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Abstract

There is an increasing trend that intermediate representations (IRs) are used to de-
liver programs in more and more languages, such as Java. Although Java can provide
many advantages, including a wider portability and better optimisation opportuni-
ties on execution, it introduces extra overhead by requiring an IR translation for the
program execution. For maximum execution performance, an optimising compiler
is placed in the runtime to selectively optimise code regions regarded as “hotspots”.
This common approach has been effectively deployed in many implementation of
programming languages. However, the computational resources demanded by this
approach made it less efficient, or even difficult to deploy directly in a resource-
constrained environment. One implementation approach is to use a remote compi-
lation technique to support compilation during the execution. The work presented
in this dissertation supports the thesis that execution performance can be improved
by the use of efficient optimising compilation by using a proxy dynamic optimising
compiler.

After surveying various approaches to the design and implementation of remote
compilation, a proxy compilation system called Apus is defined. To demonstrate
the effectiveness of using a dynamic optimising compiler as a proxy compiler, a
complete proxy compilation system is written based on a research-oriented Java
Virtual Machine (JVM). The proxy compilation system is discussed in detail, showing
how to deliver remote binaries and manage a cache of binaries by using a code
migration approach. The proxy compilation client shows how the proxy compilation
service is integrated with the selective optimisation system to maximise execution
performance. The results of empirical measurements of the system are given, showing
the efficiency of code optimisation from either the proxy compilation service and a
local binary cache.

The conclusion of this work is that Java execution performance can be improved
by efficient optimising compilation with a proxy compilation service by using a code
migration technique.
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1
Introduction

The eternal mystery of the world is its comprehensibility.

Albert Einstein (1879–1955)

This chapter gives a broad overview of the research area corresponding to the

work described in this dissertation, explaining the reason why improvements to the

state of the art are necessary. The approach used to undertake the research is also

given. Finally, the last section of this chapter provides a outline of the structure of

the dissertation.

1.1 Overview

The work presented in this dissertation is concerned with the topic “Proxy Compi-

lation for Java via a Code Migration Technique”. It introduces a novel approach to

implement a dynamic programming language, particularly on resource-constrained

embedded systems.

While many mainstream programming languages use executable machine code as

the compilation output, the popular Java programming language promotes a return

to research on the execution intermediate representation (IR). In contrast to exe-

1



1.2. Motivation 2

cutable machine code, an IR can provide better portability, and carry more semantic

information to provide further opportunities for optimization. For example, Java of-

fers no additional maintenance cost in executing applications on multiple platforms.

Platform independent features are useful for deploying applications in heterogeneous

environments without extra maintenance, especially in embedded systems, where a

variety of hardware and system specifications are available.

Despite the benefits offered by the use of IR in languages such as Java, the IR

introduces an extra layer of translation from IR to machine code in the execution.

Much research has been carried out to fully exploit the optimization potential in the

IR translation process for a better execution speed. However, the cost of optimizing

compilation of the IR in a resource-constrained environment is often considered to

outweigh its benefits. In the background chapter, Section 2.1 studies the execution

model for the IR in Java in more detail.

The work presented in this dissertation studies the cost and benefits of an approach

to migrate the expensive code optimization process from the host machine to a

networked server, in order to reduce the optimizing compilation cost on the host

machine.

1.2 Motivation

The original inspiration for this research project comes from work by Newsome and

Watson [66]: the MoJo research project. In their work, MoJo is an implementation

of the Java virtual machine targeted for resource-constrained environments by using

ahead-of-time compilation. One goal of the implementation design was to provide

inexpensive support for dynamic class loading via a proxy compilation technique.

However, the implementation of MoJo requires the compilation to constantly handle

all dynamic loading activities, which is a problem that led to the research presented

in this dissertation.

There are several benefits of using remote compilation techniques for execution.

First, it provides a dynamic optimizing compilation service to language execution,

which overcomes the limitation on static compilation for languages that support

dynamic loading. Second, it distributes computation-intensive optimizing compila-

tion to networked servers, allowing lower demands on the thin client. Third, the
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distributed compilation model can be deployed as a service in a scalable network

computing envirnoment. For example, there is an increasing trend that Cloud Com-

puting is used to provide scalable and virtualize computing resource as a service while

hiding the details of underlying technology infrastructures. A dynamically scalable

compilation service can be provided efficiently and widely over the Internet by the

Cloud.

A survey of the literature related to the implementation of remote compilation

shows that the remote compilation service approach has already been used in lan-

guage implementations, including Java. However, these approaches mostly use a

static compiler to provide a remote compilation service as a replacement for the lo-

cal optimizing compiler, despite the fact that much progress has been made with

dynamic optimizing compiler to improve compilation performance and optimization,

which are identified as important issues. Furthermore, projects, such as MoJo, were

only implemented as a proof of concept prototype such that only a limited set of

Java features are supported. As a consequence, a broader evaluation of such systems

is difficult.

Given such a situation, the goal of this research is clear: to demonstrate that an

infrastructure to provide proxy compilation using a dynamic optimizing compiler can

be efficiently applied on a full-scale Java Virtual Machine (JVM) implementation.

This proxy compilation infrastructure would further provide potential opportunities

to explore speculative optimizations and various characteristics of proxy compilation

for Java in later research.

To achieve this goal, we have to:� design and implement a proxy compilation infrastructure based on the use of

a dynamic optimizing compiler,� design and implement a client to utilize the proxy compilation service based

on an existing JVM implementation,� test and evaluate the proxy compilation system to determine the efficiency of

the implementation.

Using this approach it is possible to examine experimentally to what extent proxy

compilation is able to support the traditional fully functional JVM without causing

implementation difficulties. By modifying a well-established JVM to deploy effec-

tive remote compilation, it offers the opportunity to explore the proxy compilation
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scheme.

1.3 Terminology

In order to reduce the confusion arising from different terminology, this section gives

definitions of the terminology used throughout this dissertation. Different researchers

use a variety of terminology to define the same concept in different contexts. It is

the same here in programming languages.� Compilation is a general term used in the context of this thesis to address the

concept of the process of translation from IR into machine code, but no tech-

nique is specified. In this dissertation, image loading and proxy compilation

are among these techniques fitting into the category of this terminology, but

are not exclusive.� Granularity implies compilation granularity in this thesis. In compilation, it

means the size of the compilation unit, e.g. methods, classes or entire program.

“Fine-grained” means the compilation units are relatively low-level and small

in term of code size, e.g. a basic-block.� Function and Method : a function is used to refer to a subroutine to perform a

specific task by lower-level programming languages. In contrast, a method is

an object oriented concept of a member of a class referring to a subroutine.� Interpretation is a general term implying indirect execution in contrast to the

execution of native code, which is called “direct execution”. In the context

of this thesis, interpretation implies the use of an interpreter program that

reads intermediate representation (IR) instructions and simulates their execu-

tion. There is no direct translation into target machine code. The term in-

terpretation does not specifically imply that the translation procedure is taken

instruction by instruction.� Image is a file format used to store a collection of compiled routines that can

be used in different execution instances. It shares various similarities to object

files that all contain code and data integrated as a program, but an image does

not necessarily map to a source file.� Linker is a program routine that takes one or more objects generated by com-

pilers and assembles them together into a single executable program.
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1.4 Dissertation Structure

Chapter 2 presents background information related to programming language exe-

cution, particularly focusing on IR execution. It also presents a detailed survey of

existing approaches to improve performance of IR execution while balancing the cost

of dynamic translation.

Chapter 3 gives an overview description of the Apus1 proxy compilation system.

Many important issues related to applying a proxy compilation service are discussed.

In Chapter 4, the design of a code migration framework that is used to provide code

relocation for binaries generated by a dynamic optimizing compiler is presented,

and issues of implementation are discussed. The proxy compilation protocol design

adopted follows in Chapter 5, and the implementation issues of the compilation server

are discussed later in the chapter.

A detailed experimental study of the Apus proxy compilation system is presented

and summarized in Chapter 6. Last but not least, Chapter 7 draws a overall conclu-

sion of this study on applying code migration techniques to provide proxy compila-

tion to existing JVM implementations. Further possible extensions of this work and

alternative design decisions are also discussed in the chapter.

1Our proxy compilation system is named after Apus which is a faint constellation in the southern
sky. Its name means “no feet” in Greek, and it represents a bird of paradise (which were once
believed to lack feet). It is similar to our solution, which removes dynamic compilation out of the
host machine, making the host machine faster.
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2
Background

We know very little, and yet it is astonishing that we know

so much, and still more astonishing that so little

knowledge can give us so much power.

Bertrand Russell (1872–1970)

2.1 Program Execution

A high level programming language can be executed on a hardware architecture

using primarily three different approaches. The target platform could choose to

interpret the language directly or it could be compiled into the native instructions

for the target platform before execution. Otherwise it could also be compiled into

an intermediate representation which is then interpreted by the target platform.

According to Rau [83], the level of program representation can be divided into three

broad categories:� High-Level Representation, (HLR) is one written in a high level language, such

as Fortran, C, perl etc.� Directly Interpretable Representation, (DIR) is an intermediate representation

that is not bound to any specified architecture and carries semantic informa-

6
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tion, such as JVM bytecode, LLVM bitcode.� Directly Executable Representation, (DER) are native machine instructions for-

mat bound to a specified architecture, for example x86, SPARC, ARM.

HLR holds the original information on the program that later would be inter-

preted [83]. It is used mainly to improve the readability and writalibility for pro-

grammers but it is inefficient for execution on machines, since optimisation from

HLR to executable DIR crosses a wide gap. However, the direct interpretation of a

HLR provides better flexibility for users by avoiding compilation before execution.

It is therefore used in a number of languages which are designed for small programs,

such as scripting languages. Figure 2.1 illustrates the execution model for HLR.

Figure 2.1: Execution Model for a HLR

Most compilers directly produce DER code. Execution and production of DER

code is demonstrated in Figure 2.2. It is considered to be more efficient than other

representations because there is no interpreting and runtime overhead and further

inter-procedural optimisation [64] can be applied. However, there is a lack of porta-

bility of the DER code, since it is compiled for the specified hardware architecture.

Furthermore, due to the fact that a DER contains little semantic information of the

program, there is little space for the optimisation based the runtime profiling.

Figure 2.2: Execution Model for a DER

DIR lies in the middle of a HLR and DER as illustrated in Figure 2.3. It pro-

vides a degree of portability and does not impose a significant overhead of dynamic

compilation at runtime compared to a HLR. A DIR is commonly produced by com-

pilers which serve similarly as the front-end to build an representation of programs
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including the intermediate representation, symbol tables and other data structures

for associated information, such as debugging information. The DIR therefore carries

more semantic information which allows further opportunities for optimisation during

runtime. It has gained more attention in recent years in many projects [50, 58, 101].

Although DIR requires an extra interpretation during execution, Hoevel [41] also

derived this approach under the condition of dynamic optimisation. DIR is “ideally”

superior to HLR and DER in term of space and speed.

Figure 2.3: Execution Model for a DIR

2.2 The Java Programming Language

Java is a general-purpose dynamic programming language, which is widely used (4.5

billion devices [63]) ranging from high-powered servers with 64-bit processors to 8-bit

embedded systems with limited memory. It is the first commercially successful pro-

gramming language that uses an intermediate representation as the binary format

with a virtual machine execution model. As it is widely successful, many of its char-

acteristics, including native support for automatic memory management, dynamic

loading and exception handling etc., became a milestone of programming language

design and influenced other modern languages, such as C# [40], Python [33] and

D [60]. In contrast to traditional programming languages where one-time translation

is used to produce executable machine instructions, Java programs are first compiled

into an intermediate representation format, referred to as bytecode for the Java Vir-
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tual Machine (JVM), which provides an universal machine independent execution

environment and runtime service.

As we have discussed above, indirect execution through Java bytecode creates

extra overhead in performance and resource consumption on the host machine, com-

pared to programming languages using one-time translation. Wirjawan et al. [110]

classify the costs of bytecode execution into four main categories:� Interpretation overhead. Bytecode needs to be fetched and translated during

the actual execution of bytecode. The fetch and decode step does not con-

tribute to effective CPU utilization.� Stack overhead. JVM is a stack based virtual machine while many widely used

machine architectures are register-oriented, although the number of available

registers may vary. The execution of stack-oriented bytecode can be inefficient

because of the extra steps of push and pop operation in typical register-oriented

hardware.� Redundant operations. The stack-oriented model requires data be reloaded into

the stack for each access, while the register-based architecture would avoid this.� VM-specific overhead. Some overheads are associated to individual architec-

tures. For example, the JVM requires stack entries to be 4 bytes wide. Further

runtime services that JVM provides also contribute to the factor of inefficiency,

such as automatic memory management, the complex object model and run-

time boundary checking.

2.3 Execution Model for Java

Java applications are compiled into class files [58], which are equivalent to the ex-

ecutable output from a native compiler, containing bytecode instructions, symbols

and debugging information, etc. The Java program’s execution normally consists of

two steps: firstly, a Java compiler translates the programs into class files, and then

the class files can be executed accordingly. By using the class file to encapsulate the

machine independent bytecode instructions, a Java program can be distributed to

heterogeneous platforms without recompilation. Furthermore, since there is more se-

mantic information remaining in the compiled bytecode instructions than in regular

native binaries, further optimisation for the specified platform can be carried out in
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later executions.

Except for the hardware implementation of JVM with native bytecode instruction

support, the execution of Java class files involves translating bytecode instructions to

native instructions. The translation process of bytecode typically is either executed

on the fly by using an interpreter or dynamic compiler, or statically compiled before

the execution by Ahead-of-Time (AOT) compilation according to the specified user

scenario.

Java interpreters are generally regarded as a portable and simple implementation

for executing bytecode. Due to the fact that it usually demands relatively low hard-

ware requirements, interpretation remains as a popular choice for JVM implementa-

tion for embedded systems [87, 104,26]. In order to achieve reasonable performance

by reducing interpretation costs, many state-of-the-art JVM implementations such as

HotSpot [73] and Jikes RVM, changed from Jalapeño, [2] apply dynamic translation

and optimisation, which is commonly known as a Just-in-Time (JIT) compilation, on

bytecode immediately prior to the execution of that code. It is essential that the cost

of the compilation process should not outweigh the benefits it delivers. As a result,

JIT compilers generally cooperate with a lower cost execution technique to balance

the overall translation cost, and only selected code regions regarded as “hotspots”

are treated specially by the JIT compiler. Arnold et al. [6] concluded that in their

Jikes RVM implementation, by using a fast translation technique combined with se-

lective optimisation based on online profiling, JVM can achieve the best performance

among the single execution models.

Arnold et al. [7] summarized that three basic components are commonly required

for an effective selective compilation system: a) a profiling mechanism to identify

candidates; b) a decision making component for choosing the optimisation strategies;

c) a dynamic optimisation compiler to perform code optimisation on selected regions.

Despite the fact that selective compilation techniques were largely used in many

VM implementations [73,2] to provide a reasonable performance for Java programs,

selective compilation techniques were even extended outside the Java programming

language domains [42, 17]. However, it is not commonly used in the resource-

constrained domain. The complexity of the selective compilation system and dy-

namic optimisation compiler imposes a heavy burden on computing resource for

dynamic optimisation. Even though further research proposed many approaches to

reduce the complexity of the optimisation process [27,16] to allow dynamic optimisa-
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tion to be used in a more resource constrained environment, compromises on binary

efficiency have to be made.

As an alternative to dynamic optimisation, one can compile the class files for

the Java program statically before the execution begins, such as in [13,91,103]. This

approach is referred to as Ahead-of-Time (AOT) compilation, which does not require

extra translation overhead on the execution, so well planned optimisation sequences

can be considered [19]. One of the main concerns of the AOT compilation approach is

how to handle class files that are dynamically loaded, as dynamic class loading is one

of the key features of Java, making it different from other traditional programming

languages.

2.4 Java on Embedded Systems

An embedded system is a general term used to describe a computer system designed

for one or more specific functions. Commonly they range from high-end 32-bit pow-

erful mobile or hand-held computer devices to low-end simple 8-bit nodes in sensor

networks. As a result of embedded systems being dedicated to specific tasks, they

all tend to have significantly limited resources compared to desktop and server com-

puters. These limitations are usually in the area of power consumption, available

size of ROM and RAM, processor speed, network accessibility and even physical

size. Furthermore, there is high diversity of embedded systems in term of hardware

architecture and operating system installed, even inside a single application, such as

applications for mobile, handheld computers or sensor networks. This diversity is a

compelling reason to use a virtual machine as an abstraction for deploying applica-

tions.

Wirjawan et al. [110] conclude there are three major benefits of using the abstrac-

tion of a VM on embedded systems. First, VMs allow applications to be developed

on a universal platform, rather than tailoring the application to fit in to individual

type of devices. Second, VMs provide a better separation between application and

system, that is, reduce the cost of maintenance when new devices join in or new

changes are applied to the system. Third, VMs provide a common execution frame-

work among a range of devices. The intermediate representation of VMs becomes

the basis for application distribution without involving issues of incompatibility.
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One of the primary concerns of using JVM and bytecode rather than native ma-

chine code is the overhead introduced by the extra abstraction layer of indirect execu-

tion. Furthermore, runtime services provided by VMs are also responsible for extra

cost in the execution. Thus, the application executes more slowly, and consumes

more power and memory than their counterparts. For example, a JVM specified for

embedded systems (referred to as VMStar), proposed by Koshy et al. [47] reported

that their iadd bytecode ran approximately 10 times slower than the native imple-

mentation. What is needed for embedded systems is an execution environment that

can provide benefits to VMs as platform independent application development and

deployment without requiring unacceptable overhead.

2.5 Related Work on Language Implementation

Much research and progress has been made on the execution of intermediate repre-

sentation, DIR. One of the most important programming languages of this type is

clearly Java which is the basic of much of this research. Research into the issues of

compilation efficiency and generated code efficiency continue.

In the following subsections, we present related work in the area of interpreters,

Just-in-Time (JIT) compilers and adaptive compilation since our implementation is

based on and is extended from this previous work. We also review work related to

bytecode annotation, proxy compilation and distributed systems based Java, espe-

cially for embedded systems.

2.5.1 Interpreters

Interpretation was used in many implementation of high-level programming lan-

guages in the early days, such as Lisp [61], APL [86], Smalltalk-80 [25] and Pascal-

P [70]. To this day, interpreters remain one of the important methods of dynamic

translation used in many implementation of languages such as Java [62], Perl [109],

Python [33], MATLAB [102]. Various projects have improved the performance of

interpretation from the early basic switch dispatch solution, which uses a large set

of switch statements and labels for each of the instructions in the virtual machine

instruction set.
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Threaded Code introduced by Bell and James [12] is regarded as one of the

milestones in the improvement of interpreters. Bell and James suggested that the

Threaded Code technique can simplify the logic of interpreting instructions by mak-

ing a direct jump to the next instruction implementation from the end of the current

instruction implementation.

Piumarta and Riccardi [76] took Bell’s Threaded Code a step further. In order

to reduce further the complexity of the interpreting logic in Threaded Code which

requires a direct jump on every virtual instruction, they suggested dynamically com-

bining blocks of instructions together in a new “superinstruction”, and modifying

the code to use the new instructions.

A number of recent systems have been developed based on the dynamic com-

bination of “superinstructions”. Ertl and Gregg [29] explored various interpreter

generation heuristics in order to improve the branch prediction accuracy. Ertl and

Gregg [30] extended Piumarta and Riccardi’s technique to dynamically translate

non-relocatable code that may throw exceptions. Gagnon and Hendren [34] extended

Piumarta and Riccardi’s work to provide dynamic class loading and multithreading.

Furthermore, there are significant advances that have been made to improve the

performance of interpreters, but an interpreter cannot match the performance of

the optimising compiler. However, interpreters remain an attractive choice as a fast

execution engine for the selective compilation system.

2.5.2 Dynamic Compilation

In order to improve the performance further beyond interpreters, Rau [83] suggested

using the dynamic translator technique to translate the intermediate representation

to native code on the fly reduces average time spent on interpreting, per instruction

executed. This technique is commonly known as JIT compilation which compiles and

possibly optimises a sequence of code blocks to native code before they are executed.

The earliest published work about JIT compilation dates back to McCarthy’s work

on the LISP system [61]. He suggested compiling functions into machine language

and this process is fast enough so that the compilation output did not need to be

stored.

To address the issue of slow optimisation in dynamic code generation, progress has

been made. For example, Hölzle [42] adopted a fast near-linear register allocation
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technique in the third-generation SELF compiler as the replacement for the graph

colouring register allocation which was used in static compilation. A number of

projects also investigated an alternative fast register allocation technique in place

of graph colouring [113, 79, 14, 90, 1]. Chen and Olukotun’s MicroJIT [16] reduces

the dynamic optimisation process into three major passes over the code, increasing

the compilation speed and also reducing the memory footprint. As an alternative

to performing general optimisations on-the-fly, off-loading optimisation for general

patterns into static compilation can significantly minimise the cost of runtime code

generation by up to 6–10 cycles per instruction [53,27]. However, it introduces limits

on available optimisations and restricts specialised applications.

