University of Sussex

A University of Sussex DPhil thesis

Available online via Sussex Research Online:

http://eprints.sussex.ac.uk/

This thesis is protected by copyright which belongs to the author.

This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given

Please visit Sussex Research Online for more information and further details

The XMM Cluster Survey: A new cluster candidate sample and detailed selection function

Mark Hosmer

Submitted for the degree of Doctor of Philosophy University of Sussex September 2009

Declaration

I hereby declare that this thesis has not been and will not be submitted in whole or in part to another University for the award of any other degree.

Signature:

Mark Hosmer

UNIVERSITY OF SUSSEX

MARK HOSMER, DOCTOR OF PHILOSOPHY

THE XMM CLUSTER SURVEY:

A NEW CLUSTER CANDIDATE SAMPLE AND DETAILED SELECTION FUNCTION

SUMMARY

In this thesis we present the XCS DR3 cluster candidate list. This represents the first major update of the XMM Cluster Survey since 2005. The candidate list comprises of 1365 entries with more than 300 detected counts distributed over 229 deg^2 . We note that a larger area (523 deg^2) is available for the study of X-ray point sources and that the new XCS point source sample has more than 130,000 entries. After redshift follow-up and X-ray spectral analysis, these 1365 clusters will comprise the largest homogeneous sample of medium to high redshift X-ray clusters ever compiled. The future science applications of the XCS DR3 clusters include the study of the evolution of X-ray scaling relations and a measurement of cosmological parameters. In support of these science applications, we also present in this thesis detailed selection functions for the XCS. These selection functions allow us to quantify the number of clusters we didn't detect in our survey regions. We have taken two approaches to the determination of the selection function: the use of simple (circular & isothermal) β models and the use of 'observations' of synthetic clusters from the CLEF N-body simulation. The β model work has allowed us to explore how the selection function depends on key cluster parameters such as luminosity, temperature, redshift, core size and profile shape. We have further explored how the selection function depends on the underlying cosmological model and applied our results to XCS cosmology forecasting (Sahlen et al. 2009). The CLEF work has allowed us to explore more complex cluster properties, such as core temperature, core shape, substructure and ellipticity. In summary, the combination of the cluster catalogues and selection functions presented herein will facilitate field leading science applications for many years to come.

Acknowledgements

This is not a simple section to write; there are too many people to thank individually.

The XCS collaboration have been a brilliant group to work with, particular thanks go to Kathy Romer for the proof reading of, and suggestions for the thesis, Ed Lloyd-Davies for all the help and input he's given, Michael Davidson for helping me continue some of his work, Scott Kay for providing the CLEF catalogue, and Nicola Merhtens for the support and slightly insane humour.

Amongst the other students in physics and astronomy I found a great group of friends and briefly, house-mates. The banter, beer, and games made the time alot less stressful.

A special thank you must go to my wife Sarah. She has very graciously put up with me being a perpetual student. Her love and support are invaluable.

The biggest thank you is for God, the creator of everything scientists study.

Contents

\mathbf{Li}	List of Tables xi			xiii	
Li	List of Figures xx			xiv	
1	Intr	troduction			
	1.1	Theor	etical Framework	3	
		1.1.1	Cosmological Framework	3	
		1.1.2	Cosmological distances	5	
	1.2	From	cluster observables to halo masses	8	
		1.2.1	Cluster galactic component	8	
		1.2.2	Cluster gas component	9	
		1.2.3	From self-similarity to cluster scaling relations	10	
	1.3	Obser	vational Framework	11	
		1.3.1	β model: success	11	
		1.3.2	β model: departures	12	
		1.3.3	Self-similarity: success	12	
		1.3.4	Self-similarity: departures	12	
		1.3.5	Self-similarity departures: Understanding through simulations $% \left({{{\mathbf{x}}_{i}}} \right)$	13	

	1.4	Motivation for the XMM Cluster Survey	17
		1.4.1 Optical cluster surveys	18
		1.4.2 X-ray cluster surveys I (before XMM/Chandra)	18
		1.4.3 X-ray cluster surveys II (after XMM/Chandra)	19
	1.5	Overview of the rest of the thesis	20
2	XM	IM-Newton	22
	2.1	X-ray Mirrors and Cameras	24
		2.1.1 European Photon Imaging Camera (EPIC)	24
	2.2	Point Spread Function	25
		2.2.1 Modelling the PSF	28
	2.3	Summary	29
3	XC	S and XCS DR1 & DR2	31
3	XC 3.1	S and XCS DR1 & DR2 Survey overview, motivation and goals	31 31
3	XC 3.1 3.2	S and XCS DR1 & DR2 Survey overview, motivation and goals	31 31 33
3	XC 3.1 3.2 3.3	S and XCS DR1 & DR2 Survey overview, motivation and goals	31 33 33 38
3	XC 3.1 3.2 3.3	S and XCS DR1 & DR2 Survey overview, motivation and goals Review of published XCS papers XCS Source Detection 3.3.1 Image inspection and Mask creation.	 31 33 38 38
3	XC 3.1 3.2 3.3	S and XCS DR1 & DR2 Survey overview, motivation and goals Review of published XCS papers XCS Source Detection 3.3.1 Image inspection and Mask creation. 3.3.2	 31 31 33 38 38 40
3	XC 3.1 3.2 3.3	S and XCS DR1 & DR2 Survey overview, motivation and goals Review of published XCS papers XCS Source Detection 3.3.1 Image inspection and Mask creation. 3.3.2 Source Detection 3.3.3 XAPA warning flags	 31 31 33 38 38 40 42
3	XC 3.1 3.2 3.3	S and XCS DR1 & DR2 Survey overview, motivation and goals Review of published XCS papers XCS Source Detection 3.3.1 Image inspection and Mask creation. 3.3.2 Source Detection 3.3.3 XAPA warning flags Creation of a source list	 31 31 33 38 38 40 42 43
3	 XC 3.1 3.2 3.3 3.4 3.5 	S and XCS DR1 & DR2 Survey overview, motivation and goals Review of published XCS papers XCS Source Detection 3.3.1 Image inspection and Mask creation. 3.3.2 Source Detection 3.3.3 XAPA warning flags Creation of a source list Comparison of XCS DR1 & DR2 point sources to those in the public archives.	 31 31 33 38 38 40 42 43 43
3	XC 3.1 3.2 3.3 3.3 3.4 3.5 3.6	S and XCS DR1 & DR2 Survey overview, motivation and goals Review of published XCS papers XCS Source Detection 3.3.1 Image inspection and Mask creation. 3.3.2 Source Detection 3.3.3 XAPA warning flags Creation of a source list Comparison of XCS DR1 & DR2 point sources to those in the public archives. Statistical Sample of cluster candidates	 31 31 33 38 38 40 42 43 43 45

	3.7	DR1 a	and DR2 StatSam redshift follow-up	48
		3.7.1	Online archives	48
		3.7.2	The NOAO-XCS Survey	48
	3.8	Summ	ary & Future work	49
		3.8.1	Cluster catalogue	49
		3.8.2	Summary	49
4	\mathbf{The}	XCS	DR3	50
	4.1	Modif	ications since Davidson (2005)	50
		4.1.1	Implications for Source lists.	51
	4.2	Initial	problems with DR3	52
	4.3	Comp	arison to Literature samples	57
		4.3.1	Determination of the DR3 positional accuracy using optical quasar catalogues	57
		4.3.2	X-ray point source catalogues	60
		4.3.3	X-ray cluster catalogues: XMM-LSS	63
	4.4	The D	OR3 Catalogue	66
		4.4.1	Basic StatSam	66
	4.5	DR3 r source	redetections of known clusters, and removal of non-cluster extended	67
	4.6	Remov	val of highly elliptical candidates	68
	4.7	The D	OR3 StatSam cluster candidate list	70
	4.8	Online	e Database	75
	4.9	DR3 S	StatSam redshift follow-up	77
		4.9.1	NXS and literature redshifts	77

		4.9.2	DR3 XCS300 redshifts using SDSS DR7	77
	4.10	Future	work	78
		4.10.1	New PSF model incorporation: DR4	78
		4.10.2	Point-Source selection function & $\log N - \log S$	78
	4.11	Summ	ary	78
5	XCS	5 Selec	tion Function with Two-Dimensional β profiles.	81
	5.1	Review	v of some Selection Function studies in the literature $\ldots \ldots \ldots$	82
		5.1.1	The 400 Square Degrees ROSAT PSPC Galaxy Cluster Survey	82
		5.1.2	The Bright Serendipitous High-redshift Archival ROSAT Cluster	84
	5.2	Metho	d	84
		5.2.1	Placing fake clusters in XCS images	85
		5.2.2	Cluster Recovery	86
	5.3	XCS so and lo	election function: testing the dependence on cosmology, L, T , and z , cation in the field of view	87
		5.3.1	Testing the impact of a count cut on the selection function \ldots .	89
		5.3.2	Testing the impact of L, T, z on the selection function	89
		5.3.3	Testing the impact of scaling relations on the selection function	92
		5.3.4	Testing the impact of cosmological model on the selection function .	92
		5.3.5	Testing the impact of detection location on the selection function	92
	5.4	XCS s	election function: testing the dependence on assumed profile properties	96
		5.4.1	Core radius	96
		5.4.2	Profile slope	97
		5.4.3	Core radius and profile slope	99

		5.4.4	Ellipticity	100
	5.5	Using	the selection function to correct for selection effects \ldots \ldots \ldots	102
	5.6	XCS s	election function: a tool for future survey design $\ldots \ldots \ldots \ldots$	102
	5.7	Future	e work	107
		5.7.1	Cosmology application	107
		5.7.2	Determining a statistical description of cluster profiles	108
		5.7.3	L-T correction	108
		5.7.4	Group proposal?	109
	5.8	Summ	ary	109
6	XC: Hyd	S Sele drodyn	ction Function with Two-Dimensional Cluster Profiles from namic Simulations.	n 110
	6.1	Motiva	ation	111
		6.1.1	Selection function studies to date	111
		6.1.2	Alternative approach	112
	6.2	The C	LEF Cosmological Simulation	112
		6.2.1	Definition of terms	112
		6.2.2	An overview of CLEF	113
		6.2.3	The CLEF cluster sample	113
		6.2.4	Substructure	115
		6.2.5	Core structure parameters	115
	6.3	XCS s substr	selection function: testing the dependence on the core properties and nucture	120
		6.3.1	Method	120
		6.3.2	Comparison of the two selection function methods	120

		6.3.3	RECOVERY efficiency of cool-core clusters	. 121
		6.3.4	RECOVERY efficiency of clusters with centrally peaked profiles	. 122
		6.3.5	Detection of clusters containing substructure	. 124
		6.3.6	Applying a count cut to the sample	. 128
		6.3.7	The impact of the selection function upon the $L - T$ relation \ldots	. 128
	6.4	Future	e Work	. 133
	6.5	Summ	uary	. 133
7	Cor	nclusio	ns	137
	7.1	XCS a	and XCS DR1 & DR2	. 137
	7.2	The X	CS DR3	. 138
	7.3	XCS S	Selection Function with Two-Dimensional β profiles	. 139
	7.4	XCS S drody:	Selection Function with Two-Dimensional Cluster Profiles from Hy- namic Simulations	. 141
B	ibliog	graphy		142
A	Lur	ndist:	The IDL routine used to calculate d_L	153
В	XA	PA flo	w charts	157
С	The	e NXS		162
D	XC	S DR3	StatSam Tables	164
\mathbf{E}	A d	lescrip	tion of the XCS database tables	173
\mathbf{F}	XC	S Selec	ction function plots	177

GAd	lescrip	tion of the XCS reduction of the XMM ODF's	185
G.1	Data	reduction	185
	G.1.1	Software versions	185
	G.1.2	Reduction procedure	185
	G.1.3	Flare cleaning	186
	G.1.4	Energy conversion factors	186
	G.1.5	Image production	186
H Tab	oles of	XCS cluster properties	187
I Ad	lescrip	tion of the XCS Spectral and Surface brightness fitting	197
I.1	Spect	ral fitting	197
	I.1.1	Background Subtraction	198
I.2	Surfac	ce brightness fitting	198
	I.2.1	Background Subtraction	198

List of Tables

1.1	Top) $L-T$ slopes from the literature (Self-similar theory predicts a slope of 2). Bottom) $M-T$ slopes from the literature (Self-similar theory predicts a slope of 1.5). Note that the Vikhlinin et al, (2006) value is measured with cores excised.	15
2.1	A summary of the important characteristics of XMM. Table information from the XMM Users Handbook. * Sensitivity is quoted after 10ks of exposure.	30
3.1	The XCS collaboration	32
3.2	Summary of the XCS DR1 and DR2.	43
3.3	Details of sky cuts applied to the XCS StatSam. All candidates are excluded if they are within the specified regions.	47
4.1	A summary of the results of the cross match between DR3 and The SDSS Quasar Catalog IV.	57
4.2	A summary of the results of the cross match between DR3 and VeronCat. $.$	58
4.3	A summary of the DR2, DR3 and 2XMMi catalogue sizes	60
4.4	A summary of DR3 catalogue properties.	66
4.5	NED and SIMBAD associations with DR3 extended sources using radii of 1^\prime	67
4.6	Known StatSam clusters/groups and new candidates, using matching radii of 1'. DR3 StatSam matched against NED and SIMBAD	68

4.7	Literature cluster samples with measured temperature and redshifts. Also added is the current size of the XCS300 sample with temperatures and redshifts
5.1	Parameter ranges used in XCS selection function
5.2	Cosmological parameter combinations used in selection function runs. Runs 1-7 are for flat $(k = 0)$ cosmologies and were implemented in Sahlén et al. (2009). Runs 8-16 are for non-flat $(k \neq 0)$ cases
6.1	Definitions of the CLEF subsamples based on their X-ray concentration, f_L . 124
7.1	Literature cluster samples with measured temperature and redshifts. Also added is the current size of the XCS300 sample with temperatures and redshifts
D.1	DR3 StatSam Known Clusters. Column descriptions are given in Section 4.4168
D.2	DR3 StatSam New Candidtates. Column descriptions are given in Section 4.4. This table has been truncated to 200 candidates, the full version has 3825 candidates and is available online
E.1	Column descriptions of the XCS Observation table
E.2	Column descriptions of the XCS Detection table
E.3	Column descriptions of the XCS IndivExpProp table
E.4	Column descriptions of the XCS Source table
H.1	XCS DR1 and DR2 redshifts produced using NXS
H.2	XCS300 DR3 redshifts produced using SDSS DR7
H.3	XCS results

List of Figures

1.1	A map of the 2dFGRS (Colless et al., 2001) showing the weblike topology of the local universe	
1.2	On the left, An optical image (Omar Lopez-Cruz & Ian Shelton NOAO/AURA/NSF), and on the right, an X-ray image (S. L. Snowden USRA, NASA/GSFC) of the Coma cluster of galaxies. ¹	
1.3	Cosmological parameters as measured from three complementary methods. Figure courtesy of the Supernova Cosmology Project (Knop et al., 2003) 6	
1.4	Left) Figure 1d from Croston et al. (2008), Gas density profiles for the REXCESS sample, profiles of density scaled for redshift evolution and according to $T^{0.525}$ as implied by modified self-similar S-T scaling. Right) Figure 1c from Pratt et al. (2008), "Emission measure profiles of the REX- CESS sample, scaled according to the standard dependence on temperature and expected evolution with redshift. Systems classified as cool core and as morphologically disturbed are indicated."	
1.5	Figures 2a and 6a from Pratt et al. (2008). Left) "The $L - T$ relation for the REXCESS sample (quantities derived from all emission interior to R_{500}). The error bars are smaller than the points in many cases. The best fitting power law relation derived from the BCES (Y—X) (red line) and BCES orthogonal (blue line) are overplotted; the shaded region corresponds to the 1 σ uncertainty on the latter. The dashed and dot-dashed lines are the relations of Arnaud & Evrard (1999) and Markevitch (1998), respectively." Right) "The $L - M_{500}$ relation for the REXCESS sample, with the mass estimated from the $Y_X - M$ relation of Arnaud et al. (2007). Relation for	

- Figure 2 and caption from Ponman et al. (1999). "The gas 'entropy' 1.6(defined as $S = T/n_e^{2/3}$, where T is the mean temperature and n_e is the electron number density) at a fiducial radius $r = 0.1r_v$ is shown as a function of temperature for the 25 systems in our sample. Entropies are computed by fitting isothermal- β models to the surface brightness profiles shown in Figure 1." [NB. Figure 1 not shown here]. "Error bars indicate 90% confidence levels in temperature, and span the variation in entropy from 0.05 to $0.2r_v$. The solid line shows the similarity relation obtained from numerical simulations including non-radiative gas dynamics, $S(0.1r_v) \sim 45(T/keV)(f_{qas}/0.06)^{-2/3}h^{-4/3} \ keV \ cm^2$, where Hubble's constant is $H_0 = 100 \ h \ km \ s^{-1} \ Mpc^{-1}$. The numerical results depend only weakly on the assumed cosmological model, and provide a very good match to the central entropy of hot (T > 4 keV) systems for $f_{qas} \sim 0.06h^{-3/2}$. However, poor clusters and groups have apparently been heated to higher figure 8 from Muanwong et al, 2006: The normalistation of the $L_X - T$ 1.7relation as a function of redshift, for clusters in the Radiative (solid line), Preheating (dashed) and Feedback (dot-dashed) simulations. 17Figure 1.3 from Davidson (2005), adapted from Rosati et al. (2002). A 1.8flux vs area summary of pre 2002 serendipitous and pointed X-ray cluster surveys (dark and light circles respectively). The likely position for XCS, when it is complete, is also shown. 21

- 2.5 Caption and figure from the XMM users handbook, figure 4. "On axis point spread function of the MOS1, MOS2 and pn X-ray telescopes (left to right) registered on the same source with each MOS camera in Small Window Mode, and the pn camera in Large Window mode. The pixel size is 1.1 arcsec square for the MOS, and 4.1 arcsec square for the pn. The images are 110 arcsec wide. A square root scale has been used to visualise the wings of the point spread function. The core of the PSF is piled-up for this source, with a different factor for the MOS and the pn. The star-like pattern is created by the spider which supports the 58 co-axial Wolter I mirrors of the telescope. The shape of the point spread function core is slightly different for all cameras, with MOS2 having a somewhat more pronounced shape.".

- 3.2 Figure 15 from Sahlén et al. (2009). Expected 68 and 95 per cent parameter constraints from the XCS500, for various cluster scaling relation assumptions inconsistent with the fiducial model used for generating the data. . . . 37

3.3	Obsids 0411082701 and 0406840301, two examples of observations that are not suitable for XCS. Top: Field dominated by a large point source, showing out-of-time events and artifacts caused by the mirror supports. Bottom: Field entirely covered by a SNR	39
3.4	Examples of observations containing areas that must be masked out to avoid unnecessary spurious detections. Top: Bright point source with spikes and OOT events, also ringing caused by single reflections from a bright source outside the FOV. Bottom: A large supernova remnant covering half of the FOV.	41
3.5	Figure 5.7 from Davidson (2005). A comparison of the individual camera fluxes of XCS point sources vs their matches from the XMM-SSC	44
3.6	An updated comparison of the individual camera fluxes of XCS point sources vs their matches in 2XMM (Watson et al., 2009)	46
4.1	Top: Obsid 0106660101, XMMXCS J2215 is highlighted by a bold green ellipse. Bottom: Obsid 0106660601, the bold green ellipse denotes the blended point sources chosen as the master source detection by the old DR1 & DR2 method	53
4.2	A comparison of initial DR3 individual camera fluxes to 2XMMi (a,c,e), DR1 (b,f), and another DR3 camera (d) (See text for details). \ldots .	54
4.3	Obsid 0142970101, before (top) and after (bottom) diagnosis and correction of the exposure map error.	55
4.4	Same as Figures 4.2(d) and 4.2(b), but after the exposure map correction	56
4.5	The relative position of the matches between DR3 and The SDSS Quasar Catalog IV. The dashed line represents the 95% matching radius	58
4.6	The relative position of the matches between DR3 and VeronCat. The dashed line represents the 95% matching radius	59
4.7	Left: The number of matches between XCS and VeronCat as a function of match radius. Right: The number of matches between XCS and the offset VeronCat as a function of match radius.	59
4.8	A comparison of the individual camera fluxes of DR3 Sources vs their matches in 2XMMi.	61

4.9	A flux comparison of DR3 and the Chandra deep fields. This includes matches for both CDFN and CDFS	62
4.10	Circled in white are 3 XMM-LSS Class 1 objects shown to be nearby X-ray emitting galaxies, recovered as point sources by XAPA.	64
4.11	The yellow circle encloses the location of XLSS J022210.7-024048. The source was cleaned from the XCS source list as it is of low significance	65
4.12	Sky positions of (a) DR3 obsids and (b)DR3 StatSam XCS300 in Galactic co-ordinates (Aitoff projection)	66
4.13	A histogram showing the ellipticities of the XCS detections of known clusters (blue) and groups (red) listed in NED and SIMBAD.	69
4.14	XMM observation 0200250101, with detected sources circled. Red circles are pointsources, Magenta ellipses denote PSF-sized sources, Green ellipses are extended sources. The bold green ellipse is XMMXCS J091820.8+690101.1, a DR3 StatSam New candidate detected with 2070 counts in the 0.5-2.0keV band	71
4.15	XMM observation 0200430801. Ellipse colour definitions are the same as in Figure 4.14. The bold green ellipse is XMMXCS J133511.8-232920.9, a DR3 StatSam New candidate detected with 1068 counts in the 0.5-2.0keV band	72
4.16	XMM observation 0002960101. Ellipse colour definitions are the same as in Figure 4.14. The bold green ellipse is a serendipitous re-detection of Abell 2634 at $z=0.03$, detected with 2386 counts in the 0.5-2.0keV band	73
4.17	XMM observation 0203280301. Ellipse colour definitions are the same as in Figure 4.14. The bold green ellipse is a serendipitous re-detection of Abell 0150 at $z=0.06$, detected with 1549 counts in the 0.5-2.0keV band	74
4.18	An example from the XCS Source Browser pages. Each page also contains multi-waveband images of the source (eg. SDSS, DSS, NVSS, 2MASS) and any likely matches from NED	76
4.19	A preliminary XCS $L-T$ relation. Figure courtesy of E. Lloyd-Davies	79
4.20	A histogram of the lookback time of DR3 clusters with measured redshifts. The red histogram is for spectroscopic redshifts, the blue histogram is for photometric redshifts. The numbers above the bins are the centre of the bin in redshift space. Figure courtesy of E. Lloyd-Davies	80

xviii

5.1	Figure 9 from Burenin et al (2007), Cluster detection probability as a function of input flux and angular core-radius. The contours represent probabilities of $0.03, 0.1, 0.2, 0.3, 0.4, \dots, 0.9$, and 0.97 . Note that this figure does not include the effect of imposing the minimum flux requirement $(f_{min} = 1.4 \times 10^{-13} \text{erg s}^{-1} \text{ cm}^{-2}, \text{dotted line})$ for the clusters to enter the final catalogue.	83
5.2	A ratio of measured counts/input counts as a function of input counts. The plotted results are for 3keV $r_c = 160$ kpc, and $\beta = 2/3$ clusters. The horizontal solid black line marks the 1/1 ratio, i.e measured counts = input counts	88
5.3	XCS StatSam detection and classification efficiency for 3keV clusters, with a Luminosity of 0.178×10^{44} erg s^{-1} . All clusters are spherical and have $r_c = 160$ kpc, and $\beta = 2/3$	89
5.4	XCS StatSam detection and classification efficiency for 3keV clusters. All clusters are spherical and have $r_c = 160$ kpc, and $\beta = 2/3$. Luminosities (L) are given in units of 10^{44} erg s^{-1} .	90
5.5	XCS StatSam detection and classification efficiency for clusters detected with ≥ 500 counts, and with structural properties as in Figure 5.4 (i.e $r_c = 160$ kpc, $\beta = 2/3$). Figure 5.5(a): Detection efficiency is shown for 3keV clusters as a function of bolometric luminosity and redshift. Figure 5.5(b): Detection efficiency shown as a function of temperature and redshift for clusters with a luminosity of 1.0×10^{44} erg/s	91
5.6	Figure 1 from Sahlén et al. (2009). Selection Function for our fiducial cosmology and different $L - T$ evolution	93
5.7	Figure 8 from Sahlén et al. (2009). Expected cluster number count distributions for the XCS500, for no $L - T$ nor $M - T$ scatter and no $L - T$ evolution (pink), no $L - T$ nor $M - T$ scatter and self-similar $L - T$ evolution (green), $L - T$ and $M - T$ scatter and no $L - T$ evolution (orange), and $L - T$ and $M - T$ scatter and self-similar $L - T$ evolution (blue). Bin sizes are $\Delta z = 0.05$ and $\Delta T = 0.5$ keV	94
5.8	Variation of detection as a function of Ω_{Λ} , and Ω_m . All clusters have the following properties: $T = 3 \text{keV}$, $L = 1.358 \times 10^{44} \text{erg s}^{-1}$, $r_c = 160 \text{kpc}$, $\beta = 2/3$ and $z = 0.5$. Results plotted for those objects with > 500 input counts.	95

