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Abstract

Radial basis functions are well known for their applications in scattered data approxima-

tion and interpolation. They can also be applied in collocation methods to solve partial

differential equations. We develop and analyse a mesh-free discretization method for

Darcy’s problem. Our approximation scheme is based upon optimal recovery, which leads

to a collocation scheme using divergence-free positive definite kernels. Besides producing

analytically incompressible flow fields, our method can be of arbitrary order, works in arbi-

trary space dimension and for arbitrary geometries. Firstly we establish Darcy’s problem.

To introduce the scheme we review and study divergence-free and curl-free matrix-valued

kernels and their reproducing kernel Hilbert spaces. After developing the scheme, we find

the approximation error for smooth target functions and the optimal approximation or-

ders. Furthermore, we develop Sobolev-type error estimates for target functions rougher

than the approximating function and show that the approximation properties extend to

those functions. To find these error estimates, we apply band-limited approximation.

Finally, we illustrate the method with numerical examples.
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1. Introduction

Darcy’s problem models flow in porous media, i. e. it is important in engineering and

science. In particular, it can be applied to describe the creeping flow of a Newtonian fluid

in porous media [6]. Moreover, in some projection methods for solving the Navier-Stokes

equations, a numerical solution of Darcy’s problem is essential [45].

Darcy’s law is given by

u = −K∇p

where u is the velocity, p the pressure and K describes the porous media and the viscosity

of the fluid. The original version of Darcy’s law was obtained experimentally. However,

in the case of anisotropic homogeneous flow Darcy’s law can also be obtained from the

Navier-Stokes equations [43]. Darcy’s problem is an extension of Darcy’s law. It is the

partial differential equation given by

u +K∇p = f in Ω,

∇ · u = 0 in Ω,

u · n = g · n on ∂Ω.

Here, n denotes the outer unit normal vector of the boundary ∂Ω ⊆ Rd. The right hand

sides f and g · n and the permeability tensor K are given. The velocity u and pressure p

are sought.

The goal of this thesis is to find a high-order method to solve Darcy’s problem efficiently.

This approximation scheme is mesh-free and deals with Darcy’s problem directly. It is

also of arbitrary order, works in arbitrary space dimension and for arbitrary geometries.

The scheme leads to an analytically divergence-free reconstruction of the velocity. The

error analysis will be done. Since the standard error analysis is limited to smooth target

functions, we present new ideas which extend the ideas from interpolation problems to

our collocation method for Darcy’s problem. To validate the theoretical results, numerical

experiments are carried out.
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1 Introduction

1.1. Numerical Approximation of Partial Differential Equations

Classical numerical techniques for solving partial differential equations such as finite ele-

ments or finite volumes require a mesh of the underlying domain. This mesh can be difficult

to generate, in particular for complex geometries like aircrafts or in moving frameworks.

Furthermore, finite element methods suffer from the fact that the solution is usually not

analytically divergence-free. Similar problems appear in other methods like finite differ-

ences. Finite element methods for Darcy’s problem can be found for example in [5, 8, 10].

Radial basis functions can be applied to solve partial differential equations by collo-

cation, see for example [13, 15, 16]. Our scheme follows the framework presented by

Wendland for Stokes problem [55]. The approximation scheme for Darcy’s problem,

which we present here, is therefore a collocation method, which applies matrix-valued

positive definite radial basis functions.

Radial Basis Functions

Radial basis functions are well-known in scattered data approximation [54], but are also

applied in image processing, computer graphics and many other areas. A function φ :

Rd → R is said to be radial if a function ϕ : [0,∞) → R exists, such that φ(x) =

ϕ(‖x‖2) for all x ∈ Rd. There are many examples of radial basis functions; for instance

Gaussians, Hardy’s multi-quadrics and thin-plate splines. In 1995, Wendland developed

compactly supported, piece-wise polynomial radial basis functions [53]. These positive

definite functions are called Wendland functions.

Note that a continuous function φ is positive definite if and only if it is even and for

pair-wise distinct x1, . . . ,xN and all non-vanishing α ∈ RN it holds that

N∑

j=1

N∑

k=1

αjαkφ(xj − xk) > 0.

Recently, matrix-valued radial basis functions were developed. Although these matrix-

valued kernels are not radial in the sense presented above, they are commonly called

radial basis functions, since they are usually constructed from radial basis functions. Of

particular importance for the construction of the scheme and its error analysis are the

divergence-free and curl-free matrix-valued kernels. The divergence-free kernel has been

developed in [38] and further studied in [17, 18, 19, 20, 33, 34]. The curl-free kernel has

been studied in [17, 18, 19, 20].
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1 Introduction

Reproducing Kernel Hilbert Spaces

Reproducing kernel Hilbert spaces are an important tool in scattered data approximation

with radial basis functions. Since most kernels are radial, all relevant positive definite

kernels are real-valued. Therefore we will only look at real function spaces.

Let Ω ⊆ Rd be a domain which contains at least one point. A real Hilbert space F of

functions f : Ω → R is called a reproducing kernel Hilbert space if there exists a function

φ : Ω× Ω→ R, such that

(1) φ(·,y) ∈ F for all y ∈ Ω,

(2) f(y) = (f, φ(·,y))F for all f ∈ F and all y ∈ Ω.

The function φ is uniquely determined and called the reproducing kernel of the space F .

A reproducing kernel Hilbert space can be constructed for every positive definite kernel.

In particular, radial basis functions are often used as reproducing kernels.

Further information about reproducing kernel Hilbert spaces can be found in [54]. The

case when the reproducing function is matrix-valued will be discussed later.

Native Spaces

Native spaces are of particular importance in the theory of generalised interpolation with

radial basis functions. Besides providing the interpolation or approximation space, they

are also essential in the error analysis.

Let φ : Ω× Ω→ R be a positive definite kernel and Ω ⊆ Rd. We define the space

Fφ(Ω) :=





N∑

j=1

αjφ(·,xj) : xj ∈ Ω, αj ∈ R





equipped with the inner product




N∑

j=1

αjφ(·,xj),
M∑

k=1

βkφ(·,yk)



φ

:=
N∑

j=1

M∑

k=1

αjβkφ(xj ,yk).

The native space Nφ(Ω) of the function φ is the completion of the space Fφ(Ω) with respect

to the norm associated to the inner product. The native space of a positive definite kernel

is a reproducing kernel Hilbert space. Information about native spaces can be found in

[54].

Many Sobolev spaces can be characterised as reproducing kernel Hilbert spaces. Certain

of these spaces coincide with the native space of Wendland functions [54].

3



1 Introduction

The idea of native spaces can be extended to matrix-valued kernels, which is a recent

development, cf. [17, 55].

Discretizing Partial Differential Equations by Collocation

We aim for a collocation scheme, i. e. the right hand side of the partial differential equation

is only prescribed at particular discrete points. Therefore the partial differential equation

will be solved by using the information at those points only. Note that the solution of a

partial differential equation will often only be approximated, since limited information is

given.

We will use functionals to describe our collocation method for solving the partial dif-

ferential equation. For example, assume that we want to solve the differential equation

Lu = f in Ω. For simplicity we will neglect boundary conditions for the time being. Then,

we could use discrete data sites X = {x1, . . . ,xN} ⊆ Ω, and define the functionals

λj(u) = (Lu)(xj),

where 1 ≤ j ≤ N . The goal is to find an approximating function s which satisfies the

collocation conditions

λj(s) = fj = f(xj)

for all 1 ≤ j ≤ N .

A first approach could be to choose

s =
N∑

j=1

αjφ(· − xj),

like in an interpolation problem. Then the linear system of equations Aα = f has to be

solved to determine the αj . The matrix A is defined via Aij = λx
i (φ(x − xj)), where the

functional λi is only applied to the first or x-argument of the function φ. This method

is often referred to as Kansa’s method, see [25, 26]. The system of equations is often

non-symmetric, since λx
i (φ(x− xj)) is usually not equal to λx

j (φ(x− xi)). Moreover, the

system could be non-invertible.

The first promising steps to resolve this problem were done by Lorentz et al. and

Berentz and Iske, cf. [7, 31]. The idea is to choose the approximating function by the

following ansatz

s =
N∑

k=1

αkλ
y
k (φ(· − y)),

4



1 Introduction

which leads to a symmetric collocation matrix

A :=




λx
1λ

y
1 . . . λx

1λ
y
N

...
. . .

...

λx
Nλ

y
1 . . . λx

Nλ
y
N


φ(x− y).

Furthermore, a unique solution of Aα = f exists if the functionals are linearly indepen-

dent. Then A is indeed positive definite and s is the unique norm-minimal approximating

function in the native space of φ.

This concept can be carried over to matrix-valued kernels. We will apply combined ker-

nels to establish the discretization scheme for Darcy’s problem. We will use a divergence-

free matrix-valued kernel to model the velocity and a general scalar-valued kernel for the

pressure. The idea of using combined kernels together with optimal recovery has been

developed by Wendland in [55].

Error Analysis and Approximation Orders

The error estimates of collocation methods with radial basis functions are usually expressed

in terms of the fill distance.

The fill distance of a set of points X = {x1, . . . ,xN} ⊆ Ω for a domain Ω ⊆ Rd is defined

to be

hX,Ω := sup
x∈Ω

min
xj∈X

‖x− xj‖2.

It can be interpreted as the radius of the largest open ball in the domain Ω which does

not contain any point from X. This means that it is the largest hole in the data set, see

figure 1.1 (a).

j

h

Ω

x

(a) Fill distance

Ω

xj

2q

(b) Separation radius

Figure 1.1: Measures of the data set.

The other relevant measure is the separation radius. For of a discrete set of points
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1 Introduction

X = {x1, . . . ,xN} it is defined to be

qX :=
1

2
min
j 6=k
‖xj − xk‖2.

The separation radius is therefore half the minimal distance between two points in X.

An illustration is given in figure 1.1 (b). This means in particular that in the case of

an equidistant grid we have that the fill distance is equal to the separation radius, i. e.

hX,Ω = qX .

Error estimates express the worst variation of the approximating function sf from the

true solution f . They are often of the form

‖f − sf‖X ≤ chτ‖f‖Y .

Here, τ is the approximation or convergence order and h is the fill distance of the set of

collocation points. Usually both norms are Sobolev norms. To reduce the computational

complexity, a small number of collocation points is desired which implies a large h. This

means that a large τ is wanted such that the number of points can be reduced while the

error is sufficiently close to zero.

Approximation Rates for Target Functions Outside the Native Space

The standard error analysis suffers from a major difficulty: The convergence can only be

proven for target functions which are in the native space of the underlying radial basis

function φ. This means in particular that the smoother φ is, the smaller is its native

space, i. e. the class of functions, where the approximation rates apply, is rather limited.

This problem has been partly solved, since the target functions must still satisfy some

weak smoothness conditions. First steps were done by Light and Vail in [30]. One

approach has been done by Narcowich, Schaback and Ward in [36], an other ansatz

was presented from Brownlee and Light in [11]. Narcowich and Ward presented

an alternative approach for functions outside the native space on the sphere [39]. Other

work on Rn followed in [28, 29, 40, 41]. An overview can be found in [35]. Recently

Fuselier presented error estimates for interpolation problems with divergence-free or

curl-free matrix-valued kernels, where the target function is rougher than the interpolant,

see [17, 20]. Finding these error estimates is sometimes referred to as ’escaping the native

space’.

Sobolev-type approximation rates for target functions outside the native space show

that smooth approximating functions also provide good fits to rougher functions. The

main benefit from the theoretical point of view is that there is a larger class of functions,

where the error estimates apply. In practise, error estimates for a more flexible choice of

6



1 Introduction

the underlying basis function are available. However, these error estimates still require a

minimal smoothness of the target function depending on the space dimension.

Until now, the Sobolev-type approximation rates for target functions outside the native

space were limited to interpolation problems. We will show that this concept can be

extended to collocation methods for solving partial differential equations. In particular,

we establish new Sobolev-type approximation rates for the discretization scheme of Darcy’s

problem, where the velocity and the pressure are not in the native space of the underlying

function φ.

The idea of the proof is to apply band-limited functions. To bound the error between

the true solution and the approximating function, we add and subtract a band-limited

function. This band-limited function is chosen such that it approximates and interpolates

the true solution. Therefore the error between it and the true solution can be bounded.

Furthermore, the difference between the approximating function and the band-limited

function can be bounded via the application of standard error analysis, since both functions

are sufficiently smooth and the approximating function also approximates the band-limited

function.

1.2. Outline of the Thesis

In chapter 2 we will state the necessary definitions and introduce the notation. In partic-

ular, we will review the standard function spaces and the Fourier transform. Our method

relies on positive definite kernels, therefore these are studied in more detail.

Darcy’s problem will be introduced in chapter 3. Since it models flow in porous media,

we provide some background in fluid dynamics before stating Darcy’s law. Then we state

Darcy’s problem. Moreover, the most important properties of this partial differential

equation will be studied.

To establish our approximation scheme, some technical background about reproducing

kernel Hilbert spaces is required. The important results are provided in chapter 4. Besides

the formal definition of reproducing kernel Hilbert spaces, some of their properties are

established and certain examples are studied in more detail. After this, native spaces

of scalar-valued and matrix-valued functions are formally introduced and their relation

to Sobolev spaces is shown. Finally, the native spaces of three kernels and their most

important properties will be presented.

Chapter 5 is devoted to the approximation scheme. Firstly, the application of optimal

recovery to solve partial differential equations will be explained. Then combined kernels

will be introduced and their native spaces built. After this, the approximation scheme will

be stated. For clarification, the two-dimensional scheme will be presented explicitly.

7



1 Introduction

The standard error analysis of our approximation scheme is covered in chapter 6. The

proof of the error estimates relies on an extension operator and uses sampling inequalities

and a smoothness result of the solution of Darcy’s problem.

New Sobolev-type approximation rates for target functions outside the native space will

be developed in chapter 7. They extend the error analysis to rougher target functions.

Before establishing the error estimates, band-limited functions and their function spaces

are introduced and band-limited interpolation and approximation is studied.

In chapter 8, we will give numerical examples to corroborate our theoretical approxima-

tion rates. Furthermore, the implementation of the method will be described and tested

in several situations.

We will provide a summary of our studies in chapter 9.

In the appendix we give the important derivatives of certain Wendland functions.

1.3. Technical Details

We now give details about the tools used for this thesis.

All implementations have been done in the programming language C++; for the par-

allel implementation MPI (Message Passing Interface) was used. To avoid any negative

influence from possibly ill-conditioned systems, all computations were carried out in quad-

double precision as a precaution.

All simulations were undertaken on the Archimedes computing cluster at the University

of Sussex, supported by funds from SRIF3.

The graphs have been built with MATLAB. All illustrations were created with Xfig.

8



2. Notation and Definitions

We will now introduce the notation and symbols used in this thesis. Furthermore, we will

review the standard function spaces: The spaces of differentiable functions, the Lebesgue

spaces and the Sobolev spaces. The Fourier transform is essential for the theory of re-

producing kernel Hilbert spaces. We will give its definition and state its main properties.

Since kernels are of particular importance, we will study them in more detail. We will

therefore discuss positive definite functions and their properties. Then we will give some

examples, which include Bessel and Wendland functions. Finally, we will introduce the

divergence-free and curl-free matrix-valued kernels.

2.1. General Notation

The symbols N, R and C indicate the sets of natural, real and complex numbers. The

letter d refers to the dimension of a point in a discrete set X ⊆ Rd, while N is the number

of points; n is often used for the dimension of the image of a function.

A vector or a vector-valued function is always bold printed, for example x ∈ Rd. The

jth component of a vector x is denoted by xj . The complex conjugate of a number z is

z and the absolute value is denoted by |z|. Throughout the whole thesis, ei refers to the

ith unit vector.

Capital Latin letters generally refer to function spaces, for instance C, F , H, L and W .

Exceptions are A, which denotes a matrix, and I, which is always the identity matrix. We

use the standard notation for the transposed vector or matrix AT and denote by A∗ the

transposed and complex conjugate of the matrix A.

The k-th derivative of a function f(x) is denoted by dk

dxk
f(x), in case of a multivariate

function by ∂kj f(x) with respect to the jth component of x. The short notation ∂ijf(x) :=

∂i∂jf(x) is also used. Let α ∈ Nd
0 be a multi-index and |α| := α1+. . .+αd. Then, Dαf(x)

denotes ∂α1
1 . . . ∂αdd f(x). The gradient of a function is ∇f(x) := (∂1f(x), . . . , ∂df(x))T .

The Laplace operator is denoted by ∆f(x) :=
∑d

j=1 ∂
2
j f(x).

The closure of a set Ω is denoted by Ω. The support of a function f : Rd → R is the

closure of the set of points where the function is not zero, i. e.

supp f = {x ∈ Rd : f(x) 6= 0}.

9



2 Notation and Definitions

A function is compactly supported, if the support is bounded.

Let x be a real number. Then the truncated function (x)+ is defined to be zero, if x < 0

and x otherwise. The floor function bxc gives the largest integer i with i ≤ x. The ceil

function dxe gives the smallest integer i with x ≤ i.
The Greek letters σ, τ and ρ refer to real numbers. The letters φ, Φ and ψ are used for

kernels, where Φ denotes a matrix-valued kernel and φ and ψ are radial basis functions.

These functions are usually multivariate functions.

A linear and continuous map λ from a Hilbert space to the real numbers is called a

functional, i. e. λ is an element of the dual space H∗. The domain Ω is a subset of Rd.

The statement λy(f(x−y)), f : Rd → Rn, indicates that the functional λ is applied to the

y-component of the function f(x− y). We denote the point evaluation functionals by δx,

where x ∈ Rd. Hence δx(f) = f(x) for all functions f : Rd → Rn.

Finally, χσ denotes the characteristic function of the ball B(0, σ) with radius σ and

centre 0. Hence χσ(x) is equal to one if x ∈ B(0, σ) and zero otherwise.

2.2. Standard Function Spaces

We now give a brief overview over the function spaces of interest. The focus is on the

usual definitions of standard spaces, alternative characterisations and certain non-standard

spaces will be given later.

Let F1(Ω), . . . , Fn(Ω) be normed linear function spaces. Then a tensor product function

space is defined via

F(Ω) := F1(Ω)× . . .× Fn(Ω), x 7→ f(x) = (f1(x), . . . , fn(x))T

and can be equipped with the norms

‖f‖r :=





(∑n
j=1 ‖fj‖rFj(Ω)

)1/r
, if 1 ≤ r <∞,

max1≤j≤n ‖fj‖Fj(Ω), if r =∞.

The norm ‖ · ‖r denotes the standard vector norm on Rd, it is also referred to as `r-norm.

In the case that the spaces Fi(Ω), 1 ≤ i ≤ n, are Hilbert spaces and that r = 2,

the space F(Ω) is also a Hilbert space. If F1(Ω) = . . . = Fn(Ω) we equivalently define

F(Ω) := (F1(Ω))n.

Let k be an integer. The space Ck(Ω) consists of all functions f : Ω → R which are

k-times continuously differentiable in Ω ⊆ Rd. The space of all infinitely many times in Ω

continuously differentiable functions is denoted by C∞(Ω). A vector-valued function is in

Ck(Ω) if and only if each of its components is an element of Ck(Ω).

10



2 Notation and Definitions

For a Hilbert space H its dual will be denoted by H∗ = {λ : H → R | λ is linear and

continuous}. The norm in the dual space is defined via

‖λ‖H∗ := sup
f∈H

|λ(f)|
‖f‖H

.

In the case of an vector-valued Hilbert space H, the dual is defined to be H∗ = {αTλ :

λ : H→ Rn is linear and continuous and α ∈ Rn}.
Let Ω be an open subset of Rd, where Ω denotes its closure, k be a nonnegative integer

and 0 < s ≤ 1. We denote by Ck,s(Ω) the space of all functions f : Ω→ Rn, which satisfy

(1) Dαf is continuous and bounded in Ω for all |α| ≤ k,

(2) for all |α| = k there exists a constant c <∞ such that

‖Dαf(x)−Dαf(y)‖ ≤ c‖x− y‖s,

where x,y ∈ Ω, i. e. Dαf is uniformly Hölder-continuous with exponent s. In the

special case that s = 1, the function Dαf is also called Lipschitz-continuous.

A Lipschitz boundary has almost everywhere a unit normal vector n. If k ≥ 1 and a

domain has a Ck,1 boundary, then the normal vector belongs to Ck−1,1(∂Ω). If Ω is also

bounded, then this normal vector can be extended to function ñ ∈ Ck−1,1(Ω), cf. [22].

The proof can be done with the inverse trace theorem, cf. [57].

2.2.1. Lebesgue Spaces

The Lebesgue spaces Lr(Ω) are established in the usual way. Let Ω be a subset of Rd

and 1 ≤ r < ∞. A function f : Ω → R is said to be an element of Lr(Ω) if the

integral
∫
Ω |f(x)|rdx is finite. In the case r = ∞, the norm is defined by ‖f‖L∞(Ω) :=

ess supx∈Ω |f(x)|.
The vector-valued Lebesgue spaces are tensor product spaces of the scalar-valued ones,

i. e. Lr(Ω) := (Lr(Ω))n. The norm is therefore defined by ‖f‖Lr(Ω) :=
(∫

Ω ‖f(x)‖rrdx
)1/r

.

The discrete Lr-norm for a point set X = {x1, . . . ,xN} is

‖f‖Lr(X) =


 1

N

N∑

j=1

‖f(xj)‖rr




1/r

.

We recall the Cauchy Schwarz inequality. For two vectors x,y in Rd we have

|(x,y)| ≤ ‖x‖ ‖y‖.

11



2 Notation and Definitions

Let f and g be square-integrable functions. Then,

∣∣∣∣
∫
f(x)g(x)dx

∣∣∣∣
2

≤
∫
|f(x)|2dx

∫
|g(x)|2dx.

2.2.2. Sobolev Spaces

We will work with the usual scalar-valued Sobolev spaces. Let Ω ⊆ Rd, r ≥ 1 be a real

number or r = ∞ and k ∈ N0 an integer. Then we denote by W k
r (Ω) the space of all

functions f ∈ Lr(Ω) having weak derivatives Dαf ∈ Lr(Ω) for every multi-index α ∈ Nd
0

with |α| ≤ k. Let 1 ≤ r <∞ then the semi-norm and the norm are given by

|u|W k
r (Ω) =


∑

|α|=k

‖Dαu‖rLr(Ω)




1/r

and ‖u‖W k
r (Ω) =


∑

|α|≤k

‖Dαu‖rLr(Ω)




1/r

provided k is an integer. This means in particular that W 0
r (Ω) = Lr(Ω).

We also work with fractional order Sobolev spaces W τ
r (Ω). Let τ = k+ s, where k ∈ N0

and 0 < s < 1, then

|u|W k+s
r (Ω) :=


∑

|α|=k

∫

Ω

∫

Ω

|Dαu(x)−Dαu(y)|
‖x− y‖d+rs2

dx dy




1/r

,

‖u‖W k+s
r (Ω) :=

(
‖u‖rW k

r (Ω) + |u|r
W k+s
r (Ω)

)1/r
.

We set Hτ (Ω) := W τ
2 (Ω). The case r = ∞ is dealt with in the usual way by taking

the essential supremum over all derivatives. For an introduction of such fractional order

Sobolev spaces we refer to [2, 9, 51].

The following result is taken from [49]. It shows that if τ > d/2 then all functions in

the Sobolev space are continuous.

Corollary 2.1. If τ > d/2 then each f ∈ Hτ (Rd) is bounded and continuous. Moreover,

if τ > d/2 + k with k ∈ N0, then

Hτ (Rd) ⊂ Ck(Rd).

We are interested in the relation between Sobolev spaces. The proof of the following

lemma can be found, for example, in [55].

Lemma 2.2. Let Ω ⊆ Rd be bounded, having a Lipschitz boundary.

12



2 Notation and Definitions

(1) Let 1 < p ≤ r <∞ and τ > d
p − d

r , then we have the continuous embedding

W τ
p (Ω) ⊆W τ− d

p
+ d
r

r (Ω).

(2) Let 1 ≤ r ≤ p, then we have the continuous embedding

W τ
p (Ω) ⊆W τ

r (Ω).

Since the pressure p in the solution of Darcy’s problem is determined only up to a

constant, we will work with the quotient spaces W τ
r (Ω)/R equipped with the norm

‖p‖W τ
r (Ω)/R := inf

c∈R

‖p+ c‖W τ
r (Ω). (2.1)

The vector-valued Sobolev space Wτ
r (Ω) := (W τ

r (Ω))n consists of all vector-valued

functions u = (u1, . . . , un)
T : Ω → Rn, where each component uj belongs to W τ

r (Ω).

A norm on Wτ
r (Ω) can be defined by taking the discrete `r-norm of the W τ

r (Ω) norms of

the components, i. e. by

‖u‖Wτ
r (Ω) =





(∑n
j=1 ‖uj‖rW τ

r (Ω)

)1/r
, if 1 ≤ r <∞,

max1≤j≤n ‖uj‖W τ
∞(Ω), if r =∞.

Note that we do not use an index to indicate the dimension n since it will become clear from

the context. We only distinguish between scalar-valued function spaces and vector-valued

ones. Finally, in the case r = 2, we also use the notation Hτ (Ω) := Wτ
2(Ω).

2.3. The Fourier Transform

The Fourier transform is of particular importance in the field of mathematical analysis,

it also plays a crucial role in the theory of positive definite functions. Furthermore, some

Sobolev spaces can be characterised with Fourier transformations, see section 4.1.2. We

now recall the definition of the Fourier transform and some of its properties. All results

in this section are taken from [54, Section 5.2].

Note that there is not only one definition of the Fourier transform. The definition may

have influence on the norm of a Sobolev spaces. However, this concerns only constants.

We only use the following symmetric definition.

13



2 Notation and Definitions

Definition 2.3. For f ∈ L1(R
d) we define its Fourier transform by

f̂(x) = (2π)−d/2
∫

Rd

f(ω)e−ix
Tωdω

and its inverse Fourier transform by

f∨(x) = (2π)−d/2
∫

Rd

f(ω)eix
Tωdω.

The Fourier transform extends to vector- or matrix-valued functions in the natural way,

i. e. component-wise.

The following result establishes some properties of the Fourier transform.

Theorem 2.4. Suppose f, g ∈ L1(R
d); then the following is true.

(1)
∫

Rd
f̂(x)g(x)dx =

∫
Rd
f(x)ĝ(x)dx.

(2) For Taf(x) := f(x− a), a ∈ Rd, we have T̂af(x) = e−ix
T af̂(x).

(3) If, in addition, ∂jf ∈ L1(R
d) then f̂ is differentiable with respect to xj and

∂̂jf(x) = −ixj f̂(x).

(4) The Fourier transform of the convolution

f ∗ g(x) :=

∫

Rd

f(y)g(x− y)dy

is given by f̂ ∗ g = (2π)−d/2f̂ ĝ.

Due to the linearity of the integral, the Fourier transform is also linear. Furthermore,

the Fourier transform of an integrable function is continuous.

The following result provides a possibility to recover a function from its Fourier trans-

form.

Corollary 2.5. If f ∈ L1(R
d) is continuous and has a Fourier transform f̂ ∈ L1(R

d) then

f can be recovered from its Fourier transform:

f(x) = (2π)−d/2
∫

Rd

f̂(ω)eix
Tωdω, x ∈ Rd.
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2 Notation and Definitions

2.4. Kernels

If Ω = Rd, the reproducing kernel of a reproducing kernel Hilbert space is often translation

invariant in the sense that it can be written as

φ(x,y) = ϕ(x− y)

with a function ϕ : Rd → R. In this context, we will rather speak of a function than

a kernel and identify φ with ϕ. All radial kernels are translation invariant and also the

matrix-valued kernels constructed from them.

Throughout this thesis we are only interested in positive definite kernels. Besides the

definition of positive definite functions, we will review some of their properties. After this

we will give examples for positive definite kernels. This includes, besides three scalar-

valued radial basis functions, two matrix valued kernels: The divergence-free and the

curl-free matrix-valued kernels. Both matrix-valued kernels are built from scalar-valued

radial basis functions. Further information can be found for example in [17, 32, 54].

2.4.1. Positive Definite Functions

Our main requirement on kernels is that they are positive definite. Since we are also

interested in matrix-valued kernels, the following definition covers both scalar- and matrix-

valued functions, cf. [54, 55].

Definition 2.6. Suppose that φ : Rd → R is continuous. Then φ is called positive definite

if and only if φ is even and we have, for all N ∈ N, for all α ∈ RN\{0}, and for all pair-

wise distinct x1, . . . ,xN , that

N∑

j=1

N∑

k=1

αjαkφ(xj − xk) > 0.

More generally, a matrix-valued function Φ : Rd → Rn×n is said to be positive definite, if

it is even Φ(−x) = Φ(x), symmetric Φ(x) = Φ(x)T and satisfies

N∑

j,k=1

αT
j Φ(xj − xk)αk > 0

for all pair-wise distinct xj ∈ Rd and all αj ∈ Rn such that αT = (αT
1 , . . . ,α

T
N ) is not

vanishing.

A positive definite matrix-valued kernel Φ is not necessarily positive definite in the

usual matrix sense. Therefore the eigenvalues of Φ need not be positive. For instance, the
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2 Notation and Definitions

kernel

Φdiv(x) =

(
−∂22φ ∂12φ

∂12φ −∂11φ

)
(x), (2.2)

where φ(x) := (1− ‖x‖2)4+(4‖x‖2 + 1), is positive definite in the sense of definition 2.6 as

we will see later. If x = 0, then

Φdiv(0) =

(
−20 0

0 −20

)
,

i. e. the kernel is not positive definite in the usual matrix sense, cf. the appendix for the

derivatives of φ. However, the block matrix (AΦ,X)ij = Φ(xi − xj) is indeed positive

definite if Φ is a positive definite kernel. We will clarify this later.