In order to reduce the interpretation cost and achieve comparable translation speed

to interpreters, the adaptive optimisation system in Jikes RVM, formally known as

Jalapeño JVM, developed by Arnold et al. [6] implemented a basic JIT compiler,

referred to as the baseline compiler in their system, mimicing the stack machine

of the JVM specification just as the interpreter. That is, the baseline compiler is

only responsible for directly translating bytecode instructions using a simple register

allocation technique. As the baseline compiler focuses on translation speed rather

than binary efficiency, it is therefore too slow to be used as a standalone execution

engine in the JVM implementation.

2.5.3 Selective Compilation

While dynamic optimisation is successful in continually improving the efficiency of

the translated code, it also introduces new problems, as we addressed above, into

the design of the execution engine of virtual machines. To address these problems, a

virtual machine can safely exploit the well-known fact that most programs spend the

majority of their time in a small portion of the code [46]. The problem to improve

the overall performance of the program can then turn into the problem of finding

and focusing on better optimisation for the frequently-executed code sequences. The

virtual machine then can use a less expensive strategy to dynamically translate the

rest of the code.

Detlefs and Agesen [24] published a study investigating the trade off between dif-

ferent translation approaches. They found that compilation time does not affect the

overall performance for the long running applications. A combination of interpreter
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or fast compiler and an expensive JIT compiler on the longest running methods

produces the best results, based on using an “oracle” study to determine the most

important methods. Some VM implementations adopt a mixed interpreter and com-

piler strategy [73,113,96] including the unpublished work of Kaffe [99]. Others take

a compiler-only strategy to combine a fast non-optimising compiler and a JIT opti-

mising compiler, such as Jikes RVM multiple levels of optimisation to distribute the

compilation time in a finer granularity [6].

To identify frequently running methods (“HotSpots”), SELF-93 implementations

[43] use the invocation counter as a low-overhead, coarse-grained sampling mecha-

nism to keep track of the number of method invocations. The Java Hotspot Server

VM reported in [73] took a similar strategy to SELF-93. However, as Hansen [38]

pointed out in 1974, determining the counter-based threshold that drives recompila-

tions heuristically has its limitations; it is hard to change an optimisation count that

affects only a portion of the performance curve.

Jikes RVM [6] reduces the cost of profiling by periodically sampling the call stack

of the executing program. This mechanism is able to reduce the overhead over the

counter-base mechanism on each method invocation. Furthermore, a cost-benefit

model, where the recompilation decision is determined by the estimated additional

performance benefits over the cost of recompilation, is used to select multiple level

of optimisation for recompilation.

2.6 Feedback Direct Optimisation

Online profiling techniques provide a higher quality of information on understand-

ing how programs are executed in the VM, and they provide a better optimisa-

tion opportunity for dynamic compilation rather than static compilation. In 2000,

Smith [93] gave a brief review of motivation and history of such dynamic optimisa-

tion techniques, namely feedback-directed optimisation (FDO). He also highlighted

three factors as the motivation for FDO:� FDO can overcome the limitation on static compilation by exploiting the in-

formation which cannot be available during static compilation.� FDO gives freedom to the software vendor to revert or change the optimisation

decision without jeopardising the outcome of the programs.



2.7. Annotation 16� Runtime binding can give more flexible and easy changes to software systems.

Inlining which replaces a call site with the content of the function and has proved

to be one of the most efficient optimisation techniques, especially for object-oriented

programs. Many studies [42, 6, 22, 97] have examined a more aggressive inlining

policy based on the online profiling information without imposing a heavy burden on

both compilation time and code space. Arnold et al. [7] reviewed several individual

studies revealing that fully automatic online profile-directed inlining for the Java

programming language would improve performance by approximately 10%–17%.

Arnold et al. [8] exploited the profiling data to improve the accuracy of branch

prediction, which can guide the code generator to lay out code blocks in a contiguous

address space in order to reduce the rate of cache misses. It reports a modest

performance improvement. Other similar work on optimising code layout by using

online profiling data has been reported [15, 95].

Applying aggressive optimisations using the profile information introduces the

issue of whether the optimised code sequence can only be valid in a specified situation.

Many virtual machines use multiple version of optimised code with aggressive inlining

to handle dynamic dispatch [32, 73]. To reduce the overhead of runtime speculation

for applying multi-versioning, Arnold et al. [9] worked on fast runtime tests to identify

regions of code within which speculative optimisations can be performed.

2.7 Annotation

Research has demonstrated that there is a trade-off between the optimisation time

and the efficiency of the optimised code in dynamic compilation. Most research,

however, has been confined to adapting fast alternative analysis algorithms or care-

fully selecting optimisation code regions, and has not demonstrated that a dynamic

compilation system could cope reasonably with the increased size and complexity

of a system based on interpreters. One of the general approaches is called stage

compilation, where compilations of a single program are divided into two separate

stages: static and dynamic compilation. Prior to the application execution, a static

compiler compiles “templates”, the essential optimised building blocks, which are as-

sembled together, and also places runtime values into specified places (linking) using

a dynamic compiler.
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In the early designs of stage compilation, code fragments appropriate for com-

pilation into templates are hand picked by programmers. The ‘C (Tick C) system

designed by Engler et al. [28] and other research [77,78], suggested that the efficiency

of dynamic compilation can be improved by manually compiling code fragments into

a portable, optimised intermediate representation to be used at runtime. Alterna-

tive attempts at using static compiled templates in C [18,67] and ML [54,53] follow

a declarative approach where user annotations trigger analysis and transformation

of the programs into a template which can be fast assembled in the runtime com-

pilation. However, special requirements for heavy user involvement either in the

compiling process or coding to specify the code fragments for static compilation

into templates creates a limitation on using the stage compilation technique which

requires a substantial rewrite to fit the limitations of the system or miss the opti-

misation opportunities. Although later implementations in Dyc by Grant et al. [37]

reduce the reliance on the programmer to specify code fragments for optimisation,

code annotation on static variables is still required.

Azevedo et al. [10,11] took a different approach to applying stage compilation on

Java, where they proposed their Java Annotation-Aware Just-in-Time (AJIT) Sys-

tem to attack the inefficiency of dynamic compilation resulting from the issue that

the underlying stack model and many bytecode operators including sub-operations

are the primary reason. Their AJIT compiler annotate the bytecode with machine

independent analysis information without having to perform dynamic analysis. Their

results show the off-line optimisation annotation can generate binary code as efficient

as the Kaffe [99] JIT system, however, the cost of their annotation-aware code gen-

erator at runtime was not discussed in either of the publications. It is believed that

simple optimisation and code generation from annotation, such as register alloca-

tion and instruction selection are still required [11]. In addition, since the bytecode

annotation is statically generated as a separate operation, the limitation for stage

compilation as mentioned above is still not solved.

While Azevedo’s work addresses the platform independent annotation, Serrano et

al. [88] proposed using optimised native binaries generated by a quasi-static compiler

instead of optimised intermediate representations. This work wraps the optimised

binaries, which would be statically or dynamically compiled by using the dynamic

compiler in the JVM, into a persistent format only requiring simple modifications to

be ready for execution, in order to reduce the overhead of compilation during pro-
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gram execution. The authors’ primary interest is improvement in compilation speed,

however, the availability of the optimised binary remains as a critical issue like many

other stage compilation solutions, although the requirement for code annotation is

removed. This article proposed that optimised binaries can be generated by static

optimisation, that is, bytecode without pre-execution optimised binaries are sub-

jected to slow interpretation in execution. The article also proposed an alternative

approach, in which optimised binaries are generated by dynamic compilation, that

is, it required three compilers (interpreter, JIT compiler, quasi-static compiler) to be

activated in the runtime, however, because of the limitation of computing resource

in embedded environments, it already violated the original dual purposes of stage

compilation, to achieve both compilation time efficiency and space efficiency.

2.8 Remote Compilation

There is relevant work in this area of using server-based compilation as an alternative

to dynamic compilation in Java, as well as for static programming languages such

as C and Fortran. Following the initial publication [56,57] by the current author on

the possible solutions to the problem of providing dynamic compilation for resource-

constrained environments, during which period the work presented in this thesis was

being completed, further independent results [110, 52] were published using similar

approaches to the problem of providing dynamic compilation for embedded system

and desktop.

Voss and Eigenmann [105] implemented a remote compilation system to perform

dynamic compilation for the static programming languages C and Fortran. Portions

of the code which are identified as “HotSpots” are selected for optimisation by a

local or networked compiler with the knowledge of the current execution profiles. It

is similar to the work presented in this thesis but with a completely different design

goal. Their design is tailored for a distributed server or multiprocessor machines,

where they rely on a multi-threaded target execution environment: using NFS and

RPC. Our design goal is that dynamic compilation in the client should be able to

offload to a compilation service without relying on a tight coupling between client

and server. In addition, Java specific issues are not considered in this work. In

fact, the program sections, referred to as intervals, are selected by the user or offline

compiler, which becomes an issue for the Java programming language when Java
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classes are loaded dynamically as incoming classes must be rewritten on the fly. In

addition to these differences, we present much more detail on the approach to pro-

vide dynamic loading and linking. Delsart et al. [23] present a commercial remote

compilation system called JCOD, designed to perform native compilation for Java.

The compiler server in JCOD compiles VM service and VM-independent native code

for an embedded system. The authors’ primary interest is focusing on improving

execution performance while minimising the increase of code size and memory foot-

print. As a matter of fact, their compilation server only performs a optimisations

that specifically design to reduce overall code size.

Newsome and Watson [66, 65] describe a proxy compilation scheme called MoJo

in which the compiler server compiles Java classes into C source code and then the

GNU gcc compiler is used to produce object files. The design goal of the authors is

aiming to provide Ahead-of-Time compilation with dynamic class loading support,

targeted to resource-constrained environments. MoJo handles only a subset of Java

features and does not support “HotSpots” method profiling, but instead compiles

the entire class file before execution. As a consequence, client execution is halted

until the optimised binary is installed from the client. In this sense, MoJo works

more like an Ahead-of-Time compiler that batches the compilation for its client.

Work by Palm et al. [74] investigated the power consumption issue when dy-

namically loaded Java classes are compiled by using a tethered server rather than

compiled on the embedded system. They concluded that energy consumption for

their configuration on embedded systems can be reduced significantly, especially for

longer running methods, by moving to a server. The proposed solution for the prob-

lem is similar to our thesis, however, the authors have not implemented their ideas

experimentally.

Two pieces of individual research [110, 52] were published prior to this thesis,

showing that remote compilation techniques used as an alternative to local dynamic

compilation are still an active research topic. Wirjawan et al [110] exploit the pos-

sibility of applying remote compilation techniques in the Wireless Sensor Network

(WSN) domain. The author proposed that the Java application is deployed with a

tailored VM subset from the base station, later responsible for making the compila-

tion and sending compiled binaries into individual nodes. Again, similar to MoJo,

they are also using the static compiler (GNU gcc) as the code generator to produce

the final machine code. Our approach focuses on a more universal solution of pro-
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viding a compilation service with bytecode handling, security and code coupling.

Teodorescu et al. [100] adopted a more aggressive approach for customising JVM

for reducing the memory footprint in a WSN domain. The device runs on minimal

kernels that download only limited parts of the run-time system and optimised ap-

plication binaries on demand. In this case, all bytecode translations are performed

on the server.

In 2007, Lee et al. [52] implemented their remote compilation system for the

desktop environment, after their initial publication on embedded systems [75]. The

design philosophy of their system is similar to ours, to off-load most of the heavy

load of compilation to a more powerful server. However, in their approach, the

optimised binaries from the compiler server are ready to be used, without requiring

additional linking, reducing the linking cost while in execution. As a result, the

client’s execution state has to be sent to the server during the execution, and the

optimised binaries cannot be cached in local storage since the execution state has

been hard coded into the optimised binaries. In contrast, our design uses a relocatable

format for organising optimised binaries. In addition, the compiler server in our

work is intended to be an independent service over the Internet while Lee designed

it as a proxy for the client to access application source from the Internet, and there

may potentially be limited access from applications where client authentication is

required.

2.9 Distributed Virtual Machines

The basic principle of remote compilation which migrates compilation tasks into

a networked server can be seen as a specific instance of a distributed system in

which components located at networked computers communicate and coordinate

their actions through messages [21].

Sirer et al. [92] proposed a distributed virtual machine (DVM) for network com-

puters. DVM explores the distributed service architecture to factor out the services

of VM runtime, such as verification, security enforcement and compilation, to a cen-

tralised heterogeneous cluster behind the firewall. However, the research interests

of the authors’ publication are more focused on manageability and stability of the

system instead of performance and memory consumption. The motivation behind
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their work is different from us. They are concerned with manageability of security

on various clients in a trust network, instead of being concerned with compilation

performance and memory consumption.

In order to reduce power consumption for embedded systems, particularly in the

WSN domain, recent research [71, 84, 85] focuses on migrating parts of application

execution over wireless networks. Rudenko et al. [85] developed a remote processing

framework to provide system support for directing and handling process migration.

Kremer et al. [49, 48] improve the stability and reliability of process migration over

inconsistent networks. The server periodically synchronises checkpoints (as deter-

mined by the compiler) for clients to allow the client monitoring the program record

appropriate information, and continues the process when a server or network failure

is encountered.

JESSICA 2 developed by Zhu et al. [115] investigated how to parallelize program

execution on clusters. By building a single system image (SSI) to hide all distributed

aspects of distributed computing, they expected to balance the workload over the

cluster without intervention from the user. Similar work also can be found in [114,4,

5]. However, their research is more focused on providing high-performance parallel

execution environments for specifically parallelizable programs instead of general

optimised code for program execution.

2.10 Summary

This chapter began by looking at the directly interpretable representation (DIR), as

one of the three different program representations which has been used in program

execution - as defined by Rau [83]. As well as the program representation itself, we

then reviewed the characteristics of the Java programming language. Many of its

features, such as platform independence, native support for dynamic class loading,

and automatic memory management, became milestones for modern programming

language design, radically distinguishing Java from many traditional programming

languages. However, using a platform independent intermediate representation, byte-

code, implies that extra compilation processes on the bytecode prior to executions

are required.

We identified the two conflicting goals of dynamic compilation in Java execution,
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code efficiency and optimisation cost, which includes the optimisation time and mem-

ory footprint of the optimisation compiler, during the Java program execution. Their

goals are especially important for embedded systems, in which only limited resources

are available.

As we described our research challenges with Java execution, we then conducted

a wide review of many approaches used to solve similar problems for Java execution.

In most designs, there is a trade-off between the conflicting issues, for example, fast

online optimised compilation produces less efficient binaries.

Is it possible to provide an alternative dynamic code optimisation approach to

maintain the efficiency of Java execution, while does not impose substantial op-

timisation burden on the host machine? With the research goals in mind, some

observations can be made:� An advanced technique for implementing a dynamic optimising compiler using

the adaptive optimisation system can limit the cost of the IR translation during

execution, while retaining the execution performance advantage via feedback

directed speculative optimisations. However, this approach requires two trans-

lation engines, so a complicated optimising compiler is inevitable.� Alternative approaches to overcome the cost of dynamic optimisation while

having efficient binaries, are static compilation and binary annotation ahead of

execution. However, as one of the important features of Java is native support

for dynamic class loading, it is not feasible to compile the entire program ahead

of execution.� A remote compilation service is used to replace the local optimising compiler

to reduce the IR optimisation cost in the program execution. The possibility

of using a dynamic compiler as the remote compilation engine has not been

given much attention in the literature, although more recent research projects

have employed it.

Consequently, the aim of the work presented in this thesis is to demonstrate that

a proxy compilation infrastructure that utilises a dynamic optimising compiler can

effectively offload the dynamic bytecode translation cost in heterogeneous networked

clients. The proxy compilation infrastructure has the potential to provide a sound

foundation for extended research on proxy compilation based on a dynamic optimis-

ing compiler, such as speculative optimisation in a proxy compilation environment.
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To explore the related issues, the Apus proxy compilation system is designed and

implemented. The remaining chapters in this thesis discuss issues involving the de-

sign and implementation of the Apus proxy compilation system, and finally evaluate

our system.
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3
Design Overview of the Apus

Proxy Compilation System

The joy of discovery is certainly the liveliest that the mind

of man can ever feel.

Claude Bernard (1813–1878)

Among many key factors dynamically affecting the overall performance of IR in-

terpretation is the translation quality during execution. An important decision when

building an interpreter between IR and native code is making the right balance be-

tween producing highly effective code and low translation overhead.

The previous chapter reviewed a range of approaches for dynamic compilation.

It showed that they have various strengths, but at the same time, there are lim-

itations. In almost all traditional designs of dynamic compilers and interpreters,

a trade-off must be made between two or more conflicting goals, e.g. size against

speed, or sophisticated optimisation against online compilation cost. With this in

mind, this chapter proposes a caching mechanism for small granularity compilation

to demonstrate that those key conflicting factors can be balanced.

This chapter presents some key design decisions made for the design of the overall

architecture of our novel approach: the Apus proxy compilation system for the Java

24
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Figure 3.1: Intermediate Representation Execution Model

Virtual Machine. Firstly, the design motivation and requirements of the Apus system

are presented. Some key design decisions along with the system architecture are

discussed. Then the overall architecture is given and explained in detail. Last but

not least, an introduction to the design of the Apus compilation server and clients is

presented.

3.1 Basic Principles

As discussed in Section 2.1, Java bytecode belongs to the category of intermediate

representations which share many properties that distinguish them from native ma-

chine code, as well as some common drawbacks, particularly execution efficiency.

Section 2.3 discussed the execution efficiency of Java using three main approaches.

Figure 3.1 demonstrates the reason why dynamic translation contributed to the inef-

ficiency of Java execution using a mathematical model. The overall execution speed

of a Java program can be simplified from Figure 3.1 as:

toverall = texecution + Σtcompilation (3.1)

The overall execution time toverall is the sum of the execution time of the binary

code, texecution and the total cost of compilation Σtcompilation. A sophisticated com-

pilation system may consist of a set of compilers with different properties that are

driven by policies that benefit the program execution performance. For example, in

the adaptive optimisation system, the time for compilation is therefore a sum of the
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time spent in compilation by all the available compilers and interpreters on the sys-

tem during the execution. However, what this model doesn’t reveal is the relation

between texecution and tcompilation which is determined by the choice of compilation

strategy. Highly efficient code cannot be generated from a time efficient compiler,

e.g. a system using a single pass with direct instruction mapping without applying

in-depth analysis. However, as the survey in Section 2.5.3 reveals, systematically

building up a compilation strategy from a set of available compilers can make a bal-

ance between texecution and tcompilation that eventually leads to a minimised overall

execution time toverall.

It is known from Section 2.5.2 that an optimising compiler can produce efficient

code to boost execution performance, at the cost of performing computationally

heavy optimisation before and during the execution. In order to minimise the

tcompilatioon in the model while producing highly efficient binaries from bytecode,

a proxy compilation system can attack those two criteria at the same time. As

the survey in Section 2.8 reveals, migrating the compilation process to a networked

server for translation from Java bytecode to native machine instructions can benefit

the JVM in both execution performance and memory footprint, while overcoming

the dynamic class loading issue introduced by Ahead-of-Time compilation.

3.2 Design Requirement

A Java virtual machine would be able to provide a reliable execution environment

for Java programs, whilst improving the execution performance via the proxy compi-

lation service. The performance described in this context should not only be limited

to the execution speed, but should also include other criteria such as memory con-

sumption and execution pause caused by dynamic compilation.

The proxy compilation system consists of two parts. The proxy compilation client

is responsible for providing the execution environment for the Java programs. The

client is a recipient of the compilation service, which is located on a networked

compilation server. This server is responsible for translating the requested Java

bytecode into an efficient binary for the client.

From what we describe above as the background of the proxy compilation system,

we can conclude that the design requirement in principle for the proxy compilation
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system can be represented as follows:� Correctness - The binary produced by the proxy compilation system should

be executed correctly, that is, the result of the Java execution should not be

altered by the involvement of the proxy compilation system.� Reliability - The availability of a proxy compilation service should not affect

the availability of the execution environment. That is, an alternative approach

to translate Java bytecode should be available on the proxy compilation client.� Efficiency - Efficiency is required in two separate areas of the system. Primar-

ily, the proxy compiler should produce an efficient binary from the bytecode.

Secondly, there should be an efficient means by which the binary is made avail-

able to the client.� Accessibility - There are two requirements on the accessibility of the system.

Firstly, the proxy compilation system should be easily accessible by the client.

Secondly, the source file should be efficiently accessible by the compilation

server as well.

3.3 System Overview

Our current design and implementation of the Apus proxy compilation system is

based on the guidelines from our design requirements in Section 3.2. Figure 3.2

shows an overview of the architectural design of the system. Broadly speaking, the

goal for the Apus proxy compilation system is to reduce the compilation cost of Java

execution while retaining efficiency.

The Apus proxy compilation system consists of multiple clients and a compilation

server. The client is primarily intended to be a resource-constrained device that

are likely to have some limitations compared to the compilation server which has

significant computation power, large memory capacity and efficient storage access.

Therefore, migrating the optimisation compilation process to the compilation server

would provide more benefits over having the optimising compilation on the host

machine competing for the limited computation resource.

