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SUMMARY

These are privileged times to be a cosmologist. Recent years have witnessed unprece-
dented progress in observational and computational techniques and we now are able to
quantify cosmological properties with unprecedented accuracy. My work builds upon
this observational accuracy by establishing a connection with viable theoretical models. I
focus on two specifics eras of the universe’s evolution, namely inflation and today’s cos-
mic acceleration. In the context of single field inflationary models I illustrate the relation
between the spectra of curvature and gravitational wave perturbations. I conclude that
their mutual interdependence extends beyond the usual amplitude consistency relation
and can be traced all the way to infinite order of accuracy. This yields an infinite hier-
archy of consistency relations between these spectra and their derivatives. On a obser-
vational perspective, using WMAP’s data, I explore the dependence of CMB constraints
on inflation with the cosmological scale at which these are chosen to be presented. I de-
velop a technique that allows for an appropriate choice of this scale and show that this
way constraints may be improved by as much as 5 times. In the context of the parti-
cle physics motivated quintessence models I have looked at the ability of early universe
probes - namely Big Bang Nucleosynthesis - for distinguishing between different dark
energy proposals when combined with standard distance modulus or the Hubble rate
techniques. I conclude that more yet more accurate measurements are required if ob-
servations are to successfully confirm or rule out these models as potential candidates
against a cosmological constant. I also analyze possible effects that may mimic or un-
derlie cosmic acceleration effects. I focus on a potential lack of knowledge of the precise
values of particular cosmological parameters such as the curvature and matter content
of the universe. I find that even a small uncertainty in any of this two quantities leads
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to significant bias on the reconstruction of dark energy properties, when typical probes
like the distance luminosity and the Hubble rate are considered. I conclude that in or-
der to disentangle between these effects a combination of distance and expansion history
measurements is required.
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Chapter 1

Introduction

It is not because things are difficult that we do not dare;
it is because we do not dare that they are difficult.

SENECA

Cosmology is the one of the oldest forms of human enquiry. Ever since the onset of
civilization, mankind has asked itself questions about the universe’s origins, extent and
destiny. Despite this it was not till recently that cosmology evolved from a mainly spec-
ulative and flaky science and matured into a fullgrown data driven research field, with
observational cosmologists playing as important a role as model builders, and competi-
tive theories being put to the test with ever increasing precision.

Research fields like the Cosmic Microwave Background (CMB), Large Scale Structure
(LSS), Gravitional Lensing, Supernovae, and Big Bang Nucleosynthesis (BBN), all mea-
sure different cosmological parameters and complement each other, contributing into
providing us with an extraordinarily detailed picture of the universe.

Inflation has given us an elegant and precise quantitative description of the earli-
est times. Recently, the Wilkinson Microwave Anisotropy Probe (WMAP) 1 satellite an-
nounced results from its 5yr data analysis with implications that continue to provide
strong support for the inflationary paradigm. Among its exciting results is a definite
evidence for light neutrinos, now at 99.5% confidence, a new upper bound on the tensor-
to-scalar ratio of 0.2%, and the exclusion of a scale invariant spectrum with a confidence
level of over 80%. Furthermore the combinations of independent datasets is converging
towards a preferred value for nS, and the WMAP5 data alone is now sufficient to rule out
the self–interacting λφ4 potential. These conclusions were not possible with the previous

1http://map.gsfc.nasa.gov/
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wmap3yr dataset and come to provide more support for what may be a viable model for
the origin of structure from a phenomenological point of view.

Meanwhile the puzzle of what seems to be the dominant component of the universe
continues under intense scrutiny by the community challenging us to either change our
theories of the fundamental particles or those governing the laws of gravity. The lack
of a compelling hypothesis for the mechanism behind acceleration has shifted much of
the focus towards observations. Complementing kinematical with dynamical probes will
help to shed light on the different effects of dark energy on cosmological parameters.

A joint subcommittee (Albrecht et al. (2006)) has been formed to advise funding agen-
cies and outline a program for dark energy research, by comparing and quantifying the
merit of different observational techniques and proposed surveys.

They found that a combination of different observational techniques is the best method
to insure progress by increasing the current figure–of–merit of current ongoing experi-
ments by a factor of ten. Upcoming ground and space based surveys should measure w

at the percent level and w′ at the ten percent level.
We are strongly confident that the next round of precision measurements will provide

significant insight into the nature of physics driving acceleration and that of the high
energy theories responsible for inflation.

1.1 General setup

Our cosmology today rests on the assumptions that the universe is on large scales isotropic
and homogeneous. This is sometimes called the cosmological principle and is based
on extensive observational evidence, most notably from the CMB and distribution of
large scale structure. Although these are quite simple assumptions they are rather quite
restrictive and the only space-time metric compatible with its requirements is the so-
called Robertson-Walker (RW) metric (Liddle and Lyth (2000); Dodelson (2003); Kolb and
Turner (1990)),

ds2 = −dt2 + a2(t)
[

dr2

1− kr2
+ r2(dθ2 + sin2 θdψ2)

]
(1.1)

where r, θ and ψ are ‘comoving’ polar coordinates, which remain fixed for objects that
have no other motion than the general expansion of the universe. The parameter k is un-
determined and measures the spatial curvature (see Eq. (1.8) below). The dimensionless
parameter a(t) is the scale factor and describes cosmological expansion. We normalize it
by taking a0 ≡ a(t0) = 0, where t0 is the present cosmic time.

For a universe described by the above metric Einstein’s equations lead to two inde-
pendent equations (throughout we use natural units c = ~ = 1, except where explicitly
stated),

H2 =
8πG

3
ρ− k

a2
, (1.2)

Ḣ = −4πG

3
(ρ + p) +

k

a2
. (1.3)
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Eq. (1.2) is the Friedman Equation, where H ≡ ȧ/a is the Hubble parameter, and ρ

and p represent the energy density and pressure of all energy components and particle
species in the universe. Eliminating the term k/a2 in the above Eq. (1.2) and Eq. (1.3) we
obtain the equation governing acceleration,

ä

a
= −4πG

3
(ρ + 3p) . (1.4)

The evolution of the energy densities is given by the continuity equation, obtained by
combining Eq. (1.2) and Eq. (1.3),

ρ̇ + 3
ȧ

a
(ρ + p) = 0 (1.5)

The continuity equation is a consequence of the Bianchi identities and expresses the con-
servation of the energy-momentum tensor.

1.1.1 The density parameter

The Friedman equation, Eq. (1.2), can be recast in a form that illustrates the balance be-
tween geometry and energy density components in the evolution of the universe,

Ω(t)− 1 =
k

(aH)2
. (1.6)

Here Ω(t) ≡ ρ(t)/ρc(t) is the dimensionless density parameter and ρc(t) is the density
required to give a flat universe (k = 0),

ρc(t) ≡ 3H2(t)
8πG

. (1.7)

We see that the density determines the geometry of the universe and we obtain closed,
flat or open universes according to ρ values, (see also Fig. 1.1),

Ω > 1 or ρ > ρc ⇒ k = +1 ,

Ω = 1 or ρ = ρc ⇒ k = 0 , (1.8)

Ω < 1 or ρ < ρc ⇒ k = −1 .

If we also define a density parameter associated with curvature

Ωk ≡ − k

a2H2
, (1.9)

the Friedman equation takes the particularly simple form,

Ω + Ωk = 1 , (1.10)
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Figure 1.1: The density parameter, Ω determines the spatial curvature of the universe

clearly illustrating the balance between the energy budget and curvature content. If we
consider a barotropic perfect fluid — in other words a component which can be com-
pletely characterized by its energy density and pressure — and assume a constant Equa-
tion of State (EoS), w = p/ρ, the energy density has the simple form obtained via Eq. (1.5),

ρ ∝ a−3(1+w) (1.11)

The left hand side of the Friedman equation is to include all energy components in the
universe and with the solution Eq. (1.11) we can write,

ρ =
∑

i

ρi,0

(
a

a0

)−3(1+wi)

=
∑

i

ρi,0(1 + z)3(1+wi) (1.12)

where we introduced redshift z as

1 + z =
a

a0
, (1.13)

which measures the fractional growth of the scale factor.

For the different fluids we have,
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radiation : wr = 1/3 → ρr(z) = ρm,0 (1 + z)4 , (1.14)

matter : wm = 0 → ρm(z) = ρr,0 (1 + z)3 , (1.15)

cosmological constant : wΛ = −1 → ρΛ(z) = ρΛ . (1.16)

Making use of the definition of the density parameter, Ω, the Friedman equation takes
yet another useful form,

H2 = H2
0

∑

i

Ωi,0(1 + z)3(1+wi) . (1.17)

If we drop the assumption of a perfect fluid the EoS can no longer be taken constant and
the solution of Eq. (1.11) then takes the generic form,

ρ0(1 + z)3(1+w) → ρ0 exp
(

3
∫ z

0

1 + w(z′)
1 + z′

dz′
)

. (1.18)

1.1.2 Distance Measurements

Distances are a very important tool in cosmology though also extremely difficult to mea-
sure. They are traditionally used to map the expansion history, through the distance
versus redshift relation, and have recently been of great interest as first indicators of the
current accelerated cosmic expansion. In general they are integrals over the expansion
history, which involve an integral over the equation of state, so that there exists degen-
erate among the several cosmological parameters contributing to the distance. In order
to break these degeneracies we require measurements across a range of redshifts, as well
as measurements of other complementary non–geometrical quantities. We will return to
this subject in chapter 6. There are several ways to define distance of an astrophysical
object. They all have the same meaning in a Minkowski universe, but differ if the uni-
verse is expanding. The comoving distance,stays constant as the universe expands while
physical distances scale with scale factor a(t). An alternative is to consider the luminosity
of an object. We define luminosity distance as

dL(z) =
(1 + z)

H0

√−Ωk
sin

(√
−Ωk

∫ z

0
dz′

H0

H(z′)

)
, (1.19)

where the dependence on the geometry of the universe is clear through Ωk.

In Astronomy the distance luminosity is determined via the distance modulus, µ(z),
which gives the difference between the apparent and absolute magnitude of an objet and
is related to the distance luminosity by

µ(z) = m−M = 5 log10

(
dL(z)
Mpc

)
+ 25 . (1.20)

Another useful probe of cosmological parameters and expansion history is the evo-
lution of the fractional volume as a function of redshift. It can be measured through num-
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ber counts of galaxy clusters (see section 2.2.1) and it relates to the distance luminosity
through,

V ′(z) ≡ d2V

dzdΩ
=

c3D2(z)
H2

0H(z)
. (1.21)

The distance luminosity can be used to identify standard candles, i.e., objects for
which we know the intrinsic luminosity. If instead we know the length of an object it
is useful to consider the angular diameter distance related to dL by,

dA =
1

(1 + z)2
dL (1.22)

1.1.3 Acceleration

Accelerated expansion of the universe occurs because of the existence of states with nega-
tive pressure. Eq. (1.4) shows that a positive pressure contributes to deceleration, whereas
a negative pressure can cause the expansion to accelerate. Negative pressure acts as a
form of repulsive gravity, and acceleration occurs when the balance between energy den-
sity and pressure is such that,

ρ + 3p < 0 . (1.23)

For an ideal perfect fluid, with constant equation of state, this means the condition
for acceleration becomes,

w < −1/3 , (1.24)

so that in order to explain the current acceleration we need to posit the existence of an ex-
otic fluid dominating the energy budget, with negative EoS. The cosmological constant is
the particular case w = −1, and for this the continuity equation, Eq. (1.5), yields constant
energy density ρ, and constant H . The scale factor then grows exponentially according
to,

a(t) ∝ eHt . (1.25)

States with negative pressure are easily obtained with the physics of a scalar field.
For a canonical scalar field φ in an FRW background, the energy density and pressure are
given by (ignoring spatial derivatives)

ρφ =
1
2
φ̇2 + V (φ) ,

pφ =
1
2
φ̇2 − V (φ) , (1.26)

so that any state which is dominated by the potential energy of a scalar field will give
origin to a period of accelerated expansion.
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Chapter 2

Cosmic Acceleration – Inflation and
Dark Energy

2.1 Inflation

Inflation was proposed in the beginning of the 1980’s to solve the long–standing problems
of the Hot Big Bang Model, making use of the idea of a period of accelerated expansion
in the very early universe. Later it turned out inflation could also solve the problem
of generating the density perturbations that gave origin to structure and get rid of the
unwanted relics associated with high energy models. Twenty-five years later, and with
a wide range of different models having been proposed in the meantime, inflation is in
its strongest position ever, with successive measurements and observations of the CMB
continuously eliminating its competitors, and placing it as the preferred contender to
explain the anisotropies that fill the background sky.

We’ll restrict ourselves to single–field slow–roll inflation and briefly describe its dy-
namics and main properties (for reviews see Liddle and Lyth (2000); Guth and Kaiser
(2005); Linde (2008); Langlois (2004)). The basic idea is that at some early time at least
some patch of the universe was dominated by the potential energy of a (slowly rolling)
scalar field. During inflation this patch expands rapidly transmitting zero-point quantum
fluctuations to larger length scales and transferring them into the needed classical inho-
mogeneities in the mass-energy distribution. The curvature terms becomes negligible
with the large amount of expansion, solving the flatness problem. As the field continues
to roll down the potential it acquires kinetic energy, that will eventually dominate the po-
tential energy and cause inflation to end. When it reaches the minimum of the potential
it begins to oscillate, and decays into a thermal bath of elementary particles.

The equations governing these dynamics are the Klein–Gordon equation, which de-
scribes the evolution of a minimally–coupled canonical scalar field, and the correspond-
ing Friedman equation,

φ̈ + 3Hφ̇ + V ′(φ) = 0 (2.1)

H2 =
8πG

3

(
1
2
φ̇2 + V (φ)

)
(2.2)
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As we discussed in section 1.1.3 acceleration is attained through domination by the
potential energy and one of the ways to achieve this is to ensure the scalar field has
small kinetic energy. This is the premiss of the slow–roll approximation which consists in
neglecting the kinetic term in Eq. (2.2) and the acceleration term in Eq. (2.1), so that one
gets the simplified system,

3Hφ̇ + V ′(φ) ' 0 (2.3)

H2 ' 8πG

3
V (φ) (2.4)

The velocity of the scalar field is then given by Eq. (2.3)

φ̇ ' − V ′

3H
(2.5)

so that the slow–roll requirement φ̇2/V ¿ 1 translates to

εV ≡ m2
Pl

16π

(
V ′

V

)2

¿ 1 (2.6)

where we have introduced the Planck mass,

mPl ≡ 1√
G

. (2.7)

On the other hand, requiring the field acceleration to be small, using the time derivative
of Eq. (2.5) yields,

ηV ≡ m2
Pl

8π

V ′′

V
¿ 1 . (2.8)

To lowest order in slow–roll these are the requirements for the approximation to hold.
εV and ηV are the first two slow–roll parameters, expressed in terms of the potential and
this way the slow roll approximation consists in expressing the dynamics of the scalar
field in terms of derivatives of the potential: to first order the requirement is that the
potential’s slope and curvature be small. However since in principle the potential is a free
function, all of its derivatives at each point are independent quantities, so the number of
slow–roll parameters we in principle can define is infinite (Lidsey et al. (1997)).

There is an alternative formulation of the slow–roll condition which uses the Hub-
ble parameter H instead of V . There are several advantages to this alternative approach
which are discussed in Liddle et al. (1994). Expressing the slow–roll parameters in terms
of derivatives of V merely restricts the form of the potential not the dynamics of the so-
lutions and it also, in general, doesn’t allow to obtain exact solutions. Placing conditions
on the Hubble function instead permits a more clear analytic interpretation. For exam-
ple with the Hubble Slow Roll parameters the condition for inflation to end is exactly
εH = 1 whereas for the potential slow roll parameters this condition is only approximate.
Furthermore, since contrary to the potential H is an observable, the Hubble function is a
more natural geometric variable.

This way the potential approach is best suited for studies where one is interested in
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a specific form of the potential as the starting point, where H is more appropriate for a
general study of inflationary solution properties.

In terms of the Hubble parameters the first few slow roll parameters were given by
Liddle et al. (1994),

ε ≡ m2
Pl

4π

(
H ′

H

)2

; (2.9)

η ≡ m2
Pl

4π

H ′′

H
; (2.10)

ξ ≡ m2
Pl

4π

(
H ′H ′′′

H2

)1/2

; (2.11)

σ ≡ m2
Pl

4π

(
H ′2H ′′′′

H3

)1/3

. (2.12)

The amount of inflation can be quantified by specifying the fractional growth of the
scale factor, i.e., the increase in size of the inflationary patch. This is generally a large
number so we take the logarithm of the growth and define the number of e-folds before
the end of inflation as (Liddle and Lyth (2000)).

N ≡ ln
a(end)
a(t)

=
∫ tend

t
Hdt ' 8π

m2
Pl

∫ φ

φend

V ′

V
dφ . (2.13)

In order to solve the problems of the horizon and flatness ususally around 70 e-folds of
inflation are needed.

2.1.1 Inflationary Perturbations

By far the most useful property of the theory of inflation is its ability to generate the
inhomogeneities which may explain the observed large scale structure in the universe.
These inhomogeneities arise due to the fluctuation of the field about its vacuum state
and generate a gaussian and nearly scale invariant spectrum of primordial fluctuations (for
a review of inflationary perturbation theory see Liddle and Lyth (2000) and references
therein). In this section we follow the derivation of Lidsey et al. (1997).

Scalar perturbations

The accelerated expansion induces perturbations in the metric. Of these, the scalar per-
turbations are the ones we are more interested in since they couple to the energy–momentum
tensor of matter and radiation, and are ultimately responsible for CMB anisotropies and
large scale structure.

These perturbations can be expressed in terms of the curvature perturbation which reads,

R = −Ψ− H

φ̇
δφ (2.14)
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where δφ represents the fluctuation of the scalar field, and the Hubble rate and φ̇ are ob-
tained with the background Friedmann and acceleration equations, Eq. (1.2) and Eq. (1.4).
The evolution of these perturbations is given by the Einstein action, which needs to be
taken to second order if we are to derive expressions for the perturbations at first order.
In what follows it will prove convenient to introduce the Mukhanov potential

u = −zR (2.15)

where

z ≡ a
φ̇

H
(2.16)

After obtaining the momentum conjugate to the Mukhanov variable u and quantizing,
we expand the û operator in plane waves. We can then derive the field equations for each
k mode, uk, by setting the variation of the second order action to zero to obtain,

du2
k

dτ2
+

(
k2 − 1

z

d2z

dτ2

)
uk = 0 , (2.17)

where τ denotes conformal time.