5.9	Variation of detection as a function of offaxis angle. Clusters have the following properties: $T = 3 \text{keV}$, $L = 1.358 \times 10^{44} \text{erg s}^{-1}$, $r_c = 160 \text{kpc}$, $\beta = 2/3$, in a $\Omega_{\Lambda} = 0.7, \Omega_m = 0.3$ cosmology. Results plotted for those objects with > 500 input counts
5.10	XCS StatSam detection and classification efficiency for 3keV clusters as a function of physical core radius and redshift. All clusters have $\beta = 2/3$. The dotted line represents the constant value assumed in the standard XCS selection function calculations
5.11	Angular core radius as a function of redshift shown for objects with a phys- ical core radius of 50kpc (dotted line), 160kpc (Solid line), and 400kpc (Dashed line), in a $\Omega_m = 0.3, \Omega_{\Lambda} = 0.7$ cosmology
5.12	XCS StatSam RECOVERY efficiency for 3keV clusters as a function of angular core radius and input source counts
5.13	XCS StatSam detection efficiency for 3keV clusters as a function of angular core radius and input source counts. Same as Figure 5.12 but without the necessity for extent classification, i.e these sources have been detected but not RECOVERED
5.14	XCS StatSam detection and classification efficiency as a function of β and redshift. All clusters have $r_c = 160$ kpc. The dotted line represents the constant value assumed in the standard XCS selection function calculations. 100
5.15	XCS StatSam detection and classification efficiency for $e = 0.0$, 3keV clusters as a function of r_c and redshift, for different values of β . Fig(5.15(a)): $\beta = 0.5$. Fig(5.15(b)): $\beta = 0.6$. Fig(5.15(c)): $\beta = 0.7$. Fig(5.15(d)): $\beta = 0.8$. 101
5.16	XCS StatSam detection and classification efficiency as a function of Ellipt- icity and redshift. All clusters have $r_c = 160 kpc$ and $\beta = 2/3$ 101
5.17	Distribution of XCS StatSam exposure times from the DR1 StatSam, see Section 3.6)
5.18	XCS detection and classification efficiency as a function of exposure time and redshift. All clusters have $r_c = 160 kpc$, $\beta = 2/3$ and $e = 0.0.$ 104
5.19	XCS detection efficiency as a function of exposure time and redshift. All clusters have $r_c = 160 kpc$, $\beta = 2/3$ and $e = 0.0$. Same as fig 5.18 but without the necessity for extent classification

5.20	Expected cluster detections in 10 deg^2 , the red line shows the expected number for a distribution of exposure times matching that in XCS, the
	black line is for a 50ks survey
5.21	A comparision of expected cluster detections in a 10 deg^2 50ks survey, to XCS with varying area coverage
5.22	Expected cluster detections as a function of Temperature in 10 deg ² at $z < 0.3$, the red line shows the expected number for a distribution of exposure times matching that in XCS, the black line is for a 50ks survey 106
5.23	Same as Fig 5.22 but for $z < 0.7$

6.5	Figure 7 and caption from Kay et al. (2007). "Scaled projected spectroscopic-
	like temperature profiles at $z = 1$ and $z = 0$. Solid curves are median
	and $10/90$ percentiles for regular clusters, and dashed curves for irregular
	clusters. The vertical dashed line illustrates the median scaled softening
	radius (i.e. where the gravitational force becomes softer than Newtonian).
	The thick solid lines (with zero and negative gradient) are fits to the average
	observed temperature profile of cool core clusters, as measured by Vikhlinin
	et al. (2005); the inner line is a rough fit to their data to illustrate the
	cool core. The shaded region encloses the mean and 1σ standard deviation
	temperature profile for a representative sample of nearby clusters by Pratt
	et al. (2007)."

- 6.6 Figure 8 and caption from Kay et al. (2007). "Bolometric surface-brightness profiles at z = 1 and z = 0. Again, solid curves are median and 10/90 percentile values for regular clusters, and dashed curves for irregular clusters. The vertical dashed line marks the median force resolution, 2.8\epsilon/R500." . . 118

- 6.9 Detection and classification efficiency shown for 2 CLEF cluster sub-samples based on cool core strength: mild: $f_T < 1.0$, and strong: $f_T < \text{median } f_T$. 122

6.13	XCS StatSam recovery efficiency for CLEF clusters as a function of redshift and f_T (Fig6.13(a)), and redshift and f_L (Fig6.13(b)). The solid black line represents the median value at each redshift, the dotted lines mark the 10 and 90 percentiles of the data.	. 127
6.14	Fig 6.14: Detection and classification efficiency for both the regular ($S_X \leq 0.1$) and irregular ($S_X > 0.1$) CLEF clusters. The XCS β profile data is overplotted for comparison (Dotted line). Fig 6.14(b) shows the percentage of input clusters that are detected, but classified as pointlike, PSF sized, or as having significant point source contamination.	. 129
6.15	XCS StatSam recovery efficiency for CLEF clusters as a function of redshift and the amount of substructure, S_X . The solid black line represents the me- dian value at each redshift, the dotted lines mark the 10 and 90 percentiles of the data.	130
6.16	Same as Figure 6.13(b), but with additional requirements on the detected number of counts; Figure 6.16(a): ≥ 0 counts (same as Figure 6.10), Figure 6.16(b): ≥ 100 counts, Figure 6.16(c): ≥ 200 counts, Figure 6.16(d): ≥ 500 counts,	131
6.17	Same as Figure 6.8, but with the additional requirement that clusters be detected with at least 500 counts.	132
6.18	Figure 7 and caption from Pacaud et al. (2007). "Evolution of the LX- T relation. (a): Raw analysis. The data points from several studies are plotted (stacked into redshift bins for clarity). Whenever possible, we converted luminosity estimates from the other samples to L_{500} using the information provided by the authors." "Overlaid are several enhancement factor fits from our baseline analysis: the $(1 + z)$ power law and ad-hoc 2 parameter fits to our data alone (resp. short and long dashed lines), and the $(1 + z)$ power law and ad-hoc 2 parameter fits (resp. dot-dashed and 3dot-dashed lines) fitted to the C1 clusters combined with the samples of Kotov & Vikhlinin (2005) and Ettori et al. (2004). For comparison, the self-similar prediction is indicated by the solid line. (b): Taking into ac- count selection effects. The filled circles and short dashed line recalls the location of our raw data points, and best fit model from the prelim- inary analysis. The corrected enhancement factor fit for the 2 parameter	

model is shown as the long dashed line. The final 1 parameter fit and its 1σ confidence interval is displayed by the solid line and the shaded region. Expectations from several intra-cluster gas models are plotted for comparison: the self-similar predictions (dotted line) and two models by Voit (2005)

xxiii

6.19	The redshift evolution of the $L - T$ normalisation, Y_0 . Shown in black is the data from the underlying CLEF population, the red line is the detected sub-sample, the yellow line is the detected sub-sample after correction for the selection function
7.1	A preliminary XCS $L-T$ relation. Figure courtesy of E. Lloyd-Davies 139
7.2	A histogram of the lookback time of DR3 clusters with measured redshifts. The red histogram is for spectroscopic redshifts, the blue histogram is for photometric redshifts. The numbers above the bins are the centre of the bin in redshift space. Figure courtesy of E. Lloyd-Davies
B.1	Detection Flow chart. Image credit: Davidson (2005)
B.2	Reconstruction Flow chart. Image credit: Davidson (2005)
B.3	Find Source Properties Flow chart. Image credit: Davidson (2005) \ldots 160
B.4	Source List Cleaning Flow chart. Image credit: Davidson (2005) $\ldots \ldots 161$
F.1	XCS StatSam detection and classification efficiency for 2keV clusters 178
F.2	XCS StatSam detection and classification efficiency for 3keV clusters. $\ . \ . \ . \ 179$
F.3	XCS StatSam detection and classification efficiency for 4keV clusters 180 $$
F.4	XCS StatSam detection and classification efficiency for 5keV clusters. $\ . \ . \ . \ 181$
F.5	XCS StatSam detection and classification efficiency for 6keV clusters 182
F.6	XCS StatSam detection and classification efficiency for 7keV clusters. $\ . \ . \ . \ 183$
F.7	XCS StatSam detection and classification efficiency for 8keV clusters 184

xxiv

Chapter 1

Introduction

Being able to understand and explain the world around us has been the major goal of scientists throughout history. In the present age, advances in knowledge and technology have enabled us to build a consistent, if incomplete, picture of how the Universe has come to be in the state we currently observe. In the now favoured Λ CDM cosmology (see Section 1.1.1), the structure we observe today grew from an initial set of density fluctuations in the early Universe. Regions of space that are overdense with respect to the mean density grow over time under the influence of gravity, merging together to produce larger and larger systems. In this hierarchical model of structure formation the universe develops a weblike topology with large voids seperated by filaments of matter (See Figure 1.1). It is at the intersections of these filaments that we find massive clusters of galaxies.

Figure 1.1: A map of the 2dFGRS (Colless et al., 2001) showing the weblike topology of the local universe

Clusters of galaxies are the largest gravitationally bound systems in the Universe with masses ranging from $10^{13} M_{\odot}$ for small groups to $10^{15} M_{\odot}$ for the richest clusters. It is largely due to their enormous size that clusters are interesting to study. They can reasonably be expected to reflect the mass content of the Universe as a whole, and are

key objects for studying cosmology, and structure formation (e.g. Rosati et al. (2002), Schuecker et al. (2003), Sahlén et al. (2009)).

Optical identification of galaxy clusters goes back as far as the late 1700's when it was recognised that 'nebulae' (galaxies) were more concentrated in certain regions of the sky (Messier 1784, Herschel 1785), these early discoveries were of what are now known as the Virgo and Coma clusters.

In the 1960's extended X-ray emission was detected from the direction of Coma (Boldt et al 1966). Felten et al. (1966) discussed the possibility of the X-rays being unresolved emission from galaxies. After ruling this out, on the grounds that the galaxies would need to be 10^4 times brighter in the X-ray band than the Milky Way, the authors attributed the emission to thermal bremsstrahlung from hot (~ $10^8 K$) gas filling the cluster volume. Shortly thereafter this was observed to be the case for Coma, Virgo and Perseus (Forman et al. (1972), Gursky et al. (1971), Kellogg et al. (1972)). By now over a thousand clusters have been detected in the X-ray band (e.g Böhringer et al. (2001)).

Figure 1.2 shows the Coma cluster in both optical and X-ray wavebands. X-ray radiation is absorbed by the Earth's atmosphere, so X-ray observations must be taken from high altitude, often by satellite. X-ray astronomy is expensive, but is vital for cluster studies since, by mass, the X-ray emitting gas makes up a factor of $\sim 5 - 10$ more of the cluster than the galactic component (the dominant component by far is dark-matter, $\sim 90\%$).

Figure 1.2: On the left, An optical image (Omar Lopez-Cruz & Ian Shelton NOAO/AURA/NSF), and on the right, an X-ray image (S. L. Snowden USRA, NASA/GSFC) of the Coma cluster of galaxies.¹

This introductory chapter outlines some of the current understanding of clusters of galaxies, including their appearance in X-ray wavelengths and how they can be used to study

¹The optical image was created from three separate exposures taken in three different bands, using the Kitt Peak National Observatory's 0.9-meter telescope. The X-ray image was taken by ROSAT.

cosmology. We will begin by looking at the theorectical framework within which this work sits. Then we will discuss the observational picture, and see where this agrees with theoretical predictions, and where it differs. Finally we will discuss the motivation and need for a new cluster survey, the XMM Cluster Survey (XCS).

1.1 Theoretical Framework

In this section we will discuss the theory behind the rest of the work in the thesis. While this is not a theoretical thesis, an understanding of the theory is important in order to motivate any observational work. We also use some the following equations in Chapters 5 and 6. We will begin with the cosmological model, and see how some of the parameters in this model can be constrained though observations.

1.1.1 Cosmological Framework

Over the past decade one cosmological model in particular has emerged that appears to be able to explain the current observations. In this model, the geometry of the universe is flat, and the energy density is made of two principal components, matter and dark energy. The baryonic matter (stars, gas, dust etc.) that we can observe only makes up a small percentage of the total matter density, the rest is made up of cold dark matter, which we can only detect via its gravitational interaction. It is the dark energy component of the universe that is driving the recently observed accelerating expansion (e.g Perlmutter and Schmidt (2003)).

Arguably the first person to notice and attempt to measure the expansion of the Universe was Edwin Hubble. In 1929 Hubble formulated the following expression to explain the observed recession velocity of galaxies in the universe, v = H(t)d, where v is the recession velocity between galaxies seperated by distance d. $H(t) = \dot{a}/a$ is the Hubble parameter, a(t) is the scale factor, the present day value is $a_0 = 1$, \dot{a} is the time derivative of a. \dot{a} and a are constant in space, but vary with time. Hubble made the measurement of recession velocities via the galaxy's redshift; this is a shifting of the galaxy's spectrum caused by its line of sight velocity. Redshift is defined in Equation 1.1, where λ_{em} is the emitted wavelength of a particular spectral feature (e.g absorbtion line), and λ_{ob} is the observed wavelength of the same feature.

$$z = \frac{\lambda_{\rm ob} - \lambda_{\rm em}}{\lambda_{\rm em}} \tag{1.1}$$

The cosmological redshift z of radiation from distant objects is related to the scale factor of the universe when that radiation was emitted by $a = (1 + z)^{-1}$.

We can better understand the expansion of the universe using a model. The current favoured series of model for predicting the observed behaviour are known as Friedmann-Lemaitre models. There are many review articles and textbooks that go into this topic in great detail (eg. Peacock, 1999. Liddle and Lyth, 2000.). Here we will just discuss some of the key points.

The cosmological principle states that on large enough scales the universe is homogenous and isotropic, and that the expansion rate will be the same everywhere. Using this principle, in conjunction with laws of energy conservation, it is possible to derive Equation 1.2. This is the Friedmann equation which describes the expansion of the universe.

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho - \frac{k}{a^2} \tag{1.2}$$

where ρ is the time dependant, but spatially invariant density. The constant k describes the curvature of the universe and can have values of -1,0,1 relating to open, flat and closed geometry respectively.

To make use of the Friedmann equation we need to know how the density of the universe evolves with time. For this we use the fluid equation (Equation 1.3) which can be derived from the first law of thermodynamics.

$$\dot{\rho}c^2 = -3\frac{\dot{a}}{a}(\rho c^2 + p)$$
(1.3)

Where p is pressure, and c is the speed of light.

The Friedmann and fluid equations can be used to derive Equation 1.4 describing the acceleration of the scale factor, this is known as the acceleration equation.

$$\frac{\ddot{a}}{a} = -\frac{4}{3}\pi G\left(\rho + \frac{3p}{c^2}\right) \tag{1.4}$$

In order to see how the universe will behave we also require an equation of state, relating ρ and p. If $p = w\rho c^2$, then density changes with the expansion as $\rho \propto a^{-3(1+w)}$, leading to Equation 1.5, which relates the rate of change in the scale factor to the equation of state.

$$\dot{a}^2 = \frac{8\pi G}{3}\rho_0 a^{-(1+3w)} + const \tag{1.5}$$

Where ρ_0 is the density at the present day.

It is common practice to express the energy density in terms of the critical density, $\rho_c = 3H^2/8\pi G$, (the density required for a flat, k = 0, universe dominated by a w = 0component). The density parameter is defined such that $\Omega = \rho/\rho_c$. Using this definition we can now begin to express the behavour of the universe using Equation 1.6.

$$\left(\frac{\dot{a}}{a}\right)^2 = H_0^2 [\Omega(1+z)^{3(1+w)} + (1-\Omega)(1+z)^2]$$
(1.6)

It is possible, and indeed is the case for our universe, that several different components each with its own equation of state, will influence the dynamics of the expansion. The key components of our universe are non-relativistic particles, e.g dark matter and baryons $(\Omega_m; w = 0)$, photons and relativistic particles e.g. neutrinos $(\Omega_r; w = 1/3)$, and 'dark energy' $(\Omega_{DE}; w < -1/3)$. Below we assume a more specific type of dark energy, the so called 'cosmological constant' $(\Omega_{\Lambda}; w = -1)$.

A dynamical description of the universe is therefore given by Equation 1.7, in which $\Omega_{total} = \Omega_m + \Omega_\Lambda + \Omega_r.$

$$H^{2}(z) = \left(\frac{\dot{a}}{a}\right)^{2} = H_{0}^{2}[\Omega_{m}(1+z)^{3} + \Omega_{r}(1+z)^{4} + \Omega_{\Lambda} + (1-\Omega_{total})(1+z)^{2}]$$
(1.7)

which can be reduced to $H(z) = H_0 E(z)$. It is clear from Equation 1.7 that measurements of the density parameters (Ω_x) will give an understanding of the expansion history of the universe.

Measurements of the Cosmic Microwave Background (CMB), combined with those from Supernovae and Galaxy Cluster studies, have shown that the likely make up of the Universe is $\Omega_{\Lambda} = 0.726 \pm 0.015$, $\Omega_{DarkMatter} = 0.228 \pm 0.013$, $\Omega_{Baryons} = 0.0456 \pm 0.0015$, $\Omega_r = 2.469 \times 10^{-5}$ (for $T_{CMB} = 2.725 \text{K}$)², this is often called the Λ CDM cosmology in reference to the principal components. See Figure 1.3 for a pictoral representation of values of the dominant components.

 Ω_r is measured from the temperature of the CMB blackbody radiation and is known to a high precision. The parameters $\Omega_{\Lambda} \& \Omega_m$ can be determined in combination (i.e. $\Omega_{\Lambda} + \Omega_m$) from the CMB anisotropy power spectrum or the luminosity of distant supernovae. In order to gain an estimate of Ω_m (rather than $\Omega_{\Lambda} + \Omega_m$), the traditional approach is to use the evolution in the number density of clusters of galaxies, (n(m, z)). The driving science motivation behind the development of the XCS is the measurement of Ω_m . The cluster abundance has some sensitivity to Ω_{Λ} and we hope to exploit that in XCS also. For completeness we also define here the parameter σ_8 . This is the normalisation of the matter power spectrum at cluster scales $(8h^{-1}\text{Mpc})$.

1.1.2 Cosmological distances

In this subsection we define three distance measurements used in this thesis.

Comoving distance.

The comoving distance (d_C) between two objects is defined in such a way that it remains

²parameter data taken from Komatsu et al. (2009).

Figure 1.3: Cosmological parameters as measured from three complementary methods. Figure courtesy of the Supernova Cosmology Project (Knop et al., 2003).

constant with time if the only motion is that caused by the universal expansion.

$$d_C = \frac{c}{H_0} \int_0^z \frac{dz}{E(z)} \tag{1.8}$$

This is actually the line-of-sight co-moving distance to an object at redshift z. For cases where k = 0 this is equal to the transverse co-moving distance (d_M) .

Luminosity distance.

A method of measuring distance is via the 'standard candle' method. A standard candle is an object with a known luminosity. By measuring the flux (energy received per area, in Watts/m²) received from an object, the distance can be calculated.

Due to the expansion of the universe, the flux (S) received from an object does not relate to its luminosity (L) and distance in the same way as expected in flat, static space. The luminosity distance (d_L) is defined as the apparent distance to an object, i.e. the proper distance assuming static flat space. d_L is given by Equation 1.9.

$$d_L = \sqrt{\frac{L}{4\pi S}} \tag{1.9}$$

The expansion in fact causes the measured flux to be reduced by a factor of $1/(1+z)^2$ from the Euclidean expectation.

Angular-diameter distance.

Another method of measuring distance is using a 'standard ruler'. If you know the physical size (l) of an object, the distance to it can be calculated by measuring its angular size (θ) on the sky.

The Angular-diameter distance (d_A) is a measure of how large an object appears to be. It is defined as the apparent distance to an object under the assumption of static Euclidean geometry, $d_A \sim l/\theta$.

Like d_L , d_A is also affected by the expansion and geometry of the universe.

 d_L , d_C and d_A are related via Equation 1.10.

$$d_L = (1+z)d_c = (1+z)^2 d_A$$
(1.10)

As seen in Equation 1.8, d_C is dependent on cosmological parameters via E(z), and therefore so are d_L and d_A (Equation 1.10). This enables different projects to measure cosmological parameters using very different methods: Supernovae can be used via d_L since type Ia supernovae are standard candles (e.g. Perlmutter and Schmidt (2003)); Baryon acoustic oscillations (BAO) can be used via d_A since they are standard rulers (e.g. Percival et al. (2007)); The gas mass fraction (f_{gas}) in clusters is also a type of standard candle, as it is thought to be invariant with z (e.g. Allen et al. (2002), see the orange section in Figure 1.3). It is to be noted that the f_{gas} method is not the mechanism XCS plans to use to measure parameters.

In Chapters 5 and 6, d_L and d_A must be calculated for our simulated clusters, in order to do this d_L is computed via numerical integration (See Appendix A).

1.2 From cluster observables to halo masses

The evolution of the mass function of clusters can be used to place constraints on cosmological parameters (See Press and Schechter (1974), Viana and Liddle (1996), Linder and Jenkins (2003) and Sahlén et al. (2009) for theory and arguments.). However we cannot measure masses directly, instead masses have to be inferred from an observable. Here we will discuss how halo masses can be measured from cluster observables.

1.2.1 Cluster galactic component

For a bound system of particles, the virial theorem relates the potential energy (PE) to the kinetic energy (KE) as follows,

$$\langle PE \rangle/2 = -\langle KE \rangle. \tag{1.11}$$

For a bound cluster of galaxies, its member galaxies would have a Gaussian velocity distribution. This is distribution is often characterised by the dispersion of the velocities about the mean, as in equation 1.12:

$$\sigma_r = \langle (v_r - \langle v_r \rangle)^2 \rangle^{1/2} \tag{1.12}$$

where v_r is the radial velocity. With a measurement of the velocity dispersion (σ_r) , it is possible, via the use of the virial theorem, to determine the mass of an isolated cluster.

$$M = \frac{R\langle v^2 \rangle}{G} \tag{1.13}$$

Where $\langle v^2 \rangle = 3\sigma_r^2$, and R is the radius enclosing mass M.

Zwicky (1933,1937) was first to measure the velocity dispersion and mass of a cluster in such a way. Zwicky's study of the Coma cluster yielded $\sigma_r \sim 700 \text{kms}^{-1}$, inferring a mass far in excess of the observed mass seen in stars. A similar study (Smith, 1936) showed that the same was true of the Virgo cluster. This mass excess in clusters was is the

earliest evidence suggesting the existence of dark matter. Dark matter in clusters has more recently been confirmed by mass estimates from weak lensing (see Bartelmann and Schneider (2001) for a review).

King (1962) demonstrated that under the assumptions of a cluster being spherically symmetric, isothermal, isolated, and in equilibrium, the galaxy density in clusters is well fit to a profile of the form:

$$n(r) = n_0 \left[1 + \left(\frac{r}{r_c}\right)^2 \right]^{-3/2}$$
(1.14)

where n_0 is the central number density (i.e at r = 0), and r_c is the core radius.

1.2.2 Cluster gas component

A simple and popular gas model proposed by Cavaliere and Fusco-Femiano (1976) is one of an isothermal gas, in the same potential as the galaxies in Equation 1.14. This is the known as the isothermal β model. The gas density is given by:

$$\rho(r) = \rho_0 \left[1 + \left(\frac{r}{r_c}\right)^2 \right]^{-3\beta/2} \tag{1.15}$$

where

$$\beta \equiv \frac{\mu m_p \sigma_r^2}{kT} \tag{1.16}$$

where m_p is the proton mass, and μ is the mean molecular weight ($\mu = 0.6$ for typical Intracluster Medium (ICM) predominantly comprised of hydrogen), k is the Boltzmann constant, and T is the Temperature.