The matrix-valued kernels are in general not radial in the usual sense. Even if φ is radial,

we can not find a Φ̃div such that for the kernel Φdiv defined in (2.2) yields Φdiv(x) =

Φ̃div(‖x‖) for all x ∈ R2. Nevertheless, matrix-valued kernels are called radial since they

are built from radial basis functions.

The following result gives a criterion for positive definiteness. It is taken from [54,

Corollary 6.9].

Corollary 2.7. Suppose that f ∈ L1(R
d) is continuous, nonnegative and non-vanishing

then

φ(x) :=

∫

Rd

f(ω)e−ix
Tωdω, x ∈ Rd,

is positive definite.

This means in particular, that if the function φ in the corollary above is continuous and

integrable we can apply corollary 2.5 to recover f = φ̂.

We now state another important result for positive definite functions. Its proof can be

found in [54, Corollary 6.12].

Corollary 2.8. If φ ∈ C(Rd) ∩ L1(R
d) is positive definite then its Fourier transform is

nonnegative and in L1(R
d).

The following kernel will play an important role later.

Proposition 2.9. Suppose φ ∈ C2(Rd)∩W 2
1 (Rd) is a positive definite function. Then the

kernel defined by

ψ := −∆φ

is integrable and positive definite, provided that its Fourier transform ψ̂ = ‖ω‖22φ̂(ω) is

integrable and non-vanishing.
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2 Notation and Definitions

Proof. One can see that with φ ∈ C2(Rd)∩W 2
1 (Rd), ψ is indeed integrable and continuous.

Furthermore, its Fourier transform ψ̂(ω) = −̂∆φ(ω) = ‖ω‖22φ̂(ω) is nonnegative, since φ̂

is nonnegative according to corollary 2.8.

We can now apply corollaries 2.5 and 2.7 to conclude that

ψ(x) =

∫

Rd

ψ̂(ω)e−ix
Tωdω, x ∈ Rd,

is indeed positive definite.

2.4.2. Wendland Functions

In 1995, Wendland developed piece-wise polynomial compactly supported functions, see

[53]. These functions are called Wendland functions. We discuss them, due to the fact that

they satisfy all requirements necessary to a kernel in this thesis, i. e. they are an example

for the basis functions in this thesis. All numerical examples have been computed with a

kernel constructed from Wendland functions.

Definition 2.10. Let d ∈ N and k ∈ N0. We define Wendland functions by

φd,k := Ikφb d2c+k+1,

where φ` := (1− r)`+ and (Iφ)(r) =
∫∞
r tφ(t)dt for all r ∈ R+

0 .

The Wendland functions are positive definite radial basis functions with support [0, 1].

On their support, the Wendland functions are polynomials. A detailed construction of

these functions can be found in [53, 54].

Table 2.1 contains examples of the Wendland functions depending on the space dimen-

sion. The table is taken from [54]. The notation
.
= indicates equality up to constant.

Here, r is the `2-norm of the argument, i. e. we have φ(x,y) = φd,`(‖x− y‖2) = φd,`(r).

Space dimension Function Smoothness

d = 1 φ1,0(r) = (1− r)+ C0

φ1,1(r)
.
= (1− r)3+(3r + 1) C2

φ1,2(r)
.
= (1− r)5+(8r2 + 5r + 1) C4

d ≤ 3 φ3,1(r)
.
= (1− r)4+(4r + 1) C2

φ3,2(r)
.
= (1− r)6+(35r2 + 18r + 3) C4

φ3,3(r)
.
= (1− r)8+(32r3 + 25r2 + 8r + 1) C6

φ3,4(r)
.
= (1− r)10+ (429r4 + 450r3 + 210r2 + 50r + 5) C8

Table 2.1: The Wendland functions.
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2 Notation and Definitions

(a) φ2,3(r) (b) ∂x2φ2,3(r)

(c) ∂x∂yφ2,3(r) (d) ∂x4∂y2φ2,3(r)

Figure 2.1: The Wendland function φ2,3(r) with r =
√
x2 + y2.

The derivatives of certain Wendland functions can be found in the appendix. Figure

2.1 illustrates the C6-Wendland function and some of its derivatives.

2.4.3. Modified Bessel Functions

In chapter 4 we will see that some Sobolev spaces are reproducing kernel Hilbert spaces.

However, in this case the reproducing kernels of the Sobolev spaces are built from modified

Bessel functions of the second kind.

We give the definition of the function and a few results here. Further information about

Bessel functions can be found, for example, in [1, 52, 54].

Definition 2.11. The modified Bessel function of the second kind of order ν is defined

by

Kν(z) =

∫ ∞

0
e−z cosh(t) cosh(νt) dt

18



2 Notation and Definitions

for z ∈ C with | arg(z)| < π/2; cosh(t) = (et + e−t)/2.

For these Bessel functions, the following recursive formulae apply

Kν(r) = K−ν(r), (2.3)

d

dr
(rνKν(r)) = −rνKν−1(r). (2.4)

From (2.4) and

∂i (‖x‖ν2Kν(‖x‖2)) = −‖x‖ν2Kν−1(‖x‖2)
xi
‖x‖2

= −xi‖x‖ν−1
2 Kν−1(‖x‖2), 1 ≤ i ≤ d,

we have the second derivatives

∂ii (‖x‖ν2Kν(‖x‖2)) = −‖x‖ν−1
2 Kν−1(‖x‖2) + x2

i ‖x‖ν−2
2 Kν−2(‖x‖2), 1 ≤ i ≤ d, (2.5)

∂ij (‖x‖ν2Kν(‖x‖2)) = xixj‖x‖ν−2
2 Kν−2(‖x‖2), 1 ≤ i, j ≤ d, i 6= j. (2.6)

The following result gives an upper bound for the modified Bessel function. It can be

proved by combining corollary 5.12 and lemma 5.13 from [54].

Lemma 2.12. For every ν ∈ R the function r 7→ rνKν(r) is non-increasing on (0,∞)

and

rν |Kν(r)| ≤ rν−1/2
√

2πe−reν
2/(2r)

for every r > 0 and ν ∈ R.

2.4.4. Divergence-free Matrix-valued Kernels

The divergence of a function f : Rd → Rd is given by

div f := ∇ · f =
d∑

j=1

∂jfj(x).

A function is divergence-free if and only if

div f = 0.

Narcowich and Ward were the first to introduce matrix-valued divergence-free kernels

in [38]. Then Lowitzsch introduced compactly supported divergence-free kernels in [32].
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2 Notation and Definitions

The divergence-free kernel of a positive definite kernel φ ∈ C2(Rd) ∩W 2
1 (Rd) is

Φdiv := (−∆I +∇∇T )φ =




−∑n
i=2 ∂iiφ ∂12φ . . . ∂1nφ

∂12φ −∑n
i=1, i6=2 ∂iiφ . . . ∂2nφ

...
...

. . .
...

∂1nφ ∂2nφ . . . −∑n−1
i=1 ∂iiφ



. (2.7)

Every column or row of the kernel Φdiv is obviously divergence-free since

div ((Φdiv)j) =
n∑

k=1

∂k(Φdiv)kj =
∑

k=1, k 6=j

∂k∂kjφ− ∂j
n∑

i=1, i6=j

∂iiφ = 0.

It is well-known that the matrix-valued kernel defined by (2.7) is positive definite, cf.

[17, 38, 55]. The proof of the following lemma can be found in [32].

Lemma 2.13. Suppose φ ∈ C2(Rd) ∩ W 2
1 (Rd) is a positive definite function. For the

kernel defined by (2.7) we have that Φdivα and its Fourier transform Φ̂div(ω)α = (‖ω‖22−
ωωT )φ̂(ω)α are in L1(R

d) for every α ∈ Rd. Furthermore, Φdiv is positive definite in the

sense of definition 2.6.

The kernel Φdiv enables us to construct analytically divergence-free approximating func-

tions for Darcy’s problem.

2.4.5. Curl-free Matrix-valued Kernels

The rotation or curl of a function f = (f1, f2, f3)
T ∈ H1(R3) is

curl f := ∇× f =



∂2f3 − ∂3f2

∂3f1 − ∂1f3

∂1f2 − ∂2f1


 .

This definition can be used to state the curl for two dimensional functions. The curl

of f ∈ H1(R2) is defined by taking the cross-product of the gradient and the function

f(x1, x2) = (f1(x1, x2), f2(x1, x2), 0)
T , it follows that curl f = ∂1f2 − ∂2f1.

Let d = 2, 3. A function f ∈ H1(Rd) is called curl-free if and only if

curl f = 0.

An alternative definition states that a function f ∈ Hτ (Rd) is curl-free on Rd if and only

if there exists a function g ∈ Hτ+1(Rd)/R such that ∇g = f . This means in particular

that if the Fourier transform exists, then f̂(ω) = −iωĝ(ω).
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2 Notation and Definitions

Proposition 2.14. Let d = 2, 3 and τ ≥ 1. Then, both definitions of curl-free are

equivalent for all f ∈ Hτ (Rd).

Proof. We will show the equivalence for the three-dimensional case. The two dimensional

case can be shown similarly.

Suppose that curl f(x) = 0 for all x ∈ R3, then we have the following three equalities:

∂3f1(x) = ∂1f3(x), (2.8)

∂1f2(x) = ∂2f1(x), (2.9)

∂2f3(x) = ∂3f2(x). (2.10)

We now integrate both sides of (2.8) and receive the equivalent equality

∫ x3

−∞
∂3f1(x1, x2, t) dt = f1(x) =

∫ x3

−∞
∂1f3(x1, x2, t) dt. (2.11)

Similarly, we derive

f2(x) =

∫ x1

−∞
∂2f1(t, x2, x3) dt, (2.12)

f3(x) =

∫ x2

−∞
∂3f2(x1, t, x3) dt. (2.13)

Substituting the right hand side of (2.13) for f3 in (2.11) gives

f1(x) = ∂1

∫ x3

−∞
f3(x1, x2, t) dt = ∂1

∫ x3

−∞

(∫ x2

−∞
∂3f2(x1, s, t) ds

)
dt

= ∂1

∫ x2

−∞
f2(x1, s, x3) ds,

i. e.
∫ x3

−∞ f3(x1, x2, t) dt+ c3 =
∫ x2

−∞ f2(x1, t, x3) dt+ c2. Analogues, substituting (2.11) for

f1 in (2.12) leads to
∫ x1

−∞ f1(t, x2, x3) dt+ c1 =
∫ x3

−∞ f3(x1, x2, t) dt+ c3. Therefore

g(x) :=

∫ x1

−∞
f1(t, x2, x3) dt+ c1 =

∫ x2

−∞
f2(x1, t, x3) dt+ c2 =

∫ x3

−∞
f3(x1, x2, t) dt+ c3

satisfies f = ∇g.
Suppose now that there exists a function g ∈ Hτ+1(Rd)/R with ∇g = f . Then sub-

stituting ∂kg for fk, 1 ≤ k ≤ 3, and evaluating the cross-product gives curl f = 0, since

∂i∂jg = ∂j∂ig for all 1 ≤ i, j ≤ 3.

The second definition also gives a criterion when vector-valued function f : Rd → Rd of

dimension d ∈ N is curl-free. Due to the equivalence in the cases d = 2, 3 and the fact
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that we wish to establish an approximation scheme and its error analysis for arbitrary

dimensions, we will only use the second definition.

The following curl-free kernel was introduced by Fuselier in [17]. It is defined by

Φcurl := −∇∇Tφ, (2.14)

where φ is a sufficiently smooth, positive definite function. We give the proof of the

positive definiteness for the convenience of the reader. Before proving the main result, we

will prove the following lemma. Both proofs have been given by Fuselier in [17]. The

first proof follows from [54, Lemma 6.7].

Proposition 2.15. Suppose that U ⊆ Rd is open. Suppose, further, that x1, . . . ,xN ∈ Rd

are pair-wise distinct and that cj ∈ Cd, 1 ≤ j ≤ N . If f(ω) =
∑N

j=1 ωT cje
−ixTj ω = 0 for

all ω ∈ U then cj = 0 for all 1 ≤ j ≤ N .

Proof. One can easily see that f is analytic in U . It is indeed analytic in all of Cd.

Hence we can extend it to f : Rd → C, f(ω) =
∑N

j=1 ωT cje
−ixTj ω, by successive analytic

continuation in every component. The set of zeros of f in U has a limiting point. Therefore

we can apply the identity theorem component-wise to conclude that f is identically zero

in U , cf. [44, Theorem 15.8].

Now we take a test function g ∈W 2
1 (Rd) and can conclude from

∑N
j=1 ωT cje

−ixTj ω = 0,

ω ∈ Rd, that

0 =
N∑

j=1

ωT cje
−ixTj ω ĝ(ω)

=
N∑

j=1

cTj ωĝ(ω − xj)

= −i
N∑

j=1

cTj ∇̂g(ω − xj)

=


−i

N∑

j=1

cTj ∇g(· − xj)



∧

(ω)

for all ω ∈ Rd. This implies

N∑

j=1

cTj ∇g(x− xj) =

N∑

j=1

d∑

k=1

(cj)k∂kg(x− xj) = 0

for all x ∈ Rd and every test function g.
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2 Notation and Definitions

We now show that (ci)l = 0 for every fixed i and l. Hence ci = 0 for all i. To see

this, we choose g such that supp g ⊆ B(0, ε), where ε < minj 6=i ‖xj − xi‖2, ∂lg(0) = 1 and

∂kg(0) = 0 for all k 6= l. Since the support is less than minj 6=i ‖xj − xi‖2, we have that

∂kg(xi − xj) = 0 for all j 6= i and all k. Therefore

0 =
N∑

j=1

d∑

k=1

(cj)k∂kg(xi − xj) =
d∑

k=1

(ci)k∂kg(xi − xi) = (ci)l∂lg(0) = (ci)l,

which finishes the proof.

Lemma 2.16. Suppose φ ∈ C2(Rd) ∩W 2
1 (Rd) is a positive definite function. The kernel

defined by (2.14) is curl-free for every column. The kernel is also positive definite in

the sense of definition 2.6. Furthermore, Φcurlα and its Fourier-transform Φ̂curl(ω)α =

ωωT φ̂(ω)α are in L1(R
d) for every α ∈ Rd.

Proof. The jth column is given by Φcurlej , i. e.

Φcurlej = −∇∇Tφej = ∇(−∇T (φej)) = ∇g,

where g = −∂jφ is a scalar-valued function. By the symmetry of Φcurl, its columns are

also curl-free.

The kernel Φcurl is continuous, since φ ∈ C2(Rd). Moreover, we have

‖Φcurlα‖L1(Rd) =

∫

Rd

d∑

i=1

∣∣∣∣∣∣

d∑

j=1

(Φcurl(x))ijαj

∣∣∣∣∣∣
dx

≤
∫

Rd

d∑

i,j=1

|−∂ijφ(x)αj | dx

=
d∑

i,j=1

|αj |
∫

Rd

|∂ijφ(x)| dx <∞,

due to the fact that φ ∈ W 2
1 (Rd). Hence Φcurlα is integrable, therefore the Fourier

transform exists. Applying theorem 2.4 gives

(Φ̂curl(ω)ek)j = (−̂∇∇Tφ(ω)ek)j = ∂̂k∂jφ(ω) = ωkωjφ̂(ω),
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2 Notation and Definitions

thus Φ̂curl(ω) = ωωT φ̂(ω). Keeping this in mind, we have

‖Φ̂curlα‖L1(Rd) =

∫

Rd

d∑

k=1

∣∣∣∣∣∣

d∑

j=1

̂(Φcurl)jk(ω)αj

∣∣∣∣∣∣
dω

≤
d∑

k,j=1

|αj |
∫

Rd

∣∣∣ωjωkφ̂(ω)
∣∣∣ dω

=
d∑

k,j=1

|αj |
∫

Rd

∣∣∣∂̂k∂jφ(ω)
∣∣∣ dω <∞

since φ ∈ C2(Rd) ∩W 2
1 (Rd).

The kernel Φcurl is even and symmetric since φ is even and radial.

Let all xj ∈ Rd be pair-wise distinct and αj ∈ Rd such that not all αj are vanishing.

Applying corollary 2.5 and the Fourier transform of the kernel leads us to

N∑

j,k=1

αT
j Φcurl(xj − xk)αk = (2π)−d/2

N∑

j,k=1

αT
j

∫

Rd

Φ̂curl(ω)ei(xj−xk)
Tωdωαk

= (2π)−d/2
∫

Rd

N∑

j,k=1

αT
j ωωT φ̂(ω)αke

i(xj−xk)
Tωdω

= (2π)−d/2
∫

Rd

∥∥∥∥∥∥

N∑

j=1

ωTαje
−ixTj ω

∥∥∥∥∥∥

2

2

φ̂(ω)dω.

Note that the integral in the first two steps is applied component-wise. Since φ is positive

definite and φ ∈ C(Rd)∩L1(R
d) and with corollary 2.8, φ̂ is nonnegative. Furthermore, a

norm is always nonnegative. Together with proposition 2.15 we have that Φcurl is indeed

positive definite.
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3. Darcy’s Problem

We now establish Darcy’s problem. Since it models flow in porous media, we will start

with a brief introduction to porous media flow. Besides the definition of porous material,

we will give some real-life examples and establish the main properties. After this we will

introduce fluid flow and explain how it can be measured.

Before stating Darcy’s problem, we will establish Darcy’s law. Then we will look at the

existence, uniqueness and regularity of the partial differential equation. Finally, we will

give examples for the application of Darcy’s problem.

3.1. Fluid Dynamics in Porous Media

Porous media flow is a topic in engineering and science. It is of particular importance in

ground water hydrology, reservoir engineering, soil science, soil mechanics and chemical

engineering.

Usually the goal in fluid dynamics is to recover the velocity u of the fluid and the

pressure p. In the case of porous media flow ∇p is called the hydraulic gradient.

There are two kinds of properties, which we want to distinguish; the properties of the

media and the properties of the fluid. Both are important for the mathematical modelling

of a particular experimental set-up.

The material in the present section is taken from [6, 24].

3.1.1. Porous Media

Porous media are materials with interconnected pores with at least several continuous

paths from one side of the medium to the other. That portion of material, for example

rock, not occupied by solid matter is the void space or pore space. It contains fluids or

gases. Only connected pores can act as elementary conduits within the formation. The

porosity is the ratio of volume of the void space to the bulk volume of a porous medium.

An example for porous media is given in figure 3.1.

Oil or gas reservoirs are instances of porous media. They are porous geological forma-

tions filled with oil or gas respectively. Ground water flow is another example which is of

particular importance since 30.1% of the freshwater on Earth is found below the Earth’s
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Gravel

Void space

Sandstone

Figure 3.1: An example of porous media.

surface while more than two-thirds are frozen in glaciers, [24]. In some parts of the world,

ground water is the only freshwater source. Therefore the study of ground water flow is

essential for the water supply in those areas. Darcy’s problem is often applied in ground

water hydrology.

All water found beneath the ground surface are referred to ground water. The ground is

partitioned into four different types of layers: Aquifer, aquiclude, aquitard and aquifuge.

An aquifer is a geological formation or stratum that contains water and permits signifi-

cant amounts of water to move through it under ordinary field conditions. Often it consists

of unconsolidated or partly consolidated gravel or sand. Sandstone and conglomerate are

the consolidated equivalent to sand and gravel. In many parts of the world, limestone

formations are important aquifers. Volcanic rock may form permeable aquifers. The main

properties of an aquifer are to transmit, store and yield water.

In contrast to an aquifer, an aquiclude is a formation that may contain water, but is

incapable of letting significant amounts pass through it. An example is clay, which has high

porosity, but is relatively impervious due to small pores. Aquicludes are here considered

impervious formations.

A semi-pervious geologic formation transmitting water at a very slow rate is called

an aquitard. This layer often separates aquifers from each other, it allows water to leak

through. Impervious formations neither contain nor transmit fluid. They are referred to

as aquifuges.

If the porosity does not depend on the direction, then the material is isotropic, other-

wise the medium would be anisotropic. Consider fractured rock with mainly horizontal

fractures. The permeability in the horizontal direction is higher than in the vertical direc-

tion. Hence the rock is anisotropic, while sandstones are an example of isotropic material.

Figure 3.1 displays an anisotropic medium.

We distinguish between homogeneous and inhomogeneous porous media. Homogeneous

means that the porosity is the same at all points, i. e. independent from the position. For

example pure fine sand is homogeneous. If the medium consists of more than one kind of

material or has varying porosity, it is called inhomogeneous. Therefore virtually all natural
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3 Darcy’s Problem

materials are inhomogeneous; for instance the porous medium displayed in figure 3.1.

3.1.2. Flow in Porous Media

All fluids considered in this thesis are Newtonian fluids, i. e. the viscosity ν is independent

of the velocity u. This is true for all gases and the most common liquids. The dynamic

viscosity or absolute viscosity µ determines the dynamics of an incompressible Newtonian

fluid. Moreover, the kinematic viscosity ν of a Newtonian fluid is the dynamic viscos-

ity divided by the density, i. e. the kinematic viscosity combines the two relevant fluid

properties.

A flow is said to be incompressible, if the density of a fluid element does not change

during its motion. This means in particular that the fluid density, which is the mass of

the fluid per unit volume, is constant.

Newton’s second principle states that matter can neither be created nor destroyed. This

means that any increase or decrease in mass must be due to the flux of matter through the

surface bounding the volume. This principle is also referred to as conservation of mass.

In the case of an incompressible flow, it is given by

div u = 0.

The hydraulic conductivity indicates the ability of aquifer material to conduct water

through it under hydraulic gradients. More generally, it is the ease of fluid transportation

though the porous matrix. It is therefore a combination of the properties of the fluid, i.

e. the density and the viscosity, and of the porous medium which are the grain/pore size

and shape, tortuosity, specific surface and porosity.

An observation well or piezometer is a tool to measure porous media flow. Usually it

is a vertical pipe with a small diameter. The elevation of the fluid in the piezometer is

referred to as the piezometric or hydraulic head.

An important measure in fluid dynamics is the Reynolds number. In porous media flow,

it is given by

Re =
uD

ν
,

where ν is the kinematic viscosity, and D is some length dimension. In porous media flow,

D is usually the mean diameter of the grains. The Reynolds number gives a criterion

of the type of flow - laminar or turbulent flow. The flow is laminar if the fluid flows in

parallel layers and the layers do not interfere. However, in turbulent flow there are no such

layers.
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3 Darcy’s Problem

3.2. The Experimental Law of Darcy

In 1856, Darcy’s law has been published by the French engineer Henry Darcy. He ran a

sequence of experiments to develop design parameters for sand filters. Figure 3.2 gives a

sketch of his experimental set-up. The figure is inspired by [6]. In his apparatus Darcy
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Figure 3.2: A sketch of Darcy’s experimental set-up.

varied the length L and cross-sectional area A of a sand-packed column and also the eleva-

tions of constant-level water reservoirs connected to the upper h1 and lower h2 boundaries

of the column. Combining his observations, Darcy obtained the following relationship

U = KA
(h1 − h2)

L
, (3.1)

where U is the rate of flow, which is the volume per unit time, K is the hydraulic conduc-

tivity, and (h1 − h2)/L is called the hydraulic gradient. In figure 3.2 the piezometric head

is the level of the water in the pipes left of the filter marked by h1 and h2. Dividing both

sides of (3.1) by the cross-sectional area A gives the experimental version of Darcy’s law

u = KJ, where J :=
(h1 − h2)

L
.

The experiment of Darcy can be extended to flow through an inclined porous medium

column. Further information about Darcy’s experiment can be found in [6, 24].
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3.3. The Generalised Darcy’s Law

The experimental law of Darcy is limited to homogeneous, incompressible, one-dimensional

flow. We now give the formal generalisation to obtain Darcy’s law for d-dimensional flow

in various kinds of porous material. A detailed description and further approaches can be

found in [6].

The most obvious formal generalisation of Darcy’s law is

u = −K
ν
∇p, (3.2)

where the kinematic viscosity ν > 0 and the permeability tensor K are given and the

velocity u and the pressure p have to be determined. This version of Darcy’s law can be

obtained from the experimental version, cf. [6]. For homogeneous media, it can also be

obtained from the Navier-Stokes equations [43].

In the case of isotropic and homogeneous media, the permeability is a scalar constant,

i. e. the vectors u and ∇p are collinear. If we have inhomogeneous media, equation (3.2)

remains valid, but K := K(x) depends on the porosity of the domain.

The case of isotropic media does not appear very often in nature. Soils are for example

usually stratified, i. e. anisotropic. To model anisotropic porous media we only need to

change the permeability to a matrix-valued function K in (3.2).

3.4. Darcy’s Problem

We will incorporate the viscosity into the permeability tensor. Furthermore, we will as-

sume that the velocity field is incompressible. Then we combine Darcy’s law with the

conservation of mass. Appropriate boundary conditions are Neumann-boundary condi-

tions, which ensure that the partial differential equation is well-posed [5]. Then Darcy’s

problem or the div-grad problem can be stated in the following way

u +K∇p = f in Ω, (3.3)

∇ · u = 0 in Ω, (3.4)

u · n = g · n on ∂Ω. (3.5)

Here, n denotes the outer unit normal vector of the boundary ∂Ω ⊆ Rd. The right hand

sides f and g · n and the tensor K are given. For technical reasons, the tensor K is

supposed to be symmetric, thus K = KT , and strongly elliptic in the sense that there is
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a constant α > 0 such that

ξTK(x)ξ ≥ α‖ξ‖22, ξ ∈ Rd,x ∈ Ω. (3.6)

The velocity u : Ω→ Rd and the pressure p : Ω→ R are sought.

Darcy’s problem is equivalent to an elliptic second-order problem with Neumann bound-

ary data. This immediately follows from taking the divergence of (3.3) and incorporating

(3.4). The boundary conditions follow by taking the inner product of (3.3) with the unit

outer normal vector n of ∂Ω and to use also (3.5). In doing so, we see that (3.3)-(3.5) is

equivalent to solving

∇ · (K∇p) = f̃ := ∇ · f in Ω, (3.7)

(K∇p) · n = g̃ := (f − g) · n on ∂Ω (3.8)

and defining

u := f −K∇p. (3.9)

We have with the divergence theorem, cf. [14, Chapter 15], and (3.4) that

∫

∂Ω
g̃ dS −

∫

Ω
f̃dx =

∫

∂Ω
(f − g) · n dS −

∫

Ω
∇ · f dx

=

∫

∂Ω
g · n dS

=

∫

∂Ω
u · n dS

=

∫

Ω
div u dx

= 0,

i. e. the compatibility conditions of the Neumann problem are satisfied.

The other direction of the equivalence follows from rearranging (3.7) and (3.8) such that

f −K∇p can be replaced by u and from rearranging (3.9) for f .

3.5. Existence and Regularity

For the elliptic Neumann problem (3.7) and (3.8) the following existence and smoothness

result is well-known. For integer order τ and K = I, its proof can be found in [22, Theorem

1.10], the general integer case follows from [23] and the general fractional order case follows

by interpolation theory in Sobolev spaces. Though the result was originally derived for

weak solutions, the higher regularity assumption on the given data implies that it also
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holds for classical solutions.

Proposition 3.1. Let Ω be a bounded open subset of Rd with a Cdτe+1,1 boundary ∂Ω

and τ ≥ 0. Assume that the permeability tensor K = (Kij) satisfies (3.6), K = KT and

Kij ∈W τ+1
r (Ω). Assume further for the data that f̃ ∈W τ

r (Ω) and g̃ ∈W τ+1−1/r
r (∂Ω) for

1 < r < ∞ and
∫
∂Ω g̃ dS =

∫
Ω f̃dx. Then there exists a function p ∈ W τ+2

r (Ω)/R solving

(3.7) and (3.8), which satisfies

‖p‖W τ+2
r (Ω)/R ≤ c

{
‖f̃‖W τ

r (Ω) + ‖g̃‖
W
τ+1−1/r
r (∂Ω)

}

with a constant c = c(τ, r,Ω).

Applying this to our special situation, the existence and smoothness of the solutions of

Darcy’s problem follow.

Theorem 3.2. Let Ω be a bounded open subset of Rd with a Cdτe+1,1 boundary ∂Ω.

Assume that the data satisfies f ∈ Wτ+1
r (Ω) and g ∈ W

τ+1−1/r
r (∂Ω) for 1 < r < ∞.

Assume further, that the permeability tensor K = (Kij) satisfies (3.6), K = KT and

Kij ∈W τ+1
r (Ω). Then there exist a velocity u ∈Wτ+1

r (Ω) and a pressure p ∈W τ+2
r (Ω)/R,

solutions to (3.3)–(3.5), which satisfy

‖u‖
Wτ+1

r (Ω) + ‖p‖W τ+2
r (Ω)/R ≤ c

(
‖f‖

Wτ+1
r (Ω) + ‖g · n‖

W
τ+1−1/r
r (∂Ω)

)
.

Proof. Our assumptions on the given data immediately yield f̃ = ∇·f ∈W τ
r (Ω). Since the

boundary is also assumed to be smooth enough, we have g̃ = (f − g) ·n ∈W τ+1−1/r
r (∂Ω).

Furthermore, we have the obvious estimates ‖f̃‖W τ
r (Ω) ≤ ‖f‖Wτ+1

r (Ω) and

‖g̃‖
W
τ+1−1/r
r (∂Ω)

= ‖(f − g) · n‖
W
τ+1−1/r
r (∂Ω)

≤ ‖f‖
W

τ+1−1/r
r (∂Ω)

+ ‖g · n‖
W
τ+1−1/r
r (∂Ω)

,

where we have used the standard trace theorem for Sobolev spaces, see [57, Theorem 8.7].