The solutions to Eq. (2.17) are normalized with the usual Wronskian condition and the
boundary conditions for each mode uk are obtained by requiring the solution to approach
a plane wave at small angular scales, and to be constant on large wavelength, super–
horizon scales i.e.,

uk(τ) → 1√
2k

e−ikτ , k À aH , (2.18)

and
uk ∝ z, k ¿ aH . (2.19)

In order to revert back to the curvature perturbation, R, given by Eq. (2.14), we similarly
expand R in plane waves. The power spectrum of the curvature perturbation can then
be obtained in terms of the vacuum expectation value,

〈RkR∗l 〉 =
2π2

k3
PR δ(3)(k− l) (2.20)

The vacuum expectation value on the left hand side can be obtained by combining u

given by Eq. (2.15) with the mode expansion ofR, and taking into account the commuta-
tion relations for between different modes k, k∗. This yields,

〈RkR∗l 〉 =
1
z2
|u2

k|δ(3)(k− l) . (2.21)

So the power spectrum in Eq. (2.20) becomes

P
1/2
R (k) =

√
k3

2π2

∣∣∣uk

z

∣∣∣ . (2.22)
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uk is given by the solution of Eq. (2.17). In order to solve the wave equation we take a
solution for the power law inflation, which is exact, and then expand about this solution
in terms of slow roll parameters. Such an approach is more useful since it also yields the
results for the next–order in slow–roll case, which we consider in the next section. For
the lowest–order case this yields,

P
1/2
R (k) =

1
m2

Pl

H2

|H ′|

∣∣∣∣
k=aH

, (2.23)

where the expression is evaluated at the time the cosmological scales in which we are
interest leave the horizon, k = aH .

Tensor perturbations

As we pointed out in the previous section, in addition to scalar perturbations, inflation
also predicts tensor perturbations in the metric, which yield a spectrum of gravitational
waves. These do not couple to density perturbations and so are not responsible for the
large scale structure of the universe. However they do induce fluctuations in the CMB
and constitute a unique signature of inflation, which we will see in chapter 3.

Tensor perturbations do not couple to any other part of the perturbation components
so their technical analysis is considerably simpler than for the scalar perturbation case.
We begin similarly by quantizing and fourier decomposing the gravitational waves, and
writing down the power spectrum in terms of the expectation value of the tensor modes,
νk, as

〈ν̂k,λ ν̂∗l,λ〉 =
m2

Pl a
2

32π

2π2

k3
PT δ(3)(k− l) (2.24)

where λ denotes the two independent polarizations states λ = + ,×.

Setting the variation of the Einstein action to zero yields a wave equation of a similar
form to the one for the scalar case Eq. (2.17),

dν2
k

dτ2
+

(
k2 − 1

a

d2a

dτ2

)
νk = 0 , (2.25)

However the situation is now simplified since it is the scale factor a(τ) rather than the
variable z(τ) in Eq. (2.16) which appears here. Again solving for the exact power law
case and expanding in terms of slow–roll variables we obtain, for the lowest order case,

P
1/2
T (k) =

4√
π

H

mPl

∣∣∣∣
k=aH

, (2.26)

where once more we are interested in the perturbation at the time the cosmological scales
leave the horizon, k = aH .

It will prove convenient to work with rescaled versions of the spectra. Following the
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notation of Lidsey et al. (1997),

AS(k) ≡ 2
5PR(k)1/2 ∼= 4

5m2
Pl

H2

|H ′|

∣∣∣∣
k=aH

; (2.27)

AT(k) ≡ 1
10PT(k)1/2 ∼= 2

5
√

π

H

mPl

∣∣∣∣
k=aH

, (2.28)

where prime is derivative with respect to field value φ.

During inflation the Hubble parameter is slowly varying and therefore the spectra
acquire a dependence on the scale at which the Hubble radius crosses the horizon. For
this reason it is useful to consider a parametrization in terms of cosmological scale k, as
a power law with variable spectral indices,

A2
S(k) ∝ knS(k)−1 , (2.29)

A2
T(k) ∝ knT(k) . (2.30)

The constant of proportionality also depends on the scale at which they are evaluated and
in order to avoid this we take for the spectral spectral indices a more suitable definition,

nS(k)− 1 ≡ d ln A2
S

d ln k
(2.31)

nT(k) ≡ d ln A2
T

d ln k
(2.32)

In the slow–roll approximation we can deduce useful relations between the spectral
indices and the slow–roll parameters,

nS − 1 = 2η − 4ε , (2.33)

nT = −2ε . (2.34)

We have the relative amplitude of the two spectra as,

A2
T

A2
S

= ε , (2.35)

so that by Eq. (2.34),

2
A2

T

A2
S

= −nT . (2.36)

Eq. (2.36) means there exists a simple relation between the tilt of the tensor spectrum and
the amplitude of tensor perturbations relative to that of scalar ones. This is called the
consistency equation of slow roll inflationary models. It was recognized as such by Kosowsky
and Turner (1995); Lidsey et al. (1997) and expresses quite a distinctive signature par-
ticular to metric perturbations in inflation generated primordial fluctuations. It is hard
to develop another mechanism yielding the primordial fluctuations and originating the
same spectra.

Eq. (2.36) is in a useful form since it relates purely observable quantities. This means
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that were we able to measure primordial gravitational waves we would be able to test
directly the slow roll inflationary paradigm.

2.1.2 Next Order in Slow Roll

If we wish to go beyond the slow roll approximation we can derive expressions that
estimate the next order corrections using essentially no assumptions other than linear
perturbation theory. This was done for the first time by Stewart and Lyth (1993). They
obtained the expressions in the square brackets in Eqs. (2.37) and (2.38) which correct the
expressions in Eqs. (2.27) and (2.28),

AS(k) ∼= 4
5m2

Pl

[1− (2C + 1)ε + Cη]
H2

|H ′|

∣∣∣∣
k=aH

; (2.37)

AT(k) ∼= 2
5
√

π
[1− (C + 1)ε]

H

mPl

∣∣∣∣
k=aH

. (2.38)

and C ' −0.73 is the Euler–Mascheroni constant. Essentially these are derived by com-
paring the approximate relation 3Hφ̇ = −V ′(φ) with the exact expression φ̈ + 3Hφ̇ =
−V ′(φ). The error is

φ̈

Hφ̇
' ε− η (2.39)

so that the spectra will pick corrections of order ε and η as we can see in Eq. (2.37) and
(2.38).

2.2 Dark Energy

In 1998 two independent teams (Perlmutter et al. (1997); Riess et al. (1998)) gave evidence
in support of an accelerated expansion of the Universe today. 10 years on, the puzzle of
cosmological acceleration — dubbed dark energy — remains one of the most intriguing
enigmas in modern day science. Much activity has come from both the theoretical and
observational sectors of the physics community in an attempt to pin down its origin.

Among the multitude of proposals to solve the problem of dark energy there have
been those that are particle based and those gravity based. The latter consists of altering
the left–hand side of the Friedman equation, the geometry content, by introducing higher
curvature corrections to the Einstein–Hilbert action; and the former attempts to obtain
acceleration by altering the right–hand side, the energy content, by postulating some sort
of exotic form of matter with energy density that makes for most of the total Ω today.

A third approach consists of altering the Robertson-Walker metric itself and so in
dropping the assumption of homogeneity. These are the perturbative inhomogeneous
models which attempt to get acceleration as a metric backreaction effect; and the exact
inhomogeneous models that allow for a free distribution of matter to create the illusion
of acceleration we observe today.



14

2.2.1 Probes of Dark energy

Dark Energy affects the evolution of the Universe primarily through the distance lumi-
nosity relation, the expansion history, and the growth of structure. It is by measuring
these quantities that we expect to infer information about the amount of Dark Energy
today as well as its recent evolution.

The Dark Energy Task Force (DETF — Albrecht et al. (2006)) is a consortium set up by
a NASA, NSF, and DOE to study and devise a comprehensive program for understanding
the origin of Dark Energy. One of its goals is to identify the methods and experimental
probes that will optimize immediate, near, and longer term programs to understand the
cosmic acceleration phenomenon.

The DETF assessed different experimental methods for probing Dark Energy and ad-
vised for focus on the following,

Type 1a Supernovae — Supernovae are one of the main reasons why we now consider
dark energy as the main constituent of the universe. They are white dwarf stars that
accrete matter until they reach the Chandrashekar limit and explode. For this reason
they are believed to be good standard candles in which case they can be used to infer the
distance-redshift luminosity relation. Their redshift can be inferred from their spectral
lines or those of the galaxy host.

Baryon Acoustic Oscillations — BAO are pressure waves in the early universe baryon–
radiation fluid, traveling at a speed of cs = c/

√
3 . At the moment of proton–electron

recombination these waves cease to propagate and the perturbation is frozen in the mat-
ter distribution. The distance traveled up till then is called the sound horizon, rs. The
physics of these oscillations is well understood, allowing us to determine this distance to
a high degree of accuracy that can thus serve as a standard ruler for distance measure-
ments. Identifying the BAO as a transverse angle gives the combination dA(z)/rS , where
dA(z) is the angular diameter distance Eq. (1.22), while its determination along the line
of sight is sensitive to the Hubble rate through H(z) ∗ rs.

Clusters of galaxies — Clusters of galaxies are tracers of the regions with highest
initial density fluctuations that have undergone gravitational collapse. Their abundance
can be measured and is sensitive to dark energy through the comoving volume – that is
affected by the expansion history – and through the mass function – that is dependent on
the growth of the density perturbation.

Weak Lensing— The deflection of light by gravitationally collapsed objects can be
used to trace dark energy. The deflection angle depends on the mass of the collapsed
object – hence can yield measurements of the growth history – and on the distances be-
tween the source lens and the observer, and so can give measurements of the comoving
distance.

Furthermore the DETF also provides guidance on evaluating the scientific merits of
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long-term proposed experiments, both ground and space based. The evaluation is based
on the figure–of–merit of the experiment’s forecasts. This is defined to be the reciprocal of
the area of the error ellipse in the (w0, wa) plane that encloses the 95% confidence level
contour. (w0, wa) are the parameters of the Chevallier–Polarski–Linder parametrization
for the equation of state, discussed in section 2.2.4.

2.2.2 Acceleration through scalar fields - Scaling Models

Quintessence is one of the simplest mechanisms for cosmic acceleration. It makes use of
the physics of a scalar field, which most certainly has its origins in the theory of early
universe inflation. Scalar fields arise naturally in extensions of the standard model, and
as we discussed in Section 1.1.3, demanding some requirements on their dynamics in-
duces acceleration making them good candidates for dark energy. Furthermore dynam-
ical scalar fields – quintessence – have a varying energy density and so can help explain
the smallness of the dark energy density today.

So far many scalar field models have been proposed as an alternative to a cosmologi-
cal constant. Here we examine a particular property of a class of scalar fields that enables
the mimicking of the evolution of the background dominant energy component. This
means the energy density of the scalar field satisfies

ρφ

ρm
= const. , (2.40)

where ρφ is the energy density of the scalar field and ρm is the energy density of the back-
ground. These are the scaling solutions and have been extensively studied in many dark
energy scenarios, (Ratra and Peebles (1988); Wetterich (1988); Copeland et al. (1998b); Fer-
reira and Joyce (1998); Copeland et al. (2006)). There are many potentials that give origin
to the scaling behaviour, and here we focus on the exponential potential, presenting the
general framework for studying these models.

Scaling fields dynamics

Consider a canonical scalar field φ, minimally coupled to gravity, with the following
exponential potential

V (φ) = M4e−λκφ, (2.41)

where M is a constant with dimensions of mass, λ is a dimensionless constant, and κ2 =
8πG = 8πm−2

pl .

If the field is evolving in a spatially flat FRW universe in which there is a background
fluid with equation of state wb = pm/ρm, then the evolution equation for this scalar field
has two attractor solutions, which depend on the values of λ and wb (Copeland et al.
(1998b); Ferreira and Joyce (1998)):

• if λ2 > 3(1 + wb) then the scalar field will enter a scaling regime and will follow the
evolution of the background fluid with wφ = pφ/ρφ = wb and Ωφ = 3(1 + wb)/λ2;
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• if λ2 < 3(1 + wb) then the field will be the dominant component of the universe,
with wφ = −1 + λ2/3 and Ωφ = 1.

Exiting the scaling regime
In order to give rise to late time accelerated expansion the field must at some point

exit the scaling regime and become the dominant component. This is realized if the slope
of the potential becomes shallow at late times, when compared with the slope of the
scaling solution. In Chapter 5 we will study one of the ways to achieve this by consider-
ing a double exponential potential (Barreiro et al. (2000); Sen and Sethi (2002); Neupane
(2004a,b)).

2.2.3 Early Dark Energy Constraints

One of the aspects that arises when considering dynamical behaviour for dark energy
is the possibility of a considerable contribution of dark energy at early times as well.
The mechanism which provides us the best constraints on early dark energy is Big Bang
Nucleosynthesis (BBN) - the synthesis of the lightest elements by the weak interactions
taking place during the initial few minutes (Pagel (1997); Schramm and Turner (1998)).
The introduction of an extra fluid during this era will alter the abundance rate of the
lightest elements being generated by the weak interactions at that time.

At the temperature of about 1MeV the universe will have cooled enough so that pro-
tons and neutrons are non relativistic and in thermal equilibrium. When the temperature
drops sufficiently the weak interactions keeping proton to neutron conversion reactions
in equilibrium freeze and their abundance ratio becomes fixed. The expression control-
ling this balance is

Nn

Np
=

mn

mp
exp

[
−mn −mp

kBT

]
. (2.42)

The temperature at which the weak interactions cease to take place depends on the num-
ber of particle species. If we wish to consider the presence of a dark energy component
at early times we need to introduce a new degree of freedom. This affects the freeze-out
temperature and hence the expansion rate at that time. Since the dependence is expo-
nential, a small change in the temperature will have a large effect on the proton–neutron
ratio today, making the BBN bound a good test for early universe dark energy.

Ferreira and Joyce (1998) found a relation between the effective number of degrees of
freedom introduced with the addition of an extra component and the value of the energy
density of that extra component at nucleosynthesis,

ΩDE(1MeV) <
7∆Neff/4

10.75 + 7∆Neff/4
. (2.43)

∆Neff is the maximum number of relativistic degress of freedom additional to those in
the standard model, 10.75 is the number of degrees of freedom in the standard model,
and ΩDE(1MeV ) is the corresponding maximum contribution to the energy density of a
scalar field at that time.



17

The value to consider for ∆Neff is not unanimous and subject to discussion in the lit-
erature (Schramm and Turner (1998); Kernan and Sarkar (1996); Birkel and Sarkar (1997);
Copi et al. (1995)). It depends on the data, through observational method and statistical
treatment. The range ∆Neff ' 0.9− 1.5 translates into

ΩDE(1MeV) ' 0.13− 0.2 (2.44)

However Bean et al. (2001) were able to obtain a tighter bound by considering the abun-
dance of deuterium instead,

ΩDE(1MeV ) < 0.045 . (2.45)

This is the value we’ll consider later on in chapter 5 for deriving considerations about
early dark energy contribution in relation to its evolution today.

2.2.4 Parameterizations of Dark Energy

In section 2.2.2 we considered a reconstruction of dark energy properties based on the
properties of a scalar field for which we know the potential. We may instead parametrise
the dark energy w(z) by assuming some functional form based on a number of chosen
parameters. Such an approach, based on the reconstruction of the equation of state, is
also the route most followed by current and planned surveys (Albrecht et al. (2006); Riess
et al. (2007); Wood-Vasey et al. (2007))

Among the vast number of EoS parametrizations proposed so far (see for example
Bassett et al. (2004); Johri (2004); Johri and Rath (2007); Linder (2008a)), likely the most
commonly used is the Chevallier–Polarski–Linder (CPL) parametrization (Chevallier and
Polarski (2001); Linder (2003)),

wCPL = w0 + wa
z

1 + z
. (2.46)

Its parameters are the value of the equation of state today, w0, and its time variation
wa = dw/d ln a. Unlike a parametrization linear in z, that becomes unsuitable at z > 1,
the expansion variable x = z/(z+1) < 1 makes it a more suitable expansion. Furthermore
it has bounded behaviour at high redshift, w(∞) = w0 + w1, and linear behaviour at low
redshift.

The CPL parametrization also has a simple physical interpretation, its time deriva-
tive is related to the slow roll parameter V ′/V (in the case that dark energy originates
in the potential of a scalar field) and hence determines when the expansion enters the
accelerated phase. It’s also argued to describe accurately a wide variety of dark energy
physics and exhibit good sensitivity to observational data (Linder (2008b)). For this rea-
son it’s widely used as the basis for the figure–of–merit of most current and upcoming
experiments.
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2.3 Bayesian Statistics

Statistics plays a crucial role in cosmological data analysis nowadays. In order to process
and extract the maximum leverage of the unprecedentedly large volume of data at our
disposal we must ensure we employ and develop optimal and adequate statistical meth-
ods. Cosmology must resort to a particular concept of probability. A frequentist analysis
is not possible given that we can’t study different realizations of the same experiment to
examine different possible outcomes.

In this situation one resorts to the concept of probability as the degree-of-belief in
a result, an idea that is the basis for Bayesian Estatistics, for reviews see for example
Mackay (2003); Parkinson (2008) and references therein. Bayes’ theorem is one of the most
commonly used results in cosmological parameter estimation and relates the conditional
and marginal probabilities of two possible realizations of a particular event,

P (θ|D) =
P (D|θ)P (θ)

P (D)
. (2.47)

Eq. (2.47) is Bayes’ theorem and states that the probability of a set of parameters being the
correct within the data is given by the probability that that data could have originated in
those set of parameters, multiplied by the probability of the prior which represents the
probability of the parameters before any data is taken.

The left–hand side is the posterior probability and depends on the prior P (θ) (our a
priori knowledge of the setup conditions), and on the data dependent term on the right–
hand side, the likelihood, P (D|θ). The denominator, P (D), is a normalization factor so its
value is not important if we only wish to examine the relative probabilities of the various
parameter sets.

Bayes’ result allows us not only to infer our present degree of knowledge of the cos-
mological parameters but it also allows us to make predictions about observations we
will make in the future (Parkinson (2008)).

2.3.1 Marginalization

Quite often when analysing constraints on a set of cosmological parameters, θ, one is not
interested on the full set of parameters but on a subset thereof. Then the remaining are
merely nuisance parameters that nevertheless contribute to the full posterior distribution.
Marginalizing over one or a group of parameters consists in obtaining the probability of
the parameter we are interested in, independently of the probability of the remaining set
of parameters. In this sense it is a summation, or integral, over the probability of the
remaining set of parameters,

P (A|D) =
∫ ∞

0
P (A,B|D)dB , (2.48)

where A is the parameter we are interested in, and B represents the remaining set of
parameters over which we are marginalizing.