The X-ray surface brightness is given in Equation 1.17 (eg. Sarazin and Bahcall (1977), Gorenstein et al. (1978)),

$$S(r) \propto \left[1 + \left(\frac{r}{r_c}\right)^2\right]^{-3\beta + 1/2}.$$
(1.17)

The gas trapped in the potential well of a halo could reasonably be expected to be in thermal equilibrium with the galaxies, $\beta = 1$. Equation 1.16 then gives us a relation for the gas temperature, which is proportional to the depth of the potential well (Equation 1.18). Therefore, based on these assumptions, a temperature measurement will in turn lead to a mass measurement (Equation 1.19). (Note that β is actually measured to be $\neq 1$, see Section 1.3.2)

$$kT = \mu m_p \sigma_r^2 \tag{1.18}$$

$$M = \frac{3RkT}{G\mu m_p} \tag{1.19}$$

1.2.3 From self-similarity to cluster scaling relations

A typical cluster will have a gas temperature of $\sim 10^8 K$ or 0.5 - 15 keV. At temperatures of $kT \geq 2 \text{keV}$ Hydrogen and Helium are fully ionized, causing the intracluster medium (ICM) to be largely a hot plasma of free ions. The principal mechanism for emission from this type of system is in the X-ray wavebands via thermal Bremsstrahlung or 'braking' radiation, the emissivity of which can be quoted as:

$$\epsilon \propto g(\nu, T) T^{1/2} n_e^2 e^{-h\nu/kT} \tag{1.20}$$

where the Gaunt factor $g(\nu, T) \sim 1 + \log(kT/h\nu)$.

As can be seen from equation 1.20, the emission from the ICM scales as density squared (n_e^2) making the measurement of this emission a very powerful tool for probing the 3 dimensional structure of clusters. The X-ray luminosity L of a cluster is given by Equation 1.21.

$$L = \int n_e^2 \Lambda(T) dV \tag{1.21}$$

Where $\Lambda(T)$ is the so-called cooling function. If the emission is purely Bremsstrahlung then $\Lambda(T) \propto T^{1/2}$.

Under the assumption that the thermodynamics of the ICM are determined by gravity only, Kaiser (1986) showed that all virialised clusters will be scalable or self-similar. Meaning that there are scaling relations between cluster properties (M, L, T), that will be true regardless of the mass of the system (See Equations 1.22 and 1.23).

$$T \propto M^{2/3} (1+z)^{2/3}$$
 (1.22)

$$L \propto M^{4/3} (1+z)^{7/2} \propto T^2 (1+z)^{3/2}$$
 (1.23)

If these relations hold true, then it would be easy to make a measurement of either L or T and directly infer the halo mass.

1.3 Observational Framework

Observationally clusters are not all spherically symmetric and isothermal, but have a wide range of morphological and physical properties. They do exhibit some of the behaviour discussed in the previous section, but they do not exactly follow the predicted relations (Equations 1.15, 1.17, 1.22 and 1.23). In this section we will discuss the properties of the observed cluster population and see how this differs from the theoretical picture laid out in Section 1.2.

1.3.1 β model: success

As the X-ray emission is very sensitive to changes in the gas density it is relatively easy to derive the gas distribution from a surface brightness profile. Studies of this type have shown that in the outer regions of a cluster the density profiles are reasonably fitted by a β model (Equation 1.15) with $\beta = 2/3$ and $r_c \sim 0.12R_{200}$ (Arnaud et al., 2002). In Figure 1.4 are density and emission measure profiles for clusters from the REXCESS survey (Croston et al. (2008), Pratt et al. (2008)), the profiles in the figure show very similar behaviour outside of the core regions.

Figure 1.4: Left) Figure 1d from Croston et al. (2008), Gas density profiles for the REX-CESS sample, profiles of density scaled for redshift evolution and according to $T^{0.525}$ as implied by modified self-similar S-T scaling. Right) Figure 1c from Pratt et al. (2008), "Emission measure profiles of the REXCESS sample, scaled according to the standard dependence on temperature and expected evolution with redshift. Systems classified as cool core and as morphologically disturbed are indicated."

The simplicity of the β model, and general agreement with a large number of cluster observations, has caused this model to remain popular despite the problems discussed in Section 1.3.2.
1.3.2 β model: departures

Comparisons of optical and X-ray observations of clusters of galaxies led to the so-called ' β discrepancy'. The standard hydrostatic-isothermal model for clusters predicts that the parameter $\beta_v = \sigma_r^2/(kT/\mu m_p)$, which describes the ratio of energy per unit mass in galaxies to that in the gas, should equal the parameter β_{fit} where $\rho_{gas}(r) \propto \rho_{gal}^{\beta_{fit}}$ determined from the X-ray surface brightness distribution. The observations suggest an apparent discrepancy : $\beta_v \sim 1.2$ (i.e. the galaxies are hotter than the gas) while $\beta_{fit} \sim 0.65$ (i.e. the gas is hotter and more extended than the galaxies). It has been shown however that this discepancy may disappear if the assumption that the galaxies follow a King profile is dropped (Bahcall and Lubin, 1994).

As well as showing the self-similarity in the outer regions of cluster profiles, Figure 1.4 also highlights that this is not the case in the inner regions. Some clusters exhibit cores of near constant density, and surface brightness profiles that show a similar flattening, others have density and surface brightness profiles that continue rising well into the core, this variation is attributed to variations in amount of cooling of the core gas, resulting in the clusters being called non-cool-core and cool-core respectively.

1.3.3 Self-similarity: success

As predicted by the self-similar theory, clusters of galaxies do not occupy all areas in the L - T and M - T planes, there are strong correlations between the parameters. Figure 1.5 shows L - T and L-M relations as measured by Pratt et al. (2008). It is clear that scaling relations between the parameters do exist.

The fact that there are indeed scaling relations between observables and mass, means that surveys like XCS will be useful for cosmology.

1.3.4 Self-similarity: departures

The measured scaling relations between cluster properties do not follow the predicted relations (Equations 1.22 and 1.23), the slope in the L - T and M - T relations are steeper than self-similar, see Table 1.1.

These departures from the self-similar scaling are even more pronounced in lower mass systems. Studies of galaxy groups $(T \sim 1 \text{keV})$ show that groups have significantly different scaling trends than clusters. In particular groups are seen to have lower β values, i.e flatter surface brightness profiles, and much steeper scaling between L - T, with measured slopes of ~ 5 (e.g, see Helsdon and Ponman (2000), Davé et al. (2002)).

Figure 1.5: Figures 2a and 6a from Pratt et al. (2008). Left) "The L-T relation for the REXCESS sample (quantities derived from all emission interior to R_{500}). The error bars are smaller than the points in many cases. The best fitting power law relation derived from the BCES (Y—X) (red line) and BCES orthogonal (blue line) are overplotted; the shaded region corresponds to the 1 σ uncertainty on the latter. The dashed and dot-dashed lines are the relations of Arnaud & Evrard (1999) and Markevitch (1998), respectively." Right) "The $L-M_{500}$ relation for the REXCESS sample, with the mass estimated from the $Y_X - M$ relation of Arnaud et al. (2007). Relation for all emission interior to R_{500} ."

In order to understand the physical origin of the deviation from the self-similar model it is more useful to consider the gas entropy rather than its density. In X-ray studies of galaxy clusters the term entropy is often used to describe a characteristic property of the ICM that is related to the true entropy, we define it here in Equation 1.24.

$$S = kT/n_e^{2/3}$$
 (1.24)

The shape of a clusters potential well and the entropy profile of the gas fully define the X-ray properties of a relaxed cluster. Ponman et al. (1999) demonstrated that the entropy measured at $0.1r_{virial}$ is greater than the level that can be generated through gravitational heating alone (See Figure 1.6), we shall discuss some of the possible causes of this increase in entropy in Section 1.3.5.

1.3.5 Self-similarity departures: Understanding through simulations

Understanding this departure from self similarity has become an area where numerical simulations can play a major role. Hydrodynamical simulations have shown that in the absence of complex heating and cooling mechanisms, the self similar predictions are well recovered (Navarro et al. (1995), Eke et al. (1998)). The inclusion of additional physics has been shown to break this self-similarity and recover scaling relations that are much

Figure 1.6: Figure 2 and caption from Ponman et al. (1999). "The gas 'entropy' (defined as $S = T/n_e^{2/3}$, where T is the mean temperature and n_e is the electron number density) at a fiducial radius $r = 0.1r_v$ is shown as a function of temperature for the 25 systems in our sample. Entropies are computed by fitting isothermal- β models to the surface brightness profiles shown in Figure 1." [NB. Figure 1 not shown here]. "Error bars indicate 90% confidence levels in temperature, and span the variation in entropy from 0.05 to $0.2r_v$. The solid line shows the similarity relation obtained from numerical simulations including non-radiative gas dynamics, $S(0.1r_v) \sim 45(T/keV)(f_{gas}/0.06)^{-2/3}h^{-4/3}$ keV cm², where Hubble's constant is $H_0 = 100$ h km s⁻¹ Mpc⁻¹. The numerical results depend only weakly on the assumed cosmological model, and provide a very good match to the central entropy of hot (T > 4 keV) systems for $f_{gas} \sim 0.06h^{-3/2}$. However, poor clusters and groups have apparently been heated to higher entropy than achievable through gravitational collapse."

Sample	Slope
Markevitch, 1998	2.64 ± 0.27
Arnaud & Evrard, 1999	2.88 ± 0.15
Pratt et al, 2008	2.73 ± 0.23
Sample	Slope
Finoguenov et al, (2001	1.89 ± 0.15
Sanderson et al, (2003)	1.84 ± 0.06
Vikhlinin et al, (2006)	1.58 ± 0.11

Table 1.1: Top) L - T slopes from the literature (Self-similar theory predicts a slope of 2). Bottom) M - T slopes from the literature (Self-similar theory predicts a slope of 1.5). Note that the Vikhlinin et al, (2006) value is measured with cores excised.

nearer to the observed population. In particular Ponman et al. (1999) and Kaiser (1991) have shown that much of the effect is due to an excess of entropy in the core.

A few popular mechanisms for raising the entropy of the core gas via heating and/or cooling are discussed below:

Radiative Cooling

If a model of the intra-cluster medium contains a cooling mechanism, one may expect the entropy of the gas to decrease. However, cooling mechanisms have been suggested that may produce large constant-density gas cores, raising the entropy of the gas in the centre of the cluster.

Thomas and Couchman (1992), suggested that radiative cooling removes the lowest entropy gas, causing a loss of pressure support, this in turn causes the remaining gas of higher entropy to flow in from more external regions to form a core. Early studies into this effect (Katz and White (1993), Lewis et al. (2000)) were able to produce synthetic clusters that, in terms of their luminosity and temperature, more closely resemble those we observe. However in this regime there is nothing to prevent excessive overcooling of the gas, resulting in 40 - 50% of the baryons in the cluster forming stars, thus causing large amounts of cool gas to condense onto enormously bright central galaxies (Suginohara and Ostriker, 1998). This is a picture not supported observationally, where we see only $\sim 10\%$ of the baryons in stars (e.g Balogh et al. (2001)). This cooling mechanism was examined further by Pearce et al. (2000), using a more sophisticated multiphase gas model and artifically limiting the amount of gas that is allowed to cool, thus preventing large, bright cooling flows. They found the predicted entropy rise in the core, lowering the overall density; however this did not produce a constant density core as expected. The general effect of their cooling model is to increase the temperature and lower the luminosity of the gas, returning an L-T relation more like the self-similar model, thus returning to the same problem (of not matching the simulations to the observations) as before cooling was incorporated. In small halos radiative cooling is very efficient as the cooling time is less than the dynamical time (White and Rees, 1978). Pearce et al. (2000) discuss that the lowering of the luminosity will therefore be much more dominant in low mass systems, concluding that in a larger simulation, with a wider mass range, the overall effect will be a steepening of the L - T relation. Models of this type have more recently been shown to be able to recover the z = 0 scaling relations (e.g Muanwong et al. (2002)).

Pre-heating

A period of energy injection prior to cluster formation has been suggested to break selfsimilarity without causing over-cooling. Pre-heating usually involves a uniform heating of the gas at a redshift of 4 or 5, this is scaled to an amount that correctly recreates the observed z = 0 scaling. (Kaiser (1991), Ponman et al. (1999)). This pre-heating scheme still lacks a clear physical origin; many authors have tried to attribute the heating to early supernovae. Studies of the entropy available from supernovae, Wu et al. (2000), and Kravtsov and Yepes (2000), have shown that this is unlikely, as the number of supernovae and the heating efficiency required are quite extreme. A more satisfactory, highly energic process that could cause this pre-heating has yet to be found.

Feedback

A more realistic picture that may be able to explain the observed properties of clusters is a class of model known as feedback models. The regions of dense cold gas in the core regions of a cluster can reasonably be expected to collapse and form stars (Katz (1992), Navarro and White (1994)). This star formation ultimately leads to supernova explosions, thus feeding energy back into the interstellar medium. Although this alone may not provide enough energy, when coupled with AGN feedback this will act to increase the entropy of the gas, preventing it from settling in the centre of the halo. Many models in the literature generally mimic feedback by artificially injecting energy into the densest regions of the IGM (e.g Kay et al. (2004)). The models can also reproduce the observed departure from self similarity. A recent set of simulations (Puchwein et al., 2008) have investigated the feedback associated with AGN and black hole growth in a more detailed and realistic way than previous studies, and included its effects within a cooling model. The simulations show that feedback from AGN may be a good candiate for bringing theoretical studies into agreement with the observations without resorting to preheating.

These three different possible solutions (Radiative Cooling, Pre-heating, Feedback) to the observed non-self-similarity present us with a problem, i.e which of them is correct? It is more likely that it is a combination of the above processes that produce the observed properties. In order to make progess it is desirable to be able to make some testable predictions about the effects of each of these processes. For example Muanwong et al. (2006) have used three different cosmological hydrodynamical simulations, each with a different model for the gas physics (Radiative, Preheating and Feedback), all of which are able to reproduce the observed local L - T relation. Each of the models do however show very different evolution in the L - T relation. Looking at the L - T relation in the form

Figure 1.7: figure 8 from Muanwong et al, 2006: The normalistation of the $L_X - T$ relation as a function of redshift, for clusters in the Radiative (solid line), Preheating (dashed) and Feedback (dot-dashed) simulations.

of equation(1.25)

$$\log C_0 = \log L_0 + A \log(1+z) \tag{1.25}$$

(where C_0 is the normalisation, L_0 is the best fit Luminosity at z = 0, T = 1keV, and A describes the redshift evolution of the relation) the simulations give A values of 1.9, 0.7 and -0.6 respectively (See Figure 1.7). All of which differ from the self similar value of A = 1.5.

The difference in evolution between these models allows a potential way of discriminating for or against a model. Muanwong et al. (2006) tentatively suggest that a comparison with observations indicates that their feedback model is generating too much entropy at z < 1.5, and that the bulk of heating must have occurred at higher redshift.

The predictions from simulations are becoming more sophisticated all the time (e.g Short and Thomas (2009)). Another major goal of XCS is to measure L - T as a function of lookback time, and to help constrain some of the rival theories.

1.4 Motivation for the XMM Cluster Survey

Clusters of galaxies are very interesting objects. The physics that determine their properties is not yet fully understood, and increasing this understanding is reason enough to want to study them further. However they also can be used for cosmology. Constraining cosmological parameters via the cluster abundance is reliant on both well understood scaling relations, and having a large cluster sample over a range of masses and redshifts. A real key to cluster studies is having a good understanding of any biases in the selection processes. To do cosmology, the completeness of a catalogue must be known. To measure accurate scaling relations, particularly their evolution, the detection dependences on L, T, z and morphology must be understood. With these things in mind many authors have sought to build better catalogues, some of which will be discussed in this section.

1.4.1 Optical cluster surveys

The Abell catalogue contains ~ 4000 clusters identified by visual inspection of photographic plates. The original catalogue of clusters in the northern hemisphere was published in 1958 (Abell, 1958). The extended catalogue, including clusters in the southern hemisphere, was published posthumously in 1989 (Abell et al., 1989). The clusters identified by Abell are still being studied, with work based on them being published ~ 50 years after the release of the first catalogue. Optical cluster identification is now automated, with many different methods and algorithms being implemented. The most successful use a combination of finding spatial clustering, and looking for correlations in galaxy properties (often colour), e.g. The Red-sequence Cluster Survey (RCS) (Gladders and Yee (2005); 429 clusters between 0.0 < z < 1.5 in an initial 10 deg²), The C4 Cluster catalogue (Miller et al. (2005); 748 $M > 10^{14} M_{\odot}$ clusters between 0.02 < z < 0.17 in 2600 deg²), MaxBCG (Koester et al. (2007); 13823 $M > 10^{14} M_{\odot}$ clusters between 0.1 < z < 0.3 in 7500deg²). The use of additional information along with spatial correlations is vital to help reduce the effect of superpositions, and fluctuations in the background field of galaxies.

These optical catalogues can also be used to constrain cosmology via the cluster abundance, with the calibration of the mass estimates coming from either weak lensing or X-ray follow-up. For example, a joint analysis of the MaxBCG catalogue with WMAP five year data produces the following : $\sigma_8 = 0.807 \pm 0.020$ and $\Omega_m = 0.265 \pm 0.016$ (Rozo et al., 2009).

1.4.2 X-ray cluster surveys I (before XMM/Chandra)

There are numerous X-ray cluster surveys in the literature. Here we will give a very brief summary of some of the surveys carried out before the launch of XMM and Chandra.

The Einstein-Observatory Extended Medium-Sensitivity Survey (EMSS) (Gioia et al., 1990) serendipitously detected 98 clusters in 778 deg² in a 0.3 - 3.5keV band, about 40% of which were at z > 0.2 and were previously unknown. Although known clusters had been detected in X-ray bands before, work with Einstein highlighted the relative ease with which clusters could be serendipitously detected with X-ray instruments.

The ROSAT Brightest Cluster Sample (BCS) (Ebeling et al., 1998) is a sample of the 201 X-ray-brightest clusters of galaxies (dec > 0, $|b| > 20^{\circ}$), at $z \le 0.3$ with fluxes higher than 4.4×10^{-12} erg cm⁻² s⁻¹ in the 0.1 – 2.4 keV band. Selected from the ROSAT All Sky Survey (RASS) the BCS was the largest X-ray selected cluster sample compiled at the

time.

The ROSAT-ESO Flux-Limited X-ray (REFLEX) (Böhringer et al., 2001) cluster sample was also produced from the RASS. It has a flux limit of 3×10^{-12} erg s⁻¹ cm⁻² in the 0.1 - 2.4 keV band and comprises 452 clusters at $z \leq 0.3$. The selection function of the survey gave an understanding of the catalogue completeness (~ 90%), enabling its use for cosmology, resulting in constraints of $\Omega_m = 0.16 \pm 0.06 \sigma_8 = 1.2 \pm 0.3$.

The ROSAT Deep Cluster Survey (RDCS) (Rosati, 1998) is, in contrast to the majority of ROSAT surveys, comprised of only the deepest observations in the pointing archive. The RDCS covered ~ 50 deg². About 100 clusters were detected and confirmed, ~ 25% of which are at z > 0.5. The large redshift range of the sample enabled a study of evolution in the cluster population via the X-ray luminosity function (XLF). Rosati (1998) demonstrate that the RDCS sample, in comparison with the EMSS, shows no significant evolution in the XLF at $z \leq 0.8$.

Two more pre-XMM surveys of particular relevance are the 400 Square Degrees ROSAT PSPC Galaxy Cluster Survey (Burenin et al., 2007) and The Bright Serendipitous Highredshift Archival ROSAT Cluster survey (Bright SHARC) (Romer et al., 2000). Like RDCS both used the ROSAT pointing archives to find serendipitous detections of clusters. Due to their similarities with XCS and detailed selection function work they are discussed in more detail in Chapter 5.

In summary, ROSAT surveys covering more than 10^4 deg^2 have yielded over 1000 clusters, out to redshift $z \sim 0.5$ (RASS), or $z \sim 1.0$ (pointed archives). A large fraction of these were new discoveries, although about a third were previously identified as clusters in the Abell or Zwicky catalogues. The ability to determine the selection function for a number of these surveys, and the presence of good optical follow-up, have led to investigations of individual clusters, scaling relations, and cosmological studies.

1.4.3 X-ray cluster surveys II (after XMM/Chandra)

The majority of cluster surveys being undertaken with the current generation of X-ray satellites (XMM and Chandra) are using the new, higher quality instruments to follow-up clusters detected with ROSAT. The Reprentative XMM Cluster Structure Survey (REX-CESS) (Böhringer et al., 2007), is based on the REFLEX sample, the largest statistically understood sample of clusters available at the time. Böhringer et al. (2007) use the higher sensitivity and spectroscopic ability of XMM to study 31 of the REFLEX clusters in more detail, this has led to a greater understanding of cluster structure, scaling relations, and provides a low-redshift benchmark with which to study cluster evolution.

The Chandra Cluster Cosmology project (Vikhlinin et al., 2009) is based on a complete

high-redshift subsample of the 400 Square Degree clusters, 37 objects at z = 0.35 - 0.9 with $\langle z \rangle = 0.55$. These clusters have been re-observed with Chandra to provide more accurate mass measurements, particularly at higher redshift, for use in measuring the evolution in the cluster mass function. In conjuction with 49 $z \sim 0.05$ clusters from the ROSAT All Sky Survey, the WMAP five year data, and BAO and SN data, Vikhlinin et al. (2009) measure $\Omega_m = 0.225 \pm 0.043$. Depending on the assumptions used, Vikhlinin et al. (2009) also find $\Omega_{\Lambda} = 0.83 \pm 0.15$ in non-flat Λ CDM or $w_0 = -1.14 \pm 0.21$ in a flat universe.

There are very few surveys in the literature using XMM and Chandra for serendipitous cluster searching. The XMM-LSS (Pacaud et al., 2007) is a serendipitous survey of an 8×8 deg² contiguous region. The depth of these pointings results in a flux limit of $\sim 5 \times 10^{-15}$ erg cm⁻² s⁻¹ in the 0.5-2 keV band. The processing of the first 5 deg² of data produced a sample of ~ 30 clusters. The XMM-Newton Distant Cluster Project (Lamer et al., 2006) are using XMM archival data with exposure times > 20ks for cluster searching, with the aim of increasing the known population at z > 1, this has led to the discovery of one of the most distant clusters known to date (Mullis et al., 2005).

There is clearly a need for a survey to complement these existing studies. The surveys discussed tend to fall into two categories: large-area low-redshift, or small-area high-redshift. In order to study evolutionary effects (e.g. for the mass function, or scaling relations) it is necessary to cover a wide range of redshifts, which often means comparing two or more different samples. This can be difficult, as each will have its own biases, and only some have detailed selection functions. The data in the XMM archive will allow a serendipitous survey to fully cover the redshift range already sampled (and even extend it), and do so in a homogenous manner in order to provide a large cluster sample with which to study many areas of cluster science. This is the gap in the field that the XCS (Romer et al. (2001), see Chapter 3) aims to fill (See Figure 1.8).

1.5 Overview of the rest of the thesis

The rest of this thesis concentrates on the XMM Cluster Survey (XCS). Chapter 2 will give an overview of XMM-Newton, the instrument used by XCS. Chapter 3 reviews the XCS survey, and introduces the candidate and confirmed cluster samples being produced. Chapter 4 presents an entirely new cluster candidate sample, some of which has already had redshifts determined by the collaboration. Chapter 5 presents the XCS selection function as applied in Sahlén et al. (2009), and tests the assumptions made therein. Chapter 6 compares the Chapter 5 selection function to one determined using profiles from Cosmological Hydrodynamical simulations. The use of these simulated clusters also enable us to determine the selection function dependencies on more realistic cluster properties, such as cool cores and substructure.

Figure 1.8: Figure 1.3 from Davidson (2005), adapted from Rosati et al. (2002). A flux vs area summary of pre 2002 serendipitous and pointed X-ray cluster surveys (dark and light circles respectively). The likely position for XCS, when it is complete, is also shown.

Chapter 2

XMM-Newton

This chapter will give an introduction to the X-ray Multi-Mirror (XMM) Newton observatory satellite. This is a review chapter, with figures drawn from the XMM users handbook, with the exception of Figure 2.4 which was generated by the author.