From (3.9), we see that

‖u‖
Wτ+1

r (Ω) ≤ ‖f‖
Wτ+1

r (Ω) + ‖K∇p‖
Wτ+1

r (Ω)

≤ ‖f‖
Wτ+1

r (Ω) + c‖p‖W τ+2
r (Ω)/R.

This all, together with proposition 3.1, gives

‖u‖
Wτ+1

r (Ω) + ‖p‖W τ+2
r (Ω)/R ≤ ‖f‖

Wτ+1
r (Ω) + c‖p‖W τ+2

r (Ω)/R

≤ c
(
‖f‖

Wτ+1
r (Ω) + ‖g · n‖

W
τ+1−1/r
r (∂Ω)

)
,
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which is the desired estimate.

Darcy’s problem is well-posed, if only the normal velocity is prescribed at the boundary

∂Ω. This can be concluded from the equivalence to the elliptic Neumann problem (3.7)

and (3.8) which is well-posed. Therefore a unique solution of Darcy’s problem exists.

However, the pressure can only be unique up to an additive constant.

3.6. Applications and Restrictions

Darcy’s law is widely used for almost all situations involving motion of fluid through soil

or rock in the natural environment [24]. It can also be applied to describe the creeping

flow of a Newtonian fluid in porous media [6]. In ground water hydrology Darcy’s problem

is used to model and predict the ground water flow in aquifers. Unfortunately there are

some restrictions when Darcy’s law models the reality.

Firstly, Darcy’s law fails for turbulent flow. It can only be applied if the Reynolds

number for porous media, based on the average grain diameter, does not exceed 1-10,

cf. [6]. Moreover, for very high flow in very permeable material, Darcy’s law has been

found to be invalid. Darcy’s law may also fail if other forces have significant influence; for

instance acceleration can cause invalid results.

In a granular material, for instance sand, Darcy’s law is very reliable. It also models flow

in non-granular materials like clay, limestone, sandstone, and fractured crystalline well.

However, there are some restrictions on the material. Darcy’s law implies that even a very

small hydraulic gradient causes motion of the fluid. In some clays it has been observed

that below some threshold value, a small hydraulic gradient does not lead to fluid motion.

Nevertheless, in the case of unsaturated soils, Darcy’s law has been found to be valid.

To find the permeability of a medium, gas flow at low pressure is often used. This can

be modelled with Darcy’s law. Note that in this case the flow of gas is faster than one

can predict by using Darcy’s law. However, this is a well-known phenomenon in fluid

mechanics.

In the particular form of K = const · I, which refers to isotropic and homogeneous

material, Darcy’s law also plays an important role in projection methods for discretizing

the Navier-Stokes equations for incompressible Newtonian fluids [45]. For the projection

method, the Navier-Stokes equations are split into two problems. Darcy’s problem with

f = 0 and g = 0 is one of them. Both problems are solved in an iterative alternating

scheme to approximate the solution.

Furthermore, coupled free-flow and porous media flow is an important application of

Darcy’s problem since they appear often in the nature [50]. For example river beds are

usually porous media and the flow in the river and in the ground interact.
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4. Reproducing Kernel Hilbert Spaces

Before we can establish the approximation scheme for Darcy’s problem, we need to discuss

reproducing kernel Hilbert spaces in detail. These spaces provide the technical tools

required to establish the approximation scheme. Furthermore, these spaces and their

properties are essential in the error analysis.

We will start with the definition of matrix-valued reproducing kernel Hilbert spaces

and prove some general properties. After this, we introduce specific reproducing kernel

Hilbert spaces. Those spaces are Sobolev or Sobolev-like spaces, which are equipped with

a reproducing kernel.

Native spaces are reproducing kernel Hilbert spaces, which are constructed from a kernel.

Besides their definition, we study the relation between them and certain Sobolev spaces.

This includes in particular the native spaces of the divergence-free and the curl-free matrix-

valued kernels.

4.1. Hilbert Spaces with Matrix-valued Reproducing Kernels

We now give a partial survey of reproducing kernel Hilbert spaces. First of all, we will

give their definition and main properties. Then we have a look at certain examples.

4.1.1. Definition and Properties

Let Ω ⊆ Rd be non-empty. The following definition is taken from [20]. It is a generalisation

of the usual scalar-valued version, cf. [54, Definition 10.1].

Definition 4.1. Let H be a Hilbert space of vector-valued functions f : Ω → Rn. A

continuous n × n matrix-valued kernel Φ is called a reproducing kernel for H if for all

x ∈ Ω and α ∈ Rn we have

(1) Φ(·,x)α ∈ H,

(2) αT f(x) = (f ,Φ(·,x)α)H.

The following result is a vector-valued version of theorem 10.2 in [54]. The proof follows

from the proof of the scalar-valued case.
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4 Reproducing Kernel Hilbert Spaces

Theorem 4.2. Suppose that H is a Hilbert space of vector-valued functions f : Ω → Rn.

Then the following statements are equivalent:

(1) the point evaluation functionals are continuous, i. e. αT δx ∈ H∗ for all x ∈ Ω and

α ∈ Rn;

(2) H has a reproducing kernel.

Proof. Suppose that the point evaluation functionals αT δx are continuous. Then λj :=

eTj δx, 1 ≤ j ≤ n, is an element of H∗. Riesz’ representation theorem gives that we can

find for every x ∈ Ω, a Φj(·,x) : Ω→ Rn such that eTj δx(f) = (f ,Φj(·,x))H for all f ∈ H,

cf. theorem 1.12 in [2].

Let α ∈ Rn and λ = αT δx. With α =
∑n

j=1 αjej we have λ =
∑n

j=1 αjλj . Then,

λ(f) =

n∑

j=1

αjλj(f) =

n∑

j=1

αj(f ,Φj(·,x))H =


f ,

n∑

j=1

αjΦj(·,x)




H

,

but also λ(f) = (f ,gλ)H. Due to the uniqueness of the Riesz representer we can conclude

gλ =
∑n

j=1 αjΦj(·,x), thus gλ = Φ(·,x)α. Therefore the conditions of definition 4.1 are

satisfied and Φ is the reproducing kernel.

Now, suppose that H has a reproducing kernel Φ. This means that

αT δx(f) = αT f(x) = (f ,Φ(·,x)α)H

for all x ∈ Ω. Cauchy-Schwarz and the continuity of Φ yield that

|αT δx −αT δy| = sup
‖f‖H=1

|(αT δx −αT δy)(f)|

= sup
‖f‖H=1

|(f ,Φ(·,x)α)H − (f ,Φ(·,y)α)H|

= sup
‖f‖H=1

|(f ,Φ(·,x)α−Φ(·,y)α)H|

≤ ‖Φ(·,x)α−Φ(·,y)α‖H
=
(
‖Φ(·,x)α‖2H − 2(Φ(·,x)α,Φ(·,y)α)H + ‖Φ(·,y)α‖2H

)1/2

=
(
αTΦ(x,x)α− 2αTΦ(x,y)α + αTΦ(y,y)α

)1/2

goes to zero if x goes to y. Hence αT δx is continuous in x.

The following theorem gives the Riesz representer of a functional λ ∈ H∗, where H is a

vector-valued reproducing kernel Hilbert space of functions. It is the extension of theorem
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4 Reproducing Kernel Hilbert Spaces

16.7 in [54] to vector-valued spaces. The scalar case can be recovered if one chooses α := 1

and thinks about the kernel as a 1× 1-matrix.

Theorem 4.3. Suppose that H is a real, vector-valued Hilbert space of functions with

reproducing matrix-valued kernel Φ : Ω× Ω → Rn×n, where Ω ⊆ Rd is non empty. Let λ

be an element of the dual space H∗. Then λy(Φ(·,y)α) ∈ H and

λ(f) = (f , λy(Φ(·,y)α))H (4.1)

for all f ∈ H and all α ∈ Rn. Moreover,

‖λ‖H∗ = ‖λy(Φ(·,y)α)‖H. (4.2)

Proof. Riesz’ representation theorem guarantees the existence of a gλ ∈ H such that

(f ,gλ)H = λ(f) for all f ∈ H. Since fx := Φ(·,x)α is an element of H, using the

reproducing property of the kernel, we see that

λ(fx) = (fx,gλ)H = (gλ, fx)H = (gλ,Φ(·,x)α)H = αTgλ(x).

Since x is arbitrary and λy(Φ(·,y)α) = αTgλ, we obtain λy(Φ(·,y)α) ∈ H, i. e. (4.1)

holds.

We define gλ(x) such that its ith component is λy(Φ(·,y)ei), where ei is the ith unit

vector.

Note that (4.2) can be directly concluded from Riesz’ representation theorem. However,

we will show it for the convenience of the reader.

The definition of the norm in the dual space in combination with the first property and

the Cauchy Schwarz inequality gives

‖λ‖H∗ = sup
f∈H

|λ(f)|
‖f‖H

= sup
f∈H

|(f ,gλ)H|
‖f‖H

≤ sup
f∈H

‖f‖H‖gλ‖H
‖f‖H

= ‖gλ‖H,

but also

sup
f∈H

|λ(f)|
‖f‖H

≥ |λ(gλ)|
‖gλ‖H

= ‖gλ‖H.

Thus ‖λ‖H∗ = ‖gλ‖H and the Riesz representer for the functional λ is given by gλ(x).

We will denote the reproducing kernel Hilbert space with reproducing kernel φ or Φ

also by Hφ(R
d) or HΦ(Rd) respectively.
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4 Reproducing Kernel Hilbert Spaces

4.1.2. Examples

Some Sobolev spaces can be interpreted as reproducing kernel Hilbert spaces. We will

present these characterisations and introduce the related Sobolev-like space H̃τ (Rd) and

its divergence-free and curl-free subspaces. Furthermore, we will study the properties of

the introduced spaces. Note that all kernels in this section are translation invariant.

The Space Hs(Rd)

An alternative definition to the one in section 2.2.2 of Sobolev spaces on Rd uses the

Fourier transform. It can be shown that

Hs(Rd) =
{
f ∈ L2(R

d) : f̂(·)(1 + ‖ · ‖22)s/2 ∈ L2(R
d)
}
,

with the inner product

(f, g)Hs(Rd) = (2π)−d/2
∫

Rd

f̂(ω)ĝ(ω)(1 + ‖ω‖22)sdω.

Let s > d/2, then this space is a subset of C(Rd), cf. corollary 2.1. Furthermore, it can

be interpreted as the space

HKs(R
d) :=

{
f ∈ L2(R

d) :

∫

Rd

|f̂(ω)|2
K̂s(ω)

dω <∞
}
,

where Ks is defined by its Fourier transform K̂s(ω) := (1 + ‖ω‖22)−s.

Proposition 4.4. Let s > d/2. Then K̂s is integrable.

Proof. If f is radial, continuous and integrable, then

∫

Rd

f(x)dx =

∫ ∞

0

(∫

∂B(0,r)
f̃(r)dS

)
dr = cd

∫ ∞

0
rd−1f̃(r)dr,

cf. theorem 4 in [12, Appendix C3]. The integral of (1+r2)−srd−1 over a bounded domain

is finite. Since s > d/2 we have

∫ ∞

1
(1 + r2)−srd−1dr ≤ c

∫ ∞

1
r−2srd−1dr = c

∫ ∞

1
rd−2s−1 = c

[
r−2s+d

]∞
1
<∞.

Therefore we can deduce that

‖K̂s‖L1(Rd) =

∫

Rd

|(1 + ‖ω‖22)−s|dω = cd

∫ ∞

0
(1 + r2)−srd−1dr <∞,
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4 Reproducing Kernel Hilbert Spaces

i. e. the Fourier transform of K̂s exists.

In [54, Theorem 6.13] it has been proven that K̂s is positive definite and the inverse

Fourier transform is given by

Ks(x) := cs‖x‖s−d/22 Kd/2−s(‖x‖2), (4.3)

where cs = 21−s

Γ(s) is a positive constant and Kν is the modified Bessel function, see section

2.4.3. The function K̂s is positive, radial and continuous, i. e.
̂̂Ks = Ks is integrable, cf.

corollary 2.8. Therefore we can apply [54, Theorem 10.12] to conclude that HKs(R
d) =

Hs(Rd) is indeed a reproducing kernel Hilbert space with reproducing function Ks(· − x).

The Spaces Hτ (Rd), Hτ (Rd; div) and Hτ (Rd; curl)

Let τ > d/2. With the definition of Hτ (Rd), we can define the vector-valued Sobolev

space Hτ (Rd) as the tensor-product space (Hτ (Rd))d equipped with the inner product

(f ,g)Hτ (Rd) :=

d∑

j=1

(fj , gj)Hτ (Rd) = (2π)−d/2
∫

Rd

ĝ(ω)∗f̂(ω)(1 + ‖ω‖22)τdω.

This means that this space is a Hilbert space with reproducing kernel KτI, and we can

denote it by

Hτ (Rd) =

{
f ∈ L2(R

d) :

∫

Rd

‖f̂(ω)‖22(1 + ‖ω‖22)τdω <∞
}
.

We are interested in two subspaces of Hτ (Rd): The subspace of the divergence-free func-

tions and the subspace of the curl-free functions. They are defined via

Hτ (Rd; div) :=
{
f ∈ Hτ (Rd) : ∇ · f = 0

}
,

Hτ (Rd; curl) :=
{
f ∈ Hτ (Rd) : There exists g ∈ Hτ+1(Rd)/R such that f = ∇g

}
.

Both spaces are equipped with the inner product of the space Hτ (Rd), so we will denote

the norm in both spaces by ‖f‖Hτ (Rd), where f is divergence-free or curl-free respectively.

This should cause no confusion.
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4 Reproducing Kernel Hilbert Spaces

The Space H̃τ (Rd)

Let τ > d/2. Then we define the space

H̃τ (Rd) :=

{
f ∈ L2(R

d) :

∫

Rd

‖f̂(ω)‖22
‖ω‖22

(1 + ‖ω‖22)τ+1dω <∞
}

equipped with the inner product

(f ,g) eHτ (Rd)
= (2π)−d/2

∫

Rd

ĝ(ω)∗f̂(ω)

‖ω‖22
(1 + ‖ω‖22)τ+1dω.

Proposition 4.5. Let τ > d/2. Then the Sobolev-like space H̃τ (Rd) is a Hilbert space

with reproducing function ψ = −∆Kτ+1. Furthermore, the space H̃τ (Rd) is a subset of

Hτ (Rd).

Proof. The space H̃τ (Rd) is identical to the space Hψ(Rd) = (Hψ(Rd))n, where ψ =

−∆Kτ+1 and

Hψ(Rd) :=



f ∈ L2(R

d) :
f̂√
ψ̂

∈ L2(R
d)



 .

Therefore it is a reproducing kernel Hilbert space if ψ is positive definite and if all functions

f ∈ Hψ(Rd) are continuous, cf. [54, Theorem 10.12].

The kernel Kτ+1 is two times differentiable, since the Bessel function Kd/2−(τ+1) is. We

have with proposition 2.9 that ψ is indeed positive definite provided its Fourier transform

ψ̂(ω) = ‖ω‖22(1 + ‖ω‖22)−(τ+1) is integrable. Since τ > d/2, this can be shown with a

similar argumentation as in the proof of proposition 4.4.

For every element f ∈ H̃τ (Rd) we have that f ∈ Hτ (Rd), since f ∈ L2(R
d) and

‖f‖2
Hτ (Rd) = (2π)−d/2

∫

Rd

‖f̂(ω)‖22(1 + ‖ω‖22)τdω

≤ (2π)−d/2
∫

Rd

(
1 +

1

‖ω‖22

)
‖f̂(ω)‖22(1 + ‖ω‖22)τdω

= (2π)−d/2
∫

Rd

1 + ‖ω‖22
‖ω‖22

‖f̂(ω)‖22(1 + ‖ω‖22)τdω

= (2π)−d/2
∫

Rd

‖f̂(ω)‖22
‖ω‖22

(1 + ‖ω‖22)τ+1dω

= ‖f‖2
eHτ (Rd)

<∞.

Thus H̃τ (Rd) is a subset of Hτ (Rd) and therefore all f ∈ H̃τ (Rd) are also continuous.
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4 Reproducing Kernel Hilbert Spaces

The Space H̃τ (Rd; div)

The space H̃τ (Rd; div) is the subspace of the divergence-free functions of H̃τ (Rd), i. e.

H̃τ (Rd; div) :=
{
f ∈ H̃τ (Rd) : ∇ · f = 0

}
⊆ Hτ (Rd; div)

equipped with the inner product (f ,g) eHτ (Rd;div)
:= (f ,g) eHτ (Rd)

. Like H̃τ (Rd) it can be

characterised as a reproducing kernel Hilbert space if τ > d/2. The kernel K̃τdiv is then

defined by its Fourier transform

̂̃Kτdiv(ω) =
(
‖ω‖22I − ωωT

)
(1 + ‖ω‖22)−(τ+1).

The inverse Fourier transform of (1 + ‖ω‖22)−(τ+1) is given by Kτ+1, see above. Lemma

2.13 establishes that the kernel is positive definite and integrable, since Kτ+1 ∈ C2(Rd) ∩
W 2

1 (Rd). We can rewrite the kernel with (4.3) such that it becomes

K̃τdiv(x) = cτ+1

(
−∆I +∇∇T

)
‖x‖τ+1−d/2

2 Kτ+1−d/2(‖x‖2)
=
(
−∆I +∇∇T

)
Kτ+1(‖x‖2).

We now study the properties of the kernel K̃τdiv and the matrix (A
X,eKτdiv

)ij := K̃τdiv(xi−
xj). These properties are of importance for the error analysis for target functions outside

the native space.

Stability of A
X,eKτdiv

The following result gives a bound for the smallest eigenvalue, it is

taken from [18]. It generalises [54, Theorem 12.3] to the matrix-valued kernel Φdiv.

Theorem 4.6. Let X ⊆ Rd be a discrete set of pair-wise distinct points. Let φ be an even

and positive definite function, which possesses a positive Fourier transform φ̂ ∈ C(Rd\0).

A lower bound for the smallest eigenvalue λmin of the matrix AX,Φdiv
is given by

λmin(AX,Φdiv
) ≥

(
σ2

16π

)(d+2)/2
M(σ)π

(4π)dΓ((d+ 2)/2)
(4.4)

for any σ > 0 satisfying

σ ≥ C̃

qX
, C̃ := 24

(
π(d+ 2)(d+ 3)d

4(d− 1)
Γ2

(
d+ 2

2

))1/(d+1)

, (4.5)

where M(σ) := inf‖ω‖2≤σ φ̂(ω), qX is the separation radius and Γ is the Gamma function.

We now look at the specific case that the kernel is K̃τdiv.
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Proposition 4.7. Let X ⊆ Rd be a discrete set of pair-wise distinct points. The lower

bound of the smallest eigenvalue of A
X,eKτdiv

is given by

λmin(AX,eKτdiv
) ≥ cdqd−2τ

X ,

where cd is a constant depending on d and qX is the separation radius.

Proof. We can find a constant c such that

K̂τ+1(ω) = (1 + ‖ω‖22)−(τ+1) ≥ c‖ω‖−2(τ+1)
2 ,

for a sufficiently large ‖ω‖2, i. e.

M(σ) = inf
‖ω‖2≤σ

K̂τ+1(ω) ≥ c inf
‖ω‖2≤σ

‖ω‖−2(τ+1)
2 ≥ cσ−2(τ+1).

Therefore we can simplify (4.4) as follows

λmin(AX,eKτcurl
) ≥

(
σ2

16π

)(d+2)/2
M(σ)π

(4π)dΓ(d+ 2)/2

≥
(
σ2

16π

)(d+2)/2
cσ−2(τ+1)π

(4π)dΓ(d+ 2)/2

=

(
1

16π

)(d+2)/2 cσd−2τπ

(4π)dΓ(d+ 2)/2

= cdσ
d−2τ

≥ cdq2τ−dX .

Due to their algebraic decay, this result also holds for Wendland functions, cf. [18].

Eigenvalues of K̃τdiv We now rewrite the kernel to enable us to find the eigenvalues. Let

ν := τ + 1− d/2. For the matrix-valued kernel K̃τdiv(x) and with (2.5) and (2.6) we have

(
K̃τdiv(x)

)
ii

= −cτ+1

d∑

k=1,k 6=i

∂kk‖x‖ν2Kν(‖x‖2)

= −cτ+1

d∑

k=1,k 6=i

[
−‖x‖ν−1

2 Kν−1(‖x‖2) + x2
k‖x‖ν−2

2 Kν−2(‖x‖2)
]

= cτ+1(d− 1)‖x‖ν−1
2 Kν−1(‖x‖2)− cτ+1‖x‖ν−2

2 Kν−2(‖x‖2)
d∑

k=1,k 6=i

x2
k
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and (
K̃τdiv(x)

)
ij

= cτ+1∂ij‖x‖ν2Kν(‖x‖2) = cτ+1xixj‖x‖ν−2
2 Kν−2(‖x‖2).

Hence we can write K̃τdiv as

K̃τdiv(x) = a(x)I + b(x)(−‖x‖22I + xxT )

with

a(x) := cτ+1(d− 1)‖x‖ν−1
2 Kν−1(‖x‖2),

b(x) := cτ+1‖x‖ν−2
2 Kν−2(‖x‖2).

The eigenvalues of a matrix A are the roots of the polynomial det(A − λI). Assume

that λ1 = a(x)− b(x)‖x‖22, then

det(K̃τdiv(x)− λ1I) = det(−b(x)xTx) = 0,

since xTx is a matrix of rank one. Thus λ1 is indeed an eigenvalue. Similarly we can see

that λ2 = a(x) is an eigenvalue; if x = 0, then

det(K̃τdiv(0)− λ2I) = det(0 · I) = 0.

If x ∈ Rd\0, then

det(K̃τdiv(x)− λ2I) = det(b(x)(xTx− ‖x‖22I)) = det

(
−b(x)‖x‖22

(
I − xTx

‖x‖22

))
= 0,

because a matrix I + wvT is singular if and only if 1 + vTw = 0, cf. [56, Lemma 2.14].

Therefore λ2 is also an eigenvalue.

The eigenvalues are therefore λ1 = a(x)−b(x)‖x‖22 with multiplicity d−1 and λ2 = a(x)

with multiplicity 1.

Upper Bound for λ(K̃τdiv) The absolute value of each eigenvalue is bounded by

Λdiv(x) := |a(x)|+ ‖x‖22|b(x)|.
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Applying lemma 2.12 and defining r := ‖x‖2 leads us to

Λdiv(x) = |cτ+1(d− 1)‖x‖ν−1
2 Kν−1(‖x‖2)|+ ‖x‖22|cτ+1‖x‖ν−2

2 Kν−2(‖x‖2)|
= cτ+1(d− 1)rν−1Kν−1(r) + cτ+1r

νKν−2(r)

≤ cτ+1(d− 1)rν−1−1/2
√

2πe−re(ν−1)2/(2r) + cτ+1r
ν−1/2

√
2πe−re(ν−2)2/(2r)

= c̃τr
ν−3/2e−r

(
(d− 1)e(ν−1)2/(2r) + re(ν−2)2/(2r)

)
,

which bounds the eigenvalues.

The Space H̃τ (Rd, curl)

The subspace of the curl-free functions of H̃τ (Rd) and its kernel are essential for the error

analysis for target functions outside the native space. Therefore we will study this space

in more detail.

The space H̃τ (Rd; curl) is the subspace of the curl-free functions of H̃τ (Rd). It is defined

by the application of the dimension-free definition of the curl, i. e.

H̃τ (Rd; curl) :=
{
f ∈ H̃τ (Rd) : There exists g ∈ Hτ+1(Rd)/R such that ∇g = f

}

with the inner product (f ,g) eHτ (Rd;curl)
:= (f ,g) eHτ (Rd)

.

Let τ > d/2. Then the space H̃τ (Rd; curl) can be characterised as a reproducing kernel

Hilbert space with reproducing kernel K̃τcurl. The kernel K̃τcurl is then defined via its Fourier

transform
̂̃Kτcurl(ω) = ωωT (1 + ‖ω‖22)−(τ+1). (4.6)

Hence, like in the divergence-free case, we obtain, with lemma 2.16 and (4.3),

Kτcurl(x) = −cτ+1∇∇T ‖x‖τ+1−d/2
2 Kτ+1−d/2(‖x‖2) = −∇∇TKτ+1,

which is a positive definite integrable kernel.

We will now give some properties of the kernel K̃τcurl and the matrix (A
X,eKτcurl

)ij =

K̃τcurl(xi − xj). The following results are required for the error analysis.

Stability of A
X,eKτcurl

The following result gives a bound for the smallest eigenvalue, it is

taken from [18]. It generalises [54, Theorem 12.3] to the matrix-valued kernel Φcurl.

Theorem 4.8. Let X ⊆ Rd be a discrete set of pair-wise distinct points. Let φ be an even

and positive definite function, which possesses a positive Fourier transform φ̂ ∈ C(Rd\0).
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A lower bound for the smallest eigenvalue λmin of the matrix AX,Φcurl
is given by

λmin(AX,Φcurl
) ≥

(
σ2

16π

)(d+2)/2
M(σ)π

(4π)dΓ((d+ 2)/2)

for any σ > 0 satisfying

σ ≥ C̃

qX
, C̃ := 24

(
π(d+ 2)(d+ 3)d

4(d− 1)
Γ2

(
d+ 2

2

))1/(d+1)

, (4.7)

where M(σ) := inf‖ω‖2≤σ φ̂(ω), qX is the separation radius and Γ is the Gamma function.

Following the same argumentation as in the proof of proposition 4.7, we see that the

lower bound of the smallest eigenvalue of A
X,eKτcurl

is given by

λmin(AX,eKτcurl
) ≥ cdq2τ−dX , (4.8)

where cd is a constant depending on d and qX is the separation radius. This bound can

also be shown for Wendland functions, cf. corollary 3 in [18].

Eigenvalues of K̃τcurl Let ν := τ + 1 − d/2. For the matrix-valued kernel K̃τcurl(x) and

with (2.5) and (2.6) we have

(
K̃τcurl(x)

)
ii

= −cτ+1∂ii‖x‖ν2Kν(‖x‖2)

= −cτ+1x
2
i ‖x‖ν−2

2 Kν−2(‖x‖2) + cτ+1‖x‖ν−1
2 Kν−1(‖x‖2)

and (
K̃τcurl(x)

)
ij

= −cτ+1∂ij‖x‖ν2Kν(‖x‖2) = −cτ+1xixj‖x‖ν−2
2 Kν−2(‖x‖2).

Hence we can write K̃τcurl as

K̃τcurl(x) = a(x)I − b(x)xxT (4.9)

with

a(x) := cτ+1‖x‖ν−1
2 Kν−1(‖x‖2), (4.10)

b(x) := cτ+1‖x‖ν−2
2 Kν−2(‖x‖2). (4.11)

Analogous to the case of the divergence-free kernel, we find eigenvalues λ1 = a(x) −
b(x)‖x‖22 with multiplicity 1 and λ2 = a(x) with multiplicity d− 1.
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Upper Bound for λ(K̃τcurl) The absolute value of each eigenvalue is bounded by

Λcurl(x) := |a(x)|+ ‖x‖22|b(x)|.

Applying lemma 2.12 and defining r = ‖x‖2 gives

Λcurl(x) = |cτ+1‖x‖ν−1
2 Kν−1(‖x‖2)|+ ‖x‖22|cτ+1‖x‖ν−2

2 Kν−2(‖x‖2)|
= cτ+1r

ν−1Kν−1(r) + r2cτ+1r
ν−2Kν−2(r)

≤ cτ+1r
ν−1−1/2

√
2πe−re

(ν−1)2

2r + r2cτ+1r
ν−2−1/2

√
2πe−re

(ν−2)2

2r

= cτ+1r
ν−3/2

√
2πe−r

(
e

(ν−1)2

2r + re
(ν−2)2

2r

)

= c̃τr
ν−3/2e−r

(
e

(ν−1)2

2r + re
(ν−2)2

2r

)
=: Λ̃τ,d(r). (4.12)

With

Λ̃′
τ,d(r) = c̃τr

ν−5/2e
(ν−1)2

2r
−r

(
ν − 3

2
− r − (ν − 1)2

2r2
+ re

−2ν+3
2r

(
ν − 1

2
− r − (ν − 2)2

2r2

))

we can see that Λ̃τ,d(r) decreases for every r > ν − 1
2 .

4.2. Native Spaces for Positive Definite Kernels

In the previous section, reproducing kernel Hilbert spaces for matrix-valued kernels were

established. We will now introduce a similar concept: The native spaces. A native space

is a reproducing kernel Hilbert space, which is constructed from a given kernel. The kernel

can be either scalar-valued or matrix-valued. After introducing the native spaces, we will

look at their relation to Sobolev spaces. Finally, we will present three examples.

4.2.1. Scalar-valued Native Spaces

The material about scalar-valued native spaces is taken from section 10.2 in [54]. Further

explanations can be found there. Here, we will just give an overview.

Let φ : Ω×Ω→ R be a positive definite kernel and Ω be a subset of Rd which contains

at least one point. Then we can define the R-linear space

Fφ(Ω) :=





N∑

j=1

αjφ(·,xj) : xj ∈ Ω, αj ∈ R




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and equip it with the bilinear form




N∑

j=1

αjφ(·,xj),
M∑

k=1

βkφ(·,yk)



φ

:=
N∑

j=1

M∑

k=1

αjβkφ(xj ,yk).

Now we can define the native space.

Definition 4.9. The native space of a positive definite kernel φ is defined to be the closure

of Fφ(Ω) with respect to the norm ‖ · ‖Nφ(Ω) := ‖ · ‖φ and will be denoted by Nφ(Ω).