We are making an assumption that the compilation client can obtain Java pro-

grams in a very flexible way. That is, the source files, the classfiles in Java programs,

can be delivered to the compilation client without the knowledge of the compilation
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server. In addition, the client should also be able to modify the program without

the knowledge of the server. As a consequence, the assumption requires the client to

provide source files to the server directly, if there is no alternative source available

from the network. Binary validation on the compiled binary to ensure that it cor-

responds to the source files is required. Although such assumptions complicate the

design of the proxy compilation model, the design requirement described extends the

accessibility of the service by reducing the data dependence between the client and

the server. Further discussion of the binary validation is in Section 4.7.5.

One of the important issues concerning relocating binaries from the compilation

server to the client is how to minimize this cost to the client. In our implementation,

the client is fully responsible for relocation and verification. Locating the linking

process in the client would benefit the client in two areas. Firstly, it reduces the

communication cost by avoiding the synchronisation of current execution states with

the server. This would reduce overall time taken for a compilation request. In

addition, for devices depending on battery power, lower network communication

leads to less energy consumption. Secondly, a relocatable format allows binaries to

be stored in the cache of the client’s local storage. Therefore, in further execution,

networked proxy compilation can be completely avoided if the corresponding binary

is available locally. Test results in Section 6.6.2 prove that the linking process does

not significantly affect performance of the proxy compilation process in the client.

There are three major procedures in a proxy compilation request. Firstly, the

client sends out a compilation request to the compilation server to describe the

requested target. This requested target is a Java method, selected by the client.

Further discussion on how to select a method for proxy compilation is described

below in Section 3.5. If the correct source files are not directly accessible by the

compilation server, for example, if they are not in the cache of the server, all of the

source files related to the requested target need to be sent to the server by the client.

Secondly, the compilation server acquires the requested target and related source

files. The server compiles the target with optimisation into a relocatable binary and

sends it back to the client. Thirdly, the compiled binary sent from the server is

modified according to the state in the execution environment ready to be executed.

This linking process, which includes code verification and relocation is handled by

the code migration framework.

In order to handle all the necessary proxy compilation communication while keep-
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ing a reasonably small network overhead, a simple proxy compilation protocol (PCP)

is designed and implemented. Details of the PCP are presented in Chapter 5.

To provide the proof of concept of proxy compilation and concentrate on the

implementation of the system, the current Apus proxy compilation system is built

on the Jikes RVM [3], which is a research Java virtual machine implementation with

a well-established adaptive optimisation system.

3.4 The Choice of Compiler

One important decision in providing a proxy compilation service for JVM is the choice

of the compiler used to translate Java bytecode to native machine instructions for the

clients. Section 2.3 briefly discusses the three popular approaches for the translation

of bytecode.

According to the design requirement and system overview laid out in previous

sections, the proxy compiler is responsible for partially compiling the Java bytecode

as the client’s requests. In addition, the efficiency of the compiled binary and opti-

misation processes is essential for the service. As a result, only optimising compilers

are being considered for the proxy compiler server.

Offsetting optimisation to a network server can reduce the bytecode optimisation

pressure on the execution performance in the client, however, research carried out

by Newsome [65] pointed out that the time when the binary is available for the

execution is critical for the performance, since the efficient proxy compilation process

can reduce the time on the client executing the non-optimised code. The proxy

compiler therefore should be capable of delivering the efficient binary in a limited

time frame. Much work in dynamic optimising compilers has been done to balance

the compilation efficiency and code efficiency. As a result, a dynamic optimising

compiler is used as the proxy compiler which is located in a networked server.

In the survey in Section 2.8, a majority of proxy compilation implementation

[105, 66, 65, 110] use a static compiler, such as GNU gcc, as the back-end for code

generation. A static compiler have advantages on code generation, as it can provide

extended code optimisation procedures and support a wide range of target architec-

tures. However, this advantage can be offset by exploiting speculative optimisation,

such as aggressive inlining, on the bytecode by using dynamic compiler to generate
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best optimised code according to the execution profile. Furthermore, since the AOT

compiler is designed for offline compilations, it is therefore less time sensitive in the

compilation process compared to dynamic compiler. In addition, implementation of

proxy compilation for Java, such as [66, 65, 110] slows down this process even fur-

ther by requiring an extra compilation process to translate Java bytecode into an

intermediate representation that can feed into the compiler back-end.

There are more potentials to be exploited on dynamic optimising compilers for

using on proxy compilation scenario. It is therefore easy to conclude that, as we

have discussed the research motivation in Section 1.2, the purpose of the Apus proxy

compilation system is to provide a infrastructure that allow further research would

focus on using dynamic optimising compilers to provide proxy compilation for Java

virtual machine.

3.5 Selected Optimisation

One of the important aspects for the client is how to take advantage of the Apus

proxy compilation system to get the best benefits for Java execution. In order to

provide a reliable execution environment for Java programs as we described in the

design requirement, the client applies a hybrid execution model mixing an inexpensive

baseline compiler and the proxy compilation service.

Although fully relying on a proxy compilation service would provide more efficient

code for the Java programs overall, the execution environment is also dependent on

the availability of the proxy compilation service and the network. For example, in

the situation where the network connection is disrupted during Java execution, the

client would be unable to have the native code for the input bytecode. This leads to

a complete failure of the system that we need to avoid. It can be argued that having

multiple compilers would increase the memory demand of the system, however, such

an extra memory footprint can be offset by less code space required, since only a

region of the program is subject to optimisations such as inlining and loop unrolling.

The client applies the selective optimisation approach on the proxy compilation

service. Only selected methods, which are regarded as having a critical impact on

the performance, are compiled by the proxy compilation service. A fast inexpensive

baseline compiler is chosen as the default approach for bytecode translation, to deliver
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the native code at high speed to reduce the execution pause caused by compilation.

In order to predict methods that can improve the performance, an adaptive op-

timisation system is responsible for the selection applying to proxy compilation in

the client. Although it can be argued that it would be less demanding on the client

if the compilation server is responsible for the method selection process, having the

server choose does not work well as there is not enough information, particularly live

runtime information, made available to the server.

3.6 Proxy Compilation Policy

In the previous chapter, we have discussed how the proxy compilation is integrated

into the runtime environment in the client. Another important decision in applying

a proxy compilation system is when the selected method is applied to the proxy

compilation service for code optimisation.

The client applies the optimisation policy driven by the cost-benefit model pro-

posed by Arnold et al. [6]. In their model, the compilation controller periodically

samples the calling stack to identify methods where the application spends most

of its time, then the compilation controller assumes that the sampled method will

continue to be executed for as long as it has been executing so far. The sampling

information feeds into a pre-defined cost-benefit model to predict how much time

it can save by optimising the targeted method. If the improved running time as

predicted plus the optimisation time of the method is less than the execution time of

the current binary of the targeted method, then the controller decides to recompile

the targeted method.

In the client, three different compilers are taking account of the selections of com-

pilations. As mentioned in previous sections, the baseline compiler is used as the

default compiler for all the bytecodes. The proxy compilation service, and loading

binaries from a local cache are chosen for bytecode recompilation. The cost-benefit

prediction model is based on aggregates of offline profile data to determine the opti-

misation strategy for the profiling methods. The cost of the compilation is expressed

in terms of the number of bytecodes compiled per unit time. By using the modified

cost-benefit model on the client, the compilation controller can then estimate when

to use the binary caches if available, or proxy compilation to improve the execution
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performance.

3.7 Summary

This chapter gives an overview of the architecture of the Apus proxy compilation

system, and explains the basic principles of the system. Many important decision

made in the design of the system are discussed. As shown, there is a necessity

for choosing a dynamic optimising compiler as the translation engine for the proxy

compilation server is discussed. In the client, selective compilation details given

in this chapter show how the client integrates a proxy compilation service into the

execution environment.
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4
Design and Implementation of

Apus Code Migration Framework

We are generally the better persuaded by the reasons we

discover ourselves than by those given to us by others.

Blaise Pascal (1623–1662)

The previous chapter outlines the overall architecture of the Apus proxy compila-

tion system. One of the key problems is how to efficiently utilise the binary, which

is produced by the dynamic optimising compiler in the compilation server, on the

client, as the runtime status of the client is not accessible by the server.

In this chapter, we present the design and implementation of a code migration

framework used to handle code relocation in our proxy compilation system to address

issues described as above.

4.1 Introduction

As we discussed in Section 3.3, a migration process to verify and modify the binary

for the current execution environment is required. This code migration process serves

34
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two main purposes. Firstly, a process is used to verify the coupling relation between

the binary and the corresponding source file. Once the source file, classfile, is changed

after the code has been generated, a verification should identify the difference and

stop the binary being used in the execution.

Secondly, while variables related to the execution environment are hard coded into

binaries, a linking process is responsible for finding the location of those references to

those variables and update the values accordingly, so the binaries can correctly reflect

the execution environment. For example, given a static variable v, the optimised

binary then references v by assigning the address &v to the operand of instructions

to access the value of variable v. In order to retrieve the correct value of v in an

execution environment, the process has to modify all references to &v in the binary

of this execution environment.

In order to improve the loading efficiency and network efficiency as we discussed

in Section 3.3, the linking process should be performed in the client system, as well

as the verification process. As a result, the code migration is divided into two parts.

In the compilation server, along with the optimising compilation, information to

direct the linking process should be added to make the binary relocatable. The

client then can use this information to migrate the binary into the current execution

environment. Furthermore, a binary migration from the local storage as a cache also

needs to be considered.

4.2 Design requirements

The purpose of the code migration framework design is to be a proof of concept for

the idea of migrating of dynamic compilation results. Full support of the complete

Java Virtual Machine specification on the code migration framework is not required

as would be for a piece of commercial software. Therefore, the code migration frame-

work is designed to contain just the key functionality required. Although the code

migration framework is not intended as a production feature for the JVM, for com-

mercial software deployment, it contains enough support for JVM specification so as

to be realistic.

The design requirements are listed as follows:� Relocation information is provided within the compiled binaries. While the
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binary and relocation information are located together, it reduce the engineer-

ing complexity to coupling both information in the linking, as a result, it can

improve the code migration performance overall.� The code migration framework should be as independent from the VM as

possible. It should be seen as a separate module. From the clients’ perspective,

the code migration framework provides a similar service to a compiler, as one of

the compilation services. The code migration framework simply loads binaries

instead of compiling them during execution.� Relocatable binaries should only be used as an annotation, which means the

failure of loading relocatable binaries should not affect any outcome of the

execution, except performance.� Relocatable binaries should be capable of performing self verification against

the change of the source IR from which it is translated. There are two main

problems with the verification. It is not only a security issue but also an issue

of building up a dependent relationship between binaries and source files. That

is, the code migration framework should be aware of the modification of source

files during execution without loading obsolete relocatable binary. On the

other hand, the verification is also responsible for preventing malicious code

injection into binaries which would potentially break the intention of using

bytecode instead of native machine code.� An efficient solution for organising relocatable binaries in local storage is essen-

tial to the overall performance of the system. It should provide a reasonably

efficient relocatable binaries reading and writing procedure that does not con-

tradict the primary purpose of using relocatable binaries, performance.� The relocatable binary format must consider the balance between handling

efficiency and space efficiency. Space and performance are a pair of contra-

dictory factors. The relocatable binary format should be efficient enough to

convert between compilation instances and flat images without jeopardising

our motivation. Since the code migration framework is working closely with

the Apus proxy compilation system, the relocatable binary format must be

relatively compact to use over networks.
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Figure 4.1: Apus Image Life Cycle

4.3 Apus Code Migration Framework Overview

This section gives an overview of the logical components of the Apus code migration

framework architecture, avoiding the details of performing the actual verifying and

linking procedures. It documents some of the important design decisions made,

with reference to the design issues covered by the background material in previous

chapters.

4.3.1 Architecture

A code migration framework is designed and implemented as shown in this chapter to

solve the problem of reusing optimising compiled binaries from the proxy compilation

server. In this framework, a relocatable binary format, the Apus image is used for the

purpose of the proxy compilation service and binary cache management. It organise

binaries and all the related information about code migration to allow binaries to be

modified accordingly in different execution environment.

A simplified concept of the code migration framework is shown in Figure 4.1,

which outlines various aspects of the data used in different stages during execution,

together with the processes applied at each stage. During execution, bytecodes are

either interpreted or compiled into native code then to be executed by the processor.

In the code migration framework, relocation information is generated alone with a

compilation process. Later, binaries can be stored in a persistent format (Apus im-

age) and relocation is possible in different execution environments without requiring
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a duplicated compilation.

It can be argued that the code migration framework is designed for a proxy com-

pilation environment. However, since as it is addressed in the design requirement,

Apus images should not require further modification to be stored and reused from

local storage. As a consequence, the same concept can be applied to the proxy compi-

lation service. The Apus code migration framework is then presented as a separated

logical component in a complete JVM system, as no proxy compilation service is

being mentioned. Chapter 5 discusses issues involving providing a networked proxy

compilation service based on the Apus code migration framework.

The Apus code migration framework can be broken down into more detail, showing

how each component interacts with the existing execution environment. Figure 4.2

shows the constituent components of the code migration framework. The figure de-

scrbies a series of procedure for the execution of Java bytecode by using various

appoarches, including using Apus images. Our implementation of Apus code migra-

tion framework is again based on the research JVM prototype, Jikes RVM. Thus,

some of the components, for example, the Adaptive Optimisation System (AOS) [6]

and Baseline compiler are a part of Jikes RVM implementation.

There are essentially three parts that are particularly interesting in our system.

The AOS is responsible for dynamically selecting Java methods for recompilation,

as well as when to use our image loader for Apus images. The selective optimising

compilation policy has been discussed in Section 3.5.

Figure 4.2 give us a clear overview of how the Apus image is generated from

relocatable optimised binaries. Firstly, the image producer is a modified optimising

compiler that can produce relocation information during compilation. Secondly, the

compilation output of the image producer is a executable binary that can be installed

and used by the Runtime. Thirdly, this binary with relocation information can be

collected with other related information for code migration and later written into

the Apus image by the Image Writer if necessary.

The process to reverse the Apus image into an executable binary is called image

loading, which is managed by the Image Loader component. The Image Loader

shares the common interface with the other dynamic compilers, which allow it can

be managed by the AOS to follow the proxy compilation policy.

In the rest of the section, we will introduce and discuss the challenges and design
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of each component in the code migration framework. We will adopt a top-down

approach discussing the rationale behind the choice of VM and other aspects of the

components in the code migration framework.

4.4 Image Loading Procedure

As we understand from previous descriptions, an image loading process is used to

turn a relocatable binary in an Apus image into an executable binary in VM runtime.

More details about the Apus image can be found in Section 4.7. An Apus image

loading is triggered by a general compilation request by passing a method as the

argument to the image loader unit. The image loading causes the specified method

to be loaded, linked to the JVM runtime and installed. It is the compiler controller

that determines when the image loader should load the Apus image of the specified

method.

We should notice that the image loader does not specify the source of the Apus

image. It is down to later implementations on particular user scenarios to direct the

input to the image loader unit. As we described in Section 4.3, the potential input

for the image loader is either coming from the proxy compilation service, or the local

storage to hold the image cache. If Apus images are found, the image loader unit

is responsible for the loading process, which includes image verification, dependency

relation verification and code relocation.

Image verification described in Section 4.7.5 is the first step immediately after

loading the binary. It checks that the Apus image representation is in the correct

format, with proper relocation information as well. If a problem is detected during

image verification, an error is thrown.

Dependency verification described in Section 4.8 is the process of checking all of

the bytecodes, including the corresponding method and inlined method that have

been translated and encapsulated, are consistent with the translated binary. If a

problem is detected during dependency verification, an error is thrown.

Code relocation involves modifying data for the binary of a method according

to the state of runtime. A link point table and symbol table are used to describe

how and where to relocate the binary. Each entry of the link point table describes

a relocation spot in the binary. A symbol representing the reference to a runtime
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object in the binary is stored in the symbol table. Retrieving the object from the

symbolic reference involves symbol resolution. If an unresolvable problem is detected

during binary relocation, an error is thrown. More details about binary relocation

and symbols can be found in sections 4.5 and 4.6 respectively.

Finally, after the successful completion of loading, verification and linking of the

Apus image, the binary of compiled method is installed as the binary of the corre-

sponding method and is ready to be executed.

4.5 Relocation

The term relocation is used here to refer to the process of adjusting data referred to

in program instructions and associated runtime data corresponding to the current

execution VM runtime. Code relocation is one of the central processes in code

migration. This process modifies the relocatable binaries into executable form after

the Apus images have been loaded and verified.

Code relocation is not a new area in program linking. Many sophisticated soft-

ware relocation techniques have been successfully applied commerically, such as

a.out [55], ELF [68] and COFF [35] relocation. However, since our design is based

on Jikes RVM implementation, where the relocation involves a data structure that

is implementation-oriented. We believe adapting an existing relocation format for a

particular requirement is less valuable in term of space efficiency and time efficiency

during the code migration. For example, a simple relocation format, a.out, contains

a “exec header” segment, which it is used to store parameters used by the kernel

to load binary files [82]. Furthermore, existing relocation formats do not provide a

solution for our problem in described Section 4.6, when an external symbol table, a

constant pool from a classfile, is referred to from our optimized binary.

The following subsections provide a list of information for the relocation binaries

that has to modified for the current runtime. The data structure that we used to

manage this relocation information is discussed.
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4.5.1 Relocation Information

Before the relocation process, the image loader lays out the various parts of a Apus

image into VM runtime. Data and references that are related to the current runtime

needs to be located and modified accordingly.

In Java bytecode, a constant pool [58] is used to manage all the references used

in the bytecode of the class. It allows the runtime to look up a referred variables by

performing reference resolution on entries of the constant pool. However, to speed up

constant pool lookup during the execution, direct reference to variables, such as direct

memory addresses of static objects are placed directly into the machine instructions.

Furthermore, instructions may expand to involve runtime service methods in which

the location also varies across JVM instances. A list of runtime data that has been

used in the binaries that require modification in code relocation is identified and

listed as following:� Offset for static members of classes, methods and fields. They need to be

restored accordingly on the runtime state during the code relocation. Under

the Jikes RVM implementation, pointers of static methods and fields are stored

in the JTOC (Jikes Table Of Contents) array [2]. The offset of the static

methods and fields are determined by the order of the class loading process.

A different execution instance would lead to a different order of class loading,

as the static methods and fields of the loaded classes would end up in different

locations of the JTOC array.� Offset of class objects. For the same reason as above, the offset of the class

object needs relocation. In the Jikes RVM implementation, the address of class

objects are determined by the order of the class loading process during Java

execution. Since lazy class loading is used in Java execution, the order of class

objects to be created is a different order under different executions.� ID of classes and their members. This is one of the representations aside of

direct memory address used by JVM to reference to an object. These IDs are

generated depending on the execution sequence when they are initialised in

the runtime. Therefore, for the same reason as dynamic loading results into

a different class loading sequence in different executions, IDs for classes and

their members require relocation in binary loading.� Runtime data. Runtime data consists of references to methods and fields that



4.5. Relocation 43

belonging to the JVM runtime. The Jikes RVM is written in Java, so the run-

time information is organised in the same way as data from a Java program.

It can be argued that relocation is not necessary, because the core runtime in-

formation is pre-compiled into a booting image that every runtime data should

fix in its location in different executions. However, we provide runtime data

relocation, improving the image compatibility as the booting image of Jikes

RVM may change in different versions of clients.� Offset of string and floating point constants. Constant relocation focuses on

floating point constant CONSTANT_Float [58] and string constant CONSTANT_String

[58]. Based on the Jikes implementation, the value of floating point constants

and the pointers of string constant are stored in the global data structure,

JTOC, along with the class loading process. Instructions access such con-

stants by referring to a direct offset in the JTOC table. However, the offset of

those constants in the JTOC depends on the next available slot in the JTOC

during class loading. Therefore, this JTOC offset of the string and floating

point reference should be changed accordingly.

The relocation information we have mentioned above is not only limited to the

reference in the class of the binaries requiring relocation. As there are references to

the runtime data as well as inlined methods, references that are not listed in the

constant pool of the target class need to be considered.

4.5.2 Link Point Layout

A Link Point defines a set of data that is used for holding a single piece of information

for a relocation. As will be discussed in a later section, there are a number of different

relocation types in the relocatable binaries. For each relocation slot, exactly one

Link Point is created. The Link Point holds the semantic information of the value

of the relocation slot, which will potentially be invalid under different execution

environments.

The Link Point is created along with the compilation when each operand contains

its own semantic information. However, when these operands are integrated as a

part of the binaries after code generation, the operands can only be known as a

constant value in the instruction. The semantic information of those operands is lost

in the process of code generation. This implies that those values used in the binaries
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cannot be retrieved again. The purpose of the Link Point is to record the semantic

information of a location of binaries that allows the value on the specified location

to be modified accordingly from the current state of runtime.

000003| CALL [470024A4]

Figure 4.3: An example of an instruction requires relocation

For example, given an x86 instruction as shown in Figure 4.3, the reference of the

callee in this instruction is the memory address of the method, [470024A4]. However,

[470024A4] is only valid in a particular execution where [470024A4] is pointed to

by the entry address of the target method. In a different execution environment,

without correcting the operands of the instruction CALL, it becomes invalidated.