This is also the case when we wish to present constraints and need to project the full
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parameter volume onto a 1D or 2D surface. The subject of marginalizing over a group of
parameters for presenting purposes will be discussed in chapter 4, where we analyse the
loss of information on the distribution of the remaining parameters when doing so.
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Chapter 3

The Inflationary Consistency
Equation

3.1 Introduction

The inflationary proposal for the Early Universe is arguably the most promising the-
ory capable of explaining the problems of the Hot Big Bang Model and the observed
anisotropies present in the microwave sky. Among its key features are the prediction of
an approximate scale invariant spectrum of density perturbations and the presence of a
small amount of gravity waves. So far inflationary models and in particular single-field
models are in good shape after release of the WMAP 3yr and 5yr analysis. The new data
are consistent with a near to scale invariant red spectrum and put better constraints on
the amount of the tensor fluctuations present in the CMB sky. However, in order to be
a fully successful theory it needs a unique feature which would, if observed, strongly
favour the inflationary paradigm against other proposals. Such a signature is provided
by the consistency relation.

All single–field models predict a connection between the amplitude of density per-
turbations and that of gravity waves. That such a connection exists can readily be un-
derstood by noting that in these models both scalar and tensor perturbations have origin
in the same function — the potential of the self interacting scalar field — and so can be
related by eliminating this quantity in their defining equations.

In this chapter, we point out that this consistency relation is the first of an infinite
hierarchy of consistency relations, connecting ever higher derivatives of the spectra. This
hierarchy exists even at lowest-order in the slow-roll approximation. That such a hier-
archy exists was first noted in the review of Lidsey et al. (1997), but we give here for
the first time explicit expressions for these relations, both at lowest-order and next-order
in slow-roll. Our analysis is restricted to the simplest class of inflation models, namely
single-field slow-roll inflation with general relativity assumed valid.

To some extent this exercise is an academic one, as there seems little prospect of test-
ing any of these relations beyond the first, and even it is likely to prove challenging (Song
and Knox (2003)). Nevertheless, these relations offer a complete account of the connec-
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tions between the two spectra, and so any other claimed consistency relation, exact or
approximate, must follow from them if they are indeed consistency relations. In particu-
lar we examine the relationship between our formalism and the approximate consistency
relation introduced by Chung et al. (2003) and further explored by Chung and Romano
(2006). We demonstrate that it is indeed equivalent to the second consistency equation in
the hierarchy, as already given by Lidsey et al. (1997).

3.2 Definitions

The perturbation spectra can be expressed in terms of the inflationary potential or the
Hubble parameter. The two are connected by the approximate relation 3H2m2

Pl/8π = V

and represent slightly different approximation schemes (Liddle et al. (1994)). The Hubble
rate provides a better geometrical interpretation and is a direct solution to the Friedmann
equation, whereas an expansion based on the potential may have less analytical informa-
tion given that the potential is an input to the Friedmann equation and so presupposes
some approximation for obtaining a solution. For this reason here we choose to consider
the Hubble-Slow-Roll expansion.

Following the notation of Lidsey et al. (1997), the spectra of scalar and tensor modes
to next order in the slow–roll approximation are given by Eq. (2.37) and Eq. (2.38). The
terms in square brackets are the Stewart–Lyth slow-roll correction to the spectrum (Stew-
art and Lyth (1993)); setting the square brackets to one gives the slow-roll result. We will
use the symbol ‘∼=’ to indicate expressions as being equal within the slow-roll approxi-
mation to the order indicated by the included terms. In chapter 2 we introduced the first
few slow-roll parameters in terms of the Hubble parameter as (Liddle et al. (1994)),

ε ≡ m2
Pl

4π

(
H ′

H

)2

; (3.1)

η ≡ m2
Pl

4π

H ′′

H
; (3.2)

ξ ≡ m2
Pl

4π

(
H ′H ′′′

H2

)1/2

; (3.3)

σ ≡ m2
Pl

4π

(
H ′2H ′′′′

H3

)1/3

. (3.4)

The wavenumber k can be related to the scalar field value via the exact relation

d ln k

dφ
=

4π

m2
Pl

H

H ′ (ε− 1) , (3.5)

where without loss of generality we have assumed φ to increase during inflation.

The spectral indices given by Eq. (2.31) and Eq. (2.32) and their derivatives can be
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written in terms of the slow-roll parameters by expressions such as

nS − 1 ∼= −4ε + 2η +
[−(8C + 8)ε2 + (6 + 10C)εη − 2Cξ2

]
;

nT
∼= −2ε +

[−(6 + 4C)ε2 + (4 + 4C)εη
]

; (3.6)
dnS

d ln k
∼= −8ε2 + 10εη − 2ξ2 +

[−(40 + 32C)ε3 + (60 + 62C)ε2η

−(12 + 20C)εη2 − (8 + 14C)εξ2 + 2Cηξ2 + 2Cσ3
]

dnT

d ln k
∼= −4ε2 + 4εη +

[−(28 + 16C)ε3 + (40 + 28C)ε2η − (8 + 8C)εη2 − (4 + 4C)εξ2
]

.

In each case the term enclosed in square brackets is higher order in the slow-roll expan-
sion, and is omitted when discussing lowest-order results.

3.3 The consistency equation hierarchy: lowest-order in slow-
roll

In this section we restrict ourselves to the slow-roll case, setting the square brackets in
Eqs. (2.37) and (2.38) equal to one. Some simple algebra immediately leads to the stan-
dard consistency equation Eq. 2.36,

2
A2

T

A2
S

∼= −nT (3.7)

Note that nT is always negative by definition. This relation was implicit in the results of
. Lyth and Liddle (1992), which was the first to write down the full slow-roll expressions,
and was made explicit and named the consistency equation in Copeland et al. (1993).

Although this is the standard form of the relation (sometimes with a different coeffi-
cient if the spectra are defined with a different normalization), it somewhat conceals the
physical underpinning of the consistency equation. It can be cast in the form of a differ-
ential equation for the tensors or equivalently an integral equation for the tensors, which
becomes more explicit if we write all the scalar terms on one side and all the tensor ones
on the other, to obtain

A2
S
∼= −2

A2
T

nT
. (3.8)

It is clear from this expression that specifying the tensors completely defines the physi-
cal situation, and the corresponding scalar spectrum can be uniquely obtained from the
consistency relation. If instead the scalars are specified, however, this is a differential
equation for the tensors whose solution yields a one-parameter set of physical models
giving that scalar spectrum and each obeying the consistency equation.

In order to investigate further the underlying dependences of the spectra and their
derivatives beyond this relation, we note that the above equation is usually assumed to
hold at one particular scale, often combined with the somewhat inconsistent assumption
that the spectra are power-laws with different spectral indices (nS − 1 6= nT). However
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further consistency relations can be obtained, as first shown in Lidsey et al. (1997), by
realizing that the consistency equation is supposed to hold on all scales. For instance, one
can proceed by Taylor expanding both sides of Eq. (3.8) in ln k about some characteristic
scale k0,1 giving

A2
S +

dA2
S

d ln k
ln

k

k0
+

1
2

d2A2
S

d ln k2
ln2 k

k0
+ · · · ∼= (3.9)

−2
A2

T

nT
+

d[−2A2
T

nT
]

d ln k
ln

k

k0
+

1
2

d2[−2A2
T

nT
]

d ln k2
ln2 k

k0
+ · · ·

where the expansion coefficients are all evaluated at k0.

By equating the coefficients on both sides we arrive at an infinite hierarchy of consis-
tency relations given generally by

d(i)A2
S

d ln k(i)
∼=

d(i)[−2A2
T

nT
]

d ln k(i)
, i = 0, 1, · · · , (3.10)

with both sides evaluated at some arbitrary scale k0. This form of presenting the depen-
dence between scalar and tensor spectra completes the description of its inter-relational
properties, as predicted by single-field models, and can be used to test the inflationary
scenario to any order of accuracy the observations may one day present us with.

The first derivative, of Eq. (3.10), i = 1, gives the lowest-order version of the second
consistency equation

dnT

d ln k
∼= 2

A2
T

A2
S

[
2
A2

T

A2
S

+ (nS − 1)
]

. (3.11)

∼= nT [nT − (nS − 1)] . (3.12)

This equation first appeared in Kosowsky and Turner (1995) without being explicitly rec-
ognized as a consistency equation, that role being pointed out in Lidsey et al. (1997).
Eq. (3.10) is the first time an explicit form for the full infinite hierarchy has been written
down.

Should we wish to focus on observationally more attainable quantities we can rewrite
Eq. (3.10) in an interesting alternate form using only the spectral indices

d(i−1)(nS − 1)
d ln k(i−1)

∼= d(i−1)nT

d ln k(i−1)
− d(i) ln(−nT)

d ln k(i)
, i = 1, 2, · · · . (3.13)

This does not encode the normal (first) consistency relation, but does capture all the oth-
ers in quite an elegant form.

1In carrying out these manipulations, note that the order-by-order slow-roll expansion is preserved both
by taking derivatives and logarithms.
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3.4 The consistency equation hierarchy: next-order in slow-roll

To lowest order in slow roll this set of relations completes the relation between density
and gravitational waves. However, as observations of the CMB begin to constrain higher-
order derivatives of the density spectrum of perturbations, if we wish to constrain the in-
flationary scenario in general it becomes necessary these consistency relations be derived
to an order of approximation that matches that of observations.

The above hierarchy of equations can readily be generalized to next-order in slow roll
by retaining the full form of Eqs. (2.37) and (2.38).

The next order of the first consistency equation was first given in Ref. Copeland et al.
(1994), and quoted in Ref. Lidsey et al. (1997) as

nT
∼= −2

A2
T

A2
S

[
1− A2

T

A2
S

− (nS − 1)
]

. (3.14)

To analyze the physical relation underlying this expression we once again wish to
separate the scalar from the tensor quantities. We write

−A2
T

A2
S

2
nT

∼= 1− 1
2
nT + (nS − 1) (3.15)

and use small-parameter manipulations to obtain

A2
S [1 + (nS − 1)] ∼= −2A2

T

nT

[
1 +

1
2
nT

]
, (3.16)

where the scalars all stand to the left and the tensors to the right.

To next order the relation no longer presents itself as a simple differential equation
relating both types of perturbations. The tensors no longer uniquely specify the scalars,
though the requirement of a subdominant next-order term (for the expansion to make
sense) will give a practically-unique scalar spectrum for a given tensor one.

The hierarchy of consistency equations to next-order, with scalars and tensors sepa-
rated, is obtained by differentiating Eq. (3.16) repeatedly with respect to ln k. For instance,
we can take Eq. (3.12) to next order by differentiating Eq. (3.14) once to get

dnT

d ln k
∼= nT [nT − (nS − 1)] + nT

[
nT

2
(nT − (nS − 1))− dnS

d ln k

]
.

The first term on the right-hand side is of course the first-order version of the second
consistency equation.

As way of a summary illustration of the described relations we can take the first
few equations and examine the quantity and nature of the observables they each relate,
shown in Fig (3.1). According to which direction we proceed in — going to next order
in slow roll or moving on to the next consistency equation in the hierarchy — different
quantities arise. When we move to the following consistency equation a tensor quantity
is introduced, but the number of related observables remains the same. If we instead in-
clude next order corrections, we are connecting more quantities, (four quantities related
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Figure 3.1: First few consistency equations and observables they relate.

by next order expressions versus three for lowest order) but the new quantity is in turn a
scalar quantity which is more readily accessible from data. For this reason a prescription
for which consistency equation to consider does not immediately follow from the quan-
tities observations provide us with. The underlying reason for this is the different nature
of the two spectra. While the tensor spectrum is fundamentally setting the energy scale
for inflation and so appears at an earlier stage in the dependences, observationally the
scalar quantities are much easier to measure and contrast with the hierarchy present in
the equations.

3.5 Relation to approximate consistency equations

Since Eq. (3.10) and its higher-order equivalents give a complete account of relations be-
tween the scalar and tensor spectra, any other consistency relations claimed in the litera-
ture, approximate or otherwise, must follow from them. One such is a relation proposed
by Chung et al. (2003) and explored in detail by Chung and Romano (2006), concerning
a near coincidence of scales in models with strong running. Another appears in Lidsey
and Tavakol (2003) under the assumption of constant running. We examine each in turn.

3.5.1 Coincidence of scales

The authors of Chung et al. (2003); Chung and Romano (2006) claim to have found an
approximate consistency condition in models with large running. They note that in such
models there is a near coincidence of scales between the scale at which the Harrison–
Zeldovich spectrum is obtained nS − 1 = 0 and the scale at which the tensor–to–scalar
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Figure 3.2: Arbitrary curves for the scalar and tensor spectral indices and the number of
e-folds separating any two scales

ratio reaches a minimum, i.e. a flat bump in the potential.

The first of those scales is denoted k1, and the second k2. By definition2

d ln(A2
T/A2

S)
d ln k

∣∣∣∣
k2

= 0 =⇒ nS(k2)− 1 = nT(k2) . (3.17)

Since the two conditions equate nS to different values, the relation is clearly not exact.
The difference between the two scales can be defined as ∆N = ln k2/k1. If we assume that
the runnings are constant, but make no assumption that the spectra arise from inflation,
we can derive a general expression for the distance between this scales simply by taking
two arbitrary curves for the k-dependence of both spectral indices and examining the
number of e-folds separating them, as in Fig (3.2),

∆N =
(nS − 1)− nT

dnT/d ln k − dnS/d ln k
+

nS − 1
dnS/d ln k

(3.18)

where the observables are evaluated at an arbitrary scale k0. If we further specialize that
the expansion scale is chosen to be one of the scales k1 or k2 (bearing in mind that before
the fit to the data we wouldn’t know where those scales are, and that they may not lie

2In parts of their paper, Chung and Romano define scale k2 as being where ε reaches its extremum.
Beyond the slow-roll approximation this is not quite equivalent to our definition, which we believe is more
appropriate since ε is not a direct observable.
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where the data is), this expression simplifies to

k1 : ∆N = − nT

dnT/d ln k − dnS/d ln k
; (3.19)

k2 : ∆N =
nS − 1

dnS/d ln k
. (3.20)

Two things to note about these equations are as follows. Firstly, slow-roll inflation
predicts that the two scales are far apart, not close, since the denominator is one order
higher in slow-roll than the numerator and hence ∆N ∼ O(1/ε) in the absence of cancel-
lations. If they are close, partial cancellations will have allowed the running to be large
while the scalar spectral index remains close to unity (this can happen plausibly, for in-
stance, in running-mass inflation models, Stewart (1997)). Secondly, the above relations
are not consistency relations, as no inflationary input has been added and they are true
of arbitrary spectra, not just those tied together as inflation predicts. In particular, if nS is
already measured at k2, then measuring ∆N and measuring dnS/d ln k at k2 are the same
thing.

The above equations can be converted into consistency equations by substitution of
the inflationary spectra, thus enforcing the relation between tensor and scalars. For in-
stance, doing this in Eq. (3.19) to lowest order yields

∆N ∼= ε

ξ2 − 4ε2
, (3.21)

where the slow-roll parameters are evaluated at k1. This is precisely Eq. (151) of Chung
et al. (2003) rewritten in our notation. Carrying out the same procedure to second-order
in Eq. (3.20) yields Eq. (21) of Chung and Romano (2006) (note that their definition of the
constant C is different to ours).

That these relations are equivalent to the consistency equations, specifically the sec-
ond one given by Eq. (3.12) or Eq. (3.17), is rather subtle. Now, Eq. (3.21) is not actually
a useful form, since ε and ξ are not directly observable. Sufficient observables to deter-
mine them are nT and dnS/d ln k, bearing in mind that by definition nS = 1 at the scale
k1 where their relation applies (and hence 2ε ∼= η to the required order). This allows us
to rewrite as

∆N ∼= − nT

n2
T − dnS/d ln k

. (3.22)

Their test therefore proposes to measure the three quantities in this expression and verify
that this relation holds.

However we know that the general expression for ∆N is Eq. (3.19). Comparing with
Eq. (3.22), we see that their test actually seeks to confirm that

dnT

d ln k
∼= n2

T . (3.23)

This is nothing other than the second consistency equation, Eq. (3.12), evaluated at k1 so
that nS − 1 vanishes. Transforming to any other scale would then give the full version of
the (lowest-order) second consistency equation.
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In conclusion, while it appears that their method does not measure dnT/d ln k, in fact
the measurement of ∆N along with the other observables does so implicitly, and their
test is precisely equivalent to the second consistency equation, the lowest-order version
of which was already given in Lidsey et al. (1997).

3.5.2 Constant running

A different relation, advertised as independent of the inflationary potential, was given
by Lidsey and Tavakol (2003). They noted that if it were assumed that the scalar running
is constant, then the (lowest-order) equation for it, Eq. (3.7) with the square bracket set to
zero, can be written in terms of the scalar spectral index, the tensor-to-scalar ratio, and
an undetermined constant c̃, eliminating the dependence on the potential. Their Eq. (18)
reads

A2
S

A2
T

exp

[
− (nS − 1)2

2dnS/d ln k

]
−

(
2π

dnS/d ln k

)1/2

erf

[
nS − 1√

2dnS/d ln k

]
= c̃ .

As they acknowledge, in the usual interpretation where the observables are given at a
fixed (though arbitrary) expansion scale, this is not a consistency equation as determining
c̃ is equivalent to determining dnS/d ln k. It is further evident that it is not a consistency
equation since it does not mention the tensor spectral index or its derivatives, whereas all
members of our consistency equation hierarchy, an exhaustive list of relations between
observables, do feature those.

They suggest that the equation can be given content by evaluating it at two different
scales, the first used to fix c̃ and the second to test the relation. However this appears
primarily to be a test of the assumption of constant running, with the implications for
inflationary dynamics depending on the details of how that assumption might fail —
typical inflation models do predict some deviation from constant running. In any event,
their relation does not follow from the consistency equation hierarchy we have described.

3.6 Conclusions

Single-field inflation predicts not just one consistency relation, but an infinite hierarchy,
each of which can be considered at different orders in the slow-roll expansion (Lidsey
et al. (1997)). We have for the first time written down explicit expressions for all these
relations, and shown how they relate to other consistency equations found in the litera-
ture. Observed violation of these consistency relations would exclude single-field slow-
roll inflation under Einstein gravity, pointing instead perhaps to multi-field phenomena,
non-Einsteinian gravity, or a non-inflationary origin of perturbations.