If Ω = Rd and if φ is translation invariant, we have the following result. Its proof can

be found in [54, Theorem 10.12].

Theorem 4.10. Suppose that φ ∈ C(Rd) ∩ L1(R
d) is a real-valued positive definite func-

tion. Define

Hφ(R
d) :=



f ∈ C(Rd) ∩ L2(R

d) :
f̂√
φ̂

∈ L2(R
d)





and equip this space with the bilinear form

(f, g)Hφ(Rd) := (2π)−d/2


 f̂√

φ̂

,
ĝ√
φ̂




L2(Rd)

= (2π)−d/2
∫

Rd

f̂(ω)ĝ(ω)

φ̂(ω)
dω.

Then Hφ(R
d) is a real Hilbert space with inner product (·, ·)Hφ(Rd) and reproducing kernel

φ(· − ·). Hence Hφ(R
d) is the native space of φ on Rd, i. e. Hφ(R

d) = Nφ(Rd), and both

inner products coincide. In particular, every f ∈ Nφ(Rd) can be recovered from its Fourier

transform f̂ ∈ L1(R
d) ∩ L2(R

d).

Therefore we have that the reproducing kernel Hilbert space with reproducing kernel φ

is identical to the native space of φ with equivalent norms. Furthermore, this space may

be a Sobolev space. The following result comes from [54, Corollary 10.13].

Corollary 4.11. Suppose that φ ∈ C(Rd) ∩ L1(R
d) satisfies

c1(1 + ‖ω‖22)−s ≤ φ̂(ω) ≤ c2(1 + ‖ω‖22)−s, ω ∈ Rd (4.13)

with s > d/2 and two positive constants c1 ≤ c2. Then the native space Nφ(Rd) corre-

sponding to φ coincides with the Sobolev space

Hs(Rd) =
{
f ∈ L2(R

d) : f̂(·)(1 + ‖ · ‖22)s/2 ∈ L2(R
d)
}
⊂ C(Rd),

and the native space norm and the Sobolev norm are equivalent.
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4.2.2. Matrix-valued Native Spaces

The native space for matrix-valued kernels can be defined similarly to the scalar-valued

case. We follow the ideas presented in [55].

Let Ω ⊆ Rd be non-empty and Φ : Ω× Ω → Rn×n be a positive definite matrix-valued

function. Then, we can introduce the space

FΦ(Ω) :=





N∑

j=1

Φ(·,xj)αj : xj ∈ Ω,αj ∈ Rn



 ,

which can be equipped with an inner product




N∑

j=1

Φ(·,xj)αj ,

M∑

k=1

Φ(·,yk)βk




Φ

:=

N∑

j=1

M∑

k=1

αT
j Φ(xj ,yk)βk.

Definition 4.12. The native space (or reproducing kernel Hilbert space) of a positive

definite, matrix-valued kernel Φ is defined to be the closure of FΦ(Ω) with respect to

‖ · ‖NΦ(Ω) := ‖ · ‖Φ and will be denoted by NΦ(Ω).

From now on, we will assume that the kernel Φ is translation invariant. For a matrix-

valued function Φ with Φ, Φ̂ ∈ C(Rd)∩L1(R
d) we can recover the function component-wise

from its Fourier transform

Φij(x) = (2π)−d/2
∫

Rd

Φ̂ij(ω)eix
Tωdω,

where 1 ≤ i, j ≤ n, cf. corollary 2.5. Hence, for every f ∈ FΦ(Ω), i. e. f =
∑N

j=1 Φ(· −
xj)αj , we can express the norm as

‖f‖2NΦ
:= ‖f‖2Φ =

N∑

j,k=1

αT
j Φ(xj − xk)αk

= (2π)−d/2
N∑

j=1

N∑

k=1

αT
j

∫

Rd

Φ̂(ω)ei(xj−xk)
Tωdω αk

= (2π)−d/2
∫

Rd

N∑

j,k=1

αT
j Φ̂(ω)e−i(xk−xj)

Tωαk dω. (4.14)

In the special case of Φ being a diagonal matrix, with the entries φ1, . . . , φn on the

diagonal, we can interpret the native space of Φ as the tensor product space HΦ(Ω) :=

Hφ1(Ω) × . . . × Hφn(Ω). This space is a real, vector-valued Hilbert space of functions
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equipped with the inner product

(f ,g)Hφ(Ω) :=




n∑

j=1

(fj , gj)
2
Hφj (Ω)




1/2

.

If we have φ1 = . . . = φn, i. e. Φ = φI, where I is the identity matrix, we can write

HΦ(Ω) = (Hφ(Ω))n and apply the results of the scalar-valued case.

4.2.3. Examples

To establish the discretization scheme for Darcy’s problem and for its error analysis the

native spaces of the kernels Φdiv and Φcurl are essential. For the numerical examples,

the native space of Wendland functions is of importance. From now on, all kernels are

translation invariant.

The Native Space of Wendland Functions

Wendland functions are positive definite, cf. [54, Theorem 9.13]. Furthermore, they gen-

erate Sobolev spaces. The following result is taken from [54, Theorem 10.35].

Theorem 4.13. Let φd,` : R→ R denote the compactly supported radial basis function of

minimal degree that is positive definite and in C2`. Let d ≥ 3 if ` = 0. Then there exist

constants c1, c2 > 0 depending only on d and ` such that

c1(1 + ‖ω‖2)−d−2`−1 ≤ φ̂d,`(ω) ≤ c2(1 + ‖ω‖2)−d−2`−1 for all ω ∈ Rd.

This means in particular that

Nφd,`(Rd) = Hd/2+`+1/2(Rd),

i. e. the native space for these basis functions is a classical Sobolev space.

Let τ := d/2 + ` + 1/2. The Wendland functions φd,` are an element of all Sobolev
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spaces Hα(Rd) with α < d+ 2`+ 1− d/2. This can be seen from

‖φd,`‖Hα(Rd) = (2π)−d/2
∫

Rd

|φ̂d,`(ω)|2(1 + ‖ω‖22)αdω

≤ c
∫

Rd

(1 + ‖ω‖2)−4τ (1 + ‖ω‖22)αdω

≤ c
∫ ∞

0
(1 + r)−4τ (1 + r2)αrd−1dr

≤ c
∫ 1

0
r−4τ+2α+d−1dr + c

∫ ∞

1
r−4τ+2α+d−1dr,

where we applied theorem 4.13. The first integral is bounded, since a polynomial is

integrated over a bounded domain. Thus

‖φd,`‖Hα(Rd) ≤ c̃+ c

∫ ∞

1
r−4τ+2α+d−1dr = c̃+ c

[
r−4τ+2α+d

]∞
1
.

Hence the norm is less than infinity if and only if α < d+ 2`+ 1− d/2.

The Space NΦdiv
(Rd)

We now state the two main results regarding the native space for the kernel NΦdiv
(Rd).

Both were proven in [17], following from ideas presented in [54]. A shorter, straight-

forward proof has been done by Wendland in [55, Theorem 3.4, Corollary 3.5]. The

main idea for the shorter proof is to introduce the space Hψ(Rd) as the tensor-product

space (Hψ(Rd))d and apply the results of the scalar-valued case. The space Hψ(Rd) is the

one defined in theorem 4.10, where ψ = −∆φ.

Let Hψ(Rd; div) be the subspace of the divergence-free functions of Hψ(Rd).

Theorem 4.14. Suppose φ ∈ C2(Rd) ∩W 2
1 (Rd) is a positive definite function. Define

ψ = −∆φ ∈ L1(R
d) and Φdiv = (−∆I +∇∇T )φ. Then, the following relation holds:

NΦdiv
(Rd) = Hψ(Rd; div)

with identical norms. In particular, the norm on NΦdiv
(Rd) can be expressed as

‖f‖2NΦdiv
(Rd) = (2π)−d/2

∫

Rd

‖f̂(ω)‖22
‖ω‖22φ̂(ω)

dω.

Hence NΦdiv
(Rd) consists of all functions f ∈ L2(R

d) with ‖f‖NΦdiv
(Rd) <∞.

Corollary 4.15. Let τ > d/2. Suppose φ satisfies (4.13) with s = τ + 1. Define Φdiv =
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(−∆I +∇∇T )φ. Then

H̃τ (Rd; div) = NΦdiv
(Rd)

with equivalent norms.

The Space NΦcurl
(Rd)

We define the space Hψ(Rd; curl) to be the subspace of the curl-free functions of Hψ(Rd) :=

(Hψ(Rd))d. The second native space of a matrix-valued kernel we are interested in is

NΦcurl
(Rd). The proof of the next result follows ideas from the proof for the divergence-

free kernel shown in [55, Theorem 3.4].

Theorem 4.16. Suppose φ ∈ C2(Rd) ∩W 2
1 (Rd) is a positive definite function. Define

ψ = −∆φ ∈ L1(R
d) and Φcurl = −∇∇Tφ. Then, the following relation holds:

NΦcurl
(Rd) = Hψ(Rd; curl)

with identical norms. In particular, the norm on NΦcurl
(Rd) can be expressed as

‖f‖2NΦcurl
(Rd) = (2π)−d/2

∫

Rd

‖f̂(ω)‖22
‖ω‖22φ̂(ω)

dω.

Hence NΦcurl
(Rd) consists of all functions f ∈ L2(R

d) with ‖f‖NΦcurl
(Rd) <∞.

Proof. Firstly we show that the norms are identical for every f ∈ FΦcurl
(Rd), i. e. f is an

element of Hψ(Rd; curl).

Let f =
∑N

j=1 Φcurl(· − xj)αj be an arbitrary element of FΦcurl
(Rd), then

‖f‖2NΦcurl
(Rd) = (2π)−d/2

∫

Rd

N∑

j,k=1

e−i(xk−xj)
TωαT

j Φ̂curl(ω)αkdω.

Using ψ̂(ω) = ‖ω‖22φ̂(ω), Φ̂curl(ω)α = ωωT φ̂(ω)α and the Fourier representation

f̂(ω) =

N∑

j=1

e−ix
T
j ωΦ̂curl(ω)αj =

N∑

j=1

e−ix
T
j ωωωT φ̂(ω)αj ,
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allows us to compute

‖f̂(ω)‖22 =
N∑

j,k=1

e−i(xk−xj)
Tω|φ̂(ω)|2

(
ωωTαj

)T (
ωωTαk

)

= ‖ω‖22φ̂(ω)φ̂(ω)
N∑

j,k=1

e−i(xk−xj)
TωαT

j ωωTαk

= ψ̂(ω)
N∑

j,k=1

e−i(xk−xj)
TωαT

j Φ̂curl(ω)αk. (4.15)

The definition of the norm in Hψ(Rd) and (4.15) establish

‖f‖2
Hψ(Rd) = (2π)−d/2

∫

Rd

‖f̂(ω)‖22
ψ̂(ω)

dω

= (2π)−d/2
∫

Rd

N∑

j,k=1

e−i(xk−xj)
TωαT

j Φ̂curl(ω)αk dω

= ‖f‖2NΦcurl
(Rd).

Since f is a general element of FΦcurl
(Rd), we see that on FΦcurl

(Rd) ⊆ Hψ(Rd; curl) both

norms are equal. Hψ(Rd; curl) is complete and NΦcurl
(Rd) is the closure of FΦcurl

(Rd) thus

this also means NΦcurl
(Rd) ⊆ Hψ(Rd; curl) with equal norms. Suppose finally, we have an

f ∈ Hψ(Rd; curl) which is orthogonal to NΦcurl
(Rd), meaning in particular

0 = (f ,Φcurl(· − x)α)Hψ(Rd)

= (2π)−d/2
∫

Rd

f̂(ω)∗Φ̂curl(ω)α

ψ̂(ω)
e−ix

Tωdω

= (2π)−d/2
∫

Rd

f̂(ω)∗ωωTα

‖ω‖22
e−ix

Tωdω

= (2π)−d/2
∫

Rd

−iĝ(ω)ωTωωTα

‖ω‖22
e−ix

Tωdω

= (2π)−d/2
∫

Rd

(−iωĝ(ω))∗αe−ix
Tωdω

= (2π)−d/2
∫

Rd

f̂(ω)∗αe−ix
Tωdω.

Here we used the fact that f is curl-free, i. e. for every f ∈ Hψ(Rd; curl) we can find

g ∈ Hτ+1(Rd)/R such that f̂(ω) = ∇̂g(ω) = −iωĝ(ω).

Because of the definition of Hψ(Rd) = (Hψ(Rd))d, we have with theorem 4.10 that every
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component of f is integrable and continuous. Hence we can apply corollary 2.5 to recover

f . Thus

0 = (2π)−d/2
∫

Rd

f̂(ω)∗αe−ix
Tωdω = f(−x)Tα.

This proves that f is identically zero and hence Hψ(Rd; curl) = NΦcurl
(Rd).

Finally, we now establish the relation between NΦcurl
(Rd) and H̃τ (Rd; curl).

Corollary 4.17. Let τ > d/2. Suppose φ satisfies (4.13) with s = τ + 1. Define Φcurl =

−∇∇Tφ. Then

H̃τ (Rd; curl) = NΦcurl
(Rd)

with equivalent norms.

Proof. We have already proven that NΦcurl
(Rd) = Hψ(Rd; curl) and the norms are equal

provided that ψ = −∆φ, cf. theorem 4.16. Note that ψ̂(ω) = ‖ω‖22φ̂(ω).

For every f ∈ Hψ(Rd; curl) we have with (4.13) that

‖f‖2
eHτ (Rd)

= (2π)−d/2
∫

Rd

‖f̂(ω)‖22
‖ω‖22

(1 + ‖ω‖22)τ+1dω

≤ c2(2π)−d/2
∫

Rd

‖f̂(ω)‖22
‖ω‖22φ̂(ω)

dω

= c2‖f‖2Hψ(Rd) <∞.

However, for every f ∈ H̃τ (Rd; curl) we see that

‖f‖2
Hψ(Rd) = (2π)−d/2

∫

Rd

‖f(ω)‖22
‖ω‖22φ̂(ω)

dω

≤ (2π)−d/2
∫

Rd

‖f(ω)‖22
c1‖ω‖22

(1 + ‖ω‖22)τ+1dω

=
1

c1
‖f‖2

eHτ (Rd)
,

which finishes the proof.
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5. Analytically Divergence-free

Discretization Methods for Darcy’s

Problem

We will now develop the approximation scheme for Darcy’s problem. The idea of the

method is to apply optimal recovery to solve the partial differential equation. The ap-

proximating function will be built from a combined kernel. This kernel incorporates the

divergence-free kernel introduced in section 2.4.4 to model the velocity and a general

scalar-valued kernel to represent the pressure. We then discretize Darcy’s problem with

collocation via functionals.

All in all we will derive a discretization scheme for Darcy’s problem. The method

works on arbitrary geometries, in arbitrary space dimension and can be of arbitrary order.

Furthermore, it is mesh-free and produces an analytically divergence-free solution of the

velocity part.

Our scheme will follow from the framework presented in [55], where Stokes problem has

been solved. Note that parts of this chapter can also be found in [47].

5.1. Optimal Recovery to Solve Partial Differential Equations

Generalised interpolation can be applied to recover the solution of a partial differential

equation. The ideas of interpolation with radial basis functions are extended such that

not only function values are recovered, but also certain properties. For Darcy’s problem

the velocity and the pressure are sought, but only the right hand sides f and g are known

at the collocation points.

Let H be a Hilbert space and λ1, . . . , λN be linear independent functionals from the

dual space H∗ of H. Suppose that the values f1, . . . , fN are given. Then the generalised

recovery problem is to find a function s ∈ H such that λj(s) = fj for all 1 ≤ j ≤ N . The

element s is called an approximating function or generalised interpolant.

The optimal recovery problem is to find the norm-minimal function s. This means that
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the function s∗ ∈ H is sought such that

‖s∗‖H = min{‖s‖H : s ∈ H,λj(s) = fj for all 1 ≤ j ≤ N}.

Further information about generalised interpolation and the solution of partial differential

equations by collocation can be found in [54].

We now want to establish optimal recovery for vector-valued target functions, where

the approximating function is built from matrix-valued kernels.

Since f = Φ(· −y)ej belongs to NΦ(Ω), where ej is the jth unit vector, we see that the

columns of Φ and, due to the symmetry of Φ, its rows belong to NΦ(Ω). Thus, we can

define λy (Φ(x− y)) as the vector-valued function, which is generated by applying λ with

respect to y to every column of Φ, i. e. λy(Φ(x− y)) := (λy(Φ(x− y)e1), . . . , λ
y(Φ(x−

y)en))
T . The resulting vector-valued function is the Riesz representer of λ in NΦ(Ω) in

the sense of

λ(f) = (f , λy(Φ(· − y)))Φ.

Thus the following result, which is well-known in the context of scalar-valued kernels,

remains true for matrix-valued kernels [54].

Proposition 5.1. Let Ω ⊆ Rd. Suppose Φ : Rd → Rn×n is a positive definite, matrix-

valued kernel. Suppose further that λ1, . . . , λN ∈ NΦ(Ω)∗ are linearly independent and

f1, . . . , fN ∈ R are given. Then, the problem

min{‖s‖NΦ(Ω) : λj(s) = fj , 1 ≤ j ≤ N} (5.1)

has a unique solution, which has the representation

sλ =
N∑

j=1

αjλ
y
j (Φ(· − y)). (5.2)

The coefficients αj are determined via the interpolation conditions λi(sλ) = fi, 1 ≤ i ≤ N .

Finally, we state and prove two stability results.

Corollary 5.2. Under the assumptions of proposition 5.1 and if f is the function from

which the data stems, i. e. λj(f) = fj, we have

‖f − sλ‖NΦ(Ω) ≤ ‖f‖NΦ(Ω).

Moreover,

‖sλ‖NΦ(Ω) ≤ ‖f‖NΦ(Ω).
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Proof. The first part is to show that f − sλ is orthogonal to sλ. This follows from

(f − sλ, sλ)NΦ(Ω) =
N∑

j=1

αj(f − sλ, λ
y
j (Φ(· − y)))NΦ(Ω)

=
N∑

j=1

αjλj(f − sλ)

=
N∑

j=1

αj [λj(f)− λj(sλ)]

= 0,

where theorem 4.3 has been applied. Then the Pythagorean theorem gives

‖sλ‖2NΦ(Ω) + ‖f − sλ‖2NΦ(Ω) = ‖f‖2NΦ(Ω),

which finishes the proof.

5.2. Native Spaces of Combined Kernels

In the previous section we provided tools for the optimal recovery of the solution of a

partial differential equation. Before we can establish the discretization method for Darcy’s

problem, we introduce combined kernels. These kernels are used to built the approximating

function. We are also interested in their native spaces.

Instead of having u for the velocity and p for the pressure separately, we introduce the

(d + 1)-dimensional combined vector v = (u, p). To model the velocity, we will use a

divergence-free kernel. The approximating function of the pressure is built from a general

scalar-valued positive definite kernel. These two kernels are combined in one kernel to

build the approximating function for v.

Let Ω ⊆ Rd and φ, ψ : Ω× Ω→ R be positive definite kernels, where φ is at least twice

continuously differentiable. Then, we define the combined kernel

Φ̃ : Rd → R(d+1)×(d+1), Φ̃ :=

(
Φdiv 0

0 ψ

)
=: Φdiv ⊗ ψ,

where Φdiv := (−∆I +∇∇T )φ is the matrix-valued kernel introduced in section 2.4.4.

If Ω = Rd and if φ and ψ are translation invariant, then the following result establishes

the native space of Φ̃.

Theorem 5.3. Suppose φ ∈ C2(Rd) ∩ W 2
1 (Rd) is a positive definite function. Define
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5 Analytically Divergence-free Discretization Methods for Darcy’s Problem

Φdiv = (−∆I +∇∇T )φ. Let Φ̃ = Φdiv ⊗ ψ with a positive definite function ψ ∈ C(Rd) ∩
L1(R

d). Then,

NeΦ
(Rd) = NΦdiv

(Rd)×Nψ(Rd)

with norm for f = (fu, fp) given by

‖f‖2NeΦ
(Rd) = ‖fu‖2NΦdiv

(Rd) + ‖fp‖2Nψ(Rd)

= (2π)−d/2
∫

Rd

[
‖f̂u(ω)‖22
‖ω‖22φ̂(ω)

+
|f̂p(ω)|2
ψ̂(ω)

]
dω.

Proof. First of all we show that the matrix-valued function Φ̃ is positive definite in the

sense of definition 2.6. Since Φdiv and ψ are positive definite functions, the kernel Φ̃ is

continuous, even and symmetric in its arguments. Furthermore, Φ̃ is symmetric in the

usual matrix sense, due to its structure and the symmetry of Φdiv. Finally, for αj =

(βj , γj)
T ∈ Rd+1, where not all αj are vanishing and pair-wise distinct xj ∈ Rd, we have

∑

j,k=1

αT
j Φ̃(xj − xk)αk =

∑

j,k=1

αT
j

(
Φdiv 0

0 ψ

)
(xj − xk)αk

=
N∑

j,k=1

βTj Φdiv(xj − xk)βk +
N∑

j,k=1

γjγkψ(xj − xk) > 0

since Φdiv and ψ are positive definite functions. Hence Φ̃ is positive definite.

Let f =
∑N

j=1 Φ̃(·−xj)αj be an arbitrary function in FeΦ
(Rd), where FeΦ

(Rd) is defined

analogues to the space FΦ(Rd) for the kernel Φ̃, see section 4.2.2. Following the same idea

as above, we split the function f in f = (fu, fp) and therefore

‖f‖2NeΦ
(Rd) = ‖fu‖2NΦdiv

(Rd) + ‖fp‖2Nψ(Rd).

Hence, on FeΦ
(Rd) ⊆ NΦdiv

(Rd) × Nψ(Rd) both norms are equal. By completion this

means in particular that NeΦ
(Rd) ⊆ NΦdiv

(Rd)×Nψ(Rd) with equal norms. Now suppose

that there exists an f ∈ NΦdiv
(Rd)×Nψ(Rd) which is orthogonal to NeΦ

(Rd), that is

0 = (f , Φ̃(· − x)α)NΦdiv
(Rd)×Nψ(Rd)

= (fu,Φdiv(· − x)β)NΦdiv
(Rd) + γ(fp, ψ(· − x))Nψ(Rd)

= βT fu(x) + γfp(x)

for all α = (β, γ) ∈ Rd+1. Therefore we have that fu and fp are identically zero, which

finishes the proof.
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For us, it is important that for specific functions φ and ψ these native spaces coincide

with Sobolev-like spaces with equivalent norms.

Corollary 5.4. Assume φ generates Hτ+1(Rd) and ψ generates Hρ(Rd). Then,

NeΦ
(Rd) = H̃τ (Rd; div)×Hρ(Rd).

Proof. This follows directly from NeΦ
(Rd) = NΦdiv

(Rd) × Nψ(Rd) and corollary 4.15 for

the velocity part and corollary 4.11 for the pressure.

5.3. The Approximation Scheme

All tools necessary to establish the analytically divergence-free discretization method for

Darcy’s problem are now available. Thus we can apply optimal recovery to approximate

the solution of Darcy’s problem.

Firstly, we establish functionals to discretise Darcy’s problem

u +K∇p = f in Ω, (5.3)

∇ · u = 0 in Ω, (5.4)

u · n = g · n on ∂Ω (5.5)

by collocation. Due to the choice of the combined kernel Φ̃, we have that the approximation

of the velocity u is analytically divergence-free. Hence we only need to employ functionals

for (5.3) and (5.5) while (5.4) is automatically satisfied.

We pick discretization points X = {x1, . . . ,xN} ⊆ Ω in the interior and Y = {y1, . . . ,

yM} ⊆ ∂Ω on the boundary. For v := (u, p) we define the functionals

λ
(i)
j (v) = ui(xj) + (K∇p)i(xj)

= ui(xj) +
d∑

k=1

Kik(xj)∂kp(xj), 1 ≤ i ≤ d, 1 ≤ j ≤ N =: Ni (5.6)

λ
(d+1)
j (v) =

d∑

k=1

uk(yj)nk(yj), 1 ≤ j ≤M =: Nd+1. (5.7)

With these functionals the approximating function according to proposition 5.1 becomes

sv(x) :=

d+1∑

k=1

Nk∑

j=1

α
(k)
j λ

(k),y
j (Φ̃(x− y)), (5.8)

where sv = (su, sp). Here, su approximates the velocity u and sp the pressure p.
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The coefficients of the approximating function are determined via the collocation con-

ditions

λ
(i)
j (sv) = λ

(i)
j (v) = fi(xj) 1 ≤ i ≤ d, 1 ≤ j ≤ N (5.9)

λ
(d+1)
j (sv) = λ

(d+1)
j (v) = g(yj) · n(yj) 1 ≤ j ≤M. (5.10)

The following result ensures that the so defined functionals are linearly independent

which is the main assumption in lemma 5.1.

Theorem 5.5. Let Ω ⊆ Rd, with a Lipschitz boundary and K be continuous. Assume

that the generating functions φ, ψ : Rd → R are positive definite and chosen such that

NeΦ
(Rd) = H̃τ (Rd; div)×Hτ+1(Rd) with τ > d/2. Then, the approximating function sv =

(su, sp)
T from (5.8) is well-defined and uniquely determined by the collocation conditions

(5.9) and (5.10). It satisfies Lsv(xj) = f(xj) with Lv := u +K∇p and su(yj) · n(yj) =

g(yj) · n(yj). Furthermore, we have ∇ · su = 0 in Rd.

Proof. Since τ+1 > d/2+1, we have φ, ψ ∈ C2(Rd) and thus Φ̃ ∈ C(Rd). Hence, the kernel

is sufficiently smooth. Since NeΦ
is a reproducing kernel Hilbert space, the point evaluation

functionals indeed belong to its dual, cf. theorem 4.2 and corollary 5.4. Furthermore,

the Sobolev embedding theorem and the smoothness of the boundary guaranty that the

functions u, p and n are sufficiently smooth. Therefore all functionals indeed belong to

the dual of the native space. Thus, we only have to show that the functionals are linearly

independent over NeΦ
(Rd) = H̃τ (Rd; div)×Hτ+1(Rd).

Let us assume that there are coefficients α
(k)
j ∈ R such that

d+1∑

k=1

Nk∑

j=1

α
(k)
j λ

(k)
j (γ) = 0 (5.11)

for all γ ∈ NeΦ
(Rd). We will now pick a specific test function γ for every index pair (i, `).

First of all we choose γ to have compact support such that the only data site contained

in the support of this specific γ is xi, for 1 ≤ ` ≤ d, or yi, for ` = d + 1. Hence, in the

first case, (5.11) reduces to

0 =
d∑

k=1

α
(k)
i λ

(k)
i (γ) =

d∑

k=1

α
(k)
i (Lγ)k(xi).

Since we have not yet exploited the second index `, we can now modify γ such that

(Lγ)k(xi) = δk,`, which gives α
(`)
i = 0. Since we can do the same in the case ` = d + 1,

we see that all coefficients have to be zero, showing that the functionals are linearly

independent.
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This establishes the desired approximation scheme for Darcy’s problem.

5.4. The Two Dimensional Scheme

To clarify the approximation scheme introduced in the previous section, we now give details

about the two dimensional case. Let X = {x1, . . . ,xN} ⊆ Ω and Y = {y1, . . . ,yM} ⊆ ∂Ω

be the collocation points, where Ω ⊆ R2.

First of all we need to work out the combined kernel explicitly, i. e.

Φ̃ =



−∂22φ ∂12φ 0

∂12φ −∂11φ 0

0 0 ψ




for sufficiently smooth, positive definite functions φ, ψ : Rd → R. For instance, Wendland

functions could be used for φ and ψ.

The next step is to work out the functionals defined in the previous section, here we

denote the inner product by simply adding a ’·’ at the end of the functional. Furthermore,

the symbol δx refers to the point-evaluation functional at the point x. Then we can denote

the functionals for Darcy’s problem via

λ
(1)
j =




δxj
0

K11(xj)δxj ◦ ∂1 +K12(xj)δxj ◦ ∂2


 , 1 ≤ j ≤ N

λ
(2)
j =




0

δxj
K12(xj)δxj ◦ ∂1 +K22(xj)δxj ◦ ∂2


 , 1 ≤ j ≤ N

λ
(3)
j = δyi ◦



n1

n2

0


 ·, 1 ≤ i ≤M.
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The approximating function is given by applying these functionals to Φ̃. Thus

sv(x) =
N∑

j=1

{
α

(1)
j λ

(1),y
j

(
Φ̃(· − y)

)
+ α

(2)
j λ

(2),y
j

(
Φ̃(· − y)

)}
+

M∑

j=1

α
(3)
j λ

(3),y
j

(
Φ̃(· − y)

)

=
N∑

j=1

α
(1)
j




−∂22φ(· − xj)

∂12φ(· − xj)

−K11(xj)∂1ψ(· − xj)−K12(xj)∂2ψ(· − xj)




+
N∑

j=1

α
(2)
j




∂12φ(· − xj)

−∂11φ(· − xj)

−K12(xj)∂1ψ(· − xj)−K22(xj)∂2ψ(· − xj)




+
M∑

j=1

α
(3)
j



−n1(yj)∂22φ(· − yj) + n2(yj)∂12φ(· − yj)

n1(yj)∂12φ(· − yj)− n2(yj)∂11φ(· − yj)

0


 .