Figure 4.4 shows the format of a Link Point. The semantic information of the

relocation point can be generalised into three types. The types of information are

listed below:� Symbol serves the same functionality in library files as is defined in [55]. Since

objects are defined as basic elements in Java, the term symbol refers to the

definition of an object reference and is used to retrieve this reference. The

symbol layout and symbol management details are given in Section 4.6.� Location indicates where the relocation slot is in the binary. There are two

fields of information to address a specified relocation address, the location type

specified as a relocation data region in the linking input, and an offset address

which point to the offset value inside the data region. For x86 instruction

Figure 4.4: Link Point Layout
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relocation, additional information about this instruction is given to avoid the

complexity of instruction decoding while replacing the instruction operands.

Details of instruction relocation are discussed in Section 4.6.

000003| CALL [470024A4]

%% [METHODREF:< BootstrapCL, LA.foot; | OFFSET | INSTRUCTION(58)]

Figure 4.5: An example of an instruction with a Link Point attached

With a Link Point attached to the instruction in the previous example in Fig-

ure 4.3, Figure 4.5 demonstrates how the Link Point describes the semantic informa-

tion of the instruction CALL, with symbol and location information recorded.

The Link Points are created during the compilation, and become a part of the

relocatable binary as long as the binary of the compiled method is valid in runtime.

It is a part of the Apus image to relocate the binary of compiled methods in different

execution instances. In order to improve the relocation performance by reducing

symbol resolution, a symbol can be shared between Link Points. The format for a

Link Point therefore is a combination of an index referring to its symbol table entry

and the location information.

4.5.3 Relocation Types

Relocation information as categorised in Section 4.5.1 is used in various situations in

the compiled binaries. The following section discusses the possible types of relocation

required in these situations.

The code relocation process is responsible for modifying binaries accordingly on

the relocation information provided. The code modification is handled by the Linker

in the code migration framework. For different relocation types, the modification

process should react differently to the binaries. For example, the patch process

for the instructions is different from the patch process on the associated runtime

information of the binary.
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4.5.3.1 x86 Instruction Relocation

Because of the complexity of the instruction format, relocating operands in instruc-

tions is somewhat trickier than relocating addresses and other values in associated

runtime information of binaries. Despite the complexity of instruction encoding on

the x86 architecture, from the linker’s perspective, the x86 format is easy to handle,

since the instruction architecture follows a universal format throughout all x86 in-

structions. The x86 series [45] instructions consist of optional instruction prefixes,

primary opcode bytes, an addressing-form consisting of the ModR/M byte and some-

times the SIB (Scale-Index-Base) byte, a displacement (optional), and an immediate

data field (optional).

Instruction relocation is performed while interpreting entries of the relocation in-

formation table in Apus images. As Figure 4.4 shows, except for the instruction size

which is used for debugging purposes, combining patch offset and patch size simpli-

fies the relocation for the linker without knowing the instructions. The relocation

information is generated along with the compilation of relocatable binaries.

In general, the instruction relocation operation is performed on a data slot in

an instruction of the binary. All the necessary information required is described in

a link point slot, as we have discussed in Section 4.5.2. The location information

of the Link Point, which is the offset of the operand to be modified in the binary,

is calculated in the compilation process along with the relocation information. As

a consequence, the instruction relocation operation can just modify a data slot in

value and relocation are described in a Link Point. That is, the code relocation

process does not need to understand the structure of the instruction that needs to

be modified.

There are two reason to simplify the instruction relocation steps by moving the in-

struction decoding from the linker to the compilation of relocatable binaries. Firstly,

the Apus image may be used multiple times and it only takes one compilation cy-

cle to generate an Apus image. Secondly, Apus images are not necessary generated

during program execution, and compilation time is not a critical criterion any more.

The patch size is a safeguard for instruction relocation used as a measure taken

during linking to prevent relocation data overflow from the relocation slot and even

overlaping to the next instruction in sequence. A relocation overflow is the situation

where the size of the data from the Link Point is larger than the available space in
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000003| JLE 0 | 7E00

000005| PUSH 52[esi] | FF7634

Figure 4.6: An example of a machine instruction sequence

the relocation slot. For example, in Figure 4.6 showing an x86 instruction sequence,

the instruction JLE [45] only takes an 8-bit immediate (imm) data field, and writing a

16-bit value will certainly overflow the 8-bit imm data field and will also override the

following instruction PUSH as well. If an overflow in the relocation slot is detected, the

Apus image loading procedure should be aborted and VM_ImageLinkingException

thrown. As a consequence, the optimized code for this method will not be available

as the image loading fails. However, as we discussed in Section 3.5, the result of

program execution should not be affected when the image loading fails.

Only having patch size to protect against relocation overflow is not enough. The

machine code generator of the optimising compiler always tries to choose the most

suitable instructions for the corresponding MIR (Machine code Intermediate Rep-

resentation), and therefore a 8-bit instruction is chosen when the operand of the

corresponding MIR is 8-bit, which could potentially cause a relocation overflow if

the relocation data is larger than 8-bit. In order to prevent the situation when an in-

struction would cause a relocation overflow, the machine code generated is instructed

to choose a 32-bit instruction for Link Points regardless of the operand size of the

input MIR instruction. It can be argued that choosing a fixed size instruction would

waste additional CPU cycles and increase binary size, however, this overhead is in-

significant when compared with introducing the possibility of failure in the Apus

image loading.

Instruction expansion is an operation to resize an instruction in the binary array.

Although expanding an 8-bit instruction into a 32-bit instruction is theoretically

plausible, in reality, instruction expansion requires shifting all of the binary after

the expanded instruction for an extra space for the relocation slot. In additional,

relative addressing used in calls and jumps are affected, and the machine code map

used to convert the bytecode offset from the binary offset requires recalculation as

well. In order to avoid such situation in the relocation process, choosing a suitable

instruction with correct operand size for relocation is important during compilation.

Figure 4.10 demonstrates the compiled binary machine code with relocation in-
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public void example() {

multianewarray m[][] = new multianewarray[3][4];

}

Figure 4.7: Java program using a multianewarray instruction

public void example();

Code:

0: iconst_3

1: iconst_4

2: multianewarray #10, 2; //class "[[Lmultianewarray;"

6: astore_1

7: return

Figure 4.8: Bytecode instruction of the compiled program in Figure 4.7

********* START OF IR DUMP Initial HIR FOR < SystemAppCL, Lmultianewarray; >.example ()V

-13 LABEL0 Frequency: 0.0

-2 EG ir_prologue l0a(Lmultianewarray;,x,d) =

-2 guard_move t1v(GUARD) = <TRUEGUARD>

2 guard_move t3v(GUARD) = <TRUEGUARD>

2 EG newarray t2a([I,p) = [I, 2

2 int_astore 4, t2a([I,p), 1, <mem loc: array < BootstrapCL, I >[]>, <TRUEGUARD>

2 int_astore 3, t2a([I,p), 0, <mem loc: array < BootstrapCL, I >[]>, <TRUEGUARD>

2 guard_move t5v(GUARD) = <TRUEGUARD>

2 EG newobjmultiarray l6a([[Lmultianewarray;,p) = [[Lmultianewarray;, t2a([I,p)

-3 return <unused>

-1 bbend BB0 (ENTRY)

********* END OF IR DUMP Initial HIR FOR < SystemAppCL, Lmultianewarray; >.example ()V

Figure 4.9: The HIR translation of multianewarray

formation attached as comments from the program shown in Figure 4.7. Figures 4.8

and 4.9 show the bytecode of program in Figure 4.7 and the High-level Intermediate

Representation (HIR) of the compiled bytecodes respectively. They are used to help

understand the binary code shown in Figure 4.10 by showing the implementation of

instruction multianewarray before the expansion of the runtime service calls.

4.5.3.2 Exception Relocation

The exception table is one of the associated piece of runtime information which

contains the exception information, defined in a structure Exceptions_attribute as



000000| CMP esp 40[esi] | 3B6628

000003| JLE 0 | 7E00

000005| PUSH 52[esi] | FF7634

000008| MOV 52[esi] esp | 896634

00000B| PUSH 18466 | 6822480000

%% [NONE | NONE | CMID | INSTRUCTION(12)]

000010| ADD esp -4 | 83C4FC

000013| CMP 32[esi] 0 | 837E2000

000017| JNE 0 | 7500

000019| MOV eax 2 | B802000000

00001E| MOV edx 2 | BA02000000

000023| ADD esp -8 | 83C4F8

000026| PUSH 12 | 6A0C

000028| PUSH 1191707124 | 68F4010847

%% [TYPEREF:< BootstrapCL, [I > | NONE | TIBOFFSET | INSTRUCTION(41)]

00002D| PUSH 1 | 6A01

%% [TYPEREF:< BootstrapCL, [I > | EPINDEX:10 | ALLOCATOR | INSTRUCTION(46)]

00002F| PUSH 4 | 6A04

000031| PUSH 12 | 6A0C

000033| PUSH 19557 | 68654C0000

%% [NONE | NONE | SITE | INSTRUCTION(52)]

000038| CALL [47001E54] | FF15541E0047

%% [METHODREF:< BootstrapCL, Lcom/ibm/JikesRVM/memoryManagers/mmInterface/MM_Interface;,

%% allocateArray, (III[Ljava/lang/Object;IIII)Ljava/lang/Object; > |

%% CONSTANTPOOL_INLINE:311(4) | OFFSET | INSTRUCTION(58)]

00003E| MOV edx eax | 89C2

000040| MOV 4[edx] 4 | C7420404000000

000047| MOV [edx] 3 | C70203000000

00004D| MOV eax 33621 | B855830000

%% [METHODREF:< SystemAppCL, Lmultianewarray;, example, ()V >

%% | STRING_APPLICATION_LOADER | ID | INSTRUCTION(78)]

000052| ADD esp -8 | 83C4F8

000055| PUSH -2265 | 6827F7FFFF

%% [TYPEREF:< SystemAppCL, [[Lmultianewarray; > | CONSTANTPOOL:10 | REFID | INSTRUCTION(86)]

00005A| CALL [47002D90] | FF15902D0047

%% [METHODREF:< BootstrapCL, Lcom/ibm/JikesRVM/opt/VM_OptLinker;, newArrayArray,

%% (I[II)Ljava/lang/Object; > | EPINDEX:155 | OFFSET | INSTRUCTION(92)]

000060| CMP 32[esi] 0 | 837E2000

000064| JNE 0 | 7500

000066| ADD esp 8 | 83C408

000069| POP 52[esi] | 8F4634

00006C| RET 4 | C20400

00006F| <<< 000003

00006F| INT 67 | CD43

000071| JMP 5 | EB92

000073| <<< 000017

000073| CALL [470024A4] | FF15A4240047

%% [METHODREF:< BootstrapCL, Lcom/ibm/JikesRVM/opt/VM_OptSaveVolatile;,

%% OPT_yieldpointFromPrologue, ()V > | EPINDEX:149 | OFFSET | INSTRUCTION(117)]
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000079| JMP 25 | EB9E

00007B| <<< 000064

00007B| CALL [470024A8] | FF15A8240047

%% [METHODREF:< BootstrapCL, Lcom/ibm/JikesRVM/opt/VM_OptSaveVolatile;,

%% OPT_yieldpointFromEpilogue, ()V > | EPINDEX:151 | OFFSET | INSTRUCTION(125)]

000081| JMP 102 | EBE3

********* END OF: Final machine code FOR < SystemAppCL, Lmultianewarray; >.example ()V

Figure 4.10: The binary machine code translation of multianewarray

described by the class file format [58]. There should be at most only one exception

table in the binary of a method. Each entry in the exception table represents an

exception defined in the method. An exception entry in the exception table contains

the binary offset to a try block, a starting offset of the catch block and the ID of

the exception type.

The ID of the exception type is only available when the type instance exists, which

also means that this presented class should already be loaded and linked. If the type

reference in the corresponding exception table entry is not resolved in the exception

table, the relocation procedure is responsible for resolving any referenced address by

the symbol in the Link Point. However, considering the situation where the class

loading on the exception type failed during the relocation process, the code migration

on the related method of this binary has failed, and an ImageLoadingException is

thrown.

The decision to resolve a exception type in the code migration process seems

somewhat in contradiction to the class loading process described in the JVM specifi-

cation [58]. It requires that when resolution is performed, any errors detected during

resolution must be thrown at a point in the program where actions are taken by the

program. However, the class loading error triggered by the exception table reloca-

tion should not interrupt the execution of the user program, but only interrupt the

current progress of the Apus image loading.

4.5.3.3 Inline Table Relocation

The inline table is a part of the associated runtime information that encoded an

inlined calling tree of the binary. The inlined calling tree is used to do reverse look

up on calling stack from the current executing binary offset. The method ID is
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used in the inlined calling tree to reference methods that are inlined. As we know

from Section 4.5.1, the method ID is assigned by runtime while methods are loaded.

Different execution environments assign different method IDs to the same method

as the class loading sequence is different. As a consequence, relocation to the inlined

calling tree is necessary. In order to modify the method ID in this inlined calling

tree accordingly, decoding the inline table is necessary.
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Figure 4.11: Example Inline Hierarchy

Figure 4.11 demonstrates the hierarchy of inlined methods in method A. Letters

in the Figure represent the method reference of the inlined calling tree. The number

along with the connection of nodes represents the bytecode offset of the call site.

According to Jikes RVM implementation, the definition of the inline table is de-

scribed as following.

Three slots in the array are used for holding a inlined method. The information

on each slot is listed respectively:

<(offset to the parent node) | bytecode offset of call site | callee method ID>

The offset slot that used to point to the array offset of the parent node is optional,

and it should be only used on the first child node. The root of the tree starts with -1
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as offset to the parent node. As an exception, there is no call site offset to the root

node, as we already know it is 0. Nodes are listed as level-order as shown in the tree.

For example, the inlined calling tree described in Figure 4.11 is encoded as array

as follows:

-1, A, -2, 12, B, 14, C, 16, D, -6, 3, E, 5, F, -9, 10, G, -2, 20 H -2 30 I

The location description of the relocation slot in the Link Point is the offset of

the array offset of the inline table. The relocation approach on the inline table is

similar to exception table relocation. An aggressive reference resolution approach

is applied, in that methods referred to in the inline table are resolved and loaded

during the inline table relocation. An ImageLoadingException is thrown and the

image loading process stop, if any class loading related to the inline table relocation

failed.

4.6 Symbols

This section discusses symbol and symbol management. They plays an important

part in the linking process. A symbol is a representation of relocation information.

The purpose of a symbol is that the linker can assemble relocation information re-

gardless of any particular execution environment.

4.6.1 Representation

Relocation information is turned into symbols during the process of generation of

relocatable binaries and written as a part of the Apus image. The simplest repre-

sentation of a symbol can describe the relocation information in a string. However,

the symbol resolution in string representation could introduce overhead to the code

relocation process, as well as increasing storage overhead in the Apus image.

In order to minimize the cost of symbol resolution and storage overhead of sym-

bols, the following section discusses some techniques that have been used in symbol

representation to achieve such a goal. We break the relocation information into two

categories by their characteristics.
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4.6.1.1 References

Relocation information that refers to types, classes or their members is categorised as

a reference representation. The relocation information can be, for example, the ID of

a class instance, or the memory offset of a method instance. From this perspective,

a reference representation then can be broken into a reference to a runtime object,

namely repType, and a property of this runtime object, namely linkType. The

property of a runtime object indicates the relocation information from the referenced

object, such as ID or memory address.

As we know that, the constant pool of class files contains references used by

the bytecode. It is the reference used in the bytecode requiring relocation in code

migration. A references represented in the constant pool can be directly accessed

by the constant pool entry index. Additionally, the reference resolution process can

be avoided by keeping the references in the constant pool. It is therefore easy to

concluded that space efficiency and speed can be achieved effectively by utilising the

reference that exists in the constant pool of the corresponding class.

The following example shows in the relocation of a bytecode how a symbol repre-

sentation can utilise the reference in the constant pool.

invokestatic #27; //Method static_function:()V

The compiled machine instruction from the demonstrated bytecode instruction

without inline optimisation applied is shown as below.

CALL [47017FB0] | FF15B07F0147

%% [METHODREF:< SystemAppCL, Linvokestatic;, static_function, ()V > |

%% CONSTANTPOOL:27 | OFFSET | INSTRUCTION(36)]

As we can see from the example, the representation of the Link Point method

reference SystemAppCL, Linvokestatic;, static_function, ()V on the example

is represented by entry index 27 in the constant pool.

Inlining optimisation can result in a situation where the reference in the relocation

information does not belong to the constant pool of the class that requires relocation,

in that a direct constant pool entry index to the class is not available. In this case, an

additional reference to the class of the callee is used in the reference representation.

The callee information of the inlined method can be accessed from the inline calling

tree as we discussed in Section 4.5.3.3.
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Constant pool do not store any runtime data. Due to the fact that only a handful

of runtime data is used by optimising compilation for code generation purpose, an

entry point look-up table is introduced for mapping the table index to references to

VM runtime data.

A string based representation has not been chosen as the primary way to iden-

tify references. As we discussed, this is due to the inherent complexity involved in

interpreting a string reference. Additionally, the increase in storage space necessary

to store the former advocates considering an alternative method of representation.

However, due to the limitation on using references from constant pool, (for example,

the inlined calling tree does not hold all of the inlined callees). String representations

for references are still used as a backup solution when the references in the constant

pool that are accessible are not available.

4.6.1.2 Constants

The second category of the symbol is constant items. More specifically, they are

string constants and floating point constants. The reason for relocation of constants is

discussed in Section 4.5.1. In the common case, the constant symbols are represented

in a similar way to reference representations. An entry index for the accessible

constant pool is used. However, if the constant is the result of a constant propagation

optimisation, in that this value is not held by any of the accessible constant pool (the

situation that the propagated constant value is coincidentally equivalent to one of

the values in the constant pool is considered here), the representation of the symbol

therefore must be the constant itself.

4.6.2 Symbol Resolution

Symbol resolution is one of the critical steps in the linking procedure. Without

symbol resolution, references to the VM objects are only a string, or a integer which

is used to represent what the object is but not the object itself. Symbol resolution

completes the process to convert those symbols into actual references to live objects

in the VM.

Symbol resolution in our code relocation process is straightforward. Symbols are

loaded during the Apus image loading process, and then instances of symbols are
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initialised based on the data given by loaded symbols. Symbol resolution uses a

lazy resolution technique that only conducts symbol resolving where it is triggered

by requests from Link Points during relocation. The symbol representation is first

resolved into a reference. The relocation value in the referred object is loaded ac-

cording to the link type and stored into the symbol instance to be used by Link

Points.

The symbol resolution process is divided into three states, which are recorded in

the symbol instance. The first state Loaded indicates the symbol is loaded only.

The Resolved status is only set once the symbol representation is resolved into a

reference to objects. After the relocation value represented by the symbol is stored

in the symbol instance, the symbol is marked as Ready to be used by Link Points.

The relocation value is only available when the referred objects exists in the runtime.

If the attempt to resolve a symbol reference to an object fails, it only indicates that

the target object is not yet ready and the status of the symbol instance stays at

Resolved.

For example, symbol [METHODREF | CONSTANTPOOL:27 | OFFSET] represents the

method instance offset referred by constant pool entry 27. After the symbol repre-

sentation is resolved during the second state, the symbol knows the method reference

is a method reference:

< SystemAppCL, Linvokestatic;, static_function, ()V >

In the final step, unless class invokestatic is loaded, the symbol instance should

stay at the state Resolved. Otherwise, the symbol is resolved and the value is loaded.

The state of the symbol instance would marked as READY.

4.6.3 Symbol Table Management

The symbol table is kept as an array of table entries. Each symbol occupies an entry.

A symbol is a unique reference to relocation information within an Apus image, in

that there should be no other symbol pointing to the same relocation information.

There is only one symbol table in the Apus image that is used by the Link Point

table. The relation between Link Points and symbols is shown in Figure 4.12.
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Figure 4.12: Relation between Symbol Table and Link Point Table

4.6.4 Reference Resolution

Symbol resolution involves resolving the symbolic reference into a VM runtime ref-

erence. The reference resolution is responsible for resolving those references into

runtime objects such as an object of fields, methods, classes and interfaces. Values

specified by linkType are retrieved from the referenced object. The value later is

used to modify the relocation slot specified in the Link Point. An important require-

ment on the design of reference resolution, according to the JVM specification [59, p.

43–46], is that any errors detected during reference resolution must be thrown at the

point when the program first actively uses classes or interfaces involved in the error.

The relocation process, based on its implementation, chooses to actively resolve

references used by Link Points. That is, references which are not used by the Java

program are resolved in the code relocation process regardless of when they will

be used. Once the relocated binary is ready, any code that refers to this class or

interface does not require further changes to adapt to the new execution instance.

Consequently, code inserted by the compiler to validate reference resolution state

and resolve references can also be removed during compilation.