It is difficult to be optimistic about attempts to test any other than the lowest-order
version of the first consistency equation, the famous A2

T/A2
S = −nT/2 relation, which

itself is quite challenging. Song and Knox (2003) have made a comprehensive study of
the ability of cosmic microwave background experiments to test this consistency relation.
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They also discuss taking that relation to next order; doing so introduces an extra observ-
able nS, which should be accurately measurable, but current observational constraints
already place us in a parameter regime where the next-order correction should be too
small to observe due to the expected observational uncertainty on nT. Going instead
to the lowest-order version of the second consistency relation, Eq. (3.11), introduces the
distinctly challenging observable dnT/d ln k. This observable is also required to meaning-
fully test the coincidence of scales described in Chung et al. (2003); Chung and Romano
(2006), which we have shown is equivalent to our results and indeed those given in Lid-
sey et al. (1997).
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Chapter 4

The Pivot Scale

4.1 Introduction

In this chapter we examine the choice of cosmic scale at which results from CMB data
analysis are presented. We continue the work from last chapter by illustrating an ex-
ample of an implementation of the hierarchy of consistency equations that insures for
consistency in the method we develop. The high accuracy CMB sky maps the WMAP
team provided us with represent two distinct challenges for cosmology: observationally,
we wish to constrain the amplitude and scale dependence of the power spectrum, and
from the viewpoint of theory we aim at understanding the origin of perturbations, such
as those that may have been generated by an inflationary potential.

When presenting observational constraints on these perturbation spectra we need
to specify the cosmological scale k at which the observable parameters are being deter-
mined. Provided the full posterior distribution over all parameters is given, this choice
is an arbitrary one. However, if the information is to be compressed via marginalization,
the choice of this scale matters, and should be chosen in order to optimize the presenta-
tion of constraints.

In the WMAP three-year cosmological parameters paper (Spergel et al. (2007)) the
scale 0.002Mpc−1 is used, which is close to the observable horizon, while Kurki-Suonio
et al. (2005) and Finelli et al. (2006) found that the choice of 0.01Mpc−1 worked better in
constraining inflationary observables as it is closer to the statistical center of the data. The
scale 0.05Mpc−1 is also commonly used, being the default scale of the CosmoMC package
(Lewis and Bridle (2002)). The pivot scale was also discussed in Liddle et al. (2006), who
sought the scale where the perturbation amplitude was best determined (decorrelated
with other power spectrum parameters), and in Peiris and Easther (2006b) who sought
the scale at which the perturbation spectrum reconstructed using the flow formalism was
best constrained.

In this chapter we make a systematic exploration of the choice of scale in the context
of inflation models. This choice is particularly important in cases where models with
significant spectral index running are allowed.
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4.2 Methodology

For definiteness we concentrate on single-field inflationary models, though many of the
issues we discuss are more general. These models predict spectra of scalar and tensor
perturbations which are related by the hierarchy of consistency equations we discussed
in the previous chapter. The first of this is, at lowest-order, the well-known relation
r = −8nT where r is the tensor-to-scalar ratio and nT the tensor spectral index. These
parameters can in turn be related to the inflationary slow-roll parameters describing the
shape of the potential.

Our main aim in this chapter is to examine the optimal choice of scale at which to
present observational constraints on inflation. In order to fit the spectra from data, they
must first be parametrized, which is usually done by specifying their amplitude and
some number of derivatives (i.e. the spectral index, running, etc) at a particular scale. So
far, this scale has been chosen by hand.

The choice of scale, being arbitrary, ought not to affect the conclusions one draws.
There is nothing physical about the pivot scale and in a slow roll context it merely repre-
sents a different point about which the slow roll expansion is performed. However this
is only the case if one specifies the full multi-dimensional posterior parameter distribu-
tions, and provided the model definition is internally self-consistent. The first of these
is often not the case. For presentation purposes, usually the full parameter volume is
compressed via marginalization, as one commonly wishes to condense information onto
a one or two dimensional parameter plane. In such case this choice of scale matters, since
while projecting onto a given surface we lose information on the correlations with other
parameters (given that one 2D plane contains more information then two 1D likelihood
distributions), and this information is otherwise necessary to translate between scales.
The second condition of model self-consistency holds in most circumstances, but often
not in the way inflationary spectra are implemented, as we explain here.

The problem of model definition in inflationary models is the enforcement of the con-
sistency equations between scalars and tensors. Typically both spectra are allowed to be
power-laws but with different indices; if the usual consistency equation is enforced at
one scale, it will then no longer hold at any other. Put another way, if the scalars are a
perfect power-law, then the tensor spectrum implied by the consistency relations is not
(unless the spectral indices are the same). Yet another way, the set of models generated
by imposing the consistency equation at one scale is a different set of models from that
obtained using another scale. This problem is further exacerbated if authors go on to
include scalar spectral index running, while perhaps still leaving the tensors as a power-
law. Before discussing the choice of scale, we should therefore first fix this problem (while
admitting that the difference may be too small to be very important).

This is achieved by implementing the full inflationary consistency equation hierarchy
as we gave in chapter 3. As well as the first consistency equation, this enforces that each
derivative of the consistency equation also holds at a given scale. When using a Taylor
expansion to shift from one scale to another, this hierarchy then ensures that the consis-
tency equations will still hold at the new scale (up to some level set by the truncation of
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the hierarchy).

We note that these complications are needed only if one fits the phenomenological
parameters (amplitude, spectral index, running, etc) from the data and then translates to
inflationary observables. If instead one fits the slow-roll parameters directly (e.g. Grivell
and Liddle (2000); Leach et al. (2002); Martin and Ringeval (2006); Finelli et al. (2006)) or
via flow equations (Hoffman and Turner (2001); Kinney (2002); Peiris and Easther (2006a);
Kinney et al. (2006); Peiris and Easther (2006b)), then the consistency equation hierarchy
is automatically enforced.

We consider a parametrization of the scalar and tensor perturbations as follows, Tay-
lor expanding the spectral indices in Eq. (2.29) and Eq. (2.30),

A2
S(k) ∝ (k/k∗)(nS−1)+(dnS/d ln k) ln k/k∗ (4.1)

A2
T(k) ∝ (k/k∗)nT+(dnT/d ln k) ln k/k∗ , (4.2)

the constants of proportionality being the amplitude of the perturbations at scale k∗. The
tensor-to-scalar ratio is defined by r(k) ≡ 16A2

T(k)/A2
S(k), and the tensor spectral index

is determined via the first consistency equation.

In order that the first consistency equation be enforced at all scales (to linear order in
∆ ln k), we need to implement the second consistency equation to fix the tensor running,
which is not a genuine new degree of freedom. This second equation is given by Eq. 3.12
and we enforce this when carrying out our data-fitting.

One could further enforce higher consistency equations, so that for instance the sec-
ond consistency equation also is preserved under change of scales. However current data
quality is a long way from the point where doing so would make any practical difference,
since the tensors are potentially observable only over a limited range of scales.

We use the Monte Carlo Markov Chain (MCMC) technique to explore the parameter
space, using the CosmoMC package (Lewis and Bridle (2002)). We consider a ΛCDM
model in a flat universe and take k∗ = 0.05Mpc−1 as the scale where all power spectrum
parameters are defined when fitting to data. We vary up to eight parameters

Ωbh
2, Ωdmh2, θ, τ, nS(k∗), r(k∗), ln[1010AS(k∗)],

dnS

d ln k

∣∣∣∣
k∗

where Ωbh
2 and Ωdmh2 are the physical baryon and dark matter densities, θ is the ratio

of the sound horizon to the angular-diameter distance, τ is the optical depth, and the
remaining parameters specify the power spectra. We apply a set of uniform priors:

0.005 < Ωbh
2 < 0.1 0.01 < Ωdmh2 < 0.99

0.5 < θ < 10 0.01 < τ < 0.8
0.5 < nS < 1.5 2.7 < log(1010AS) < 4

0 < r < 2 −0.2 < dnS/d ln k < 0.2

Until Section 4.5, our constraints are from WMAP3 data alone.
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Figure 4.1: The dnS/d ln k and nS plane shown both at the scale where the chains are run,
k = 0.05Mpc−1, and the decorrelation scale, k = 0.017Mpc−1, at which the uncertainty
on this 2D distribution is minimum.

4.3 Choice of scale: models with scalar running

We first consider models which allow running of the scalar spectral index, which we
will see is the case where the choice of scale is most important. For comparison, models
without running are studied in the next section.

4.3.1 Tilt and running

The simplest combination of observables to consider is the tilt and running of the scalars.
Observational implications of this were first discussed in Copeland et al. (1998a), which
forecasted CMB constraints from the Planck satellite on running spectral index models.
The paper pointed out that there would be a scale at which the uncertainties on tilt and
running would become uncorrelated, and that (at least in a gaussian approximation) on
that scale the uncertainty in nS would recover its value for the case of no running, thus by
bracketing out the level of uncertainty nS when including running in the analysis.1 This
could be spoiled by degeneracies with other parameters, but at Planck accuracy appears
not to be (Copeland et al. (1998a)).

Anyway, we wish to find the scale at which the tilt and running decorrelate for actual
current data. To do this we take the distribution of these two variables at the CosmoMC
default scale, k∗ = 0.05Mpc−1 as in the left panel of Fig. (4.1).

We then fit the chain elements with a linear relation, nS = A + B dnS/d ln k, and by
inserting into the expression

nS(k) = nS(k∗) +
dnS

d ln k
ln

k

k∗
, (4.3)

we arrive at a condition for the difference in scale which decorrelates nS and dnS/d ln k:
B = − ln k/k∗. This scale turns out to be k = 0.017Mpc−1. Then we use Eq. (4.3) to
convert the distribution at scale k∗ to the one at scale k = 0.017Mpc−1 to obtain the
decorrelated nS and dnS/d ln k shown in the right panel of Fig. (4.1). More generally, we
can explore the constraints at other scales via the same formalism. The constraints at a

1This observation was actually credited to Daniel Eisenstein, who was not an author of that paper.
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Figure 4.2: Constraints in the nS–α plane (where α = dnS/d ln k) at several scales. k =
0.017Mpc−1 is the decorrelation scale for these parameters.

set of different scales, including the WMAP scale and the decorrelation scale, are shown
in Fig.( 4.2).

In this particular case (but not those that follow), the transformation between parame-
ters induced by the scale change is linear and has unit Jacobian – meaning the 2D contour
areas are preserved and only the shape of the contours is altered. This can be easily seen
if we consider the area contours as built up of a stack of thin rectangles. Then the trans-
formation only slides the rectangles across, the higher ones sliding more, and clearly
the area remains unaltered. However it is evident from Fig. (4.2) that the marginalized
uncertainty on nS at the decorrelation scale is significantly smaller. The WMAP choice,
0.002Mpc−1, gives a significantly-angled constraint area and is clearly to be avoided if
useful marginalized constraints on nS are to be quoted. Unfortunately, the main WMAP3
results for models with running are presented at this scale.

For our choice of parameters and dataset (WMAP3 alone), from separate fits where
running is not included we find the marginalized constraint on nS is nS = 0.993+0.029,+0.067

−0.030,−0.053

(at 68% and 95% confidence). With running, the marginalized constraint at the decorre-
lation scale is nS = 0.981+0.034,+0.067

−0.034,−0.063. As anticipated, therefore, when including running
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the shift in the best-fit nS at the optimized scale is negligible within the uncertainty. This
is somewhat trivial as it could have been chosen to match exactly by specific choice of
scale — choosing k = 0.015Mpc−1 achieves this. Much more importantly, we see that the
uncertainty on nS at the decorrelation scale is hardly increased when running is included,
whereas it is greatly increased at e.g. 0.002Mpc−1. The 1D marginalized constraints on
all parameters have minimum uncertainty at the decorrelation scale.

For the scalar running we obtained the marginalized constraints,

dnS/d ln k = −0.075+0.041,+0.082
−0.043,−0.093 ,

very similar to those quoted by WMAP3 for models with running and tensors (Spergel
et al. (2007)).

4.3.2 Tilt and the tensor–scalar ratio

We now turn to other combinations of observables, relevant to constraining inflation.
To obtain r at other scales we perform an expansion, to the order considered, of the

scalar and tensor amplitudes.

r(k) = 16
A2

T(k)
A2

S(k)
= 16

A2
T + dA2

T
d ln k ln k

k∗ + 1
2

d2A2
T

d ln k2 ln2 k
k∗

A2
S + dA2

S
d ln k ln k

k∗ + 1
2

d2A2
S

d ln k2 ln2 k
k∗

(4.4)

where all observables without an argument ‘(k)’ are evaluated at k∗ = 0.05Mpc−1. Ap-
plying the definitions of the spectral indices and making use of the lowest-order version
of the second consistency equation, Eq. (3.12) to set dnT/d ln k we arrive at an expression
for relating r between different scales,

r(k)
r(k∗)

=
1 + nT ln k

k∗ + 1
2

[
n2

T + dnT
d ln k

]
ln2 k

k∗

1 + (nS − 1) ln k
k∗ + 1

2

[
(nS − 1)2 + dnS

d ln k

]
ln2 k

k∗

. (4.5)

Having expressions for nS and r at different scales, we can now choose several scales
and get the distribution of the two variables at each, shown in Fig. (4.3).

In this case the transformation alters the contour areas as well as distorting them,
since the transformation here is no longer a simple linear shift. The middle panel of
Fig. (4.4) shows the areas enclosed by the 95% confidence contour in the nS–r plane at dif-
ferent scales.2 The top panel shows the same for nS and running discussed in the previous
subsection. In the nS–r plane the minimum area was near k = 0.017Mpc−1 as expected
(the precise value found was slightly smaller). As inflation model builders typically just
look at these marginalized plots to decide if their model is viable, it is clearly important
to present the constraints at a good scale. Compression into one- or two-dimensional

2These values were obtained by taking the number of points in a 50× 50 grid that lie within that contour.
The number of grid points across each axis corresponds also to the number of bins used to sample the
distribution. We found that accurate area estimation needed at least 50 bins, though such an aggressive
binning level leads to less smooth contours than are usually seen.
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Figure 4.3: Constraints on nS versus r at several scales.
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should be independent of scale, and the variations indicate the noise level in the area
estimation.

surfaces should happen where the data is strongest, i.e. at scales at which the parameters
decorrelate. 0.002Mpc−1 is clearly not a good scale for this purpose, as has previously
been stressed also in Peiris and Easther (2006b).

4.3.3 Inflationary slow-roll parameters: lowest order

We now examine how the constraints on the first two slow-roll parameters ε and η are
affected by scale change. We take the usual definitions in terms of the potential given by
Eq. (2.6) and Eq. (2.8) The pivot scale k∗ corresponds to some particular scalar field value
φ∗ (defined as the field value when k∗ = aH during inflation), in the vicinity of which
the scalar field potential is being reconstructed. Shifting the pivot scale means expanding
about a different point on the potential.

We first concentrate on the constraints given at lowest order, taking the expressions
for the potential at this order given by Lidsey et al. (1997):

V (φ) ' 75m4
Pl

32
A2

T(k) ,

V ′(φ) ' −75
√

π

8
m3

Pl

A3
T(k)

AS(k)
, (4.6)

V ′′(φ) ' 25π
4

m2
PlA

2
T(k)

[
9
A2

T(k)
A2

S(k)
− 3

2
[1− nS(k)]

]
,

(where without loss of generality we take φ to increase in time). From these the first two
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Figure 4.5: Constraints on ε versus η, at lowest order, evaluated at several scales.

slow-roll parameters are expressed in terms of the observables, to lowest order, by

ε ' r

16
; η ' 3

16
r − 1

2
(1− nS) . (4.7)

Shifting the scale of the observables shifts the location on the potential, and at lowest-
order the constraints on ε and η then become independent of the running at that scale
(which could be used to determine a third slow-roll parameter ξ ≡ m2

Pl/8π
√

V ′V ′′′/V 2).

The results are presented in Fig (4.5), and again show strong variation of the allowed
parameter area with choice of scale, as indicated in Fig. (4.4) 3.

3The noise referred to on the lower panel of Fig. (4.4) reflects the dependence of the area estimation on the
shape of the contours. When the contours are aligned with the grid the area is slightly smaller, than when
they are diagonally aligned since the tipping over of the contours causes for more grid points to be partially
filled and the estimated area artificially increases.



39

4.3.4 Inflationary slow-roll parameters: next order

Now we can take the expressions for the potential to next order (Stewart and Lyth (1993)),
also given by Lidsey et al. (1997):

V (φ) ' 75m4
Pl

32
A2

T

[
1 +

(
5
3

+ 2C

)
A2

T

A2
S

]
,

V ′(φ) ' −75
√

π

8
m3

Pl

A3
T

AS

[
1− 0.85

A2
T

A2
S

+ 0.53(1− nS)
]

,

V ′′(φ) ' 25π

4
m2

PlA
2
T

{
9
A2

T

A2
S

− 3
2
(1− nS) (4.8)

+
[
(36C + 2)

A4
T

A4
S

− 1
4
(1− nS)2 −

(12C − 6)
A2

T

A2
S

(1− nS)− 1
2
(3C − 1)

dnS

d ln k

]}
,

where C = −2 + ln 2 + γ ' −0.73, γ is the Euler–Mascheroni constant, and again the
φ value corresponds to horizon crossing of the scale at which the constraints are being
imposed.

With these next-order expressions for the potential, ε and η are

ε =
r

16
1− 0.85 r/16 + 0.53(1− nS)

1 + 0.21 r/16
(4.9)

η =
1
3

1
1 + 0.21 r/16

{ 9
16

r − 3
2
(1− nS) (4.10)

+(36C + 2)
( r

16

)2
− 1

4
(1− nS)2

−(12C − 6)
r

16
(1− nS)− 1

2
(3C − 1)

dnS

d ln k

}
.

The second parameter now depends on the running. The running term has a coefficient of
about one half, and given how weakly running is constrained this term has a significant
impact on the constraints.

The constraints at each scale are presented in Fig (4.6). The picture here is rather dif-
ferent, with the area changing much more slowly as k is decreased, and the minimum
area being at a much smaller k. This is because for typical models the next-order cor-
rection from the running happens to be comparable to the change in the lowest-order
expression for η coming from the changing nS, also induced by the running, as the scale
changes. These terms approximately cancel going to smaller k, i.e. the constraints change
less when simultaneously reducing k and introducing next-order corrections than they
would if only one of these were done. This is just a coincidence (and not much of a coin-
cidence at that, since partial cancellation would have to happen as k was changed in one
or other direction) of no great significance, and will go away when in future running is
better constrained.
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Figure 4.6: Constraints on ε versus η, to next order, at several scales.
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Figure 4.7: Constraints on nS and r when no scalar running is present.
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Figure 4.8: Comparison of constraints in the nS–r plane at the optimal scale with no run-
ning (dotted contours) and when running is included (full contours). The area enclosed
by the 95% contour increases by around 20% when running is included.

4.4 Choice of scale: models with no scalar running

For comparison, we now take a look at models where no running of the scalar index
is allowed.4 In this case the variation in the constraints with scale is much less, as for
instance is seen in Fig. (4.7) showing the nS–r plane. Indeed in this case we find that
minimization of the area is not only unnecessary, but can actually be misleading, because
parameters such as r can appear to be well constrained even on large angular scales
where there is no meaningful data. The reason for this is that the restrictive class of
models under consideration force the spectra to behave in a particular way as they are
extrapolated away from the region where the bulk of the data lie, i.e. such constraints
contain significant prior information as well as data information. This is also true to
some extent for constraints on r in the running case studied earlier.