We have the collocation conditions λ
(1)
j (sv) = f1(xj), λ

(2)
j (sv) = f2(xj) and λ

(3)
i (sv) =

g(yi) · n(yi), where 1 ≤ j ≤ N and 1 ≤ i ≤ M . To work out the α
(k)
j and with it the

approximating function, we need to solve the following linear system of equations

A




α(1)

α(2)

α(3)


 =




f1

f2

g · n


 ,

where the symmetric (2N +M)× (2N +M)-matrix

A =



A(1,1) A(1,2) A(1,3)

A(2,1) A(2,2) A(2,3)

A(3,1) A(3,2) A(3,3)




consists of nine sub-matrices. The values of those sub-matrices are given by simply apply-

ing the functionals twice to the kernel in all possible combinations. Thus the sub-matrices
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are given by

(A(1,1))ij = λ
(1),x
i

(
λ

(1),y
j (Φ̃(x− y))

)
= −∂22φ(xi − xj)−K11(xi)K11(xj)∂11ψ(xi − xj)

− (K11(xi)K12(xj) +K12(xi)K11(xj))∂12ψ(xi − xj)−K12(xi)K12(xj)∂22ψ(xi − xj)

(A(1,2))ij = (A(2,1))ji = λ
(1),x
i

(
λ

(2),y
j (Φ̃(x− y))

)

= ∂12φ(xi − xj)−K12(xi)K11(xj)∂11ψ(xi − xj)− (K12(xi)K12(xj)

+K22(xi)K11(xj))∂12ψ(xi − xj)−K22(xi)K12(xj)∂22ψ(xi − xj)

(A(2,2))ij = λ
(2),x
i

(
λ

(2),y
j (Φ̃(x− y))

)
= −∂11φ(xi − xj)−K12(xi)K12(xj)∂11ψ(xi − xj)

− (K12(xi)K22(xj) +K22(xi)K12(xj))∂12ψ(xi − xj)−K22(xi)K22(xj)∂22ψ(xi − xj),

where 1 ≤ i, j ≤ N ,

(A(1,3))ij = (A(3,1))ji = λ
(1),x
i

(
λ

(3),y
j (Φ̃(x− y))

)

= −n1(yi)∂22φ(yi − xj) + n2(yi)∂12φ(yi − xj)

(A(2,3))ij = (A(3,2))ji = λ
(2),x
i

(
λ

(3),y
j (Φ̃(x− y))

)

= n1(yi)∂12φ(yi − xj)− n2(yi)∂11φ(yi − xj),

where 1 ≤ i ≤ N , 1 ≤ j ≤M and

(A(3,3))ij = λ
(3),x
i

(
λ

(3),y
j (Φ̃(x− y))

)
= −n1(yi)n1(yj)∂22φ(yi − yj)

+ n1(yi)n2(yj)∂12φ(yi − yj) + n1(yj)n2(yi)∂12φ(yi − yj)− n2(yi)n2(yj)∂11φ(yi − yj),

where 1 ≤ i, j ≤M .

With the information above, a solver for Darcy’s problem can be implemented. An

efficient solver for linear systems of equations is required. Note that the matrix A is

symmetric positive definite, but large, fully occupied and maybe ill-conditioned. The

approximated solution is given via su for the velocity and sp for the pressure.
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6. Error Analysis

In the previous chapter the discretization scheme for Darcy’s problem has been introduced.

We now present and prove the error analysis, i. e. we want to investigate how close our

approximation is to the true solution and how well the method converges.

We will look at the difference between the true solution and the approximating function

in a Sobolev norm. We will split it into an estimate inside the domain and an estimate

on the boundary. Both will be bounded separately. The main result is then obtained by

combining these two results. The idea of the proof is to apply sampling inequalities to the

regularity result of Darcy’s problem. An extension from the domain to Rd is required to

enable us to apply the norm equivalence between the Sobolev space and the native space.

In the native space we can use the stability results.

Again, we follow the framework presented in [55]. Our error analysis can also be found

in [47].

6.1. Extension Operator

Since we mainly work on bounded domains, but use globally defined kernels we need to

extend our local functions to global ones. The extension operator enables us to apply

results from the globally defined native space. The following result is taken from [55].

Proposition 6.1. Let d = 2, 3. Let τ, ρ ≥ 0 and let Ω ⊆ Rd be a simply-connected domain

with Ck,1 boundary, where k ≥ τ is an integer. Then there exists a continuous operator

E = (Ẽdiv, ES) : Hτ (Ω; div)×Hρ(Ω) → H̃τ (Rd; div)×Hρ(Rd) such that Ev|Ω = v|Ω for

all v = (u, p) ∈ Hτ (Ω; div)×Hρ(Ω) and

‖Ẽdivu‖ eHτ (Rd)
+ ‖ESp‖Hρ(Rd) ≤ c

(
‖u‖Hτ (Ω) + ‖p‖Hρ(Ω)

)
.

The extension operator for the pressure part is the standard Stein extension operator

ES , see [48].
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6.2. Error Estimates

Our error analysis is mainly based on a ’shift’-type theorem for the analytical solution of

Darcy’s problem which is obtained from a corresponding result for elliptic problems with

Neumann boundary conditions, see sections 3.4 and 3.5.

Using the notation v = (u, p) and Lv := u +K∇p, the estimate from theorem 3.2 can

be rewritten in the form

‖u‖
W

η+1
r (Ω)

+ ‖p‖
W η+2
r (Ω)/R

≤ c
(
‖Lv‖

W
η+1
r (Ω)

+ ‖u · n‖
W
η+1−1/r
r (∂Ω)

)

for all 0 ≤ η ≤ τ and all 1 < r <∞. We will use this for v − sv instead of v, i. e.

‖u− su‖Wη+1
r (Ω)

+ ‖p− sp‖W η+2
r (Ω)/R

≤ c
(
‖L(v − sv)‖

W
η+1
r (Ω)

+ ‖(u− su) · n‖
W
η+1−1/r
r (∂Ω)

)
. (6.1)

To estimate the two terms on the right hand side of the last equation, we first observe

that we have

(Lv − Lsv)(xj) = 0, 1 ≤ j ≤ N,
(u− su) · n(yj) = 0, 1 ≤ j ≤M.

Hence, we are dealing with smooth functions, which have a large number of zeros. In

the first case we have functions defined on a bounded region of Rd, while in the second

case we are dealing with functions on a manifold. For such functions, we can apply the so

called sampling inequalities. To state them, we have to introduce a measure for the data

density on Ω and ∂Ω. In the first case we shall use the fill distance defined by

hX,Ω := sup
x∈Ω

min
xj∈X

‖x− xj‖2.

We start by estimating the first norm on the right hand side of (6.1). After this we will

give the estimate for the second norm and finish this chapter with the main result.

6.2.1. Error Estimates Inside the Domain

The following result is the first sampling inequality. It comes from [4, 41, 42], and in its

vector-valued form for fractional order Sobolev spaces from [55].

Lemma 6.2. Let 1 < r <∞, and τ, η ∈ R with τ > d/2 and 0 ≤ η ≤ τ − d(1/2− 1/r)+.

Suppose Ω ⊆ Rd is a bounded domain having a Lipschitz boundary. Let X ⊆ Ω be a

discrete set with fill distance hX,Ω sufficiently small. Assume that u ∈ Hτ (Ω) satisfies
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u|X = 0. Then we also have

‖u‖Wη
r (Ω) ≤ ch

τ−η−d(1/2−1/r)+
X,Ω ‖u‖Hτ (Ω).

Let Ω have a Ck,1 boundary, k ∈ N. Note that the boundary is also Lipschitz, i. e. C0,1,

since the first derivative is bounded and continuous.

With lemma 2.2 (1) we have that, if u ∈ Hτ (Ω) then we have for 2 ≤ r < ∞ that

u ∈W
τ−d/2+d/r
r (Ω). Hence u ∈Wρ

r(Ω), where 0 ≤ ρ ≤ τ − d(1/2 − 1/r)+. If 1 < r ≤ 2

we have with lemma 2.2 (2) that u ∈Wρ
r(Ω), where 0 ≤ ρ ≤ τ .

Now we can prove the following estimate.

Proposition 6.3. Let Ω be a bounded, simply connected, open subset of Rd with a Cdτe+1,1

boundary ∂Ω where d = 2, 3. Let permeability tensor K = Kij satisfy (3.6), K = KT and

Kij ∈ Hτ+1(Ω). Assume that the data satisfy f ∈ Hτ+1(Ω) and g ∈ Hτ+1/2(∂Ω). Suppose

that the kernel Φ̃ is chosen such that NeΦ
(Rd) = H̃τ (Rd; div) × Hτ+1(Rd) with τ > d/2.

Then, for 0 ≤ η ≤ τ − d(1/2− 1/r)+ − 1 and for 1 < r <∞ we have

‖Lv − Lsv‖Wη+1
r (Ω)

≤ chτ−η−1−d(1/2−1/r)+
X,Ω

(
‖f‖Hτ (Ω) + ‖g · n‖Hτ−1/2(∂Ω)

)
.

Proof. First of all, we have with lemma 6.2 that

‖Lv − Lsv‖Wη+1
r (Ω)

≤ chτ−η−1−d(1/2−1/r)+
X,Ω ‖Lv − Lsv‖Hτ (Ω).

To bound the norm we first extend the function v to Ev = (Ẽdivu, ESp) ∈ H̃τ (Rd; div)

×Hτ+1(Rd) and note that the generalised interpolant sv coincides with sEv on Ω. Further-

more, if we pick the representer p for the pressure such that ‖p‖Hτ+1(Ω) ≥ ‖p‖Hτ+1(Ω)/R,

i. e. c = 0 in (2.1), and use the properties of the extension operator then we have

‖Lv − Lsv‖Hτ (Ω) = ‖LEv − LsEv‖Hτ (Ω),

cf. proposition 6.1. Applying the triangle inequality to the definition of the operator L

leads to the following bound

‖Lv − Lsv‖Hτ (Ω) ≤ ‖Ẽdivu− seEdivu
‖Hτ (Ω) + ‖K(∇ESp−∇sESp)‖Hτ (Ω)

≤ ‖Ẽdivu− seEdivu
‖Hτ (Ω) + c‖ESp− sESp‖Hτ+1(Ω),

where we used the fact that the permeability tensor is bounded inH τ+1(Ω). After applying

the properties of the extension operator, we can use the norm equivalence to the native

space. In the native space we can apply the stability result given in corollary 5.2. Then,
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we go back to the Sobolev space. Thus

‖Lv − Lsv‖Hτ (Ω) ≤ ‖Ẽdivu− seEdivu
‖ eHτ (Rd)

+ c‖ESp− sESp‖Hτ+1(Rd)

≤ c‖Ev − sEv‖NeΦ
(Rd)

≤ c‖Ev‖NeΦ
(Rd)

≤ c
(
‖Ẽdivu‖ eHτ (Rd)

+ ‖ESp‖Hτ+1(Rd)

)

≤ c
(
‖u‖Hτ (Ω) + ‖p‖Hτ+1(Ω)

)

≤ c
(
‖f‖Hτ (Ω) + ‖g · n‖Hτ−1/2(∂Ω)

)
,

where theorem 3.2 has been applied in the last step.

6.2.2. Error Estimates on the Boundary

To introduce a measure on the boundary, we follow ideas from [21, 55]. Let ∂Ω = ∪Jj=1Vj ,

where Vj ⊆ ∂Ω are relatively open sets. Furthermore,

ϕj : B → Vj ,

where ϕj is a Ck,s-diffeomorphism and B = B(0, 1) denotes the unit ball in Rd−1. We will

measure the density of the points Y on ∂Ω by introducing

hY,∂Ω := max
1≤j≤J

hTj ,B

with Tj = ϕ−1
j (Y ∩ Vj) ⊆ B analogously to the definition of the fill distance. We assume

that the atlas Vj is fixed, i. e. we do not have to worry about the dependence of hY,∂Ω on

the atlas.

The standard trace theorem establishes that if u ∈ H τ (Ω) then u ∈ Hτ−1/2(∂Ω), cf.

[57, Theorem 8.7]. If τ > d/2, then this guarantees, in combination with the Sobolev

embedding theorem, that u is continuous on the boundary ∂Ω.

To find the estimate on the boundary, we need a similar result as lemma 6.2 on manifolds.

This has been done in [27] for the special case of ∂Ω being the sphere in Rd and in a more

general context in [21]. We give an extended version which also deals with non-integer

orders η, its proof can be found in [55].

Lemma 6.4. Let 1 < r < ∞ and τ = k + s > d/2. Let Ω ⊆ Rd be a bounded domain

having a Ck,s smooth boundary. Assume that Y ⊆ ∂Ω with hY,∂Ω sufficiently small.

Then there is a constant c > 0 such that for all u ∈ Hτ (Ω) with u|Y = 0 we have for
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0 ≤ η ≤ τ − 1/2− (d− 1)(1/2− 1/r)+ that

‖u‖Wη
r (∂Ω) ≤ ch

τ−1/2−η−(d−1)(1/2−1/r)+
Y,∂Ω ‖u‖Hτ (Ω).

Now, the same procedure as the one employed in the proof of proposition 6.3 leads to

the following result.

Proposition 6.5. Let d = 2, 3. Assume that Ω, K and f ,g satisfy the smoothness as-

sumptions of proposition 6.3. Suppose that the kernel Φ̃ is chosen such that NeΦ
(Rd) =

H̃τ (Rd; div)×Hτ+1(Rd) with τ > d/2. Then,

‖(u− su) · n‖
W
η+1−1/r
r (∂Ω)

≤ chτ−η−1−1/2+1/r−(d−1)(1/2−1/r)+
Y,∂Ω

(
‖f‖Hτ (Ω) + ‖g · n‖Hτ−1/2(∂Ω)

)

with c > 0 independent of u and su, where 1 < r <∞ and 0 ≤ η ≤ τ −1/2− (d−1)(1/2−
1/r)+ − 1 + 1/r.

Proof. First of all, since the boundary of Ω is Cdτe+1,1 we can see, with the embedding

theorem for Hölder spaces, that the boundary is also Ck,s, where k ∈ N0, 0 < s ≤ 1 such

that k + s = τ + 1, cf. [3, Theorem 8.6].

The domain Ω has a Cdτe+1,1 boundary, therefore the normals n ∈ Cdτe,1(∂Ω) exist

almost everywhere and can be extended to a vector field ñ ∈ Cdτe,1(Ω) with ñ|∂Ω = n, cf.

[22, section 1.1]. This means that n ∈ Hdτe(∂Ω), since its derivatives up to order dτe are

bounded and continuous and

‖n‖Hdτe(∂Ω) =
∑

|α|≤dτe

∫

∂Ω
‖Dαn(x)‖22 dx ≤ c

∑

|α|≤dτe

∫

∂Ω
dx <∞.

Similarly, we can see that ñ ∈ Hdτe(Ω).

This enables us to apply lemma 6.4 to see that

‖(u− su) · n‖
W
η+1−1/r
r (∂Ω)

≤ chτ−η−1−1/2+1/r−(d−1)(1/2−1/r)+
Y,∂Ω ‖(u− su) · ñ‖Hτ (Ω).

Then

‖(u− su) · ñ‖Hτ (Ω) ≤ ‖ñ‖Hτ (Ω)‖u− su‖Hτ (Ω) ≤ c‖u− su‖Hτ (Ω)

and, according to the proof of proposition 6.3, also

‖u− su‖Hτ (Ω) ≤ c
(
‖f‖Hτ (Ω) + ‖g · n‖Hτ−1/2(∂Ω)

)
;

our proof is complete.
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6.2.3. Main Result

Combining the results of the propositions 6.3 and 6.5 enables us to bound (6.1). Thus we

have proven our main result.

Theorem 6.6. Let Ω be a bounded, simply connected, open subset of Rd, d = 2, 3, with a

Cdτe+1,1 boundary ∂Ω. Suppose that Φ̃ is chosen such that its native space is NeΦ
(Rd) =

H̃τ (Rd; div) × Hτ+1(Rd) and the permeability tensor K = Kij satisfies (3.6), K = KT

and Kij ∈ Hτ+1(Ω). Furthermore, assume that the data satisfy f ∈ Hτ+1(Ω) and g ∈
Hτ+1/2(∂Ω), where τ > d/2. Then, the error between the true solution and the collocation

approximation can be bounded by

‖u− su‖Wη+1
r (Ω)

+ ‖p− sp‖W η+2
r (Ω)/R

≤ c
(
h
τ−η−1−d(1/2−1/r)+
X,Ω + h

τ−η−1−1/2+1/r−(d−1)(1/2−1/r)+
Y,∂Ω

)
×

×
(
‖f‖Hτ (Ω) + ‖g · n‖Hτ−1/2(∂Ω)

)

for 1 < r < ∞ and 0 ≤ η ≤ τ − d(1/2 − 1/r)+ − 1. If r ≥ 2 and h = hX,Ω ≈ hY,∂Ω this

reduces to

‖u−su‖Wη+1
r (Ω)

+‖p−sp‖W η+2
r (Ω)/R

≤ chτ−η−1−d(1/2−1/r)
(
‖f‖Hτ (Ω) + ‖g · n‖Hτ−1/2(∂Ω)

)
.

Note that the restriction of the dimension to d = 2, 3 is only necessary due to the fact

that the extension operator is only proven in those dimensions.

The proven convergence rates correspond to the expected rates for the solution of scalar-

valued problems. Furthermore, the error estimates also hold if one of the kernels φ and ψ

is smoother than the other. The result always depends on the rougher kernel.
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Outside the Native Space

In the last chapter the error analysis of the approximation scheme for Darcy’s problem has

been done. Unfortunately, these error estimates only hold for target functions within the

associated native space, i. e. the target function must satisfy smoothness conditions. We

will now present a new error analysis of the collocation methods to solve Darcy’s problem

presented in chapter 5. We will extend the results of chapter 6 to the case that the true

solution is not in the native space. In practice, these error estimates allow a more flexible

choice of the underlying basis functions. For given basis functions, the error estimates

apply to a larger class of target functions. However, there are still some smoothness

requirements on the target function depending on the space dimension d.

Recently Fuselier has proven error estimates for divergence-free and curl-free matrix-

valued radial basis function interpolants, where the target function is rougher than the

interpolant, see [17, 20]. We will follow his ideas to present new error estimates for our

approximation scheme.

The main idea is to apply band-limited functions to approximate the true solution. Thus

we will firstly introduce these functions, their properties and the function spaces of band-

limited functions. Then we will study their interpolation and approximation properties.

Finally, we will combine all results to prove the Sobolev-type approximation rates for

target functions outside the native space.

7.1. Band-limited Functions and Function Spaces

We now introduce band-limited functions and establish some of their attributes and the

associated spaces.

Let σ > 0 and B(0, σ) denote the d-dimensional ball with centre 0 and radius σ. A band-

limited function is a function fσ in L2(R
d), where the support of the Fourier transform

supp f̂σ is compact. We also require that the support of the Fourier transform is a subset

of B(0, σ). Then, the space of band-limited functions with band-width σ is

Bσ :=
{
f ∈ L2(R

d) : supp f̂ ⊆ B(0, σ)
}
.
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All functions in Bσ are analytic and therefore infinitely many times differentiable.

The concept of band-limited functions can be extended to vector-valued functions.

These are also analytic, since their components are analytic. We are interested in two

different kinds of vector-valued functions: Divergence-free and curl-free band-limited func-

tions. We define the following spaces:

Bσ :=
{
f ∈ L2(R

d) : supp f̂ ⊆ B(0, σ)
}
,

B̃σ :=

{
f ∈ Bσ :

∫

Rd

‖f̂(ω)‖22
‖ω‖22

dω <∞
}
,

B̃σdiv :=
{
f ∈ B̃σ : ωT f̂(ω) = 0

}
,

B̃σcurl :=
{
f ∈ B̃σ : There exists g ∈ L2(R

d) such that f̂(ω) = −iωĝ(ω)
}
.

Due to their smoothness, band-limited functions are in most native spaces. However,

we are in particular interested in the space H̃τ (Rd; div)×Hρ(Rd).

Corollary 7.1. Let σ = (σu, σp) ≥ 1. If the norm is defined by ‖vσ‖ eBσudiv×B
σp :=

‖vσ‖ eHτ (Rd)×Hρ(Rd)
for all τ, ρ ≥ d/2, then the band-limited space B̃σudiv × Bσp is a sub-

space of H̃τ (Rd; div)×Hρ(Rd).

Proof. Let vσ = (uσ, pσ) ∈ B̃σudiv × Bσp . We will omit the second sub-index and write uσ

and pσ respectively. This should cause no confusion.

By definition, every band-limited function is in L2(R
d). Moreover, they are continuous,

due to the fact that they are analytic. Thus we only need to show that the norm of vσ in

the space H̃τ (Rd; div)×Hρ(Rd) is finite.

Using fact that NeΦ
(Rd) = H̃τ (Rd; div)×Hρ(Rd) and the norm equivalence, see corollary

5.4, we see that

‖vσ‖2eHτ (Rd)×Hρ(Rd)
= (2π)−d/2

[∫

Rd

‖ûσ(ω)‖22
‖ω‖22

(1 + ‖ω‖22)τdω +

∫

Rd

|p̂σ(ω)|2(1 + ‖ω‖22)ρdω
]

= (2π)−d/2

[ ∫

‖ω‖2≤σu

‖ûσ(ω)‖22
‖ω‖22

(1 + ‖ω‖22)τdω +

∫

‖ω‖2≤σp

|p̂σ(ω)|2(1 + ‖ω‖22)ρdω
]
,

where we used the fact that the Fourier transform is compactly supported. For all ‖ω‖2 ≤
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σ we have (1 + ‖ω‖22)β ≤ (1 + σ2)β . Thus

‖vσ‖2eHτ (Rd)×Hρ(Rd)
≤ c(2π)−d/2

[∫

‖ω‖2≤σu

‖ûσ(ω)‖22
‖ω‖22

dω +

∫

‖ω‖2≤σp

|p̂σ(ω)|2dω
]

≤ c(2π)−d/2
[∫

Rd

‖ûσ(ω)‖22
‖ω‖22

dω +

∫

Rd

|p̂σ(ω)|2dω
]
.

The definition of B̃σudiv gives us that

∫

Rd

‖ûσ(ω)‖22
‖ω‖22

dω <∞

and therefore that the first integral is finite. Since p ∈ L2(R
d) we can apply Plancharel’s

theorem, see [54, Corollary 5.25]. Therefore we can conclude

∫

Rd

|p̂σ(ω)|2dω = (2π)d/2‖p̂σ‖2L2(Rd) = (2π)d/2‖pσ‖2L2(Rd),

i. e. the second integral is also finite.

Let τ ≥ β ≥ 0 and σ ≥ 1. Then we have

(1 + ‖ω‖22)τ−β ≤ (1 + σ2)τ−β ≤ 2τ−βσ2(τ−β)

for all ω with ‖ω‖2 ≤ σ. Hence, for every band-limited function fσ ∈ Bσ we have

‖fσ‖2Hτ (Rd) = (2π)−d/2
∫

‖ω‖2≤σ
‖fσ(ω)‖22(1 + ‖ω‖22)τdω

= (2π)−d/2
∫

‖ω‖2≤σ
‖fσ(ω)‖22(1 + ‖ω‖22)β(1 + ‖ω‖22)τ−βdω

≤ 2τ−βσ2(τ−β)‖fσ‖2Hβ(Rd). (7.1)

This inequality is called the Bernstein inequality.

7.2. Band-limited Interpolation and Approximation

We now review and establish certain interpolation and approximation results of band-

limited functions.

The distance between an element y of a space Y and a subspace V of Y is defined by

distY(y,V) := inf
v∈V
‖y − v‖Y .
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The next result is central for those following. We only state it, its proof can be found

in [40].

Proposition 7.2. Let Y be a (possibly complex) Banach space, V be a subspace of Y, and

Z∗ be a finite dimensional subspace of Y∗, the dual of Y. If for every λ∗ ∈ Z∗ and some

β > 1, β independent of λ∗,

‖λ∗‖Y∗ ≤ β‖λ∗|V‖V∗ ,

then for y ∈ Y there exists v ∈ V such that v interpolates y on Z∗; that is, λ∗(y) = λ∗(v)

for all λ∗ ∈ Z∗. In addition, v approximates y in the sense that

‖y − v‖Y ≤ (1 + 2β) distY(y,V).

The following lemma was proven by Fuselier in [20, Lemma 1]. It shows that every

f ∈ H̃τ (Rd; div) can be approximated by a band-limited function fσ ∈ B̃σdiv. We give a

slightly extended version, since we need it for functions in H̃τ (Rd; div)×Hρ(Rd).

Lemma 7.3. Let τ ≥ β ≥ 0 and σ > 0. For every f ∈ H̃τ (Rd; div) exists a function

gσ ∈ B̃σdiv with

‖f − gσ‖ eHβ(Rd)
≤ σβ−τ‖f‖ eHτ (Rd)

.

Moreover, for every f ∈ Hτ (Rd) exists a function gσ ∈ Bσ with

‖f − gσ‖Hβ(Rd) ≤ σβ−τ‖f‖Hτ (Rd).

Proof. Let χσ be the characteristic function of the ball B(0, σ). We define gσ by ĝσ := f̂χσ.

Then we have that gσ = f ∗ ∨χσ, and therefore ∂jgσ = ∂jf ∗
∨
χσ, cf. theorem 2.4. Thus

div gσ = 0, since f is divergence-free.

The definition of gσ implies that f̂ − ĝσ is zero inside the ball B(0, σ). Therefore

‖f − gσ‖2eHβ(Rd)
= (2π)−d/2

∫

Rd

‖(f̂ − ĝσ)(ω)‖22
‖ω‖22

(1 + ‖ω‖22)β+1dω

= (2π)−d/2
∫

‖ω‖22≥σ

‖f̂(ω)‖22
‖ω‖22

(1 + ‖ω‖22)β+1dω

= (2π)−d/2
∫

‖ω‖22≥σ

‖f̂(ω)‖22
‖ω‖22

(1 + ‖ω‖22)τ+1(1 + ‖ω‖22)β−τdω.

The assumption τ ≥ β yields

(1 + ‖ω‖22)β−τ =
1

(1 + ‖ω‖22)τ−β
≤ 1

(1 + σ2)τ−β
≤ 1

(σ2)τ−β
≤ σ2(β−τ) (7.2)
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for all ω ∈ Rd with ‖ω‖2 ≥ σ. Applying the inequality above enables us to bound the

norm by

‖f − gσ‖2eHβ(Rd)
≤ σ2(β−τ)(2π)−d/2

∫

‖ω‖22≥σ

‖f̂(ω)‖22
‖ω‖22

(1 + ‖ω‖22)τ+1dω

≤ σ2(β−τ)‖f‖2
eHτ (Rd)

.

In the last step we used the fact that the integrand is positive, i. e. the integral can be

bounded by an integral over all Rd. Taking the square roots proves the first statement.

The second part can be shown with similar arguments. We define gσ by ĝσ := f̂χσ.

With (7.2) we can conclude that

‖f − gσ‖2Hβ(Rd) = (2π)−d/2
∫

Rd

|(f̂ − ĝσ)(ω)|2(1 + ‖ω‖22)βdω

= (2π)−d/2
∫

‖ω‖2≥σ
|f̂(ω)|2(1 + ‖ω‖22)τ (1 + ‖ω‖22)β−τdω

≤ σ2(β−τ)(2π)−d/2
∫

‖ω‖2≥σ
|f̂(ω)|2(1 + ‖ω‖22)τdω

= σ2(β−τ)‖f‖2Hτ (Rd).

Taking the square roots finishes the proof.

Note that the first statement of the previous lemma would also hold for curl-free func-

tions.

The following lemma stems from lemma 2 in [20], but only the case of the divergence-

free functions was proven there. We give the proof for the curl-free case, which is following

the proof of the divergence-free case.

The separation radius of the discrete set X = {x1, . . . ,xN} is

qX =
1

2
min
j 6=k
‖xj − xk‖2.

From now on, we will assume that σ is sufficiently large, such that σ ≥ eC
qX

, where C̃ is as

in (4.5) or (4.7).

Lemma 7.4. Let d > 1. Let g =
∑N

j=1 K̃τdiv(· − xj)αj or g =
∑N

j=1 K̃τcurl(· − xj)αj,

τ > d/2, respectively and define gσ by ĝσ = ĝχσ, where χσ is the characteristic function

of the ball B(0, σ). Then, there exists a constant ς > 0, which is independent of the discrete

set X = {x1, . . . ,xN} and the αj’s, such that for σ = ς/qX the following inequality holds:

Iσ := ‖g − gσ‖ eHτ (Rd)
≤ 1

2
‖g‖ eHτ (Rd)

.
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Proof. Using the equality ĝσ(ω) = ĝ(ω) for all ω ∈ B(0, σ) we have that

I2
σ = (2π)−d/2

∫

Rd

‖ ̂(g − gσ)(ω)‖22
‖ω‖22

(1 + ‖ω‖22)τ+1dω

= (2π)−d/2
∫

‖ω‖22≥σ

‖ĝ(ω)‖22
‖ω‖22

(1 + ‖ω‖22)τ+1dω.

A change of variables ω = σω leads to

I2
σ = (2π)−d/2σd

∫

‖ω‖22≥1

‖ĝ(σω)‖22
‖σω‖22

(1 + σ2‖ω‖22)τ+1dω.

Using the properties of the Fourier transform and the definition of the kernel
̂̃Kτcurl(ω), we

can compute the Fourier transform of g, see section 2.3 and (4.6). Thus

ĝ(ω) = ωωT (1 + ‖ω‖22)−(τ+1)
N∑

j=1

e−ix
T
j ωαj .

Then the `2-norm of the Fourier transform is

‖ĝ(ω)‖22 = ‖ω‖22(1 + ‖ω‖22)−2(τ+1)
N∑

j,k=1

e−i(xk−xj)
TωαT

j ωωTαk. (7.3)

Substituting σω for ω leads to the identity

I2
σ = σd+2(2π)−d/2

∫

‖ω‖22≥1

N∑

j,k=1

e−iσ(xk−xj)
TωαT

j ωωTαk(1 + σ2‖ω‖22)−(τ+1)dω.

