(]Rd) : /Rd ’fc\(::u))tdw < OO} ,

where K? is defined by its Fourier transform I/C\s(w) = (1+ [|w||3)~*.

Proposition 4.4. Let s > d/2. Then K5 is integrable.

Proof. 1f f is radial, continuous and integrable, then

y f(x)dx = /0 (/63(077”) f(r)dS) dr = cd/o ¢ f(r)dr,

cf. theorem 4 in [12, Appendix C3]. The integral of (1+72)~%r9~! over a bounded domain

is finite. Since s > d/2 we have

oo

o0 [oe) o0
/ (1+ 7’2)737'“{*1(17“ < c/ r2spd=lgp = c/ pd=2s-1 — ¢ [r*QHd} < 00.
1 1 1 1

Therefore we can deduce that

1K=, ety = /Rd (14 [lwl]l3)~*|dw = Cd/o (1+7r2)"r? tdr < oo,
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4 Reproducing Kernel Hilbert Spaces

i. e. the Fourier transform of X° exists. O

In [54, Theorem 6.13] it has been proven that KC3 is positive definite and the inverse

Fourier transform is given by
S —d/2
K2 (%) 2= ey Kapa—s(I112), (4.3)

where ¢c; = %1(—;; is a positive constant and K, is the modified Bessel function, see section

—

2.4.3. The function K* is positive, radial and continuous, i. e. K5 = K* is integrable, cf.
corollary 2.8. Therefore we can apply [54, Theorem 10.12] to conclude that Hys(R?) =
H?*(RY) is indeed a reproducing kernel Hilbert space with reproducing function K*(- — x).

The Spaces H™(R?), H™(R?; div) and H” (RY; curl)

Let 7 > d/2. With the definition of H7(R?), we can define the vector-valued Sobolev
space H™(R?) as the tensor-product space (H7(R%))? equipped with the inner product

d

(F, &)urr(ay = > (f3:95) rreme) = (277)_d/2/ B(w) F(w)(1+ [wl3)" dew.

j=1 R

This means that this space is a Hilbert space with reproducing kernel K71, and we can

denote it by
O = {£ e Lo s [ f)I30+ i) dw < oo}
Ra

We are interested in two subspaces of H”(R%): The subspace of the divergence-free func-

tions and the subspace of the curl-free functions. They are defined via

H™(R? div) := {f cH (RY):V.f= 0} :
H™(R% curl) := {f € H(R?) : There exists g € H™"}(RY)/R such that f = Vg} .
Both spaces are equipped with the inner product of the space H™(R?), so we will denote

the norm in both spaces by ||f||g- (rd), where f is divergence-free or curl-free respectively.

This should cause no confusion.
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The Space H™(R%)

Let 7 > d/2. Then we define the space

~ w2
H™(RY) := {f € Ly(R%) : /Rd ||f||(w||)%”2(1 + Jlwl]3) M dw < oo}

equipped with the inner product

g(w)*f(w
(F. &)y = (2m) /Rd g(Hc)vH%S)

Proposition 4.5. Let 7 > d/2. Then the Sobolev-like space ﬁT(Rd) 1s a Hilbert space
with reproducing function v = —AK™L. Furthermore, the space fIT(Rd) is a subset of
H™(RY).

(1 + flwl3)™ dew.

Proof. The space HT(R?) is identical to the space H,(RY) = (Hy(RY)™, where 1 =
—AK™ and

o~

I
Vo
Therefore it is a reproducing kernel Hilbert space if v is positive definite and if all functions

f € Hy(R?) are continuous, cf. [54, Theorem 10.12].
The kernel K7+ is two times differentiable, since the Bessel function K /o—(r+1) 18. We

Hy(RY) :={ f € Ly(RY) - € Ly(R%)

have with proposition 2.9 that 1 is indeed positive definite provided its Fourier transform
@Z(w) = ||wll3(1 + [|w|?3)~+D) is integrable. Since 7 > d/2, this can be shown with a
similar argumentation as in the proof of proposition 4.4.

For every element f € H™(RY) we have that f € H™(R¢), since f € Ly(R?%) and

€120 ey = (2) 2 /R @)+ w]3)dw

<0 [ (14 o) F@)B0 -+ lwlpras

el

L [ LIl .
= )y [ R0 + ] d
2

T 2
— (27r)_d/2/ Hf(w)QHQ(l_‘_ HwH%)T—‘rldw
re [wl[3

= |If|I% < 0.

T(Rd)

Thus H™(R?) is a subset of H™(R?) and therefore all f € H™(R%) are also continuous. [J
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The Space H™(R%; div)

The space HT (RZ; div) is the subspace of the divergence-free functions of HT (RY), i. e.
H"(RY div) := {f cH (RY):V f= o} C H7(R% div)

equipped with the inner product <f’g)ﬁ‘r(Rd'div) = (f, g)ﬁT(Rd). Like H™(R?) it can be

characterised as a reproducing kernel Hilbert space if 7 > d/2. The kernel I%giv is then

defined by its Fourier transform
Ko (@) = (lwl3] — ww™) (1 + [|w][3) =Y.

The inverse Fourier transform of (1 + [|w||3)~("*Y is given by K7+!, see above. Lemma
2.13 establishes that the kernel is positive definite and integrable, since K™+ € C%(R?) N
W2(RY). We can rewrite the kernel with (4.3) such that it becomes

T (%) = cri (AT + VVT) x5 Ky aa(Ix]2)
= (A + VVT) K™ (|1x]2).

We now study the properties of the kernel l%giv and the matrix (Ay &, )i = /Egiv (x; —
"div
x;). These properties are of importance for the error analysis for target functions outside

the native space.

Stability of A, R
taken from [18]. It generalises [54, Theorem 12.3] to the matrix-valued kernel ® gj, .

The following result gives a bound for the smallest eigenvalue, it is

Theorem 4.6. Let X C R? be a discrete set of pair-wise distinct points. Let ¢ be an even
and positive definite function, which possesses a positive Fourier transform qg € C(R40).

A lower bound for the smallest eigenvalue Amin of the matriz Ax o, is given by

o2 \ (D72 M(o)m
; ) > — .
Amln(AXﬁ?dw) = <167T> (47r)dF((d + 2)/2) (4 4)
for any o > 0 satisfying
C ~ m(d+2)(d+3)d ., (d+2)\\ /@D
> — = .
ain, C 24( -1 r 5 , (4.5)

where M (o) := inf|jy|, < g/i;(w), qx 1s the separation radius and I is the Gamma function.

We now look at the specific case that the kernel is /Egiv.
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Proposition 4.7. Let X C R? be a discrete set of pair-wise distinct points. The lower

bound of the smallest eigenvalue of A &, is given by
" Mdiv

)\min(AXJEgiv) > qu()i{%—’

where cq is a constant depending on d and qx is the separation radius.

Proof. We can find a constant ¢ such that

—_— _(r —9(r
Krl(w) = (14 [[w]3)" D > el Y

)

for a sufficiently large ||w]|2, i. e.

M(o) = inf Ic/frl(w) >c inf HWHQ_Q(TH) > o2,
lwll2<o lwl2<e

Therefore we can simplify (4.4) as follows

(A e )3 (2 AR Moy

mim XJC::—url - 167[' (47r)dr(d + 2)/2
N o2 \ @2/2 —or41)
= 167 (47)4T(d + 2)/2

L (d+2)/2 cod—27

~ 167 (4)dT(d + 2)/2
— CdO_d—?T
> caqyy %

Due to their algebraic decay, this result also holds for Wendland functions, cf. [18].

Eigenvalues of iégiv We now rewrite the kernel to enable us to find the eigenvalues. Let

v:=71+1—d/2. For the matrix-valued kernel ﬁgiv(x) and with (2.5) and (2.6) we have

d

(Kau) = =crin > dulxl5Ko(Ixl2)

k=1 k=i
d#

= —crer Y [T K (Ixl2) + 2 x5 2K —a(llx]l2)]
k=1,k#i

d

= o (d = Dxly Ko (1xll2) = ermalxls 2 Koma(xl2) S oF
k=1 ki
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and

(Raiw) = erads IXI5EL (xl2) = eronmiay x5~ 2Ko-alx])
Hence we can write IEgiV as
A (%) = a(x)] + b(x)(—|x[|5] + xx")
with

a(x) = crp1(d = 1)l|x]|5 ™ Ky—1(]|x]|2),

b(x) = crya x|y Kya(][x]]2)-

The eigenvalues of a matrix A are the roots of the polynomial det(A — AI). Assume
that A\; = a(x) — b(x)||x|3, then

det(KZ;, (%) — AT) = det(—b(x)x"x) = 0,

T

since x* x is a matrix of rank one. Thus A; is indeed an eigenvalue. Similarly we can see

that A2 = a(x) is an eigenvalue; if x = 0, then
det (K7, (0) — Aod) = det(0 - I) = 0.

If x € RN\0, then

~ XTX
det (R, (x) — hoI) = det(b(x)(xx — [x|31) = det(—z»(x)nxn% (I - ||x||)> o,

T"is singular if and only if 1 + vI'w = 0, cf. [56, Lemma 2.14].

because a matrix I + wv
Therefore Ao is also an eigenvalue.
The eigenvalues are therefore Ay = a(x)—b(x)||x||3 with multiplicity d—1 and Ay = a(x)

with multiplicity 1.
Upper Bound for )\(l%giv) The absolute value of each eigenvalue is bounded by

Adgiv(x) := la(x)| + [[x[3]b(x)].

41



4 Reproducing Kernel Hilbert Spaces

Applying lemma 2.12 and defining r := [|x||2 leads us to

Adiv(%) = ersr(d = x5 Ky—a(lIxll2)] + [xl[3]ersa x5 Ky —2(]Ix[l2)]
= crp1(d — D" K, 1 (1) 4 crp1mV Koo (r)
< erpr(d— 1) 1-1/2, fore=" (v—1)2 /27’)+C Y I/Z\ﬁe re(v= 2)2/(2r)
e ((d— 1)6(1171) /@r) 4 pe(v=2)2 /(2r)) ’

which bounds the eigenvalues.

The Space H™(R<, curl)

The subspace of the curl-free functions of HT (RY) and its kernel are essential for the error
analysis for target functions outside the native space. Therefore we will study this space
in more detail.

The space H™(R?; curl) is the subspace of the curl-free functions of H™(R?). It is defined

by the application of the dimension-free definition of the curl, i. e.
H™ (R curl) := {f € H™(R?) : There exists g € H™1(R?%) /R such that Vg = f}

with the inner product (f, g)ﬁT(Rd‘curl) = (f, g)ﬁ,(Rd).

Let 7 > d/2. Then the space H™(R%; curl) can be characterised as a reproducing kernel

Tu1- The kernel ICzurl is then defined via its Fourier

Hilbert space with reproducing kernel KT
transform

—

IC’T

curl

(@) = ww! (1 + [|w]3) =+ (4.6)

Hence, like in the divergence-free case, we obtain, with lemma 2.16 and (4.3),
+1-d/2
fun (%) = —era VYT a3 2K gpa(x]2) = — VT,

which is a positive definite integrable kernel.

We will now give some properties of the kernel lCcurl and the matrix (A X )ij =

curl

Iacurl(xi —x;). The following results are required for the error analysis.

Stability of A R The following result gives a bound for the smallest eigenvalue, it is

curl

taken from [18]. It generalises [54, Theorem 12.3] to the matrix-valued kernel ® ;.

Theorem 4.8. Let X C R? be a discrete set of pair-wise distinct points. Let ¢ be an even

and positive definite function, which possesses a positive Fourier transform 4/5 € C(R40).
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A lower bound for the smallest eigenvalue Amin of the matriv Ax o, is given by

curl

o2 )(d+2)/2 M (o)

Amin(AX &) = (W (47)a0((d + 2)/2)

for any o > 0 satisfying

C ~ m(d+2)(d+3)d ., (d+2)\\ /@D
> — = .
oz~ C 24( -7 (= : (4.7)

where M (o) := inf|jy|, <o g/i;(w), qx 1s the separation radius and I is the Gamma function.

Following the same argumentation as in the proof of proposition 4.7, we see that the

lower bound of the smallest eigenvalue of A, . is given by
" ~eurl
27—d
/\min(AXJEr ) > Cddx > (4.8)

curl

where ¢4 is a constant depending on d and gx is the separation radius. This bound can

also be shown for Wendland functions, cf. corollary 3 in [18].

Eigenvalues of K7, Let v := 7+ 1 —d/2. For the matrix-valued kernel IEgurl(x) and

curl

with (2.5) and (2.6) we have

(Rrun®)) . = —crradalxI5 5 (Ix]2)
= —con@?xll5 2K (xl2) + era x5 K1 (x]l)

and

= -2
(Kaun0)), = =erndy 5K, (ele) = —ererea; el Koa(lxl2).

Hence we can write K7 ; as

funt (%) = a(x) I = b(x)xx” (4.9)

with
a(x) = cr|x[ly K1 ([1x]12), (4.10)
b(x) = crpa ]l  Ky—2([[x]|2)- (4.11)

Analogous to the case of the divergence-free kernel, we find eigenvalues \; = a(x) —

b(x)||x||3 with multiplicity 1 and Ay = a(x) with multiplicity d — 1.

43



4 Reproducing Kernel Hilbert Spaces

Upper Bound for A(K”_,) The absolute value of each eigenvalue is bounded by

curl
Acurt (%) = la(x)] + [|x[3[b(x)].
Applying lemma 2.12 and defining r = ||x||2 gives

Acurt (%) = JerplIxlls ™ Ky—1 (x[l2)| + lx[3ler+1llx]l5 7 Ko —a(llx]]2)]
= CT+1TV_1K1/71(T) + T2CT+1TV_2KV72 (T)

1 . w=1)? o (=22
< crpr? L 12/2re e 2 + 12’2 12/2re e 2r

_ _ (v—1)2 (v—2)2
= crp1r” 3/2\/2re 7’<e r 4 re o >

v—1)2 v—2)2 ~
= GV e (e( > —}—re( 2 ) =: A q(r). (4.12)
With
= . (w12 3 —1)? 2 1 —2)?
/T,d(T’) = CTT”_5/2627:_7” (1/ —5 T~ (VQTQ ) +re i <1/ —5 T~ (V27“2 ) ))

1

we can see that A; 4(r) decreases for every r > v — 3.

4.2. Native Spaces for Positive Definite Kernels

In the previous section, reproducing kernel Hilbert spaces for matrix-valued kernels were
established. We will now introduce a similar concept: The native spaces. A native space
is a reproducing kernel Hilbert space, which is constructed from a given kernel. The kernel
can be either scalar-valued or matrix-valued. After introducing the native spaces, we will

look at their relation to Sobolev spaces. Finally, we will present three examples.

4.2.1. Scalar-valued Native Spaces

The material about scalar-valued native spaces is taken from section 10.2 in [54]. Further
explanations can be found there. Here, we will just give an overview.
Let ¢ : © x © — R be a positive definite kernel and  be a subset of R% which contains

at least one point. Then we can define the R-linear space

N
Fy(2) := Zajgb(-,xj) :x;€Q, a5 €R
j=1
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4 Reproducing Kernel Hilbert Spaces

and equip it with the bilinear form

N M N M
D aid(,x5), > BedCoyr) | =D aiBrd(x, yi).
j=1 k=1

s I=1k=1

Now we can define the native space.

Definition 4.9. The native space of a positive definite kernel ¢ is defined to be the closure
of F(Q) with respect to the norm || - || a7 ) = || - [l¢ and will be denoted by Ny(S2).

If @ = R? and if ¢ is translation invariant, we have the following result. Its proof can
be found in [54, Theorem 10.12].

Theorem 4.10. Suppose that ¢ € C(R?) N L1 (R?) is a real-valued positive definite func-
tion. Define

Hy(RY) := ¢ f € C(RY) N Ly(RY) - € Lo(R%)

5l

and equip this space with the bilinear form

~ ~

Y S Ry (5 o

= W.

, a = (27 s
(f,9) b, (ray == (2) \/; \/QIS - R:  P(w)

Then Hy(R%) is a real Hilbert space with inner product (-, ‘)H¢(Rd) and reproducing kernel
¢(- — ). Hence Hy(RY) is the native space of ¢ on R%, i. e. Hy(R?) = Ny(R?), and both
inner products coincide. In particular, every f € N¢(Rd) can be recovered from its Fourier
transform [ € Li(RY) N Ly(RY).

Therefore we have that the reproducing kernel Hilbert space with reproducing kernel ¢
is identical to the native space of ¢ with equivalent norms. Furthermore, this space may

be a Sobolev space. The following result comes from [54, Corollary 10.13].

Corollary 4.11. Suppose that ¢ € C(R?) N L1(R?) satisfies
a(l+wl3) ™ < dw) el +w]3),  weR? (4.13)

with s > d/2 and two positive constants ¢; < ca. Then the native space Ng(R?) corre-

sponding to ¢ coincides with the Sobolev space
H®Y) = {f € Lo®Y) : F()1+ |- )2 € LaRD } € C(RY),

and the native space norm and the Sobolev norm are equivalent.