XMM-Newton is the second of ESA's four cornerstone missions defined in the Horizon 2000 Programme. It was launched on December 10th, 1999 and carries two distinct types of telescope: three Wolter type-1 X-ray telescopes, with different X-ray detectors in their foci, and a 30-cm optical/UV telescope with a pre-amplified CCD detector in its focal plane. The three main types of science instrument onboard are as follows:

- European Photon Imaging Camera (EPIC): 3 CCD cameras for X-ray imaging, moderate resolution spectroscopy, and X-ray photometry; there are two different types of EPIC camera, MOS and pn. XMM-Newton carries 2 MOS cameras and one pn.
- Reflection Grating Spectrometer (RGS): 2 essentially identical spectrometers for high-resolution X-ray spectroscopy and spectro-photometry.
- Optical Monitor (OM): for optical/UV imaging and grism spectroscopy.

Unless prohibited for some unusual reason, all six of the science instruments on board operate simultaneously. However little more will be said of the optical monitor or RGS, as this thesis is primarily concerned with the images produced from the three X-ray cameras. The simultaneity of the data collection means that regardless of the pointing type, the EPIC cameras will be collecting serendipitous data. A pictoral representation of the satellite is given in Figure 2.1.

Figure 2.1: Caption and figure from the XMM users handbook, figure 1. "Sketch of the XMM-Newton payload. The mirror modules, two of which are equipped with Reflection Grating Arrays, are visible at the lower left. At the right end of the assembly, the focal X-ray instruments are shown: The EPIC MOS cameras with their radiators (black/green "horns"), the radiator of the EPIC pn camera (violet) and those of the (light blue) RGS detectors (in pink). The OM telescope is obscured by the lower mirror module. Figure courtesy of Dornier Satellitensysteme GmbH."

2.1 X-ray Mirrors and Cameras

Due to the high energy of X-ray photons, it is difficult to use them for imaging. Their tendancy to pass through material is well known and so they must by focused by grazing incidence reflection. The solution found to maximize the collecting area of the telescope was to use a set of 58 co-aligned concentric nested mirrors (See Figures 2.2 and 2.3). There are three such sets of mirrors, each of which has a focal length of 7.5m. Each mirror has a nickel substrate and a reflective gold coating to ensure efficient focussing of X-rays with energies up to 10 keV. The mirror nests were constructed and aligned with very high precision. However, the launch of the satellite caused a small amount of misalignment, which was expected. The three X-ray telescopes are co-aligned with a relative astrometry between the three EPIC cameras calibrated to better than 1-2" across the full FOV. The light paths of the telescopes can be seen in Figures 2.2 and 2.3, the two telescopes fitted with the MOS cameras have grating assemblies in their light paths, diffracting part of the incoming radiation onto their secondary focus.

Figure 2.2: Caption and figure from the XMM users handbook, figure 2. "The light path in XMM-Newton's open X-ray telescope with the pn camera in focus (not to scale)."

2.1.1 European Photon Imaging Camera (EPIC)

Two of XMM-Newton's X-ray telescopes are equipped with EPIC MOS (Metal Oxide Semiconductor) CCD arrays rotated by 90° with respect to each other, the third carries a different CCD camera called EPIC pn. The two types of EPIC camera are fundamentally different, not only in their array geometry but other properties as well, e.g their readout times. The readout of the pn chips is much faster than that of the MOS cameras, because each pixel column has its own readout node. The MOS chip arrays consist of 7 individual

Figure 2.3: Caption and figure from the XMM users handbook, figure 3. "The light path in the two XMM-Newton telescopes with grating assemblies (not to scale). Note that the actual fraction of the non-intercepted light that passes to the primary MOS focus is 44%, while 40% of the incident light is intercepted by grating plates of the RGA."

identical, front-illuminated chips, the pn camera is a single Silicon wafer with 12 rearilluminated CCD chips integrated.

The three cameras can operate in a number of different science modes, examples of which can be seen in Figure 2.4. The outer 6 MOS CCD's remain in standard imaging mode while the central MOS CCD can be operated separately. Shown within Figure 2.4 is an example of an exposure with MOS1 CCD6 switched off, this is due to an event on 09 March, 2005, during XMM-Newton revolution 961, registered in the focal plane of the EPIC MOS1 instrument. The characteristics of the event might be attributed to a micrometeorite impact scattering debris into the focal plane. The chip has not responded properly since, and at the time of writing remains switched off ¹.

2.2 Point Spread Function

Of crucial importance is an understanding of XMM's ability to focus photons, this is defined by the Point Spread Function (PSF). The PSF details how the photons from a perfect point source are focused by the mirrors and registered on the CCDs. The shapes of the on-axis PSF of the XMM X-ray telescopes are shown in Figure 2.5. This on-axis PSF has a narrow core and varies little between 0.1 - 6keV, the azimuthally averaged MOS1 PSF is shown in Figure 2.6 with the best fit king-profile.

However the PSF has some off-axis angle dependence and becomes elongated at large

¹http://xmm.esac.esa.int/external/xmm news/items/MOS1-CCD6/

Figure 2.4: Typical sky footprints of differing observing modes. In order from top left: MOS1 full window mode, MOS2 full window mode, MOS fast uncompressed, MOS partial window W2 or W4 mode, MOS partial window W3 or W5 mode, MOS1 full window mode with CCD6 switched off, pn full window mode, pn large window mode.

Figure 2.5: Caption and figure from the XMM users handbook, figure 4. "On axis point spread function of the MOS1, MOS2 and pn X-ray telescopes (left to right) registered on the same source with each MOS camera in Small Window Mode, and the pn camera in Large Window mode. The pixel size is 1.1 arcsec square for the MOS, and 4.1 arcsec square for the pn. The images are 110 arcsec wide. A square root scale has been used to visualise the wings of the point spread function. The core of the PSF is piled-up for this source, with a different factor for the MOS and the pn. The star-like pattern is created by the spider which supports the 58 co-axial Wolter I mirrors of the telescope. The shape of the point spread function core is slightly different for all cameras, with MOS2 having a somewhat more pronounced shape."

Figure 2.6: Caption and figure from the XMM users handbook, figure 5. "Radial count distribution for the on-axis PSF of the MOS1 X-ray telescope in the 0.75-2.25 keV energy range. A King profile (solid black line) best fit to the in-orbit measurement (red crosses) is shown for comparison."

off-axis, to make matters more complicated the shape of the PSF is not azimuthally symmetric as seen in pre-launch tests (see Figure 2.7), in addition the PSF becomes more energy dependent at increasing off-axis angles.

Figure 2.7: Pre-launch test showing the shape of the PSF across the field of view (at off-axis angles of 7' and 14'), from the XMM Users Handbook.

2.2.1 Modelling the PSF

There are four main PSF models in the XMM calibration documents. These have their different merits, and are summarised here.

- 1. Low Accuracy. This model consists of a Gaussian, that is dependent on off-axis angle and energy. The simplicity of this model is appealing; however it fails to take into account the ellipticity of the off-axis PSF or its azimuthal variation.
- 2. Medium Accuracy. This model is based on a library of PSF images created through numerical simulations of the mirrors. For a given energy and off-axis angle an image can be produced by interpolation of the library images. In the Science Analysis System (SAS) task CALVIEW the model PSF for any azimuthal angle can be obtained. This however is just a rotated version of the library image at the same off-axis angle and so does not reproduce any azimuthal variation in structure. Also, at high off-axis angle there is evidence that the true PSF develops twin peaks with extensive wings, which is also not accounted for in the model (See Figure 2.8). This is the only two-dimensional PSF model available.

- 3. **High Accuracy.** This is an analytical model comprised of three Gaussian profiles combined in an attempt to model both the core and wings of the PSF. It has been superseded by the Extended Accuracy model.
- 4. Extended Accuracy. Through studying a sample of real detected point sources Ghizzardi (2001) parameterised the in-flight PSF for all three cameras. The model consists of an analytic King Model, plus background.

$$PSF = A \left[1 + \left(\frac{r}{r_c}\right)^2 \right]^{-\alpha} + B \tag{2.1}$$

where the core radius, r_c , slope, α , normalization, A, and a constant background, B, are all fitted for each camera as a function of off-axis angle. This provides a more reliable fit than a Gaussian to both the core and the wings, but despite this there are still some inadequacies of the model. The fits are limited to low energies (≤ 5 keV) and low/moderate off-axis angles ($\leq 7'$). Also the fit is made to azimuthally averaged profiles, leading to a lack of structure and crucially ellipticity.

Figure 2.8: Figure 3.2: from Davidson (2005). Left) The model PSFs from CALVIEW for an off-axis angle of 10', azimuthal angle= 90° using the Medium accuracy model; middle) likewise for the Extended accuracy model; right) real twin-peaked source at an off-axis angle of 14'.

2.3 Summary

A summary of the important characteristics of XMM is given in Table 2.1. The energy range of EPIC cameras is 0.15 - 12 keV, with a Field of View of 30' diameter. The spatial resolution is determined by the size of the PSF, which has on-axis values of 5 - 6'' (FWHM).

Instrument	EPIC MOS	EPIC pn	RGS
Bandpass	$0.15 - 12 { m keV}$	$0.15 - 15 { m keV}$	0.35 - 2.5 keV
Sensitivity* (erg s ^{-1} cm ^{-2})	$\sim 10^{-14}$	$\sim 10^{-14}$	8×10^{-5}
Field of view (FOV)	30'	30'	$\sim 5'$
PSF (FWHM)	5"	6″	N/A
Pixel size	$40\mu m(1.1'')$	$150 \mu m (4.1'')$	$81\mu m (9\times 10^{-3}A)$
Timing resolution	$1.75 \mathrm{ms}$	$0.03 \mathrm{\ ms}$	0.6 s
Spectral resolution	$\sim 70~{\rm eV}$	$\sim 80 \mathrm{eV}$	0.04/0.025A

Table 2.1: A summary of the important characteristics of XMM. Table information from the XMM Users Handbook. * Sensitivity is quoted after 10ks of exposure.

Chapter 3

XCS and XCS DR1 & DR2

In this chapter we shall give an outline of the XMM Cluster Survey (XCS), including its current status and long-term science goals. This will include a review of previous published XCS papers and the PhD thesis of Michael Davidson (Davidson, 2005). Although most of this chapter is review, note that Figure 3.6 and the DR2 catalogue are the work of the author.

3.1 Survey overview, motivation and goals

The XMM Cluster Survey (XCS) (Romer et al., 2001) is a serendipitous X-ray galaxy cluster survey using data from the XMM archive. Since its launch in 1999, XMM-Newton has taken over 4000 observations covering more than 500 square degrees, and much of this data is publicly available. The main aim of XCS is to exploit this large archive for cluster searching, in order to provide a cluster catalogue suitable to study cosmology. To achieve the goal of constraining cosmological parameters the cluster catalogue must have the following attributes: the catalogue must cover a redshift range large enough to be able to measure evolution in the cluster number density; likewise the catalogue must contain enough clusters so that each redshift bin contains a significant number of objects; each object must have a known mass (measured via its X-ray temperature) and redshift; in addition the catalogue must be accompanied by a detailed selection function.

Alongside the main cosmology goal of XCS there are numerous other results that will come out of the project, many of which will in themselves be field-leading results. The final catalogue is expected to be an order of magitude larger than any other homogenous sample so-far compiled, thus the L-T relation from this sample will be able to place constraints on deviations from the self-similar model, and so assist in studies of non-gravitational heating (See Section 1.3.5). With its detailed selection function (Chapter 5) the XCS sample will also be a key tool for morphological studies. XCS expects to detect many clusters at z > 1.0, XMMXCS J2215.9 – 1738 (hereafter XMMXCS J2215) for example remains the most distant spectroscopically confirmed X-ray selected cluster currently known, and so offers important information regarding star formation rates, galaxy morphology, and colour-magnitude relations (Hilton et al., 2009). In addition studies of BCGs in these high redshift clusters can place constraints on mass build-up and galaxy evolution (Collins et al., 2009). One of the by-products of the XCS cluster sample is a large point source catalogue, which is currently being exploited for finding X-ray spectra of SDSS Quasars, and also hunting for Isolated Neutron Stars.

The collaboration currently consists of 19 full members plus additional affiliates from a range of intitutions based in 5 different countries (see Table 3.1)

Name	Institution	Country
Chris Collins	Liverpool John Moores University	UK
Michael Davidson	Royal Observatory Edinburgh	UK
Matt Hilton	University of KwaZulu-Natal SAAO	South Africa
Mark Hosmer	University of Sussex	UK
Ben Hoyle	University of Portsmouth	UK
Scott Kay	University of Manchester	UK
Andrew Liddle	University of Sussex	UK
Ed Lloyd-Davies	University of Sussex	UK
Robert Mann	Royal Observatory Edinburgh	UK
Nicola Mehrtens	University of Sussex	UK
Chris Miller	Cerro-Tololo Inter-American Observatory NOAO	Chile
Robert Nichol	University of Portsmouth	UK
Kathy Romer (PI)	University of Sussex	UK
Kivanc Sabirli	University of Sussex	UK
Martin Sahlen	University of Sussex	UK
Adam Stanford	Lawrence Livermore National Laboratory	USA
John Stott	Liverpool John Moores University	UK
Pedro Viana	Universidade do Porto	Portugal
Mike West	European Southern Observatory	Chile

Table 3.1: The XCS collaboration

3.2 Review of published XCS papers

A serendipitous galaxy cluster survey with XMM: Expected cluster catalog properties and scientific applications (Romer et al., 2001).

Romer et al. (2001) predicted the properties of XCS based on simulations of cluster population models as a function of cosmology, the charactistics of the EPIC PN camera, and a generic model for cluster profiles. While XCS itself had not yet been built, and the XMM archive was still in its infancy, Romer et al. (2001) demonstrated how a serendipitous survey with archival XMM data had the potential to place strong constraints on Ω_0 and to a lesser extent Ω_{Λ} , while also producing a cluster catalogue, with luminosities and temperatures, that would be at least an order of magnitude larger than any other in the literature at the time.

Apparent and actual galaxy cluster temperatures (Liddle et al., 2001).

Liddle et al. (2001) investigate how far the XCS X-ray data alone could be exploited in terms of cosmology. The authors show that without redshifts, the apparent temperature function of clusters can be used to make constraints on a combination σ_8 of Ω_m , but to break the degeneracy redshift information is required. Liddle et al. (2001) investigate how well the redshifts can be estimated from the X-ray data, given enough counts this may be possible based upon the continuum emission or spectral features, however this will not be possible in the majority of cases, so the authors test some other estimators. A combination of X-ray flux with the apparent temperature may be able to provide redshifts, but only if the evolution in the L - T relation is well understood. They conclude stressing the need for redshift measurements, and indicate the use of optical data to meet this need.

The XMM Cluster Survey: A massive galaxy cluster at z = 1.45 (Stanford et al., 2006). Stanford et al. (2006) report the discovery of XMMXCS J2215, a massive galaxy cluster found as part of XCS. Optical spectroscopy shows that six galaxies within a 60" diameter region lie at $z = 1.45\pm0.01$, making this the most distant X-ray spectroscopically confirmed cluster. Model fits to the X-ray spectra yield a temperature of 7.4keV. The authors discuss the possibility of a central point source contaminating the cluster emission, accounting for this would lower the temperature to 6.5keV. The measured temperature was the highest for any known cluster at z > 1 indicating a relatively massive cluster for this redshift.

The XMM Cluster Survey: The Dynamical State of XMMXCS J2215.9-1738 at z = 1.457 (Hilton et al., 2007).

Hilton et al. (2007) increased the number of galaxies with spectroscopic redshifts within the virial radius of XMMXCS J2215 to 17. Using this data the authors make a measurement of the line of sight velocity dispersion, $\sigma_v = 580 \text{kms}^{-1}$, and note that given the temperature measured in Stanford et al. (2006) this is inconsistant with the hypothesis of equipartition of energy between the gas and galaxies, $\beta = \sigma_v^2 \mu m_p / kT = 1$, indicating that the intracluster medium contains 2-3 times the kinetic energy of the galaxies. The cluster is also significantly under-luminous compared to the expectation from self-similar L-T evolution. Hilton et al. (2007) investigate the possibility of a recent merger causing this behaviour, and find only mild evidence for a line of sight merger. The alternative mechanism may be heating due to supernova and/or AGN.

Early assembly of the most massive galaxies (Collins et al., 2009).(Hosmer is a co-author). Collins et al. (2009) use a sample of 5 high redshift $(1.2 \le z \le 1.5)$ clusters including XMMXCS J2215 to investigate stellar mass evolution in brightest cluster galaxies with respect to a local sample of clusters of similar mass. Using a range of stellar evolution models the BCG stellar masses are estimated and are found to show much less evolution than expected from hierarchical models. The BCGs appear to have already assembled $\ge 90\%$ of their mass by $z \sim 1.5$, where as current models predict $z \sim 0.2$ before this mass level is reached.

The XMM Cluster Survey: Galaxy Morphologies and the Color-Magnitude Relation in XMMXCS J2215.9 – 1738 at z = 1.46 (Hilton et al., 2009).(Hosmer is a co-author). Hilton et al. (2009) conducted a study of the morphological fractions and colour-magnitude relation in the galaxy cluster XMMXCS J2215. This is the 1st such study of an X-ray selected cluster at $z \sim 1.5$. The morphological fractions are similar to other clusters at $z \sim 1$. Thus, the dominant component of the galaxy population observed in clusters at low redshift was already in place ~ 4.5Gyr after the Big Bang. The colour-magnitude relation is found to be consistent with that from Coma, implying little evolution over the last ~ 9 Gyr. XMMXCS J2215 is also found to show evidence of 'downsizing', with a deficit of faint red sequence galaxies in comparison to observations of clusters at low redshift.

The XMM Cluster Survey: Forecasting cosmological and cluster scaling-relation parameter constraints (Sahlén et al., 2009).(Hosmer is a leading co-author).

As discussed previously, XCS aims to use the abundance of galaxy clusters as a function of mass and redshift to place constaints on cosmological models. The ability of XCS to achieve this goal is assessed in Sahlén et al. (2009). The paper forecasts the expected cluster samples from the XCS, and based on those, its ability to constrain cosmology and cluster scaling relations using self-calibration, specifically the expected constraints on Ω_m, σ_8 and the L - T relation for a flat universe. Sahlén et al. (2009) details the way in which errors in cluster observables (L, T, z), and the assumptions made in their scaling, can influence the accuracy of the measured n(M, z). This in turn can increase the statistical errors in the cosmological parameters, or in some cases cause systematic offsets.

Figure 3.1 (Figure 14 from Sahlén et al. (2009)) shows the expected constraints on Ω_m and σ_8 from the XCS500 (see Section 3.6.1). These are the result of exploring the likelihood function for the observed cluster catalogue through Monte Carlo Markov Chain techniques. Figure 3.1 demonstates the effect of temperature and/or redshift measurement errors on the expected cosmological constraints. Figure 3.1a shows that if the scaling relations are known, and the measurement errors accounted for, the constraints are centred around the fiducal value. Figure 3.1b and Figure 3.1c show that if these measurement errors are not

accounted for in the analysis, then the constraints can be systematically offset from the fiducal values. Ω_m is expected to be measured to ± 0.03 , and assuming flatness, Ω_{Λ} to the same accuracy. σ_8 is expected to be measured to ± 0.05 . We also expect to measure the slope and normalisation of the L - T relation to $\pm 13\%$ and $\pm 6\%$ respectively.

Figure 3.2 (Figure 15 from Sahlén et al. (2009)) shows how the incorrect assumptions in the L-T relation can cause considerable difficulties for cosmological parameter estimation, further highlighting the importance of well understood scaling relations. If we consider as an example the light blue data in Figure 3.2; here we have self-similar L-T evolution, with scatter in the data, however in the analysis constant evolution and no scatter have been assumed. This example returns very tight constraints on both Ω_m and σ_8 , these constraints are however misleading as the fiducal model is offset by a considerable amount.

(c) Unaccounted for combined measurement errors

Figure 3.1: Figure 14 from Sahlén et al. (2009). Expected 68 and 95 per cent parameter constraints for XCS500, for known scaling relations, no scatter, and with measurement errors. Stars denote the fiducial model assumed. Green = Self-similar L - T evolution, Pink = No L - T evolution.

Figure 3.2: Figure 15 from Sahlén et al. (2009). Expected 68 and 95 per cent parameter constraints from the XCS500, for various cluster scaling relation assumptions inconsistent with the fiducial model used for generating the data.

3.3 XCS Source Detection

This section will describe the processes undertaken by XCS to extract source lists from XMM images. The steps taken are first summarised, followed by a more in-depth description of the key elements.

38

- Data retrival. All of the public data available in the XMM archive is downloaded to local disks. The data has so far been downloaded on three occasions to account for the growth of the archive, February 2005 (undertaken by K. Sabirli), April 2006 (K. Sabirli) and May 2009 (E. Lloyd-Davies). These downloads define three sets of XCS data, refered to as DR1, DR2, and DR3 respectively. Note that DR3 is a complete re-download and analysis of all previous data to maintain the homogeneity of the data following some changes to the image generation, XAPA and the optical follow-up (See Chapter 4). The remaining sections of this Chapter primarily regard the data in DR1 and DR2.
- Image creation. Various inputs to the XCS detection pipelines are created from the raw data. Each observation commonly consists of images from each of the three cameras onboard XMM, and in some cases each camera has multiple exposures. These exposures are merged to create a single image per camera, and also to boost the detectability of faint clusters the three individual camera images are coadded. Images are created in this way for two energy bands: a 'soft' band, 0.5-2.0keV, and a 'hard' band, 2.0 10.0keV. The creation of a merged exposure map to accompany the merged image is detailed in Lloyd-Davies (in prep). Also included at this stage is the creation of accompanying ECF's (Energy Conversion Factor) to convert between count rates and fluxes. This ECF calculation was undertaken by the person doing the respective download, i.e. DR1,DR2 (K. Sabirli), DR3 (E. Lloyd-Davies). See Appendix G for details.
- Image inspection. Each image is visually inspected for its suitability for cluster finding. At this stage Masks are created by hand to remove any unwanted features of the images (See 3.3.1). DR1 masks were made by M. Davidson, DR2 (by M. Hosmer), DR3 (by M. Hosmer and E. Kuwertz).
- Source detection The images are run through XCS Automated Pipeline Algorithms (XAPA) (Davidson, 2005), to create a detection list for each observation. XAPA was run on DR1 by M. Davidson, and on DR2 and DR3 by M. Hosmer (See Section 3.3.2).

3.3.1 Image inspection and Mask creation.

Since XMM is used for a wide range of projects in a variety of different areas in astronomy, the observations in the XMM archive contain a large number of target types. As a result not all of the XMM observations are suitable for XCS. To assess the suitability of the observations, each one is examined by eye. Only if there exists significant area where a new extended source could be discovered is the observation kept in XCS. On this basis, observations of large supernova remnants, crowded star clusters, large nearby galaxies or galaxy clusters, and observations of very bright point sources are not suitable for source detection and are not processed further. Also, if the exposure time of the observation is extremely low or the camera mode is unusable the observation is removed from the XCS list. Some examples of excluded observations are shown in Figure 3.3.

Figure 3.3: Obsids 0411082701 and 0406840301, two examples of observations that are not suitable for XCS. Top: Field dominated by a large point source, showing out-of-time events and artifacts caused by the mirror supports. Bottom: Field entirely covered by a SNR.

For the observations that remain, a mask is made by hand, to remove a range of objects and artefacts that would result in spurious detections. Mask regions include those with bright point sources displaying prominent diffraction spikes; hot pixels; streaks due to Out-of-Time events (when photons are registered as the CCD is being read out, creating a line of counts between the source and the read-out node); and areas containing ghost images (caused by sources outside of the field of view). Both the image and exposure image are multiplied by the mask before being passed on to the detection pipeline. Examples of these artifacts are shown in Figure 3.4. The removal of unsuitable observations reduced the inputs to the source detection processes to 1847 (of 2413) for DR1.

3.3.2 Source Detection

The XCS Automated Pipeline Algorithm (XAPA) was first presented in detail in the Ph.D thesis of Michael Davidson (Davidson, 2005). Here we will only summarize the key features of XAPA. An overview of the algorithms is given in Figures B.1 to B.4 of Appendix B, the figures are a set of flow charts from Davidson (2005) showing the steps taken in detection, reconstruction, recovery of source properties and source list cleaning.

XAPA makes use of the WTRANSFORM part of the wavelet transform package WAVDETECT, this uses wavelets to detect sources on given scales in an image. Nine wavelet scales are used (numbered according to increasing size, corresponding to $\sqrt{2}$, 2, $2\sqrt{2}$, 4, $4\sqrt{2}$, 8, $8\sqrt{2}$, 16 and 32 image pixels). These scales are run in 2 separate stages, scales 1-3 (Run1) are used first, some of the sources detected here are masked out before continuing with scales 4-9 (Run2). This is to prevent very bright small sources from contaminating the larger scales.