Nevertheless, it is now interesting to compare the running and no-running constraints.
In the WMAP3 analysis the impression, from comparison of the top-left panels of Figs. (12)
and (14) of Spergel et al. (2007), is of a huge deterioration in the constraints in the nS–r

plane once running is included. The same is seen in Fig. (1) of Kinney et al. (2006). How-
ever we now see that this is an artifact of the choice of scale where the constraints are
portrayed. At the optimal scale there is some deterioration, due to parameter degener-
acy, but the area increase within the 95% contour is only by about 20% as seen in Fig. (4.8),
not by a factor of five as at k = 0.002Mpc−1. Consequently, inclusion of running leads
only to a moderate deterioration in constraints on ε and η.

4We still keep the tensor running in the analysis, however. It is not an additional degree of freedom, its
inclusion ensuring the validity of the first consistency equation at all scales.
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Figure 4.9: As Fig. 4.5, but now with the full dataset compilation. Note the modified axis
ranges.

4.5 Including more data

We explore the robustness of our results by carrying out the same analysis for a broader
compilation of data, now including shorter-scale CMB experiments and galaxy correla-
tion data from ACBAR (Kuo et al. (2004)), CBI (Pearson et al. (2003)), VSA (Dickinson
et al. (2004)), Boomerang (Jones et al. (2006)), SDSS (Tegmark et al. (2004)), and 2dFGRS
(Percival et al. (2001)).

Everything goes through as before. We find that the decorrelation scale of nS and
running is 0.016Mpc−1, which is not significantly different from WMAP3 alone. Though
in general one would expect the decorrelation scale to change with dataset, in this case
the WMAP3 data are powerful enough that a shift is not seen.

The constraints, particularly on r and hence ε, do tighten significantly with the extra
data, as is clear also in previous analyses including Spergel et al. (2007). As an illustration
of the results we obtained in this case, we show the array of constraints on the lowest-
order ε and η at different scales, Fig. (4.9), and the overlay of contours in the nS–r plane
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Figure 4.10: As Fig. (4.8), but now with the full dataset compilation. Note the modi-
fied axis ranges. The area enclosed by the 95% contour increases by around 30% when
running is included.

at the optimal scale, with and without running, in Fig. (4.10).

4.6 Conclusions

We have investigated the issue of choice of scale in presenting marginalized parame-
ter constraints. While we have focussed on WMAP constraints applied to inflationary
models, the same considerations apply much more widely. For example, in constrain-
ing density perturbations using galaxy clusters, commonly the parameter σ8, being the
normalization of density perturbations smoothed on the scale 8h−1 Mpc−1, is quoted.
However typically the normalization is best determined at a somewhat larger scale than
8h−1 Mpc, and marginalizing over parameters such as Ω0 to quote constraints on σ8 can
unnecessarily increase the statistical uncertainty on the normalization.

In the inflationary context, choosing an optimal scale is important primarily in mod-
els where large running is allowed. We found that an appropriate scale is the one which
decorrelates estimates of nS and running, which for WMAP3 is 0.017Mpc−1. This crite-
rion can be used to define such a scale for any dataset compilation, and we found that the
scale shifts hardly at all when other available data are added to WMAP3. The optimal
scale may also have some modest dependence on the choice of model parameters varied
in a fit, for instance if non-negligible neutrino masses were included. One might even
wonder whether it might be best to choose different scales for different observables, as
the scalars and tensors are best constrained on quite different length scales, but we have
not attempted this here.

We have shown that the marginalized constraints on nS and r, or on ε and η, depend
significantly on the choice of scale in the presence of running. By choosing the optimal
scale, we find that constraints on those parameters are only mildly degraded by the in-
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clusion of running as a parameter, in contrast to the impression given if constraints are
quoted at a non-optimal scale such as 0.002 Mpc−1.

4.7 Appendix

4.7.1 CosmoMC setup

CosmoMc is a Monte Carlo Markov Chain machine used to probe the posterior parameter-
space distribution, introduced by Lewis and Bridle (2002). It generates an MCMC file of
independent samples of the posterior distribution and attributes a likelihood to each set
of parameter values, given the data. It scales only linearly with the number of parameters
being varied, so that introducing new variables has very little computational impact.

• MCMC runs: the chains were run with the default values set by the PARAMS.INI

file provided with the package. We applied a 10% BURN IN of initial steps and
maximum 100000 chain steps. We implemented the second consistency equation as
additional constraint on the tensor power spectrum.

• Prior setup: we vary up to eight parameters,

Ωbh
2, Ωdmh2, θ, τ, nS(k∗), r(k∗), ln[1010AS(k∗)],

dnS

d ln k

∣∣∣∣
k∗

,

applying uniform priors and giving values of start, min, max, start width, and stan-
dard deviation estimate as follows,

parameter start min max start width st. dev. estim.
Ωbh

2 0.0223 0.005 0.1 0.001 0.001
Ωdmh2 0.105 0.01 0.99 0.01 0.01

θ 1.04 0.5 10 0.002 0.002
τ 0.09 0.01 0.8 0.03 0.03
nS 0.95 0.5 1.5 0.03 0.01

dnS/d ln k 0 −0.2 0.2 0.01 0.01
log[1010As] 3 2.7 4 0.01 0.01

• Chain convergence: Monitoring chain convergence is essential before deciding
when to terminate a MCMC run. The GETDIST program supplied together with
CosmoMC for chain analysis outputs convergence diagnosis files. However a good
stopping rule to use while the runs are ongoing is the number of independent sam-
ples in each file. Provided the step sizes are well matched to the corresponding
parameter standard deviations this number is a good indicator that a chain is con-
verged. To obtain an estimate of the number of independent samples we look at the
acceptance rate of the proposed points (fraction of proposals that are being accepted
along the chain). If this number is is too large (∼ 70%) the points won’t be indepen-
dent. We considered 20% to be a good target to ensure independent samples and
chain convergence.
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4.7.2 Chain manipulation

After output of the chain files by cosmomc, these were read into MATHEMATICA 5, where
a code was built for chain manipulation, auxiliary plot production and shift of cosmo-
logical scale k. Each chain element is manipulated individually. The chain is plotted and
fitted with a linear relation using a least squares fit. Each element is then shifted in scale
according to the expressions in the text, and finally a new chain of the shifted elements
is produced and subsequently fed into GETDIST for area computation, statistical analysis
and confidence contours production. We provide in Fig. (4.11) a MATHEMATICA sample
code of the steps above.

4.7.3 Area Estimation

The area is calculated by a modified version of the MATLAB6 code provided by GETDIST.
We fit each plot area with a grid and count the number of grid points totally or partially
filled by the contour. Our aim is to get an accurate area estimate, but increasing the num-
ber of bins in order to achieve this makes for highly irregular ellipse contours. There’s
a tension between the smoothness of contours and the accuracy of the areas calculated
from the grid. In Fig. (4.12) we show the contours obtained with 20, 50 and 100 bins.
While the area accuracy increases from (a) to (c) the smoothness of contours is clearly
deteriorated. The optimal compromise between the two is 50 bins.

5 c©Wolfram Research, Inc., Mathematica, Version 5.2, Champaign, IL (2005)
6 c©1994-2008 The MathWorks, Inc
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chain_orig = Import@"CE2_Run_thin.txt", "Table"D;

ListPlot@chain_orig@@All, 810, 12<DD, PlotRange ® 880.75, 1.3<, 8-0.15, .08<<,

AxesOrigin ® 8.75, -0.15<, PlotLabel ® "k=0.05 Mpc-1",

TextStyle ® 8FontSize ® 14<, Frame ® True, FrameLabel ® 8nS, dnS �dlnk<D;
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k=0.05 Mpc-1

FindFit@chain_orig@@All, 812, 10<DD, d x + e, 8d, e<, xD

8d ® 1.06566, e ® 0.980521<

H*decorrelation scale*L

Dlnk = -1.066; k* = 0.05 Exp@DlnkD;

0.017225

H*nS  scale shift*L

chain_decorr = chain_orig;

chain_decorr@@All, 10DD = chain_orig@@All, 10DD + Dlnk chain_orig@@All, 12DD;

H*Plot nS  and 
dnS
����������
dlnk

 at the decorrelation scale k=0.017 Mpc-1
*L

ListPlot@chain_decorr@@All, 810, 12<DD, PlotLabel ® "k=0.017 Mpc-1",

PlotRange ® 88.75, 1.3<, 8-.15, .08<<, Frame ® True, FrameLabel ® 8nS, dnS �dlnk<,

AxesOrigin ® 8.75, -.15<, TextStyle ® 8FontSize ® 14<D;
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Figure 4.11: Sample code of MATHEMATICA used to read in, plot and find decorrelation
scale for the variables nS and dnS/d ln k
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Figure 4.12: The accuracy of the estimated area competes with the smoothness of the
contours obtained. In (a) 30 bins provides smooth contours but not accurate enough area
values whereas with 100 bins (c) the opposite occurs. An optimal solution is (b) with 50
bins.
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Chapter 5

Big Bang Nucleosynthesis
constraints on Dark Energy

5.1 Introduction

Scalar fields are arguably the best-motivated alternatives to a cosmological constant, be-
ing consistent with current constraints and simultaneously theoretically well-founded.
The more exotic alternatives are either claimed to have theoretical pathologies or likely
to be indistinguishable from the vanilla ΛCDM model which, given all current data, re-
mains flavour of the month (Spergel et al. (2007); Astier et al. (2006); Tegmark et al. (2006);
Wood-Vasey et al. (2007)). Models in the former category include K-essence (Armendariz-
Picon et al. (2000); Bonvin et al. (2006)) and the DGP model (Dvali et al. (2000); Deffayet
et al. (2006); Charmousis et al. (2006)) while those in the latter class include f(R) mod-
ifications of gravity (Song et al. (2007); Faulkner et al. (2007)), and unified dark energy
(Sandvik et al. (2004)).

Of the scalar fields however, arguably the best-motivated and most compelling are
the tracking/scaling quintessence models (Ratra and Peebles (1988); Wetterich (1988);
Copeland et al. (1998b); Ferreira and Joyce (1998); Copeland et al. (2006)), which we dis-
cussed in section 2.2.2, where the dark energy equation of state, w ≡ p/ρ, tracks the
dominant energy density component of the cosmos (w = 1

3 , 0), until a redshift z = zt at
which it undergoes a transition to w < 0 which triggers the onset of acceleration.

As we discussed in section 2.2.3, Big Bang Nucleosynthesis provides strong con-
straints on the energy density of dark energy during the radiation dominated era at a
temperature of T ∼ 1MeV, implying that ΩDE(T ∼ 1MeV) < ε = 0.045 at 2σ (Bean
et al. (2001)). The Cosmic Microwave Background provides similar or better constraints,
ΩDE(T ∼ 1eV) < 0.04 (Doran et al. (2005); Doran and Robbers (2006)) at decoupling.
Constraints on w(z) from BBN taken together with recent data require that zt > 5 (Corasan-
iti et al. (2004)).

In the case of tracking dark energy models these constraints at early times are pre-
served by the subsequent evolution of the cosmos, implying that the limit ΩDE < ε =
0.045 holds for all redshifts greater than zt, the redshift at which the equation of state
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Figure 5.1: Evolution of ΩDE(z) for the models we consider, showing their approach to
the BBN limits of ε = ΩDE(z = zBBN) = 0.045 and 3

4ε (double exponential potential).
For comparison we also show the curves for Λ and the CPL w(z) with the lowest asymp-
totic value of ΩDE assuming w ≥ −1, showing its inability to match the BBN constraint.
Figures 5.2 and 5.5 shows the corresponding observational quantities.

stops tracking and becomes negative. In this chapter, we find new implications for the
magnitude of allowed deviations from Λ.

To motivate our results consider a toy, step-function model for w(z),

w(z) =





const. for z < zt

0 for z ≥ zt

(5.1)

Requiring ΩDE(zt) < ε = 0.045 with w ≥ −1 and ΩDE = 0.7 today implies that
zt > 2.6. This is an unexpectedly large number given that most cosmic probes in the next
decade will be limited to z < 2. To achieve zt = 1 instead, one requires a very phantom
equation of state, w = −1.88, a value disfavoured by current observations (Spergel et al.
(2007); Astier et al. (2006); Tegmark et al. (2006); Wood-Vasey et al. (2007)). Figures (5.2)
and (5.5) show that the early dark energy constraints force the derivative of w(z) to be
very small: |w′(0)| < 0.2 for all our models, significantly smaller than will be detectable
in the next decade (Albrecht et al. (2006)). If w(0) < −0.9 the deviation of the Hubble
rate from Λ is less than 3% and the deviation of the distance modulus is less than 0.04
mag. In addition, we find the surprising result that the standard Chevallier–Polarski–
Linder parametrisation (Chevallier and Polarski (2001); Linder (2003)) cannot be used to
describe tracking minimally coupled scalar fields (which automatically have w ≥ −1) and
simultaneously match the nucleosynthesis bound. We assume a flat universe throughout
with Ωm = 0.3 today and all results are valid for redshifts less than matter-radiation
equality.
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Figure 5.2: BBN compatible tracking dark energy models: allowed observables for the
polynomial w(z) showing the small deviations from the Λ predictions. In (a) the equa-
tion of state, in (b) The Hubble ratio, in (c) the distance modulus. All models have
|dw/dz(0)| < 0.2. and imply a deviation in distance modulus of less than 0.05 mag. The
error bars in the right panel correspond to the Stage-III (large boxed errors) and Stage-IV
(small triangular errors) supernova surveys respectively and are produced for the bottom
curve in each case.
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5.2 General Results

We wish to derive model-independent constraints on cosmological observables, the Hub-
ble rate, H(z), and distance modulus, µ(z), for tracking models. The BBN constraint im-
plies that ΩDE(z ≥ zt) < ε = 0.045 since ΩDE(z ≥ zt) is constant in perfectly tracking
models. Making use of Eq. (1.17) we define

ΩDE(z) ≡ ρDE(z)
ρcr(z)

≡
ρDE,0 exp

[
3

∫ z
0

1+w(z′)
1+z′ dz′

]

ρcr(z)
, (5.2)

and from the tracking requirement that w(z ≥ zt) = 0, we have

f(z ≥ zt) =
ε(1 + z)3

r(1− ε)
=

0.047
r

(1 + z)3 , (5.3)

where r = ΩDE/Ωm is evaluated today (see Fig. (5.1)).

Using this result implies the following general but stringent constraint:

HDE

HΛ
(z ≥ zt) =

√
(1 + zt)3

(1− ε)((1 + zt)3 + r)

≤
√

1
1− ε

= 1.023 . (5.4)

where the last equality arises from imposing ε = 0.045 and the upper bound from setting
r = 0 or zt → ∞. This limit can clearly be seen in the middle panel of Fig. (5.2). This
robust result implies that detecting deviations from Λ at high redshift will be difficult
using Hubble rate measurements alone since they are bound to be less than 2.3%. This
does not, however, strongly constrain the behaviour of the ratio HDE/HΛ for z < zt. We
will show in two classes of models that its maximum value is less than 5% and occurs
around z ' 1. The latter result is good news for Baryon Acoustic Oscillation (BAO)
surveys such as WiggleZ (Glazebrook et al. (2007)), BOSS and WFMOS (Bassett et al.
(2005)) which will probe this range of redshifts.

One can also place robust bounds on the deviation of the distance modulus, µ(z),
from the Λ prediction. The quantity ∆µ ≡ µDE(z)− µΛ(z) is given by

∆µ = 5 log10

(
dL,DE(z)
dL,Λ(z)

)
, (5.5)

where we used Eq (1.20). If we assume that there exists a number α such that for all z

H(z)
HΛ(z)

≤ 1 + α2 , (5.6)

then

dL,DE(z)
dL,Λ(z)

≥ (1 + α2)−1 , (5.7)
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and hence ∆µ(z) obeys the inequality

0 ≥ ∆µ(z) ≥ −5 log10(1 + α2) . (5.8)

A bound of α2 = 0.025 gives |∆µ(z)| ≤ 0.034 mag - see Fig. (5.2). This is a conservative
upper bound since we have shown that for z ≥ zt, α2 ≤ ε/2. For the oscillating double
exponential w(z) models considered later (for which −30 ≤ µ < 0) one has α2 < 0.015,
yielding the constraint |∆µ(z)| ≤ 0.032 mag. These general results do not constrain H(z)
for 0 < z < zt, which instead requires a specific model for w(z). For this purpose we now
consider two classes of models describing a wide range of scalar field dynamics.

5.3 Polynomial w(z) parametrisation

First we consider a quadratic parametrisation of the dark energy equation of state, w(z)
(Weller and Albrecht (2002)):

w(z) =





w0 + w1z + w2z
2 for z < zt

0 for z ≥ zt

(5.9)

We apply the constraint w(z) ≥ −1 since we want to describe minimally coupled scalar
fields with canonical kinetic terms.

The linear case with w2 = 0 requires zt ' 6.2 to match BBN (for ε = 0.045) if w0 = −1
and if we allow w0 to be free the BBN constraint implies the correlation

w1 ' −0.4w0 − 0.2 (5.10)

for the interesting region−1 < w0 < −0.8. The other case we consider is w0 = −1, w2 6= 0.
Continuity at z = zt then implies,

w2 =
(

1
z2
t

− w1

zt

)
. (5.11)

The BBN constraint provides w1 in terms of zt. The resulting family of curves and observ-
ables are shown in Fig. (5.2). We note that for z ≤ 1 the BBN constraint is so strong that
all models have w(z) < −0.8 and the largest deviation of H(z) from the Λ comparison
model is about 2.7% with the largest deviation in the distance modulus only about 0.03
magnitudes (occurring at z = 2). This shows that if w ' −1 today we cannot expect sig-
nificant deviations from Λ at any redshift and only Stage-IV experiments (Albrecht et al.
(2006)) are likely to detect dark energy dynamics with any real significance.