45



4 Reproducing Kernel Hilbert Spaces

4.2.2. Matrix-valued Native Spaces

The native space for matrix-valued kernels can be defined similarly to the scalar-valued
case. We follow the ideas presented in [55].
Let Q C R? be non-empty and ® : Q x Q — R™ " be a positive definite matrix-valued

function. Then, we can introduce the space
N
Fo () := (> ®(,xj)a;:x; €Qa; eR" 3,
j=1
which can be equipped with an inner product
N M N M
S B x)a, > B ye)B | =Y. a] B(x5,y1)8)

j=1 k=1 s J=lk=1

Definition 4.12. The native space (or reproducing kernel Hilbert space) of a positive
definite, matriz-valued kernel ® is defined to be the closure of Fg(Q) with respect to
I Ine@ = |- ll& and will be denoted by N ().

From now on, we will assume that the kernel ® is translation invariant. For a matrix-
valued function ® with ®, & € C(R%)NL; (R%) we can recover the function component-wise

from its Fourier transform

®;;(x) = (2m) Y2 /R ) ®,;(w)e™ “dw,

where 1 < i,j < n, cf. corollary 2.5. Hence, for every f € Fg(2), i. e. f = Zjvzl P(- —

X;j)o;, we can express the norm as

N
1€ = 1E12 = D o ®(x; — xp)en

k=1
N N
= (2m) "2 Z Z oc]T/ P (w)e! 5K Wy oy,
=1 k=1 R?
N
— (2m)-4/2 / S al B(w)e i) vy du. (4.14)
Re k=1
In the special case of ® being a diagonal matrix, with the entries ¢1,..., ¢, on the

diagonal, we can interpret the native space of ® as the tensor product space Hg(Q2) :=

Hy () x ... x Hg (2). This space is a real, vector-valued Hilbert space of functions
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4 Reproducing Kernel Hilbert Spaces

equipped with the inner product

. 1/2
(f.8)m, @ = Z(fjagj)%f%(m
j=1
If we have ¢1 = ... = ¢y, i. e. & = @I, where [ is the identity matrix, we can write

Hg(Q) = (Hy(£2))" and apply the results of the scalar-valued case.

4.2.3. Examples

To establish the discretization scheme for Darcy’s problem and for its error analysis the
native spaces of the kernels ®4;, and ®.,; are essential. For the numerical examples,
the native space of Wendland functions is of importance. From now on, all kernels are
translation invariant.

The Native Space of Wendland Functions

Wendland functions are positive definite, cf. [54, Theorem 9.13]. Furthermore, they gen-

erate Sobolev spaces. The following result is taken from [54, Theorem 10.35].

Theorem 4.13. Let ¢q0: R — R denote the compactly supported radial basis function of
minimal degree that is positive definite and in C**. Let d > 3 if ¢ = 0. Then there exist

constants c1,co > 0 depending only on d and ¢ such that
1 (1+ [wll2) 27" < gap(w) < o1+ [wl2)™ 2 for all w € RY.
This means in particular that
N (BRY) = HAPHH12 (R,

i. e. the native space for these basis functions is a classical Sobolev space.

Let 7 := d/2 + ¢ + 1/2. The Wendland functions ¢4, are an element of all Sobolev
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spaces HY(R?) with o < d + 2¢ + 1 — d/2. This can be seen from

el = )42 [ Gaw) P+ lwlde
<e [ (ol 1+ ol
< c/ (1+7)"47 (1 +r2)rdtdr
0

1 oo
< C/ T74T+2a+d71dr + C/ r747+2a+d71d7,7
0 1

where we applied theorem 4.13. The first integral is bounded, since a polynomial is

integrated over a bounded domain. Thus
© 00
H(st,f”Ha(]Rd) <éE+ C/ T_4T+2a+d_1d7“ —¢4c |:T—4T+2a+d} e
1

Hence the norm is less than infinity if and only if « < d 42041 —d/2.

The Space Ng,,, (RY)

We now state the two main results regarding the native space for the kernel Ng,, (R?).
Both were proven in [17], following from ideas presented in [54]. A shorter, straight-
forward proof has been done by WENDLAND in [55, Theorem 3.4, Corollary 3.5]. The
main idea for the shorter proof is to introduce the space H¢(Rd) as the tensor-product
space (Hy(R?))? and apply the results of the scalar-valued case. The space Hy(R?) is the
one defined in theorem 4.10, where 1) = —Ad¢p.

Let Hy (R div) be the subspace of the divergence-free functions of Hy(R?).

Theorem 4.14. Suppose ¢ € C*(RY) N WE(R?) is a positive definite function. Define
Y =—A¢ € L1(R?) and gy, = (—AI +VVT)¢. Then, the following relation holds:

Na,, (RY) = Hy(R% div)

with identical norms. In particular, the norm on Ng (Rd) can be expressed as

2 —d/2
I91Br,,, e = @m) " [

Hence Ng,, (RY) consists of all functions f € Lo(RY) with HfHNq>d. (Re) < 00.

f 2
[E)IB

¢ |lwl3(w)

Corollary 4.15. Let 7 > d/2. Suppose ¢ satisfies (4.13) with s = 7 + 1. Define ®q;, =
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(AT + VVT)¢. Then
ﬁT(Rd; div) = N‘I’div (Rd)

with equivalent norms.

The Space Ng_ , (RY)

We define the space H,(R%; curl) to be the subspace of the curl-free functions of Hy, (R?) :=
(Hy(R%))4. The second native space of a matrix-valued kernel we are interested in is
Ns,_ ., (R%). The proof of the next result follows ideas from the proof for the divergence-

free kernel shown in [55, Theorem 3.4].

Theorem 4.16. Suppose ¢ € C*(RY) N WE(R?) is a positive definite function. Define
Y= —A¢ € L1(R?Y) and By = —VVT¢. Then, the following relation holds:

Ns,,,(RY) = Hy(RY curl)

with identical norms. In particular, the norm on Ns_,, (Rd) can be expressed as

_ [£(w)]3
I£12, (e = (2m)" %2 / )
Peun () R [|w|Zp(w)

Hence Ng,,(R?) consists of all functions £ € La(R?) with ||f||yr, [(Rd) < 00

Proof. Firstly we show that the norms are identical for every f € Fg_ (RY), i. e. f is an
element of Hy(R%; curl).
Let f = Z 1 Peuwri (- — Xj)o; be an arbitrary element of Fg_ (R9), then

||fHNq> (ray = (2) d/2/ Z =il =) w0 T (w)oupdw.
7,k=1

Using @(w) = HwH%;ﬁ\(w), {Tcu\rl(w)a = waa(w)a and the Fourier representation

N N
lx w 7ZX w
E e <I>Cur1 g e w)aj,

Jj=1 Jj=1
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allows us to compute

N
IF(w Z =i08 %)@ (002 (wwTayy) " (ww” o)
N

— l33)dw) 3 e o
Jk=1

:QZ(w) Z e~ i0xk=;)" “’a q)cuﬂ( ). (4.15)
k=1

The definition of the norm in Hy(RY) and (4.15) establish

- Hf( )H

(27‘1’ d/2/ Z i(xp— xj) w T(I’curl( )ak dw
3,k=1

= HfH?\fq)wrl(Rd)'

Since f is a general element of Fg_, (RY), we see that on Fg,_,(R?) C Hy(R% curl) both
norms are equal. Hy(R%; curl) is complete and N, (R?) is the closure of Fg_, (R?) thus

this also means Ng_, (R?Y) C Hy (R curl) with equal norms. Suppose finally, we have an

curl

f € Hy(R% curl) which is orthogonal to Ng,,, (RY), meaning in particular

0 = (f, (I’curl(' - X)a)Hw(Rd)

F(w)* ® e »
_ (27T)_d/2/ (w) Acurl(w)ae—szwdw
R4

P(w)
_ (27T)_d/2/ f(w)*w‘;Ta —szwdw
re w3
_ (27T)_d/2/ —i’g\(w)wTwaa 6—ixdew
Rd lwll3

Here we used the fact that f is curl-free, i. e. for every f € Hy(R% curl) we can find
g € H(RY)/R such that f(w) = Vg(w) = —iwgj(w).
Because of the definition of H,,(R?) = (Hy(R%))?, we have with theorem 4.10 that every
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component of f is integrable and continuous. Hence we can apply corollary 2.5 to recover
f. Thus

0= (27r)_d/2/ /f(w)*ae_ixdew =f(—x)Ta.
Rd
This proves that f is identically zero and hence H,, (R%; curl) = N, (RY). O
Finally, we now establish the relation between N, (R%) and H™(R%; curl).

Corollary 4.17. Let T > d/2. Suppose ¢ satisfies (4.13) with s =7+ 1. Define ® ¢y =
—VV7T¢. Then

HT (Rd’ Curl) thcurl ( )
with equivalent norms.

Proof. We have already proven that Ng_  (R?Y) = Hy (R curl) and the norms are equal
provided that ¢ = —Ag, cf. theorem 4.16. Note that i(w) = ||w||%$(w)
For every f € Hy (R curl) we have with (4.13) that

. £ .
160y ey = 2 [ IFCE () 4 o271
et ol
2

o an [ W)
<aem " [ TwlBow) ™

= C2||f”%{¢(Rd) < 0.

However, for every f € H” (RZ; curl) we see that

. 1 (w)] 2
€12 gy = (20) 42 / NEE g,
v (&) R [|wl||20(w)
. 1 (w)]|2 .
< (2m)~ 12 / 201 4wl dw
Mk

= Ly

—aH H7 (R<)’
which finishes the proof. ]
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5. Analytically Divergence-free
Discretization Methods for Darcy’s
Problem

We will now develop the approximation scheme for Darcy’s problem. The idea of the
method is to apply optimal recovery to solve the partial differential equation. The ap-
proximating function will be built from a combined kernel. This kernel incorporates the
divergence-free kernel introduced in section 2.4.4 to model the velocity and a general
scalar-valued kernel to represent the pressure. We then discretize Darcy’s problem with
collocation via functionals.

All in all we will derive a discretization scheme for Darcy’s problem. The method
works on arbitrary geometries, in arbitrary space dimension and can be of arbitrary order.
Furthermore, it is mesh-free and produces an analytically divergence-free solution of the
velocity part.

Our scheme will follow from the framework presented in [55], where Stokes problem has

been solved. Note that parts of this chapter can also be found in [47].

5.1. Optimal Recovery to Solve Partial Differential Equations

Generalised interpolation can be applied to recover the solution of a partial differential
equation. The ideas of interpolation with radial basis functions are extended such that
not only function values are recovered, but also certain properties. For Darcy’s problem
the velocity and the pressure are sought, but only the right hand sides f and g are known
at the collocation points.

Let H be a Hilbert space and Aq,..., Ay be linear independent functionals from the
dual space H* of H. Suppose that the values fi,..., fy are given. Then the generalised
recovery problem is to find a function s € H such that A;(s) = f; for all 1 < j < N. The
element s is called an approzimating function or generalised interpolant.

The optimal recovery problem is to find the norm-minimal function s. This means that
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5 Analytically Divergence-free Discretization Methods for Darcy’s Problem

the function s* € H is sought such that
|s*|| g = min{||s||g : s € H,\j(s) = f;j forall 1 <j < N}.

Further information about generalised interpolation and the solution of partial differential
equations by collocation can be found in [54].

We now want to establish optimal recovery for vector-valued target functions, where
the approximating function is built from matrix-valued kernels.

Since f = ®(- —y)e; belongs to N (£2), where e; is the jth unit vector, we see that the
columns of ® and, due to the symmetry of ®, its rows belong to Ng(2). Thus, we can
define \Y (®(x —y)) as the vector-valued function, which is generated by applying A with
respect to y to every column of ®, i. e. \Y(®(x —y)) := (W (®(x—y)er),..., NV (P(x —
y)en))?. The resulting vector-valued function is the Riesz representer of A in Ng(f2) in

the sense of
Af) = (£ (2(—y)))e-

Thus the following result, which is well-known in the context of scalar-valued kernels,

remains true for matrix-valued kernels [54].

Proposition 5.1. Let Q C R%. Suppose ® : R — R™ ™ is a positive definite, matriz-
valued kernel. Suppose further that \i,...,Any € Na(Q)* are linearly independent and
fi,.--, fn € R are given. Then, the problem

min{||s[| (@) s Aj(s) = f;,1 < j < N} (5.1)

has a unique solution, which has the representation
N
sv= Y A (®(- —y)). (5.2)
j=1

The coefficients o are determined via the interpolation conditions \i(sy) = fi, 1 <i < N.
Finally, we state and prove two stability results.

Corollary 5.2. Under the assumptions of proposition 5.1 and if £ is the function from
which the data stems, i. e. \j(f) = f;, we have

If = sallnve (@) < Ifllne@)-

Moreover,

Isxllae @) < [Ifllve (@)
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Proof. The first part is to show that f — sy is orthogonal to sy. This follows from

N
(f = sxsa)np@) = D ai(f = s, X (B( — y)ap©@
j=1
N
= Zaj)\j(f S)\)
j=1

where theorem 4.3 has been applied. Then the Pythagorean theorem gives

1531 ) + I = 8511300 () = IE 11300 (0

which finishes the proof. O

5.2. Native Spaces of Combined Kernels

In the previous section we provided tools for the optimal recovery of the solution of a
partial differential equation. Before we can establish the discretization method for Darcy’s
problem, we introduce combined kernels. These kernels are used to built the approximating
function. We are also interested in their native spaces.

Instead of having u for the velocity and p for the pressure separately, we introduce the
(d + 1)-dimensional combined vector v .= (u,p). To model the velocity, we will use a
divergence-free kernel. The approximating function of the pressure is built from a general
scalar-valued positive definite kernel. These two kernels are combined in one kernel to
build the approximating function for v.

Let Q C R? and ¢, : Q x © — R be positive definite kernels, where ¢ is at least twice

continuously differentiable. Then, we define the combined kernel

& : R? — REHDx(d+1) b — (q)div 0) =: By ® Y,
0 9

where ®g4;, := (—AI + VVT)¢ is the matrix-valued kernel introduced in section 2.4.4.
If O = R? and if ¢ and ¢ are translation invariant, then the following result establishes

the native space of >.

Theorem 5.3. Suppose ¢ € C?(RY) N WE(R?) is a positive definite function. Define
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D4, = (AT +VVD)¢. Let d=>y, @ Y with a positive definite function 1 € C(R?) N
L1(RY). Then,
N&) (Rd) - N‘Pdiv (Rd) X Nw (Rd)

with norm for f = (fy, fp) given by

Il ey + Mol ey
S [Fa(w)l5 1y
R4

lwl3o(w)  P(w)
Proof. First of all we show that the matrix-valued function d is positive definite in the

2
13 gy

dw.

sense of definition 2.6. Since ®g;, and v are positive definite functions, the kernel o is
continuous, even and symmetric in its arguments. Furthermore, P is symmetric in the
usual matrix sense, due to its structure and the symmetry of ®4;,. Finally, for a; =

(B 7;)T € R4*1, where not all a; are vanishing and pair-wise distinct x; € RY, we have

~ P iv
Y ale(x;—xp)ar= > aof ( 3 Z) (xj — xp) o

J,k=1 J,k=1

N N
= > 8] Bai(x; —x6)Br + Y Y w(xj — xx) >0

J,k=1 J,k=1

since ®q;, and v are positive definite functions. Hence d is positive definite.
Let f = Z;V:1 (- — x;j)a; be an arbitrary fEnction in F@(Rd), where F&)(]Rd) is defined
analogues to the space Fg(R?) for the kernel ®, see section 4.2.2. Following the same idea

as above, we split the function f in f = (fy, f,) and therefore

HfH?\/’&)(Rd) = ”quJz\/q,div(Rd) + ||fp|‘/2\/w(Rd)-

Hence, on Fgz(R?) C Ng,, (R?) x Ny(R?) both norms are equal. By completion this
means in particular that Nz (R?) C Ng,, (R?) x Ny (R?) with equal norms. Now suppose
that there exists an f € Ng,, (R?) x N;(R?) which is orthogonal to Ng(R?), that is

0= (£,2(- = X)) xq,(2)xA, (B
= (fu, Paiv (- — X)/B)/\ﬂpdiv(]Rd) + 7 (fp, V(- = X)) nr, (r9)
= /GTfu<X) + 7 fp(%)

for all @ = (B,7) € R?*!. Therefore we have that f, and f, are identically zero, which
finishes the proof. O

55



5 Analytically Divergence-free Discretization Methods for Darcy’s Problem

For us, it is important that for specific functions ¢ and v these native spaces coincide

with Sobolev-like spaces with equivalent norms.

Corollary 5.4. Assume ¢ generates H"TY(R?) and v generates HP(R?). Then,
Nz(RY) = H(RY div) x HP(RY).

Proof. This follows directly from Ng(R?) = N, (R?) x Ny(R?) and corollary 4.15 for
the velocity part and corollary 4.11 for the pressure. O

5.3. The Approximation Scheme

All tools necessary to establish the analytically divergence-free discretization method for
Darcy’s problem are now available. Thus we can apply optimal recovery to approximate
the solution of Darcy’s problem.