Occasionally, extended sources do present a large central first scale signal, for instance if they contain a point source or the density profile is cuspy. If this happens then the central source can cause the Run2 detection of the larger extent to be removed as a likely lobe around a bright Run1 source (see Davidson (2005) for details). Thus, the true extent of the source is underestimated. To prevent this a simple test is performed:

A grid of 5 by 5 pixels, Q, centred on the source is extracted from the image. The quantity representing the 'cuspiness', C, of the central region is calculated:

$$C = \frac{Q_{max} - Q_{min}}{Q_{max}} \tag{3.1}$$

If C < 0.85, then the source is removed from the Run1 list as it is flatter than a real point source.

After both detection runs, XAPA then reconstructs the sources into multi-scaled structures and objects, after which an initial set of source properties is calculated. All sources

Figure 3.4: Examples of observations containing areas that must be masked out to avoid unnecessary spurious detections. Top: Bright point source with spikes and OOT events, also ringing caused by single reflections from a bright source outside the FOV. Bottom: A large supernova remnant covering half of the FOV.

detected with a significance of less then 4σ above the background level are removed from the source list. After cleaning of the source list the properties of the remaining sources are re-calculated.

The reconstructed objects are classified based on a comparison of the Encircled Energy Fraction (EEF) of the source to the EEF of the Point Spread Function (PSF) at the source position. The comparison uses a Kolmogorov-Smirnov (K-S) test to determine the probability of a source being pointlike.

The PSF model employed is the Extended model (see Section 2.2). This model is radially averaged, and has limited validity across the field of view. Despite the variation in the shape of the PSF as a function of position, the PSF EEF varies only weakly with off-axis angle. The current PSF model is not ideal, it would be preferable to have a model that recreates the structure that is seen in the true PSF at large off-axis angles. Due to potential misclassification caused by inadequacies in the model, XAPA assigns certain flags to those sources that maybe classified incorrectly (see Section 3.3.3).

Because we use the actual data in our estimation of the PSF EEF model (by measuring the background component) we cannot strictly use the analytical expression for the K-S confidence threshold. The only option in this case is to perform a set of MonteCarlo (MC) simulations for every source. Although this is computationally expensive it is vital to prevent misclassification. The bootstrap resampling process involves generating 200 realisations of the PSF EEF model and populating them with the same number of counts as measured in the data. Each of these realisations can be compared to the model and an empirical distribution of the K-S d values found (d is the maximum deviation between two sets of cumulative data). If none of the simulated distributions returns a d value as great as the measured value then an approximate upper limit on the probability of the source being truly a point is 0.005.

The extent determination algorithm in XCS is one of its key features. It works well across the field of view, but we do hope to improve the PSF model in time for DR4.

3.3.3 XAPA warning flags

Due to various uncertainties, e.g the PSF and the background level, there is still some potential for artifacts in the source lists generated by XAPA. These are flagged in the source list as follows:

• PSF-SIZED FLAG. Due to the flaws in the PSF model, there is a large potential for the mis-classification of point sources as extended (and vice-versa) that are of comparable size to the PSF. In light of this any extended objects that are PSF-sized are flagged as such.

- RUN1 CONTAMINATED FLAG. It is also possible for the wings of the true PSF around bright point sources to be detected as extended emission. To account for this, any extended sources where 50% or more of the flux is coming from internal sources detected in Run1, are flagged as being potential artifacts.
- POINTSOURCE CONTAMINATED FLAG. In addition a final flag is applied to extended objects that are detected with internal pointsources, where the pointsource flux is $\geq 1.3 \times$ the extended source flux. This also helps prevent the mis-classification of groups of point sources as a single extended source.

3.4 Creation of a source list

XAPA produces a source list for each of the input observations, then these lists are concatenated to form a master detection list. Present in the XMM archive are many areas that have been observed multiple times. As a result some of these entries in the master list will be duplicate detections of the same sources. In order to remove these it is necessary to set an appropriate matching radius. The positional accuracy of the survey is higher for point sources than for extended sources, so it makes sense to use a different radius for each type. The accuracy for point sources varies as a function of off-axis and azimuthal angles (amongst other parameters). However, for simplicity we use a single value for the radius of 5". The case for extended sources is less straightforward because of the variety of source types and morphologies. The positional accuracy for large diffuse objects, such as low redshift clusters, can be very poor, making it very hard to pick an appropriate radius. Fortunately, the largest diffuse sources should have already been masked and removed entirely from their host observation. So, for XCS we use a fixed matching radius of 2' for extended sources (Davidson, 2005). (See Chapter 4 for the matching radius used in DR3). When duplicates are found, the detection with the most soft band counts is kept and a Source list is produced. A final summary of the XCS DR1 and DR2 is given in Table 3.2.

	Obsids	Detections	Sources
DR1	1847	74295	63327
DR1+DR2	2395	95694	81528

Table 3.2: Summary of the XCS DR1 and DR2.

3.5 Comparison of XCS DR1 & DR2 point sources to those in the public archives.

It is desirable that the XCS catalogues be of value to the wider X-ray community, not just those working in the field of clusters of galaxies. To this end it is important to undertake comparisons of the XCS source lists with the data available in the literature. An obvious study with which to make such comparisons is the XMM-SSC's (XMM-Survey Science Centre), XMM-Newton Serendipitous Source Catalogue, known as 2XMM (Watson et al., 2009). Released in 2008, the 2XMM catalogue was the largest X-ray source catalogue ever produced, containing almost twice as many discrete sources as either the ROSAT All Sky Survey or pointed catalogues. Based on 3491 XMM observations, 2XMM contains 246897 X-ray source detections which relate to 191870 unique X-ray sources.

Davidson (2005) included a cross match of the <u>point sources</u> in the DR1 detections list to the first catalogue produced by the XMM-SSC. In general the source properties were in very good agreement, however a comparison of the fluxes showed a $\sim 10\%$ offset in the MOS fluxes, and $\sim 20\%$ in the PN (see the histograms in Figure 3.5). Since Davidson (2005), XMM-SSC have made alterations to their reduction and re-released the data (now included as part of 2XMM). So we have re-done this comparison as follows.

Figure 3.5: Figure 5.7 from Davidson (2005). A comparison of the individual camera fluxes of XCS point sources vs their matches from the XMM-SSC.

Using a 10" matching radius, a comparison between the DR1+DR2 detections and the 2XMM catalogue returns 84283 matches, from a total of 95694 XCS detections. The

difference in the number of detections contained in the two catalogues (246897 vs. 95694) is the result of two factors

- There are less pointings in the combined DR1+DR2 than in 2XMM (2395 vs. 3491)
- Different methods are employed to clean the lists of spurious detections. The 2XMM authors note that: 'About half of the observations have features that may cause spurious detections (mainly the wings of bright sources and large extended emission), and it is strongly recommended to use a filter'¹. As outlined in Section 3.3.2, a large amount of filtering of such sources is done on the XCS source lists as part of the detection process.

An updated comparison of the XCS fluxes and their 2XMM counterparts is shown in Figure 3.6. The offset between the 2XMM fluxes and the XCS fluxes remains. The level of the offset is larger than before, it is now consistent across the three cameras, but exists at the $\sim 30\%$ level (vs. previous levels of 10% for MOS and 20% PN). The XMM-SSC have improved the calibration between their PN fluxes and those from the MOS cameras, however this has also caused a greater difference to appear between their data and that of DR1 and DR2. The problems with the 2XMM flux calibration are well documented ², although this difference may also be an indication of problems with the DR1 and DR2 fluxes. This comparison is repeated in Chapter 4 for the DR3 fluxes and the offset is seen to be significantly reduced. This indicates the majority of the offset may be caused by the use of different calibration. The XMM calibration files are ever changing; the comparision in Figure 3.6 may be comparing data at a time when 2XMM were using more up to date calibration than was used in DR1 and DR2, hence the improvement when using the updated DR3. A small systematic offset is not unexpected, the fluxes are dependent on the ECF's, which assume a spectral model (see Appendix G).

Davidson (2005) made additional checks against optical catalogues and verified the positional accuracy such that 95% of the matches to the optical data are within 7.8". These position checks are repeated for DR3 in Section 4.3.1.

The quality of the point source catalogue produced by XAPA has enabled XCS spin-off projects to make specific use of this data; these include a search for Isolated Neutron Stars and projects matching XMM data to SDSS Quasars.

3.6 Statistical Sample of cluster candidates

To achieve the cosmology goals of XCS we require an unbiased sample of clusters. Selecting our cluster candidates from the XCS source list is not as simple as just selecting all of the

¹http://xmmssc-www.star.le.ac.uk/Catalogue/2XMM/

²http://xmm.vilspa.esa.es/docs/documents/CAL-TN-0018.pdf

Figure 3.6: An updated comparison of the individual camera fluxes of XCS point sources vs their matches in 2XMM (Watson et al., 2009).

extended objects, as the list must be extensively filtered. The filtered list is known as the Statistical Sample (StatSam).

- Any candidates that are the pointing targets are not serendipitous and so need to be removed. A 2' radius from the pointing centre is used for this purpose.
- Since clusters have a certain amount of clustering, all candidates in targeted cluster pointings are excluded from the sample.
- To ensure a minimal level of contamination in the sample any source which is flagged as potentially suspicious is removed, i.e PSF-SIZED FLAG, POINTSOURCE CONTAM-INATED FLAG or RUN1 CONTAMINATED FLAG (see Section 3.3.2).
- There are a considerable number of published source catalogues available to the community. These can be used to clean the candidate list of non-cluster extended objects such as supernovae that were not already removed by the masking (See Section 3.3.1). Objects already classified in NED (NASA/IPAC ExtraGalactic Database³) or SIM-BAD ⁴ as one of the following: HII cloud, Supernova Remnant, Planetary Nebula, or low Redshift Galaxy (z < 0.04) are removed from the candidate list (using a 2' matching radius).
- To assist in the optical follow-up, candidates in the Galactic plane, or within either of the Magellanic clouds, are also removed (See Table 3.3). This has been added by the author as it was neglected in Davidson (2005).

This filtering produces a DR1 StatSam containing 1411 cluster candidates, and a DR1+DR2 StatSam containing 1874 cluster candidates.

Name	Cut
Galaxy	$ b < 20^{\circ}$
LMC	RA: $5h23'35''$, Dec: $-69^{\circ}45'$, Radius: 6°
SMC	RA: $0h52'44''$, Dec: $-72^{\circ}50'$, Radius: 3°

Table 3.3: Details of sky cuts applied to the XCS StatSam. All candidates are excluded if they are within the specified regions.

3.6.1 The XCS500 and XCS300 subsamples

Here we outline the definition of the XCS500 and XCS300 sub-samples of clusters referred to throughout this thesis. The XCS500 and XCS300 are defined based on the number of counts a cluster is detected with in the soft band. The requirement that the final

³http://nedwww.ipac.caltech.edu

⁴http://simbad.u-strasbg.fr/simbad
cluster sample have known temperatures has led to this necessity. The count limit has been set in such a way that the cluster spectrum can be fitted to a model spectrum of a known temperature. To produce reliable fits, enough counts have to be present such that the shape of the bremsstrahlung continuum is well sampled. The minimum count limit has initially been set at 500 (counts from XAPA, not aperture corrected), and this number has been used in Sahlén et al. (2009) for XCS's cosmologal forecasting (See 3.2). To remain consistent with this work a count limit of 500 is used where appropriate in this thesis; however a reduction in the limit is being considered based on the temperature measurement work undertaken by E. Lloyd-Davies. With this in mind Chapter we also provide candidate numbers for the XCS300 subsample.

3.7 DR1 and DR2 StatSam redshift follow-up

3.7.1 Online archives

In addition to their use in removing non cluster extended sources, NED and SIMBAD are also used to identify serendipitous re-detections of known clusters (to avoid unnecessary follow-up). However these are not dedicated cluster catalogues and so it should not be expected that they contain all known clusters. The X-Rays Galaxy Clusters Database⁵(BAX) is a dedicated cluster project with the aim of gathering cluster data into one resource, and so this database was used also for completeness. These literature searches identify 222 known clusters and groups in the DR1+DR2 StatSam (Literature search Feb 2008) leaving 1652 new DR1+DR2 candidates.

3.7.2 The NOAO-XCS Survey

The following subsection contains a description of the NOAO-XCS survey, the text has been edited from that provided by N. Merhtens (Private communication). M. Hosmer was an observer during one of the 6 night runs at the CTIO, Chile; however all of the data reduction and redshift fitting has been undertaken by N. Merhtens.

The NOAO-XCS Survey (NXS) is the optical follow-up survey to XCS providing photometric redshifts for DR1 and DR2 XCS cluster candidates. NXS uses a method of cluster detection inspired by Gladders and Yee and the Red-Sequence Cluster Survey (RCS) Gladders and Yee (2000). The main assumption is that all clusters are made up of a centrally concentrated clump of homogeneous, old, red, passively evolving elliptical galaxies. These galaxies, having formed at similar times from the same constituent gas, have similar metalicities and therefore colours, allowing them to exhibit a tight relation in colour-magnitude space -the red sequence. By taking imaging photometry of a cluster in

⁵http://bax.ast.obs-mip.fr

two filters sampling either side of the 4000Åbreak of cluster elliptical galaxies, one can use the colour of the red-sequence as a redshift estimator. As the 4000Åbreak migrates with increasing redshift the observed colour becomes redder providing a redshift estimate. The NXS survey therefore identifies clusters and assigns photometric redshifts and richness estimates (i.e. the number of cluster galaxies) by exploiting the ubiquitous red sequence observed in most galaxy clusters.

The NXS redshift algorithm (See Appendix C) was run on 220 XCS DR1 and 34 XCS DR2 cluster candidates imaged by NXS under photometric conditions (the results of which are shown in H.1. Of these candidates, 163 XCS DR1 clusters were detected with at least 5 member galaxies (including 54 XCS300 clusters) with redshift estimates between $0.1 \le z \le 1.0$; and 22 XCS DR2 clusters were detected with at least 5 member galaxies with redshift estimates between $0.1 \le z \le 0.74$.

3.8 Summary & Future work

3.8.1 Cluster catalogue

The DR1+DR2 StatSam will produce the first XCS catalogue of clusters (E. Lloyd-Davies, (in prep)). The DR2 clusters which comprise $\sim 25\%$ of this catalogue are a result of the work done by the author.

3.8.2 Summary

Using images, exposure maps and ECF's produced by K. Sabirli, and the XAPA pipeline designed by M. Davidson, we have been able to produce a source list of 81528 entries, and a StatSam cluster candidate list of 1874. Of these 1874, 250 already have redshifts. The author had responsibility for the DR2 extension of XCS, representing a 25% increase in the number of sources, cluster candidates, and confirmed clusters. The confirmed clusters from the XCS300 sample have now been subjected to X-ray spectroscopy and morphological analysis by E. Lloyd-Davies, see Appendix I.

Chapter 4

The XCS DR3

This chapter presents the XCS DR3. Discussed within are any changes made since DR1 and DR2, and the validation of the catalogue via cross checks with optical and X-ray data sets. Finally the catalogue itself is described and presented in detail. The delivery of DR3 has been the responsibility of the author, and consitutes one of the major results in the thesis. It has extended the area covered by XCS (from the DR1+DR2 area) by $\sim 70\%$, and the increased the number of StatSam cluster candidates by a factor of 2.

4.1 Modifications since Davidson (2005)

Since the reduction and compilation of DR1 and DR2 some corrections and modifications have been made (by the author) to XAPA and to the processes used to generate the final source list.

- Off-axis angles A small fraction (~ 1%) of the sources in DR1 and DR2 were seen to have off-axis angles that would put them well outside of the FOV. A closer inspection of this revealed that these cases were the extreme end of a more systematic problem. The error was caused by use of an incorrect pointing centre. In the majority of cases this offset was minor; however the potential for additional effects required not only correction of the off-axis values, but a complete re-running of XAPA. This is because, as part of the classification process (See Section 3.3.2), the source is compared to a PSF model, and this model is dependent on the off-axis position of the source. Errors here may result in misclassification, in turn leading to incorrect apertures being used for flux measurement. This correction was not available for the DR1 and DR2 samples described in Chapter 3.
- Azimuthal angle Inconsistent conversion from physical image position (x,y) to azimuthal angle, ϕ , in DR1 and DR2 has also been corrected in DR3. The impact

of this conversion is less important than the off-axis issue, since there are no catalogue properties that are directly dependent on ϕ . However this would have caused problems for some uses of the data, e.g. modelling the PSF as a function of θ and ϕ .

- Duplicate source removal In DR1 and DR2, a matching radius of 2' was used to check for extended source duplicates (See Section 3.4). Extended sources within this radius were considered duplicates, and the one with the highest number of counts was used as the master detection and so appears in the final source list. Experience has shown that this radius is too large. An example clearly highlights the problem. XMMXCS J2215 was originally detected in obsid 0106660101, and this area has since been re-observed with longer exposure time in obsid 0106660601 (Figure 4.1). The greater exposure has caused 2 nearby point sources to blend, and be detected as extended, this 'extended' object has a greater number of counts than XMMXCS J2215 and so XMMXCS J2215 is removed from the source list in favour of this blend. This object is clearly not a good cluster candidate, and so would not be followed-up, thus XMMXCS J2215 would likely be not considered further. While for nearby clusters this radius of 2' may be suitable, with increasing redshift this quickly corresponds to an unnecessarily large distance. Ideally a radius as a function of redshift would be implemented, but at this stage we would not have any redshift data, so a fixed radius is the only option. To avoid cases like the given example, the match radius used for DR3 extended sources has been reduced to 30". This radius is large enough to allow reliable source matching, but small enough to minimise removal of genuine cluster candidates. The chosen value of this radius is somewhat arbitrary, the implications of this choice are discussed in Section 4.1.1. The matching radius for point sources remains 5''.
- Image and exposure map creation As mentioned in Section 3.3 the images and exposure maps for DR3 have been created by E. Lloyd-Davies, where as for DR1 and DR2 they were made by K. Sabirli. The image and exposure map generation pipelines were re-written from scratch by E. Lloyd-Davies for DR3. So even for pointings previously analysed for DR1 and DR2, we can expect the source lists and their respective properties to have changed slightly.

4.1.1 Implications for Source lists.

The modifications to the θ and ϕ values detailed above improve the quality of the source catalogues, and little more need be said about them. The change to the extended source matching radius however warrants further discussion. The reduction in this radius increases the number of candidate objects in fields processed in DR1 and DR2, and makes the relative size of the cluster candiate list for DR3 considerably larger than would be expected simply from the increase in the number of pointings analysed. There are two main points that must be noted here. The extended source list will now more closely match the completeness levels expected from the selection functions presented in Chapters 5 and 6, having a knock-on effect of improving the quality of other science results from the survey. The other point to consider is that the increase in the number of extended objects will undoubtedly affect the contamination level of the candidate list. The candidates are all examined by eye before follow up, so the level of contamination in the initial source list has little influence on the final XCS cluster sample.

4.2 Initial problems with DR3

After the creation of DR3 some errors became apparent, as shown in Figure 4.2. Plotted in Figures 4.2(a), 4.2(c), 4.2(c) are a comparison of the individual camera fluxes from DR3 and the counterpart sources found in the 2XMMi catalogue, an incremental update of 2XMM (Watson et al., 2009), it is clear that two subsets of the sources have distinct flux offsets of a factor of 10 - 100 in the MOS cameras. Figure 4.2(b) is a comparison of the DR3 MOS1 fluxes and those from DR1. It is clear from this that the problem is in the DR3 data rather than 2XMMi, Figure 4.2(d) shows that the offset is not even consistent between MOS1 and MOS2. This problem does not affect the PN data (See Figures 4.2(e), 4.2(f)). In addition to the flux issue, there were a small number of obsids that featured spurious sources, generally within chip gaps and regions of low exposure (See Figure 4.3). The symptoms shown in Figures 4.2 and 4.3 point to errors within the exposure maps. Indeed the MOS cameras in the affected obsids were all in one of the partial window modes (See Section 2.1.1). The original merging of the exposure maps and images had not properly taken into account the different mode of the central chip, and this affected the relative weighting of all regions in the maps and caused the ECFs to be artifically boosted. This particular problem has now been corrected. Figure 4.4 shows that there is now a very tight agreement between the fluxes from both of the MOS cameras, and that the DR3 MOS1 fluxes now show a much better match with those from 2XMMi (See Section 4.3.2 for further details).

It is noted that in Figure 4.4(a) there are still a small fraction of detections (1112 of 179530) where the MOS1 and MOS2 fluxes still show a systematic offset. The detections which show an offset of more than 15% are all from the same 115 obsids. The reason for this is offset is yet to be determined, but is expected to be of similar origin to the above, and at the time of writing was being corrected by E. Lloyd-Davies.

Figure 4.1: Top: Obsid 0106660101, XMMXCS J2215 is highlighted by a bold green ellipse. Bottom: Obsid 0106660601, the bold green ellipse denotes the blended point sources chosen as the master source detection by the old DR1 & DR2 method.

Figure 4.2: A comparison of initial DR3 individual camera fluxes to 2XMMi (a,c,e), DR1 (b,f), and another DR3 camera (d) (See text for details).

Figure 4.3: Obsid 0142970101, before (top) and after (bottom) diagnosis and correction of the exposure map error.

Figure 4.4: Same as Figures 4.2(d) and 4.2(b), but after the exposure map correction.

4.3 Comparison to Literature samples

With the internal calibration and quality checks complete it is necessary to assess DR3 in light of the literature data. We will first check the accuracy of the source positions with a comparison to optical data, and then compare the DR3 X-ray properties to some relevant samples.

4.3.1 Determination of the DR3 positional accuracy using optical quasar catalogues

To determine the positional accuracy of DR3 it is desirable to use as a comparison a catalogue that has high spatial resolution and precision, and significant overlap with the XMM data. A natural choice for this is SDSS; the data is of high quality and contains many objects that would be expected to have X-ray counterparts, e.g quasars and AGN. A cross match against the SDSS Quasar Catalog IV (Schneider et al., 2007) using a radius of 10" produces the results in Table 4.1 and plotted in Figure 4.5. There are 1131 matches, 95% of which are within 5.723". The mean matching distance is approximately the size of 2 MOS pixels. Given the uncertainty in the PSF, and the fact that the XMM cameras are only calibrated to 1 - 2" relative to each other, this level of precision is as good as could be expected. However there does appear to be a small systematic offset in both RA and Dec directions at the 0.5" level, and this is yet to be diagnosed.

number of matches in $10^{\prime\prime}$	1131
95% matching radius	5.72''
Mean distance	2.36''
Median distance	1.94''
Standard deviation	1.65''
mean(XCS RA - SDSS RA)	$0.53^{\prime\prime}$
mean (XCS Dec - SDSS Dec)	-0.50''

Table 4.1: A summary of the results of the cross match between DR3 and The SDSS Quasar Catalog IV.

As an aside we note that the XCS-SDSS quasar sample is being exploited by Miller et al. (in prep) to determine X-ray spectral properties of optical quasars. See also Young et al. (2009) for a complementary SDSS-XMM quasar survey. Young et al. (2009) find 792 SDSS QSO's with matches in the XMM data, we find 1131.

To improve the number statistics in the above results we can extend this further by using the catalogue of Véron-Cetty and Véron (2006) (hereafter VeronCat). This catalogue is a compilation of all known AGN and QSOs. The results are in Table 4.2 and Figure 4.6.

Figure 4.5: The relative position of the matches between DR3 and The SDSS Quasar Catalog IV. The dashed line represents the 95% matching radius

This cross match was also done in Davidson (2005) for the DR1 catalogue, and he found a 95% matching radius of 7.8''.

Number of Veroncat AGNs+QSOs	106958
Total number of matches in $10''$	2807
AGN matches	947
QSO matches	1860
95% matching radius	6.56''
Mean distance	2.62''
Median distance	2.17''
Standard deviation	1.80''
mean(XCS RA - VeronCat RA)	0.37''
mean(XCS Dec - VeronCat Dec)	-0.20''

Table 4.2: A summary of the results of the cross match between DR3 and VeronCat.

The use of VeronCat gives 2807 matched sources, the mean, median, and standard deviation of which indicate a slightly larger amount of scatter in the match distribution compared to the SDSS quasars, this can be seen in Figure 4.6. The systematic offset in RA and Dec is still present, although it is reduced in both directions.