If a reference resolution error is detected while loading the Apus image then an

ImageLoadingException is thrown and the loading process is aborted. At this point,

the compiler will decide how to handle the exception thrown by the image loader.
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The latter process can potentially result in an increased amount of time taken to

load the Apus image. However, this design has the trade off to avoid the complexity

of handling other associated runtime information in the binary that is introduced by

lazy resolution. The performance issue of the active reference resolution is discussed

further in Section 6.6.2 where it is considered in the context of experimentation and

measurement.

4.7 Apus Images

The Apus image is a container format designed to hold relocatable binaries. It

is intended to serve as an intermediate data structure for migrating binaries for

the proxy compilation service and for relocatable binary caching in the Apus proxy

compilation system. The Apus proxy compilation system does not specified the Apus

images as a file format, to be stored in a file system, since Apus image are being used

across the network in the proxy compilation protocol.

In the following subsections, details of image generation, layout and management

are discussed.

4.7.1 Image Layout

An Apus image contains a relocatable binary for only one method. This is due to

consideration for the proxy compilation service.

It can be argued that putting relocatable binaries for multiple methods in a single

Apus image would reduce the overhead of relocation information by sharing over-

lapped symbols. However, due to the fact that the compilation granularity for the

proxy compilation server is a Java method, limiting an Apus image to only hold a

relocatable binary for a method can reduce the space overhead that is used to iden-

tify methods in an image. Furthermore, considering a proxy compilation scenario,

where the relocatable binaries should reply back to the client immediately after the

compilation has finished, there is no obvious advantage for holding multiple methods

in a single Apus image.

An Apus image file consists of a stream of 8-bit bytes. Multibyte data items

are stored in big-endian order, where the high bytes come first. This format al-
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Figure 4.13: Apus Image Layout

lows the code migration framework to use J2SE interfaces java.io.DataInput and

java.io.DataOutput to access the images. It also avoid the compatibility issues

when delivering images across platforms.

The layout of an Apus image is shown in Figure 4.13. The first data block at

the beginning of the stream is a 32-bit Magic Number that used to identify that the

format is a legitimate Apus image format. Version is another 32-bit data block

showing the version information of the code migration framework. It is encoded

with the version number of the JVM that produced the images and the revision

number of the Apus image format. The relocatable binary is stored after the version

information. A compilation flag is a data field that holds information about the

optimisation level of this binary. Inline Table and Exception Table are associ-

ated runtime information as we discussed in previous section about their relocation.

Runtime Information contains data of associate runtime information that does not

need to be relocated. Symbol Table and Link Point Table are stored at the end

of the image. CRC Checksums are used to guarantee the integrity of the Apus images

from unintended modification. The verification and security of the Apus image is

discussed in Section 4.7.5

The code migration framework is designed to be for experimental purposes only.
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In order to reduce implementation complexity, there is no need to provide downward

compatibility with Apus images in previous implementations. The code migration

framework can only work with compatible version of Apus images.

4.7.2 Creating Apus Images

The Apus images are created by an image writer, which is a part of the code migration

framework. In the Java execution environment, the binary of a method is a object,

like any other in the runtime. It is the image writer’s responsibility to collect the

associated information, and package the binary into a Apus image. Although there

should be no restriction on when the Apus image should be created, according to the

user scenario, there are two situations that we can consider. In the proxy compilation

scenario, an Apus image is created right after the compilation is finished, and gets

ready to ship back to the client. On the other hand, in the binary caching scenario,

there is no urge for the execution environment to create Apus images from runtime

objects, and store them in the local storage. It is understood that the relocatable

binary caching process should not produce extra overhead on the execution. Apus

images therefore are written to local cache after the exit of the Java program but

before the exit of the JVM.

Based on the implementation, the Apus image is a binary stream handled by

java.io.DataOutput and java.io.DataInput. Such an implementation can allow

images to be easily adapted in the proxy compilation implementation as well as

output to local file system as binary caching.

4.7.3 Apus Image Naming Scheme

In writing a relocatable binary into a local file system cache, a naming mechanism

is needed to associate Apus image files with the corresponding methods. JVM uses

a method signature to uniquely identify a method within a class. The signature of

a method consists of the name of the method and the number and type of formal

parameters of the method. Classes are identified by the fully qualified name and

the class loader name. Therefore, a method can be identified uniquely within the

Java name space by combining the identification of the declaring class and method

signature.
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The code migration framework uses a simple naming scheme for Apus image files

representing a translated binary of methods in a Java class. In principle, the filename

strings of Apus images simage can be defined as follows:

simage = sclassloader · spackage · sidentifier · ssignature · ssuffix (4.1)

However, in order to reduce the length of filename strings, the class loader name

on the classes loaded by the default class loader is omitted from the fully qualified

image filename of methods.

The reason to use simage explicitly is that the Apus image name is for debugging

purposes, which allows users to find the corresponding method from the Apus image

filename, although this decision introduces a challenge as a result of the maximum

length of filename on the file system. We believe this challenge does not affect our

study of code re-usability on dynamic compilation and any filename overflow on Apus

images can be monitored carefully.

Although the challenge introduced by the naming system is not the first priority

of our study, a more reliable naming system should provide an unique identity for

each Apus image from the corresponding method and avoiding the limitation on the

underlying file system. For example, a 128-bit MD5 hash code from a fully qualified

unique name string from the method is used as the filename and the full qualified

name string is stored inside the Apus image for verification purposes to avoid the

danger of hash collision.

Given that the image name simage includes the fully qualified package name,

Apus image files are written into the primary image repository path specified by

the IMAGE_PRIMARY environment variable. If IMAGE_PRIMARY is not set, the default

image repository ./ (the current directory) is used by the code migration framework.

4.7.4 Searching Images

Searching for images is the process of finding the Apus image file for the correspond-

ing method instance, during the image loading procedure. After an image is created,

the linker has to be able to search it. The Apus image search happens during the first

stage of image loading, after a loading attempt is initialised from the image loader.
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The image loader searches for the corresponding Apus image for the input method

instance by matching the image filename in the pre-loaded image repository. If there

is more than one Apus images corresponding to the requested input, the first image

found in the repository is used. If there is no matched Apus image found, than the

loading process is abandoned and a failure is reported.

The image loader is designed to support multiple paths for image repositories.

Image repository paths are defined by environment variables. The primary image

repository IMAGE_PRIMARY is used as the primary path for searching Apus images,

and also the destination for the newly produced Apus image files. Secondary image

repository paths are only used for searching and loading Apus images. They are

declared by the environment variable IMAGE_REPOSITORIES with “:” as a separator.

Having multiple directories for the image repository allows Apus images to be spread

over multiple locations. A possible usage for supporting multiple paths of image

repository would be to allow using images that are pre-compiled from Java libraries

and keep them in a separated location which can be shared by different executions

of Java programs.

4.7.5 Verification and Security

Once Apus images are produced, measures have to be taken to prevent the risk of

Apus images being unintentionally corrupted. An Apus image would be unintention-

ally corrupted due to, for example, the corruption of the file system or the alteration

of data during transmission of files or as a result of a write error. Efficiency of Apus

image loading is regarded as an important issue in code re-usability against dynamic

compilation. Apus image integrity is protected by an efficient 32-bit checksum pro-

duced by CRC-32 and the checksum is verified in the image loader, as the last step

of reading Apus image files.

There are also concerns over intentional modification of Apus images, in order to

execute malicious code that can introduce potential harm to the host system, such

as a computer virus. However, if the file system hosting the Apus image repository

is compromised over the attack, there is no reason to add efforts to protect Apus

images from malicious alteration. We can also assume that the host JVM may

also be compromised in such a situation already. As a result, we can argue that

implementing security measures, such as a digital signature against malicious attack
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on Apus images is not necessary.

4.7.6 Performance Issues

One of the primary performance issues related to the use of binary caching is the time

spent in scanning image files in the registered repository paths over and over again on

each image loading attempt. From the discussion in Section 4.7.2, we can conclude

that Apus image files are used by the different JVM instances apart from the one

that generated them. As a result, it can be safely assumed that there should be no

update in repository directories during the execution of Java programs or the updates

can be ignored. The multiple image file scanning on repository directories therefore

becomes redundant and the extra IO operation on directories can be avoided by

caching the repository directories during VM booting. The image loader first builds

a image repository on existing Apus image files based on the repository directories

during VM booting, and image searching is therefore used to find Apus image files

as requested.

Another performance issue is the time spent on reading and writing the input

file, the Apus image. Although Java object serialisation [98] provides an integrated

solution for objects to save state into a sequence of bytes, however, this process turns

out to be slow and becomes a bottleneck of the image writing process. As described

in design requirement, efficiency in writing and reading Apus image is important to

the system. As a result, the image writer applies a specified simple parsing for Apus

images.

4.8 Dependency Verification

Method dependency defines a constraint relationship between the relocatable binary

and the associated method. The main purpose of the method dependency is to ensure

the relocatable binary precisely reflects the original source file, the classfile. For

example, given a compiled binary B from method M, a method dependency relation

is defined as M → B. Binary B stays valid only if the associated method M does not

change since B has been generated.

If inline optimisation is used throughout the compilation, the relocatable binary
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not only contains code generated from the input method, but also contains code

generated from other methods inlined into the root method. The method dependency

relation to determine compiled a method binary should therefore include inlined

methods.

Classfile Message Digests (CMD) generated from the corresponding classfiles are

used to verify the integrity of contained methods for the method dependency re-

lationship to relocatable binaries. The classfile timestamp is chosen as the CMD

representation for a classfile in our current implementation. Given that the security

of the local file system is protected by the operating system as mentioned in Sec-

tion 4.7.5, we can conclude that the timestamps for files are also equivalently reliable.

The classfile timestamp has the limitation that it is only available to the Java class

binary stored on the local file system. However, a further improvement on CMD can

be made by hashing the class binary stream using 128-bit MD5 or quick CRC-32.

Given that classes cannot be changed after they are loaded into the VM runtime,

the building of method dependency between the Apus image and methods can there-

fore be delayed until it is required. The CMD is generated from the corresponding

classfiles before the Apus image writing, in order to avoid competing computing re-

source from the Java program execution. The CMD from the associated method and

inlined methods of the Apus image are inserted into a database holding the class

digests, along with the identity of the corresponding class, which is the combination

of a fully qualified package name and the class identifier. This database is exported

into a classdigest.db file and stored in the same directory as the Apus image files.

There is only one database used to store all the dependent CMD for the repre-

sentative Apus images in the code migration framework. It is loaded during the

initialisation of the code migration framework, which is employed as a part of the

VM booting procedure. The image loader verifies the method dependency of the

Apus image by comparing the CMD from associated and inlined methods and the

corresponding CMD in the database. Once any CMD pair of the method dependency

fails to match, the dependency verification fails and leads to the breakdown of the

ongoing Apus image loading process. The Apus image is then deleted to avoid any

further unsuccessful loading attempt.

The reason for centralisation of the database is to reduce redundant CMD infor-

mation that would occur if they are distributively stored inside Apus images. The

database do not store any method dependency relation for Apus images. It only
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serves for the purpose of holding a digest of classfiles at the time when the Apus

images are built. Hence, such information can be used with dependency relations

described in Apus images to perform the dependency verification during image load-

ing.

4.9 Producing Relocatable Binaries

In this section, we cover in more detail how the relocation information is produced

along with the optimising compilation.

The relocatable binaries are a collection of machine dependent binaries with associ-

ated relocation and runtime information produced by the Apus optimising compiler.

The Apus optimising compiler is a dynamic optimising compiler with additional

operations to produce relocatable information for the binary. The reason to use a

dynamic optimising compiler for code generation is discussed in Section 3.4.

4.9.1 Implementation outline of the Apus optimising

compiler

The Apus optimising compiler is implemented based on the optimising compiler in

Jikes RVM [2]. It takes advantage of the code optimisation ability of the compiler to

produce a better quality binary for Apus images. The procedure of the compilation is

shown in Figure 4.14. It can be primarily divided into three sections according to the

IR (Intermediate Representation) level. Bytecode is transformed from HIR (High-

level Intermediate Representation) into LIR (Low-level Intermediate Representation)

and MIR (Machine-level Intermediate Representation) and finally into machine code.

Optimisation is performed at each level of IR. The lines between major compilation

phases are check points for validating Link Points handled by the compilation phase,

LPVP (Link Point Verification Phase). More details of the LPVP phase can be

found in Section 4.9.2.

Before machine code is generated from MIR, another LPVP phase is used to

update invalid Link Point locations after the optimisation has been applied on MIR.

Link points from the exception table and inline table from the compiled method are

collected. Symbols are extracted from all the labelled Link Points in the compiled



Figure 4.14: Simplified compilation procedure of the Apus optimising compiler
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method, and then they are inserted into the symbol table and Link Point table

respectively.

4.9.2 Link Point Tracking

Link Point tracking is a problem created by code optimisation. The problem is there-

fore only limited to Link Points in instructions. During IR optimisation, instructions

may be mutated and sequences of instructions may be changed. As a result, labelled

Link Points on the instruction are no longer valid if the labelled operand or instruc-

tion does not exist anymore. A Link Point would be invalid in two nonexclusive

situations made by code optimisation. Due to the limitations of the implementation

on the optimising compiler, Link Points would not fully follow instruction mutation

as described above, and would lead to the loss of relocation information. Therefore,

the following solution is applied to the problem.

If the semantic description of the labelled operand changes by optimisation, the

associated Link Point becomes invalid. The invalid Link Points should be removed

in the compilation. For example, applying a constant propagation operation on a

floating point instruction can lead to a new floating point value by performing the

instruction at compilation time. As a result, the two original floating point values

are removed from the code, as well as the Link Point associated with them.

In the case that a labelled location of a Link Point becomes invalid because of

instruction mutation, the check point for validating the Link Point is deployed be-

tween IR conversion and the optimisation phase to ensure the correctness of location

information of the link point. Location information is composed of the label operand

and the associated instruction. LPVP is used to recover the valid one of those two

elements of location information. If any Link Point loses all the location information

and becomes untraceable, as identified by any of the LPVP phases, the compilation

output will not be valid for relocation purposes. The LPVP phase is setup as a guard

to ensure the binary is valid for relocation.
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4.10 Summary

This chapter introduces the design and implementation of the code migration frame-

work to provide re-usability of binaries produced by dynamic compilation. It de-

scribes the concepts and architecture that accommodates various user scenarios and

details how to construct a mechanism to provide code relocation and a format to

store compiled binary and relocation information. The Apus image production and

procedure loading details in this chapter show how to ensure the binary produced by

dynamic compilation can be used under different execution instances systematically.
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Proxy Compilation Protocol

(PCP) Design

Research is to see what everybody else has seen, and to

think what nobody else has thought.

Albert Szent-györgi (1893–1986)

Proxy compilation requires a mechanism to migrate binaries that are generated

by the proxy compiler service to the user agent in client hosts. This problem was

discussed in the previous chapter and a code migration framework was introduced

to handle formatted binaries to deal with issues relevant to binary relocation, such

as binary integrity and dependency verification to the corresponding bytecode.

Proxy compilation also requires a mutually agreed communication protocol be-

tween the proxy compilation server and the user agent. In this chapter, we will start

with the design requirements for the proxy compilation protocol. Then the protocol

specification is given with an example of a PCP session. Implementation of the proxy

compilation protocol over the code migration framework is described, finally followed

by a further improvement on the protocol.

68
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5.1 PCP Design Requirements

The protocol itself should not attempt to understand the binary format, that may

or may not be Apus images from the compilation server (although the protocol is

implemented based on code migration framework), nor should the protocol should

specify the compiler behind the proxy compilation server host. The purpose of the

protocol is intended to permit a JVM user agent to dynamically access a compiler

on a server host in a useful fashion.

As a result, the protocol should specify how to deal with the communication

for proxy compilation for JVM user agents. As the purpose of migrating is online

code optimisation cost, operating the protocol itself should be light-weight without

out-weighing the code optimisation. Additionally, the initial intention of the proxy

compilation system is to provide code optimisation for a resource-constrained envi-

ronment, although it is the fact that the implementation of the system is based on

Jikes RVM, which is only currently available for the desktop environment.

From what it is described above as the background of PCP, we can easily conclude

that the design requirement in principle for PCP can be described as follows:� Functionality - The protocol should specifically have to provide a proxy com-

pilation service only. It also should be able to provide what is needed to

manipulate a compilation with priority constraints.� Independent - The protocol should not depend on any specific hardware, JVM,

compiler or binary format.� Efficient - The efficiency of the protocol is important, including both a time

and be cost efficient. Firstly, the protocol should minimise a compilation cycle

to be able to complete more compilation in a limited period. Secondly the

protocol should be able to operate in a limited resource environment. Lastly it

is important to reduce the data transmission cost from and to the user agent

in the client host.� Extensibility - The protocol should be such that any necessary changes can be

made consistently and easily.� Consistent - No requirements should conflict with each other.
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5.2 Background

In this section, a number of existing protocol architectures are reviewed, based on

the protocol design requirement described in the above section.

The Java programming language provide a basic communication mechanism: sock-

ets [39]. It provides an endpoint of a bidirectional communication flow across an

Internet Protocol-based (IP) computer network. Sockets provide a fast and efficient

communication approach for network applications. However, the use of sockets re-

quires the client and server to deploy some application-level protocol to encode and

decode messages for exchange. The following subsection reviews some protocol de-

scription approaches and related protocols that can be used above sockets for network

applications.

5.2.1 Backus-Naur Form

As a basic protocol description, Backus-Naur Form (BNF) can be used to formally

describe context-free grammars, including Internet protocols. An extension of BNF,

Augmented Backus-Naur Form (ABNF) [72] is especially focused on expressing for-

mal system for bi-directioned communication protocols. It was adapted by many

popular Internet protocols including HTTP and SMTP.

Newsome [65] successfully implemented a full specification of proxy compilation

protocol used by MoJo to dynamically load Java classes at runtime. The context-

free grammar for various messages used by the protocol is specified in BNF notation.

While the protocol is intended to show efficiency in a resource-constrained environ-

ment, however, the protocol set up a strict request-reply system to prevent further

compilation requests from the client until the server has completely supplied the re-

quest. That is, having parallel and priority requests requires multiple sessions from

the same server. Furthermore, it puts a challenge on reducing the turn around time

for a request in a strict request-reply situation. Another issue of the protocol in

Newsome’s design is that in the proxy compilation system in his thesis, the proxy

compiler is the only compiler available in the runtime, therefore the class can be

loaded only when the class has compiled completely. Consequently, it can be un-

derstood that compilation granularity is based on classes and execution only can

progress further if the compilation requests are completed.



5.2. Background 71

5.2.2 Abstract Syntax Notation One

Abstract Syntax Notation One (ASN.1) [94] is an ISO standard notation often used

by telecommunication and computer networking, for the purpose of removing am-

biguities in communication by providing a set of rules that describes a machine

independent coding technique.

ASN.1, however can potentially achieve higher efficiency than ABNF over Packed

Encoding Rules (PER) [112] that provides a more compact encoding. It is less

attractive, due to only a few commercial tools [81, 69] supporting PER encoding

in Java. Furthermore, since the JVM already provides a programing model for

machine-independent communication, ASN.1 become redundant on the communica-

tion between JVMs. Moreover, parsing ASN.1 messages is not trivial due to the

complexity of the notation rules.

5.2.3 Distributed Object Model

An alternative to this notation is a distributed object model for Java introduced

by Wollrath et al. [111] using Remote Method Invocation (RMI). The RMI system

allow a Java program to cause a procedure of an object, which it is located in a

different virtual machine, to be executed without the programmer explicitly coding

the details of the remote interactions. As an alternative to RMI, Voss and Eigenmann

[106] have successfully implemented a remote optimising compiler based on Remote

Procedure Call (RPC). And Sirer et al. [92] designed a distributed Java virtual

machine including a distributed JIT compiler by using remote invocation. However,

details of the protocol in their system are not discussed in the paper.

Firstly, RMI, however, does not co-operate well with our proxy compilation sys-

tem where efficiency of protocol handling on the client host is essential. Firstly, RMI

relies on a remote invocation mechanism where the reply is strictly after the comple-

tion of the request from the client. This feature potentially introduce unnecessary

inefficiency while the client tries to send out multiple requests before receiving replies

from the server.

Secondly, in order to apply proxy compilation over a RMI architecture, a client

stub, remote reference layers and transport are needed to package and ship off the

argument and return values of the remote calls. In such a system which relies on
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proxy compilation and fast compilation, the cost of maintaining the protocol over

RMI may be too high.

The Yhc web service [89] took another solution by applying web services [36] on

an Haskell [44] online compiler that allows the submission of Haskell source code for

compilation into Javascript in order to use the Javascript back-end without installa-

tion.

Regarding the purpose of providing a distributed object model for Java, web

service is not distinguished functionally from RMI, but the difference lies in a more

language-neutral, environment neutral programming model. The service mainly falls

into two categories. The “Big Web Service” use the Simple Object Access Protocol

(SOAP) [107] standard over Extensible Markup Language (XML) [108] to exchange

domain-specified data. In contrast, Representational State Transfer (REST) [31]

simplified interfaces to exchange such information over HTTP without an additional

message layer such as SOAP.

However, although web service extends the distributed object model for Java over

a language-neutral standard, the heavy overhead on processing a web service protocol

is still as cumbersome as RMI for a small, language-aware protocol.