Firstly, we establish functionals to discretise Darcy’s problem

u+ KVp=f in Q, (5.3)
V-ou=0 in €, (5.4)
u-n=g-n on 0N (5.5)

by collocation. Due to the choice of the combined kernel ;I;, we have that the approximation
of the velocity u is analytically divergence-free. Hence we only need to employ functionals
for (5.3) and (5.5) while (5.4) is automatically satisfied.

We pick discretization points X = {x1,...,xny} C  in the interior and Y = {y1,...,
ym} € 09 on the boundary. For v := (u,p) we define the functionals

>\§.i) (v) = ui(x;) + (K'Vp)i(x;)

d
= ui(x)) + Y Kin(x))0hp(x;),  1<i<d, 1<j<N=N;  (56)
k=1
d+1 d
>\§- () = > ur(yi)na(y;), 1<j <M =: Ny (5.7)

k=1
With these functionals the approximating function according to proposition 5.1 becomes
S O RCRCITE
sv(x) =) Y oAV (B(x - y)), (5.8)

k=1 j=1

where sy = (su, sp). Here, s, approximates the velocity u and s, the pressure p.
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The coefficients of the approximating function are determined via the collocation con-
ditions

A (s0) = A (v) = filxy) 1<i<d 1Sj<N  (59)

N (sy) = A () = g(y;) - nyy) 1<j<M. (5.10)

The following result ensures that the so defined functionals are linearly independent

which is the main assumption in lemma 5.1.

Theorem 5.5. Let Q C R?, with a Lipschitz boundary and K be continuous. Assume
that the generating functions ¢, : R* — R are positive definite and chosen such that
Nz (RY) = H™ (R div) x H™(R?) with 7 > d/2. Then, the approzimating function s, =
(su,sp)T from (5.8) is well-defined and uniquely determined by the collocation conditions
(5.9) and (5.10). It satisfies Lsy(x;) = f(x;) with Lv := u+ KVp and sy(y;) - n(y;) =
g(y;) - n(y;). Furthermore, we have V - s, = 0 in R%.

Proof. Since 741 > d/2+1, we have ¢, € C2(R%) and thus ® € C(R%). Hence, the kernel
is sufficiently smooth. Since N; & is areproducing kernel Hilbert space, the point evaluation
functionals indeed belong to its dual, cf. theorem 4.2 and corollary 5.4. Furthermore,
the Sobolev embedding theorem and the smoothness of the boundary guaranty that the
functions u, p and n are sufficiently smooth. Therefore all functionals indeed belong to
the dual of the native space. Thus, we only have to show that the functionals are linearly
independent over Ng(RY) = H™ (R% div) x H™H(RY).

Let us assume that there are coefficients ag-k) € R such that

d+1 Ng

S5 a¥ A (y) =0 (5.11)

k=1 j=1

for all v € NV, <iﬂRd). We will now pick a specific test function « for every index pair (i, ¢).
First of all we choose « to have compact support such that the only data site contained
in the support of this specific v is x;, for 1 < £ < d, or y;, for / = d + 1. Hence, in the

first case, (5.11) reduces to

d d
0= oA"Y () = > o (L)),
k=1 k=1
Since we have not yet exploited the second index ¢, we can now modify ~ such that
(0)

(L7)k(xs) = Ok, which gives a; = 0. Since we can do the same in the case { = d + 1,
we see that all coefficients have to be zero, showing that the functionals are linearly

independent. O
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5 Analytically Divergence-free Discretization Methods for Darcy’s Problem

This establishes the desired approximation scheme for Darcy’s problem.

5.4. The Two Dimensional Scheme

To clarify the approximation scheme introduced in the previous section, we now give details
about the two dimensional case. Let X = {x1,...,xy} C Qand Y = {y1,...,ym} C 9Q
be the collocation points, where Q C R2.

First of all we need to work out the combined kernel explicitly, i. e.

N —02¢ 0O 0
®=1| 01n¢p -0n¢ 0
0 0 ¥

for sufficiently smooth, positive definite functions ¢, ¥ : R — R. For instance, Wendland
functions could be used for ¢ and .

The next step is to work out the functionals defined in the previous section, here we
denote the inner product by simply adding a ’-’ at the end of the functional. Furthermore,
the symbol dx refers to the point-evaluation functional at the point x. Then we can denote

the functionals for Darcy’s problem via

Ox.
A\ 0 1<j<N
J ’ =)=
Kll(xj)éxj o 61 + Klg(Xj)(sx]. o 82
0
)\52> — 5Xj R 1 <] S N
Klg(Xj)éxj ¢} 61 + K22(Xj)5xj o 82
ni
A —5 oy |- 1<i<M
i Oy 2| S M
0
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5 Analytically Divergence-free Discretization Methods for Darcy’s Problem

The approximating function is given by applying these functionals to ®. Thus

al M
SviX) = a(.l) (.1)’ b . 06(2) (2): T L a(g) (?))7 ~ o
(0 = oY (B0 =) Y (B )+ 3P (@)

=
N —322¢(' - Xj)
= Z a§-1) O126(- — x;)
i=1 —K11(x;)019(- — x5) — K12(x;) 029 (- — ;)
D2(- — x;)
+> o) —0n¢(- —x;)
=1 —K12(x5) 019 (- — x5) — Kaa(x5) (- — x;)

M —n1(y;)0220(- —y;) + n2(y;)0120(- — y;)
T Z a§3) ni (y]‘)612¢(' -yj) — ng(yj)811¢(. _ Yj)
=1 .

We have the collocation conditions )\gl) (sv) = f1(x5), Agz)(sv) = fa(x;) and )\53) (sy) =
9(yi) -n(y;), where 1 < 7 < N and 1 <i < M. To work out the ag.k) and with it the

approximating function, we need to solve the following linear system of equations

a® £,
A 0(2) — f2 y

where the symmetric (2N + M) x (2N + M)-matrix

AL 412) g@13)
A=1421 422 423
ABL  AB2)  AB3)

consists of nine sub-matrices. The values of those sub-matrices are given by simply apply-

ing the functionals twice to the kernel in all possible combinations. Thus the sub-matrices
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5 Analytically Divergence-free Discretization Methods for Darcy’s Problem

are given by

(A1) = AP (Aﬁ”’y@(x - Y))) = —0n¢(xi — x;) — K11 (%) K11(x;) 0119 (% — x;)
— (K (xi) Kia(x5) + Kia(xi) K11 (x5)) 0129 (% — %) — Kia(x) K12(x5) 9229 (%i — ;)
(AM2);5 = (ACD) 5 = AD* (AP (@ (x— )
= 0120 (xi — x;5) — Ko (%) K11 (%) 001 (xi — x;) — (Ki2(xi) K12(%;)
+ Koo (xi) K11(%;5)) 01290 (xi — x;) — Koo (i) K12(%;) 0221 (% — X;)
(A2D); = AP (AP (@(x — y)) ) = ~Dn6(xi = x;) — K1z (%) K12(x)) 011 (x; — ;)
— (Ki2(xi) Ka2(x;) + Kaa(x;) K12(x;)) 0129 (%i — X;5) — Koz (%) K22(x;) 0229 (x; — x;),

where 1 < 1,7 < N,

(A(I,B)) ) (A(3 1)) _ )\( ), ()\5 ‘1, )
= —n1(yi)0220(y: — X;) + na(y:)0120(yi — %)
(A = (AGD),; = AP ()‘5 (B(x )
=n1(y:)0120(yi — x;5) — n2(yi)On1(yi — X;),

where 1 <t < N, 1 <5< M and

(A(3’3)) /\(3) <)\§ )’y(‘I>(x — y))) = —n1(yi)ni(y;)029(yi — y;)

+n1(yi)n2(y;)0120(y: — y;5) + n1(y;)n2(yi)0120(yi — ;) — n2(yi)n2(y;)0110(yi — ¥;),

where 1 <1,7 < M.

With the information above, a solver for Darcy’s problem can be implemented. An
efficient solver for linear systems of equations is required. Note that the matrix A is
symmetric positive definite, but large, fully occupied and maybe ill-conditioned. The

approximated solution is given via s, for the velocity and s, for the pressure.
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6. Error Analysis

In the previous chapter the discretization scheme for Darcy’s problem has been introduced.
We now present and prove the error analysis, i. e. we want to investigate how close our
approximation is to the true solution and how well the method converges.

We will look at the difference between the true solution and the approximating function
in a Sobolev norm. We will split it into an estimate inside the domain and an estimate
on the boundary. Both will be bounded separately. The main result is then obtained by
combining these two results. The idea of the proof is to apply sampling inequalities to the
regularity result of Darcy’s problem. An extension from the domain to R? is required to
enable us to apply the norm equivalence between the Sobolev space and the native space.
In the native space we can use the stability results.

Again, we follow the framework presented in [55]. Our error analysis can also be found
in [47].

6.1. Extension Operator

Since we mainly work on bounded domains, but use globally defined kernels we need to
extend our local functions to global ones. The extension operator enables us to apply

results from the globally defined native space. The following result is taken from [55].

Proposition 6.1. Let d = 2,3. Let 7,p > 0 and let Q C R be a simply-connected domain
with C*' boundary, where k > 7 is an integer. Then there exists a continuous operator
E = (Eqiv, Es) : H(Q;div) x HP(Q) — H™(R% div) x HP(R?) such that Ev|q = v]q for
all v.=(u,p) € H™(Q;div) x HP(Q) and

Hﬁdiquﬁf(Rd) + HESPHHP(Rd) <c (HuHHT(Q) + HpHHP(Q)) .

The extension operator for the pressure part is the standard Stein extension operator
Eg, see [48].
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6 Error Analysis

6.2. Error Estimates

Our error analysis is mainly based on a ’shift’-type theorem for the analytical solution of
Darcy’s problem which is obtained from a corresponding result for elliptic problems with
Neumann boundary conditions, see sections 3.4 and 3.5.

Using the notation v = (u,p) and Lv := u+ K Vp, the estimate from theorem 3.2 can

be rewritten in the form

Hunﬁ“(Q) + Hp||W7’,7+2(Q)/R <c (HLV||W77]+1(Q) + [[u- n”WﬁH*l/r(@Q))

forall 0 <np <7 andall 1 <r<oo. Wewill use this for v — s instead of v, i. e.

[u — SunQH(Q) +[lp — SPHW;H?(Q)/R

< ¢ (I = 80l gy + 100 = ) -1l rei1re g ) - (6.1)

To estimate the two terms on the right hand side of the last equation, we first observe

that we have

(Lv — Lsy)(x;) = 0, 1<j <N,
(u-s) nly) = 0, 1<j<M

Hence, we are dealing with smooth functions, which have a large number of zeros. In
the first case we have functions defined on a bounded region of R?, while in the second
case we are dealing with functions on a manifold. For such functions, we can apply the so
called sampling inequalities. To state them, we have to introduce a measure for the data
density on Q and 0f). In the first case we shall use the fill distance defined by

hx g :=sup min [|x — X,|2.
@ i= sup i x ;|

We start by estimating the first norm on the right hand side of (6.1). After this we will

give the estimate for the second norm and finish this chapter with the main result.

6.2.1. Error Estimates Inside the Domain

The following result is the first sampling inequality. It comes from [4, 41, 42], and in its

vector-valued form for fractional order Sobolev spaces from [55].

Lemma 6.2. Let 1 <r <oo, and 7,n € R with7>d/2 and 0 <n<71—-d(1/2—-1/r)4.
Suppose Q@ C R? is a bounded domain having a Lipschitz boundary. Let X C Q be a
discrete set with fill distance hx o sufficiently small. Assume that u € H™(Q) satisfies
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6 Error Analysis

u|x = 0. Then we also have
—n—d(1/2—1
Iulwy @) < e g™ ullae o).

Let Q have a C*! boundary, k € N. Note that the boundary is also Lipschitz, i. e. C%1,
since the first derivative is bounded and continuous.

With lemma 2.2 (1) we have that, if u € H7(Q) then we have for 2 < r < oo that
ue€ W;_d/ﬂd/r(ﬁ). Hence u € W7 (Q), where 0 < p <7 —d(1/2—1/r);. ff 1 <7 <2
we have with lemma 2.2 (2) that u € W7 (), where 0 < p < 7.

Now we can prove the following estimate.

Proposition 6.3. Let Q be a bounded, simply connected, open subset of R* with a CI71+1:1
boundary 02 where d = 2,3. Let permeability tensor K = K;; satisfy (3.6), K = KT and
Kij € HY(Q). Assume that the data satisfy f € H™1(Q) and g € H™T1/2(0Q). Suppose
that the kernel ® is chosen such that N;I;(Rd) = H7(R% div) x H™(RY) with T > d/2.
Then, for 0 <n<7—d(1/2—-1/r);+ —1 and for 1 <r < co we have

T—n—1-d(1/2—1/r
12V = Lsullyres oy < e 27 (el @) + g - Bllar-1200 ) -

Proof. First of all, we have with lemma 6.2 that

1LV = Lsylly1 gy < chia 200 Ly — Ley |10y,

To bound the norm we first extend the function v to Ev = (Egiyu, Egp) € HT(R%; div)
xH T“(Rd) and note that the generalised interpolant sy coincides with sgy on 2. Further-
more, if we pick the representer p for the pressure such that ||p|| g-+1(q) > [|plla-+1(Q)/r;

i.e. c=01n (2.1), and use the properties of the extension operator then we have
|Lv — Lsy|la-(q) = [[ILEV — Lsgv |l (0),

cf. proposition 6.1. Applying the triangle inequality to the definition of the operator L
leads to the following bound

|Lv = Lsv|a- o) < [Eava—sg_ lar@) + [K(VEsp — Vsgg)lu- o
< [[Bavu—sg lnr@) +cllEsp — spgpl ar+1(a),

where we used the fact that the permeability tensor is bounded in H™+1(€2). After applying
the properties of the extension operator, we can use the norm equivalence to the native

space. In the native space we can apply the stability result given in corollary 5.2. Then,
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we go back to the Sobolev space. Thus

1LV = Lsvllmr @) < |Bava =g, o - (e + cllBsp = sEpll o ey
< c|Ev = sgvlln; (ra)
< c|[Ev|ar ray
< ¢ (1 Eatllgge gy + | Espl s+ )
< c(lullar@ + el 1)

< ¢ (Il + g Dla1/200) )

where theorem 3.2 has been applied in the last step. O

6.2.2. Error Estimates on the Boundary

To introduce a measure on the boundary, we follow ideas from [21, 55]. Let 02 = U}I:l‘/},

where V; C 0f) are relatively open sets. Furthermore,
(7K B — ija

where ¢, is a C**-diffeomorphism and B = B(0, 1) denotes the unit ball in R4~1. We will
measure the density of the points Y on 92 by introducing

hy,o0 == max, hr; B
with T} = cpj_l(Y NV;) € B analogously to the definition of the fill distance. We assume
that the atlas Vj is fixed, i. e. we do not have to worry about the dependence of hy go on
the atlas.

The standard trace theorem establishes that if u € H™(Q) then u € H™1/2(9Q), cf.
[57, Theorem 8.7]. If 7 > d/2, then this guarantees, in combination with the Sobolev
embedding theorem, that v is continuous on the boundary 0f).

To find the estimate on the boundary, we need a similar result as lemma 6.2 on manifolds.
This has been done in [27] for the special case of 99 being the sphere in R? and in a more
general context in [21]. We give an extended version which also deals with non-integer

orders 7, its proof can be found in [55].

Lemma 6.4. Let 1 <7 < oo and T = k+ s > d/2. Let Q@ C R? be a bounded domain
having a C** smooth boundary. Assume that Y C 0Q with hypq sufficiently small.
Then there is a constant ¢ > 0 such that for all u € H™(Q) with uly = 0 we have for
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0<n<7-1/2—(d—-1)(1/2—-1/r)+ that

—1/2—n—(d—1)(1/2—1
lullwaon) < chygg ™"V u)lgs
Now, the same procedure as the one employed in the proof of proposition 6.3 leads to

the following result.

Proposition 6.5. Let d = 2,3. Assume that Q, K and f,g satisfy the smoothness as-
sumptions of proposition 6.3. Suppose that the kernel ® is chosen such that N@(Rd) =
H™ (R div) x H™Y(R?) with 7 > d/2. Then,

H(u - Su) ' n”anLlil/T(aQ)

< e TR0 (e o + gl vy

with ¢ > 0 independent of u and sy, where 1 <r < oo and0<n<1t—-1/2—(d—1)(1/2—
1/r)y —1+1/r.
Proof. First of all, since the boundary of © is CI71H11 we can see, with the embedding
theorem for Holder spaces, that the boundary is also C%*, where k € Ny, 0 < s < 1 such
that k 4+ s =7+ 1, cf. [3, Theorem 8.6].

The domain Q has a C[71*1! boundary, therefore the normals n € CI71'1(9Q) exist
almost everywhere and can be extended to a vector field n € CI711(Q) with 11|pq = n, cf.
22, section 1.1]. This means that n € HI71(9Q), since its derivatives up to order [] are

bounded and continuous and

P —— Z | 1pen i< e > [ axes

al<[T] al<[T]

Similarly, we can see that n € HI7I(Q).
This enables us to apply lemma 6.4 to see that

1-1/2+1/r—(d—1)(1/2— 1/7«)+H(

||(u - Su) n”W”H-l 1/T(8Q) < ChY@Q -5 ) : ﬁHHT(Q)

Then

[(0 = su) -0l g ) < [Agr@)lu—sullar (@) < cllu—sulla-(o

and, according to the proof of proposition 6.3, also

1t = sullerr(@) < ¢ (IEller@) + llg - 0l 17200 )

our proof is complete. O
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6.2.3. Main Result

Combining the results of the propositions 6.3 and 6.5 enables us to bound (6.1). Thus we

have proven our main result.