The above work confirms the positional accuracy of the DR3 source list to within that expected from the instrument. The number of matches with the SDSS data is also encouraging, being significantly larger in number than that already in the literature.

When cross matching two catalogues there will be a certain number of matches that occur purely by chance. For example, a randomly placed source will always be associated with a real source given a large enough matching radius. The radius at which this random matching begins to dominate any genuine matching is dependent on the source density,

Figure 4.6: The relative position of the matches between DR3 and VeronCat. The dashed line represents the 95% matching radius

and the footprint of the catalogues in question. For catalogues such as XCS and VeronCat this is complicated further as neither catalogue is contiguous, however we can still get a reasonable estimate of the number of random matches. In order to do this we can offset the VeronCat sources in a random direction by a large enough amount to remove any possibility of genuine association. This was done 5 times, with offsets of 0.02, 0.1, 0.25, 0.5, and 1.0 degrees. The number of matches with these 5 realisations, with a 10" radius, is an average of 31. Figure 4.7 shows how both the number of false matches and the number of matches is an increasing function of radius, however the number of matches obtained from the real data has already begun to level off at 10". The desire to generate as many matches as possible, while mimimising the number of false matches, means that 10" is the natural choice of match radius; it returns a large number of matches, while keeping the probability of any given association being false low ($\sim 0.1\%$).

Figure 4.7: Left: The number of matches between XCS and VeronCat as a function of match radius. Right: The number of matches between XCS and the offset VeronCat as a function of match radius.

4.3.2 X-ray point source catalogues

2XMMi

Having assessed the quality of the source positions, we can now look in more detail at the source properties. As discussed in Section 3.5, the 2XMM catalogue of Watson et al. (2009) is a natural choice of comparison project, and as in Section 4.2 we used the updated version, 2XMMi here. A summary of the catalogue sizes is shown in Table 4.3. In Section 3.5 we discussed the difference in the number of sources between DR1+DR2 and 2XMM, and the same reasons for this are true here. As before, a 10" matching radius has been used to produce the flux comparisons in Figure 4.8. The flux offsets seen in Figure 3.6 are now much smaller, below 10% for MOS1 and PN. The MOS2 offset is not only larger than for the other cameras, but also has a larger amount of scatter, however as seen in Figure 4.4(a) the DR3 MOS camera fluxes are in very good agreement with each other, and so the offset is likely a result of the 2XMMi calibration (See Section 3.5) rather than of any undiagnosed issue with XCS.

The improvement seen in Figure 4.8 compared to Figure 3.6 demonstrates that the work by E. Lloyd-Davies that has gone into making new images, exposure maps, and ECF's for DR3 has been worthwhile.

Name	Obsids	Detections	Sources
DR3	4214	179530	146842
2XMMi	4653	289083	221170

Table 4.3: A summary of the DR2, DR3 and 2XMMi catalogue sizes.

CDFN and **CDFS**

To understand the flux calibration of XCS in a more meaningful manner it is necessary to see how the results compare to a project using a different instrument. Due to its excellent resolution, Chandra should produce well-calibrated fluxes, and so is the ideal instrument for this purpose. The 2 deep fields, Chandra Deep Field North (CDFN) (Alexander et al., 2003) and Chandra Deep Field South (CDFS) (Giacconi et al., 2002), provide large areas that have been analysed in a consistent manner. Both projects also publish fluxes which can be expected to be of high accuracy due to the depth of the observations. Using a 10" radius there are 102 and 114 matches with the CDFN and CDFS respectively, and the fluxes here are also in good agreement (See Figure 4.9).

Figure 4.8: A comparison of the individual camera fluxes of DR3 Sources vs their matches in 2XMMi.

Figure 4.9: A flux comparison of DR3 and the Chandra deep fields. This includes matches for both CDFN and CDFS.

4.3.3 X-ray cluster catalogues: XMM-LSS

In Sections 4.3.1 and 4.3.2 we have compared the XCS DR3 point sources with samples taken from the archives. The situation for extended sources is less straight-forward. There is no equivalent extended source catalogue that is both homogenous and large enough to be of use in validating a significant amount of DR3. The employed alternative is make use of extensive simulations (See Chapters 5 and 6). These assess XAPA's reliability in detecting and correctly classifying the extended emission from clusters of galaxies. However there are smaller XMM cluster surveys with which XCS has overlap, e.g the XMM-LSS.

The XMM Large Scale Structure (XMM-LSS) Survey is reported in Pierre et al. (2007) and Pacaud et al. (2007). It covers a single contiguous region of roughly 6 deg², comprised of 51 XMM pointings, in which the authors have undertaken a dedicated cluster survey, accompanied by a detailed selection function. In this region they detected 33 'Class 1' extended objects (Pierre et al., 2007), a class designed to be uncontaminated by misclassified point sources. A more detailed look at these objects (including optical overlays, photometry and spectroscopy) has confirmed 28 of these to be genuine clusters (Pacaud et al., 2007); the remaining 5 were shown to be nearby X-ray emitting galaxies. 29 of the 33 Class 1 objects have matches in DR3 that are classified as extended. This includes 2 of the non-cluster objects, the other 3 of which XAPA classified as pointlike (See Figure 4.10). There remains one XMM-LSS Class 1 cluster (XLSS J022210.7-024048) that is not recovered by XCS; XAPA detects a source at this location but it is removed from the final list as it does not meet the 4σ significance requirement (See Figure 4.11).

The radius used in the matching of DR3 to the XMM-LSS was typically 10". However for XLSS J022433.8-041405 a radius of 24" was required to get a match; this source is large and elliptical, hence there is some uncertainty in the source centre, though the extent of the XCS source and its XLSS counterpart are overlapping.

The XMM-LSS also have a C2 class of clusters with slightly less conservative selection criteria. This sample is yet to be published, but the authors report this class to contain ~ 60 sources. Within the XMM-LSS obsids, XCS detects 82 extended objects that pass the usual filtering (See Section 3.3.3), and after applying a 300 count cut (see Section 3.6.1) 17 remain.

Although XAPA does measure fluxes for extended sources they are not suitable for scientific application. The difficulties inherent with extended sources (PSF correction, background subtraction etc.) necessitate a separate analysis of the detected objects to measure fluxes, luminiosities and temperatures. This is being undertaken by E. Lloyd-Davies (see Appendix I). At the time of writing the XCS determination of the XMM-LSS Class 1 luminosities and temperatures are not available for inclusion in this thesis.

Figure 4.10: Circled in white are 3 XMM-LSS Class 1 objects shown to be nearby X-ray emitting galaxies, recovered as point sources by XAPA.

Figure 4.11: The yellow circle encloses the location of XLSS J022210.7-024048. The source was cleaned from the XCS source list as it is of low significance.

4.4 The DR3 Catalogue

4.4.1 Basic StatSam

A vast number of extended sources are detected in DR3, more than double that in DR1, this section will describe some of the properties of the catalogue with the aim of assisting future work reliant on the source lists (e.g redshift follow-up). Table 4.4 summarises the number of sources detected in the 4214 observations comprising DR3. The point source catalogue contains 131694 unique sources. After applying the same StatSam filters as before (See Section 3.6) to the extended source list there are 4092 cluster candidates, 1402 of which are detected with \geq 300 counts. The sky positions of the DR3 obsids and the DR3 XCS300 are shown in Figure 4.12. The total, non-overlapping area¹ of DR3 is 522.29 deg², and the available StatSam area amounts to 229.73 deg².

Obsids	Detections	Sources	Point Sources	StatSam
4214	179530	146842	131694	4092

Table 4.4: A summary of DR3 catalogue properties.

Figure 4.12: Sky positions of (a) DR3 obsids and (b)DR3 StatSam XCS300 in Galactic co-ordinates (Aitoff projection).

¹E. Lloyd-Davies, private communication

4.5 DR3 redetections of known clusters, and removal of non-cluster extended sources

As in Section 3.6 we can make use of the NED and SIMBAD databases to better understand the StatSam candidate list. Aside from galaxy clusters/groups there are other astronomical objects which may be detected as extended in the X-ray bands, these include Planetary Nebula (PN), HII regions (HII) and Supernova remnants (SN). Using the literature databases enables a removal of known sources of these types, thus cleaning the candidate list of unwanted objects. As before the catalogues are also utilised to determine the number of serendipitous re-detections of known clusters and groups. The difficulty in doing the above is the choice of matching radius. PN, HII and SN can all be incredibly large; however the largest regions will have been masked out of the DR3 footprint, so only small and/or distant regions need be considered, but still the choice of radius is not obvious. For clusters and groups the situation is also not clear. The literature positions of clusters and groups are in some cases defined by the optical positions of the galaxies, which are not always in exactly the same position as the X-ray emission from the gas. Taking these points into consideration suggests using a large matching radius, but this may cause mis-association of new candidates that are incidentally close (in terms of angular separation) to known objects. To fully assess the best way of cross matching inhomogenous catalogues from different wavebands would require an enormous amount of work, and is beyond the needs of this thesis. Table 4.5 contains the results of the cross matching for radii 1'. What is clear is that DR3 contains numerous re-detections of known objects, and those objects with literature matches should be examined in more detail before committing follow-up resources, i.e. telescope time.

PN + HII	SN	Groups	Clusters
108	38	28	277

Table 4.5: NED and SIMBAD associations with DR3 extended sources using radii of 1'

4.6 Removal of highly elliptical candidates

We have demonstrated XAPA's ability to detect and classify known clusters. The completeness of the sample is thoroughly assessed through simulations presented in Chapters 5 and 6, but experience with DR1 has shown that contamination of the candidate list is an issue. Section 3.3.1 details how image artifacts that may cause spurious detections are masked out of the images. However, despite this masking, spurious sources do remain. These are often apparent upon visual inspection as the majority are highly elliptical. Figure 5.16 demonstrates how well XAPA performs in detecting elliptical objects, this holds even if the sources are spurious. An appropriate ellipticity cut can help remove some of the contamination in the source list. Plotted in Figure 4.13 are the ellipticities of the XCS detection of the known clusters and groups. The ellipticities are defined based on the major and minor axis of the source ellipses given by XAPA (Equation 4.1). The source ellipse is constructed from the set of multi-scale WAVDETECT ellipses that make up the source (see Davidson (2005) for details).

$$e = 1 - (\text{minor axis/major axis}) \tag{4.1}$$

Table 4.6 contains StatSam numbers for known clusters and new candidates using the same matching radii as Table 4.5, also shown are the numbers after the application of a ≥ 300 count cut, and an additional cut of $e \leq 0.6$. The ellipticity cut does exclude 3 - 4% of the known clusters. However it removes $\sim 25\%$ of the new candidates, the majority of the remaining sources could reasonably be expected to be genuine, physical objects. A lower e cut would improve this further, however it is important that as few genuine clusters are rejected as possible. Work by Mohr et al. (1995) found real clusters have $0.0 \leq e \leq 0.6$, and so this cut seems justified. A true quantification of the contamination levels will not be possible until follow-up has been undertaken, by which time the real clusters will have been confirmed.

	Known Clusters & Groups	New Candidates
StatSam	305	3701
soft counts ≥ 300	159	1206
scts $\geq 300, e \leq 0.6$	152	895

Table 4.6: Known StatSam clusters/groups and new candidates, using matching radii of 1'. DR3 StatSam matched against NED and SIMBAD.

Figure 4.13: A histogram showing the ellipticities of the XCS detections of known clusters (blue) and groups (red) listed in NED and SIMBAD.

4.7 The DR3 StatSam cluster candidate list

The DR3 StatSam is presented in Appendix D. Tables D.1 and D.2 contain the redetections of known clusters and the new candidate objects respectively. The literature matching radius to define this sample is 30".

The table columns are named as follows:

- XCS Name XCS name of the source.
- Obsid XMM observation in which the source was found.
- **RA** Right Ascension of the source (J2000.0).
- **Dec** Declination of the source (J2000.0).
- **Counts** Source counts in 0.5 2.0 keV band.
- Flux Flux in 0.5 2.0 keV, using Point Source ECF.
- Literature Name Literature name of the source.
- Match Distance Distance to Literature position (")
- Literature Redshift Literature redshift *.
- Sig Significance of source, $-\log(P)$, where P is the probability of the source being a background fluctuation. 'NaN' indicates that P is so close to zero that $-\log(P)$ is undefined using the current machine accuracy, i.e. the source is extremely significant.

* The XCS measured redshifts are tabulated separately, see Section 4.9.

Two example objects from the DR3 New candidates can be seen in Figures 4.14 and 4.15. Shown in Figures 4.16 and 4.17 are serendipitous DR3 re-detections of Abell clusters 2634 and 0150.

Figure 4.14: XMM observation 0200250101, with detected sources circled. Red circles are pointsources, Magenta ellipses denote PSF-sized sources, Green ellipses are extended sources. The bold green ellipse is XMMXCS J091820.8+690101.1, a DR3 StatSam New candidate detected with 2070 counts in the 0.5-2.0keV band.

Figure 4.15: XMM observation 0200430801. Ellipse colour definitions are the same as in Figure 4.14. The bold green ellipse is XMMXCS J133511.8-232920.9, a DR3 StatSam New candidate detected with 1068 counts in the 0.5-2.0keV band.

Figure 4.16: XMM observation 0002960101. Ellipse colour definitions are the same as in Figure 4.14. The bold green ellipse is a serendipitous re-detection of Abell 2634 at z=0.03, detected with 2386 counts in the 0.5-2.0keV band.

Figure 4.17: XMM observation 0203280301. Ellipse colour definitions are the same as in Figure 4.14. The bold green ellipse is a serendipitous re-detection of Abell 0150 at z=0.06, detected with 1549 counts in the 0.5-2.0 keV band.

4.8 Online Database

The tables of data presented in this thesis are only a small representation of the vast amount of data produced by XCS. It has always been a stated aim of the project to make as much of the data as possible accessible to the astronomical community. Naturally, the best way to do this is via an online database.

A series of tables were designed in Davidson (2005) with this in mind. To maintain consistency this design has been kept.

- **Observation Table** Describes each of the XMM observations that make up the XCS archive.
- Detection Table Contains information on every detection in the merged images.
- IndivExpProp Table More detailed detection information from each individual camera
- Source Table Contains only unique sources

(See Appendix E for a description of the table columns). As part of this thesis work, the tables have been compiled into a relational MYSQL database to enable fast crossmatching and infomation retrieval. In addition the author has also designed and created webpages for each cluster candidate enabling visual inspection of the data (see Figure 4.18). The pages include relevant information from the database, literature and XCS redshifts, multiband images with overlaid X-ray contours, and links to any likely matches in NED. These pages will all be linked into the database when it goes online. In the mean time it is possible to sort the data by ra, dec, counts, flux, and redshift via a series of summary pages.

These resources are currently only available to the XCS collaboration and affiliates, however a wider release is expected to happen as part of the natural progession of the project.

Figure 4.18: An example from the XCS Source Browser pages. Each page also contains multi-waveband images of the source (eg. SDSS, DSS, NVSS, 2MASS) and any likely matches from NED.

4.9 DR3 StatSam redshift follow-up

4.9.1 NXS and literature redshifts

The NXS survey was completed prior to the construction of DR3. However, since DR1 and DR2 are both fully contained within DR3, all of the DR1 and DR2 sources with NXS redshifts are also part of DR3. This amounts to 185 clusters with $0.1 \le z \le 1.0$ (See Section 3.7)

The search of the NED and SIMBAD archives described in Section 4.4 has also produced a list of up to 406 known clusters and groups (406 matches with a 2' search radius), many of which already have redshifts. The retrieval of reliable redshifts from such archives is complex: the archives are drawn from multiple sources, meaning that some quoted redshifts are of lesser quality than others. A variable radius to match XCS candidates to the known objects should also be used; for example, the radius suitable at z = 0.1 will not be appropriate for sources at z = 1.0. The archives may also contain galaxies with known redshifts, where we detect X-ray emission, these galaxies may not have been associated with a cluster before and so a more complex method than simply searching for known clusters must be implimented. This work is on going (E. Lloyd-Davies).

4.9.2 DR3 XCS300 redshifts using SDSS DR7

This section of text has been edited from that provided by N. Merhtens (Private communication), describing part of her follow-up work on the candidates presented in this thesis.

XCS DR3 contains 1513 cluster candidates (This number is before any literature checks were done) detected with at least 300 measured soft counts. Therefore with a measured redshift for each of these clusters an a X-ray temperature estimate can be derived. Of these 1513, candidates 827 fall within the survey regions of the latest public Sloan Digital Sky Survey (SDSS) data release DR7 (Abazajian et al., 2009).

Galaxy catalogs were downloaded from the public SDSS data archive ² containing dereddened model r'- and z'- band magnitudes for all galaxies within a 20' radius of each cluster candidate. The NXS redshift algorithm (See Appendix C) was then run on these SDSS galaxy catalogs with the slight modification that a fixed external field sample was used as opposed to a local field sample around each candidate. A field sample was created using all galaxies within a 0.5° radius centered on the coordinates ($22^{h}00^{m}$, $00^{\circ}00'$). Once again, potential cluster galaxies were chosen from within twice the X-ray extent of each cluster candidate.

²http://www.sdss.org/dr7/

As a result, 524 clusters (shown in H.2) were detected with at least 5 member galaxies with redshift estimates ranging between $0.1 \le z \le 0.75$, 437 of which are new cluster candidates to DR3.

4.10 Future work

4.10.1 New PSF model incorporation: DR4

The DR3 point source catalogue is being used by Dubois & Lloyd-Davies et al. (in prep) to create a better PSF model than those currently available. When complete this model will be incorporated into XAPA for the production of DR4.

4.10.2 Point-Source selection function & logN-logS

The large number of point sources in DR3 will enable us to put together a sample population with which to measure the point source selection function. With this we will then be able to determine the XCS measurement of the point source $\log N - \log S$.

4.11 Summary

The total, non-overlapping area of DR3 is 522.29 deg², and the available StatSam area amounts to 229.73 deg². DR3 has extended the total area covered by XCS (from the DR1+DR2 area) by ~ 70%, and increased the number of StatSam cluster candidates by a factor of 2. Using a 1' radius to search the literature: there are 1365 StatSam cluster candidates with > 300 counts, 159 of which are already listed in NED as being known clusters/groups. This corresponds to ~ 6 serendipitous > 300 count candidates per deg². This is greater than the source density in DR1+DR2 due to the improvements made in the source list creation (see Section 4.1). For comparison the 400d survey find ~ 0.75 candidates per deg² with fluxes > 1.4×10^{-13} ergs s⁻¹ cm⁻². The XMM-LSS find 5.4 'C1' clusters per deg² and estimate ~ 12 'C2' per deg² (the C2 clusters have not yet been published).

We can potentially measure temperatures for all these DR3 XCS300 candidates, once redshifts are known. 709 redshifts have already been obtained from NXS and SDSS and other literature data. The temperature fitting is currently underway (E. Lloyd-Davies), and at present there are 227 DR3 clusters with both temperature and redshift measurements (See Table H.3 in Appendix H), although most of these have come from DR1+DR2. This is already a significant improvement over the samples in the literature, see Table 4.7. A

Survey	Data	Clusters	z range
HIFLUGS	Rosat	63	0.005 - 0.2
Maughan et al.	Chandra	115	0.1 - 0.3
O'Hara et al.	Chandra	70	0.18 -1.24
400SD	Chandra	36	0.35 - 0.9
XMM-LSS	XMM	29	0.05 - 1.05
XCS300	XMM	227	0.003 - 1.457

preliminary XCS L - T relation is shown in Figure 4.19.

Table 4.7: Literature cluster samples with measured temperature and redshifts. Also added is the current size of the XCS300 sample with temperatures and redshifts.

Figure 4.19: A preliminary XCS L - T relation. Figure courtesy of E. Lloyd-Davies.

In addition to the large cluster sample that will come from DR3, Campbell et al. (in prep) have used the DR3 point source catalogue to find 11 high-quality isolated neuton star candidates. These candidates are mostly new to DR3.

With the constuction of DR3 the XCS expect to have a sample of ~ 1000 clusters with redshifts, and the potential to measure temperatures for the majority of these. This will be significantly larger than any other homogenous sample of clusters.

The current distribution of the DR3 cluster redshifts is displayed in Figure 4.20.

Figure 4.20: A histogram of the lookback time of DR3 clusters with measured redshifts. The red histogram is for spectroscopic redshifts, the blue histogram is for photometric redshifts. The numbers above the bins are the centre of the bin in redshift space. Figure courtesy of E. Lloyd-Davies.

Chapter 5

XCS Selection Function with **Two-Dimensional** β profiles.

In this chapter we will discuss the XCS selection function as measured using isothermal β profile clusters. The method was first laid out in Davidson (2005), but the work presented here represents the first full test and application of that method.

We will discuss the selection function applied to the cosmological prediction analysis presented in Sahlén et al. (2009), then look at the effects of the simplifications made in some of the assumptions used therein. Finally we will see how the methods used in this chapter can assist the planning of future studies.

As discussed in the preceeding chapters, many authors are attemping to use the abundance of clusters of galaxies to constrain cosmological parameters. In order to achieve this it is important to realise that it is not currently possible to detect and analyse every cluster in a survey region. Some will not be found, either because they fall below the flux limit of the survey in question, or maybe due to some particular bias in the detection methods. The selection function is a quantitative description of these effects. In addition to cosmological studies, an understanding of the selection function is vital to studies of cluster scaling relations, for example in measuring an L - T relation a survey will preferentially select more luminous clusters, i.e. those above the mean relation. This bias is especially large at high redshift where less luminous clusters are even harder to detect. It has recently been shown that the selection function must be accounted for when studying L - T evolution (Pacaud et al., 2007). The popular way of determining the selection function of a survey is by running a series of fake images through the detection processes, which is the general procedure employed below.

The work in this chapter is split into three main sections:

In Section 5.3 we assume a fixed profile, and vary the cosmology, luminosity, temperature and redshift of our input clusters, within random exposures from the archive. In Section 5.4 we assume a fixed $\Omega_m = 0.3$ and $\Omega_{\Lambda} = 0.7$ cosmology, and fixed L and T. We then vary the morphological parameters r_c (Section 5.4.1), β (Section 5.4.2), and e (Section 5.4.4), at various redshifts within random exposures from the archive. In Section 5.6 we assume a fixed profile and cosmology, and vary L, T, z selecting the pointings based on exposure time.

5.1 Review of some Selection Function studies in the literature

5.1.1 The 400 Square Degrees ROSAT PSPC Galaxy Cluster Survey

The 400 Square Degrees ROSAT PSPC Galaxy Cluster Survey (hereafter: 400d) (Burenin et al., 2007) has some similarities to XCS, and so we will review their selection function approach here. The 400d survey uses all archival ROSAT PSPC fields that meet the following criteria: Galactic latitute $|b| > 25^{\circ}$; Galactic absorption $N_H < 10^{21} cm^{-2}$; total clean exposure $t_{exp} > 1000s$, and at least 10° away from both of the Magellanic clouds. The 1610 ROSAT fields that remain cover 397deg² and are searched for sources using the same algorithms as used for the 160d survey (Vikhlinin et al., 1998). This implements wavelet-based source detection and source selection based mainly on likelihood fitting of both source existence and extent. This resulted in 287 extended sources with fluxes above $1.4 \times 10^{-13} \text{ergs } s^{-1} \text{ cm}^{-2}$. We note here that DR3 has > 1300 cluster candidates with > 300 counts in 229deg².

To calculate the 400d selection function, the authors create a non-evolving reference population of β -model clusters using a core radius and beta distribution from the Einstein sample of Jones and Forman (1999). The distribution is corrected for a trend in r_c with L_X (approximated as $r_c \propto L_X^{0.5}$ for $L_X < 10^{44} erg \, s^{-1}$). The profiles are made to be elliptical following the distribution of axis ratios from Mohr et al. (1995). The profiles are then distributed over an X-ray luminosity function (XLF) that is taken to be a Schechter (1976) fit to the REFLEX survey data (Böhringer et al., 2002). The resulting detection probability can be seen in Figure 5.1 as a function of r_c .

Burenin et al. (2007) also tested the effects of varying r_c and β to assess the impact of the assumed parameter distributions. In order to cover the range of morphologies seen in the observed population the authors create images of the HIFLUGCS catalogue (Reiprich and Böhringer, 2002) clusters and simulate them over a range of redshifts. They found this produced no real deviation from the detection efficiency as measured from their reference population. Burenin et al argue that the HIFLUGCS sample is unbiased with respect to structure and so conclude that deviations in cluster morphology from the β -model do not play a significant role in the 400d survey selection function.