However while current data favour w(0) ' −1 they are consistent with larger val-
ues. To study how this zero-point affects our results we now consider simulations of a
scalar field with a popular family of scalar field potentials, V (φ), which also allows us to
examine the impact of oscillations in w(z).
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5.4 Double Exponential Potential

A single exponential potential is well known to give early tracking (Copeland et al.
(1998b); Ferreira and Joyce (1998)) but cannot also lead to late-time acceleration. One
well-studied way to combine the two effects is via the double exponential potential. Bar-
reiro et al. (2000) have considered a model where the scalar field has a potential which is
a sum of two exponential terms,

V (φ) = M4
1 e−λκφ + M4

2 e−µκφ, (5.12)

where κ2 = 8πm−2
pl . This potential, with a correct choice of the parameters λ and µ (we

assume that λ is positive), allows for a scenario where the universe goes through a radi-
ation and matter dominated epochs, during which the field scales with the background
fluid, and recently evolves into the scalar field dominated regime. Such a potential is the-
oretically well motivated, because it is expected to arise as a result of compactifications
in superstring models. We assume the field to be scaling during radiation domination
and then satisfying the BBN constraint implies (Ferreira and Joyce (1998); Copeland et al.
(2006)),

λ ≥ 2√
ε
≥ 9.43 (5.13)

We choose λ = 9.43 to maximise deviations from Λ. Unlike a perfectly scaling model
of the form we assumed in the previous section, Ωφ actually decreases in the transition to
matter domination and we have

Ωφ <
3
4
ε = 0.034 (5.14)

during matter domination, leading to even more stringent results - see Fig. (5.1). The ex-
tra 3/4 factor is specific to the double exponential potential and is responsible for the re-
duction of the asymptotic values of HDE(z)/HΛCDM, seen in the middle panel of Fig. (5.5),
relative to the predictions of Eq.(5.4).

If the constraint in Eq. (5.13) is satisfied we will have scaling during radiation and
matter dominated eras, and we need µ2 < 2 if we want the field to leave the scaling
regime at late times and give rise to an accelerated expansion. We must choose M2 such
that the energy density of the field today is equal to the value measured by observations,
ρ0 ∼ 10−47GeV 4 (which implies M2 ∼ 1031mPl for µ ∼ 1). We take M1 = 10−14mPl

and use Planck units where κ = 1. It was shown that the scaling regime occurs for a
wide range of initial conditions (Barreiro et al. (2000)). We have written a code to solve
numerically the evolution equations for a scalar field with the potential in Eq. (5.12) and
for radiation and matter fluids1,

1We provide an example of the code used to integrate the equations in the Appendix
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φ̈ + 3Hφ̇ + V,φ = 0,

ρ̇m + 3Hρm = 0,

ρ̇r + 4Hρr = 0,

H2 = κ2

3

[
1
2 φ̇2 + V (φ) + ρm + ρr

]
. (5.15)

We can see from Figure (5.3) that the field enters a scaling regime during the radiation
dominated era with equation of state wφ = wr = 1/3, then starts to scale with matter
when the universe enters in the matter dominated regime with wφ = wr = 0 and will
finally dominate the energy density of the universe at late times (see Fig. (5.4). The shape
of the curve for wφ during the transition from zero to the final value today depends on
the value of the parameter µ (Barreiro et al. (2000)). We can consider three cases:

• µ > 0 simply modifies the slope of the potential which becomes shallow at late
times and the equation of state for φ has a final value wφ > 1 ;

• if µ = 0 the potential will become constant at late times and we will have a final
wφ = 1;

• if µ < 0 the potential has a global minimum and the field will oscillate about the
minimum until it stops and we get wφ = 1.

The more negative the value of µ the larger (and more negative) the slope of the curve
of wφ after the matter dominated era, and the later (smaller redshift) the field leaves the
scaling regime, see Figures (5.4) and (5.5).
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Figure 5.3: Energy densities of the different components present in the universe as a
function of redshift, for λ = 9.43, M1 = 10−14, µ = 1 and M2 = 10−27.9 (we set κ = 1). We
have chosen M2 such that Ωφ ∼ 0.7 and Ωm ∼ 0.3 today.

The resulting w(z) curves for a range of values of µ, are shown together with the
predicted observables (H(z), ∆µ(z)) in Fig. (5.5). For negative µ (we study −30 ≤ µ < 0)
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and for z . 0.2 the equation of state satisfies wφ ≤ −0.98. As a result all the negative
µ models show tiny deviations from Λ: less than 1.5% for H(z) and less than 0.015 mag
for ∆µ (see Fig. (5.5)). This will make detection extremely difficult even with the Stage-
IV dark energy experiments such as EUCLID2, JDEM3, LSST4 and SKA5 (Albrecht et al.
(2006)).
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Figure 5.4: Equation of state of the scalar field as a function of redshift, for λ = 9.43,
M1 = 10−14 and different values of µ (κ = 1). For each case we choose M2 such that
Ωφ ∼ 0.7 and Ωm ∼ 0.3 today.

In contrast, positive values of µ (0 ≤ µ ≤ 1) can yield values of wφ significantly
different from −1 today, e.g. for µ ∼ 1 one finds wφ(0) ∼ −0.8 which is consistent (at
about the 2σ level) with current observations (Spergel et al. (2007); Astier et al. (2006);
Tegmark et al. (2006); Wood-Vasey et al. (2007); Corasaniti et al. (2004)), and which we
therefore take as the upper bound for µ.

Fig. (5.5) shows that the maximum allowed deviation for H(z) from HΛ(z) in this case
is about 5%, peaking at z ∼ 1 with a maximum value of ∆µ ∼ 0.09 mag. Such a model
will be detectable with Stage-III supernova surveys (at the 99.97% confidence level) and
with the upcoming BAO experiments, since the maximum deviation in H(z) coincides
with the redshift ranges in which they will operate, i.e. z ∼ 0.7 to 1.1. However, for
values more consistent with the current best-fits, wφ(0) < −0.9 one finds much smaller
deviations of 2.7% and 0.045 mag respectively for H(z) and ∆µ which again will require
Stage-IV experiments for conclusive detection as can be seen in the right-hand panels of
Fig. (5.5).

5.5 Performance of standard parametrisations

The most widely used parametrisation for dark energy, is the Chevalier-Polarski-Linder
parametrisation given by Eq. (2.46) which is also the basis for the DETF figure–of–merit

2http://sci.esa.int
3http://jdem.gsfc.nasa.gov
4http://www.lsst.org
5http://www.skatelescope.org
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Figure 5.5: BBN compatible tracking dark energy models: allowed observables for the
double exponential potential with −30 ≤ µ ≤ 1 showing the small deviations from the
Λ predictions. In (a) the equation of state, in (b) The Hubble ratio, in (c) the distance
modulus. All models have |dw/dz(0)| < 0.2. For w(0) < −0.9 HDE(z) deviates from
HΛ(z) by at most 2.7% (marked by the horizontal line in the middle panel) and implies a
deviation in distance modulus of less than 0.05 mag. Error bars for the distance modulus
are calculated as as in Fig (5.2) except for the Stage-IV (SNAP-like) errors which corre-
spond to the w(0) = −0.9 model (thicker line asymptoting to∼ 0.04 mag). Note that the
ratio H(z)/HΛ for the double exponential potential does not converge to 1.023 since the
matter-dominated value of ΩDE(z) is constrained to be 3/4 of the radiation-dominated
value. Hence the Hubble rate is forced to ∼ 1 + (3/8)ε ∼ 1.017.
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(Albrecht et al. (2006)). Surprisingly, we found that this parametrisation fails to meet the
BBN constraint if we assume as before, scaling until transition to dark energy domination
and ΩDE ∼ 0.7 today.

To examine this we take w(z) ≥ −1 and w(z ≥ zt) = 0 and try to find the value
of zt that gives ΩDE(z = 0) ∼ 0.7 and ΩDE(zt) = 0.05 just like in previous sections.
The result is presented in Fig. (5.1) and shows the lowest attainable value of ΩDE with
w0 = −1. There is no value of z for which the BBN limit on ΩDE is achieved. The CPL
parametrization is not flexible enough to bring ΩDE from its observed value today to
ΩDE(zt) ∼ 0.05 required by a scaling field meeting the BBN constraints.

In retrospect this is understandable since to reach the tracking value w = 0 for some zt

requires wa > −w0. In this case w(z) doesn’t spend enough time at sufficiently negative
values to force ΩDE(z) down to the BBN value. The least phantom value of w0 that is
able to satisfy the BBN constraint is w0 = −1.3. In contrast the logarithmic expansion
w(z) = w0 + w1 ln(1 + z) is able to match the BBN constraint with w(z) ≥ −1, but only
for zt > 12.4.

5.6 Conclusions

Tracking scalar field models are arguably the best-motivated alternatives to the cosmo-
logical constant. We show that the constraints on the energy density of the scalar field
at the time of Big Bang Nucleosynthesis and decoupling strongly limit the allowed dy-
namics of such models today and allow the derivation of model-independent constraints
on the Hubble rate which cannot deviate by more than 2.3% from ΛCDM (for z ≥ zt),
with similar limits on the distance modulus µ. If w today is close to the maximum value
allowed by current data then next-generation surveys such as WiggleZ and BOSS could
detect dark energy dynamics. However, if this is not the case, detection of dynamics
will likely have to wait a decade for the Stage-IV DETF experiments. Of course, these
strong conclusions are only true for tracking models and if one allows exotic phantom
behaviour (w < −1) the conclusion is much more rosy. In particular, it would be interest-
ing to construct approximately tracking models in which ΩDE increases with time, since
these would be allowed a wider range of dynamics today.

Finally we have shown that the standard CPL parametrisation, w(z) = w0 +waz/(1+
z), fails clearly to match the BBN constraint when describing tracking scalar fields which
satisfy w ≥ −1. This is particularly important given that the CPL parametrisation is the
basis of the DETF figure–of–merit which is now the de facto standard for the optimisa-
tion of future cosmological surveys, e.g. (Parkinson et al. (2007); Virey and Ealet (2007);
Yamamoto et al. (2007)). A concern therefore is that optimisations may be systemati-
cally biased away from tracking dark energy models. More work in this area is clearly
needed to assess the implications of early dark energy constraints for cosmological sur-
vey design, but it is clear that the current non-detection of dark energy dynamics should
neither come as a surprise, nor should it discourage us from the hunt.
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5.7 Appendix

The numerical computations necessary for this work were performed using MATLAB. The
system of differential equations for the coupled fluids was numerically integrated and in
this appendix we provide and describe the functioning of the code built.

We used the MATLAB function ODE45 which employs variable size Runge–Kutta in-
tegration methods. The system of differential equations is defined in a function file that
returns the solutions stored in a vector. A separate file then invokes this function and
simulates the solution over the specified range and initial conditions.

In BBN_set we define a function dydt which describes the system of coupled differ-
ential equations Eqs. (5.15) and stores the solutions in a vector y composed of

y = {φ(t), φ̇(t), ρr(t), ρm(t)} .

This function is called in BBN_rho where the simulation is performed. where we specify
the accuracy, range of integration, initial conditions and determine the plots to be drawn.

The accuracy is specified by the functions AbsTol and RelTol. RelTol is the rela-
tive tolerance and controls the number of correct digits in every component of the solu-
tion. AbsTol is a threshold below which the value of the solution is unimportant. We
choose

AbsTol = RelTol = 10−20 (5.16)

which translates into an accuracy of 10−18%. As integration variable we used log a and
considered the range [a−40, a0]. The initial conditions are

{φ0 = 0, φ̇0 = 0, ρr,0 = 10−53, ρm,0 = 10−67} (5.17)

The energy scale is set by requiring the Dark Energy density today to match observa-
tions which translates in M2 ∼ 1031. Here we reproduce the two files of code BBN_set
and BBN_rho and Fig (5.3) shows an example of the plot produced by the code.

BBN_set

function dydt = f(t,y)

MPl=1.;

M1=10.ˆ(-14.).*MPl;

M2=10.ˆ(-29.69).*MPl;

lambda=9.43;

mu=0.;

V=M1.ˆ4.*exp(-lambda.*y(1)./MPl)+M2.ˆ4.*exp(-mu.*y(1)./MPl);

Vphi=-lambda.*M1.ˆ4./MPl.*exp(-lambda.*y(1)./MPl)-mu.*
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M2.ˆ4./MPl.*exp(-mu.*y(1)./MPl);

H=sqrt(1./(3.*MPl.ˆ2.).*(1./2.*y(2).ˆ2.+V+y(3)+y(4)));

dydt = [y(2)./H;-3.*y(2)-Vphi./H;-4.*y(3);-3.*y(4)];

BBN_rho

options = odeset(’RelTol’,1e-20,’AbsTol’,1e-20);

[t,y] = ode45(@BBN_set,[-40. 0.],[0.; 0.; 10.ˆ(-53.);

10.ˆ(-67.)],options);

MPl=1.;

M1=10.ˆ(-14.).*MPl;

M2=10.ˆ(-29.69).*MPl;

lambda=9.43;

mu=0.;

V=M1.ˆ4.*exp(-lambda.*y(:,1)./MPl)+M2.ˆ4.*exp(-mu.*y(:,1)./MPl);

Vphi=-lambda.*M1.ˆ4./MPl.*exp(-lambda.*y(:,1)./MPl)-mu.*
M2.ˆ4./MPl.*exp(-mu.*y(:,1)./MPl);

H=sqrt(1./(3.*MPl.ˆ2.).*(1./2.*y(:,2).ˆ2.+V+y(:,3)+y(:,4)));

edphi=1./2.*y(:,2).ˆ2.+V;

pphi=1./2.*y(:,2).ˆ2.-V;

Omegam=y(:,4)./(3.*H.ˆ2);

Omegaphi=edphi./(3.*H.ˆ2);

plot(t./log(10.),log10(y(:,3)),’--’,t./log(10.),log10(y(:,4)),’-.’,

t./log(10.),log10(edphi),’-’)

xlabel(’log(a)’)

ylabel(’log(\rho)’)

legend(’\rho_r’,’\rho_m’,’\rho_\phi’)
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Chapter 6

Non-parametric Dark Energy
Degeneracies

6.1 Introduction

In the last chapter we discussed a particular class of dark energy models, scaling quintessence
fields which propose dark energy as an extra fluid component, and presented constraints
from Big Bang Nucleosynthesis within the frame of work of these models.

In this chapter we aim at deriving constraints which are model independent and
parametrisation free. This approach is more fruitful since it allows us to draw conclu-
sions about dark energy behaviour which are valid for all studies. This is here the more
important given the unexpected results we obtain which have implications for all dark
energy analyses.

The current drive in the search for the origin of acceleration is focused on trying to es-
tablish its dynamical behaviour as a function of redshift, w(z). The simplest explanation
remains a ΛCDM universe with w = −1 for all redshift but evidence for dynamics would
provide a window into new physics and therefore, uncovering the dynamics of dark en-
ergy as described by the ratio of its pressure to density, w(z) = pDE/ρDE , has become the
focus of multiple proposed experiments using a wide variety of methods. Several of these
planned surveys aim at redshifts above unity - as high-redshift measurements are useful
to constrain dark energy parameters and test for deviation from the concordance ΛCDM
model (see e.g. Albrecht et al. (2006)). Unfortunately the search for dynamical behaviour
in w is a many-fold problem. The nature of dark energy is elusive: cosmic observations
depend not only on dark energy but also on other cosmic parameters such as the cosmic
curvature, Ωk, and the total matter content, Ωm, leading to degeneracies between these
and w(z) parameters, an issue which has recently been under intense scrutiny by the
community (Kunz (2007); Clarkson et al. (2007); Linder (2005); Huang et al. (2007)). Kunz
(2007) argues that observations are only sensitive to the full energy-momentum tensor
and thus cannot see beyond a combination of the “dark component” – dark matter plus
dark energy. Also, the degeneracy between the geometry of the universe and the equa-
tion of state of dark energy has been discussed in light of the well-known result that a
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cosmological constant in the presence of spatial curvature can mimic a dynamical dark
energy (Clarkson et al. (2007)).

In this chapter we review current constraints on cosmic curvature and discuss the
reconstruction of w(z) that would follow from an incorrectly assumed value for Ωk from
observations of Hubble rate, distance luminosity and rate of change of cosmic volume
with redshift, dV/dz.

Further we analyse reconstruction of w(z) from the wrong value of the matter con-
tent, Ωm. We assume perfect data for all observations, which allows us to probe fun-
damental, “in-principle” degeneracies that are not due to finite errors and incomplete
redshift-coverage. This implies that given a specific bias in a cosmological parameter, the
degeneracies will be true no matter what progress is made in improving future cosmic
surveys. Furthermore, the key point in our reconstruction of w(z) is that it is performed
in a fully non-parametric manner, and so does not rely on the validity of any particular
parameterisation of w(z). To illustrate the power of this non-parametric approach, we
compare our method with a standard equation of state parameterisation (Chevallier and
Polarski (2001); Linder (2003)), which cannot fully resolve the above degeneracies.

6.1.1 Degeneracies in Dark Energy Studies

The success of the inflationary scenario for the early Universe and its standard predic-
tion of flatness to high precision (Ωk < 10−10) is perhaps the main reason why curvature
has traditionally been left out in analyses of dark energy. However, possible scenarios
in which inflation is consistent with non-zero spatial curvature have recently been in-
vestigated in Freivogel et al. (2006). It is also interesting to note that the backreaction of
cosmological fluctuations may cause effective non-zero curvature that may yield practi-
cal limits on our ability to measure w(z) accurately at z > 1 (see e.g. Buchert and Carfora
(2003); Li and Schwarz (2007); Rasanen (2006); Coley and Pelavas (2007)). Since mea-
surements of the CMB have so far proved consistent with flatness (e.g. Spergel et al.
(2007)) statistical quantities that measure the necessity of introducing extra parameters
— such as Bayesian Evidence or information criteria (Bassett et al. (2004); Kunz et al.
(2006); Trotta (2007)) — do not favour the inclusion of curvature as a parameter in cur-
rent analyses (Liddle (2007)). However, Bayesian evidence or information criteria do not
take into account the power of the biases that may be introduced by falsely neglecting
a parameter. We will show below that the biases introduced in neglecting curvature are
very significant at z > 1.

In general constraints on curvature are very fragile to assumptions about the dark
energy since they are primarily derived from distance measurements (dL or dA) which
are completely degenerate with curvature (Weinberg (1970)). One way to illustrate the
degeneracy between curvature and dynamics is as follows. Let us assume that we know
all cosmic parameters perfectly other than the curvature Ωk and the dark energy equation
of state, w(z). At any redshift, z∗, a perfect measurement of dL(z∗) (or dA(z∗)) allows us
to measure a single quantity. If we know w(z∗) then that quantity can be Ωk. However, if
w(z) is truly a free function, then its value at z∗ is completely free and we are left trying
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Figure 6.1: The curvature-dark energy degeneracy Contours showing the 2D marginal-
ized contours for w and Ωk based on combined data from WMAP3, 2dFGRS, SDSS and
supernova surveys. While the slope of the degeneracy differs for this combination of
data, the sign of the degeneracy is consistent with the w0 term in Eqs. (6.18),(6.19). Taken
from Spergel et al. (2007).

to find two numbers from a single observation, which is impossible.