Theorem 6.6. Let Q be a bounded, simply connected, open subset of R?, d = 2,3, with a
CITIHLL poundary 9. Suppose that ® is chosen such that its native space 1s ./\/'&,(]Rd) =
H"™(R% div) x H™(RY) and the permeability tensor K = Kij satisfies (3.6), K = KT
and K;; € H™TY(Q). Furthermore, assume that the data satisfy £ € H™1(Q) and g €
H™t1/2(0Q), where T > d/2. Then, the error between the true solution and the collocation

approzimation can be bounded by

lu— SuHWgH(Q) +lp — SpHW;?JrQ(Q)/R

T—n—1-d(1/2—1/r T—n—1-1/241/r—(d-1)(1/2—1/r
< o (g AR T D0/

% (Il + g 0l ge-172(00) )

forl<r<ooand0<n<7-d1/2—-1/r)y —1. Ifr > 2 and h = hx o = hyaq this

reduces to

Hu—Suuwngl(Q)+”p_spr;ﬂ+2(Q)/R S ChT_n_l_d(l/z_l/r) (HfHHT(Q) + Hg ' n”H"'_l/Q(aQ)) :

Note that the restriction of the dimension to d = 2,3 is only necessary due to the fact
that the extension operator is only proven in those dimensions.

The proven convergence rates correspond to the expected rates for the solution of scalar-
valued problems. Furthermore, the error estimates also hold if one of the kernels ¢ and ¥

is smoother than the other. The result always depends on the rougher kernel.
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7. Error Estimates for Target Functions
Outside the Native Space

In the last chapter the error analysis of the approximation scheme for Darcy’s problem has
been done. Unfortunately, these error estimates only hold for target functions within the
associated native space, i. e. the target function must satisfy smoothness conditions. We
will now present a new error analysis of the collocation methods to solve Darcy’s problem
presented in chapter 5. We will extend the results of chapter 6 to the case that the true
solution is not in the native space. In practice, these error estimates allow a more flexible
choice of the underlying basis functions. For given basis functions, the error estimates
apply to a larger class of target functions. However, there are still some smoothness
requirements on the target function depending on the space dimension d.

Recently FUSELIER has proven error estimates for divergence-free and curl-free matrix-
valued radial basis function interpolants, where the target function is rougher than the
interpolant, see [17, 20]. We will follow his ideas to present new error estimates for our
approximation scheme.

The main idea is to apply band-limited functions to approximate the true solution. Thus
we will firstly introduce these functions, their properties and the function spaces of band-
limited functions. Then we will study their interpolation and approximation properties.
Finally, we will combine all results to prove the Sobolev-type approximation rates for

target functions outside the native space.

7.1. Band-limited Functions and Function Spaces

We now introduce band-limited functions and establish some of their attributes and the
associated spaces.

Let 0 > 0 and B(0, o) denote the d-dimensional ball with centre 0 and radius o. A band-
limited function is a function f, in Ly(R?), where the support of the Fourier transform
supp?; is compact. We also require that the support of the Fourier transform is a subset
of B(0,0). Then, the space of band-limited functions with band-width o is

B? = {f € Lg(Rd) : suppj?g B(O,J)}.
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7 Error Estimates for Target Functions Outside the Native Space

All functions in B are analytic and therefore infinitely many times differentiable.

The concept of band-limited functions can be extended to vector-valued functions.
These are also analytic, since their components are analytic. We are interested in two
different kinds of vector-valued functions: Divergence-free and curl-free band-limited func-

tions. We define the following spaces:

B = {f c LQ(Rd) : Supp/f - B(O,G)} s

» y 2
B .= feB":/ de<oo ,
re ||w|l3

B, = {f € B wlf(w) = o} ,

BT = {f € B? : There exists g € Ly(RY) such that ?(w) = —iwﬁ(w)} .
Due to their smoothness, band-limited functions are in most native spaces. However,

we are in particular interested in the space H™(R% div) x HP(R?).

Corollary 7.1. Let o = (ou,0p) > 1. If the norm is defined by ”V"”Eggxs% =
||VU||fIT(Rd)xHP(Rd) for all T,p > d/2, then the band-limited space ggl‘; x B°? is a sub-
space of H™(R%: div) x HP(RY).

Proof. Let vo = (ug,ps) € B32 x B7?. We will omit the second sub-index and write u,
and p, respectively. This should cause no confusion.

By definition, every band-limited function is in Ls(R?). Moreover, they are continuous,
due to the fact that they are analytic. Thus we only need to show that the norm of v, in
the space H™(R% div) x H?(RY) is finite.

Using fact that Nz (RY) = H™(R?; div) x H?(R?%) and the norm equivalence, see corollary
5.4, we see that

[To (w)]13

2 — —d/2 2\T ~ 2 2\p
1o g o) = (27) [Rd FR 0 ol + [ (@) + ol dw]

- [0, (w)]|3 r N
= (2m) 742 [ / W(l + [Jw|[3)" dew + / Do (W) (1 + [[w][3) dw |,
5
lwll2<ou lwll2<op

where we used the fact that the Fourier transform is compactly supported. For all ||w|2 <
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o we have (1 + |[|w||3)? < (1+¢?)?. Thus

A~ 2
Ug (W R
/ Md( y / Do ( )’2d
lwlla<oa  @ll2 llwll2<op

< e[ 8B, . [ ]

el

2 —d/2
||va||ﬁT(Rd)><Hp(Rd) < 0(27T) /

The definition of ggf{, gives us that

=~ 2
[ ey, o
R ”‘*’HQ

and therefore that the first integral is finite. Since p € Ly(R?%) we can apply Plancharel’s

theorem, see [54, Corollary 5.25]. Therefore we can conclude

/R o w) P = 2125 3ty = (7)Y 9o 2, gy

i. e. the second integral is also finite. O

Let 7> (3> 0 and o > 1. Then we have
A+ w37 < (14027 <27 0520

for all w with ||wl||2 < 0. Hence, for every band-limited function f, € B we have

1o I ray = (2m) =2 /|| BB el
wl2<o

= (27f)d/2/“ - I (@) 131+ [w]3)7 (1 + [[w]|3)" P dw
w|2<o

< QTfﬂUQ(Tfﬁ)HfUH%IB(Rd), (7.1)

This inequality is called the Bernstein inequality.

7.2. Band-limited Interpolation and Approximation

We now review and establish certain interpolation and approximation results of band-
limited functions.

The distance between an element y of a space ) and a subspace V of ) is defined by

disty(y, V) = inf [ly —v]y.
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The next result is central for those following. We only state it, its proof can be found
in [40].

Proposition 7.2. Let ) be a (possibly complezx) Banach space, V be a subspace of Y, and
Z* be a finite dimensional subspace of Y*, the dual of V. If for every \* € Z* and some
6 > 1, B independent of \*,

A [y < BIA P llv,

then fory € Y there exists v € V such that v interpolates y on Z*; that is, \*(y) = A\*(v)
for all \* € Z*. In addition, v approximates y in the sense that

ly —vlly < (1+26)disty(y, V).

The following lemma was proven by FUSELIER in [20, Lemma 1]. It shows that every
f € H(R?% div) can be approximated by a band-limited function f, € Bdlv We give a

slightly extended version, since we need it for functions in H”(R?; div) x H?(R%).

Lemma 7.3. Let 7 > (3 > 0 and 0 > 0. For every f € ﬁT(Rd;div) exists a function
g, € BY, with
If — ga”ﬁB(Rd) < Uﬁ_THf”ﬁr(Rd)-

Moreover, for every f € H™(R?) exists a function g, € B® with

1f = 9ollzo@ay < 07N Fll e may-

Proof. Let x, be the characteristic function of the ball B(0, o). We define g, by g, := [
Then we have that g, = f * )v(a’ and therefore 0;g8, = 0;f * )v(m cf. theorem 2.4. Thus
divg, = 0, since f is divergence-free.

The definition of g, implies that f— g, is zero inside the ball B(0, ). Therefore

/f_/\a
O I ER I
2

:(27r)—d/2/ ||f( )||2( —i—HwH%)BHdw
lwizze  lwll3

- f(w T -7
S MR 11 ey 11-+ ol
w (o 2

The assumption 7 > 3 yields

1 1

1 2T = < <
S O P (e A i
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for all w € R? with ||w||2 > o. Applying the inequality above enables us to bound the

norm by

16~ o3 gy < 200202 [ IEIE (1 o2y

|wl||2>0 HwHQ
<o?P|f|1%, (R4)"
In the last step we used the fact that the integrand is positive, i. e. the integral can be
bounded by an integral over all R?. Taking the square roots proves the first statement.
The second part can be shown with similar arguments. We define g, by g, := fxa.
With (7.2) we can conclude that

1 = Goll2s sy = (2m) =72 / =3 @)1+ [w]3) deo
—en 2 [ @R w7 el
lwll2>0

<m0 [ ()1 ) de

wll2=o

= J2(ﬁ_T)”fH%IT(Rd)'

Taking the square roots finishes the proof. O

Note that the first statement of the previous lemma would also hold for curl-free func-
tions.

The following lemma stems from lemma 2 in [20], but only the case of the divergence-
free functions was proven there. We give the proof for the curl-free case, which is following
the proof of the divergence-free case.

The separation radius of the discrete set X = {x1,...,xy} is

1
qx = ifﬁggHXj — Xg|l2-

From now on, we will assume that o is sufficiently large, such that o > qu’ where C is as
n (4.5) or (4.7).

Lemma 7.4. Let d > 1. Let g = Z;\le ﬁgiv(‘ - Xj)oj or g = Zjvzl iEguﬂ(. - Xj)ay,
T > d/2, respectively and define g, by 8, = X, where X, is the characteristic function
of the ball B(0,0). Then, there exists a constant ¢ > 0, which is independent of the discrete
set X = {x1,...,xn} and the aj’s, such that for o = ¢/qx the following inequality holds:

1
I, =g — go’Hﬁ‘r(Rd) < §Hg”ﬁr(Rd)~
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7 Error Estimates for Target Functions Outside the Native Space

Proof. Using the equality g,(w) = g(w) for all w € B(0,0) we have that

—

— 2
Ig — (27T)d/2/ ”(g ||g0|'|)2(w)‘|2(1 + Hw”%)7+1dw
R4 2

:(27T)—d/2/ o ||g( )||2(1+” || )T+1dw

el

A change of variables w = ocw leads to

o~ 2
oW
;= (27T)_d/20d/ M(l +0?|w|3) ™ dw.
lwl|3>1 HUWHZ

—

Using the properties of the Fourier transform and the definition of the kernel K (W), we

can compute the Fourier transform of g, see section 2.3 and (4.6). Thus

N
Bw) = ww (14 [w]}) Y e v
J=1

Then the ¢5-norm of the Fourier transform is

N
= —i(xg—x;)Tw T T
IB(@)13 = lwl3(1+ [|lw]3) 2D Y~ e walww! ay. (7.3)
jk=1
Substituting cw for w leads to the identity
N ‘ ;
I? = od+2(27r)d/2/ Z e~ o) “’aijwTak(l + 0?|w|2) " Vdw.
wllZ>1 ;=g

The idea is to bound (14-02||w||3)~ "1 such that we can reformulate the right hand side
to give a bound of I, in terms of Hg||ﬁT(Rd) on the scaled point set 0.X. Since ||w|2 > 1,
we have 02 < 2 + o?||w|%. Adding o?||w|? and dividing both sides of the inequality by
o?(1+ [|w]3)(1 + o?||w]|3) leads to the equivalent inequality

2t
L+ o2l ~ o 1+ [|lw|3

Raising this inequality to the (7 + 1)th power leads to the bound

1 27+1 1

< . 7.4
0+ P2 = o2 (1 4 w2 74

If we define ~ := Z;VZI ajeix;“", then we can write v*ww’y = (y*w)? > 0. Therefore the
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7 Error Estimates for Target Functions Outside the Native Space

integrand is positive and I2 is less than the integral over R?. We then see with (7.4) that

IQ <Ud 2727+1 d/2/ Z e—z(xk x;)T UwaTwaak( +HwH ) T+1)dw
w”2>1]k 1

<o d— 272T+1(2ﬂ_ d/2/ Z e —i(xp—x;)T crwaTww (1+Hw|| ) (‘r+1)akdw

J,k=1
Multiplying the Fourier transform ICcurl( w) = wwl (1 + |jw|3)~"+Y with
T
1= (L w3y
lwll3

gives

1 T+1
WT (1 + 0]~ = weTwwT (1 + w22+ L 1«l2)™

w3
= (w14 o)) (e 4 oy ) D
2
K ()Rl
Therefore

The properties of the Rayleigh-quotient establish that for every matrix A and every vector

x # 0 we have that Ay < X:Ax < Amax- Let Ayx 4 be the maximal eigenvalue of the
matrix (Asx)ij = Kcurl(axl —0x;), 1 <i,j < N. Applying the definition of the inner
product in H7(R%) and the reproducing property leads to

Ig < O_d—27' 27’+1

-

* — 2\7+1
I e I e P
wii2

e
Il

Js 1 Rd

— O_d—2T2T+1

E

( z:—url(' - Oxk)ak’ ICZ:—url( UXJ)QJ)

1 HT(]Rd)

e
Il

j7
d 2T27’+1 Z aT’C
7,k=1

< o2 A x alledf3,

curl (ij - ka)ak
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T=(ad, .. . ak).

We now bound ||a||2 in terms of ||g|]ﬁT(Rd) by using a lower bound of the smallest

where o

eigenvalue of the block matrix Ax, where (Ax);; = I%Zuﬂ(xi —x;) forall 1 <i,57 < N.
After this we establish a bound for A;x 4, which will finish the proof.
The lower bound of the smallest eigenvalue of Ax is given by (4.8) in the form cdqQT d<

Amin(Ax). With (7.3) and following the same idea as above we can conclude

. g .
I8l e, = 20 [ BB pgyreia
ol

= (2my [ 3 et g T a1+ w3 d
7,k=1

= Z aT,Ccurl ) (277

7,k=1

=alAxa.

We then have

d
cag?? el < gl

and therefore

el

el < e g * el oy

All in all we obtain the bound

Ig < Ud7272T+1AaX,AC,; qsl( 2THg||HT(Rd)

where A;x 4 denotes the maximal eigenvalue of A,x. Since the set 0.X has the separation

radius gyx = ogx, we will now show that we can choose o such that A,x 4 is uniformly
bounded.

Let ¢ = (€T, ... €}) € RN be the unit eigenvector of A,x € RIV*IN associated with
Asxaandlet §; € R< be the jth d-components of €. We have ICcurl( x) = a(x)I —b(x)xxT
i e. ICcuﬂ( ) =0, cf. (4.9) and (4.10). In combination with the definition of A,x and the

triangle inequality we have the bound

O’XA = £ AUXE < Z ET,Ccurl UXj - O-Xk)gk < Z ’E?Izgurl(o-xj - ka)£k|'
Jik=1 J#k

For every symmetric matrix A and vector x we have

143 = x" AT Ax < Anax (AT A) x5 = Amax (A4)[|13,
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7 Error Estimates for Target Functions Outside the Native Space

i e. [[Ax[l2 < [Amax(A4)|[Ix]l2. Since £ is a unit vector, we have ||£;[l2 < 1. Applying this
and the Cauchy-Schwarz inequality leads to

Aox,a <D NNl Ko (0%, — ox1)€ll2

7k
< . _ -
< Y1 Iz, (0% — 0% €l
i#k
< - -
> Z |A;qml (oxj — oxy)
i#k
<Y Aralox; — oxy),
i#k
where Az, denotes the maximal eigenvalue of IEgurl and A/NXT,d is the upper bound of A,

’CZurl
which is defined in (4.12).
In [37, Equation 4.11], the following bound has been proven

o
D flllxs = xall2) <34 mT Ry
J#k m=1

curl

where f is a scalar-valued function on R% and
57 = 500 { | F(Il12)] - max < xll2 < (m -+ ax }-

For f:: /N\ﬂd the supremum is k3 am = /NXﬂd(quX), since /N\T,d is positive and decreasing
for oqx > v — 1/2. To establish the lower bound for the eigenvalue, we had to assume
that o > q%, i.e. ogx > C. With C > 1 for all d > 1 we have oqx > 1. Since /N\r,d is

decreasing, A, 4(mogx) < K77d(m). In combination we can conclude

Apx.a < 3¢ Z m@ A, g(mogx)

m=1

<31 " mTAL g (m).

m=1

The ratio test gives that the series is convergent, since Kﬂd is decreasing. Therefore it can
be bounded by a constant Cy;, depending on d and 7 only. From this bound it follows
that

Ig g 27—"_16;10({77(0'(]X)d_27—||g||2~-r(Rd)

Now we choose ogx = ¢ large enough that the factor in front of HgH%T (&) is less than
1/4. Taking the square roots finishes the proof. O
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7 Error Estimates for Target Functions Outside the Native Space

Let © C R? with a C"I*11 boundary and denote the normals of Q by n. Let X =
{x1,...,xy} € Qand Y = {y1,...,ym} € 09 be discrete sets. As in the previous
chapter, we combine the velocity and pressure in a vector v = (u,p). Again, we describe
Darcy’s problem with the operator Lv := u+ K'Vp, where K;; € HP(R?) for all 1 <4, j <
d.