5.3 Proxy Compilation Protocol Specification

In this section, a specification of the protocol used in the proxy compilation system

is given.

5.3.1 Basic Operation

Initially, the server host starts the PCP service by starting listening on port 9691.

If the client host wants to connect to the PCP server, it starts a connection to the

PCP service port. Once the connection is established, the server host sends out a

greeting message to the client. And then the client host and server host of PCP can

exchange messages until the connection is closed or aborted.

The PCP is composed of a series of commands. Each command consists of a

case-insensitive keyword, possibly followed by one or more arguments. Apart from

1The port number is a random choice that does not collide with any well-known services.
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Figure 5.1: State Transition Diagram of the Proxy Compilation Protocol

commands with binary value arguments, all commands are single line, and termi-

nated by a CRLF pair. Keywords and text arguments consist of printable ASCII

characters. Keywords and arguments are each separated by a single SPACE charac-

ter. Each command can take one binary argument. The binary argument consists

of the argument length and the binary stream. Commands in a PCP session are

bi-directional.

The response of a command must be a confirmation message, which consists of

the same structure as a text command, a keyword and arguments. The response

keyword is used to indicate the status of the request command. A text argument

ending with CRLF is followed by a keyword. There are two possible responses. A

positive response (+OK) indicate a success reply from the command, and a negative

response (-ERR) indicate a failure.

Figure 5.1 shows the state transition diagram of the Proxy Compilation Proto-

col. A PCP session progresses through a number of states. Once the connection is

established between the client host and the server, the server sends out a positive

confirmation message as greeting. Then the session enters the INIT status, where

the client host is able to setup the global configuration for the PCP session on the

compiler server. Once the compilation initialisation is finalised, the PCP session

enters the COMPILATION(CPL) status. In this state, the client host would be able to

submit compilation requests and receive compiled binaries from the compiler server
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until the client host issues a QUIT command. The FILE status is used to manage file

exchange between the client host and server host, in the situation where the client

host needs to submit a source file to the server. The BINARY state is used to receives

compiled binary from the server. Once files or compiled binaries are received by the

peer, the PCP session is changed back to COMPILED status. If the server host receives

a QUIT command, it terminates the connection and recycles the allocated resources

used in the session.

If an unrecognised or unimplemented command is received by either client or

server, a negative response must be issued. A negative response also must be issued

if commands are issued under invalid states. However, there is no indication in the

recipient confirmation to distinguish a negative response in the cases of the sender

being unable to comply with the command and not recognising the command.

The PCP server would have a keep-alive timeout limit, however, such a timer

would need to have at least 10 minutes duration to determine if connection broken.

If there is activity from the client during that interval, the keep-alive timer should

be reset to the beginning. If the keep-alive timer times out, the server should send

out a QUIT command and should finish the PCP session.

5.3.2 The INIT Status

Once the client host establishes a connection to the server host, the PCP server

sends out a positive message to the client. For example, the greeting message from

the PCP server can be:

OK hello, dave!

After the greeting message is sent out, the PCP session begins with the INIT

state. In this state, the client can use command SET to setup global properties

for the compilation and send out application meta data in the PCP server. The

hardware architecture and operating system in the client host are sent to the PCP

server through the INIT state, as the server needs to select the appropriate compiler

for the PCP session.

The PCP server then responds with a confirmation according to the properties

set by the client. If the server is able to support all the requested properties from

the client, it responds with a positive confirmation (+OK) and the PCP session is
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progressed into the COMPILATION state. If the server is unable to comply with any

of the requested properties, a negative confirmation must be issued and the current

PCP session is terminated by the server.

In order to simplify parsing in the server, the argument of the command SET has to

follow a certain format. A single property consists of a property name, immediately

followed by the symbol equals “=” and the property value. If there is more than one

property in the SET argument, a SPACE is used to separate the properties.

5.3.3 The COMPILATION State

Once the server has successfully supported the specification and acknowledged the

setting from the client, the PCP session is now in the COMPILATION state. In the

PCP session life cycle, the COMPILATION is the centre of the session. The client may

now issue PCP compilation commands repeatedly. After each command from the

client, the server sends a response. Eventually, the client issues a QUIT command to

terminate the PCP session.

In the COMPILATION state, there are three primary commands to use to complete

a compilation request from the client. The client issues the COMPILE command to

begin a compilation request. This command can only be used in the COMPILATION

state, otherwise, the server should respond with a negative response (-ERR) and take

action according to the current state. If the command is accepted by the PCP server,

the server replies with a positive response (+OK) and continue with an identifier in

the message section as the unique task ID for the compilation request.

The COMPILE command takes at least three arguments, however, further advanced

implementations may include other information, as parsed from the message. The

arguments are the keyword of the command, followed by the implementation de-

pendent method identity. An integer then follows to address the number of source

files the target method depends on. However, this argument does not indicate the

number of source files required for the target method in the program, but the num-

ber of source files the server should acquire before the compilation takes place. The

last argument for the command is optional and is used to indicate the compilation

priority.

In order to send a dependent source file for the target method, the FILE command

is first used to inform the PCP server of the source file information. A FILE command
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consists of the task ID corresponding to the source file, a string representing class

identity, which is implementation dependent, and date and file size are sent as a

sequence. The PCP server responds with a positive command (+OK) to accept the

source file, followed by a source file digest from the PCP server if it exists. If a

positive response is received from the FILE command, the PCP session changes to

the FILE state.

After the compiled binary is ready from the PCP server to send back to the client,

the PCP server issues the BINARY command with the job ID as the single argument of

the command. If a positive response is received, the PCP session enters the BINARY

state. However, action for a negative response for BINARY is not specified.

Once the COMPILE command is issued, the client can expect to receive the corre-

sponding BINARY command for the job at any time in the COMPILATION state, after

all the dependent source files have been sent.

5.3.4 The FILE State

Once the PCP server receives the FILE command, the PCP session is now in the

FILE state. The server should then be ready to receive source files described in the

FILE commands. Two possible command may come from the client in this state. The

CONTENT command carries the content of the specified file and the SKIP command

is used to indicate that the specified source file in the PCP server is valid and the

current file transferring is skipped.

If the source file is transferred to the PCP server successfully, the PCP server

should therefore reduce the number of source files required by the request compilation

task. And the PCP session consequently goes back to the COMPILATION state, after

a positive response for the corresponding command. For example, the dialogue for

transferring a source file to the PCP server is shown in Figure 5.2. Messages sent

from the client host are prefixed with C:, conversely, S: represents messages sent by

the PCP server.

5.3.5 The BINARY State

The BINARY state server has a similar responsibility to the FILE state server to

manage transferring binary data between server and client, but here the binary data
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C: FILE 3021 A 1243008542000 457

S: +OK

C: CONTENT <file A.class>

S: +OK

Figure 5.2: An example of transfering a source file to PCP server

flows from the PCP server to the client host. Once the BINARY command is received

by client, the PCP session enters the BINARY state, and a CONTENT command is

expected to transfer the compiled binary. If the binary is successfully received by the

client, the request compilation task is now complete and it should then be removed

from both sides. The PCP session is then put back to the COMPILATION state.

However, a failed compilation attempt in the PCP server should report the failure

by using BINARY command, followed by a negative response (-ERR), with specified

error message to indicate the requested compilation task failed, informing the client

about the failed compilation task. The compilation task should also be removed from

both sides after the failure is reported to the client.

5.4 ABNF Grammar

In the previous section, the details of the state transition protocol is given. Figure 5.3

describes the context-free grammar of the protocol of proxy compilation. The gram-

mar specifies the formal structure of messages used in the communication between

server and client for the proxy compilation service.

Note that the class-name and method-name are strings which are used to carry

the unique identities of the specified class and method respectively.

5.5 Implementation Details

The implementation details and a number of specified issues about the PCP imple-

mentation are addressed in this section.

In order to evaluate the design of the protocol and evaluate the effect of applying

proxy compilation for the Java programming language by using the code migration
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commands = set / compile / file / binary / content /

skip / quit / response

response = ("+OK" / "-ERR") [SP message]

quit = "QUIT" [SP message]

set = "SET" properties CRLF

compile = "COMPILE" method-name SP dependent-files

[SP priority] CRLF

file = "FILE" task-id SP class-name SP file-date SP

file-size CRLF

binary = "BINARY" task-id CRLF

content = "CONTENT" length data CRLF

properties = 1(property-name "=" property-value)

*(SP property-name "=" property-value)

property-name = *VCHAR

property-value = *VCHAR

message = *CHAR

class-name = *VCHAR

method-name = *VCHAR

file-size = 8HEXDIGI

file-date = 8HEXDIGI

task-id = 4HEXDIGI

priority = 2HEXDIGI

length = 8HEXDIGI

data = *OCTET

Figure 5.3: ABNF Grammar for the Proxy Compilation Protocol
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framework, a PCP client and server pair have been implemented. Both client and

server of PCP are implemented in the Java programming language, in order to in-

tegrate with the adaptive compilation system of the JVM in the client. The PCP

client is implemented as one of the available compilers for the adaptive compilation

system.

5.5.1 Cross Compilation Consideration

The PCP client and server are based on the same JVM under identical software and

hardware platforms. The cross platform proxy compilation is not supported in the

current implementation of the proxy compilation system. Although the decision to

solely support a single architecture is made reluctantly, it can easily be argued that

the same proxy compilation procedure can be applied no matter what underlying

architecture is used, as a result, the impact of proxy compilation based on the code

migration framework can be evaluated regardless of the hardware architecture. In

addition, implementing a fully functional JVM with the code migration framework

for other systems was impractical given the time and resources available for this

research.

5.5.2 Concurrency Consideration

One of the important aspects of the PCP specification is to reduce the time for a

complete compilation cycle by breaking the compilation procedure into a sequence

of state transitions. To use the command COMPILE to submit a compilation request

does not require the client to wait until the compilation result is sent back from the

server.

This mechanism allows the client to maintain multiple proxy compilation requests

in a single PCP session. As a result, the turnaround time for a proxy compilation

request can be minimised by synchronising the bytecode compilation and message

handling for the protocol in the PCP server.

In the prototype implementation of the server, a dispatcher thread is assigned to

manage the PCP session to the client for dispatching the compilation request and

delivering the compiled binary to the client, and another slave thread is used for the

compilation.
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5.5.3 Acknowledged Source File

In principle, the client should avoid exchanging the source files2 to reduce transmis-

sion cost.

The PCP specification does not require a dependent relationship between the

compilation target and the corresponding source file. The client agent can verify the

application with the PCP server by using the SET command during the INIT state.

If the application is verified by the server, the source file exchange between client

and server can be completely avoided.

The information used to verify the application by the PCP server is a unique

application ID which can be embedded into the “METAINF/MANIFEST.MF” of

the application package by the application vendor. Although the unique application

ID would not provide a sound relationship between the application and the source,

it can be argued that the dependency information would prevent the binary from a

different source file to be executed by the client agent. Furthermore, if the application

is changed unaware, the expected result would be faulty and there is no reason

whatsoever to need proxy compilation service.

The unique application ID in the prototype implementation is Java 128-bit UUID

[51]. However, due to its lack of support in the GNU classpath 0.92 used by the

prototype implementation, omit the standard algorithm to generate the UUID and

generate it from four random integers.

5.5.4 Source File Handling

The efficiency of the proxy compilation can be increased by minimising the source

files re-transmission between client and server, if the application cannot be identified

by the PCP server as in the last subsection. The client issued source files are stored

in the source repository in the PCP server. Prior to sending out the content of

the source file, a FILE command is used to send out the detailed information on

the specified file. If the detailed information is matched with the file in the source

repository in the PCP server, a digest of this source file is sent back in the message

section of the positive response to the previous FILE command. If the file digest

2The source file referred by proxy compilation system is the .class file contains application
bytecode.
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provided by the PCP server matches the file in the client, then the client can issue

a SKIP to allow the PCP server to pick up the specified source file in the local

repository.

In order to reduce the overhead of verification, the prototype implementation uses

the same approach to produce a digest of the source file for dependency information

on the Apus image (Section 4.8), the last modified date of the file is used as the

digest for verification.

5.5.5 Binary Caching

The binary of the application produced by the PCP server is the Apus image that

contains relocation information to allow the binary to be used in different execution

instances. Thus, the client agent stores the binary from the PCP server in a local

binary cache in the image repository and it can be used afterwards.

Since the current prototype implementation only supports a single architecture,

there is therefore no need to have separate image repositories for the PCP server.

Since the compilation has been cached into the Apus image in the image repository

in the PCP server, the turnaround time for individual requests for proxy compilation

can be reduced.

5.5.6 Priority

In the PCP prototype implementation, each request for proxy compilation comes

with a priority value. A queue is implemented in both the client and server to

handle incoming requests with priority. Each node in the queue represents a request.

The first element of the queue should always have the minimum priority value and

should be processed first.

5.5.7 Error Handling

A very simple error handling mechanism is applied in the prototype implementation.

As it is addressed in the PCP specification, if there is a negative response received

in the INIT state, the connection is terminated. If there is a negative response in
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the other state, the PCP should send out a BINARY and a (-ERR) respectively to

terminate the corresponding task.

Once the client VM enters the exit phase, the client agent issues a QUIT com-

mand to the PCP server and threads relative to the PCP client agent are marked as

daemons.

5.6 Example PCP Session

To illustrate a complete proxy compilation session on the implemented prototype,

an example of dialogues between client and server is given in Figure 5.4. As the

example demonstrates, the client compiles methods void foo1() and void foo2()

of class example.Foo by exercising the proxy compilation service.

Messages sent from the client host are prefixed with C:, conversely, S: represents

messages sent by the PCP server.

5.7 Security Considerations

The PCP does not provide any form of security support to guard against malicious

actions of both client and server. From the discussion in [21], the main security

threads on code migration by PCP can be categorized into:

Tampering - the unauthorised alteration of information. This would po-

tentially endanger the binary to be modified with malicious code against

the client host.

Vandalism - the unauthorised access to the proper operations on the sys-

tem.

An extension to use cryptographic protocols that provide security for communica-

tions over sockets, such as Transport Layer Security (TLS) and Secure Sockets Layer

(SSL), can allow the proxy compilation system to elimiate threads described above.

Furthermore, regardless which specific security policy is used, it would be interesting

to measure the impact of the additional procedures over the system on time and

footprint on the cilent.
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S: <wait for connection on TCP port 969>

C: <open connection>

S: +OK hello, dave!

C: SET vm=2.4.6 clp=gnuclasspath-0.92 arch=x86-32

S: +OK

C: COMPILE Lexample/Foo;foo1()V 1 0

S: +OK 1

C: FILE 1 Lexample/Foo 1243633850000 449

S: +OK

C: CONTENT <example/Foo.class file content>

S: +OK

C: COMPILE Lexample/Foo;foo2()V 0 0

S: +OK 2

S: BINARY 1

C: +OK

S: CONTENT <binary for Foo::foo1()>

C: +OK

S: BINARY 2

C: +OK

S: CONTENT <binary for Foo::foo2()>

C: +OK

C: QUIT

S: +OK client quit

C: <close connection>

S: <wait for next connection>

Figure 5.4: An example of a Proxy Compilation Protocol session

5.8 Summary

This chapter presents the motivation, design requirement and specification of the

Proxy Compilation Protocol to be used within the Apus proxy compilation system

to provide code migration with fine granularity for the Java programming language.

A number of issues regarding the improvement of efficiency and reliability of PCP

are detailed. The evaluation together with analysis on the data collected from ex-

periments on the PCP are shown in Section 6.6.3.
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6
Evaluation and Results

The strongest arguments prove nothing so long as the

conclusions are not verified by experience. Experimental

science is the queen of sciences and the goal of all

speculation.

Roger Bacon (1214–1294)

In Chapters 4 and 5, the design and implementation of the code migration frame-

work and the PCP to provide a proxy compilation service were discussed. In order

to verify the design, the performance of the implementation relative to the existing

Java Runtime Environment must be demonstrated.

This chapter details how the prototype implementation of the Apus proxy compi-

lation system was evaluated in typical user scenarios, using different suites of bench-

marks, and provides analysis of the results obtained. Section 6.1 describes the test

objective for the experiment. Sections 6.2 – 6.5 briefly introduce the characteristics

of the selected benchmarks, measurement techniques and the testing environment

for the following experiments. Testing results and analysis of the Apus proxy com-

pilation system are shown in Section 6.6.

84
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6.1 Test Objective

The fundamental purpose of writing the Apus proxy compilation system for Java is to

show that, the design and implementation scheme outlined in the previous chapters

has been successfully applied to produce a complete working prototype, which can

verify our assumption of improving compilation efficiency by applying a dynamic

compiler as a proxy compilation service via code re-usability. However, the purpose

of our examination process is then to establish the efficiency of this implementation

in a series of application scenarios, more specifically, in terms of execution speed

and memory footprint. The definition of an efficient implementation is naturally

subjective, so a list of qualities is given to quantitatively analyse the efficiency of the

implementation of a system taking the advantage of code re-usability. The extent to

which the implementation of the Apus proxy compilation system is efficient should

be considered with respect to the following objectives:� The use of the code migration framework as a replacement for dynamic com-

pilation in regular Java program execution should not result in significant per-

formance penalties when compared to the JVM without the code migration

framework deployed.� An Apus image generated from compilation should preserve the optimisation

across execution instances, that is, most of the optimisation applied in the Apus

images should bring performance benefits to the execution instance using them.� The proxy compilation client should make a balanced decision over when to

use different available compilers, including proxy compiler, cache and baseline

compiler. The essence of this objective is that cost and benefits of using the

proxy compilation service should be justified.� When Apus images are accumulated as a result of multiple execution on the

same Java program, the execution performance of this Java program should

be improved compared with the previous execution.� Use of proxy compilation should bring code optimisation into JVM without

extra consumption of resource. That is, the use of networking to complete

a compilation request should not outweigh the cost of performing equivalent

dynamic compilation in a local optimising compiler in terms of performance

penalties on execution speed and memory consumption.� Generating Apus images while in execution should not introduce large per-
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formance penalties in dynamic compilation, neither should it require large

resource consumption overhead, such as memory. That is, producing Apus

images during Java program execution should not significantly slow down the

execution.

6.2 Choice of Test Programs

Fairness is one of the important aspects of selecting benchmarks. The Apus proxy

compilation system is designed to compile with the JVM specification, and it is built

on a JVM that has good support for the standard Java API. This implies that a

widely available range of existing benchmarks for JVM are available for the Apus

proxy compilation system.

Each benchmark described in Table 6.1 is compiled with the javac compiler pro-

vided by Sun’s Java 2 Standard Edition v1.4.2, because the current version of Apus

prototype implementation is only compatible with the Java 1.4 classfile format.

We evaluate our system using the SPECjvm98 [20] benchmark suites and the

Scimark 2.0 [80] benchmark suites. Table 6.1 provides a short description of each

benchmark, the number of classes, methods and bytecode instructions that comprise

the benchmarks, and the size, in bytes, of its class files.

SPECjvm98 is a benchmark suite containing a range of tests to simulate conven-

tional applications. The simulated applications are described in Table 6.1. Since it

covers a wide range of applications and was used in many other publications, it is

therefore considered to represent fairly the overall performance of the system and

the results can be fairly compared with other JVM implementation. Each individ-

ual benchmark in SPECjvm98 reports the running time in milliseconds of a single

execution of the benchmark as the result.

With regard to the consideration of the effects of optimisation produced by dy-

namic compilation that optimise code based on the execution environment, tests

consequently focus on the performance of optimised code loaded from Apus images.

In order to evaluate the effectiveness of optimisations provided by proxy compila-

tion service we wish to focus on, performance of executing result code should isolated

from external effects. Therefore, I/O and automatic memory management operations

during the benchmark would potentially offset the effect of code optimisation. Sci-



Benchmarks Description Number

of Classes

Number

of Meth-

ods

Number

of Byte-

codes

Size of

Class-

files(bytes)

SPECjvm98 Benchmarks

201 compress An implementation of modified

Lempel-Ziv method (LZW)

12 44 1727 35678

202 jess Java Expert Shell System based on

NASA’s CLIPS expert shell system

150 684 18096 396536

209 db Performs multiple database functions

on memory resident database

3 34 1514 10156

213 javac Java compiler from the JDK 1.0.2 171 1170 40962 569654

222 mpegaudio decompresses audio files conforming to

the ISO MPEG Layer-3 audio specifi-

cation

51 311 33562 120182

227 mtrt two threads each render the scene in

the input file time-test model

25 176 6367 57000

228 jack A Java parser generator based on the

Purdue Compiler Construction Tool

Set (PCCTS)

56 315 18515 130889

Scimark 2.0

FFT Fast Fourier transform 1 10 541 2718

SOR Jacobi Successive over-relaxation 1 3 116 580

MonteCarlo Monte Carlo integration 2 10 783 3522

SparseCompRow Sparse matrix multiply 1 3 72 510

LU Dense LU matrix factorization 1 11 499 2166

Table 6.1: The set of benchmarks used to evaluate the Apus proxy compilation system

87
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Processor Two Intel Xeon Quad Core 2.00 GHz

Processor L1 Cache 32KBytes

Processor L2 Cache 4096KBytes

Address Size 38 bits physical, 48 bits virtual

Physical Memory 8 GBytes DDR2

Storage ext3 mounted on local SCSI disks

Operating System CentOS

Linux Kernel 2.6.18 SMP

Based Jikes RVM Version 2.4.6

Classpath GNU Classpath 0.92

Javac Jikes Compiler 1.22

Bootstrap Compiler Sun Java SDK 1.4.2

Connectivity Broadcom Gigabit Ethernet

Table 6.2: Test environment details

mark 2.0 benchmark suites are specified for scientific and numeric computing tests

that run on small test data. It is ideal for exercising the proxy compilation imple-

mentation on the computation-intense workload. It measures several computational

kernels and reports results for each computation and a composite score in approxi-

mate Mflops/s.