The idea is to bound (1+σ2‖ω‖22)−(τ+1) such that we can reformulate the right hand side

to give a bound of Iσ in terms of ‖g‖ eHτ (Rd)
on the scaled point set σX. Since ‖ω‖2 ≥ 1,

we have σ2 ≤ 2 + σ2‖ω‖22. Adding σ2‖ω‖22 and dividing both sides of the inequality by

σ2(1 + ‖ω‖22)(1 + σ2‖ω‖22) leads to the equivalent inequality

1

1 + σ2‖ω‖22
≤ 2

σ2

1

1 + ‖ω‖22
.

Raising this inequality to the (τ + 1)th power leads to the bound

1

(1 + σ2‖ω‖22)τ+1
≤ 2τ+1

σ2(τ+1)

1

(1 + ‖ω‖22)τ+1
. (7.4)

If we define γ :=
∑N

j=1 αje
ixTj ω, then we can write γ∗ωωTγ = (γ∗ω)2 ≥ 0. Therefore the
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integrand is positive and I2
σ is less than the integral over Rd. We then see with (7.4) that

I2
σ ≤ σd−2τ2τ+1(2π)−d/2

∫

‖ω‖22≥1

N∑

j,k=1

e−i(xk−xj)
T σωαT

j ωωTαk(1 + ‖ω‖22)−(τ+1)dω

≤ σd−2τ2τ+1(2π)−d/2
∫

Rd

N∑

j,k=1

e−i(xk−xj)
T σωαT

j ωωT (1 + ‖ω‖22)−(τ+1)αkdω.

Multiplying the Fourier transform
̂̃Kτcurl(ω) = ωωT (1 + ‖ω‖22)−(τ+1) with

1 =
ωTω

‖ω‖22
(1 + ‖ω‖22)τ+1−(τ+1)

gives

ωωT (1 + ‖ω‖22)−(τ+1) = ωωTωωT (1 + ‖ω‖22)−2(τ+1) (1 + ‖ω‖22)τ+1

‖ω‖22
=
(
ωωT (1 + ‖ω‖22)−(τ+1)

)∗(
ωωT (1 + ‖ω‖22)−(τ+1)

) (1 + ‖ω‖22)τ+1

‖ω‖22
=

̂̃Kτcurl

∗

(ω)
̂̃Kτcurl(ω)

(1 + ‖ω‖22)τ+1

‖ω‖22
.

Therefore

I2
σ ≤ σd−2τ2τ+1(2π)−d/2

N∑

j,k=1

∫

Rd

e−i(σxk−σxj)
TωαT

j
̂̃Kτcurl

∗

(ω)
̂̃Kτcurl(ω)αk

(1 + ‖ω‖22)τ+1

‖ω‖22
dω.

The properties of the Rayleigh-quotient establish that for every matrix A and every vector

x 6= 0 we have that λmin ≤ xTAx
xTx

≤ λmax. Let ΛσX,A be the maximal eigenvalue of the

matrix (AσX)ij = K̃τcurl(σxi − σxj), 1 ≤ i, j ≤ N . Applying the definition of the inner

product in H̃τ (Rd) and the reproducing property leads to

I2
σ ≤ σd−2τ2τ+1

N∑

j,k=1

(2π)−d/2
∫

Rd

(
̂̃Kτcurl(ω − σxj)αj

)∗
̂̃Kτcurl(ω − σxk)αk

(1 + ‖ω‖22)τ+1

‖ω‖22
dω

= σd−2τ2τ+1
N∑

j,k=1

(
K̃τcurl(· − σxk)αk, K̃τcurl(· − σxj)αj

)
eHτ (Rd)

= σd−2τ2τ+1
N∑

j,k=1

αT
j K̃τcurl(σxj − σxk)αk

≤ σd−2τ2τ+1ΛσX,A‖α‖22,

73



7 Error Estimates for Target Functions Outside the Native Space

where αT = (αT
1 , . . . ,α

T
N ).

We now bound ‖α‖2 in terms of ‖g‖ eHτ (Rd)
by using a lower bound of the smallest

eigenvalue of the block matrix AX , where (AX)ij = K̃τcurl(xi − xj) for all 1 ≤ i, j ≤ N .

After this we establish a bound for ΛσX,A, which will finish the proof.

The lower bound of the smallest eigenvalue of AX is given by (4.8) in the form cdq
2τ−d
X ≤

λmin(AX). With (7.3) and following the same idea as above we can conclude

‖g‖2
eHτ (Rd)

= (2π)−d/2
∫

Rd

‖ĝ(ω)‖22
‖ω‖22

(1 + ‖ω‖22)τ+1dω

= (2π)−d/2
∫

Rd

N∑

j,k=1

ei(xk−xj)
TωαT

j ωωTαk(1 + ‖ω‖22)−(τ+1)dω

=
N∑

j,k=1

αT
j K̃τcurl(xj − xk)αk

= αTAXα.

We then have

cdq
2τ−d
X ‖α‖22 ≤ ‖g‖2eHτ (Rd)

and therefore

‖α‖22 ≤ c−1
d qd−2τ

X ‖g‖2
eHτ (Rd)

.

All in all we obtain the bound

I2
σ ≤ σd−2τ2τ+1ΛσX,Ac

−1
d qd−2τ

X ‖g‖2
eHτ (Rd)

,

where ΛσX,A denotes the maximal eigenvalue of AσX . Since the set σX has the separation

radius qσX = σqX , we will now show that we can choose σ such that ΛσX,A is uniformly

bounded.

Let ξT = (ξT1 , . . . , ξ
T
N ) ∈ RdN be the unit eigenvector of AσX ∈ RdN×dN associated with

ΛσX,A and let ξj ∈ Rd be the jth d-components of ξ. We have K̃τcurl(x) = a(x)I−b(x)xxT ,

i. e. K̃τcurl(0) = 0, cf. (4.9) and (4.10). In combination with the definition of AσX and the

triangle inequality we have the bound

ΛσX,A = ξTAσXξ ≤

∣∣∣∣∣∣

N∑

j,k=1

ξTj K̃τcurl(σxj − σxk)ξk

∣∣∣∣∣∣
≤
∑

j 6=k

|ξTj K̃τcurl(σxj − σxk)ξk|.

For every symmetric matrix A and vector x we have

‖Ax‖22 = xTATAx ≤ λmax(A
TA)‖x‖22 = λmax(A)2‖x‖22,
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i. e. ‖Ax‖2 ≤ |λmax(A)| ‖x‖2. Since ξ is a unit vector, we have ‖ξj‖2 ≤ 1. Applying this

and the Cauchy-Schwarz inequality leads to

ΛσX,A ≤
∑

j 6=k

‖ξj‖2‖K̃τcurl(σxj − σxk)ξk‖2

≤
∑

j 6=k

‖ξj‖2|ΛeKτcurl
(σxj − σxk)| ‖ξk‖2

≤
∑

j 6=k

|ΛeKτcurl
(σxj − σxk)|

≤
∑

j 6=k

Λ̃τ,d(σxj − σxk),

where ΛeKτcurl
denotes the maximal eigenvalue of K̃τcurl and Λ̃τ,d is the upper bound of Λ eKτcurl

which is defined in (4.12).

In [37, Equation 4.11], the following bound has been proven

∑

j 6=k

f̃(‖xj − xk‖2) ≤ 3d
∞∑

m=1

md−1κ ef,m
,

where f̃ is a scalar-valued function on Rd and

κ ef,m
:= sup

{
|f̃(‖x‖2)| : mqX ≤ ‖x‖2 ≤ (m+ 1)qX

}
.

For f̃ := Λ̃τ,d the supremum is κeΛτ,d,m
= Λ̃τ,d(mσqX), since Λ̃τ,d is positive and decreasing

for σqX ≥ ν − 1/2. To establish the lower bound for the eigenvalue, we had to assume

that σ ≥ eC
qX

, i. e. σqX ≥ C̃. With C̃ > 1 for all d > 1 we have σqX ≥ 1. Since Λ̃τ,d is

decreasing, Λ̃τ,d(mσqX) ≤ Λ̃τ,d(m). In combination we can conclude

ΛσX,A ≤ 3d
∞∑

m=1

md−1Λ̃τ,d(mσqX)

≤ 3d
∞∑

m=1

md−1Λ̃τ,d(m).

The ratio test gives that the series is convergent, since Λ̃τ,d is decreasing. Therefore it can

be bounded by a constant Cd,τ depending on d and τ only. From this bound it follows

that

I2
σ ≤ 2τ+1c−1

d Cd,τ (σqX)d−2τ‖g‖2
eHτ (Rd)

.

Now we choose σqX = ς large enough that the factor in front of ‖g‖2
eHτ (Rd)

is less than

1/4. Taking the square roots finishes the proof.
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Let Ω ⊆ Rd with a Cdτe+1,1 boundary and denote the normals of Ω by n. Let X =

{x1, . . . ,xN} ⊆ Ω and Y = {y1, . . . ,yM} ⊆ ∂Ω be discrete sets. As in the previous

chapter, we combine the velocity and pressure in a vector v = (u, p). Again, we describe

Darcy’s problem with the operator Lv := u+K∇p, where Kij ∈ Hρ(Rd) for all 1 ≤ i, j ≤
d.

We now state and prove the main result of this section, which is central for the proof of

the error estimate. It guarantees the existence of a band-limited function, which approxi-

mates the true solution of Darcy’s problem and also gives a bound for the error.

Theorem 7.5. Let τ , ρ, t, r ∈ R with τ > d/2, ρ > d/2 + 1 and t, r ≥ 0. Given

v = (u, p) ∈ H̃τ (Rd; div)×Hρ(Rd) and discrete point sets X and Y with separation radius

q := qX∪Y , then there exists a function vσ ∈ B̃σudiv × Bσp such that

Lv|X = Lvσ|X , u · n|Y = uσ · n|Y

and

‖v − vσ‖ eHτ (Rd)×Hρ(Rd)
≤ 5 dist eHτ (Rd;div)×Hρ(Rd)

(v, B̃σudiv × Bσp)

≤ 5
(
σ−2t
u ‖u‖2

eHτ+t(Rd)
+ σ−2r

p ‖p‖2Hρ+r(Rd)

)1/2
.

Proof. The main idea for proving this statement is to apply proposition 7.2 with

Y := H̃τ (Rd; div)×Hρ(Rd), V := B̃σudiv × Bσp

and Z∗ := span{Z∗X ∪ Z∗Y } with

Z∗X :=
{
λ(v) = αTu(x) + αTK(x)∇p(x) : x ∈ X, v = (u, p) ∈ Y,α ∈ Rd

}

Z∗Y :=
{
λ(v) = αn(x)Tu(x) : x ∈ Y, v = (u, p) ∈ Y, α ∈ R

}
.

Before applying proposition 7.2 we need to check that the assumptions are satisfied.

Corollary 5.4 shows that Y is a Hilbert space, therefore it is indeed a Banach space.

Furthermore, V is a subspace of Y, cf. corollary 7.1.

Due to the fact that Z∗ is generated by a finite number of elements it is indeed finite

dimensional. Every λ ∈ Z∗ is obviously linear. Since Y is a reproducing kernel Hilbert

space, the point evaluation functionals are in Y∗, see theorem 4.2. Furthermore, corollary

2.1 gives that for every v ∈ Y, u is continuous and p is at least once continuous differen-

tiable since τ > d/2 and ρ > d/2 + 1, i. e. ∇p is also continuous. The Sobolev embedding

theorem guarantees that K is also continuous, since ρ > d/2 + 1. Moreover, the normals

are continuous, since the boundary is Lipschitz. Therefore we have that all functionals
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λ ∈ Z∗ are indeed continuous.

We will now show that for every λ ∈ Z∗ we have

‖λ‖Y∗ ≤ 2‖λ|V‖V∗ . (7.5)

First of all, we will calculate the Riesz representer and express the norms of the dual space

in terms of the original space. Then we can bound ‖λ‖Y∗ and show that (7.5) holds.

Let xN+j := yj for all 1 ≤ j ≤ M . Let f = (fu, fp) ∈ Y. We pick an arbitrary element

λ ∈ Z∗, which can be written as

λ(f) =
N∑

j=1

αT
j [fu(xj) +K(xj)∇fp(xj)] +

N+M∑

j=N+1

αjn(xj)
T fu(xj),

for all f = (fu, fp) ∈ Y, where αj ∈ Rd for 1 ≤ j ≤ N and αj ∈ R for N < j ≤ N +M . If

we define

γj :=





αj , if 1 ≤ j ≤ N
αjn(xj), if N < j ≤ N +M

and ζj := αT
j K(xj) then we can write the functional as λ(f) := λu(fu) + λp(fp), where

λu(fu) :=
∑N+M

j=1 γTj fu(xj) and λp(fp) :=
∑N

j=1 ζTj ∇fp(xj).
The reproducing function of the space H̃τ (Rd; div)×Hρ(Rd) is given by

K eHτ (Rd;div)×Hρ(Rd)
(x,y) :=

(
K̃τdiv(x− y) 0

0 Kρ(x− y)

)
,

with the inner product

(f ,g) eHτ (Rd)×Hρ(Rd)
= (fu,gu) eHτ (Rd)

+ (fp, gp)Hρ(Rd),

i. e. we can work out the Riesz representer gu and gp separately.

The reproducing property of the kernel establishes γTj fu(xj) = (fu, K̃τdiv(· − xj)γj).

Theorem 4.3 gives that λu(fu) = (fu,
∑N+M

j=1 K̃τdiv(· − xj)γj) eHτ (Rd)
, i. e.

gu :=
N+M∑

j=1

K̃τdiv(· − xj)γj with ‖λu‖2eHτ (Rd;div)∗
=

N+M∑

j,k=1

γTj K̃τdiv(xj − xk)γk.

The Riesz representer for λp(f) =
∑N

j=1 ζTj ∇f(xj) is given by gp =
∑N

j=1 ζTj ∇Kρ(·−xj)
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with λp(f) = (f, gp)Hρ(Rd), cf. theorem 4.3. Since ζTk∇p is a scalar, we have

‖λp‖2Hρ(Rd)∗ = ‖gp‖2Hρ(Rd)

=
N∑

j,k=1

ζTj ∇x

(
ζTk∇yKρ(xj − xk)

)T

=

N∑

j,k=1

ζTj ∇x∇TyKρ(xj − xk)ζk.

Altogether we see that

‖λ‖2Y∗ = ‖gλ‖2Y =
N+M∑

j,k=1

γTj K̃τdiv(xj − xk)γk +
N∑

j,k=1

ζTj ∇x∇TyKρ(xj − xk)ζk.

The next step is to show that ‖λ|V‖V∗ = ‖gσ‖Y , where gσ = (gu,σ, gp,σ) is the Riesz

representer from the band-limited space. Since V is a subspace of Y the norms are the

same for every element in V. Again let us have a look at λu first. Let f ∈ B̃σudiv and gu,σ

be defined by ĝu,σ = ĝuχσu . This gives

λu(f) = (f ,gu) eHτ (Rd)
= (2π)−d/2

∫

Rd

ĝu(ω)∗f̂(ω)

‖ω‖22
(1 + ‖ω‖22)τ+1dω

= (2π)−d/2
∫

‖ω‖22≤σu

ĝu(ω)∗f̂(ω)

‖ω‖22
(1 + ‖ω‖22)τ+1dω

= (2π)−d/2
∫

‖ω‖22≤σu

ĝu,σ(ω)∗f̂(ω)

‖ω‖22
(1 + ‖ω‖22)τ+1dω

= (2π)−d/2
∫

Rd

ĝu,σ(ω)∗f̂(ω)

‖ω‖22
(1 + ‖ω‖22)τ+1dω

= (f ,gu,σ) eHτ (Rd)
,

where we used the fact that f̂ vanishes outside the ball B(0, σu). This equality and the

same idea as in the proof of theorem 4.3 lead us to

‖λu| eBσudiv
‖
( eBσudiv)∗

= ‖λu| eBσudiv
‖ eHτ (Rd;div)∗

= ‖gu,σ‖ eHτ (Rd)
.

With a similar argumentation and gp,σ defined by ĝp,σ = ĝpχσp we see that

(f, gp)Hρ(Rd) = (f, gp,σ)Hρ(Rd)
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and

‖λp|Bσp‖Bσp∗ = ‖λp|Bσp‖Hρ(Rd)∗ = ‖gp,σ‖Hρ(Rd).

Altogether we have

‖λ|V‖2V∗ = ‖λ|V‖2Y∗
= ‖λu| eBσudiv

‖2
eHτ (Rd)∗

+ ‖λp|Bσp‖2Hρ(Rd)∗

= ‖gu,σ‖2eHτ (Rd)
+ ‖gp,σ‖2Hρ(Rd)

= ‖gλ,σ‖2Y .

Later we want to apply lemma 7.4 to bound ‖gp − gp,σ‖Hρ(Rd) by ‖gp‖Hρ(Rd). Before

doing so, we need to show that ‖gp‖Hρ(Rd) = ‖gcurl‖ eHρ−1(Rd)
and ‖gp − gp,σ‖Hρ(Rd) =

‖gcurl−gcurl,σ‖ eHρ−1(Rd;curl)
, where gcurl =

∑N
j=1 K̃

ρ−1
curl (·−xj)ζj and gp,σ, gcurl,σ are defined

by ĝp,σ = ĝpχσ and ĝcurl,σ = ĝcurlχσ respectively. Here, χσ denotes again the characteristic

function of the ball B(0, σ).

We have that K̃ρ−1
curl = −∇∇TKρ, where Kρ is the reproducing kernel of Hρ(Rd), see

section 4.1.2. Therefore

gcurl =
N∑

j=1

K̃ρ−1
curl (· − xj)ζj

= −
N∑

j=1

∇∇TKρ(· − xj)ζj

= −∇




N∑

j=1

∇TKρ(· − xj)ζj




= −∇gp.

79



7 Error Estimates for Target Functions Outside the Native Space

We are using the identities above to show

‖gcurl − gcurl,σ‖2eHρ−1(Rd)
= (2π)−d/2

∫

Rd

‖(ĝcurl − ĝcurl,σ)(ω)‖22
‖ω‖22

(1 + ‖ω‖22)ρdω

= (2π)−d/2
∫

‖ω‖2≥σp

‖ĝcurl(ω)‖22
‖ω‖22

(1 + ‖ω‖22)ρdω

= (2π)−d/2
∫

‖ω‖2≥σp

‖−̂∇gp(ω)‖22
‖ω‖22

(1 + ‖ω‖22)ρdω

= (2π)−d/2
∫

‖ω‖2≥σp

‖iωĝp(ω)‖22
‖ω‖22

(1 + ‖ω‖22)ρdω

= (2π)−d/2
∫

‖ω‖2≥σp

|ĝp(ω)|2(1 + ‖ω‖22)ρdω

= (2π)−d/2
∫

Rd

|(ĝp − ĝp,σ)(ω)|2(1 + ‖ω‖22)ρdω

= ‖gp − gp,σ‖2Hρ(Rd). (7.6)

The second identity

‖gcurl‖ eHρ−1(Rd)
= ‖gp‖Hρ(Rd) (7.7)

can be shown similarly.

For two real numbers x and y we have the inverse triangle inequality ||x| − |y|| ≤ |x−y|.
We add the term g − g and apply the inverse triangle inequality to establish

‖gσ‖ eHτ (Rd)×Hρ(Rd)
= ‖g − (g − gσ)‖ eHτ (Rd)×Hρ(Rd)

≥
∣∣∣‖g‖ eHτ (Rd)×Hρ(Rd)

− ‖g − gσ‖ eHτ (Rd)×Hρ(Rd)

∣∣∣

To bound the norm above, we apply (7.6) and (7.7) together with lemma 7.4,

‖g − gσ‖ eHτ (Rd)×Hρ(Rd)
=
(
‖gu − gu,σ‖2eHτ (Rd)

+ ‖gp − gp,σ‖2Hρ(Rd)

)1/2

=
(
‖gu − gu,σ‖2eHτ (Rd)

+ ‖gcurl − gcurl,σ‖2eHρ−1(Rd)

)1/2

≤
(

1

4
‖gu‖2eHτ (Rd)

+
1

4
‖gcurl‖2eHρ−1(Rd)

)1/2

=

(
1

4
‖gu‖2eHτ (Rd)

+
1

4
‖gp‖2Hρ(Rd)

)1/2

=
1

2
‖g‖ eHτ (Rd)×Hρ(Rd)

.
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In total we get

‖λ|V‖V∗ = ‖gσ‖ eHτ (Rd)×Hρ(Rd)

≥
∣∣∣∣‖g‖ eHτ (Rd)×Hρ(Rd)

− 1

2
‖g‖ eHτ (Rd)×Hρ(Rd)

∣∣∣∣

=
1

2
‖g‖ eHτ (Rd)×Hρ(Rd)

=
1

2
‖λ‖Y∗ .

Therefore

‖λ‖Y∗ ≤ 2‖λ|V‖V∗

for every λ ∈ Z∗, i. e. all assumptions of theorem 7.2 are satisfied with β = 2. Thus for

every v ∈ H̃τ (Rd; div)×Hρ(Rd) there exists a vσ ∈ B̃σudiv ×Bσp such that vσ interpolates

v on Z∗; that is λ(v) = λ(vσ) for all λ ∈ Z∗. In addition, vσ approximates v in the sense

that

‖v − vσ‖2Y = ‖u− uσ‖2eHτ (Rd)
+ ‖p− pσ‖2Hρ(Rd) ≤ 52 distY(v, B̃σudiv × Bσp)2.

The definition of the distance gives that

distY(v, B̃σudiv × Bσp)2 = inf
evσ∈V

{
‖u− ũσ‖2eHτ (Rd)

+ ‖p− p̃σ‖2Hρ(Rd)

}

= inf
euσ∈ eBσudiv

‖u− ũσ‖2eHτ (Rd)
+ inf

epσ∈Bσp
‖p− p̃σ‖2Hρ(Rd).

Firstly, we have a look at inf
euσ∈ eBσudiv

‖u − ũσ‖ eHτ (Rd)
. Defining uσ by ûσ = ûχσu shows,

with lemma 7.3,

inf
euσ∈ eBσudiv

‖u− ũσ‖2eHτ (Rd)
≤ ‖u− uσ‖2eHτ (Rd)

≤ σ2(τ−(τ−t))
u ‖u‖2

eHτ+t(Rd)
.

Analogously we have

inf
epσ∈Bσp

‖p− p̃σ‖2Hρ(Rd) ≤ σ2(ρ−(ρ+r))
p ‖p‖Hρ+r(Rd)

and therefore

distY(v, B̃σudiv × Bσp)2 ≤ σ
2(τ−(τ+t))
u ‖u‖2

eHτ+t(Rd)
+ σ2(ρ−(ρ+r))

p ‖p‖2Hρ+r(Rd)

≤ σ−2t
u ‖u‖2

eHτ+t(Rd)
+ σ−2r

p ‖p‖2Hρ+r(Rd).
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which finishes the proof.

Note that some modifications of the proof could lead to a result for other partial differ-

ential equations.

7.3. Error Analysis

We now state and prove the error estimates for target functions outside the native space.

Besides a similar approach as in the standard error analysis, the main idea is to find

a band-limited function vσ, which approximates the true solution. Then we can add

the term vσ − vσ to the difference between the true solution v and our approximating

function sv. With the triangle inequality the norm can be split into two. The difference

between the true solution and the band-limited function can be bounded with theorem 7.5.

The difference between the band-limited function and the approximating function can be

bounded with standard error analysis, since sv also approximates vσ and both functions

are sufficiently smooth.

Theorem 7.6. Let Ω be a bounded, simply connected, open subset of Rd, d = 2, 3, with a

Cdβe+1,1 boundary ∂Ω. Suppose that Φ̃ is chosen such that its native space is NeΦ
(Rd) =

H̃τ (Rd; div) × Hτ+1(Rd) and the permeability tensor K = Kij satisfies (3.6), K = KT

and Kij ∈ Hβ+1(Ω). Furthermore, assume that the data satisfy f ∈ Hβ+1(Ω) and g ∈
Hβ+1/2(∂Ω), where d/2 < β ≤ τ . Then, the error between the true solution and the

collocation approximation can be bounded by

‖u− su‖Wη+1
r (Ω)

+ ‖p− sp‖W η+2
r (Ω)/R

≤ c
hτ−βX,Ω + hτ−βY,∂Ω

qτ−β

(
h
β−η−1−d(1/2−1/r)+
X,Ω + h

β−η−1−1/2+1/r−(d−1)(1/2−1/r)+
Y,∂Ω

)
×

×
(
‖f‖Hβ(Ω) + ‖g · n‖Hβ−1/2(∂Ω)

)

for every 1 < r <∞ and 0 ≤ η ≤ β− d(1/2− 1/r)+− 1 and separation radius q := qX∪Y .

If r ≥ 2 and h = hX,Ω ≈ hY,∂Ω this reduces to

‖u− su‖Wη+1
r (Ω)

+ ‖p− sp‖W η+2
r (Ω)/R

≤ chβ−η−1−d(1/2−1/r)

(
h

q

)τ−β (
‖f‖Hβ(Ω) + ‖g · n‖Hβ−1/2(∂Ω)

)
.

Proof. First of all, we pick a representer p of the pressure such that ‖p‖
Wβ+2
r (Ω)

≥
‖p‖

Wβ+2
r (Ω)/R

, i. e. c = 0 in (2.1).
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Let v = (u, p). Since all norms on Rd are equivalent, we have that ‖u − su‖Wη+1
r (Ω)

+

‖p− sp‖W η+2
r (Ω)

is equivalent to ‖v − sv‖Wη+1
r (Ω)×W η+2

r (Ω)/R
.

We now apply theorem 3.2 to the difference v − sv instead of v, i. e. we see that

‖u−su‖Wη+1
r (Ω)

+‖p−sp‖W η+2
r (Ω)

≤ c
(
‖Lv − Lsv‖Wη+1

r (Ω)
+ ‖(u− su) · n‖

W
η+1−1/r
r (∂Ω)

)
,

for all 0 ≤ η ≤ β. We will bound ‖Lv − Lsv‖Wη+1
r (Ω)

and ‖(u − su) · n‖
W
η+1−1/r
r (∂Ω)

separately.

We will start with the estimate in the interior. The function Lv−Lsv has many zeros,

i. e. we can apply the sampling inequality lemma 6.2, such that

‖Lv − Lsv‖Wη+1
r (Ω)

≤ chβ−η−1−d(1/2−1/r)+
X,Ω ‖Lv − Lsv‖Hβ(Ω).

From the proof of proposition 6.3 we can see that

‖Lv − Lsv‖Hβ(Ω) ≤ c
(
‖u− su‖Hβ(Ω) + ‖p− sp‖Hβ+1(Ω)

)

≤ c‖v − sv‖Hβ(Ω)×Hβ+1(Ω). (7.8)

To bound (7.8), we apply the extension operator E to v and extend K component-wise

with Stein’s extension operator ES , see proposition 6.1. Then there exists a band-limited

function vσ which approximates the extension of v, see theorem 7.5. Adding vσ−vσ and

using the triangle inequality leads to

‖v − sv‖Hβ(Ω)×Hβ+1(Ω) = ‖Ev − sEv‖Hβ(Ω)×Hβ+1(Ω)

≤ ‖Ev − vσ‖Hβ(Ω)×Hβ+1(Ω) + ‖vσ − sEv‖Hβ(Ω)×Hβ+1(Ω). (7.9)

The first part of (7.9) can be bounded by theorem 7.5 with t, r = 0 and the properties

of the extension operator:

‖Ev − vσ‖Hβ(Ω)×Hβ+1(Ω) ≤ ‖Ev − vσ‖ eHβ(Rd)×Hβ+1(Rd)

≤ c
(
‖Ẽdivu‖ eHβ(Rd)

+ ‖ESp‖Hβ+1(Rd)

)

≤ c
(
‖u‖Hβ(Ω) + ‖p‖Hβ+1(Ω)

)

≤ c‖v‖Hβ(Ω)×Hβ+1(Ω). (7.10)

To bound the second part of (7.9) we can apply theorem 6.6 with f := Lvσ, g := uσ,

r := 2 and η := β − 1, since all functions are sufficiently smooth. The definition of vσ

provides that Lvσ = Lv on X and vσ · n = v · n on Y . Furthermore, Darcy’s problem is
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well defined, therefore sEv approximates vσ and we can define svσ := sEv. In addition, we

use the trace theorem and ‖Lvσ‖Hτ (Ω) ≤ c‖vσ‖Hτ (Ω)×Hτ+1(Ω), cf. the proof of proposition

6.3. All in all we get

‖vσ − sEv‖Hβ(Ω)×Hβ+1(Ω) ≤ c
(
hτ−βX,Ω + hτ−βY,∂Ω

)(
‖Lvσ‖Hτ (Ω) + ‖uσ · n‖Hτ−1/2(∂Ω)

)

≤ c
(
hτ−βX,Ω + hτ−βY,∂Ω

) (
‖uσ‖Hτ (Ω) + ‖pσ‖Hτ+1(Ω) + ‖uσ‖Hτ (Ω)

)

≤ c
(
hτ−βX,Ω + hτ−βY,∂Ω

)
‖vσ‖Hτ (Ω)×Hτ+1(Ω).

There exists constants ς and ς̃ such that σu = ς/qX∪Y and σp = ς̃/qX , cf. lemma 7.4 and

theorem 7.5. Without loss of generality we define σ := max{σu, σp}, since every band-

limited function f ∈ Bµ is also in Bν for all ν ≥ µ. Following the ideas of (7.1) establishes

the Bernstein inequality

‖vσ‖ eHτ (Rd)×Hτ+1(Rd)
≤ cqβ−τ‖vσ‖ eHβ(Rd)×Hβ+1(Rd)

.