We now state and prove the main result of this section, which is central for the proof of
the error estimate. It guarantees the existence of a band-limited function, which approxi-

mates the true solution of Darcy’s problem and also gives a bound for the error.

Theorem 7.5. Let 7, p, t, v € R with 7 > d/2, p > d/2+ 1 and t,r > 0. Given
v = (u,p) € H™(R% div) x H?(R%) and discrete point sets X and Y with separation radius

q := qxuy, then there exists a function vg € BNgl‘:, x B such that
LV|X=LVU|X, u-n|y:ug-n|y
and

v — V‘THﬁT(Rd)xHﬂ(Rd) <5 diStﬁT(Rd;div)xHﬂ(Rd)(v’ By, x B°?)
_ _ /
<5 (Uu2tHuH%IT+t(Rd) T 2THPH§{p+r(Rd)) :
Proof. The main idea for proving this statement is to apply proposition 7.2 with
Y :=H"(R% div) x HP(RY), V=B x B
and Z* := span{Z% U Z3 } with

Z% = {)\(v) = aTu(x) + o’ K(x)Vp(x): x€ X, v=(wp) €V ac Rd}

Zy ={A(v)=an(x)"u(x): x€Y, v=(u,p) €Y, a € R}.

Before applying proposition 7.2 we need to check that the assumptions are satisfied.

Corollary 5.4 shows that ) is a Hilbert space, therefore it is indeed a Banach space.
Furthermore, V is a subspace of )V, cf. corollary 7.1.

Due to the fact that Z* is generated by a finite number of elements it is indeed finite
dimensional. Every A € Z* is obviously linear. Since ) is a reproducing kernel Hilbert
space, the point evaluation functionals are in J*, see theorem 4.2. Furthermore, corollary
2.1 gives that for every v € ), u is continuous and p is at least once continuous differen-
tiable since 7 > d/2 and p > d/2 + 1, i. e. Vp is also continuous. The Sobolev embedding
theorem guarantees that K is also continuous, since p > d/2 + 1. Moreover, the normals

are continuous, since the boundary is Lipschitz. Therefore we have that all functionals
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A € Z* are indeed continuous.

We will now show that for every A € Z* we have
Ay < 2[ Al ][y~ (7.5)

First of all, we will calculate the Riesz representer and express the norms of the dual space
in terms of the original space. Then we can bound ||A||y+ and show that (7.5) holds.
Let xn4; :=y; forall 1 < j < M. Let f = (fy, fp) € Y. We pick an arbitrary element

A € Z*, which can be written as

N N+M
AE) =D af [fulx)) + Kx) V) + Y am(x;) fu(x;),
Jj=1 j=N+1

forallf:(fu,fp)Ey,whereajERdforlgjgNandajERforN<j§N+M. If
we define
o, if1<j<N
vioi=
7 lan(x)), EN<j<N+M
and ¢; := a?K(xj) then we can write the functional as A(f) := Au(fu) + Ap(fp), where

Au(fu) == Z;V:JEM ’Yiju(Xj) and Ap(fp) ::;é\fﬂ C]Tpr(Xj).
The reproducing function of the space H™(R%; div) x H?(R?) is given by

Krio(x — ) 0 )

Kt waaivy x o (re) (X, ¥) = ( 0 KP(x —y)

with the inner product

(f, g)ﬁr(Rd)XHp(Rd) = (fu, gu)ﬁr(Rd) + (fpvgp)Hp(Rd)’

i. e. we can work out the Riesz representer g, and g, separately.
The reproducing property of the kernel establishes ‘y?fu(xj) = (fu,lzgiv(- - Xj)7;)-
. N+M 7 .
Theorem 4.3 gives that A\y(fu) = (fu, Zj:t Ko (- = xj)fyj)ﬁT(Rd), i e.

N+M _ N+M ~
gu ‘= Z ICZi—iv(' - XJ)FYJ with ||)\u||%IT(Rd;div)* = Z ’Y;ICEIV(X] - Xk)FYk
j=1 Jk=1

The Riesz representer for A,(f) = S, C?Vf(xj) is given by g, = Zjvzl C;‘-FVICP(- —X;)
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with A, (f) = (f, 9p) e (ra), f- theorem 4.3. Since ¢FVp is a scalar, we have

H/\pH%[p(Rd)* = ”ng%rp(Rd)

N
= IV (I VK (g — x1) "

j’ 1

o~
Il

I
WE

STV K (x5 — x1)C).-

jk=1
Altogether we see that
N+M N
IS~ = llgally = D v Kav(x = xi)ve + Y ¢ Va Vi KP (x5 — x1)Cpe
Jk=1 Jk=1

The next step is to show that ||[A|y|v< = ||g+|ly, where 85 = (8u0, gp,o) is the Riesz
representer from the band-limited space. Since V is a subspace of )} the norms are the
same for every element in V. Again let us have a look at Ay first. Let f € ggﬁ, and gy

be defined by guo = BuXo,. This gives

Bu(w) f(w)
el

_ Za(w) f(w .
= (27) d/2/ 11()72()(1 + HWH%) 1 dw
lwl|2<ou |wl[3

Malf) = (6, 8y = (20) 7 [ (1 + ) dw

. uw(w)*f(w) .
—me [ Buet )
lwl|2<ou Hsz

_ Goo(w)* F(w .
= Gny [ Buo (@) HW) ) 412+
R4 HWHQ

= (f; gu,cr)ﬁ-r(Rd)a

where we used the fact that f vanishes outside the ball B(0,0y). This equality and the

same idea as in the proof of theorem 4.3 lead us to

H)\u|gg§H(ggg)* = H)\u|§gi“‘,”ﬁ7(Rd;div)* = ”gu,a’HﬁT(Rd)'

With a similar argumentation and g, , defined by g, s = gpxo, We see that

(fs 9p) o (ray = (f, Ip,o) o (m)
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and

[AplBoe l|gors = 1 AplBor (| oy = l9p.ollmewa)-
Altogether we have
A1 = 1A 13-
= halre [ oy + Aol 300
= gl B oy + 190020

= llgxall3-

Later we want to apply lemma 7.4 to bound ||g, — gp.ollgere) by l|9plle(ray- Before

doing so, we need to show that ||gpllpome) = ||gcur1||ﬁp_1(Rd) and |lgp — Gp,ollpemey =
|8eurt = Beurlo || 101 (Racury» WheTe Beurl = Zj'vﬂ Ko (-=%5)¢ j and gp 5, 8eurl,o are defined
by Gpo = gpXo and @. = g.urlXo Tespectively. Here, x, denotes again the characteristic
function of the ball B(0,0).

We have that Egu;{ = —VVTKP, where K is the reproducing kernel of H?(R%), see

section 4.1.2. Therefore
N
~p—1
8curl = Z ’Cé)url ( - X])C]
j=1

N
== VVIKI( = x))¢
j=1
N

==V (VI =%

Jj=1

= —Vgp.
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We are using the identities above to show

- @)(w)!@(

el

— (27T)d/2/ ||gcurl( )H2(1+ ”WH )pdw
lwle>o,  llwll3

_ Beurl
”gcurl - gcurl,o”?f1p71 RA) (27T) 4/2 H( = 1+ ||w||%)pdw
( ) R4

- 2
= (27r)—d/2/ %(1 + HwH%)pdw
lwlzze, @l

_ (27T)d/2/ w(l + wl]|2)Pdw
lwlezo, w3

—en [ |G el
lwllz=>0p
= ) [ 16 = ) @R+ [l de
= l9p — Onolin gy (7.0

The second identity

churluﬁp—l(]gd) = ”ngHP(Rd) (7.7)

can be shown similarly.
For two real numbers x and y we have the inverse triangle inequality ||z| — |y|| < |z —y|.

We add the term g — g and apply the inverse triangle inequality to establish

”gGHHT(Rd)xHﬂ Rd) — Hg (g_gU)Hﬁr(Rd)XHp(Rd)

> ‘”ng—iT(Rd)XHp(Rd) - ||g - gO’HﬁT(Rd)XHp(Rd)

To bound the norm above, we apply (7.6) and (7.7) together with lemma 7.4,

1/2
o e
1/2
s )

1/2
™ (Rd) 4||gcurl||%[p—1(Rd)>

Hg - gO’HﬁT(Rd)XHp(Rd) = (ng - gu,aH%T(Rd) + ||gp — 9p,o

||gu gu‘THH"'(Rd + ||gcur1

= (
< (e
-

[E

) 1 ) 1/2
Igullg- (Rd) ZHQPHHP(RUZ)

HgHHT(Rd)xHﬂ(Rd)
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In total we get

H)"VHV* = Hga”ﬁ-r(Rd)XHp(Rd)

Y

”g||I—~IT(Rd)XHp(Rd) - §Hg”ﬁr(Rd)XHp(Rd)

1
§Hg”ﬁT(Rd)XHP(Rd)

1
Il
Therefore
Al <

for every A € Z*, i. e. all assumptions of theorem 7.2 are satisfied with 5 = 2. Thus for
every v € HT(R?; div) x HP(R?) there exists a vy € ggi‘; x B°? such that v, interpolates

v on Z*; that is \(v) = A(vs) for all A € Z*. In addition, v, approximates v in the sense
that

Iv = Vol = = olZ iy + 10— 2oy < 5 disty(v, BGz, x 57)2
The definition of the distance gives that

disty (v, BJ2 x B7?)? = anefv {||u — U,|A . &) T Ip —ﬁgH?{p(Rd)}

_ : 2 : =2
- lnlgg:\‘, Hu ucrH 7' Rd) +'pi,1€nlgap Hp pO’HHP(]Rd)‘

Firstly, we have a look at infaaer?g;; |lu — GUHFIT(RUI)' Defining u, by u, = Uy,, shows,

with lemma 7.3,

B 2Ty %
,EBIY

H‘I’ (Rd H‘r (Rd) HT+t (Rd)

Analogously we have
. ~ 12 2(p—(p+
ok, 1P = Polloge) < 3= pll o ey
and therefore

disty (v, B2 x B7)? < oot~ ") + g2 (o)

[u ||HT+t (R4) )HpH?{Hr(Rd)

é _2t||u”H7—+t(Rd) + 0-p_2THp||§{p+r(Rd)~
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which finishes the proof. O

Note that some modifications of the proof could lead to a result for other partial differ-

ential equations.

7.3. Error Analysis

We now state and prove the error estimates for target functions outside the native space.
Besides a similar approach as in the standard error analysis, the main idea is to find
a band-limited function v, which approximates the true solution. Then we can add
the term v, — v to the difference between the true solution v and our approximating
function s,. With the triangle inequality the norm can be split into two. The difference
between the true solution and the band-limited function can be bounded with theorem 7.5.
The difference between the band-limited function and the approximating function can be
bounded with standard error analysis, since sy also approximates v, and both functions

are sufficiently smooth.

Theorem 7.6. Let Q be a bounded, simply connected, open subset of R, d = 2,3, with a
CIPIHLL boundary 8. Suppose that & is chosen such that its native space is N&) (RY) =
H™(R% div) x H™™(RY) and the permeability tensor K = K;; satisfies (5.6), K = KT
and K;j € H*Y(Q). Furthermore, assume that the data satisfy £ € H*Y(Q) and g €
HA1/2(09), where d/2 < B < 7. Then, the error between the true solution and the

collocation approrimation can be bounded by

[u — Su”wg+1(9) +lp — SpHWer?(Q)/R

WG+ By e Ben—1—d(1/2—-1/7) Ben—1—1/2+41/r—(d—1)(1/2—1/r)
gc”<hX7£ S o +)><

qTﬁﬁ Y,0Q
% (IEllexsce + llg - 0l a-vz o)

foreveryl <r <ooand0<n<pB—-d(1/2—1/r)y —1 and separation radius q := qxuy -
If r > 2 and h = hx o = hyaq this reduces to

u = sullyynt1 () + P = spllyymezq)
ot (BT
el O B (M T )

Proof. First of all, we pick a representer p of the pressure such that [[p|[,;s+2

1plly 42 gy s 1 € €= 0 i (2.1),

@)
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Let v = (u,p). Since all norms on R? are equivalent, we have that ||u — SuHWnJrl(Q) +

llp — sp|\Wﬁ+2(Q)is equivalent to ||v — SVHW:z-&-l(Q)XW:H-Q(Q)/R.
We now apply theorem 3.2 to the difference v — sy, instead of v, i. e. we see that

lu=sullywzsr o)+ = splze20) < € (1LY = Lol gy + 1 = su) -0l si-ae g )

for all 0 < n < . We will bound ||Lv — LSVHWQ-H(Q) and [|(u — sy) - n”wﬁ“‘l”(ag)

separately.
We will start with the estimate in the interior. The function Lv — Lsy has many zeros,

i. e. we can apply the sampling inequality lemma 6.2, such that

(1/2=1/7)+ |Lv —

—n—1—d
HLV — LSVHW;;H(Q) < Chi’;; LSvHH,@(Q)-

From the proof of proposition 6.3 we can see that

15V = Lsv ooy < ¢ (0= sullsoqo) + 10 = spll 001
< cllv = svllms)xmo+1(0)- (7.8)
To bound (7.8), we apply the extension operator E to v and extend K component-wise
with Stein’s extension operator Fg, see proposition 6.1. Then there exists a band-limited

function v, which approximates the extension of v, see theorem 7.5. Adding vy — v, and

using the triangle inequality leads to

v = svilms@xms+1) = BV = sevllms)xms1(9)

< NEv = vollus)xasti) + [IVe — SEvllms @) xaoti)-  (7:9)

The first part of (7.9) can be bounded by theorem 7.5 with ¢, = 0 and the properties

of the extension operator:
|Ev — Va”HB(Q)xHﬁH(Q) < ||Ev - VO‘”ﬁB(Rd)X}]ﬁJrI(]Rd)
< ¢ (I Eaivulgs gy + 1 Bspllros ey
< ¢ (I1ulles(ey + Ipll e oy )
< c|vllms@)x o+ () (7.10)

To bound the second part of (7.9) we can apply theorem 6.6 with f := Lv,, g := u,,
r:= 2 and n := # — 1, since all functions are sufficiently smooth. The definition of v,

provides that Lve = Lv on X and vo -n =v-n on Y. Furthermore, Darcy’s problem is
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well defined, therefore sg, approximates v, and we can define sy_ := sgy. In addition, we
use the trace theorem and || Lve||a-(q) < c[|Vollar@)xa7+1(0), cf- the proof of proposition
6.3. All in all we get

Vo — sevllms@)xmot1(q) < ¢ (h 5+ hY@Q) (”LVG”HT(Q) + llug - n||HT—1/2(89))

IN

¢ (W + a0 (lua e + [Polleo) + s (o)

’

IN

C<h X,Q +_hY69)HVaHHT“DXH7+%Qy

There exists constants ¢ and ¢ such that oy = ¢/¢xuy and o, = ¢/gx, cf. lemma 7.4 and
theorem 7.5. Without loss of generality we define o := max{oy,0p}, since every band-
limited function f € B* is also in B¥ for all v > u. Following the ideas of (7.1) establishes

the Bernstein inequality

< g’

HVUHﬁr(Rd)Xng(Rd) ||V0'”ﬁﬁ(Rd)><Hﬁ+l(Rd)'

Adding and subtracting Ev and applying the triangle inequality gives in combination with
(7.10) and the properties of the extension operator that

”VU"ﬁB(Rd)xHBJrl(Rd) < [Ev - VaHﬁB(Rd)XHBH(Rd) + HEV”ﬁB(Rd)XHﬁH(Rd)
< cl[vllas @) x o) (7.11)
With (7.11), we can bound the second part of (7.9) by

Vo — SEvlms @) xaoi) < g’ 7 (h + hyag) IVllae Q)< 5o+ ()

BBy T8
Since ¢ < gx < hx o and 5 < 7, we have that w is greater than or equal to one.

Combining the above inequalities and applying theorem 3.2 gives

[Lv — Lsv|lusq) < cllv = svllus@)x s+ (o)

T— T3
x,0 T y.a0
< 0 (Il + Ipllmeescay )
T— T—
+h 0
X,0 Y,00
< e (Bl + g nllsvegey) - (7.12)

We now bound the boundary part. The proof of proposition 6.5 establishes that there
exists an extension 1 € HIP1(Q) of the normals n to the interior of Q with 1|pq = n|sq.

The function u — s, has many zeros, i. e. we can apply the sampling inequality lemma
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7 Error Estimates for Target Functions Outside the Native Space

6.4. Therefore

—1-1/2—n+1/r—(d-1)(1/2—1/r
[(u—sy) - n”w:’“—l/r(ag) < Chim [2=n+1/r—(d-1)(1/2—1/ HH(U

The proof of proposition 6.5 also establishes

(0 —su)  0lgs) < I0)l@s@lla —sullaso) < cllu—sullasq)-

With (7.12) we have

-3 -
hso +hyao <|

o= sullasio) < e (Iflasioy + 18 0llmsvgey)

which finishes the proof.