6.3 Testing Environment

The client and server for the proxy compiler were built and run on two blade servers

with identical specification. The hardware and software specification of those ma-

chines is shown in Table 6.2.

In each proxy compilation test, we assign one machine to provide the proxy com-

pilation service and the other machine was used as the proxy compilation client in

all tests. The proxy compilation server and client are wired directly to a Cisco gi-

gabit Ethernet switch. Naturally, the client should normally have lower hardware

specification than the proxy compilation server. A high specification proxy compila-

tion client would have potential differences in the areas of overall running time and

number of compilation requests.
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JNIEXPORT void JNICALL Java_Memory_meminfo (JNIEnv *env, jclass this){

char command[100];

sprintf(command, "cat /proc/%d/status", getpid());

system(command);

}

Figure 6.1: JNI code to print out the memory consumption information to standard

output in C.

6.4 Measurement Techniques

The measurements for the tests used in the following section are primarily catego-

rized into four types, compiled binary size, memory consumption, process time and

benchmark scores. In this section, those measurements are explained and techniques

of measurement are detailed, in order to help the understanding of the following

results. The simplest of measurement is the scores provided by the benchmarks. It

can be simply read from their standard output.

Measurement of program memory consumption relies on the information from the

process information pseudo-filesystem provided by the Linux operating system. The

process information pseudo-filesystem is used as an interface to access kernel data

structures. It is commonly mounted at /proc. For a given process id (pid), file

/proc/pid/status contains the total program size, data and stack segment size of

the program together with other information. In all test programs, the memory

consumption refers to the physical RAM, no swap space should be needed.

A Java Native Interface (JNI) call meminfo() is used to retrieve the current pid

and print out the contents of the file of the corresponding process, since standard

Java library does not provide direct access to the current process id. This JNI call

meminfo() is inserted into the end of the main function in each benchmark suite

mentioned previously in Section 6.2. The code for meminfo() is shown in Figure 6.1.

The process time measures the execution time of a certain region of code in a

specified Java thread. It is obtained by measuring the accumulated interval of the

specified Java thread. Therefore, it can truly reflect the elapsed active time spent by

the Java thread on the specified code region, without being affected by other threads

or other parallel processes.



6.5. Building the System 90

For each test configuration, the benchmark was run three times. In order to

reduce the likehood of the effectiveness of cache, the median value of those three

runs is chosen, for every measurements described in this chapter. Minimised system

load on both server and client host is ensured. However, there is minimised network

traffic between the server and client host. Despite the fact that the deployed test

environment is essentially identical in each test, the result of the tests still varied

slightly, with at most 5% difference from each other, due to system caching, or other

kernel activities which are difficult to control.

6.5 Building the System

The implementation of Apus proxy compilation system is based on the Jikes RVM

version 2.4.6. It means that the logical configuration of the Jikes RVM is a signif-

icant factor in the results. The booting image of the Apus client is built on the

production configuration with full optimising compiler and adaptive system built

in. The binaries of the booting images are produced using the high optimisation level

which has all possible optimisations Jikes RVM provided turned on, that is, it is the

best built configuration for Jikes RVM to deliver best performance on the testings.

This built is used in the tests shown in Sections 6.6.1 and 6.6.2.

The booting image of both the proxy compilation server and client should also

be built under such configurations. However, the irresolute bug1 found in the Jikes

RVM socket stream implementation inserting random bytes in the socket communi-

cation between the client and server, leads to the breakdown of the PCP as a conse-

quence. The proxy compilation tests have to use the JVM built in prototype-opt

configuration. Under the prototype-opt configuration, the only different from the

production configuration is that the booting image contains non-optimised code

built by the baseline compiler. As a result, the VM runtime cannot deliver the most

efficient support and requires further optimisation during execution. This build is

used in tests in Sections 6.6.3 and 6.6.4.

1The identical error has been raised in the mailing list in previous version of the Jikes
RVM. The description of the error can be found in http://osdir.com/ml/java.jikes.rvm.devel/2004-
02/msg00065.html.
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6.6 Results and Analysis

The following sections show the results of running benchmark programs in various

configurations and with different problem sizes in some situations. In each test,

a test strategy is given to describe how to conduct the test to evaluate the proxy

compilation system according to the test objective. Accompanying each table and

graph of results, highlights of some key observations about the data are given.

6.6.1 Optimisation Migration

To understand the effectiveness of applying the code migration framework integrated

with an adaptive optimisation system as the replacement for the optimising compiler,

a number of experiments were carried out as follows.

The results from this experiment, presented in Figure 6.2, depict the effects of the

average execution time by using relocatable binaries which produce in a different exe-

cution instance on seven SPECjvm98 benchmarks. In each test, benchmarks are run

100 times using input size 10. The x-axis presents the name of each benchmark being

tested. The y-axis presents the average execution time of a run in the benchmark

for a certain period. All the benchmarks run on the default memory configuration,

except db requires additional memory with maximum stack size set to 512MB.

Figures 6.2 divides the entire execution period into two parts. Figure 6.2(a) shows

the startup regime which consist of the first 10 runs of the benchmark. In contrast,

Figure 6.2(b) shows the steady regime which represents the period between the 10th

run to the finish of the benchmark.

For each benchmark, three bars are shown: each bar represents a configuration

on JVM. We are using the following configuration for the dynamic compilation in

JVM:� opt optimising compiler with adaptive optimisation system.� image code migration framework and optimising compiler with adaptive opti-

misation system.� image-aggressive Using Apus images to replace baseline compilations without

the decision from adaptive optimisation system.

Throughout the tests, the first time to run the benchmark is used as the production
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Figure 6.2: Comparison on the average execution time of SPECjvm98 (input size

10).
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run to prepare the corresponding Apus images. Those Apus images later are used

for the execution in other configurations (image and image-aggressive). As a

consequence, the binaries used in the execution of image and image-aggressive are

identical to the binaries used in opt.

The result shows that in the startup regime, the image-aggressive configura-

tion clearly delivers a better performance than the other two configurations. In the

configuration of integrating the code migration framework into an adaptive optimi-

sation system, the image configuration produces a competitive result. In benchmark

mpegaudio and mtrt, image configuration can deliver 15% better performance than

the counterpart, opt configurations. Since three configurations are using identical

binaries on the benchmarks, it is expected that similar performance is delivered on

the steady regime, as we can see in Figure 6.2(b).

It is clear from the results that the code migration framework can improve the

benchmark execution speed on the startup regime compared to the adaptive opti-

misation configuration. At the same time, the dynamic compiled binary migration

does not pose a performance penalty for applying the same binary on the similar

execution instance.

A study of the effectiveness behind the difference of average execution time in the

startup and steady regime in the test results shown on Figure 6.2 is taken. Figure 6.3

shows the time taken for each execution (the time spent on a execution is plotted on

the y-axis, each execution on the sequence is plotted on the x-axis).

The results depict that the effect of applying the code migration framework can

be seen from the first execution of every benchmark. That is, in the first run of

every benchmarks, despite the image-aggressive configuration loading every avail-

able image as a replacement for baseline compilations, it outperforms the adaptive

optimisation configuration by up to 2.7 times (the first run of mpegaudio, see Fig-

ure 6.3-(e)).

The image configuration shows a smooth performance improvement in execution

as the adaptive optimisation takes effect. It shows a smoother transition between

runs compared to the opt configuration, as the result of the low cost of delivering

the optimisation binary in the place of the corresponding bytecode. In Figure 6.3-

(c), three configuration individually shows a large noise in the execution time plot.

After investigation into the log output, the time when GC collection process occurs
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Figure 6.3: Details of execution time of different configurations on SPECjvm98 (input

size 10).

matches the executions that take long than others. Therefore, we believe that GC

process cause the large noise in Figure 6.3-(c).

However, despite the fact that the compilation speed of Apus images loading has

been correctly setup in the adaptive optimisation system as the data, which will be

shown in the next subsection, it can be seem that comparing to the image-aggressive

configuration, the adaptive optimisation system is taking too conservative a decision

of on when to apply image loadings on the method recompilation.

As a result of such a conservative decision on applying Apus image loading, the

image configuration shows a similar pattern to the opt configuration on the improve-

ment of performance alone in the execution of benchmarks.

In this subsection, two observations can be concluded from the analysis above:� Experiments in the section have demonstrated that code generated from a

dynamic optimising compiler can be sucessfully migrated to a different JVM

runtime without significant performance degradation.� The existing method profiling technique used to identify frequent executed

methods cannot adapt the fast method compilation provided by code migration

framework. That is, the benefits of the code migration framework to improve

Java execution cannot be fully utilised with the AOS implementation in Jikes
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RVM.

6.6.2 Using Static-Compiled Images

With the relocation information, the dynamic compiler in the JVM can also be de-

ployed as an AOT (Ahead-Of-Time) compiler statically. Methods can be compiled

using a specified optimisation level instead of relying on the online profiling system

which makes the compilation decision based on the benefits (performance improve-

ment) and costs (compilation time). Since compilation time is not an important

parameter for making compilation decisions any more, every method in the applica-

tion can have a pre-compiled Apus image ready before the execution begins.

Under the tests in this subsection, testing programs were statically compiled into

Apus images under different optimisation levels from the least optimised 0 to high

optimised 2 results shown as o0, o1, o2 respectively.

In Figure 6.4, we experiment with the execution time of SPECjvm98 benchmarks

while applying statically compiled Apus images using various optimisation levels

against adaptive optimisation configuration. For each benchmark, two bars are

shown. The black bar on the top represents the time spent on compilation and image

loading during execution. The coloured bars represent the execution time without

the time of compilation and image loading. The two bars in total for each benchmark

represents the overall execution time spent in 10 iterations of the benchmark and

the test harness2.

The static compiled Apus image at optimisation level 2 (o2) out-performed adap-

tive optimisation in overall execution time by between 26.4% (mtrt) and -3.8% (db)

with the input size 1. The advantage of using static compiled Apus images drops to

between 5.3% (compress) and -21.3% (jess) when the input size of the benchmarks

increased to 100.

The execution by using an Apus image with higher optimisation level shows a

shorter execution time on benchmarks (mpegaudio, mtrt, jack etc.) with different

input sizes. With the input size greater than 1 unit, the execution by using Apus

images with optimisation level 0 is slower than most of the executions with adaptive

2The reason to include the test harness into the execution time is to show the compilation time
against overall all execution time more accurately, since the compilation may be triggered during
the execution of the test harness.



(a) SPECjvm98 Benchmarks (Size 1)

(b) SPECjvm98 Benchmarks (Size 10)
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(c) SPECjvm98 Benchmarks (Size 100)

Figure 6.4: Performance comparison in SPECjvm98 using statically generated Apus

image in the start-up status

optimisation. However, with highest optimisation levels that the compiler can pro-

vide, it does not guarantee the best performance throughout, such as jess, db, javac

with input size 1.

In order to inspect the image loading performance, Table 6.3 shows the comparison

of performance between three configurations on SPECjvm98 benchmarks with input

size 10 for the same experiment as in figure 6.4. In each case, the following results

are reported:� Total Time represents the overall time consumed on the benchmark execution

in milliseconds including all the scheduled runs. This is different from the

average execution time used in previous results.� # Meths represents the total number of methods being compiled in the tests.� Comp represents the total CPU time used in the compilation in milliseconds.� BCB/ms represents the compilation speed in term of bytecode bytes per mil-

lisecond.



Benchmark Compiler Total Time(ms) # Meths Comp(ms) BCB/ms MCKB

compress

baseline 31862 215 8.93 1143.93 132.5

opt 7118 12 126.34 47.68 10.7

image 6804 6 2.9 389.29 8

jess

baseline 3241 623 18.29 1138.02 277.9

opt 2008 22 89.42 23.23 13.1

image 2038 16 14.18 104.42 30.9

db

baseline 2263 209 8.93 1144.46 129.7

opt 2004 7 81.93 17.82 10.4

image 1931 6 5.59 151.47 9.4

javac

baseline 1868 912 34.06 1400.64 555.4

opt 1894 25 81.24 31.97 14

image 1803 30 26.89 186.76 88.9

mpegaudio

baseline 19969 387 20.31 1493.69 497.5

opt 5921 54 339.52 41.4 41.1

image 5032 44 13.72 464.38 54.8

mtrt

baseline 7932 339 12.57 1148.84 197.3

opt 5719 41 361.43 22.75 47.1

image 4654 29 16.87 235.29 89.9

jack

baseline 5170 448 19.99 1261.96 359.7

opt 4866 26 215.39 26.47 25.1

image 4574 26 22.42 201.55 61.3

Table 6.3: Compilation details of three different execution configurations on SPECjvm98 (input size 10) on start-up status.

The Apus images are static compiled at optimisation level 2.
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6.6. Results and Analysis 101� MCKB represent the total size of generated machine code in kilobytes.

Since the baseline compiler is the default compiler in the execution, as we expect,

it compiles far more methods than the others opt and image with best compilation

speed of 1493 bytecode bytes per millisecond (BCB/ms) (mpegaudio), however, it

clearly deliver the worst performance amongst the three. The image loading shows a

consistently better performance on translation rate over optimising compiler through-

out all the tests. In mpegaudio benchmarks, Apus image loading can translate 464

BCB/ms which is about 10 times greater than opt, reducing the compilation time

for recompilation time from 339 to 13 ms, at the same time achieving a better per-

formance on the overall execution time. Another interesting column to look at is

the total number of methods (#Meths) handled by the code migration framework,

which shows that the #Meths is less than using the optimising compiler configuration,

however, MCKB is greater than the latter configuration.

Image loading details for the tests on SPECjvm98 benchmarks are given in ta-

ble 6.4. Results are reported as:� Load represents the total CPU time spent on the image loading process in

milliseconds.� Link represents the total CPU time spent on the image linking process in

milliseconds.� veri represents the total CPU time spent on the image verification process

of images in milliseconds. This time partly overlaps the loading and linking

processes.� #Sym represents the overall number of loaded symbols.� #LPs represents the overall number of loaded link points.� Resolving represents the total CPU time spent on aggressive resolving of

symbol references during the image linking process.� IMGB represents the overall loaded size of Apus images in bytes.

Loading images from the file system accounts for more than 50% of time spent

on the entire Apus image loading process. In the case of the test of javac on input

size 100, the loading process accounts for 62% of the overall time. The verification

process is included into both image loading and linking processes, since the declaring

class of the target method has to be verified before loading the images and inlined

methods are verified during the linking process. The verification process accounts



Benchmark Input # Meths Comp(ms) Load(ms) Link(ms) Veri(ms) # Sym # LPs Resolving/ms IMGB BCKB

compress

1 9 3.2 2.34391 0.850009 1.25545 80 235 0 15451 1.4

10 6 2.9 2.23895 0.65151 1.23468 67 222 0 13842 1.3

100 9 3.12 2.27886 0.833182 1.22716 80 235 0 15479 1.5

jess

1 2 2.14 1.7522 0.386695 0.899762 23 24 0 1428 0.1

10 16 14.18 8.49059 5.66792 6.74367 510 1844 0.401943 77212 1.8

100 33 21.41 13.662 7.71706 7.18736 939 3106 1.03607 134919 3.1

db

1 2 1.51 0.869612 0.0349442 0.175175 4 4 0 358 0.1

10 6 5.59 3.35408 2.22688 2.42075 217 520 0 25982 0.8

100 8 6.59 3.9233 2.65057 2.80434 231 516 0 27046 0.8

javac

1 1 1.05 1.008 0.0355173 0.319391 8 10 0 390 0

10 30 26.89 16.3974 10.4644 10.8716 1173 4849 0 214465 7.6

100 186 141.18 85.862 55.1186 38.8856 5433 20010 14.1695 901953 37.2

mpegaudio

1 18 7.19 5.57828 1.60078 3.22742 205 479 0 47730 6.2

10 44 13.72 10.1573 3.54593 5.19911 516 1424 0.47558 103636 9.6

100 77 23.48 17.2693 6.16839 8.10062 1166 3101 0.848464 179026 12.5

mtrt

1 13 10.54 7.40352 3.12436 3.17965 314 3178 0 119546 4.5

10 29 16.87 12.4179 4.41933 5.08994 531 4279 0 170082 6.2

100 37 19.99 14.8319 5.10894 5.73735 650 4393 0 177716 6.9

jack

1 11 9.2 4.85774 4.32416 4.30214 322 931 0.413049 41085 1.7

10 26 22.42 13.9779 8.41213 8.08452 874 4095 0.86884 162924 4.7

100 57 35.96 24.7249 11.1617 11.2977 1387 6093 0.870782 275690 16.1

Table 6.4: Details of image loading in SPECjvm98. The Apus images in the tests are statically generated at optimisation

level 2.
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for about 30% of the overall time of the Apus image loading process, in the worst

case where the input size is 1 on jack, the verification took as much as 46% of overall

time of the Apus image loading.

Since the aggressive reference resolution strategy, as described in Section 4.6.4,

was used during the linking process, it is interesting to find out how this strategy

has an effect on the Apus image loading process. In 12 out of 21 cases, reference

resolution does not happen during the linking process. And furthermore, in most of

the cases involving reference resolution, it took about 10% of time in the link process.

However, in one case, javac input size 100, the reference solution accounts for 25%

of the time in link process, 10% of overall Apus image loading time. However, the

number of symbols loaded in the test reached 5433 in the test.

In this subsection, experiments are taken to measure the effectiveness of Apus

image generated from a static offline optimising compiler. Some observations are

made:� Configuration of using only Apus images can be more efficient than the adaptive

configuration in the start up stage (26.4% - -3.8%), however, the advantage

disappear when the input size of the benchmark increases (5.3% - -21.3%).� The code migration technique shows a significant reduction on time to translat-

ing Java bytecode into optimised binaries, compared to a dynamic optimising

compiler. In the best scenario, code migration shows 10 time (mpegaudio)

quicker than optimising compiler.

6.6.3 Proxy Compilation

The experimental results in this section evaluate the effects of proxy compilation on

average execution speed and memory consumption as an alternative approach to the

optimising compiler.

Here is a list of dynamic compilation configurations and JVM that we test through-

out this subsection:� baseline The baseline compiler without adaptive optimisation system on Jikes

RVM 2.4.6.� optimisation The optimising compiler with adaptive optimisation system on

Jikes RVM 2.4.6.



6.6. Results and Analysis 104� image Apus image framework with adaptive optimisation system, and feeding

with static-compiled Apus images.� proxy Proxy compiler integrated with adaptive optimisation system.� cache Proxy compiler integrated with adaptive optimisation system, this con-

figuration also includes the cache of Apus image from the execution by proxy

configuration.� Sun Java 1.4.2 Sun Java 1.4.2 VM.

Both the server and client of Apus proxy compilation system are built under the

configuration of prototype-opt for the reason as it is described in Section 6.5. That

is, the entire JVM binary is produced by the baseline compiler, as compared with the

previous tests, where the JVM is built in the production configuration that uses the

optimising compiler to optimise the binary of the runtime. In consequence, JVM built

in prototype-opt, which does not have optimised binary, generally leads to longer

execution times on the benchmark compared with the production configuration, as

we can see in the following figures.

The first group of test results (listed in Figure 6.5) shows the effects of using

different dynamic compiler configurations listed above when tested on SPECjvm98

benchmarks. The graph shows the average execution time in the start up state,

therefore, the lower bar represents better performance.

The results show the performance of various JVM configuration on SPECjvm98

benchmark in the startup stage, which is the first ten iterations of the benchmark

execution. It can be seen that Sun Java 1.4.2 clearly delivers a shorter execution

time throughout the tests compared to others based on the Jikes RVM. How-

ever, the difference of execution time between the Jikes RVM (opt) and Sun Java

(Sun Java 1.4.2) reduces when the benchmark input size was increased to 100.

Using the same input size (100), the configuration that solely relying on stati-

cally generated Apus images (images) shows a longer execution time on benchmarks

(jess, db, javac, mtrt and jack) than proxy and optimisation configuration. We

believe that this difference is because the Jikes RVM runtime in images do not

benefit from the code optimisation, as the runtime binaries are optimised. There-

fore, those results suggest that in the startup stage, the unoptimised binary of Jikes

RVM runtime has a large impact on the overall execution speed. This assumption is

also confirmed with the previous observation, which the difference of execution time
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Figure 6.5: Average execution time comparison on proxy compilation and other

configuration on SPECjvm98.
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between Jikes RVM and Sun JVM reduce while increasing the input size.