Only when we start to correlate the values of w(z) at different redshifts can we begin
to use distance measurements alone to constrain the curvature. The standard way to
do this is to assume that w(z) can be compressed onto a finite-dimensional subspace
described by n parameters, e.g.

w(z) = Σn
j wjz

j (6.1)

In this case perfect distance measurements at n + 1 different redshifts will allow a com-
plete solution of the problem and will yield the wj and Ωk. The most extreme version of
this is to assume ΛCDM, w(z) = −1. Within this context it is of course possible to derive
very stringent constraints on the curvature. For example, combining the WMAP 3 year
data and the SDSS DR5 Luminous Red Galaxy (LRG) sample leads to Ωk = −0.003±0.010
assuming w = −1 (Tegmark et al. (2006)). The addition of extra data is crucial since the
WMAP data alone provides only the constraint Ωk = −0.3040 + 0.4067ΩΛ (Spergel et al.
(2007)).

It is a highly non-trivial statement that flat ΛCDM models provide such a good fit
to all the data, but we must be aware that such constraints on the curvature are artifi-
cially strong in the sense that adding more dark energy parameters will lead to an almost
perfect degeneracy with the curvature. This is visible in Fig. 17 of the WMAP3 paper,
Spergel et al. (2007) (here Fig. 6.1), which shows the correlation between a constant w and
Ωk.

Hence we can currently say very little about the true value of the Ωk and the belief
that the spatial curvature is small is essentially based on Occam’s Razor. Although one
could fit distance measurements with any value of Ωk, the required w(z) functions would
be disfavoured by Bayesian model selection which penalize models with extra parame-



64

ters that do not significantly improve the fit. We show in detail later the required w(z)
functions to do precisely this.

At present a well-defined programme for measuring the spatial curvature of the cos-
mos does not exist. To illustrate this, consider fixing the dark energy to be described by
only n parameters. One would hope that given this restriction the resulting constraints
on Ωk would be independent of the precise choice of the n parameters, i.e. indepen-
dent of the parameterisation. However a little thought makes it clear that this cannot be
true. A parameterisation of w(z) which does not allow mimicry of curvature will provide
good, decorrelated constraints on the curvature (which does not mean the corresponding
best-fit will be a good fit to the data) while a model which allows perfect mimicry of the
dynamics of the curvature (i.e. (1 + z)2) will show highly correlated constraints.

Figure 6.2: The curvature-dark energy degeneracy likelihood for Ωk for different param-
eterisations of dark energy. Assuming a constant model for w, allows Ωk to be tightly
constrained at 2σ to be near 0. However introducing dynamics reduces these constraints
significantly. Here X(z) = ρX(z)/ρX(0) is the dark energy density, which Wang and
Mukherjee (2007) assume is a free function below some cut-off redshift zcut. The value of
X at redshifts zi = zcut(i/n), i = 1, 2.., n are treated as n independent model parameters
that are estimated from the data. A specific functional form for X is assumed above the
cut-off redshift. The likelihoods are given for two such forms of X(z); namely a power
law, X ∝ (1 + z)α for z > zcut, and an exponential function X ∝ eαz . In these figures
there are n = 3 independent redshifts below a cut-off redshift of zcut = 1.4. Taken from
Wang and Mukherjee (2007).

This dilemma is visible in various recent studies attempting to constrain cosmic cur-
vature in the presence of multiple dark energy w(z) parameters Gong et al. (2008); Mersini-
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Figure 6.3: Left - 1σ error contours assuming flatness for the dark energy parameters
w0 and wa for the CPL parameterisations. Right - as on the left but with curvature left
free and marginalised over. Note how pure distance measurements suffer strongly even
with the very limited w(z) parameterisation but that when all the surveys are combined
the final error ellipse is essentially unaffected. This is to be expected from Equation (6.5)
which shows how Ωk can be determined from simultaneous Hubble rate and distance
measurements. Figure from Knox et al. (2006).

Houghton et al. (2008); Wright (2007); Ichikawa et al. (2006); Zhao et al. (2007); Ichikawa
and Takahashi (2007); Wang and Mukherjee (2007); Huang et al. (2007). For some popular
parameterisations constraints on Ωk are of order |Ωk| < 0.05 at 2σ. For other parameter-
isations the constraints evaporate and even Ωk ∼ 0.2 cannot be ruled out (see Fig. 6.2,
which is taken from Wang and Mukherjee (2007)).

Alternative cosmic measurements sensitive to curvature include the Integrated Sachs
Wolfe (ISW) effect, which is sensitive to the growth of the metric fluctuations Φ, which
is in turn sensitive to both dark energy and curvature. Recent work to investigate the
ISW effect as a function of redshift uses the combination of CMB data with informa-
tion on large scale structure (Giannantonio et al. (2006); Ho et al. (2008)). Combining
WMAP with such suitable tracers of large scale structure shows that Φ has been decreas-
ing with cosmic time (Aguirre et al. (2001)), which rules out a large positive curvature
which would have predicted the opposite trend.

Another measurement sensitive to the growth function is differential number counts
dN/dz, e.g. of clusters. This is a potentially sensitive test which, given a constant co-
moving number of objects, reduces to a test of the rate of change of cosmic volume with
redshift, dV/dz. We discuss in detail below how perfect measurements of dV/dz allow re-
construction of w(z), and we discuss the resulting errors on dark energy when systematic
biases in cosmic parameters are present.

Measurements of the power spectrum from CMB data and from measurement of
Baryon Acoustic Oscillations (BAO) provide estimates of the matter content of the uni-
verse. While constraints on Ωm are sharpened by combining data from many observa-
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tions, the best-fit value is often derived on the assumption of flatness (Tegmark et al.
(2006); Percival et al. (2007)). Unlike the case for cosmic curvature the degeneracy be-
tween observables and the matter content is perfect and we show that incorrectly assum-
ing a particular value for Ωm can also mimic deviations from ΛCDM.

6.1.2 Future surveys

We will show in equation (6.5) that simultaneous measurements of the Hubble rate H(z),
distance D ∝ dA, dL and D′(z) allow for a perfect measurement of Ωk. BAO allow for the
simultaneous measurement of both distance and Hubble rate at the central redshift (Seo
and Eisenstein (2003); Blake and Glazebrook (2003)). For a flat universe D′(z) ∝ 1/H(z),
but in a curved universe this is not true: the curved geodesics mean that D′(z) contains
extra information encoded in Ωk.

Measuring D′(z) is in principle possible with future BAO, weak lensing and super-
nova surveys. In particular, cross-correlation tomography of deep lensing surveys ap-
pears to be a very powerful probe of curvature when combined with BAO surveys (Bern-
stein (2006)), assuming that self-calibration is possible. In principle it should be possible
to measure the cosmic curvature to an accuracy of about σ(Ωk) ' 0.01 for an all-sky
weak lensing and BAO survey out to z = 10. In principle such a survey would be able to
measure distances to about 10−4f

−1/2
sky in redshift bins of width ∆z = 0.1 out to z = 2.5

(Bernstein (2006)). This relies critically on the combination of weak lensing and BAO
data since constraints from either observations alone are significantly degraded. This can
also be seen in Fig. (6.3) which shows the error ellipses for the parameters in the CPL
parameterisation, Eq. (2.46), assuming flatness (left) and leaving Ωk free (right). Note
that although individual error ellipses are significantly degraded, the combined data sets
have an almost unchanged error ellipse.

6.2 Dark Energy from observations

There are three key observables of the background geometry which play an important
role in determining w(z), namely measurements of distances, of the expansion history
(i.e. the Hubble parameter) and of the change in the fractional volume of the Universe
(e.g. from number-counts).

The principal method to date is to relate measurements of the distances of objects
to the cosmology of the Universe. This is done via either standard ‘rulers’ of known
length - giving the angular diameter distance dA(z) — or via standard ‘candles’ of known
brightness which results in the luminosity distance dL(z), Eq. (1.19). These are related via
the reciprocity relation Eq. (1.22). It will prove useful to define

D(z) =
1√−Ωk

sin
(√

−Ωk

∫ z

0
dz′

H0

H(z′)

)
. (6.2)

Here, Ωk is the usual curvature parameter given by Eq. (1.9), and H(z) is given by the
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Friedmann equation, Eq. (1.17), where we now include curvature as well as matter and
dark energy,

H(z)2 = H2
0

[
Ωm(1 + z)3 + Ωk(1 + z)2 + ΩDEf(z)

]
(6.3)

where from Eq. (5.2)

f(z) = exp
[
3

∫ z

0

1 + w(z′)
1 + z′

dz′
]

(6.4)

and ΩDE = 1−Ωm−Ωk. Thus, given a cosmological model, we may calculate any distance
measure we choose.

The Hubble parameter is in itself an observable which will play an important role
in future dark energy experiments. Knowledge of H(z) allows us to directly probe the
dynamical behavior of the universe, and it will be directly determined from BAO sur-
veys which simultaneously provide the angular diameter distance, dA at the same red-
shift by exploiting the radial and angular views of the acoustic oscillation scale (Seo and
Eisenstein (2003); Blake and Glazebrook (2003)), a fact that will provide key new data in
coming years (Tegmark et al. (2006); Bassett et al. (2005); Glazebrook et al. (2007)).

The third key background test we will discuss here is the observation of fractional
volume change as a function of redshift, given by Eq. (1.21), which can in principle be
determined via number-counts or the BAO.

Given any two of the above observables we may deduce the third. Perfect observa-
tions of these observables should allow us, in principle, to be able to reconstruct two
free functions when in fact we only need to reconstruct one, namely w(z), as well as two
cosmological parameters, Ωm and Ωk. (Note that if we know H(z) perfectly, we know
H0 = H(0), and so this is no longer a free parameter in the same sense.) How do we find
these?

We may determine the curvature directly, and independently of the other parameters
or dark energy model, via the relation (Clarkson et al. (2007)),

Ωk =
[H(z)D′(z)]2 −H2

0

[H0D(z)]2
, (6.5)

which may be derived directly from Eq. (6.2). Such independent measurements of the
curvature of the universe can in turn be used to test the Copernican Principle in a model-
independent way (Clarkson et al. (2008)).

6.2.1 Expansions of the background observables

To illustrate the dependency of the background observables we consider here we expand
them in terms of the cosmological parameters εm, Ωk and the parameter x = z/(1 + z).
Here εm := Ωm∗ − Ωm, where Ωm∗ is the true value of the matter energy density and Ωm

is the assumed value, as seen in Eq. (6.17).

The expansions for H(x), dL(x), V ′(x) yield

x =
z

1 + z
(6.6)
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H(x) = H0

[
1 +

1
2
{
3(1 + w0(1− Ωm∗))x− (1 + 3w0)Ωkx− 3w0εm

}]
(6.7)

dL(x) =
cx

H0

[
1 +

{
(5 + 3w0(Ωm∗ − 1)) + (1 + 3w0)Ωk + 3w0εm

}
x

]
(6.8)

V ′(x) =
c3x2

H3
0

[
1 +

{
(−1 + 3w0(Ωm∗ − 1)) + (1 + 3w0)Ωk + 3w0εm

}
x

]
(6.9)

It can be seen from Eqs.(6.7, 6.8, 6.9) that the leading term corresponds to that of the
standard flat ΛCDM model. From these equations we can directly compute the error on
the particular observable as a function of redshift based on the difference between the
‘true’ cosmology and the ‘assumed’ cosmological model.

6.2.2 Obtaining the Dark Energy equation of state from Observations

Assuming we have ‘perfect’ and uncorrelated data from observations we would like to
reconstruct w(z) without assuming a specific parameterisation. Depending on the partic-
ular observable of interest, there are different ways to reconstruct w.

Dark energy from Hubble

It is straightforward to find w(z) from the Hubble rate Eq. (6.3), and is given by
Huterer and Turner (2001); Linder (2005):

w(z) = −1
3

ΩkH
2
0 (1 + z)2 + 2(1 + z)HH ′ − 3H2

H2
0 (1 + z)2[Ωm(1 + z) + Ωk]−H2

. (6.10)

This tells us w(z) provided we already know Ωm and Ωk. However, this reveals a de-
generacy between Ωm and w(z) which cannot be overcome by background tests alone
(Kunz (2007)). In essence, geometric background tests can measure the combination
Ωm + ΩDEf(z)/(1 + z)3, but not the two separately. Another way to view this is by
differentiating Eq. (6.10), and eliminating Ωm to give a differential equation for w(z) in
terms of H,H ′ and H ′′; the constant arising in the general solution to this differential
equation is Ωm.

Similarly, we can reconstruct w(z) from the other two tests on their own.

Dark energy from distance measurements

From distance measurements, we may invert Eq. (6.2) to find

w (z) =
2 (1 + z)

(
D2Ωk + 1

)
D′′ −D′

[
Ωk (1 + z)2 D′2 + 2ΩkD (1 + z) D′ − 3− 3 D2Ωk

]

3
{

[Ωk + Ωm (1 + z)] (1 + z)2 D′2 −D2Ωk − 1
}

D′
.

(6.11)

Reconstructing w(z) from volume measurements (Eq. 1.21) as an analytical formula
is rather tricky (as it involves the root of a quartic power). It is simpler instead to recon-
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struct w(z) by solving the differential equation for f(z) and then differentiating to get
w(z).

Dark energy from volume measurements

Starting with Eq. (6.2), we solve for the derivative of the Hubble parameter and
equate this with the expression for H ′ in terms of w(z) from Eq. (6.10) and use

w(z) =
(1 + z)f ′

3f
− 1 (6.12)

to yield a first order differential equation for f , namely

f ′(z) =
A(z) + B(z) + C(z)

−H2
0V ′ΩDE

, (6.13)

where

A(z) = −4
(
V ′H0

(
c3

√
f(z)ΩDE + X11 + V ′H3

0Ωk (f(z)ΩDE + X11)
))1/2

,

with
Xab = (1 + z)2(aΩk + bΩm(1 + z)),

B(z) = 2H2
0V ′′ (f(z)ΩDE + X11)

and
C(z) = H2

0V ′′ X32

1 + z
.

We solve this for f(z) and then use (6.12) again to yield w(z). The solution for f(z) is
unique since we demand f(0) = 1.

6.3 Reconstructing w(z)

If we knew Ωm and Ωk perfectly then our three expressions for w(z) would yield the
same function w(z), assuming we lived in an exact FLRW universe. But what if — as
is commonly assumed — we impose Ωk = 0 when in fact the true curvature is actually
non-zero? It is usually implicitly assumed that the error on w(z) will be of order Ωk, and
this is indeed true for z . 0.9 (see Figure 6.4). However, this intuition is strongly violated
for z & 0.9, even given perfect knowledge of dL(z), H(z) or V ′(z). Furthermore, are there
similar issues from an imperfect knowledge of Ωm?

6.3.1 Zero curvature assumption

We can easily see the implications of incorrectly assuming flatness by constructing the
functions dL(z) and H(z) under the assumption of the ΛCDM in a curved Universe (i.e.
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Figure 6.4: Reconstructing the dark energy equation of state assuming zero curvature
when the true curvature is 2% in a closed ΛCDM universe. The w(z) reconstructed from
H(z) is phantom (w < −1) and rapidly acquires an error of order 50% and more at red-
shift z & 2, and diverges at finite redshift. However this doesn’t necessarily constitute
a problem since there are consistent models which exhibit such behaviour, e.g. a scalar
field with a negative valued potential (Kunz (2008)). The reconstructed w(z) from dL(z)
for Ωk < 0 is phantom until z ≈ 0.86, where it crosses the true value of −1 and then
crosses 0 at high redshift, where the bending of geodesics takes over from dynamical
behavior, producing errors in opposite direction to the DE reconstructed from H(z). In
order to make up for the missing curvature, the reconstructed dark energy is behaving
like a scalar field with a tracking behavior. These effects arise even if the curvature is
extremely small (< 0.1%).
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assuming w = −1, Ωk 6= 0) and inserting the results into Eqs (6.10) and (6.11).
If we then set Ωk = 0 in Eqs. (6.10) and (6.11) we arrive at the two corresponding

w(z) functions (if they exist) required to reproduce the curved forms for H(z) and dL(z)
in a flat Universe with dynamic dark energy 1. This would apply equally to dA(z) for that
matter - the results are exactly the same for any distance indicator. Figure 6.4 presents
this method using for simplicity the concordance value of w = −1 but we have checked
that the qualitative results do not depend on the ‘true’ underlying dark energy model 2.
We assume Ωm = 0.3 in all expressions though numbers quoted are weakly dependent
on this. The resulting (spurious) w(z) can then be thought of as the function required to
yield the same H(z) or dL(z) as in the actual curved ΛCDM model: e.g.,

dL[flat, w(z)] = dL[curved, w(z) = −1]. (6.14)

For example for the Hubble rate the reconstructed w(z) can be found analytically to
be

w(z) = −1
3

Ωk(1 + z)2 + 3ΩDE

Ωk(1 + z)2 + ΩDE
, (6.15)

without any dependence on a specific parameterisation.
In the figure we show what happens for ΛCDM: curvature manifests itself as evolving

dark energy. In the case of the Hubble rate measurements this is fairly obvious — we
are essentially solving the equation ΩDEf(z) = ΩΛ + Ωk(1 + z)2 where f(z) is given by
Eq. (6.4). For Ωk > 0, w(z) must converge to −1/3 to compensate for the curvature. For
Ωk < 0, the opposite occurs and a redshift is reached when w → −∞ in an attempt to
compensate albeit unsuccessfully for the positive curvature. Already we can see why the
assumption that the error in w is of order the error in Ωk breaks down so drastically.

Interestingly, the curved geodesics imply that the error in w reconstructed from dL(z)
and H(z) have opposing signs at z & 0.9, as can be seen by comparing the panels for the
Hubble rate and the distance indicator in Fig. (6.4). Above the critical redshift the effect
of curvature on the geodesics becomes more important than the pure dynamics, and the
luminosity distance flips w(z) in the opposite direction to that reconstructed from H(z).

In the case of volume measurements the reconstructed w(z) has a similar form to the
w we obtained from the distance measurements D(z). This can be seen from Eq. (1.21),
where the distance information enters the equation as a square power. For example in
the closed Universe case the reconstructed w(z) drops to more phantom values (−2.5
compared to −1.3 for the distance measurements) in order to make up for the missing
curvature.