= Su) 0| g5 (0)-

O

The main difference between the result above and the one for smooth target functions

is the factor (h/q)”~”. In the case that 8 = 7, the new result is identical to the one in

theorem 6.6 with a constant c. If 7 > [ then this factor is of importance. Since ¢ is

always less or equals to h, this factor can make the error significantly larger. However, on

an equidistant grid or on relatively well spread collocation points, it will have only minor

influence.

Note that the limitation of this result to the dimensions d = 2,3 is again only due to

the fact that the extension operator is not yet proven for a general d > 3.
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The numerical validation of the method to solve Darcy’s problem and its error estimates is
the subject of this chapter. First of all we will give information about the implementation
of the computer program used. Then we give two examples to check the error estimates
of theorem 6.6. In both cases isotropic material is used. However, in the first example the
material is homogeneous and in the second a more realistic inhomogeneous experimental
set-up is modelled. After this we will check the error estimates for target functions, which
are not in the native space. Furthermore, we look into the dependency of the solution on
the given parameters which includes the choice of the basis function, the porosity and the
point distribution.

In all computations, the compactly supported Wendland functions ¢4, are chosen for

the underlying functions ¢ and v of

~ P
P — div 0 7
0 ¢
where ®4;, = (Al +VVT)g.

To ensure that a sufficient amount of collocation points is in the support of the basis
functions, we scale them with ¢ := 10. Moreover, since the error estimates only exists for

the case ¢ = v, we choose ¢ =¥ = ¢4(5) for all numerical examples.

8.1. Implementation of the Method

The implementation of the mesh-free collocation method presented in chapter 5 requires
a numerically stable, efficient solver for large linear systems of equations. We chose the
generalised minimal residual (GMRES) method with Householder orthogonalization. The
pseudo-code can be found in algorithm 8.1, cf. [46]. The GMRES method gives a numerical
solution for the linear system Aa = b with a N x N matrix A and a vector b € RV,
An initial guess aqg € RN for the solution a is required. The solution depends on the
computational accuracy given by € > 0. In all simulations € := 107!3 is used. The main
advantage over the standard GMRES method or the method of conjugate gradients is,

that it remains numerically stable for data sets with a small fill distance. Unfortunately,
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there is no easy way to implement a parallel version of algorithm 8.1.
Let N = dN + M , where d is the dimension, N is the number of points inside the
domain and M gives the number of points on the boundary. To solve Darcy’s problem

the linear system Aa = b has to be solved, where

(@) (Y (#6-))

A= : : e RNV,
(0 (5 (b)) (7 (0 e -)))

1 <4,7 <Nandl <kl < M, with the functionals defined in (5.6) and (5.7). The
initial guess is ag := b, where b = (fT g n>T € RINHM s the right hand side of
Darcy’s problem. Formula (5.8) gives the approximating function sy, which depends on
the computed solution a of the linear system of equations.

Besides computing the approximating function, its evaluation is the other important
part of the computer program. This can be done by a simple for-loop over all collocation
points. To attain valid results for the error estimates, the approximating function is
evaluated on a fine grid. In all simulations, a M = 300 x 300 grid has been used. The
implementation is a for-loop over all grid points. For each grid or evaluation point, the
approximating function is evaluated and the difference to the true solution computed. The
combination of these differences gives the approximation error. However, this can easily
be parallelized. Initially the evaluation grid needs to be divided into n, partitions, where
n, is the number of processors used. For a total of M evaluation points, every processor
evaluates only M /np of them. The partitioning is demonstrated in figure 8.1 for four
processors and 196 points. Every colour or symbol refers to the data of a single processor.
After evaluating the approximating function at the local set of points, the results from all
processors are gathered to compute the final result.

For n, processors the speedup Sy, of a parallel algorithm is given by
Snp = Tl/Tnp7

where T; is the runtime for ¢ processors. In the case that S, , = n,, the speedup is linear.
If S, < nyp then the code does not scale well. Due to cache effects super linear scaling, i.
e. Sp, > ny, is possible. Figure 8.2 shows that the scaling of our parallel implementation
of the evaluation step is indeed linear. The computation of the runtime has been done
by using the example which will be introduced in section 8.2.1 on a 32 x 32 input grid.
To reduce the possible influence of other computations running at the time, all time
measurements were done twice and the mean value is displayed.

Due to the matrix-vector product and the number of iterations, the computational
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Algorithm 8.1 (GMRES): GMRES with Householder orthogonalization

Require: A € RV*N b ageRY and e >0
Ensure: o, is the solution of Aa = b with the accuracy e.
Calculate the residual and define z <« b — Axg.
for j=1,...,m+1do
Compute the Householder unit vector w; such that

0 1<i<j
(wy)i = q 2 +sign(z)lzlla i=7
2 Jj<i<N

and set w; — w;/||lw;jlj2, hj_1 < z — ow; with 0 « 2w;-.Fz,
if (hj_l)j < € then
Set m « j and stop the loop.
end if
if j =1 then
Set Vi (hg)l.
end if
if 5 <m then
Compute v « (I —2wiwi)... (I — 2ijjT)ej and
z— (I — 2ijjT) o (I = 2wiw) Av.
end if
fori=1,...,7—1do
Set h <—~h,~j and multiply new colurm} with the calculated Givens rotation G ;41:
hij < cih + sjhiy1; and hijpqj < —sih + cihiyq ;.
end for
Calculate the new Givens rotation: [ « ,/h?j + h?+1,j7 cj < hyj/B, sj — hjt1/8
and update H and v, i. e. hjj < 3, hjt1,; < 0, vj41 « —s;7; and 75 < ¢jv;.
if |vj+1] < € then
Set m « j and stop the loop.
end if
end for
Compute the minimiser y of ||v — Hny||2, Hm := (hi,...,h,,), via back substitution:
fori=m,...,1do
Yi — hL (%’ - ZZL:@'H hikyk)
end for
z—0
for j=m,...,1do
Set z < yjej +z — ow; with o « Qsz.
end for
Compute the solution o, «+— ag + z.
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Figure 8.1: Partitioning of 196 evaluation points for the parallel implementation with four
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Figure 8.2: The speedup of the evaluation step.

complexity of the GMRES method is O(mN?). Here N x N is the dimension of the col-
location matrix A and m is the number of iterations. Usually the number of iterations
is significantly smaller than the dimension of the problem. Evaluating the approximating
function at a single point has complexity O(]i7 ). Since the evaluation is done for M evalu-
ation points the complexity of the evaluation step is 0(1\7 N ). In total the computational
complexity of our implementation is O(mN?2 + MN).

Our computer program could be improved such that the runtime is reduced. For exam-
ple, a more efficient solver for the system of equations could be applied, or some precon-
ditioning algorithm used. A parallel implementation of the matrix-vector products in the
GMRES method is also possible. Further improvement could be achieved by a far-field

expansion for the evaluation of the approximating function.
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8.2. Numerical Error Estimates

We will now test the theoretical error estimates of chapter 6 on two numerical examples.
Our first example deals with homogeneous and isotropic permeability, where K reduces
to a constant times the identity matrix. Our second example deals with inhomogeneous
material. However, it is still isotropic.

We will employ Wendland functions ¢5, € C?(R?) for both ¢ and 1, which generate
Sobolev spaces H3/2(R?), see theorem 4.13. Thus by picking ¢ = 1) = ¢, We have

Nz(R?) = HV2(R? div) x HP/2(R?), (8.1)

which means 7 = £+ 1/2. This follows from corollary 4.15, which shows that if ¢ generates
the space H™T!(R?) then ®4;, generates fIT(Rd). We will concentrate on the Lo, and Lo

error only, i. e. we want to verify the estimates

_ 1_

[ =sullan@) + P = spllem+ir < cegh™” = cegh'™2 77,
—n—d/2 -1

o = sullwz @) + llp — SpHngl(Q)/R < crgh’™" / =crgh 27"

Note that the first estimate was only shown for > 1 in theorem 6.6. The second estimate
is also not justified by our theoretical analysis.

In all cases the notation e, = u — s, and e, = p — s, is used. The numerical tests were
run on a sequence of equidistant grids. The computational approximation orders are given
by

log(en/ean)
log(1/2) ’
where e, is the error on an n x n = N + M input grid. Therefore we have N = (n — 2)?
collocation points in the interior and M = 4n — 4 on the boundary, for an example see
figure 8.8 (a).

8.2.1. Homogeneous Permeability

In our first example, we choose 2 = [0,1]> and K = I and f and g such that the true

solution is given by
u(z,y) = (-22%, 32y)",  p(z,y) = 2%y

The velocity and pressure are illustrated in figure 8.3. The velocity field is displayed with

unit vectors. In figure 8.3 (b), the contour lines of the pressure are visualised. Therefore
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the boundary function g is defined by u on 02, while

—223y + 32y?
f(r,y) =u(x,y) + KVp(x,y) = .
(z,y) = u(z,y) p(z,y) ( 2wty 4 3a2y?
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x

(a) The velocity field for the homogeneous example
visualised with unit vectors.

Figure 8.3: The true solution of the homogeneous example.

(b)

The contour lines of the pressure field.

We tested this for a variety of basis functions as explained above. The error has been
computed using discretized versions of the various norms on a fine 300 x 300 grid. The

results are presented in tables 8.1 to 8.6 and in figure 8.4. They indicate that the numerical

approximation orders more than match the theoretical ones.

n leullr. leullr.. el |r e IVeplL, Veplr.
4 1.6335e01  7.7583e-01  1.1289e+00  6.8905e+00  2.9920e-01  2.1715e+00
8 2933302 2.1230e-01  4.6740e-01  5.3876e+00  4.9407e-02  6.9474e-01
16 4.7724e-03  5.5458¢-02  1.6321e-01  3.7585¢+00  6.9639e-03  1.8473e-01
32 6.5486e-04  1.3832e-02  4.7138¢-02  2.2668¢+00  8.8743e-04  4.4247e-02
64  7.9729¢-05  3.0498¢-03  1.2110e-02  1.2395¢+00  1.0140e-04  9.2248¢-03

Table 8.1: Approximation errors for the homogeneous example with ¢ =1 = ¢2 .

8.2.2. Inhomogeneous Permeability

Our second example deals with inhomogeneous and isotropic material, meaning that K =
rkI with a non-constant function x. Our example is motivated by a similar example from

[50] and describes the flow through a two dimensional cylinder with varying permeability.
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leulr, leullr.. lea [ leullwz [IVeplln, Vel
computed 2.4774 1.8697 1.2722 0.3550 2.5983 1.6442
2.6197 1.9366 1.5179 0.5195 2.8267 1.9111
2.8655 2.0033 1.7918 0.7295 2.9722 2.0618
3.0380 2.1813 1.9606 0.8710 3.1296 2.2620
estimated 2.5 L5 L5 0.5 2.5 L5

Table 8.2: Approximation orders for the homogeneous example with ¢ =9 = ¢2.

eullL, leullr. € ]lr: |eul|r: Ve, [VepL..

1.0127e-01 3.6764e-01 7.0026e-01 4.1830e+00 2.1525e-01 1.4904e+00

8 8.6886e-03 4.3353e-02 1.4323e-01 1.7673e+00 1.2082e-02 1.8352e-01
16 6.6247e-04 5.3868e-03 2.4002e-02 6.3930e-01 7.6629e-04 2.0568e-02
32 4.0582e-05 5.8268e-04 3.0337e-03 1.7604e-01 4.1610e-05 1.7658e-03
64 2.2916e-06 5.6109e-05 3.3587e-04 4.0901e-02 2.1316e-06 8.3619e-05

Table 8.3: Approximation errors for the homogeneous example with ¢ = ¢ = ¢ 3.

leullL, leallr.. llew e lew|r2 HvepHLz VepllL..
computed 3.5430 3.0841 2.2896 1.2430 4.1550 3.0217
3.7132 3.0086 2.5771 1.4670 3.9788 3.1575
4.0289 3.2087 2.9840 1.8606 4.2029 3.5420
4.1464 3.3764 3.1751 2.1057 4.2869 4.4003
estimated 3.5 2.5 2.5 1.5 3.5 2.5

Table 8.4: Approximation orders for the homogeneous example with ¢ =9 = ¢ 3.

leullr., leullr.. el |r leulr2 IVepliL, IVeplL.
6.1153e-02  2.0845¢-01  4.3615e-01  2.8112e+00  2.0304e-01  1.2941e+00

8  2.3251e-03  1.1990e-02  4.1046e-02  5.5070e-01  3.2751e-03  5.0862e-02
16 7.9533¢-05  7.1673e-04  3.0418¢-03  9.1047e-02  9.5225e-05  2.7176e-03
32 2.3199e-06  3.8217e-05  1.7927e-04  1.1650e-02  2.4788¢-06  1.0642e-04
64  7.4599¢-08  1.1181e-06  1.2205¢-05  1.6011e-03 ~ 1.0738¢-07  3.4691e-06

Table 8.5: Approximation errors for the homogeneous example with ¢ = ¢ = ¢24.
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leullL, leullL.. leullr: leu|r2 Vep|L, IVepllL.
computed 4.7171 4.1198 3.4095 2.3518 5.9541 4.6693
4.8696 4.0643 3.7543 2.5966 5.1040 4.2262
5.0994 4.2291 4.0847 2.9652 5.2636 4.6745
4.9588 5.0951 3.8765 2.8643 4.5289 4.9390
estimated 4.5 3.5 3.5 2.5 4.5 3.5

Table 8.6: Approximation orders for the homogeneous example with ¢ =1 = ¢ 4.
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n leullr, leullL.. leul[r leu [ IVepliL, IVeplr.

6.2920e-03 2.3987e-02 5.2479e-02 5.1676e-01 4.9587e-02 1.2463e-01

8 5.3211e-04 4.6569e-03 8.8350e-03 1.3797e-01 2.2983e-03 9.9190e-03
16 4.0233e-05 5.5241e-04 1.4920e-03 4.5095e-02 1.8430e-04 1.4879e-03
32 2.9049e-06 5.3613e-05 2.3020e-04 1.3925e-02 1.7299e-05 2.4952e-04
64 1.8260e-07 4.1769e-06 3.0837e-05 3.8451e-03 1.5696e-06 3.8521e-05

Table 8.7: Approximation errors for the inhomogeneous example with ¢ =1 = ¢2 3.

To be more precise, pressure, velocity and permeability are given by

P1 — Po

p(l’,y) = L x + po,

T
ae) = (ML= )= w.0)
sxy) = (Y= Y)Y —w),

where p is the viscosity and L the length of the cylinder. Thus f = 0 and g = (%(y -
Ya)(Y —up),0). Obviously, these quantities satisfy (3.2) and V-u = 0. The permeability is
constant along horizontal lines and is zero at the top and bottom boundary of the cylinder.

The flow is also horizontal, see figure 8.5.

Figure 8.5: The schematic set up for the inhomogeneous example.

For our computations, we set L =1, y, =0, yp = 1, p =1, p1 = 2 and pg = 1. For
¢ = 1) we have chosen the C% compactly supported function.
The results are represented in tables 8.7 and 8.8 and in figure 8.6.
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leulr, leullr.. lea /[ leullwz [IVeplln, Vel
computed 3.5637 2.3648 2.5705 1.9052 4.4313 3.6513
3.7253 3.0756 2.5660 1.6133 3.6404 2.7370
3.7918 3.3651 2.6963 1.6953 3.4133 2.5760
3.9917 3.6821 2.9001 1.8566 3.4623 2.6954
estimated 3.5 2.5 2.5 L5 3.5 2.5

Table 8.8: Approximation orders for the inhomogeneous example with ¢ = ¢ = ¢2 3.
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Figure 8.6: Approximation errors of the inhomogeneous example with ¢ =1 = ¢ 3.
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8.3. Numerical Error Estimates for Target Functions Outside the

Native Space

We will now give an example for target functions which are not in the native space. Again
we employ Wendland functions and pick ¢ = 1) = ¢, i. e. they generate the native spaces
given in (8.1). As in the previous examples we will focus on the Ly and Lo, errors. Let
f ¢ HA+1(Q) and g € HA/2(0Q), where d/2 < 8 < 7 := d/2 + { + 1/2. Theorem 7.6

gives the following error estimates

R\
= sallstngey + 17 = spllsmicey < i (Q) W,

AT
||u — SU”WQO(Q) + Hp - 3p||WOno+1(Q) S Cf7g <q) hﬁ n d/2_

Note that the first estimate was proven for 7 > 1 only. Moreover, the second estimate is
actually not verified by theorem 7.6. Note further that the convergence order does not
depend on the smoothness 7 of the native space if the separation radius equals the fill
distance, i. e. on equidistant grids.

We choose f and g such that the true solution of the velocity and the pressure are

u(z,y) = (;83") $o1(r),  p(z,y) =2y,

where 7 := \/(z — 20)2 + (y — y0)2/y with 29 = yo = v = 0.5. Furthermore, we pick
K = I, where [ is the identity matrix. The remaining setting is identical to the one in
the previous examples. Figure 8.7 illustrates the velocity field. The pressure is identical
to the pressure in the homogeneous example, see figure 8.3 (b).