The proxy configuration (proxy) shows it achieves a competitive execution speed,

but generally slower in most of the cases than the optimising compiler configuration

opt. The execution time slowing down by proxy configuration, compared to optimis-

ing compiler configuration, reduces from 21% to 11% on average while the input size

of SPECjvm98 increases from 1 to 100. We believe this is due to a longer execution

to able more methods to be optimised by the proxy compilation service. Further

investigation in this assumption can be seen on later discussion on Table 6.5.

To reduce the code optimising over network, a local repository to cache the op-

timised binaries is used in cache configuration. Test results in Figure 6.5 shows

a positive impact on the binary caching. The same as proxy configuration, cache

configuration shows a consistent improvement on the execution time, compared to

the opt configuration, from -8% increased to 7% on average, with a maximum im-

provement to 25% in mtrt benchmark.

Table 6.5 shows more details of compilations on various configuration than Fig-

ure 6.5(c), where optimised binaries make more distinguishable improvement from

the baseline configuration. Beside measurements mentioned in the previous section,

we introduced “turn around” compilation time to measure the time spent in exe-

cution during a completed compilation cycle. It measures the period of time from

starting the compilation process to the time when the binary is produced success-

fully. The purpose of this measurement is to give information on how long it takes

on average for the optimised binary to be available after the request was sent. It

is related to the compilation time (Comp Time), especially for the situation where

long latency is involved in the compilation process, such as network communication,

only limited online compilation tasks can be completed in the limited time frame of

the execution.

The proxy and —cache— configurations optimised a similar numbers of methods

in the entire benchmark execution. In contract, the opt configuration optimised more

methods than other configurations, due to the fact that the optimisation includes

methods from the optimising compiler itself. Under the same circumstances, the

image configuration have the least methods optimised during the tests, because the

optimised binaries for the runtime is not available. For the same reason, overall,

the cache configuration delivers a faster execution over opt configuration, and the

images configuration delivers the longest execution on the tests where input size is



Benchmark Compiler Avg Exec(sec) # Meths Comp Time(ms) Turn Around(ms) BCB/ms

compress

opt 4.92 85 3066.4 6349.4 3.19

images 5.72 10 11.15 11.142 78.05

proxy 5.86 22 47.66 8242.4 29.4

cache (proxy)
5.62

7 7.52 3045 60.56

cache (image) 16 22.19 22.179 55.63

jess

opt 3.68 145 3259.6 9380.4 3.24

images 17.27 60 91.13 113.59 48.73

proxy 5.32 101 160.32 32766 35.42

cache (proxy)
4.16

46 72.65 17302 33.2

cache (image) 74 96.33 183.99 56.3

db

opt 10.63 124 3617.3 14150 2.98

images 23.54 11 33.26 263.56 35.06

proxy 10.64 51 107.53 17701 25.12

cache (proxy)
10.53

19 26.86 8841.6 38.68

cache (image) 28 48.84 71.095 44.08

javac

opt 12.61 645 12146 37756 4.41

images 22.29 284 440.74 440.58 52.12

proxy 13.49 317 485.21 135420 39.11

cache (proxy)
10.07

69 81.61 34627 39.57

cache (image) 229 273.49 357.33 72.21

Table 6.5: Details of Proxy Compilation on SPECjvm98 Benchmarks (size 100) part i

107



Benchmark Compiler Avg Exec(sec) # Meths Comp Time(ms) Turn Around(ms) BCB/ms

mpegaudio

opt 4.84 242 5951.5 14023 4.17

images 5.8 81 69.95 139.25 105.92

proxy 5.5 97 177.87 31237 63.84

cache (proxy)
4.31

16 25.99 6132.9 46.14

cache (image) 72 62.87 62.845 149.67

mtrt

opt 4.94 192 4801.1 20080 3.67

images 13.03 66 82.45 281.39 40.67

proxy 5.32 82 134.7 38813 33.96

cache (proxy)
3.95

28 48.16 18500 27.87

cache (image) 55 83.69 145.21 57.33

jack

opt 6.61 373 7368.3 20349 4.08

images 18.86 91 175.46 218.11 76.97

proxy 7.32 183 248.51 60517 43.05

cache (proxy)
6.1

35 36.54 15454 32.64

cache (image) 125 146.24 226.53 60.07

Table 6.5: Details of Proxy Compilation on SPECjvm98 Benchmarks (size 100) part ii
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Figure 6.6: Performance improvement against baseline on Scimark 2.0

100.

From Table 6.5, we can observe that images configuration has the best code opti-

misation speed in term of BCB per ms, ranging from 35.06 to 78.05, compared to the

opt configuration, which reach between 2.98 to 4.41. The optimisation performace

of proxy configuration, with extra socket IO operation for proxy compilations, lies

on between images and opt configuration, achieve between 25.12 to 63.84.

Although proxy configuration shows a relatively small overhead on compilation, it

can have the biggest turnaround time per method on average (380.65 ms) among the

tests, compared with opt configuration (67.89 ms) and images configuration (6.84

ms). That is, code is taking longer to be deployed. We believe this is caused by net-

work latency. Comparing configurations between proxy against cache, while cache

configuration using the available Apus images from local repository partly replace

the proxy compilation, the results from Figure 6.5(c) shows a small performance

improvement on cache by 7% on average.

Let us examine those configurations described above on small, computing-intense
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benchmarks. Figure 6.6 shows that the the same group of compiler configurations

tested on a computationally intensive benchmark, Scimark 2.0. Test result represent

the benchmark score improvement over the baseline configuration. That is, a higher

bar means a better performance. Details of the compilation in various configurations

of the test can be found in Table 6.6.

The results show that the performance of using proxy compilation with cache has

better performance than the optimising compiler configuration. The proxy compi-

lation without cache configuration shows an approximately 10% decrease in perfor-

mance on only one occasion. From Table 6.6, the image configuration reveals that

only a small number of methods, which only belong to the benchmarks, almost one

for each benchmark, affected the outcome. It therefore limits the online optimisa-

tion. Unlike images and proxy, in which case bytecode are directly compiled at

the highest optimisation level, the optimising compiler applies a more conservative

strategy, which reduces the efficiency of the optimised code overall. Combining the

reasons mentioned above, it is therefore images and cache producing the best results

overall, since the best optimised code can be deployed in the fastest time.

By graphing the comparison of the average execution time and showing the com-

pilation cost of various configuration of JVM, one can see the effects of using proxy

compilation and cache from the local Apus image repository. Figure 6.7 shows details

of execution time of each run in the _213_javac benchmark. The y-axis represent

the execution time. As proxy compilation bears a longer turn around time, it starts

with longer execution time on the first run, and improves its execution speed at a

slower pace, but reaches a competitive execution speed as optimisation configuration

at the fifth run. With the benefits from the cache that are produced by previous

execution, cache has the best starting run among all the configuration and saturates

faster than proxy and opt as well.

Figure 6.8 presents the size of peak memory usage of the tests from SPECjvm98

and Scimark 2.0 benchmarks in different compiler configurations. The results in this

figure are collected from the same tests throughout this section for the reason of

coherence. The memory usage measurement technique was described in section 6.4.

The results show that the proxy compilation with cache configuration (cache)

produces competitive results to the counterpart, optimisation configuration, except

on test compress and db in which consume about 5 – 10% more memory than

optimisation configuration. It also shows a marginally smaller memory consumption



Benchmark Compiler Score # Meths Comp Time(ms) Turn Around(ms) BCB/ms

scimark 2.0

opt 340.63 48 1536.2 3021.8 3.64

images 392.86 6 43.16 12.305 146.32

proxy 384.52 20 24.91 7501.5 57.09

proxy(cache) proxy
393.32

8 9.16 2482 37.41

proxy(cache) image 12 9.93 9.9274 107.95

Table 6.6: Compilation details of three different configurations on Scimark 2.0 Benchmarks.
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Figure 6.7: Details of every execution speed of SPECjvm98 benchmark 213 javac,

input size 100.

than the proxy compilation without cache configuration (proxy), as the result of

using the cache from a local Apus image repository. For the same reason, overall,

static-compiled image configuration (images) show a better result on memory usage

than cache and proxy.

Although the proxy compilation configuration does not show a distinguishable

advantage over optimisation configuration in terms of memory consumption in the

tests, we believe there are a number of issues on the implementation of proxy com-

pilation configuration that would affect the overall outcomes. Due to the limitation

on the implementation which is used in the tests, a optimising compiler is integrated

on the proxy compilation client. In addition, the proxy compilation client configu-

ration also includes a code migration framework and PCP which is not included in

the optimisation configuration. We discuss a number of possible improvements to

reduce memory consumption for proxy compilation configuration in the summary in

Section 6.7.

There are some conclusion can be made from this subsection:
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Figure 6.8: Peak memory usage on SPECjvm98 benchmarks (input size 10) and

Scimark 2.0� The results show that the execution time on the proxy configration slower on

SPECjvm98 (input 100) than opt configration for 11% on average. We believe

this is due to the reason of network latency. Proxy compiled method takes

longer to deploy on average (380.65 ms) than optimising from local optimising

compiler (67.89 ms), or from Apus images (6.84 ms). However, the different

between proxy configuration and opt configuration is changed to 7% faster to

by using a cache in the proxy client.� The code optimisation speed provide by proxy configuration (25.12 - 39.11

BCB/ms) is significantly faster than opt configuration (2.98 - 4.41 BCB/ms).

However, results also indicates that network latency increase the time to wait

for the binary in a proxy compilation, and lead to a slow down in the benchmark

execution, from 7% faster in cache configuration than opt configuration to 11%

slower in proxy configuration.� The memory consumption by the proxy configuration is greater than the opt

configuration between 5% - 10%, we believe this is due to the fact that a

optimising compiler is integrated with the client implementation.
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Benchmark Conf Avg Exec(sec) # Meths Comp Time(ms) BCB/ms

compress
opt 4.10 15 191.64 41.06

images 4.18 18 201.35 31.79

jess
opt 1.53 65 474.09 18.48

images 1.52 62 464.51 18.02

db
opt 7.36 15 155.12 15.36

images 7.34 17 180.91 13.88

javac
opt 3.62 264 2026.42 24.41

images 3.58 257 1803.79 22.13

mpegaudio
opt 3.68 112 1050.42 33.64

images 3.52 116 938.82 34.60

mtrt
opt 1.89 66 605.87 22.67

images 1.64 72 620.82 21.81

jack
opt 2.39 73 378.42 30.14

images 2.41 66 486.72 25.87

Table 6.7: Performance of code migration framework on SPECjvm98 benchmarks.

6.6.4 Cost of Generating Relocation Information

This section evaluates the cost of producing Apus images described in Chapter 4 by

comparing the performance of the Apus image compiler and the original optimising

compiler of Jikes RVM. To allow the experiments to focus on the impact of relocat-

able code during the online optimisation, all the tested JVM configurations use the

same optimisation settings throughout the tests.

Table 6.7 shows the performance of each benchmark. This experiment compared

the performance on the relocatable code generator (images) to the original optimising

compiler (opt) over SPECjvm98 benchmarks for a total 10 runs. In both configu-

rations, both compilers are used as an online optimising compiler in the execution.

The major difference is the relocatable code generator produces relocatable binary

as well as the optimisation.

Overall, the results show that the images configuration does not impose a notice-

able performance overhead on average execution time on the benchmarks in general.

In the worst case of images configuration, the db benchmark reduces the compilation

speed by a mean of less than 10%, and delivers a similar average execution time as

well. Overall, producing a relocatable binary while in online compilation does not

produce a distinct overhead on both execution time and compilation speed.
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6.7 Summary of Results

The purpose of the testing and analysis described in this chapter is to provide quan-

titative data that can be used to evaluate the efficiency of the implementation of the

Apus proxy compilation system. Based on the detailed results and analysis in this

chapter, some general conclusions can be drawn:� The code migration framework can increase the compilation speed in terms

of bytecode per millisecond by 8 times on average compared to the optimising

compiler, by using corresponding Apus images from the local image repository.� Apus images from static-compiled binaries are as efficient as their counterpart,

the binaries produced by the dynamic optimising compiler in the startup stage

of the execution. The use of Apus images shows a better performance in the

situation where the running time of benchmarks is short.� Performing image linking in the client does not impose a significant perfor-

mance burden in the binary loading process.� Binaries which were dynamically generated can be relocated and used fault-

lessly in a different execution instance by using the code migration framework,

and the fast loading migrated binaries can deliver a better performance on the

startup phase of the application running and are as efficient as that produced

by the original execution instance in the steady state.� On average proxy compilation substantially outperforms optimisation compi-

lation in every test in term of compilation speed, however, it consumes more

CPU cycles than loading an Apus image from a local repository.� Configuration of combining the proxy compilation with caches in a local repos-

itory, in which images are collected from previous executions is faster than the

optimising compiler configuration in the startup stage of applications.� Producing relocation information for the Apus image in the optimising com-

piler only marginally slows down the optimising compilation process, however,

it does not impose any observable penalty to the average execution time of

applications.� The memory consumption of the Apus framework configuration is marginally

smaller than optimisation configuration in most cases.

In conclusion, the above shows that using the code migration technique can be

considered an efficient alternative technique to achieve code optimisation. The proxy
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compilation with caching in a local repository is competitively efficient as an opti-

mising compiler. However, the testing and results show that there are areas in which

the proxy compiler implementation is not as efficient as it could be:� The code migration framework configured with adaptive optimisation system

only marginally outperforms the optimising compiler configuration and is vis-

ibly slower than the more aggressive approach of using Apus images. This

problem is caused by the adaptive optimisation system not adjusting to iden-

tify hot methods fast enough in a large scale to replace the non-optimised

binaries reflecting the use of lightweight Apus image loading compared to the

dynamic optimisation.� Although proxy compilation consumes fewer CPU cycles than optimising com-

piler on average, due to a less predictable network latency, the turnaround time

for the compilation on the proxy compiler is longer than optimising compiler.

As a consequence, as testing results show, this can cause a potential slow-down

in the execution time, especially in the startup state. However, this disadvan-

tage can be offset by providing a caching approach for the compiled binaries,

which reduces the reliance on the proxy compilation.� Various test results show that the use of the proxy compiler in the client leads

to a higher memory footprint than optimisation configuration. This issue is

partly caused by the proxy compiler implementation containing the full package

of the optimising compiler and the sophisticated adaptive optimisation system

which is responsible for more than the identification of hotspot methods, such

as sampling execution and giving feedback to the optimising compiler.



C
h

a
p

t
e

r

7
Conclusion

Some things need to be believed to be seen.

Guy Kawasaki (1954–)

This chapter closes the dissertation by drawing a list of contributions based on

the conclusions from the experimental results stated in Chapter 6. A number of

possible extensions to our experiments, as well as some possible directions for further

research are discussed. These suggest ways in which the research could be improved

or extended. Finally, some comments summarise the research work covered in the

entire dissertation.

7.1 Summary of contributions

The purpose of this work is to support the thesis that efficient Java execution can be

achieved through an efficient optimising compilation, which is provided by a proxy

compilation service.

The following specific contributions have been achieved:� A proxy compilation system has been designed and implemented on an existing

JVM implementation. It utilises a full implementation of a dynamic optimising
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compiler in the remote compilation service. Further analysis and test results

demonstrate the efficiency of this implementation.� Comparisons show that applying a remote compilation server for dynamic byte-

code optimisation using an existing JVM implementation can achieve compa-

rable performance to the equivalent JVM implementation. Execution perfor-

mance using a proxy compilation technique combining a cache from previous

optimisation binaries shows a mean performance improvement of 25% com-

pared to an adaptive optimization compiler with equivalent configuration.� A code relocation framework is designed and implemented to organise reloca-

tion information and binaries in a format that can be relocated into different

execution instances correctly and efficiently. This framework has been applied

to handling code migration on optimised binaries coming from a remote com-

pilation server and cached binaries from a local repository.� Adopting the client-side binary relocation can allow remote compiled binaries

to be cached in the client at small cost. Test results show that the impact

on overall performance by the relocation cost is smaller than the duplicated

transmission cost introduced by server-side relocation.� Applying a remote compilation server for dynamic code optimisation can sig-

nificantly reduce the cost on the host machine, while producing binaries with

comparable efficiency to traditional optimising compilation.� Using a dynamic optimising compiler to produce relocatable binaries does not

impose a significant performance penalty on the compilation process nor the

efficiency of the optimised binaries.

7.2 Possible Extension

The Apus proxy compilation system was specifically designed for the purpose of

proving the concept of providing a proxy compilation service for existing JVM im-

plementations, while maintaining a fully functional JVM implementation. To this

end, the system does not intend to implement many other features specified for a

proxy compilation scenario to increase the performance of Java program execution,

such as an improved optimisation procedures, frequently executed code region pre-

diction etc. These were omitted because they were not considered essential to the

goal of this research in the available time. Further improvements of this kind could
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be built or extended upon the current structures.

Despite the basic set of features and functionality that have been implemented in

the Apus system, there are many possible extensions that are possible. Typically,

these would improve the performance of the Apus system further, and some would

support new features. In the following sections, a brief discussion is presented to

address how some interesting features and extensions could be implemented using

the existing infrastructure.

7.2.1 Selective Compilation

As the results presented in Chapter 6 suggested, low overhead of image loading and

proxy compilation largely reduce the cost of bytecode optimisation in the execution.

The Apus system utilised call stack sampling implemented by the Jikes RVM as the

selective optimisation approach [6] to balance the cost and benefits from the bytecode

optimisation. However, as the test results show in Section 6.6.1, execution perfor-

mance shows a significant improvement on giving the highest priority to utilising the

optimisation cache compared to using the existing code selection model to make the

decision.

In order to take advantage of the low cost of bytecode optimisation provided by

the Apus system, it would be interesting to explore a more aggressive code selec-

tion approach for code optimisation (in this context, the techniques used for code

optimisation are image loading from the local repository, such as cache, and remote

compilation).

Beyond the aggressive code selection, one possible extension is an on-stack re-

placement (OSR) [32] mechanism which enables an execution to be transferred into

an optimised version, even while the method runs. Although OSR is regarded as

an engineering challenge, and further relocation is necessary to the optimised code

to support OSR, such a facility would allow optimised code to be activated sooner

while the current non-optimised code version contains a long-running loop.

7.2.2 Profiling Driven Optimisation

Dynamic optimisation, many systems such as SELF-93 [42] and Jikes RVM [14]

apply online profiling information to assist the decision making over optimisation
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compilation during runtime. As briefly introduced in Section 2.6, such a technique

would be able to overcome the limitation of static compilation to directly apply many

aggressive optimisation procedures of dynamic compilation to improve execution

efficiency.

However, profile driven optimisation comes with a limitation that the optimised

code can only be applied in specific situations. In a proxy compilation environment,

this optimisation technique would potentially increase the load on network trans-

mission when multiple compilations of the same method are requested. In order to

cache all the profile driven optimisation from the compilation server to reduce the

overall transmission cost, the Apus code migration framework could provide sup-

port for multiple version of optimised binaries to be stored at the local repository.

A thin guard proposed by Arnold and Ryder [9] could then be used to choose the

appropriate version of optimisation for the specified method.

7.2.3 Multi-Platform Support

The main motivation for the Apus proxy compilation system to reduce the cost of

dynamic optimisation is to improve the execution efficiency on embedded systems.

However, this research prototype is built on a well established research-oriented JVM

implementation (Jikes RVM), which is designed for the desktop environment with

x86 and PowerPC architecture supported. It would be interesting to measure the

impact of applying the Apus system on an embedded system.

Beside a Jikes RVM implementation for targeted embedded systems, a cross plat-

form dynamic compiler is required for the proxy compilation server where the server

and client are on heterogeneous platforms. In addition, to generate binaries for the

specified platform, a further extension to the proxy compilation protocol to iden-

tify the client platform and the cache management on the compilation server is also

required.

7.2.4 Extending Accessibility of Source Files

The opportunity exists for the client to restrict the transmission of source files to

the compilation server even more. In a situation where the source files of the re-

quested program are accessible online, the compilation server can directly download
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the source file from the URI address information provided by the clients. A routine

verification on the source files on the client are necessary. The client would then

benefit from a faster proxy compilation session. The client may also benefit from

higher efficiency binaries, since further profile driven optimisation can be applied to

the target method while the compilation server has access to all the related source

files.

7.3 Conclusion

Java has been marked as one of the milestones in the development of programming

languages, supporting seamless compatibility on various platforms and supporting

many powerful features. Dynamic optimisation allows sophisticated optimisation

techniques to be applied in execution to overcome the performance issue of inter-

preting the bytecode. One of the tasks of compiler researchers is to reduce the cost

of dynamic compilation while delivering the most efficient binaries.

The work described in this dissertation details the design and implementation of

the infrastructure of a proxy compilation system for Java. This system addresses

many common issues in utilising dynamic optimising compiler as a remote compila-

tion service, and provides a foundation for further research on exploiting dynamic

optimisation in a remote compilation scenario. Test results confirmed that the Apus

proxy compilation system can deliver equivalent efficiency optimised binaries while

improving the compilation speed, reducing the demand for computation and memory

footprint on the client.
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