Again the effect of curvature on the geodesics dominates the effect of dynamics for
large z, and the distance contribution in the volume measurements flips the reconstructed
w(z) at z = 1.6. The critical redshift of this flip is determined by the redshift at which
the curvature of the geodesics affecting distance measurements becomes more important
than the expansion rate. This playoff becomes more finely balanced for volume measure-

1We show in the Appendix an example used to obtain these expressions and produce the figures
2In fact, the results presented here are qualitatively the same for any assumed Ωk which is different from

the true value.
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ments due to the fact that H(z) appears both in D(z) (as a square power) and on its own.
Hence w(z) has to work harder in reproducing curvature to counterbalance the opposing
trends of expansion history and geometry, and so the balance is achieved at higher red-
shift. The specific redshift at which this happens is dependent on Ωm in that lower values
imply higher value of the critical redshift.
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Figure 6.5: Reconstructed dark energy from volume measurements while incorrectly
assuming flatness - Similar to the case for distance measurements in a closed Universe,
the reconstructed w(z) must initially be phantom in order to compensate for curvature,
and crosses the true value of w = −1 at a redshift of z ∼ 1.6, which is greater than the
redshift of 0.86 for the distance measurements alone (Clarkson et al. (2007)). After this
point, the w(z) increases to overcome the curvature of the geodesics.

We have shown that incorrectly assuming flatness can result in a reconstructed w(z)
that mimics dynamics, yielding errors on w that are much larger than the order of er-
rors on Ωk. One might then ask if similar errors will result when incorrectly assuming a
particular value for the matter density in the Universe, Ωm.

6.3.2 Uncertainties in the Matter content Ωm

We consider the similar case of reconstructing w(z) in a flat Universe but here the errors
occur when assuming the concordance value of Ωm = 0.3 incorrectly. For example in this
case the w(z) reconstructed from Hubble measurements Eq. (6.10) reduces to

w(z) = −1
3

2(1 + z)HH ′ − 3H2

H2
0 (1 + z)2[Ωm(1 + z)]−H2

. (6.16)

Similar expressions are found for both the distance and volume measurements. The
w(z) curves obtained from incorrectly assuming Ωm = 0.3 are shown in Fig. 6.6. If we
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assume flatness for this example we find that changing the value of Ωm can only affect
the dark energy density, and thus change the value of H(z). As Ωm is only present in
all three observables through H(z) or integrals of 1/H(z), the reconstructed w(z) is the
same for all three measurements. Interestingly, the reconstructed w(z) curves do not go
through w = −1 at z = 0, but are spread between -0.85 and -1.15 for 0.2 < Ωm < 0.4. This
is also shown in Fig. 6.7.
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Figure 6.6: Reconstructed dark energy from an incorrectly estimated matter density
- The reconstructed w(z) for changing Ωm from all three measurements (H, D, dV/dz).
Since we assume flatness while changing Ωm, all three observables yield the same recon-
structed w(z), since Ωm only enters the functions through H(z) or integrals of 1/H . For
Ωm > 0.3 the dark energy tries to compensate for the extra matter contribution and so
asymptotes to w = 0 as z → ∞. For Ωm < 0.3 the w(z) is of the same form to what
is reconstructed from neglecting curvature in a closed Universe (see Fig. 6.4), and the
phantom w tends to −∞ as it attempts to compensate for the ‘missing’ matter density.

Given any scenario of an assumed cosmology that differs from the ‘true’ Universe, we
can derive the value of today, w(z = 0) from both the Hubble and distance measurements
as

w(0) =
3− 4Ωk∗ − 3Ωm + Ωk

6Ωm + 6Ωk∗ − 3Ωm∗ − 3− 3Ωk
(6.17)

∼ εm

(−1 + Ωm∗)
− 2Ωk

3(−1 + Ωm∗)
− 1,

where εm = Ωm∗ − Ωm as defined above where the asterisk indicates assumed but incor-
rect values of the corresponding quantities. We vary this equation in one ‘true’ density
(Ωm or Ωk) at a time, while keeping the other constant at the assumed value of either
Ωk = Ωk∗ or Ωm = Ωm∗ to produce the curves in Fig. 6.7. This parameter w(z = 0) al-
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lows us to easily quantify the affect of assuming an incorrect cosmological model on the
inferred low-redshift value of w.
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Figure 6.7: Low redshift variation in w(z) from H(z) and D(z)- incorrectly assuming
concordance values of Ωm = 0.3 and Ωk = 0 results in a variation in the low-redshift
value of w(z) reconstructed from observables. The relationship between the error in the
cosmological parameter and the reconstructed value for w (while keeping the other cos-
mological parameter fixed at the prior value) is shown for both Ωm (the green curve) and
Ωk (the blue curve).

6.4 Parametric Degeneracies

We now want to connect the non-parametric approach we have followed above with
standard approaches to degeneracies and so we expand Eqs. (6.10) and (6.11) for the
Hubble rate and distance measurements to first order in x = z/(1 + z). This allows us to
link to the parameters (w0, wa) used in the Chevallier-Polarski-Linder parameterisation,
Eq. (2.46) which is used in the Dark Energy Task Force report. The values of (w0, wa)
obtained using this expansion are given below.

From Hubble rate measurements

w0 = −Ωk + 3ΩDE

3(1− Ωm)

wa =
4
3

ΩkΩDE

(1− Ωm)2
(6.18)

From luminosity distance measurements
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w0 = −Ωk + 3ΩDE

3(1− Ωm)

wa = −2
3

Ωk(Ωk − ΩDE)
(1− Ωm)2

(6.19)

We plot in Fig. (6.8) the non-parametric reconstructed w(z) along with the recon-
structed wCPL(z) from the coefficients given by Eqs. (6.18, 6.19) for the observables H(z)
and dL(z).

6.5 Conclusions and Outlook

We have explored the degeneracies between the dark energy equation of state w(z) and
cosmic parameters using a non-parametric approach. This means we are able to write
down the precise w(z) that will be reconstructed from perfect data if slightly wrong or
biased values for the cosmic parameters Ωk, Ωm are assumed. This is complementary to
traditional methods which typically use an aggressive compression of the w(z) function
onto a couple of parameters (usually w0, wa) and then study the degeneracy between
these and other cosmic parameters. Our approach is superior in one way however: de-
generacies between w(z) and some cosmic parameters such as Ωk can appear to be quite
weak in the parameterised approach. However, in the case of distance measurements
this is completely artificial and due to strong assumptions about the allowed form of
w(z) since the degeneracy is perfect if w(z) is allowed to be totally free.

We show the reconstructed w(z) from measurements of Hubble rate, distance and
volume measurements for both wrongly assumed Ωk and Ωm. For all 3 observables the
errors in w(z) that result from uncertainty in the cosmic parameters are much larger than
the uncertainty in Ωk or Ωm, especially at large redshifts. We have shown that curvature
affects measurements of H(z) and D(z) in complementary ways, with the error at high
redshift having opposite signs for an error in Ωk. In the case of an Ωm error, Hubble,
distance, and volume measurements all lead to the same erroneously reconstructed w(z),
a manifestation of the dark matter-dark energy degeneracy highlighted in Kunz (2007).

In this work we have assumed perfect data for Hubble rate, distance and volume at
all redshifts. It would be interesting to extend our non-parametric approach to the case
of imperfect data which has incomplete redshift coverage and errors on the observables.
This is left to future work but will allow contact with the approaches in Shafieloo et al.
(2006); Espana-Bonet and Ruiz-Lapuente (2005).

6.6 Appendix

The calculation, derivation of expressions, and plot drawing in this work were produced
using MATHEMATICA and MAPLE. MATHEMATICA was used for inversion of the expres-
sions for dL and H(z), and MAPLE was used for numerical plot production and solving of
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Figure 6.8: Degeneracies in standard parameterisations - w(z) = w0 + wa
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w(z) inferred from Hubble and distance measurements. Using a limited parameterisa-
tion of w(z) like this incorrectly makes it appear that dark energy and curvature are not
completely degenerate, leading to artificially strong constraints on curvature and w0, wa.
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the differential equation for V ′(z). Here we provide an example of the MAPLE code used
to numerically obtain the form for dL and the plot of the reconstructed w(z) in Fig. (6.9).

Curv_dL

Define H(z) and comoving distance rL(z)

> Hubble:=z->(#subs(Omega[Lambda]=1-Omega[m]-Omega[k],H[0]*sqrt(Omega[m]

*(1+z)ˆ3+Omega[k]*(1+z)ˆ2+Omega[Lambda]*exp(+3*Int((1+w(z1))/(1+z1),z

1=0..z)))):

rL:=z->subs(a[0]=c/H[0]/sqrt(-Omega[k]),(a[0]*(1+z)*sin(c/a[0]*Int(1/

Hubble(z2),z2=0..z))));

Use rL to define dL(z) and invert to give w(z)

> isolate(dL(z)*(c/H[0])=rL(z),Int(1/(H[0]*(Omega[m]*(1+z2)ˆ3+Omega[k]*
(1+z2)ˆ2+Omega[Lambda]*exp(3*Int((1+w(z1))/(1+z1),z1=0..z2)))ˆ(1/2)),

z2 = 0 .. z));

diff(%,z);

simplify(isolate(%,Int((1+w(z1))/(1+z1),z1 = 0 .. z)));

diff(%,z):

wz:=simplify(collect(simplify(isolate(%,w(z))),diff,simplify),size);

Define a set of {Ωk, w(z)} parameter values for the observed dL and another to substitute in
the expression yielding the recovered w(z)

> ok:=’ok’:

Params_real:=[Omega[m] = .3, Omega[k] = ok];

Params_prior:=[Omega[m] = .3, Omega[k] = 0];

w_real_form:=z->-1+0*(z)/(1+z);

Hubble_real:=subs(Omega[Lambda]=1-Omega[m]-Omega[k],Params_real,(simp

lify(value(eval(subs(w=w_real_form,Hubble(z2)))))))assuming z2>0;

dL_real:=subs(Params_real,simplify(H[0]/c*subs(a[0]=c/H[0]/sqrt(-Omeg

a[k]),a[0]*(1+z)*sin(c/a[0]*Int(1/Hubble_real,z2=0..z)))));

Plot a set of curves for the derived w(z) and for open universes Ωk = {−0.001,−0.01,−0.05,−0.2}.
The produced plot is shown on Fig. 6.9.

> plotsetup(ps,plotoutput=‘plot1.ps‘,plotoptions=‘portrait,width=600,he

ight=500,color=rgb,noborder‘);

oklist:=[-(0.001,0.01,.05,.2)];

#,0.001,0.01,.05,.2];

for i to nops(oklist) do

ok:=oklist[i]:

pp[i]:=plot([rhs(simplify(dsubs(dL(z)=dL_real,Params_prior,wz),size))
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,w_real_form(z)],z=0..5,color=[red,blue],discont=false):

od:

display([seq(pp[ii],ii=1..nops(oklist))],axes=boxed,view=[default,def

ault]);
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Figure 6.9: Figure produced by the sample code provided in the Appendix show-
ing the reconstructed w(z) from distance luminosity for curvature values Ωk =
{−0.001,−0.01,−0.05,−0.2}
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Chapter 7

Conclusion

The work presented in this thesis was developed from October 2005 through January
2008. During this period the WMAP satellite announced results from its first 3 years of
operation, the Nobel prize for physics was awarded to John Mather and George Smoot
for their work on COBE, the Riess et al team published their findings with the High-z Su-
pernovae obtained with the Hubble Space Telescope, the ESSENCE group presented data
from their supernovae project, and recently WMAP released its 5yr dataset, presenting
us with the most precise temperature and polarization CMB maps to date.

The topics covered here are extensive in range but perhaps not surprisingly so. With a
large wealth of precision data continously being made available, challenging theoretical
model building and improving data analyses, it is difficult not to be drawn to the appeal-
ing scope of questions being addressed. In light of this, the extent of subjects discussed in
this thesis, though ranging from early to late times, outline but a small part of the exciting
and urgent challenges that form cosmology today.

The consistency condition is an important ingredient of inflationary models. In chap-
ter 3 we discussed and further examined its implications for the large class of inflationary
models which is single-field slow-roll inflation. That such a relation exists has long been
recognized in the literature: in inflationary models the amplitude of the two spectra is
not independent and the tilt of the tensor spectrum ties together the relative amplitude
of the two (Kosowsky and Turner (1995); Lidsey et al. (1997)). This is however a mere
approximative result in the slow roll expansion. Here we took this relation a step further
and developed a framework uncovering all the connections that can be derived between
scalar and tensor spectra to any degree of approximation in the slow roll context. It is
hoped this relations will one day be able to prove or exclude the inflationary paradigm,
though in today’s observational expectations the most optimistic forecasts for gravita-
tional waves estimate none but the first will be put to proof in the near future (Song
and Knox (2003)). However as we’ve shown in chapter 4 the interest of the consistency
equation goes beyond the observational confirmation of inflationary theories and can be
necessary to ensure the correct implementation of the predictions of inflation, guarantee-
ing consistency in the conclusions drawn from microwave background data.
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We also showed that the hierarchy of consistency equations does exhaust the web
of connections that an inflationary source for the perturbations originates. In this way
other relations, claimed to derive from inflationary models in the literature – be it exact
or approximate – must be deduced from this hierarchy and cannot bring new insight or
information to those already exposed. We illustrated this by considering the expressions
featured in Chung and Romano (2006); Lidsey and Tavakol (2003).

Chapter 4 is as we mentioned above an example of an academic application of the
consistency equation beyond its observational use as a validity check. In this chapter we
implemented a shift in scale in the perturbation spectra at last scattering, in the context
of deriving constraints for single-field inflationary models. Because the first consistency
equation is only an approximate relation if we ensure it holds at one scale it wont neces-
sarily be valid at another. Using the second consistency equation - making a requirement
on the running of the tensor spectral index - guarantees that the tensor tilt satisfies the
first consistency relation at all other scales thus validating the framework we developed.

The loss of information when performing a marginalization on a subset of parameters,
and its connection to the point in the dataset at which the the constraints are inferred
were the starting point for this work. For presentation purposes one often projects the
full N-dimensional volume onto a 2D surface and we showed that for a particular class
of models — where running of the spectral index is allowed — applying our method
can prevent the deteoration of constraints that occurs due to the inclusion of an extra
parameter. This reduction in uncertainty can be as large as 5 times, particularly when
compared to that observed in the WMAP team’s analysis.

The method we outlined, although here examplified on CMB data, is of wider ap-
plication and can be used to improve constraints on other data sets provided such an
expansion on its parameters can be performed. It is worth mentioning that analytical
expressions for the shift in scale corresponding to the pivot point may in general not be
readily available. Here we applied this for decorrelating a parameter against its deriva-
tive, so the expressions for shifting variables along the expanded spectrum are linear and
easily derived. As an example of a further application we suggested the normalization
of the spectrum of density fluctuations σ8.

In chapters 5 and 6 we address the important issue of detection of dynamics in late
time acceleration. The alternative being a cosmological constant scenario carrying deep
foundational problems for physics, much of today’s observational efforts in dark energy
are focused in assessing its dynamical behaviour, w(z).

In chapter 5 we examine constraints on early dark energy as provided by Big Bang
Nucleosynthesis. Scaling fields are one of the best candidates for presenting us with
a sizeable fraction of dark energy today, while negligible at early times, and at the same
time theoretically well founded. We combine the predictions of dynamics of scaling fields
with those of BBN constraints and examine implications for observables today compared
to those in a LCDM scenario. A look at the deviations of the Hubble rate and the distance
modulus tells us these measurements are below the detectivity limit forecasts for near fu-
ture stage-III experiments (DETF). This means dark energy may well be dynamical even
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if we don’t detect any dynamics in the next decade. To notice however that allowing
for phantom behaviour dilutes the constraints presented here, since w < −1 allows for a
swifter variation in ΩDE. Of particular surprise were the results associated with the com-
mon parametrization CPL, which doesn’t show enough flexibility to describe a minimally
coupled scaling field which satisfies the BBN bounds. Given that this parametrization is
the basis for many surveys’ figure–of–merit, the implication hereof is that the derivation
of constraints based on its parameters may be systematically biasing away from scaling
models.

Another well known problem in detecting dark energy dynamics is the well know
degeneracies between cosmological parameters and dark energy’s dynamical behaviour.
Studies of dark energy have traditionally minimized uncertainties in the cosmological pa-
rameters, since they add an unwelcome complexity to the analysis and deteorate already
weak constraints on the w(z) parametrization. In chapter 6 we examine the degeneracies
between dark energy dynamics, dark matter, and curvature using a non parametric and
non perturbative approach. The use of a non parametric approach allows us to write
down the exact w(z) that will be reconstructed if slightly wrong values for Ωm, Ωk are as-
sumed, without having to assume a specific form for the EoS. The assumption of perfect
data allows us to probe fundamental degeneracies that are not due to finite errors and
will be true no matter what progress is made in improving future cosmic surveys. Even
assuming perfect Hubble, distance and volume measurements, the bias in w(z) for z > 1,
is up to two orders of magnitude larger than the corresponding errors in Ωk or Ωm.

We reconstructed w(z) from measurements of Hubble rate, distances, and volume,
and showed that curvature has complementary effects in H(z) and dL, although the mat-
ter content is unable to distinguish between the three observables. The opposite trend
observed in the Hubble rate and luminosity distance may allow to measure curvature in-
dependently of other cosmological parameters (apart from H0) as we argued in Clarkson
et al. (2007). The inability of the dark matter content to discriminate between observables
illustrates the degeneracies in the whole energy-momentum tensor as discussed in Kunz
(2007).

Concluding Remarks

It is hard to say where will cosmology go from here. At the moment we are op-
timistic about prospects for detecting gravitational waves, with the new generation of
polarization experiments such as ESA’s Planck Surveyor CMB satellite, which will yield
anisotropy measurements up to l ∼ 3000 improving the precision on cosmological pa-
rameters such as the Hubble constant, the geometry of the universe, and the matter con-
tent.

The search for dark matter is progressing, with experiments increasing in sensitivity
so that over the next couple of decades we may have probed most of the parameter space
allowed by its most compelling candidates – some form of elementary particles left over
from the big bang (Spooner (2007)).

The situation with dark energy being much more complicated — we are still far from
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a compelling hypothesis on what is causing acceleration — is nevertheless a reason to be
optimistic. Observations have begun to probe its nature, and future experiments are fo-
cusing on distinguishing between a cosmological constant, modifications of General Rel-
ativity, or backreaction effects. The Supernova/Acceleration Probe (SNAP)1, a proposed
space-based telescope to look at Supernovae up to z ≈ 2 will allow to significantly re-
duce uncertainties (both statistical and systematic) on dark-energy parameters. Planned
wide-field surveys such as the Dark Energy Survey2 (DES) and the Large Synoptic Survey
Telescope (LSST), will probe the the effect of dark energy on the growth of structure by
looking at the weak lensing signal on scales up to the arcminute. Large BAO surveys are
also currently being designed, and the Atacama Cosmology Telescope3 will soon begin
studying the evolution of galaxy clusters and constrain dark energy properties.

From both the observational as from the theoretical perspectives these are challenging
questions to face. The answers in which we are by no means wise yet may be around the
corner or miles away but they will most likely revolutionize our understanding of the
universe and perhaps that of the whole of physics.

1http://snap.lbl.gov/
2http://www.darkenergysurvey.org/
3http://www.physics.princeton.edu/act/
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