The Wendland functions ¢4, are an element of all Sobolev spaces H Y(RY) with a <
21 —d/2 =d+20+1—d/2, cf. section 4.2.3. Therefore the function ¢o is in H*(£2) with
a < 4. Due to our choice of the velocity, we have u € HT1(Q) for all 8 < 2. Thus u is not
an element of the native spaces of ¢23 and ¢2 4, where 7 = 3.5 and 7 = 4.5 respectively.
We chose § = 2 which is the supremum of the smoothness’, to work out the theoretical
approximation orders.

To investigate the dependency of the error on the fill distance h and the separation radius
q, all calculations were done twice. First on an equidistant grid, then on an equidistant
grid, where the y-components of some collocation points are moved by s/2 up, see figure
8.8. Here, s = 1/(n — 1) is the spacing of the grid. Hence, in the first case we have
g = h = s/2 and in the second case ¢ < h, i. e. ¢ = s/4 and h = 3s/4.

All results are displayed in tables 8.9-8.16. Here, the values in the brackets give the
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Figure 8.7: The velocity field for the example with target functions outside the native
space visualised with unit vectors.

approximation orders if the target functions were in the native space. The figures 8.9 and
8.9 illustrate the numerical approximation errors. From tables 8.10, 8.12, 8.14 and 8.16 it
can be seen that the numerical approximation orders again more than match the theoretical
ones. Moreover, some of them even match the approximation orders for smoother target
functions.

According to the theoretical error estimates, the error in table 8.12 should be (¢/h)™# =
5.1962 times larger than in table 8.10. Analogously, the values in table 8.16 should be
15.588 times larger than the values in table 8.14. In practise, the influence of the factor

(q/ h)7*5 seems to be less than expected, since the calculated values are in about the same

range.
n leullr, leullL. leullp IVey||L, Vel
1.2836e+00 2.2024e+00 9.8131e+00 2.0342e-01 1.5629e+00

8 7.9192e-02 3.8168e-01 1.6632e+00 3.4692e-02 2.1824e-01
16 8.7058e-03 5.1376e-02 3.9872e-01 2.9099e-03 3.0136e-02
32 7.4455e-04 1.1950e-02 7.9047e-02 2.7432e-04 3.0789e-03
64 6.5388e-05 2.8183e-03 1.6406e-02 2.8833e-05 7.2737e-04

Table 8.9: Approximation errors for the example with target functions outside the native
space with ¢ = ¢ = ¢9 3, where ¢ = h.
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Figure 8.8: The n x n-grid for the example with target functions outside the native space,
where n = 8. The collocation points in the interior are maked with blue
circles, the ones on the boundary with green squares and the moved points
with a magenta dots.

leullL, leullL.. leulr IVey||L, IVeplL..
computed 4.0187 2.5286 2.5607 2.5518 2.8403
3.1853 2.8932 2.0605 3.5756 2.8564
3.5475 2.1041 2.3346 3.4070 3.2910
3.5093 2.0841 2.2685 3.2501 2.0817
estimated 2 (3.5) 1(2.5) 1(2.5) 2 (3.5) 1(2.5)

Table 8.10: Approximation orders for the example with target functions outside the native
space with ¢ = ¢ = ¢2 3, where the values in the brackets give the approxi-
mation orders if the target function would be in the native space and g = h.

n leullL, leullr. el IVeplL, IVeplL.
9.6580e-01 1.6182¢+00 9.0492+00 2.0209e+00 6.3613e+00

8 8.0852e-02 3.7836e-01 1.7364e+00 1.0950e-01 4.5009e-01
16 9.2390e-03 7.9565e-02 4.1916e-01 4.7343e-03 4.0854e-02
32 8.3544e-04 1.8466e-02 8.5372e-02 5.0651e-04 9.6855e-03
64 7.9497e-05 4.3506e-03 1.8161e-02 5.8489e-05 2.3040e-03

Table 8.11: Approximation errors for the example with target functions outside the native
space with ¢ = 19 = ¢2 3, where ¢ < h.
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leulr,

leullL.. leu||m IVep|L, IVepllr.

computed 3.5784 2.0965 2.3817 4.2060 3.8210
3.1295 2.2495 2.0505 4.5316 3.4616

3.4671 2.1073 2.2957 3.2245 2.0766

3.3936 2.0856 2.2329 3.1143 2.0717

estimated 2 (3.5) 1(2.5) 1(2.5) 2 (3.5) 1(2.5)

Table 8.12: Approximation orders for the example with target functions outside the native
space with ¢ = 19 = ¢2 3, where the values in the brackets give the approxi-
mation orders if the target function would be in the native space and ¢ < h.
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Figure 8.9: Approximation errors of example with target functions outside the native
space, where ¢ = 1) = ¢9 3.

n leallr, leullr. lealls VepliL, Veplra
1.5065€+00 2.9039¢+00 1.1038e+01 1.8339¢-01 1.3481e+00

8 5.3121e-01 2.4564e-+00 8.7189¢-00 9.7268e-02 2.0440e-01
16 1.2688¢-02 6.9891e-02 5.3229¢-01 3.1878¢-03 1.1819¢-02
32 5.8579-04 1.1669e-02 7.1774e-02 2.6409¢-04 2.7596¢-03
64 6.3984¢-05 2.7337¢-03 1.6597¢-02 2.7801e-05 6.5679¢-04

Table 8.13: Approximation errors for the example with target functions outside the native
space with ¢ =19 = ¢2 4, where ¢ = h.
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leulr, leullr.. leu/lm IVep|lr, IVepll..
computed 1.5038 0.2415 0.3403 0.9149 2.7214
5.3877 5.1353 4.0339 4.9313 4.1122
4.4369 2.5825 2.8907 3.5935 2.0986
3.1946 2.0937 2.1126 3.2478 2.0709
estimated 2 (4.5) 1 (3.5) 1(3.5) 2 (4.5) 1 (3.5)

Table 8.14: Approximation orders for the example with target functions outside the native
space with ¢ = 1) = ¢2 4, where the values in the brackets give the approxi-
mation orders if the target function would be in the native space and ¢ = h.

n leulr, leulr.. leu/lm IVep|L, IVeplr.
9.9594e-01 1.8031e+00 9.5157e+00 2.6038e--00 9.0934e-00

8 4.9692e-01 2.4419e-+00 8.2523e+00 2.0109e-01 7.5860e-01
16 1.2221e-02 7.1743¢-02 5.1902e-01 5.3100e-03 3.6592¢-02
32 6.3966e-04 1.6423¢-02 7.4964¢-02 4.6787e-04 8.6301e-03
64 7.0954¢-05 3.8505¢-03 1.7397e-02 5.3756¢-05 2.0566¢-03

Table 8.15: Approximation errors for the example with target functions outside the native
space with ¢ = ¢ = ¢34, where ¢ < h.

leullr, leullL.. leulle IVey||r, Vel
computed 1.0030 -0.4375 0.2055 3.6947 3.5834
5.3456 5.0890 3.9909 5.2430 4.3737
4.2559 2.1271 2.7915 3.5045 2.0841
3.1724 2.0926 2.1073 3.1216 2.0691
estimated 2 (4.5) 1(3.5) 1(3.5) 2 (4.5) 1(3.5)

Table 8.16: Approximation orders for the example with target functions outside the native
space with ¢ = 1) = ¢2 4, where the values in the brackets give the approxi-
mation orders if the target function would be in the native space and ¢ < h.
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Figure 8.10: Approximation errors of example with target functions outside the native
space, where ¢ = ¢ = ¢2 4.

8.4. Dependency on the Parameters

In the previous sections we have shown that the error estimates for different right hand
sides hold. We now wish to examine the dependency of the method on the choice of the
parameters. All tests were done by using the setting presented in section 8.2.1 with 322
data points in the unit cube [0,1]2. Also, if not stated otherwise, the $23 € C% Wendland
function with support radius 6 = 10 is applied. In all tables, the column marked by ’m’

gives the number of iterations required by the GMRES method.

8.4.1. Dependency on the Basis Function

Comparing the results of different basis functions showed that a smoother function leads
to a smaller error. This can be seen from theory as well as from table 8.17. However,
since the matrix becomes ill-conditioned, more iterations are required. Hence the runtime
increases. Therefore we chose the C% compactly supported function for ¢ and 1 for the

following examples.

¢ =1 leullr, leullr.. leullm leullmz  IVepllL,  [Vepllu, m

¢22  5.4045e-04  8.9660e-03  3.5235e-02 1.6621e+00 4.4943e-04  6.5394e-03 402
@23 3.8164e-05  5.8268e-04  2.6256e-03  1.4199e-01  3.5269e-05  8.2462e-04 598
P24  2.1488e-06  3.8134e-05  1.5244e-04  9.3344e-03  2.1664e-06  7.2435e-05 784

Table 8.17: Approximation errors depending on the basis function.
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0 eullr, leallr.. lew||m leallm2 [IVepl,  [Veplr.  m

0.001 6.7667e-01 3.2628e+00 6.1466e+01 4.1039e+05  6.7283e-01  3.2628e+00 2
0.01 6.7899¢-01 3.7183e+00 4.5176e+01 3.9309e+04  6.7477e-01  3.4481e+00 2
0.1 6.1248¢-01 3.4393e+00 3.8858e¢+01 7.2132e+03  7.0797e-01 6.3891e+00 138

1 1.8052e-03 3.2753e-02  1.0180e-01 5.3527e+00  1.9106e-03  6.5062¢-02 630

10 3.8164e-05 5.8268e-04  2.6256e-03  1.4199e-01  3.5269e-05  8.2462e-04 598
100 2.8177e-05 4.1931e-04  2.0651e-03  1.1579e-01  3.1795e-05  6.5283e-04 592
1000  2.7763e-05 4.1629e-04  2.0440e-03  1.1483e-01  3.1675e-05  6.3968e-04 591

Table 8.18: Approximation errors depending on the support of the basis function with

¢ =1 = ¢a3.

The size of the support radius d of the basis function has a major influence on the solu-
tion. If the support radius is less than the fill distance of the set, there are no other points
in the support of the basis function. Then the collocation matrix becomes independent
from the points and therefore the solution too. Our 32 x 32 grid has fill distance h = 0.016,
i. e. the solution will be the same for all § < h. An increasing support leads to a shrinking
error, see table 8.18. However, the number of iterations also increases, since the system
becomes ill-conditioned. This leads to longer runtimes. Therefore the support radius in
all simulations is chosen to be § = 10 which ensures a balance between a small error and
a low runtime.

We did not consider the case ¢ # 1, since the error estimate always depends on the

rougher function. However, our computer program provides the option.

8.4.2. Dependency on the Permeability

We set the permeability of the example to be K = kI, where & is a constant which models
the specific media. If x is a very small number it models a pervious material, which is
a good aquifer such as clean gravel. For a slightly bigger x it is material which is still
pervious as for example clean sand or a mix of sand and gravel. A medium figure models
semi-pervious material like very fine sand, silt, loam or stratified clay. Moreover, a high
value for k describes impervious material such as sandstone or granite, i. e. there is almost
no transport of fluids. Darcy’s law does not model the reality in this case, but we can still
solve Darcy’s problem. Further information about the permeability can be found in [6].
The table 8.19 gives the numerical error for different values of k. The error for the
velocity is only slightly increasing with x, it basically remains constant. However, the
error for the pressure is high for a small k. This is due to the fact that if k is very
small, then the pressure part of (3.3) has only little influence and the problem is mainly

solved for the velocity. Therefore there exists a minimal value for s such that the equation
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K eullr, leallr. eu]|m leullmz [Vepll,  [IVepln. m

0.001 3.8423e-05 5.8719e-04  2.7881e-03 1.4714e-01  2.1266e-02  1.2881e-01 681
0.01 3.1941e-05 5.0460e-04 2.3218e-03  1.2756e-01  1.5515e-03  1.2863e-02 696
0.1 3.4404e-05 4.9713e-04 2.4140e-03  1.3248e-01 1.6417e-04 1.7867¢-03 664

1 4.0582e-05 5.8268¢-04 3.0337e-03  1.7604e-01  4.1610e-05 1.7658e-03 598

10 4.5555e-05 7.1693e-04  3.3261e-03  1.8593e-01  3.6071e-05  1.6006e-03 852
100 1.2115e-04  1.6915e-03  7.0860e-03  2.9158e-01  3.4959e-05  1.5909e-03 1409
1000  7.8590e-04 6.5696e-03  2.9012e-02  6.9103e-01  3.3929¢-05  1.5906e-03 1831

Table 8.19: Approximation errors depending on the permeability with ¢ =1 = ¢2 3.

for the pressure can be solved satisfactorily. However, a value too large can lead to an
unsatisfactory solution of the velocity part.

We now wish to check how the error behaves if we choose a fixed right hand side
f(z,y) = (32%y? — 22y, 3222 + 22%y)T

and vary the pressure with the permeability. Therefore we choose

3,2
Ty
and p(xvy): K )

u(z,y) = (=22%y, 32%%)"
where the permeability is given by K = kI. The results are presented in table 8.20. It
shows that the error is low when u and p are in the same range, i. e. if kK = 1. If one
function is a significantly larger than the other, then the number of iterations increases

and also the error.

K eullr, leullr. lew||s leallnz IVeplln,  IIVeplln. m

0.001 3.1111e-02  3.4893e-01 2.0528¢+00 9.8502e+01 2.0270e+01 1.5448e4+02 748
0.01  1.4253e-03 1.9740e-02  8.5725e-02 4.2610e+00 1.0901e-01 1.6525e+00 741
0.1 5.4448e-05 8.1086e-04 3.8001e-03  2.2358e-01  6.0992e-04  1.6145e-02 683

1 3.8164e-05 5.8268e-04 2.6256e-03 1.4199e-01  3.5269e-05  8.2462e-04 598

10 4.4193e-05 7.8505e-04  2.9651e-03  1.5274e-01  4.6534e-06  1.1126e-04 852
100 1.1584e-04 1.9172e-03  6.1878e-03  2.4153e-01  6.0809e-06  2.1434e-04 1408
1000  6.9794e-04  7.1977e-03  2.4130e-02  5.9180e-01  7.6250e-06  2.1776e-04 1831

Table 8.20: Approximation errors depending on the permeability for a fixed right hand
side with ¢ = ¢ = ¢2 3.

Note that the viscosity has also influence on K. The error and the runtime react

similarly to changes in viscosity as for the permeability.
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8.4.3. Dependency on the Data Set

We now wish to check how the error depends on the data set. We compute the errors for
three different types of point sets. First on an equidistant grid, then on Halton points and
finally on a set of random data. All simulations are done on 322 input points in the unit
cube. Hence, we have N = 900 collocation points in the interior and M = 124 on the

boundary in all examples. Figure 8.11 illustrates the used data sets.

0.9 0_97.",' N

0.8 0.8:'.'.
0.7 07f"-
0.6 0467.':
=05} > 05 )
0.4 0A4—'3_..

0.3} : 03f .. ¢

0 0.2 0.4 0.6 0.8 1
X X

(a) Grid points (b) Halton points

0 0.2 0.4 0.6 0.8 1
X

(c) Random points

Figure 8.11: The different point sets.

The grid data is a set of equidistant distributed points, which is generated by two
nested for-loops. For the random data the C++ - function rand () is used, and the result
is shifted in the unit cube. The Halton points are generated by algorithm 8.2. They are
quasi-random, but well distributed over the domain and unlikely to cluster. Furthermore,
they are indeed unique for different values of k£ € Ng and r € N prime. Information about

Halton points can be found for example in [58]. We used r = 7 for the 2 component inside
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the domain and r = 11 for the y component respectively. On the boundary we chose r = 3
for  and r = 5 for y.

Algorithm 8.2 (Halton): Generating Halton points
Require: A prime number r and an integer k.
Ensure: x is the k-th Halton point of base r
0
if £ =0 then
return
end if
fel
while k£ > 0 do
h «— k modulo r
x—x+hf
k —
[

end while

S 3

From table 8.21 we can see that the errors are in the same range. Only the number of
iterations is changing. The stability of the linear system of equations depends on the data

set, but Darcy’s problem can be satisfactorily solved in all tested cases.

leullr, leullr. leullr leullmz Vel  [[Vepll. m

grid 3.8164e-05 5.8268e-04 2.6256e-03 1.4199e-01  3.5269e-05 8.2462e-04 598
Halton 2.3039e-05 4.4810e-04 7.0380e-04 5.6247e-02  2.2809e-05 2.1013e-04 965
rand 4.8118e-05 3.5398e-04 9.2909e-04  6.0463e-02  4.9007e-05 1.0417e-03 1782

Table 8.21: Approximation errors depending on the data set with ¢ =1 = ¢ 3.
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9. Conclusions

After introducing Darcy’s problem and discussing reproducing kernel Hilbert spaces, a
new discretization scheme to solve Darcy’s problem has been presented. The scheme
is based on a collocation method and implements optimal recovery to solve the partial
differential equation. Besides producing analytically incompressible flow fields, our method
can be of arbitrary order, works in arbitrary space dimension and for arbitrary geometries.
Furthermore, our method is mesh-free.