Figure 5.1: Figure 9 from Burenin et al (2007), Cluster detection probability as a function of input flux and angular core-radius. The contours represent probabilities of 0.03,0.1,0.2,0.3,0.4,...,0.9,and 0.97. Note that this figure does not include the effect of imposing the minimum flux requirement ($f_{min} = 1.4 \times 10^{-13}$ erg s⁻¹ cm⁻²,dotted line) for the clusters to enter the final catalogue.
5.1.2 The Bright Serendipitous High-redshift Archival ROSAT Cluster

The Bright Serendipitous High-redshift Archival ROSAT Cluster (Bright SHARC) survey (Romer et al., 2000) was comprised of 460 archival ROSAT pointings, each with an exposure time greater than 10ks, that lie at Galactic latitudes greater than $b = |20^{\circ}|$. The survey selected extended objects in an annulus bounded by radii of 2.5' and 22.5' using a wavelet-based detection algorithm. Sources were selected that met three criteria; they were detected with signal-to-noise ratios of 8 or higher, they were more than 3σ extended, and had filling factors of less than f = 1.3. This resulted in 374 sources. The 94 brightest of which comprise the Bright SHARC sample. This sample was optically examined, resulting in 37 confirmed clusters with redshifts.

To quantify the Bright SHARC selection function Adami et al. (2000) ran a series of simulations comprising of artificial clusters placed in ROSAT pointings being run through the Bright SHARC pipeline processing. The first simulation run had the following properties: $\Omega_m = 1$, $\Omega_{\Lambda} = 0.0$, isothermal β profile clusters with $\beta = 0.67$, $r_c = 250$ kpc and e = 0.15. Each successive simulation run changed one of these properties and compared the results to the first run, which was used as a benchmark. Adami et al. (2000) present results of changing the assumed cosmology, ellipticity, β , r_c , and of changing the surface brightness model. The models they compare to their benchmark model are a pseudo-NFW profile and a pseudo-cooling flow profile. The authors demonstrate that the SHARC selection function is very sensitive to both r_c and β , in some of the considered cases the detection efficiency can vary by 100%.

Adami et al. (2000) also show how the variations in the selection function can influence the science results which depend apon it. The case they detail is that of the Cluster X-ray Luminosity Function (CXLF), and they extend the discussion to the impact on any attempt to measure Ω_m . For the SHARC survey, if all clusters had larger core radii than assumed in their benchmark selection function, the CXLF would significantly underestimate the number density of clusters at high redshift, lending support to a higher Ω_m universe.

5.2 Method

In order to properly model the selection function of a survey like XCS, it is important to account for all of the observational variations presented in real data. We can achieve this by placing a sample of fake surface brightness profiles into real Obsids. This ensures that our simulated images re-create features and issues present in real images, such as clusters lying on or near chip edges and point source contamination.

5.2.1 Placing fake clusters in XCS images

We create a sample of surface brightness profiles from an Isothermal β model (see Equation 1.17) with $\beta = 2/3$ and core radius, $r_c = 160$ kpc (close to the mean values of $\beta = 0.64$, and $r_c = 163$ kpc, obtained from a uniform ROSAT analysis of clusters from 0.1 < z < 1.0 (Ota and Mitsuda, 2004)), and plasma metallicity $Z = 0.3Z_{\odot}$. For a given cosmology we simulate 700 sets of cluster parameters, see Table 5.1.

Parameter	Range
Redshift	10 values linearly spaced 0.1 : 1.0
Luminosity	10 values logarithmically spaced (0.178 : 31.623) $\times 10^{44}$ erg s ⁻¹
Temperature	7 values linearly spaced 2.0 : 8.0 keV

Table 5.1: Parameter ranges used in XCS selection function

We limit our selection of Obsids to those that we would consider 'statistical' in a serendipitous survey, see Section 3.6 for all filters applied. This left 1847 suitable observations at the time this study began (i.e only DR1 StatSam Obsids are included). Before each selection function run, a smaller list of 100 Obsids is selected at random from the full set of 1847. These 100 Obsids are then copied from the main XCS archive to local processing nodes for temporary storage, to speed up the analysis. Tests have shown (see Davidson (2005)) that with 100 Obsids it is still possible to reproduce the variance in exposure time, target type, point source density, etc., inherent to the XCS. In the following we define a 'selection function run' as the analysis over the 700 sets of cluster parameters and 100 Obsids, a total of 70000 combinations.

For each of the 70000 simulations that comprise the selection function run the process is as follows:

1. The angular size of the cluster profile being generated is determined from the angular diameter distance (which is cosmology dependent, see Section 1.1.2) at the input redshift. The profile is then randomly positioned into a blank XMM style Obsid, with a uniform probability across the field of view, and convolved with the appropriate PSF model. For this purpose we use the two dimensional Medium accuracy model ¹ (see Section 2.2). This is a natural choice of PSF model for two reasons; it accounts for the azimuthal variation in the PSF, also the Extended model (Ghizzardi, 2001) is implemented for source classification, so, to keep the simulations fair, we cannot use the same model for blurring as we do for classification. The convolution with the PSF creates a probability density function (PDF) for the cluster profile.

 $^{^{1}} http://xmm.vilspa.esa.es/external/xmm_sw_cal/calib/index.shtml$

- 2. The profile is assigned an absorbed count rate taken from a series of arrays calculated using XSPEC ²(generated by K. Sabirli). The arrays tabulate conversions between combinations of temperature, redshift, hydrogen column density (nH), unabsorbed bolometric luminosity, and also the various cameras and filters aboard XMM.
- 3. The PDF is normalised to the absorbed count rate, thus creating a rate image.
- 4. The total number of counts to be placed in the PDF is determined by summation of a 'count image'. This is created by multiplying the rate image by the exposure map of the chosen Obsid to account for vignetting, masking and chip gaps.
- 5. The rate image is then renormalised to 1, and the counts are added randomly to this PDF.
- 6. The individual fake cluster images are co-added to the original Obsid, and can now be processed by our custom detection pipeline in the same way as any real data. The detection and classification algorithms used by XCS are described in Davidson (2005) are reviewed in section(3.3.2).

The above process of 70000 simulations per run is incredibly time consuming as it covers the whole L - T plane within T = 2 - 8keV and $L = 0.178 - 31.623 \times 10^{44}$ erg s^{-1} . We did this, rather than assuming an L - T relation, to allow a more complete analysis with regard to XCS's ability to contrain cosmology. If we limited our simulations to those that fit a measured L - T relation, it would not be possible to include the effects of scaling relation errors and/or evolution in the final analysis (see Sahlén et al. (2009)). In this way, our selection function method is more complete than Burenin et al. (2007).

5.2.2 Cluster Recovery

For a cluster be considered as RECOVERED there are 3 criteria that must be met:

- 1. The detection software must identify a new extended source in the input image, i.e. not point-like or PSF-sized extent (PSF-SIZED FLAG)
- 2. The extended source must not contain a significant amount of point source contamination (Run1 contaminated flag or Pointsource contaminated flag)
- 3. The extended source must not be mis-associated with a known cluster near/at the input position.

²http://heasarc.gsfc.nasa.gov/docs/xanadu/xspec/

Test of the XAPA determinations of extended source count values

Of interest to XCS is the number of detected source counts determined by the algorithms, since a count limit (see Section 3.6.1) is used to determine which cluster candidates will receive follow-up and ultimately be used for cosmological studies. Is this number of detected counts drawn from XAPA for RECOVERED clusters a reliable measure? We have been able to test this using the β model selection function method described above. Plotted in Figure 5.2 is the count measurements from a set of RECOVERED simulated 3keV β clusters vs the input counts. This shows that while XAPA usually underestimates the number of counts from extended sources, the behaviour for > 300 count objects is reasonably consistent within a range of 50% - 100% of the input counts. This may indicate that the flux aperture used for extended objects is too small, though since the fluxes are re-measured independently of XAPA this is not a major issue (See Appendix I). So although not perfect, XAPA can be used as an indicator of the total source counts. XCS currently uses count cuts of > 300 and > 500. At both of these levels, the underestimated value for the source counts means that a count limited sample will be $\sim 20\%$ smaller than expected. There are two main reasons for the loss of counts: loss due to chip-gaps, and aperture effects. These reasons are discussed and quantified in Davidson (2005). The key point is that very few low-count clusters will be erroneously included in a count-limited XCS cluster candidate sample, e.g. XCS300 or XCS500. Although some high-count clusters will be erroneously excluded from such samples, this is not a major concern, since their absence can be compensated for using the selection function. In other words, selection functions can correct for incompleteness, but cannot correct for contamination.

5.3 XCS selection function: testing the dependence on cosmology, L, T, and z, and location in the field of view

In order to fully assess the cosmological constraining power of XCS we need to understand how the selection function changes as a function of cosmological parameters, namely Ω_m and Ω_{Λ} . Ω_m and Ω_{Λ} play a role in the selection function via the luminosity distance (d_L) . Variations in d_L affect both the angular size of an object on the sky and the flux received from the object (see Equations 1.9 and 1.10). To measure these effects the above process has been repeated using the parameters in Table 5.2.

An example set of results from run 4 can be seen in Figures 5.3 and 5.4 (the full set of plots can be seen in Appendix F), the error bars on which represent the 1σ statistical errors on the detection averages. To reduce the statistical uncertainty further would be incredibly time consuming since due to the binomial nature of the detection data, as the uncertainty in the mean detectability scales as $1/\sqrt{n}$.

Figure 5.2: A ratio of measured counts/input counts as a function of input counts. The plotted results are for 3keV $r_c = 160$ kpc, and $\beta = 2/3$ clusters. The horizontal solid black line marks the 1/1 ratio, i.e measured counts = input counts

Run	Run number		2	3	4	5	6	7	
Ω_m		0.22	0.26	0.28	0.30	0.32	0.34	0.38	
Ω_{Λ}		0.78	0.74	0.72	0.70	0.68	0.66	0.62	
	1								
Run numbe	r 8	9	10	11	12	13	14	15	16
Ω_m	0.26	0.26	0.26	0.30	0.30	0.30	0.34	0.34	0.34
Ω_{Λ}	0.60	0.70	0.80	0.60	0.70	0.80	0.60	0.70	0.80

Table 5.2: Cosmological parameter combinations used in selection function runs. Runs 1-7 are for flat (k = 0) cosmologies and were implemented in Sahlén et al. (2009). Runs 8-16 are for non-flat $(k \neq 0)$ cases.

Figure 5.3: XCS StatSam detection and classification efficiency for 3keV clusters, with a Luminosity of 0.178×10^{44} erg s^{-1} . All clusters are spherical and have $r_c = 160$ kpc, and $\beta = 2/3$.

5.3.1 Testing the impact of a count cut on the selection function

The results as seen in Figure 5.4 and Appendix F refer to all clusters RECOVERED. However, when doing cosmology we will only be using those clusters detected with enough counts to allow a temperature estimate. As discussed in Chapter 3, a lower count limit for the XCS cosmological analysis has been set at 500 counts (see Sahlén et al. (2009)). The impact of the addition of this count cut to the selection function is shown in Figure 5.5. Note that in Figure 5.5, and all contour plots shown hereafter, the data have been interpolated and then smoothed.

5.3.2 Testing the impact of L, T, z on the selection function

As Figure 5.5 shows, the XCS's ability to detect and classify clusters is a strong function of both L and z, but only weakly dependent on T. For example, at z = 0.2: for a 3keV cluster, a change in L from 0.178 to 31.6 (×10⁴⁴erg/s) causes an increase in detection from ~ 25% to ~ 85%, but for a 1.0×10^{44} erg/s cluster, a change in T from 2 to 8 (keV) only causes a decrease in detection from ~ 73% to ~ 68%. In fact the variation seen with temperature (~ 5%) is of comparable size to the 1 σ statistical uncertainty in the selection function.

Figure 5.4: XCS StatSam detection and classification efficiency for 3keV clusters. All clusters are spherical and have $r_c = 160$ kpc, and $\beta = 2/3$. Luminosities (L) are given in units of 10^{44} erg s^{-1} .

Figure 5.5: XCS StatSam detection and classification efficiency for clusters detected with ≥ 500 counts, and with structural properties as in Figure 5.4 (i.e. $r_c = 160$ kpc, $\beta = 2/3$). Figure 5.5(a): Detection efficiency is shown for 3keV clusters as a function of bolometric luminosity and redshift. Figure 5.5(b): Detection efficiency shown as a function of temperature and redshift for clusters with a luminosity of 1.0×10^{44} erg/s.

5.3.3 Testing the impact of scaling relations on the selection function

Figure 5.6 demonstrates how the selection function changes with differing evolution in the L-T relation (Figure 5.6 was created by M. Sahlen using data provided by the author). Figure 5.7 shows the effect that different L-T evolution is expected to have on the number of clusters in the final XCS500 sample (Figure 5.7 was created by M. Sahlen). A comparison of the pink and green histograms (or blue and orange), in Figure 5.7(b) show that at z > 0.7, different L-T evolution can change the number of expected cluster detections by a factor of ~ 2 .

5.3.4 Testing the impact of cosmological model on the selection function

Figure 5.8 shows how Ω_m and Ω_{Λ} influence detection for clusters with T = 3keV, $L = 1.358 \times 10^{44} erg \, s^{-1}$, $r_c = 160$ kpc, and $\beta = 2/3$ at z = 0.5. Figure 5.8 demonstrates how detection within a cluster survey such as XCS is not insensitive to cosmology (via d_L), which shows that a single selection function is not adequate when making constraints. For example, the recovery efficiency for the clusters in Figure 5.8 for $\Omega_{\Lambda} = 0.7, \Omega_m = 0.3$ is 37% greater (relative difference) than $\Omega_{\Lambda} = 0.7, \Omega_m = 0.2$. However in order to make accurate measurements it is clear that the statistical uncertainty in the selection function must be minimized.

5.3.5 Testing the impact of detection location on the selection function

In Figure 5.9 we demonstrate that XAPA's detection and classification efficiency has some dependence on offaxis angle. Objects in the centre of the field of view are RECOVERED $\sim 40\%$ less than those in the outer regions of the image. This difference in RECOVERY is a result of the input objects being detected and classified as point-sources. This is independent of the flagging process, and so is due to the shape of the PSF-EEF's at low offaxis angle being similar to the EEF's of the input clusters. This is not entirely suprising since the Extended PSF model is based on a King profile, which is also the basis of the β profile. The use of a better PSF model would likely improve the situation. An important point to note is that although this variation exists it has very little impact since 84% of the field of view lies outside 6' of the centre, and beyond this radius the XCS500 is > 90% complete.

(a) Constant L - T relation

(b) Self-Similar L - T relation

Figure 5.6: Figure 1 from Sahlén et al. (2009). Selection Function for our fiducial cosmology and different L-T evolution.

(a) Underlying cluster distribution

(b) Expected detections using selection function

(c) Detected fraction of clusters per bin.

Figure 5.7: Figure 8 from Sahlén et al. (2009). Expected cluster number count distributions for the XCS500, for no L - T nor M - T scatter and no L - T evolution (pink), no L - T nor M - T scatter and self-similar L - T evolution (green), L - T and M - Tscatter and no L - T evolution (orange), and L - T and M - T scatter and self-similar L - T evolution (blue). Bin sizes are $\Delta z = 0.05$ and $\Delta T = 0.5$ keV.

Figure 5.8: Variation of detection as a function of Ω_{Λ} , and Ω_m . All clusters have the following properties: T = 3 keV, $L = 1.358 \times 10^{44} \text{erg s}^{-1}$, $r_c = 160 \text{kpc}$, $\beta = 2/3$ and z = 0.5. Results plotted for those objects with > 500 input counts.

Figure 5.9: Variation of detection as a function of offaxis angle. Clusters have the following properties: T = 3 keV, $L = 1.358 \times 10^{44} \text{erg s}^{-1}$, $r_c = 160 \text{kpc}$, $\beta = 2/3$, in a $\Omega_{\Lambda} = 0.7$, $\Omega_m = 0.3$ cosmology. Results plotted for those objects with > 500 input counts.

5.4 XCS selection function: testing the dependence on assumed profile properties

Note that in this section we have now fixed the cosmology to $\Omega_{\Lambda} = 0.7$, $\Omega_m = 0.3$.

The XCS selection function as discussed in Section 5.2, is an oversimplification, i.e β is not always 2/3, r_c is not always 160 kpc, and clusters are not spherically symmetric. The underlying cluster population is not one with uniform properties. It is well known that clusters of galaxies have a range of morphologies, with core radii varying from a few tens of kpc, to a few hundred kpc and β values varying generally between 0.45 and 0.85 (eg. Reiprich and Böhringer (2002); Ota and Mitsuda (2004); Maughan et al. (2008)). As other authors have rightly shown (Adami et al., 2000; Burenin et al., 2007) (see Section 5.1), it is important that we are able to quantify the effect that these variations in the population have on the selection function of a survey. The potential for knock-on effects onto other aspects of survey science is significant, and this should not be ignored. This was correctly noted by the referee of Sahlén et al. (2009), and held up the publishing for 6 months while these effects were quantified.

In the following section we shall discuss the impact of our morphological assumptions on the selection function. We will begin by analysing each of the important morphological parameters in turn, and then discuss them in combination. For the purposes of this section we have assumed an L - T relation of the form given by Arnaud and Evrard (1999). Doing this enables us to isolate the effect of varying single parameters without including unnecessarily unrealistic objects. We have only simulated 3keV clusters as these are expected to best represent the average cluster population at a given redshift (M. Sahlen, private communication).

5.4.1 Core radius

As noted above there is a wide range of core radii seen in the observed population, for example if we look at two nearby clusters, Coma has a core radius of about 400 kpc, and Perseus has a core radius of about 50 kpc, the majority of clusters have core radii values that fall within these two extremes (eg. Jones and Forman (1999)). To understand how these variations in core radius effect the ability of XAPA to detect such objects, we have simulated a set of clusters with r_c changing from 50kpc to 400kpc in steps of 50, the results of which can be seen in Figure 5.10.

Figure 5.10 demonstrates that XCS is able to detect objects with a wide range of physical sizes. The peak sensitivity across the majority of the redshift range is $100 \text{kpc} < r_c < 150 \text{kpc}$. The relative change in detectability with respect to our assumed value (160 kpc) in a range $\pm 100 \text{kpc}$ is $\sim 10\%$ at z = 0.1 : 0.2, at higher redshifts this value can go up to 30 - 40%. However this simple plot does not take into account two key factors that occur

Figure 5.10: XCS StatSam detection and classification efficiency for 3keV clusters as a function of physical core radius and redshift. All clusters have $\beta = 2/3$. The dotted line represents the constant value assumed in the standard XCS selection function calculations.

as these objects are moved to higher redshifts. The angular core radius drops rapidly with redshift, meaning that a 400 kpc core at $z \sim 0.3$ has approximately the same angular size as a 160 kpc core at $z \sim 0.1$. Also the number of counts received from any object will decrease with increasing redshift. With this in mind it is perhaps better to compare detection of objects as a function of their angular core radius and number of counts (see Figure 5.12), as this is actually what the algorithms 'see'. To aid comparsion between Figures 5.10 and 5.12, Figure 5.11 shows the scaling of physical size with redshift in a $\Omega_m = 0.3, \Omega_{\Lambda} = 0.7$ cosmology. Figure 5.12 shows that, for objects with 500 counts or more, XCS detects > 70% of all objects in the range $10'' < r_c < 40''$. A comparison of Figure 5.12 with Figure 5.11 shows that this angular range encompasses the expected size of the majority of clusters over a significant redshift range. At small core radii a lower percentage of objects are correctly classified by XAPA, the objects are often detected but are not RECOVERED, i.e they are incorrectly classified as pointlike, or flagged as described in Section 3.3.3 (see Figure 5.13)

5.4.2 Profile slope

When a King profile is fit to observed surface brightness profiles, samples of clusters also show significant variation in values of β . In light of this we have simulated objects covering the range $0.4 < \beta < 0.8$. Figure 5.14 shows how this variation affects detection in the

Figure 5.11: Angular core radius as a function of redshift shown for objects with a physical core radius of 50kpc (dotted line), 160kpc (Solid line), and 400kpc (Dashed line), in a $\Omega_m = 0.3, \Omega_{\Lambda} = 0.7$ cosmology.

Figure 5.12: XCS StatSam RECOVERY efficiency for 3keV clusters as a function of angular core radius and input source counts.

Figure 5.13: XCS StatSam detection efficiency for 3keV clusters as a function of angular core radius and input source counts. Same as Figure 5.12 but without the necessity for extent classification, i.e these sources have been detected but not RECOVERED.

XCS, for objects with > 500 counts. As seen in the figure, variations in β in the range $0.55 < \beta < 0.75$ only alter the detection efficiency by ~ 10%. There is a significant drop in XAPA's ability to detect and classify objects with a β value below this range at redshifts of z < 0.6. Although it has been noted that objects that fall in this low β range are rare/unrealistic, such low values are most likely artifacts of fitting a single β model to clusters with strong cool cores and are in fact not found if the cores are properly excluded from the fit (Vikhlinin et al., 1999).

5.4.3 Core radius and profile slope

As is clear from the preceding sub-sections, XCS's cluster detection efficiency drops off with increasing core radius and also decreasing values of β . Both increasing r_c and decreasing β cause a spreading out of the cluster flux, as a result of which there will be some degeneracy in these two parameters as far as detection is concerned. The poor detectability of an object with a large core radius can be offset somewhat by a steeper slope in the brightness profile, and likewise the combination of a large core plus a small value of β could make an object very hard to detect even at low redshift. For example a $\beta = 2/3$ cluster with a 400kpc core at z = 0.1 is detected in ~ 55% of the simulations, however if this object were to have a slope of $\beta = 0.8$ the detection would be > 70%, and $\beta = 0.5$ would result in < 35% being recovered (see Figure 5.15). There are combinations of r_c and β that can

Figure 5.14: XCS StatSam detection and classification efficiency as a function of β and redshift. All clusters have $r_c = 160$ kpc. The dotted line represents the constant value assumed in the standard XCS selection function calculations.

cause a potential relative change in detection of 100% with respect to another combination, but these large changes are from extreme ends of the observed ranges and so are quite unlikely.

5.4.4 Ellipticity

In the preceding sections we have only considered surface brightness profiles that are spherically symmetric. However in reality this is often not the case. Here we define the ellipticity of an object such that a perfect circle has e = 0.0, see Equation 5.1

$$e = 1 - (\text{minor axis/major axis}) \tag{5.1}$$

Using this definition of ellipticity, clusters in the sample analyised by Mohr et al. (1995) fall in the range 0.0 < e < 0.6. Figure 5.16 demonstrates that XAPA is relatively insensitive to variation in ellipticity within this range. There is an indication that highly elliptical objects may be easier to detect at $z \sim 1.0$ than spherically symmetrical ones, but the change in detection efficiency is not significant enough to enable any conclusion to be drawn. Figure 5.16 highlights the need for the ellipticity cut on the DR3 StatSam (see Section 4.6).

Figure 5.15: XCS StatSam detection and classification efficiency for e = 0.0, 3keV clusters as a function of r_c and redshift, for different values of β . Fig(5.15(a)): $\beta = 0.5$. Fig(5.15(b)): $\beta = 0.6$. Fig(5.15(c)): $\beta = 0.7$. Fig(5.15(d)): $\beta = 0.8$.

Figure 5.16: XCS StatSam detection and classification efficiency as a function of Ellipticity and redshift. All clusters have $r_c = 160 kpc$ and $\beta = 2/3$.

101

5.5 Using the selection function to correct for selection effects

When using the cluster abundance to measure cosmological parameters, the selection function is a vital factor that must be understood. Cosmology enters into the prediction of cluster numbers as a function of temperature and redshift through the selection function, the cluster scaling relations, and the mass dispersion. The cluster scaling relations and the mass dispersion can be used to predict the properties of the underlying cluster sample, however relating this to the observed sample produced by any given survey requires knowledge of the selection function. Once the dependance of the cluster abundance on these factors is understood, it is possible to determine the likelihood of any observed catalogue of clusters given an assumed cosmology (see Sahlén et al. (2009) for further discussion).