Adding and subtracting Ev and applying the triangle inequality gives in combination with

(7.10) and the properties of the extension operator that

‖vσ‖ eHβ(Rd)×Hβ+1(Rd)
≤ ‖Ev − vσ‖ eHβ(Rd)×Hβ+1(Rd)

+ ‖Ev‖ eHβ(Rd)×Hβ+1(Rd)

≤ c‖v‖Hβ(Ω)×Hβ+1(Ω). (7.11)

With (7.11), we can bound the second part of (7.9) by

‖vσ − sEv‖Hβ(Ω)×Hβ+1(Ω) ≤ cqβ−τ
(
hτ−βX,Ω + hτ−βY,∂Ω

)
‖v‖Hβ(Ω)×Hβ+1(Ω).

Since q ≤ qX ≤ hX,Ω and β ≤ τ , we have that
hτ−βX,Ω +hτ−βY,∂Ω

qτ−β
is greater than or equal to one.

Combining the above inequalities and applying theorem 3.2 gives

‖Lv − Lsv‖Hβ(Ω) ≤ c‖v − sv‖Hβ(Ω)×Hβ+1(Ω)

≤ c
hτ−βX,Ω + hτ−βY,∂Ω

qτ−β

(
‖u‖Hβ(Ω) + ‖p‖Hβ+1(Ω)/R

)

≤ c
hτ−βX,Ω + hτ−βY,∂Ω

qτ−β

(
‖f‖Hβ(Ω) + ‖g · n‖Hβ−1/2(Ω)

)
. (7.12)

We now bound the boundary part. The proof of proposition 6.5 establishes that there

exists an extension ñ ∈ Hdβe(Ω) of the normals n to the interior of Ω with ñ|∂Ω = n|∂Ω.

The function u− su has many zeros, i. e. we can apply the sampling inequality lemma
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6.4. Therefore

‖(u− su) · n‖
W
η+1−1/r
r (∂Ω)

≤ chβ−1−1/2−η+1/r−(d−1)(1/2−1/r)+
Y,∂Ω ‖(u− su)· ñ‖Hβ(Ω).

The proof of proposition 6.5 also establishes

‖(u− su) · ñ‖Hβ(Ω) ≤ ‖ñ‖Hβ(Ω)‖u− su‖Hβ(Ω) ≤ c‖u− su‖Hβ(Ω).

With (7.12) we have

‖u− su‖Hβ(Ω) ≤ c
hτ−βX,Ω + hτ−βY,∂Ω

qτ−β

(
‖f‖Hβ(Ω) + ‖g · n‖Hβ−1/2(Ω)

)
,

which finishes the proof.

The main difference between the result above and the one for smooth target functions

is the factor (h/q)τ−β . In the case that β = τ , the new result is identical to the one in

theorem 6.6 with a constant c. If τ > β then this factor is of importance. Since q is

always less or equals to h, this factor can make the error significantly larger. However, on

an equidistant grid or on relatively well spread collocation points, it will have only minor

influence.

Note that the limitation of this result to the dimensions d = 2, 3 is again only due to

the fact that the extension operator is not yet proven for a general d > 3.
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The numerical validation of the method to solve Darcy’s problem and its error estimates is

the subject of this chapter. First of all we will give information about the implementation

of the computer program used. Then we give two examples to check the error estimates

of theorem 6.6. In both cases isotropic material is used. However, in the first example the

material is homogeneous and in the second a more realistic inhomogeneous experimental

set-up is modelled. After this we will check the error estimates for target functions, which

are not in the native space. Furthermore, we look into the dependency of the solution on

the given parameters which includes the choice of the basis function, the porosity and the

point distribution.

In all computations, the compactly supported Wendland functions φd,` are chosen for

the underlying functions φ and ψ of

Φ̃ =

(
Φdiv 0

0 ψ

)
,

where Φdiv = (−∆I +∇∇T )φ.

To ensure that a sufficient amount of collocation points is in the support of the basis

functions, we scale them with δ := 10. Moreover, since the error estimates only exists for

the case φ = ψ, we choose φ = ψ = φd,`(
·
δ ) for all numerical examples.

8.1. Implementation of the Method

The implementation of the mesh-free collocation method presented in chapter 5 requires

a numerically stable, efficient solver for large linear systems of equations. We chose the

generalised minimal residual (GMRES) method with Householder orthogonalization. The

pseudo-code can be found in algorithm 8.1, cf. [46]. The GMRES method gives a numerical

solution for the linear system Aα = b with a Ñ × Ñ matrix A and a vector b ∈ R
eN .

An initial guess α0 ∈ R
eN for the solution α is required. The solution depends on the

computational accuracy given by ε ≥ 0. In all simulations ε := 10−13 is used. The main

advantage over the standard GMRES method or the method of conjugate gradients is,

that it remains numerically stable for data sets with a small fill distance. Unfortunately,
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there is no easy way to implement a parallel version of algorithm 8.1.

Let Ñ = dN + M , where d is the dimension, N is the number of points inside the

domain and M gives the number of points on the boundary. To solve Darcy’s problem

the linear system Aα = b has to be solved, where

A :=




(
λ1,x
i

(
λ1,y
j

(
Φ̃(x− y)

)))
. . .

(
λ1,x
i

(
λd+1,y
`

(
Φ̃(x− y)

)))

...
. . .

...(
λd+1,x
k

(
λ1,y
j

(
Φ̃(x− y)

)))
. . .

(
λd+1,x
k

(
λd+1,y
`

(
Φ̃(x− y)

)))


 ∈ R

eN× eN ,

1 ≤ i, j ≤ N and 1 ≤ k, ` ≤ M , with the functionals defined in (5.6) and (5.7). The

initial guess is α0 := b, where b =
(
fT g · n

)T
∈ RdN+M is the right hand side of

Darcy’s problem. Formula (5.8) gives the approximating function sv, which depends on

the computed solution α of the linear system of equations.

Besides computing the approximating function, its evaluation is the other important

part of the computer program. This can be done by a simple for-loop over all collocation

points. To attain valid results for the error estimates, the approximating function is

evaluated on a fine grid. In all simulations, a M̃ = 300 × 300 grid has been used. The

implementation is a for-loop over all grid points. For each grid or evaluation point, the

approximating function is evaluated and the difference to the true solution computed. The

combination of these differences gives the approximation error. However, this can easily

be parallelized. Initially the evaluation grid needs to be divided into np partitions, where

np is the number of processors used. For a total of M̃ evaluation points, every processor

evaluates only M̃/np of them. The partitioning is demonstrated in figure 8.1 for four

processors and 196 points. Every colour or symbol refers to the data of a single processor.

After evaluating the approximating function at the local set of points, the results from all

processors are gathered to compute the final result.

For np processors the speedup Snp of a parallel algorithm is given by

Snp = T1/Tnp ,

where Ti is the runtime for i processors. In the case that Snp = np, the speedup is linear.

If Snp < np then the code does not scale well. Due to cache effects super linear scaling, i.

e. Snp > np, is possible. Figure 8.2 shows that the scaling of our parallel implementation

of the evaluation step is indeed linear. The computation of the runtime has been done

by using the example which will be introduced in section 8.2.1 on a 32 × 32 input grid.

To reduce the possible influence of other computations running at the time, all time

measurements were done twice and the mean value is displayed.

Due to the matrix-vector product and the number of iterations, the computational
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Algorithm 8.1 (GMRES): GMRES with Householder orthogonalization

Require: A ∈ R
eN× eN , b,α0 ∈ R

eN and ε ≥ 0
Ensure: αm is the solution of Aα = b with the accuracy ε.

Calculate the residual and define z ← b−Ax0.
for j = 1, . . . ,m+ 1 do

Compute the Householder unit vector wj such that

(wj)i =





0 1 ≤ i < j

zj + sign (zj)‖z‖2 i = j

zi j < i ≤ Ñ

and set wj ← wj/‖wj‖2, hj−1 ← z− σwj with σ ← 2wT
j z.

if (hj−1)j < ε then
Set m← j and stop the loop.

end if
if j = 1 then

Set γj ← (h0)1.
end if
if j ≤ m then

Compute v← (I − 2w1w
T
1 ) . . . (I − 2wjw

T
j )ej and

z← (I − 2wjw
T
j ) . . . (I − 2w1w

T
1 )Av.

end if
for i = 1, . . . , j − 1 do

Set h̃ ← hij and multiply new column with the calculated Givens rotation Gi,i+1:
hij ← cih̃+ sihi+1,j and hi+1,j ← −sih̃+ cihi+1,j .

end for
Calculate the new Givens rotation: β ←

√
h2
jj + h2

j+1,j , cj ← hjj/β, sj ← hj+1,j/β

and update H and γ, i. e. hjj ← β, hj+1,j ← 0, γj+1 ← −sjγj and γj ← cjγj .
if |γj+1| < ε then

Set m← j and stop the loop.
end if

end for
Compute the minimiser y of ‖γ −Hmy‖2, Hm := (h1, . . . ,hm), via back substitution:
for i = m, . . . , 1 do
yi ← 1

hii

(
γi −

∑m
k=i+1 hikyk

)

end for
z← 0
for j = m, . . . , 1 do

Set z← yjej + z− σwj with σ ← 2wT
j z.

end for
Compute the solution αm ← α0 + z.
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Figure 8.1: Partitioning of 196 evaluation points for the parallel implementation with four

processors.
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Figure 8.2: The speedup of the evaluation step.

complexity of the GMRES method is O(mÑ2). Here Ñ × Ñ is the dimension of the col-

location matrix A and m is the number of iterations. Usually the number of iterations

is significantly smaller than the dimension of the problem. Evaluating the approximating

function at a single point has complexity O(Ñ). Since the evaluation is done for M̃ evalu-

ation points the complexity of the evaluation step is O(M̃Ñ). In total the computational

complexity of our implementation is O(mÑ2 + M̃Ñ).

Our computer program could be improved such that the runtime is reduced. For exam-

ple, a more efficient solver for the system of equations could be applied, or some precon-

ditioning algorithm used. A parallel implementation of the matrix-vector products in the

GMRES method is also possible. Further improvement could be achieved by a far-field

expansion for the evaluation of the approximating function.
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8.2. Numerical Error Estimates

We will now test the theoretical error estimates of chapter 6 on two numerical examples.

Our first example deals with homogeneous and isotropic permeability, where K reduces

to a constant times the identity matrix. Our second example deals with inhomogeneous

material. However, it is still isotropic.

We will employ Wendland functions φ2,` ∈ C2`(R2) for both φ and ψ, which generate

Sobolev spaces H`+3/2(R2), see theorem 4.13. Thus by picking φ = ψ = φ2,`, we have

NeΦ
(R2) = H`+1/2(R2; div)×H`+3/2(R2), (8.1)

which means τ = `+1/2. This follows from corollary 4.15, which shows that if φ generates

the space Hτ+1(Rd) then Φdiv generates H̃τ (Rd). We will concentrate on the L∞ and L2

error only, i. e. we want to verify the estimates

‖u− su‖Hη(Ω) + ‖p− sp‖Hη+1(Ω)/R ≤ cf ,ghτ−η = cf ,gh
`+ 1

2
−η,

‖u− su‖Wη
∞(Ω) + ‖p− sp‖W η+1

∞ (Ω)/R
≤ cf ,ghτ−η−d/2 = cf ,gh

`− 1
2
−η.

Note that the first estimate was only shown for η ≥ 1 in theorem 6.6. The second estimate

is also not justified by our theoretical analysis.

In all cases the notation eu = u− su and ep = p− sp is used. The numerical tests were

run on a sequence of equidistant grids. The computational approximation orders are given

by
log(en/e2n)

log(1/2)
,

where en is the error on an n× n = N +M input grid. Therefore we have N = (n− 2)2

collocation points in the interior and M = 4n − 4 on the boundary, for an example see

figure 8.8 (a).

8.2.1. Homogeneous Permeability

In our first example, we choose Ω = [0, 1]2 and K = I and f and g such that the true

solution is given by

u(x, y) = (−2x3y, 3x2y2)T , p(x, y) = x3y2.

The velocity and pressure are illustrated in figure 8.3. The velocity field is displayed with

unit vectors. In figure 8.3 (b), the contour lines of the pressure are visualised. Therefore

90



8 Numerical Examples

the boundary function g is defined by u on ∂Ω, while

f(x, y) = u(x, y) +K∇p(x, y) =

(
−2x3y + 3x2y2

2x3y + 3x2y2

)
.
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(a) The velocity field for the homogeneous example
visualised with unit vectors.
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(b) The contour lines of the pressure field.

Figure 8.3: The true solution of the homogeneous example.

We tested this for a variety of basis functions as explained above. The error has been

computed using discretized versions of the various norms on a fine 300 × 300 grid. The

results are presented in tables 8.1 to 8.6 and in figure 8.4. They indicate that the numerical

approximation orders more than match the theoretical ones.

n ‖eu‖L2
‖eu‖L∞ ‖eu‖H1 ‖eu‖H2 ‖∇ep‖L2

‖∇ep‖L∞
4 1.6335e-01 7.7583e-01 1.1289e+00 6.8905e+00 2.9920e-01 2.1715e+00

8 2.9333e-02 2.1230e-01 4.6740e-01 5.3876e+00 4.9407e-02 6.9474e-01

16 4.7724e-03 5.5458e-02 1.6321e-01 3.7585e+00 6.9639e-03 1.8473e-01

32 6.5486e-04 1.3832e-02 4.7138e-02 2.2668e+00 8.8743e-04 4.4247e-02

64 7.9729e-05 3.0498e-03 1.2110e-02 1.2395e+00 1.0140e-04 9.2248e-03

Table 8.1: Approximation errors for the homogeneous example with φ = ψ = φ2,2.

8.2.2. Inhomogeneous Permeability

Our second example deals with inhomogeneous and isotropic material, meaning that K =

κI with a non-constant function κ. Our example is motivated by a similar example from

[50] and describes the flow through a two dimensional cylinder with varying permeability.
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‖eu‖L2
‖eu‖L∞ ‖eu‖H1 ‖eu‖H2 ‖∇ep‖L2

‖∇ep‖L∞
computed 2.4774 1.8697 1.2722 0.3550 2.5983 1.6442

2.6197 1.9366 1.5179 0.5195 2.8267 1.9111

2.8655 2.0033 1.7918 0.7295 2.9722 2.0618

3.0380 2.1813 1.9606 0.8710 3.1296 2.2620

estimated 2.5 1.5 1.5 0.5 2.5 1.5

Table 8.2: Approximation orders for the homogeneous example with φ = ψ = φ2,2.

n ‖eu‖L2
‖eu‖L∞ ‖eu‖H1 ‖eu‖H2 ‖∇ep‖L2

‖∇ep‖L∞
4 1.0127e-01 3.6764e-01 7.0026e-01 4.1830e+00 2.1525e-01 1.4904e+00

8 8.6886e-03 4.3353e-02 1.4323e-01 1.7673e+00 1.2082e-02 1.8352e-01

16 6.6247e-04 5.3868e-03 2.4002e-02 6.3930e-01 7.6629e-04 2.0568e-02

32 4.0582e-05 5.8268e-04 3.0337e-03 1.7604e-01 4.1610e-05 1.7658e-03

64 2.2916e-06 5.6109e-05 3.3587e-04 4.0901e-02 2.1316e-06 8.3619e-05

Table 8.3: Approximation errors for the homogeneous example with φ = ψ = φ2,3.

‖eu‖L2
‖eu‖L∞ ‖eu‖H1 ‖eu‖H2 ‖∇ep‖L2

‖∇ep‖L∞
computed 3.5430 3.0841 2.2896 1.2430 4.1550 3.0217

3.7132 3.0086 2.5771 1.4670 3.9788 3.1575

4.0289 3.2087 2.9840 1.8606 4.2029 3.5420

4.1464 3.3764 3.1751 2.1057 4.2869 4.4003

estimated 3.5 2.5 2.5 1.5 3.5 2.5

Table 8.4: Approximation orders for the homogeneous example with φ = ψ = φ2,3.

n ‖eu‖L2
‖eu‖L∞ ‖eu‖H1 ‖eu‖H2 ‖∇ep‖L2

‖∇ep‖L∞
4 6.1153e-02 2.0845e-01 4.3615e-01 2.8112e+00 2.0304e-01 1.2941e+00

8 2.3251e-03 1.1990e-02 4.1046e-02 5.5070e-01 3.2751e-03 5.0862e-02

16 7.9533e-05 7.1673e-04 3.0418e-03 9.1047e-02 9.5225e-05 2.7176e-03

32 2.3199e-06 3.8217e-05 1.7927e-04 1.1659e-02 2.4788e-06 1.0642e-04

64 7.4599e-08 1.1181e-06 1.2205e-05 1.6011e-03 1.0738e-07 3.4691e-06

Table 8.5: Approximation errors for the homogeneous example with φ = ψ = φ2,4.
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‖eu‖L2
‖eu‖L∞ ‖eu‖H1 ‖eu‖H2 ‖∇ep‖L2

‖∇ep‖L∞
computed 4.7171 4.1198 3.4095 2.3518 5.9541 4.6693

4.8696 4.0643 3.7543 2.5966 5.1040 4.2262

5.0994 4.2291 4.0847 2.9652 5.2636 4.6745

4.9588 5.0951 3.8765 2.8643 4.5289 4.9390

estimated 4.5 3.5 3.5 2.5 4.5 3.5

Table 8.6: Approximation orders for the homogeneous example with φ = ψ = φ2,4.
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(b) φ = ψ = φ2,3
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(c) φ = ψ = φ2,4

Figure 8.4: Approximation errors of the homogeneous example.
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n ‖eu‖L2
‖eu‖L∞ ‖eu‖H1 ‖eu‖H2 ‖∇ep‖L2

‖∇ep‖L∞
4 6.2920e-03 2.3987e-02 5.2479e-02 5.1676e-01 4.9587e-02 1.2463e-01

8 5.3211e-04 4.6569e-03 8.8350e-03 1.3797e-01 2.2983e-03 9.9190e-03

16 4.0233e-05 5.5241e-04 1.4920e-03 4.5095e-02 1.8430e-04 1.4879e-03

32 2.9049e-06 5.3613e-05 2.3020e-04 1.3925e-02 1.7299e-05 2.4952e-04

64 1.8260e-07 4.1769e-06 3.0837e-05 3.8451e-03 1.5696e-06 3.8521e-05

Table 8.7: Approximation errors for the inhomogeneous example with φ = ψ = φ2,3.

To be more precise, pressure, velocity and permeability are given by

p(x, y) =
p1 − p0

L
x+ p0,

u(x, y) =

(
p0 − p1

Lµ
(y − ya)(y − yb), 0

)T
,

κ(x, y) = (y − ya)(y − yb),

where µ is the viscosity and L the length of the cylinder. Thus f = 0 and g = ( p0−p1Lµ (y −
ya)(y−yb), 0). Obviously, these quantities satisfy (3.2) and ∇·u = 0. The permeability is

constant along horizontal lines and is zero at the top and bottom boundary of the cylinder.

The flow is also horizontal, see figure 8.5.

b
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u .
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Figure 8.5: The schematic set up for the inhomogeneous example.

For our computations, we set L = 1, ya = 0, yb = 1, µ = 1, p1 = 2 and p0 = 1. For

φ = ψ we have chosen the C6 compactly supported function.

The results are represented in tables 8.7 and 8.8 and in figure 8.6.
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‖eu‖L2
‖eu‖L∞ ‖eu‖H1 ‖eu‖H2 ‖∇ep‖L2

‖∇ep‖L∞
computed 3.5637 2.3648 2.5705 1.9052 4.4313 3.6513

3.7253 3.0756 2.5660 1.6133 3.6404 2.7370

3.7918 3.3651 2.6963 1.6953 3.4133 2.5760

3.9917 3.6821 2.9001 1.8566 3.4623 2.6954

estimated 3.5 2.5 2.5 1.5 3.5 2.5

Table 8.8: Approximation orders for the inhomogeneous example with φ = ψ = φ2,3.
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Figure 8.6: Approximation errors of the inhomogeneous example with φ = ψ = φ2,3.
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8.3. Numerical Error Estimates for Target Functions Outside the

Native Space

We will now give an example for target functions which are not in the native space. Again

we employ Wendland functions and pick φ = ψ = φ2,`, i. e. they generate the native spaces

given in (8.1). As in the previous examples we will focus on the L2 and L∞ errors. Let

f ∈ Hβ+1(Ω) and g ∈ Hβ+1/2(∂Ω), where d/2 < β ≤ τ := d/2 + ` + 1/2. Theorem 7.6

gives the following error estimates

‖u− su‖Hη(Ω) + ‖p− sp‖Hη+1(Ω) ≤ cf ,g
(
h

q

)τ−β
hβ−η,

‖u− su‖Wη
∞(Ω) + ‖p− sp‖W η+1

∞ (Ω)
≤ cf ,g

(
h

q

)τ−β
hβ−η−d/2.

Note that the first estimate was proven for η ≥ 1 only. Moreover, the second estimate is

actually not verified by theorem 7.6. Note further that the convergence order does not

depend on the smoothness τ of the native space if the separation radius equals the fill

distance, i. e. on equidistant grids.

We choose f and g such that the true solution of the velocity and the pressure are

u(x, y) =

(
−∂y
∂x

)
φ2,1(r), p(x, y) = x3y2,

where r :=
√

(x− x0)2 + (y − y0)2/γ with x0 = y0 = γ = 0.5. Furthermore, we pick

K = I, where I is the identity matrix. The remaining setting is identical to the one in

the previous examples. Figure 8.7 illustrates the velocity field. The pressure is identical

to the pressure in the homogeneous example, see figure 8.3 (b).

The Wendland functions φd,` are an element of all Sobolev spaces Hα(Rd) with α <

2τ −d/2 = d+2`+1−d/2, cf. section 4.2.3. Therefore the function φ2,1 is in Hα(Ω) with

α < 4. Due to our choice of the velocity, we have u ∈ Hβ+1(Ω) for all β < 2. Thus u is not

an element of the native spaces of φ2,3 and φ2,4, where τ = 3.5 and τ = 4.5 respectively.

We chose β = 2 which is the supremum of the smoothness’, to work out the theoretical

approximation orders.

To investigate the dependency of the error on the fill distance h and the separation radius

q, all calculations were done twice. First on an equidistant grid, then on an equidistant

grid, where the y-components of some collocation points are moved by s/2 up, see figure

8.8. Here, s = 1/(n − 1) is the spacing of the grid. Hence, in the first case we have

q = h = s/2 and in the second case q < h, i. e. q = s/4 and h = 3s/4.

All results are displayed in tables 8.9–8.16. Here, the values in the brackets give the
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Figure 8.7: The velocity field for the example with target functions outside the native

space visualised with unit vectors.

approximation orders if the target functions were in the native space. The figures 8.9 and

8.9 illustrate the numerical approximation errors. From tables 8.10, 8.12, 8.14 and 8.16 it

can be seen that the numerical approximation orders again more than match the theoretical

ones. Moreover, some of them even match the approximation orders for smoother target

functions.

According to the theoretical error estimates, the error in table 8.12 should be (q/h)τ−β =

5.1962 times larger than in table 8.10. Analogously, the values in table 8.16 should be

15.588 times larger than the values in table 8.14. In practise, the influence of the factor

(q/h)τ−β seems to be less than expected, since the calculated values are in about the same

range.

n ‖eu‖L2
‖eu‖L∞ ‖eu‖H1 ‖∇ep‖L2

‖∇ep‖L∞
4 1.2836e+00 2.2024e+00 9.8131e+00 2.0342e-01 1.5629e+00

8 7.9192e-02 3.8168e-01 1.6632e+00 3.4692e-02 2.1824e-01

16 8.7058e-03 5.1376e-02 3.9872e-01 2.9099e-03 3.0136e-02

32 7.4455e-04 1.1950e-02 7.9047e-02 2.7432e-04 3.0789e-03

64 6.5388e-05 2.8183e-03 1.6406e-02 2.8833e-05 7.2737e-04

Table 8.9: Approximation errors for the example with target functions outside the native
space with φ = ψ = φ2,3, where q = h.
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(a) q = h
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(b) q < h

Figure 8.8: The n×n-grid for the example with target functions outside the native space,
where n = 8. The collocation points in the interior are maked with blue
circles, the ones on the boundary with green squares and the moved points
with a magenta dots.

‖eu‖L2
‖eu‖L∞ ‖eu‖H1 ‖∇ep‖L2

‖∇ep‖L∞
computed 4.0187 2.5286 2.5607 2.5518 2.8403

3.1853 2.8932 2.0605 3.5756 2.8564

3.5475 2.1041 2.3346 3.4070 3.2910

3.5093 2.0841 2.2685 3.2501 2.0817

estimated 2 (3.5) 1 (2.5) 1 (2.5) 2 (3.5) 1 (2.5)

Table 8.10: Approximation orders for the example with target functions outside the native
space with φ = ψ = φ2,3, where the values in the brackets give the approxi-
mation orders if the target function would be in the native space and q = h.

n ‖eu‖L2
‖eu‖L∞ ‖eu‖H1 ‖∇ep‖L2

‖∇ep‖L∞
4 9.6580e-01 1.6182e+00 9.0492e+00 2.0209e+00 6.3613e+00

8 8.0852e-02 3.7836e-01 1.7364e+00 1.0950e-01 4.5009e-01

16 9.2390e-03 7.9565e-02 4.1916e-01 4.7343e-03 4.0854e-02

32 8.3544e-04 1.8466e-02 8.5372e-02 5.0651e-04 9.6855e-03

64 7.9497e-05 4.3506e-03 1.8161e-02 5.8489e-05 2.3040e-03

Table 8.11: Approximation errors for the example with target functions outside the native
space with φ = ψ = φ2,3, where q < h.
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‖eu‖L2
‖eu‖L∞ ‖eu‖H1 ‖∇ep‖L2

‖∇ep‖L∞
computed 3.5784 2.0965 2.3817 4.2060 3.8210

3.1295 2.2495 2.0505 4.5316 3.4616

3.4671 2.1073 2.2957 3.2245 2.0766

3.3936 2.0856 2.2329 3.1143 2.0717

estimated 2 (3.5) 1 (2.5) 1 (2.5) 2 (3.5) 1 (2.5)

Table 8.12: Approximation orders for the example with target functions outside the native
space with φ = ψ = φ2,3, where the values in the brackets give the approxi-
mation orders if the target function would be in the native space and q < h.
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Figure 8.9: Approximation errors of example with target functions outside the native
space, where φ = ψ = φ2,3.

n ‖eu‖L2
‖eu‖L∞ ‖eu‖H1 ‖∇ep‖L2

‖∇ep‖L∞
4 1.5065e+00 2.9039e+00 1.1038e+01 1.8339e-01 1.3481e+00

8 5.3121e-01 2.4564e+00 8.7189e+00 9.7268e-02 2.0440e-01

16 1.2688e-02 6.9891e-02 5.3229e-01 3.1878e-03 1.1819e-02

32 5.8579e-04 1.1669e-02 7.1774e-02 2.6409e-04 2.7596e-03

64 6.3984e-05 2.7337e-03 1.6597e-02 2.7801e-05 6.5679e-04

Table 8.13: Approximation errors for the example with target functions outside the native
space with φ = ψ = φ2,4, where q = h.
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‖eu‖L2
‖eu‖L∞ ‖eu‖H1 ‖∇ep‖L2

‖∇ep‖L∞
computed 1.5038 0.2415 0.3403 0.9149 2.7214

5.3877 5.1353 4.0339 4.9313 4.1122

4.4369 2.5825 2.8907 3.5935 2.0986

3.1946 2.0937 2.1126 3.2478 2.0709

estimated 2 (4.5) 1 (3.5) 1 (3.5) 2 (4.5) 1 (3.5)

Table 8.14: Approximation orders for the example with target functions outside the native
space with φ = ψ = φ2,4, where the values in the brackets give the approxi-
mation orders if the target function would be in the native space and q = h.

n ‖eu‖L2
‖eu‖L∞ ‖eu‖H1 ‖∇ep‖L2

‖∇ep‖L∞
4 9.9594e-01 1.8031e+00 9.5157e+00 2.6038e+00 9.0934e+00

8 4.9692e-01 2.4419e+00 8.2523e+00 2.0109e-01 7.5860e-01

16 1.2221e-02 7.1743e-02 5.1902e-01 5.3100e-03 3.6592e-02

32 6.3966e-04 1.6423e-02 7.4964e-02 4.6787e-04 8.6301e-03

64 7.0954e-05 3.8505e-03 1.7397e-02 5.3756e-05 2.0566e-03

Table 8.15: Approximation errors for the example with target functions outside the native
space with φ = ψ = φ2,4, where q < h.

‖eu‖L2
‖eu‖L∞ ‖eu‖H1 ‖∇ep‖L2

‖∇ep‖L∞
computed 1.0030 -0.4375 0.2055 3.6947 3.5834

5.3456 5.0890 3.9909 5.2430 4.3737

4.2559 2.1271 2.7915 3.5045 2.0841

3.1724 2.0926 2.1073 3.1216 2.0691

estimated 2 (4.5) 1 (3.5) 1 (3.5) 2 (4.5) 1 (3.5)

Table 8.16: Approximation orders for the example with target functions outside the native
space with φ = ψ = φ2,4, where the values in the brackets give the approxi-
mation orders if the target function would be in the native space and q < h.
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Figure 8.10: Approximation errors of example with target functions outside the native
space, where φ = ψ = φ2,4.