The error analysis of the presented scheme has been carried out and the expected ap-
proximation orders were obtained. The error estimates were only shown for the two and
three dimensional cases, since the extension operator is not yet proven for arbitrary di-
mensions. However, our estimates would hold for arbitrary dimensions if the extension
operator exists.

New error estimates for the case that the target function does not belong to native
space have been developed. These new error estimates extend the former to a larger class
of target functions. The roughness of the target function is only limited by the Sobolev
embedding theorem, i. e. a constant depending on the space dimension.

An implementation of the scheme has been done and tested in various numerical simu-
lations. Overall it was shown that the theoretical error estimates hold for target functions
in and outside the native space.

The implementation of the scheme has been tested to find optimal parameters. A
smoother basis function leads to a smaller error, however it increases the runtime. Fur-
thermore, the runtime is reduced for a small support radius while the error increases.
The permeability has minor influence on the numerical solution. Only a particular low or
high permeability leads to a unsatisfactory solution. However, Darcy’s problem might not
model the reality in those cases. Different point sets have been tested and a satisfactory
solution computed in either case. Nevertheless, the numerics do not hold if two points are

too close together. Then the matrix becomes numerically non-invertible.
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A. Appendix

For the implementation of the discretization scheme we need the derivatives of certain
Wendland functions. Since all examples are two dimensional, we will give the derivatives
of ¢2(x,y), where x and y are real numbers. For the implementation the derivatives up
to the fourth degree are needed. However, for completeness reasons we give all derivatives.
To ensure that the evaluation is numerically stable and efficient, a Horner scheme has
been applied in the implementation of the scheme.
Let a € NZ and define 7 := /22 + y2. We sort the derivatives 90102 g ¢ in groups of

order |a| = a1 + as.

The compactly supported function ¢21(z,y) = (1 —r)4 (4r + 1), has the derivatives:

e laj=1

w2 (z,y) = —20z (1 —r)3
Oydai(z,y) = —20y (1 —1)3

2 3.1'2
8x2¢2,1($,y):20(1—’r)+ = 147

r
3 2
8y2q§2,1(x,y) =20 (1 — r)%_ (i 14+ 7,)
60y

Ouyp2.1 (T, y) = (1-r)2

The derivatives of function ¢22(z,y) = (1 —7)%.(35r% + 18r + 3) are:
o o =1

Oud22(x,y) = =562 (1 — 1) (5r+ 1)
Oy2,1(z,y) = =56y (1 —r)5 (5r + 1)
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A Appendix

Duabaalay) = 56(1— 1) (512 — dr — 14 302%)
02 ¢2,2(w,y) =56 (1 — r)i (57“2 —4r —1+ 30y2)
Ouyb2.2(7,y) = 16802y (1 — 1)}
[ ) ‘O[| g 3
3 42
Op3p2a(z,y) =1680x (1 — 7)) [ —3r +3 — —
3 4y?
Oy3¢22(x,y) = 1680y (1 —r)5 | —3r +3 — —
3 4$2
D2y p22(x,y) = 1680y (1 —7)7 ( —r + 1=
3 4y?
Opy2b2,2(2,y) =1680x (1 — 7)) [ —r + 1=~
[ ] |Oé| e 4
2022 5zt 43¢t 4x2y?
(9x4¢2,2(a:,y) = 1680 (1 — T)%r <_67~_|_ 3 +30(L’2 _ X + T —; Yy B x3y >
r r
202 5yt 432t da%y?
— 2 2
Oys¢2,2(w,y) = 1680 (1 —7)7 <—6r +3+430y% — ; + - —
2 222 2
8$3y¢2,2($7y) =—6720xy (1 — 7")3_ (_3 4 c-5 + ig)
2 2 2 .’L‘2
Opyp22(z,y) = —6720zy (1 — r)i (—3 + - - r% + 103)
81-2 2 4:62 2
am2y2¢2,2(x, y) = 1680 (1 — ’]")3_ <5,’42 — 67 + 1 + r2y + T3y )

The derivatives of function ¢a3(z,y) = (1 — )% (32r% + 25r2 + 8 4 1) are:

[ ] |O(|:1

Outo3(m,y) = =22z (1 — 1)L (16r* + 7r + 1)
Oypas(x.y) = =22y (1 — )L (16r% + 7r + 1)
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o o =2
Op2das(x,y) =22 (1 —1)% (16r® — 9r® + 14da®r — 6r + 242* — 1)
O2¢2,3(w,y) =22 (1 — )& (167"3 — 9r% + 1449%r — 61 + 24y° — 1)
Ouyd2,3(2,y) = 528wy (1 =) (67 +1)
[ ] ‘O[| = 3
Oyapa3(w,y) = 1584z (1 — )3 (—6r® +5r — 142” + 1)
Oysa3(x,y) = 1584y (1 — )% (—6r® + 5r — 14y + 1)
Op2yP23(z,y) = 528y (1 — r5 (- 6r2+5r+1— 42x2)
Opy2d2,3(x,y) = 528z (1 — 1)} (—6r% +5r + 1 — 42y%)
[ |Oé| = 4

702*
Oprh3(z,y) = 1584 (1 — )% (6r3 — 1172 + 4r + 842%r — 8422 + + 1)
4 3 2 2 70y
Oyapaz(x,y) = 1584 (1 — )y ( 6r° — 117" + 4r + 84y“r — 84y? + —— +1

Opayb2,3(z,y) = 22176z y (1 — )} <37~ _34 5f>

5
Dyyrdos(x,y) = 221762y (1 — )% <3r — 3+ “T)

r

21022y
Op2y2¢23(,y) = 528 (1 — r)i (487“3 — 53l +dr+1+ xy)
,
e la]=5

922 =z — 3x
Ops P 3(x,y) = 110880z (1 —7)3 <—37“2 +6r — 3 — 102% + — 7«2>
9 2 2,2 3 4
0,5 ¢o5(w,y) = 110880y (1 — 7)3 (—3r2 F6r—3—10y% + 2L 4 w>
T T

Dyayd23(z,y) = 22176y (1 — )3 ( —3r% 4 6r — 302% — 3+ - +
T

r2 r3

25y% 15y BaPy?
< Ty_ y+ﬂ:y)

2522 152% 5:):2y2>

O a3(z,y) = 221762 (1 — ).

—3r? +6r —30y* —3 + = 3

5 15222 5yt
—8r2 4 117 — 1042 —3+i— “’+y>

Opsy2t23(z,y) = 22176 2 (1 — 7") 3 3
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5 2 15 2,2 5 4
Dy2yrdo5(x,y) = 22176y (1 — )2, <—8r2 +10r— 1022 -3 4 — - 22V m)

r r r3

e la]=6

1522 + 152%
Dyoas(x, y) = 332640 (1 — )2 (r3 — 302 4 1522 4 3r — 1 — 3022 4 X T 19T

8zt n 28 — 4z4 2:B4y2 :U4y2
r2 73 r4 rb

15y + 15y*
0,005 (x,y) = 332640 (1 — 1)2 <r3 ~ 32 4 15y +3r — 1 — 3042 + y
8y4 y6 _ 4y4 23723/4 x2y4
T2 ,,a3 7n4 T5

3022 +8  14z? 32t + 492
+ -—+ 3
r T

Opsyb2,3(z,y) = 1108802y (1 — )% <15r —30

622y> 3y4>

rd rd

3092 +8  14y?  3y* + 4a?
3xy5¢273(1:,y):110880$y(1—7")i<15r—30—|— yre Té’ + g

622 34
a:y+x>

ré rd

Opy2h2,3(x,y) = 22176 (1 — )2 (18r3 — 3972 + 302%r 4 24r — 402° — 3

1022 + 7522%y?  20x?  15x% — 1022 3022y?  15x2y>
+ -3 T 3 - 4 5
T T T T T

D21 2,3(x,y) = 22176 (1 — 7)2 (18r3 — 39r% 4+ 30y%r + 24r — 40y% — 3

10y% + 752%y?  20y%  15y* —10y2  30x%y®  152%y?
+ ——2 t 3 B 1 5
T T T T T
2 + $2y2 21'2?]2
r 73

Oy h2,3(2,y) = 3326402y (1 — )% <6r3 —20r% + 24r — 12+

2,2
X
n y)

5
The derivatives of function ¢o4(z,y) = (1 —r)2° (4297 + 45073 + 2107 + 50r + 5) are:
o |a|=1

Oppoa(m,y) = =262 (1 — )% (231r° + 1597% + 451 + 5)
Oypoa(z,y) = =26y (1 — 7). (231r° + 159r% 4 451 + 5)
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Dy2¢0.4(w,y) = 26 (1 — )3 (2315% — 723 + 2772272 — 114¢2 + 10562 — 407

+1322% — 5)
Oy2do4(m,y) = 26 (1 — )% (2310 — 720 + 2772y°r? — 1147 + 1056y°r — 40r
+132y* — 5)

Ouypo,a(z,y) = 34322y (1 — )% (217 + 8r + 1)

[ ) ‘04‘23

217% — 13r2 + 702 — 7r + 102° — 1)
2173 — 13r% + 70y%r — Tr + 10y — 1

Opspoq = —10296 x (1 — 1)

> )
(=213 + 13r% — 2102%r + 7r — 3027 + 1)
= )

Oysp2a = —10296y (1 — 7
Op2y 2,4 = 3432y (1 — 1)}
Opy2b2,4 = 34322 (1 — )T,

7
4
7
4
21r° + 1312 — 210y°r + 7r — 30y + 1

[ ) ‘0{| — 4

8:c4¢2,4(x7 y) = 10296 (1 — r)i (4625627’2 _ 3945627”‘ _ 34y27‘ +6r+1+ 5393:4

4 _ gl
—48z% + 21y + 6y26x>
T

Oyprdoa(z,y) = 10296 (1 — )% (462y2r2 — 304y%r — 3427 + 67 + 1 + 539y"

62t — 6y*

—48y% + 212" + 2)
,

By B2.4(z,y) = 1029602y (1 — )5 (2112 — 18r + 5622 — 3)
Oy B2.4(7,y) = 1029602y (1 — )5 (2102 — 18r + 56y — 3)
Dyzypdra(,y) = 3432 (1 —r)§ (231" — 2147° — 247 + 67 + 16802%y* + 1)

[ ] ‘Og|:5

Ousdra(w,y) = 102960 (1 — 1)} < — 15¢% + 195r2 — 56027 — T5r + 5602 — 15

3362
r
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Oysho,a(m,y) = 102960y (1 — )% (—1& + 19512 — 560y°r — 751 + 560y% — 15

336y4

Dpayb2.a(z,y) = 308880y (1 — )<—wﬁ+wﬂ—1mﬁr—w+1mﬁ—1

112x4

Dpyrd2.4(x,y) = 308880z (1 — r)<—w3+mﬁ—1ufr—w+1uf—1

112y%
,

33622y
aﬁf@A@w):um%mul—mi(4ﬁﬁ+9w2—nmﬂ—3— xy)

r

3362292
7T 4 952 — 11242 — 3 — 22T Y >

B2 ysdo,a(x,y) = 102960y (1 — )3 :

e la]=6

@waday):mw&ou—rﬁ(ﬁw%—wmﬁ+84m%2+9m2—1%&ﬁr—2m

+ 1680z + 84022 — 5 —

1568x4‘+7448x6 112x%y?
r r2 73

aw@Awﬂn:3%@&u1—mi<%wk—mm3+84m%2+9m2—1&mfr—2m

1568y  448y5  11222¢y*
1680y + 840y% — 5 — Y | 2OV xy)

r r? 73
18z%  8z*
OpsyP2,4(w,y) = 17297280z y (1 — r)d <5r2 — 10r + 202 + 5 — Tx + ri?
222
—
4 (g2 2 8y 8y
Opys P2,4(,y) = 17297280y (1 — )3 { 57" — 10r + 20y~ +5 — —— + —&
2$2y2
S

@%maday)—3&B&M1—mi(&w4—nmﬁ+46&%ﬂ+7@2—2Mx%—4r

+ 56022y + 5622 — 1 —

44822y 2A+ 448y 11227y
r 72 73
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Op2yah.4(2,y) = 308880 (1 — )% <63r4 — 13213 + 168y%r? + T4r® — 224y%r — 4r

44827y N 4482%y" 112$4y2>

+ 5602%y% + 56y — 1 - .
.

r r

8x2y2 2$2y2
2 + 3
T T

Oysysda(z,y) = 17297280 2 y (1 — r)d (97"2 —12r4+3+

o la| =7

Oprd2.4(w,y) = 172972802 (1 — )% ( — 3513 + 10512 — 2102%r — 1057 + 42022 + 35

1682* + 17422 N 108z% 1625 4 3022y N 18x%y2 6x2y4>

r 72 r3 rd 7o

Oyrdoa(z,y) = 17297280y (1 — )3 < — 35r% + 105r% — 210y°r — 1051 + 420y% — 35

168y* + 174> N 108y*  16y5 + 3022y? N 182y 63:43/2)

r 72 r3 rd 7o

Doy b2,4(z,y) = 17297280y (1 — r)% < — 513 + 1572 — 902%r — 157 + 18022 + 5

4 o

12024 N 722*  162% + 662* N 18z4y?  84xty? + 90x2y*
r r2 r3 r

Opys b2,4(z,y) = 17297280y (1 — )% < — 513 + 1572 — 90y?r — 15r 4 180y% + 5

120y 72y 16y5 + 66yt 1822yt  84x2y* 4 90xty?
oy + rz rd + rd rd

Opsy2$2,4(x,y) = 172972802 (1 — 1r)? < —33r3 4+ 61r% — 2y%r — 33r + 14y% + 5

722%y%  362%y? 622y + 162%y? 1822yt 6aty? — 1248
o + 2 3 + i 5
T r r r T

D2y P24 (2, y) = 17297280y (1 — r)3. < —33r3 + 6172 — 22%r — 33r + 1422 + 5

72227  362%y? 622y + 162%y*  18x%y? 622yt — 1226
a + 2 3 + T T 5
r r r r T

Oty poa(z,y) = 17297280y (1 — r)3. ( —9r® 4+ 2192 — 542%r — 157 + 7822 + 3

1822 + 242%y?  162%?  182%y*  12z%y? + 62
B r 3 + rt rd

Dpayadoa(z,y) = 172972802 (1 — r)3, ( —9r3 4+ 2172 — 549%r — 157 + 78y + 3

18y% + 2422y 16z2y* N 18z%y%  122%y* + 6y6>

r r3 rd 7o
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o |a| =38

Opspoa(z,y) = 17297280 (1 — 7)3 (35r4 — 14073 + 840222 + 210r% — 25202%r
254024 + 84022 N 44815 4 840x*

— 140r + 1680z + 25202 + 35 — 5
T T
5620 + 4202%  3362% 3028 — 16826  602%  302°
+ 3 B 4 + 5 + 6 + 7
T T T T T

Oysdoa(m,y) = 17297280 (1 — r)3 (357”4 — 14073 + 840y%r? + 210r% — 25204°r
2540y + 840y N 448y5 + 840y*

— 140r + 1680y 4 252042 + 35 — i
T r
56y° +420y* 336y  30y° —168y° 60y 30y°
e s k2
T T T T T
2452 + 35
Dyryb2,4(z,y) = 103783680z y (1 — )% (35r2 1057 + 14022 + 105 — —22T 52
-
5622 4+ 35 Tzt + 3522 42z% 526 — 212t 1025 5ab
r2 + r3 A + o + r6 + N
245y% + 35
Oy b2,4(z,y) = 103783680z y (1 — )% (357“2 —105r 4 140y® + 105 — 25y7F 50
T
56y% +35 Tyt +35y% 42yt 5yS — 21yt 10y5 5y
Yy LT Y g L i v g n L7
T T T T

r2 r3
Opoy2P2,4(x,y) = 17297280 (1 — )3 <35r4 — 11073 4 420272 + 12012 — 81022

3022 + 4502% 22425 + 3002% 226 — 1502* 22826
2
— 507 + 360x° + 5 + " - 2 + 3 + o

11425 — 3028 6028 B 30x8>

I /6 7

Dy d24(z,y) = 17297280 (1 — )% <35r4 — 11072 4 420y%r? + 120r% — 810y>r

30y2 + 450y* 22495 + 300y* N 2y% — 150y* N 2285

2
— 507 + 360y~ + 5 + . 2 3 o
11495 — 30y®  60y® 3048
+ rb 6 T
9522 + 30

Dpsyadoa(z,y) = 34594560z y (1 — )2 <105r2 — 2407 4 14022 + 165 —
1522 72z% 362 — 1525 3026 1526
+ + —

5624 + 3022 N 8zt —
742 743 T4 T5 706 7.7
95y2 + 30
oy ho.a(m,y) = 34594560y (1 — )2 <105r2 2400 + 14042 + 165 — 224+
T
56yt + 30y 8yt —15y% T2yt 36yt —15y° 3045 1590
- + + r4 + rd 6T

r2 r3
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Dpayadoa(z,y) = 17297280 (1 — r)2 (63r4 — 16213 + 13872 — 42r + 3362%y* 4 3

2 r3 70 76 r7

408222 48x2y2 2422y 30z*y* 602ty 30xtyt
B fy+::y+wy+xy+wy+xy)
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