8.4. Dependency on the Parameters

In the previous sections we have shown that the error estimates for different right hand

sides hold. We now wish to examine the dependency of the method on the choice of the

parameters. All tests were done by using the setting presented in section 8.2.1 with 322

data points in the unit cube [0, 1]2. Also, if not stated otherwise, the φ2,3 ∈ C6 Wendland

function with support radius δ = 10 is applied. In all tables, the column marked by ’m’

gives the number of iterations required by the GMRES method.

8.4.1. Dependency on the Basis Function

Comparing the results of different basis functions showed that a smoother function leads

to a smaller error. This can be seen from theory as well as from table 8.17. However,

since the matrix becomes ill-conditioned, more iterations are required. Hence the runtime

increases. Therefore we chose the C6 compactly supported function for φ and ψ for the

following examples.

φ = ψ ‖eu‖L2
‖eu‖L∞ ‖eu‖H1 ‖eu‖H2 ‖∇ep‖L2

‖∇ep‖L∞ m

φ2,2 5.4045e-04 8.9660e-03 3.5235e-02 1.6621e+00 4.4943e-04 6.5394e-03 402
φ2,3 3.8164e-05 5.8268e-04 2.6256e-03 1.4199e-01 3.5269e-05 8.2462e-04 598
φ2,4 2.1488e-06 3.8134e-05 1.5244e-04 9.3344e-03 2.1664e-06 7.2435e-05 784

Table 8.17: Approximation errors depending on the basis function.
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δ ‖eu‖L2
‖eu‖L∞ ‖eu‖H1 ‖eu‖H2 ‖∇ep‖L2

‖∇ep‖L∞ m

0.001 6.7667e-01 3.2628e+00 6.1466e+01 4.1039e+05 6.7283e-01 3.2628e+00 2
0.01 6.7899e-01 3.7183e+00 4.5176e+01 3.9309e+04 6.7477e-01 3.4481e+00 2
0.1 6.1248e-01 3.4393e+00 3.8858e+01 7.2132e+03 7.0797e-01 6.3891e+00 138

1 1.8052e-03 3.2753e-02 1.0180e-01 5.3527e+00 1.9106e-03 6.5062e-02 630
10 3.8164e-05 5.8268e-04 2.6256e-03 1.4199e-01 3.5269e-05 8.2462e-04 598

100 2.8177e-05 4.1931e-04 2.0651e-03 1.1579e-01 3.1795e-05 6.5283e-04 592
1000 2.7763e-05 4.1629e-04 2.0440e-03 1.1483e-01 3.1675e-05 6.3968e-04 591

Table 8.18: Approximation errors depending on the support of the basis function with
φ = ψ = φ2,3.

The size of the support radius δ of the basis function has a major influence on the solu-

tion. If the support radius is less than the fill distance of the set, there are no other points

in the support of the basis function. Then the collocation matrix becomes independent

from the points and therefore the solution too. Our 32×32 grid has fill distance h ≈ 0.016,

i. e. the solution will be the same for all δ < h. An increasing support leads to a shrinking

error, see table 8.18. However, the number of iterations also increases, since the system

becomes ill-conditioned. This leads to longer runtimes. Therefore the support radius in

all simulations is chosen to be δ = 10 which ensures a balance between a small error and

a low runtime.

We did not consider the case φ 6= ψ, since the error estimate always depends on the

rougher function. However, our computer program provides the option.

8.4.2. Dependency on the Permeability

We set the permeability of the example to be K = κI, where κ is a constant which models

the specific media. If κ is a very small number it models a pervious material, which is

a good aquifer such as clean gravel. For a slightly bigger κ it is material which is still

pervious as for example clean sand or a mix of sand and gravel. A medium figure models

semi-pervious material like very fine sand, silt, loam or stratified clay. Moreover, a high

value for κ describes impervious material such as sandstone or granite, i. e. there is almost

no transport of fluids. Darcy’s law does not model the reality in this case, but we can still

solve Darcy’s problem. Further information about the permeability can be found in [6].

The table 8.19 gives the numerical error for different values of κ. The error for the

velocity is only slightly increasing with κ, it basically remains constant. However, the

error for the pressure is high for a small κ. This is due to the fact that if κ is very

small, then the pressure part of (3.3) has only little influence and the problem is mainly

solved for the velocity. Therefore there exists a minimal value for κ such that the equation
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κ ‖eu‖L2
‖eu‖L∞ ‖eu‖H1 ‖eu‖H2 ‖∇ep‖L2

‖∇ep‖L∞ m

0.001 3.8423e-05 5.8719e-04 2.7881e-03 1.4714e-01 2.1266e-02 1.2881e-01 681
0.01 3.1941e-05 5.0460e-04 2.3218e-03 1.2756e-01 1.5515e-03 1.2863e-02 696
0.1 3.4404e-05 4.9713e-04 2.4140e-03 1.3248e-01 1.6417e-04 1.7867e-03 664

1 4.0582e-05 5.8268e-04 3.0337e-03 1.7604e-01 4.1610e-05 1.7658e-03 598
10 4.5555e-05 7.1693e-04 3.3261e-03 1.8593e-01 3.6071e-05 1.6006e-03 852

100 1.2115e-04 1.6915e-03 7.0860e-03 2.9158e-01 3.4959e-05 1.5909e-03 1409
1000 7.8590e-04 6.5696e-03 2.9012e-02 6.9103e-01 3.3929e-05 1.5906e-03 1831

Table 8.19: Approximation errors depending on the permeability with φ = ψ = φ2,3.

for the pressure can be solved satisfactorily. However, a value too large can lead to an

unsatisfactory solution of the velocity part.

We now wish to check how the error behaves if we choose a fixed right hand side

f(x, y) = (3x2y2 − 2x3y, 3x2y2 + 2x3y)T

and vary the pressure with the permeability. Therefore we choose

u(x, y) = (−2x3y, 3x2y2)T and p(x, y) =
x3y2

κ
,

where the permeability is given by K = κI. The results are presented in table 8.20. It

shows that the error is low when u and p are in the same range, i. e. if κ ≈ 1. If one

function is a significantly larger than the other, then the number of iterations increases

and also the error.

κ ‖eu‖L2
‖eu‖L∞ ‖eu‖H1 ‖eu‖H2 ‖∇ep‖L2

‖∇ep‖L∞ m

0.001 3.1111e-02 3.4893e-01 2.0528e+00 9.8502e+01 2.0270e+01 1.5448e+02 748
0.01 1.4253e-03 1.9740e-02 8.5725e-02 4.2610e+00 1.0901e-01 1.6525e+00 741
0.1 5.4448e-05 8.1086e-04 3.8001e-03 2.2358e-01 6.0992e-04 1.6145e-02 683

1 3.8164e-05 5.8268e-04 2.6256e-03 1.4199e-01 3.5269e-05 8.2462e-04 598
10 4.4193e-05 7.8505e-04 2.9651e-03 1.5274e-01 4.6534e-06 1.1126e-04 852

100 1.1584e-04 1.9172e-03 6.1878e-03 2.4153e-01 6.0809e-06 2.1434e-04 1408
1000 6.9794e-04 7.1977e-03 2.4130e-02 5.9180e-01 7.6250e-06 2.1776e-04 1831

Table 8.20: Approximation errors depending on the permeability for a fixed right hand
side with φ = ψ = φ2,3.

Note that the viscosity has also influence on K. The error and the runtime react

similarly to changes in viscosity as for the permeability.
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8.4.3. Dependency on the Data Set

We now wish to check how the error depends on the data set. We compute the errors for

three different types of point sets. First on an equidistant grid, then on Halton points and

finally on a set of random data. All simulations are done on 322 input points in the unit

cube. Hence, we have N = 900 collocation points in the interior and M = 124 on the

boundary in all examples. Figure 8.11 illustrates the used data sets.
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Figure 8.11: The different point sets.

The grid data is a set of equidistant distributed points, which is generated by two

nested for-loops. For the random data the C++ - function rand() is used, and the result

is shifted in the unit cube. The Halton points are generated by algorithm 8.2. They are

quasi-random, but well distributed over the domain and unlikely to cluster. Furthermore,

they are indeed unique for different values of k ∈ N0 and r ∈ N prime. Information about

Halton points can be found for example in [58]. We used r = 7 for the x component inside
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the domain and r = 11 for the y component respectively. On the boundary we chose r = 3

for x and r = 5 for y.

Algorithm 8.2 (Halton): Generating Halton points

Require: A prime number r and an integer k.
Ensure: x is the k-th Halton point of base r
x← 0
if k = 0 then

return
end if
f ← 1

r
while k > 0 do
h← k modulo r
x← x+ hf
k ← k

r

f ← f
r

end while

From table 8.21 we can see that the errors are in the same range. Only the number of

iterations is changing. The stability of the linear system of equations depends on the data

set, but Darcy’s problem can be satisfactorily solved in all tested cases.

‖eu‖L2
‖eu‖L∞ ‖eu‖H1 ‖eu‖H2 ‖∇ep‖L2

‖∇ep‖L∞ m

grid 3.8164e-05 5.8268e-04 2.6256e-03 1.4199e-01 3.5269e-05 8.2462e-04 598
Halton 2.3039e-05 4.4810e-04 7.0380e-04 5.6247e-02 2.2809e-05 2.1013e-04 965

rand 4.8118e-05 3.5398e-04 9.2909e-04 6.0463e-02 4.9007e-05 1.0417e-03 1782

Table 8.21: Approximation errors depending on the data set with φ = ψ = φ2,3.

105



9. Conclusions

After introducing Darcy’s problem and discussing reproducing kernel Hilbert spaces, a

new discretization scheme to solve Darcy’s problem has been presented. The scheme

is based on a collocation method and implements optimal recovery to solve the partial

differential equation. Besides producing analytically incompressible flow fields, our method

can be of arbitrary order, works in arbitrary space dimension and for arbitrary geometries.

Furthermore, our method is mesh-free.

The error analysis of the presented scheme has been carried out and the expected ap-

proximation orders were obtained. The error estimates were only shown for the two and

three dimensional cases, since the extension operator is not yet proven for arbitrary di-

mensions. However, our estimates would hold for arbitrary dimensions if the extension

operator exists.

New error estimates for the case that the target function does not belong to native

space have been developed. These new error estimates extend the former to a larger class

of target functions. The roughness of the target function is only limited by the Sobolev

embedding theorem, i. e. a constant depending on the space dimension.

An implementation of the scheme has been done and tested in various numerical simu-

lations. Overall it was shown that the theoretical error estimates hold for target functions

in and outside the native space.

The implementation of the scheme has been tested to find optimal parameters. A

smoother basis function leads to a smaller error, however it increases the runtime. Fur-

thermore, the runtime is reduced for a small support radius while the error increases.

The permeability has minor influence on the numerical solution. Only a particular low or

high permeability leads to a unsatisfactory solution. However, Darcy’s problem might not

model the reality in those cases. Different point sets have been tested and a satisfactory

solution computed in either case. Nevertheless, the numerics do not hold if two points are

too close together. Then the matrix becomes numerically non-invertible.
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A. Appendix

For the implementation of the discretization scheme we need the derivatives of certain

Wendland functions. Since all examples are two dimensional, we will give the derivatives

of φ2,`(x, y), where x and y are real numbers. For the implementation the derivatives up

to the fourth degree are needed. However, for completeness reasons we give all derivatives.

To ensure that the evaluation is numerically stable and efficient, a Horner scheme has

been applied in the implementation of the scheme.

Let α ∈ N2
0 and define r :=

√
x2 + y2. We sort the derivatives ∂xα1yα2φ2,` in groups of

order |α| = α1 + α2.

The compactly supported function φ2,1(x, y) = (1− r)4+(4r + 1), has the derivatives:

• |α| = 1

∂xφ2,1(x, y) = −20x (1− r)3+
∂yφ2,1(x, y) = −20 y (1− r)3+

• |α| = 2

∂x2φ2,1(x, y) = 20 (1− r)2+
(

3x2

r
− 1 + r

)

∂y2φ2,1(x, y) = 20 (1− r)2+
(

3y2

r
− 1 + r

)

∂xyφ2,1(x, y) =
60x y

r
(1− r)2+

The derivatives of function φ2,2(x, y) = (1− r)6+(35r2 + 18r + 3) are:

• |α| = 1

∂xφ2,2(x, y) = −56x (1− r)5+ (5r + 1)

∂yφ2,1(x, y) = −56 y (1− r)5+ (5r + 1)
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• |α| = 2

∂x2φ2,2(x, y) = 56 (1− r)4+
(
5r2 − 4r − 1 + 30x2

)

∂y2φ2,2(x, y) = 56 (1− r)4+
(
5r2 − 4r − 1 + 30y2

)

∂xyφ2,2(x, y) = 1680x y (1− r)4+

• |α| = 3

∂x3φ2,2(x, y) = 1680x (1− r)3+
(
−3r + 3− 4x2

r

)

∂y3φ2,2(x, y) = 1680 y (1− r)3+
(
−3r + 3− 4y2

r

)

∂x2yφ2,2(x, y) = 1680 y (1− r)3+
(
−r + 1

4x2

r

)

∂xy2φ2,2(x, y) = 1680x (1− r)3+
(
−r + 1

4y2

r

)

• |α| = 4

∂x4φ2,2(x, y) = 1680 (1− r)2+
(
−6r + 3 + 30x2 − 20x2

r
+

5x4 + 3y4

r2
− 4x2y2

r3

)

∂y4φ2,2(x, y) = 1680 (1− r)2+
(
−6r + 3 + 30y2 − 20y2

r
+

5y4 + 3x4

r2
− 4x2y2

r3

)

∂x3yφ2,2(x, y) = −6720x y (1− r)2+
(
−3 +

2

r
− 2x2

r2
+
y2

r3

)

∂xy3φ2,2(x, y) = −6720x y (1− r)2+
(
−3 +

2

r
− 2y2

r2
+
x2

r3

)

∂x2y2φ2,2(x, y) = 1680 (1− r)2+
(

5r2 − 6r + 1 +
8x2y2

r2
+

4x2y2

r3

)

The derivatives of function φ2,3(x, y) = (1− r)8+
(
32r3 + 25r2 + 8r + 1

)
are:

• |α| = 1

∂xφ2,3(x, y) = −22x (1− r)7+
(
16r2 + 7r + 1

)

∂yφ2,3(x, y) = −22 y (1− r)7+
(
16r2 + 7r + 1

)
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• |α| = 2

∂x2φ2,3(x, y) = 22 (1− r)6+
(
16r3 − 9r2 + 144x2r − 6r + 24x2 − 1

)

∂y2φ2,3(x, y) = 22 (1− r)6+
(
16r3 − 9r2 + 144y2r − 6r + 24y2 − 1

)

∂xyφ2,3(x, y) = 528x y (1− r)6+ (6r + 1)

• |α| = 3

∂x3φ2,3(x, y) = 1584x (1− r)5+
(
−6r2 + 5r − 14x2 + 1

)

∂y3φ2,3(x, y) = 1584 y (1− r)5+
(
−6r2 + 5r − 14y2 + 1

)

∂x2yφ2,3(x, y) = 528 y (1− r)5+
(
−6r2 + 5r + 1− 42x2

)

∂xy2φ2,3(x, y) = 528x (1− r)5+
(
−6r2 + 5r + 1− 42y2

)

• |α| = 4

∂x4φ2,3(x, y) = 1584 (1− r)4+
(

6r3 − 11r2 + 4r + 84x2r − 84x2 +
70x4

r
+ 1

)

∂y4φ2,3(x, y) = 1584 (1− r)4+
(

6r3 − 11r2 + 4r + 84y2r − 84y2 +
70y4

r
+ 1

)

∂x3yφ2,3(x, y) = 22176x y (1− r)4+
(

3r − 3 +
5x2

r

)

∂xy3φ2,3(x, y) = 22176x y (1− r)4+
(

3r − 3 +
5x2

r

)

∂x2y2φ2,3(x, y) = 528 (1− r)4+
(

48r3 − 53r2 + 4r + 1 +
210x2y2

r

)

• |α| = 5

∂x5φ2,3(x, y) = 110880x (1− r)3+
(
−3r2 + 6r − 3− 10x2 +

9x2

r
+
x2y2 − 3x4

r2

)

∂y5φ2,3(x, y) = 110880 y (1− r)3+
(
−3r2 + 6r − 3− 10y2 +

9y2

r
+
x2y2 − 3y4

r2

)

∂x4yφ2,3(x, y) = 22176 y (1− r)3+
(
−3r2 + 6r − 30x2 − 3 +

25x2

r
− 15x4

r2
+

5x2y2

r3

)

∂xy4φ2,3(x, y) = 22176x (1− r)3+
(
−3r2 + 6r − 30y2 − 3 +

25y2

r
− 15y4

r2
+

5x2y2

r3

)

∂x3y2φ2,3(x, y) = 22176x (1− r)3+
(
−8r2 + 11r − 10y2 − 3 +

5y2

r
− 15x2y2

r2
+

5y4

r3

)

114



A Appendix

∂x2y3φ2,3(x, y) = 22176 y (1− r)3+
(
−8r2 + 11r − 10x2 − 3 +

5x2

r
− 15x2y2

r2
+

5x4

r3

)

• |α| = 6

∂x6φ2,3(x, y) = 332640 (1− r)2+
(
r3 − 3r2 + 15x2r + 3r − 1− 30x2 +

15x2 + 15x4

r

− 8x4

r2
+
x6 − 4x4

r3
− 2x4y2

r4
− x4y2

r5

)

∂y6φ2,3(x, y) = 332640 (1− r)2+
(
r3 − 3r2 + 15y2r + 3r − 1− 30y2 +

15y2 + 15y4

r

− 8y4

r2
+
y6 − 4y4

r3
− 2x2y4

r4
− x2y4

r5

)

∂x5yφ2,3(x, y) = 110880x y (1− r)2+
(

15r − 30 +
30x2 + 8

r
− 14x2

r2
+

3x4 + 4y2

r3

− 6x2y2

r4
+

3y4

r5

)

∂xy5φ2,3(x, y) = 110880x y (1− r)2+
(

15r − 30 +
30y2 + 8

r
− 14y2

r2
+

3y4 + 4x2

r3

− 6x2y2

r4
+

3x4

r5

)

∂x4y2φ2,3(x, y) = 22176 (1− r)2+
(

18r3 − 39r2 + 30x2r + 24r − 40x2 − 3

+
10x2 + 75x2y2

r
− 20x2

r2
+

15x4 − 10x2

r3
− 30x2y2

r4
− 15x2y2

r5

)

∂x2y4φ2,3(x, y) = 22176 (1− r)2+
(

18r3 − 39r2 + 30y2r + 24r − 40y2 − 3

+
10y2 + 75x2y2

r
− 20y2

r2
+

15y4 − 10y2

r3
− 30x2y2

r4
− 15x2y2

r5

)

∂x3y3φ2,3(x, y) = 332640x y (1− r)2+
(

6r3 − 20r2 + 24r − 12 +
2 + x2y2

r
− 2x2y2

r3

+
x2y2

r5

)

The derivatives of function φ2,4(x, y) = (1− r)10+
(
429r4 + 450r3 + 210r2 + 50r + 5

)
are:

• |α| = 1

∂xφ2,4(x, y) = −26x (1− r)9+
(
231r3 + 159r2 + 45r + 5

)

∂yφ2,4(x, y) = −26 y (1− r)9+
(
231r3 + 159r2 + 45r + 5

)
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• |α| = 2

∂x2φ2,4(x, y) = 26 (1− r)8+(231r4 − 72r3 + 2772x2r2 − 114r2 + 1056x2r − 40r

+ 132x2 − 5)

∂y2φ2,4(x, y) = 26 (1− r)8+(231r4 − 72r3 + 2772y2r2 − 114r2 + 1056y2r − 40r

+ 132y2 − 5)

∂xyφ2,4(x, y) = 3432x y (1− r)8+
(
21r2 + 8r + 1

)

• |α| = 3

∂x3φ2,4 = −10296x (1− r)7+
(
21r3 − 13r2 + 70x2r − 7r + 10x2 − 1

)

∂y3φ2,4 = −10296 y (1− r)7+
(
21r3 − 13r2 + 70y2r − 7r + 10y2 − 1

)

∂x2yφ2,4 = 3432 y (1− r)7+
(
−21r3 + 13r2 − 210x2r + 7r − 30x2 + 1

)

∂xy2φ2,4 = 3432x (1− r)7+
(
−21r3 + 13r2 − 210y2r + 7r − 30y2 + 1

)

• |α| = 4

∂x4φ2,4(x, y) = 10296 (1− r)6+
(

462x2r2 − 394x2r − 34y2r + 6r + 1 + 539x4

− 48x2 + 21y4 +
6y4 − 6x4

r2

)

∂y4φ2,4(x, y) = 10296 (1− r)6+
(

462y2r2 − 394y2r − 34x2r + 6r + 1 + 539y4

− 48y2 + 21x4 +
6x4 − 6y4

r2

)

∂x3yφ2,4(x, y) = 102960x y (1− r)6+
(
21r2 − 18r + 56x2 − 3

)

∂xy3φ2,4(x, y) = 102960x y (1− r)6+
(
21r2 − 18r + 56y2 − 3

)

∂x2y2φ2,4(x, y) = 3432 (1− r)6+
(
231r4 − 214r3 − 24r2 + 6r + 1680x2y2 + 1

)

• |α| = 5

∂x5φ2,4(x, y) = 102960x (1− r)5+
(
− 15r3 + 195r2 − 560x2r − 75r + 560x2 − 15

− 336x4

r

)
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∂y5φ2,4(x, y) = 102960 y (1− r)5+
(
− 15r3 + 195r2 − 560y2r − 75r + 560y2 − 15

− 336y4

r

)

∂x4yφ2,4(x, y) = 308880 y (1− r)5+
(
− 7r3 + 13r2 − 112x2r − 5r + 112x2 − 1

− 112x4

r

)

∂xy4φ2,4(x, y) = 308880x (1− r)5+
(
− 7r3 + 13r2 − 112y2r − 5r + 112y2 − 1

− 112y4

r

)

∂x3y2φ2,4(x, y) = 102960x (1− r)5+
(
−77r3 + 95r2 − 112y2 − 3− 336x2y2

r

)

∂x2y3φ2,4(x, y) = 102960 y (1− r)5+
(
−77r3 + 95r2 − 112x2 − 3− 336x2y2

r

)

• |α| = 6

∂x6φ2,4(x, y) = 308880 (1− r)4+
(

35r4 − 100r3 + 840x2r2 + 90r2 − 1680x2r − 20r

+ 1680x4 + 840x2 − 5− 1568x4

r
+

448x6

r2
− 112x4y2

r3

)

∂x6φ2,4(x, y) = 308880 (1− r)4+
(

35r4 − 100r3 + 840y2r2 + 90r2 − 1680y2r − 20r

+ 1680y4 + 840y2 − 5− 1568y4

r
+

448y6

r2
− 112x2y4

r3

)

∂x5yφ2,4(x, y) = 17297280x y (1− r)4+
(

5r2 − 10r + 20x2 + 5− 18x2

r
+

8x4

r2

− 2x2y2

r3

)

∂xy5φ2,4(x, y) = 17297280x y (1− r)4+
(

5r2 − 10r + 20y2 + 5− 18y2

r
+

8y4

r2

− 2x2y2

r3

)

∂x4y2φ2,4(x, y) = 308880 (1− r)4+
(

63r4 − 132r3 + 168x2r2 + 74r2 − 224x2r − 4r

+ 560x2y2 + 56x2 − 1− 448x2y2

r
+

448x4y2

r2
− 112x2y4

r3

)
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∂x2y4φ2,4(x, y) = 308880 (1− r)4+
(

63r4 − 132r3 + 168y2r2 + 74r2 − 224y2r − 4r

+ 560x2y2 + 56y2 − 1− 448x2y2

r
+

448x2y4

r2
− 112x4y2

r3

)

∂x3y3φ2,4(x, y) = 17297280x y (1− r)4+
(

9r2 − 12r + 3 +
8x2y2

r2
+

2x2y2

r3

)

• |α| = 7

∂x7φ2,4(x, y) = 17297280x (1− r)3+
(
− 35r3 + 105r2 − 210x2r − 105r + 420x2 + 35

− 168x4 + 174x2

r
+

108x4

r2
− 16x6 + 30x2y2

r3
+

18x4y2

r4
− 6x2y4

r5

)

∂y7φ2,4(x, y) = 17297280 y (1− r)3+
(
− 35r3 + 105r2 − 210y2r − 105r + 420y2 − 35

− 168y4 + 174y2

r
+

108y4

r2
− 16y6 + 30x2y2

r3
+

18x2y4

r4
− 6x4y2

r5

)

∂x6yφ2,4(x, y) = 17297280 y (1− r)3+
(
− 5r3 + 15r2 − 90x2r − 15r + 180x2 + 5

− 120x4

r
+

72x4

r2
− 16x6 + 66x4

r3
+

18x4y2

r4
− 84x4y2 + 90x2y4

r5

)

∂xy6φ2,4(x, y) = 17297280 y (1− r)3+
(
− 5r3 + 15r2 − 90y2r − 15r + 180y2 + 5

− 120y4

r
+

72y4

r2
− 16y6 + 66y4

r3
+

18x2y4

r4
− 84x2y4 + 90x4y2

r5

)

∂x5y2φ2,4(x, y) = 17297280x (1− r)3+
(
− 33r3 + 61r2 − 2y2r − 33r + 14y2 + 5

− 72x2y2

r
+

36x2y2

r2
− 6x2y2 + 16x4y2

r3
+

18x2y4

r4
+

6x4y2 − 12y6

r5

)

∂x2y5φ2,4(x, y) = 17297280 y (1− r)3+
(
− 33r3 + 61r2 − 2x2r − 33r + 14x2 + 5

− 72x2y2

r
+

36x2y2

r2
− 6x2y2 + 16x2y4

r3
+

18x4y2

r4
+

6x2y4 − 12x6

r5

)

∂x4y3φ2,4(x, y) = 17297280 y (1− r)3+
(
− 9r3 + 21r2 − 54x2r − 15r + 78x2 + 3

− 18x2 + 24x2y2

r
− 16x4y2

r3
+

18x2y4

r4
− 12x4y2 + 6x6

r5

)

∂x3y4φ2,4(x, y) = 17297280x (1− r)3+
(
− 9r3 + 21r2 − 54y2r − 15r + 78y2 + 3

− 18y2 + 24x2y2

r
− 16x2y4

r3
+

18x4y2

r4
− 12x2y4 + 6y6

r5

)
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A Appendix

• |α| = 8

∂x8φ2,4(x, y) = 17297280 (1− r)2+
(

35r4 − 140r3 + 840x2r2 + 210r2 − 2520x2r

− 140r + 1680x4 + 2520x2 + 35− 2540x4 + 840x2

r
+

448x6 + 840x4

r2

+
56x6 + 420x4

r3
− 336x6

r4
+

30x8 − 168x6

r5
+

60x8

r6
+

30x8

r7

)

∂y8φ2,4(x, y) = 17297280 (1− r)2+
(

35r4 − 140r3 + 840y2r2 + 210r2 − 2520y2r

− 140r + 1680y4 + 2520y2 + 35− 2540y4 + 840y2

r
+

448y6 + 840y4

r2

+
56y6 + 420y4

r3
− 336y6

r4
+

30y8 − 168y6

r5
+

60y8

r6
+

30y8

r7

)

∂x7yφ2,4(x, y) = 103783680x y (1− r)2+
(

35r2 − 105r + 140x2 + 105− 245x2 + 35

r

+
56x2 + 35

r2
+

7x4 + 35x2

r3
− 42x4

r4
+

5x6 − 21x4

r5
+

10x6

r6
+

5x6

r7

)

∂xy7φ2,4(x, y) = 103783680x y (1− r)2+
(

35r2 − 105r + 140y2 + 105− 245y2 + 35

r

+
56y2 + 35

r2
+

7y4 + 35y2

r3
− 42y4

r4
+

5y6 − 21y4

r5
+

10y6

r6
+

5y6

r7

)

∂x6y2φ2,4(x, y) = 17297280 (1− r)2+
(

35r4 − 110r3 + 420x2r2 + 120r2 − 810x2r

− 50r + 360x2 + 5 +
30x2 + 450x4

r
− 224x6 + 300x4

r2
+

2x6 − 150x4

r3
+

228x6

r4

+
114x6 − 30x8

r5
− 60x8

r6
− 30x8

r7

)

∂x2y6φ2,4(x, y) = 17297280 (1− r)2+
(

35r4 − 110r3 + 420y2r2 + 120r2 − 810y2r

− 50r + 360y2 + 5 +
30y2 + 450y4

r
− 224y6 + 300y4

r2
+

2y6 − 150y4

r3
+

228y6

r4

+
114y6 − 30y8

r5
− 60y8

r6
− 30y8

r7

)

∂x5y3φ2,4(x, y) = 34594560x y (1− r)2+
(

105r2 − 240r + 140x2 + 165− 95x2 + 30

r

− 56x4 + 30x2

r2
+

8x4 − 15x2

r3
+

72x4

r4
+

36x4 − 15x6

r5
− 30x6

r6
− 15x6

r7

)

∂x3y5φ2,4(x, y) = 34594560x y (1− r)2+
(

105r2 − 240r + 140y2 + 165− 95y2 + 30

r

− 56y4 + 30y2

r2
+

8y4 − 15y2

r3
+

72y4

r4
+

36y4 − 15y6

r5
− 30y6

r6
− 15y6

r7

)
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A Appendix

∂x4y4φ2,4(x, y) = 17297280 (1− r)2+
(

63r4 − 162r3 + 138r2 − 42r + 336x2y2 + 3

− 408x2y2

r
+

48x2y2

r2
+

24x2y2

r3
+

30x4y4

r5
+

60x4y4

r6
+

30x4y4

r7

)
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