We expect the XCS L - T relation to be self-calibrated at the same time as the cosmological analysis, a full description of this will be given in future XCS publications. When attempting to just measure cluster scaling relations the selection function must be used in much the same way as for cosmology. Pacaud et al. (2007) demonstrate how this can be done. Studies of cluster scaling relations generally consider redshift evolution of the form $F(z) = (1 + z)^{\alpha}$. Pacaud et al. (2007) create a probability distribution function (PDF), which models the distribution of clusters around the mean scaling relation. This PDF is then multiplied by the selection function (the probability of detection, given L, T and z) and is used to estimate the likelihood of their data given a F(z) model. This is the first demonstration of how large an impact the selection function has on scaling relation studies. The results of Pacaud et al. (2007) are discussed more in Section 6.3.7.

5.6 XCS selection function: a tool for future survey design

Using the methods applied in this chapter we are able investigate source detection in way that enables us to optimise future observations/surveys. Due to the nature of the XMM archive, there is an enormous amount of variation in the properties of the images. Of particular relevance is the variation of exposure time between observations (see Figure 5.17). A question one might ask is what is the optimum exposure time for cluster finding? This is not something that there is an intuitive answer to; a deeper exposure means more source counts, but too many photons can increase source confusion, and background effects must also be taken into account.

To address this another set of selection functions have been computed. This time the cosmology and profiles have been fixed. The Obsids are selected not at random but on the basis of their exposure times. This work is very relevant at the present time. XMM is approaching the end of its life cycle, and a lot of thought has gone into determining the best use of the remaining time. There are 3 main options being considered, deep narrow-angle

surveys, shallow wide-angle surveys (slew), or deep follow-up of known clusters (e.g from XCS). The effectiveness of the different time usage for serendipitous detection is assessed in this section. Some of this work has already been used in an XMM survey proposal by D. Alexander.

Figure 5.18 demonstrates the effect of exposure time on XCS's ability to detect and correctly classify input clusters (All clusters have $r_c = 160$ kpc, $\beta = 2/3$, e = 0.0, and cover the full range of L and T as in Table 5.1). It can be seen in the figure that the increase in RECOVERY with exposure time is not significant beyond ~ 30ks. A comparison with Figure 5.19 shows that there is no increase in detection beyond ~ 20ks, and that any further increases are due to an increased ability to classify the objects as extended. Note that due to the creation of profiles covering a wide range in both L and T, Figures 5.18 and 5.19 contain a large number of unrealistic objects and so do not represent the expected trend for the real XCS survey. They do however, demonstrate the effect of exposure time on detection and RECOVERY.

Figure 5.17: Distribution of XCS StatSam exposure times from the DR1 StatSam, see Section 3.6)

An important consideration point in cluster survey design is the question of area vs. depth, with a limited amount of XMM telescope time would it be better to take a few very deep observations or many more shorter exposure ones?

To address this we have combined the above selection functions featured in Figure 5.18 with the model T > 2 keV cluster catalogues presented in Sahlén et al. (2009), since he uses a mass function and observed scaling relations to predict actual (rather than observed)

Figure 5.18: XCS detection and classification efficiency as a function of exposure time and redshift. All clusters have $r_c = 160 kpc$, $\beta = 2/3$ and e = 0.0.

Figure 5.19: XCS detection efficiency as a function of exposure time and redshift. All clusters have $r_c = 160 kpc$, $\beta = 2/3$ and e = 0.0. Same as fig 5.18 but without the necessity for extent classification.

number densities as a function of redshift. Figure 5.20 clearly shows the benefits of longer exposure times. At all redshifts a deeper survey (50ks), would detect many more clusters than an XCS type survey of the same area, at $z \sim 1.0$ the difference is as much as a factor of 3. However, how would a 10 deg² 50ks, i.e that proposed by D. Alexander, survey compare to XCS, when XCS makes use of all the data in the archive? Figure 5.21 shows that even with 100 deg² (already surpassed with DR1) of archival data, the detected number of clusters is significantly higher than the small, but much deeper, survey.

Figure 5.20: Expected cluster detections in 10 deg^2 , the red line shows the expected number for a distribution of exposure times matching that in XCS, the black line is for a 50ks survey.

Despite not supplying a greater abundance of T > 2 keV clusters there are still reasons for proposing a small deep survey as a complement to the archive. Figures 5.22 and 5.23 show the difference in temperature distribution one would expect at low and high redshifts respectively. The most striking difference is that $\sim 4 - 5$ times more low temperature clusters would be found at higher redshifts in 50ks pointings, compared to the same area in XCS. For studies of scaling relation evolution this would be invaluable. One can expect the trend seen in Figures 5.22 and 5.23 to extend into the group regime (T < 2keV), meaning that a new narrow-deep XMM survey may beat XCS when it comes to group studies. At the time of writing we are unable to explore this potential, because Sahlen's mock catalogues are limited to T > 2keV. We are, therefore, looking into an alternative strategy that bootstraps from the measured XCS temperature relation.

Figure 5.21: A comparison of expected cluster detections in a 10 deg^2 50ks survey, to XCS with varying area coverage.

Figure 5.22: Expected cluster detections as a function of Temperature in 10 deg² at z < 0.3, the red line shows the expected number for a distribution of exposure times matching that in XCS, the black line is for a 50ks survey.

Figure 5.23: Same as Fig 5.22 but for z < 0.7.

5.7 Future work

5.7.1 Cosmology application

As seen in Sahlén et al. (2009), the final XCS sample will place competitive constraints on cosmological parameters. We expect to measure Ω_m to ± 0.03 (and Ω_{Λ} to the same accuracy assuming flatness), and σ_8 to ± 0.05 .

The $k \neq 0$ selection function runs in this chapter are yet to be utilised, but could be used to further generalise the XCS cosmology constraints.

The current XCS cosmological analysis has been focused on Λ CDM cosmology, however it is preferable to generalise Λ to include more dark energy models (w < -1/3). The ideal way of doing this is to sample the parameter space in terms of d_L , rather than (Ω_m , Ω_Λ and z). While there is some overlap with the selection functions presented in this Chapter, a significant number of simulations still need to be run.

The parameters we plan to assess are as follows:

10 points in cluster temperature (2 to 10 keV in steps of 1 keV, plus 1.5 keV to quantify the level of contamination of the T > 2 keV range by lower mass systems);

10 points in cluster bolometric luminosity (0.05 to 10 logarithmically spaced) in units of

 $h^{-2}10^{44} \text{ erg/s};$

12 points in redshift (0.1 to 1.2 in steps of 0.1) for a fiducial ($\Omega_m = 0.3, \ \Omega_{\Lambda} = 0.7$) cosmology.

we will then sample either side of the fiducal d_L by sampling 5 points in luminosity distance for each redshift point, as follows:

 $\Delta d_L = -0.030 \text{ to } 0.030 \text{ for } z = 0.1$ $\Delta d_L = -0.055 \text{ to } 0.055 \text{ for } z = 0.2$ $\Delta d_L = -0.075 \text{ to } 0.075 \text{ for } z = 0.3$ $\Delta d_L = -0.090 \text{ to } 0.090 \text{ for } z = 0.4$ $\Delta d_L = -0.100 \text{ to } 0.100 \text{ for } z = 0.5$ $\Delta d_L = -0.120 \text{ to } 0.120 \text{ for } z = 0.6$ $\Delta d_L = -0.130 \text{ to } 0.130 \text{ for } z = 0.8$ $\Delta d_L = -0.135 \text{ to } 0.135 \text{ for } z = 0.9$ $\Delta d_L = -0.140 \text{ to } 0.140 \text{ for } z = 1.1$ $\Delta d_L = -0.150 \text{ to } 0.150 \text{ for } z = 1.2$

At present these selection functions are $\sim 20\%$ complete, and will take many months more to finish. Once complete we can assess XCS's ability to place constraints on dark energy models in a way similar to that which Sahlén et al. (2009) used to forecast the Λ CDM contraints.

5.7.2 Determining a statistical description of cluster profiles

E. Lloyd-Davies is currently measuring r_c 's and β 's for the XCS clusters. In combination with the work presented in this chapter, it will be possible to construct a statistical description of the likely morphology of the underlying sample. This will be a valuable resource for many areas of cluster science; some examples include optimising source detection algorithms, studying the departures from self-similarity and understanding the selection function of other surveys.

5.7.3 L - T correction

It has been shown that when measuring evolution in the L - T relation, selection effects must be corrected for (Pacaud et al., 2007). The work in this chapter will enable XCS to do this (See Section 6.4).

5.7.4 Group proposal?

In Section 5.6 we showed that a deep survey would detect more low-mass clusters at high redshift than the current archive. We plan to extend this to the group regeme. If the trend seen in Figure 5.23 continues down below 2keV, then a narrow survey of > 50ks would be of tremendous value. Below 2keV systems do not scale in the same way as those considered in this chapter. To assess this properly we need a new set of ECF's for groups and we must consider the best type of profile to use in such a selection function.

5.8 Summary

The work presented in this chapter has demonstrated the way in which many variables can influence cluster detection.

The dependence of the selection function on cosmology enables cluster surveys to constrain cosmological parameters. The results presented and discussed in Section 5.3 enable the XCS to do just that, and were crucial for the production of Sahlén et al. (2009). The selection function used in Sahlén et al. (2009) assumed a fixed cluster profile, the impact of this assumption has been tested in Section 5.4. We see that r_c in particular can strongly influence the detection of clusters; however the more counts a source has, the more this effect is reduced, and the impact on the XCS500 sample is small.

As discussed above, it is widely recognised that an understanding of a survey's selection function must be obtained before any strong conclusions can be drawn, either for cosmology or scaling relation studies. The simulations presented so far in this chapter further highlight this; in particular it is clear that the morphology of the population must be better understood before any naive selection function is applied.

In Section 5.6 we investigated the impact of exposure time on cluster detection. It was shown that in terms of cluster numbers, a shallower wide field survey would be preferable, and exposures greater than 30ks would not give substantial increases. However a 10deg^2 , 50 ks survey would yield significantly greater numbers of low T (and hence low mass) systems at high redshift.

Chapter 6

XCS Selection Function with Two-Dimensional Cluster Profiles from Hydrodynamic Simulations.

It is vital that the selection function of a cluster survey been known accurately before science studies (cosmology, scaling relations etc) be attempted. For the XCS we are forced to use simple, isothermal β models (with fixed core radii and profile slopes) to explore how our selection function depends on the underlying cosmology. This is because the simplicity of the model allows the required number (hundreds of thousands) of detection tests to be made. However, as shown in the previous chapter, the inputs to the beta model can influence the derived selection function dramatically: reasonable adjustments to r_c and β can change the detection efficiency by a factor of 2. The application of a count cut to the XCS cluster catalogue (of 500 counts) mitigates this problem for cosmology studies in the short term. However applying such a cut means that the majority of XCS clusters could not be used for science applications (even after re-observation with XMM or IXO). So, in order to fully exploit XCS in future, it is important that the selection function be better understood at the low-count end. For this, we have explored a new approach to selection function calculations: the use of synthetic clusters produced by Nbody SPH simulations. These synthetic clusters have many advantages over isothermal β models because they encode the full structural properties of the clusters (cooling cores, sub structure, projected filaments, temperature gradients etc.). Only recently have simulation boxes been large enough to produce synthetic samples that fully explore the range of temperatures and redshifts seen in a real cluster survey. In this chapter, we present the first attempt to use the CLEF (Kay et al., 2007) synthetic cluster sample to determine the selection function of XCS (albeit under one assumed cosmological model).

In Section 6.3.1 we compare a sample CLEF selection function with an equivalent β profile selection function. We do this to assess the overall reliability of the Chapter 5 selection

functions in comparison with a more realisic alternative. In Section 6.3.3 we assess XAPA's ability to detect clusters with cool cores. In Section 6.3.4 we assess XAPA's ability to detect clusters with centrally peaked surface brightness profiles. In Section 6.3.5 we assess XAPA's ability to detect clusters with various dynamical states. In Section 6.3.6 we determine the impact of the above on the XCS500.

6.1 Motivation

6.1.1 Selection function studies to date

In Chapter 5, all clusters were represented by smooth, isothermal β profiles. Although this simplification allows a full coverage of the relevant parameters $(\Omega_m, \Omega_\Lambda, L, T, z, r_c, \beta, e)$ it does lack realism. After all, real clusters are neither smooth in their surface brightness profile, nor are they isothermal; some clusters have cool cores, while others have a large amount of substructure. In efforts to include more realistic types of objects some authors have begun to use profiles of real clusters in their selection function studies, by scaling them to various redshifts. For example Burenin et al. (2007) use this method to give a comparison to their standard (β -model) selection function. This comparison gave them an indication of how large an effect departures from the β model had on their calculated selection function. They concluded that using "re-observation" of known clusters should allow an understanding of the effects of substructure and cool cores on detection. There are however a few potential pitfalls that must be avoided before using this method alone to determine the final selection function of a survey: if drawn from an inhomogenous sample, or one without a known selection function, the use of real clusters may lead to using clusters that are inherently biased toward one property or another. In worst cases this could result in not having a selection function for some real but undetected objects, leading to an over estimation of completeness. Another complication lies with the re-scaling necessary to create a large enough test sample across a relevant redshift range. The scaling is nontrivial since many of the relationships between parameters used in the modelling of clusters are not clearly understood. r_c for example should be expected to scale with cluster mass, as it is related to the size of the cluster, thus due to the M-L relation, more luminous clusters should have different sized cores to less luminous clusters. Many authors have attempted to measure the $r_c - T$, relation with little agreement being seen between the various studies (Ota and Mitsuda (2004), Sanderson and Ponman (2003)). The $\beta - T$ relation is also not well understood although β is seen to drop with temperature. Until these relations are well constrained it is very difficult to properly construct a realistic sample with which to test the selection function of a survey using re-observations of a limited set of input clusters.

6.1.2 Alternative approach

With recent developments in the area of numerical simulations we are presented with an alternative to the above approaches. Many simulations now exist that are able to both reproduce the observed scaling relations, and also produce samples of clusters with a wide range of morphologies similar to that seen in the observed population (e.g. Kay et al. (2007), Gazzola and Pearce (2007)). Some authors have also created 'observational' data for their simulated clusters in order to compare them to real cluster data, including both images and spectra. This work 'observing' simulated clusters is akin to pointed, follow-up analysis of the clusters (e.g. Cheng et al. (2005), Henning et al. (2009), Ameglio et al. (2009)). However the samples now being generated in these simulations are in fact large enough that we can also utilize them for a statistical study of detection biases.

Some members and affiliates of XCS are actively involved in cosmological simulations and so have provided us with emission measure profiles from the CLEF (Kay et al., 2007) simulation for use in this work.

6.2 The CLEF Cosmological Simulation

This section will give a description of the sample of clusters drawn from CLEF. The text in this section has been edited from Kay et al. (2007) (hereafter KAY07), with minor textual alterations and some additional infomation to suit the context. Before we do this it is necessary to define a few terms used in the description.

6.2.1 Definition of terms

- Spectroscopic-like temperature. Theoretical models of X-ray clusters commonly use an emission-weighted temperature to estimate the temperature of a cluster. This involves weighting the temperature contribution from each particle in favour or hotter, denser particles. Mazzotta et al. (2004) applied the same methods used by observers to measure the spectroscopic temperature of simulated clusters, and found that it was always lower than this emission-weighted estimator. They propose a Spectroscopic-like temperature (T_{sl}) estimator that weights the particle contributions in favour of cooler, denser particles. This estimator more accurately matches the temperatures measured observationally.
- **R500.** The virial radius of a gravitationally bound object, such as a cluster of galaxies, is the radius of the sphere within which the virial theorem holds. This radius is observationally difficult to determine, and so a more easily defined value is commonly used. This alternative refers to objects in terms of their overdensity with respect to the critical value ($\rho_c(z)$). The radius at which the overdensity has a value

of $\rho(z)/\rho_c(z) = 500$ is commonly used in cluster studies as it roughly corresponds to the smallest density contrast accessible to the deepest X-ray observations. This radius is called R500 and the mass enclosed within is called M500.

6.2.2 An overview of CLEF

The CLEF simulation (Kay et al., 2005) is a large N-body SPH (Smoothed Particle Hydrodynamic) simulation of the Λ CDM cosmology with radiative cooling, star formation, and feedback. The simulation contains 2×428^3 particulas within a $200h^{-1}$ Mpc comoving box, half of which are dark matter ($m_{dark} = 7.1 \times 10^9 h^{-1} M_{\odot}$), and half baryonic gas ($m_{gas} = 1.4 \times 10^9 h^{-1} M_{\odot}$). The initial conditions were evolved to z = 0 using a version of GADGET2 (Springel, 2005), allowing any gas with $T > 10^4$ K to cool radiatively assuming a plasma of $Z = 0.3Z_{\odot}$. The authors mimic feedback from galactic outflows in such a way that reproduces the observed excess entropy (see Section 1.3.4) in groups/clusters. Cooled gas with an overdensity $\delta > 100$, $n_H > 10^{-3}$ cm⁻³, and T < 12,000K is identified as starforming, $\sim 10\%$ of the cooled gas particles are reheated and given an entropy of S = 1000keV cm², the rest is converted to collisionless star particles. The reheated gas has a much higher thermal energy than the viral temperature of typical haloes, causing the gas to be redistributed through viscous interactions and shocks.

6.2.3 The CLEF cluster sample

The sample of clusters drawn from CLEF (KAY07) is one of the largest to come from a single simulation, with nearly one hundred clusters (KT > 2keV) at z=0 and sixty at z=1. Figure 6.1 illustrates spectroscopic temperature maps with surface brightness contours of the 5 most massive clusters at z = 0.0 and z = 1.0. There is a large amount of temperature stucture within the CLEF clusters, particularly cold spots due to cool, low-entropy gas trapped within infalling sub-clusters. The intensity scale in Figure 6.1 is defined by the minimum and maximum temperature; the dynamic range is typically an order of magnitude (T_{max}/T_{min}), with maximum temperatures being around twice that of the mean. This temperature structure is also reflected in the surface brightness maps (see Section 6.2.4), as seen in real clusters (e.g. The famous 'Bullet Cluster', Figure 6.2).

In the rest of this section we will look at some of the key parameters used by KAY07 to describe the features of the CLEF sample, and in Section 6.3.1 we will discuss why this is relevant and useful to XCS.

Figure 6.1: Figure 2 and caption from Kay et al. (2007). "Spectroscopic-like temperature maps of the 5 most massive clusters (in order of decreasing mass, left to right) at z = 1 (top panels) and z = 0 (bottom panels). The spectroscopic-like temperature is given in each panel. Surface-brightness contours (normalised to the maximum value) are overlaid; adjacent contours correspond to a difference in surface brightness of a factor of 4. Images are centred on the maximum surface-brightness pixel and are shown out to R500."

Figure 6.2: A Chandra X-ray image of the 'Bullet Cluster' 1E 0657-56. Image credit: NASA/CXC/CfA/M.Markevitch et al.

6.2.4 Substructure

As seen in Figure 6.3 there is a varied amount of substructure in the CLEF clusters. KAY07 quantify this using a centroid shift method to measure substructure in their clusters surface brightness maps.

$$S_X = \frac{R_{\Sigma,max} - R_{\Sigma,cen}}{R_{500}} \tag{6.1}$$

where $R_{\Sigma,max}$ is the position of the pixel with maximum surface brightness (taken to be the centre of the cluster) and $R_{\Sigma,cen}$ is the surface-brightness centroid. The authors have split the sample into regular ($S_X \leq 0.1$) and irregular ($S_X > 0.1$) clusters. This division is somewhat arbitrary but does allow an easy way of comparing the most disturbed clusters with the rest of the sample. Figure 6.4 shows the distribution of S_X within the cluster sample as a function of temperature. Figure 6.3 shows surface brightness maps of clusters with both high and low S_X values.

Figure 6.3: Figure 6 and caption from Kay et al. (2007). "Bolometric surface-brightness maps of the 5 clusters with the lowest (top panels) and 5 with the highest (bottom panels) substructure statistic (S_X) at z = 0. In this case, clusters are centred on the surfacebrightness centroid."

6.2.5 Core structure parameters

As seen from the temperature profiles shown in Figure 6.5, the majority of clusters from CLEF have cool cores. Cool cores result in centrally peaked surface brightness profiles (see Figure 6.6). In order to quantify the strength of the cores KAY07 have defined two parameters, f_T and f_L .

$$f_T = \frac{T_{sl}(< R_1)}{T_{sl}(R_1 \le R \le R_2)}$$
(6.2)

$$f_L = \frac{L_{bol}(< R_1)}{L_{bol}(R_3)}$$
(6.3)

Figure 6.4: Figure 5 and caption from Kay et al. (2007). "Substructure statistic, S_X , versus spectroscopic-like temperature for clusters at z = 1 and z = 0. Triangles illustrate regular clusters with $S_X \leq 0.1$ and squares irregular clusters with $S_X > 0.1$. The solid horizontal line is the median S_X and the dashed lines the 10 and 90 percentiles."

where $[R_1, R_2, R_3] = [0.1, 0.3, 1.0]R_{500}$. R_1 approximately defines the radius where the temperature profile stops rising, R_1 and R_2 approximately define the (maximum) temperature plateau, and R_3 is the outer radius of the cluster. Given these definitions f_T measures the ratio of the core the maximum temperature of the cluster, i.e. a lower f_T value indicates a cooler core. f_L measures the fraction of bolometric luminosity coming from the core, clusters with the highest core surface brightness having the highest f_L values. The distribution in the two parameters can be seen in Figure 6.7, as the Figure shows the median f_T increases with redshift, and f_L decreases, i.e. the cluster cores are cooler and more X-ray concentrated at lower redshift.

Figure 6.5: Figure 7 and caption from Kay et al. (2007). "Scaled projected spectroscopiclike temperature profiles at z = 1 and z = 0. Solid curves are median and 10/90 percentiles for regular clusters, and dashed curves for irregular clusters. The vertical dashed line illustrates the median scaled softening radius (i.e. where the gravitational force becomes softer than Newtonian). The thick solid lines (with zero and negative gradient) are fits to the average observed temperature profile of cool core clusters, as measured by Vikhlinin et al. (2005); the inner line is a rough fit to their data to illustrate the cool core. The shaded region encloses the mean and 1σ standard deviation temperature profile for a representative sample of nearby clusters by Pratt et al. (2007)."

Figure 6.6: Figure 8 and caption from Kay et al. (2007). "Bolometric surface-brightness profiles at z = 1 and z = 0. Again, solid curves are median and 10/90 percentile values for regular clusters, and dashed curves for irregular clusters. The vertical dashed line marks the median force resolution, $2.8\epsilon/R500$."

Figure 6.7: Figure 11 and caption from Kay et al. (2007). "X-ray concentration parameter, f_L , versus core-to-maximum temperature ratio, f_T , for clusters at z = 1 and z = 0. Triangles are regular clusters and squares irregular clusters, with their median (f_T, f_L) co-ordinates connected by a solid line. Solid squares, joined by dashed lines, illustrate the median f_T at fixed intervals of 0.1 in f_L , for regular clusters."
6.3 XCS selection function: testing the dependence on the core properties and substructure

6.3.1 Method

Inputting CLEF clusters into XMM images

The process by which the CLEF profiles are input into the XMM images is basically the same as described in Section 5.2, aside from the creation of the fake cluster profile. Note that for calculating the total count rates we use the mean cluster temperature of the CLEF clusters, as opposed to using the varying temperature profile; these counts are then distributed using the emission measure profile (see Onuora et al. (2003) for details) as a probability map. The emission measure maps fully encode variations in temperature and density and so this approach will preserve any substructure in the surface brightness and also the presence of any central peak caused by a cool core. The rest of the process follows the steps outlined in Section 5.2. The initial set of selection function runs using the CLEF clusters proceeded as follows: Cluster profiles were randomly drawn from the CLEF sample and run through the detection pipelines, the process was repeated until each CLEF cluster $(T_{sl} > 2 \text{keV})$ had been 'observed' a sufficient number of times to determine reliable mean detection efficiencies. The number of clusters in the selection function run is the dominant factor in the size of the errors. To reduce the size of the error bars seen previously (See e.g. Figure 5.3), we ran this until at least 150 input clusters were present in each redshift bin; this number was increased to 200 for the two most distant bins. This should more clearly distinguish any potential differences in detection between the CLEF sample and the β clusters.

Direct comparison with standard β profiles

Using the data from the CLEF selection function run, we ran a duplicate set of simulations replacing each CLEF cluster with a β profile of the type used in the standard XCS selection function (i.e $\beta = 2/3$, $r_c = 160$ kpc). The second run exactly copied the first in terms of cluster placement, luminosities and temperatures, thus enabling an understanding of the impact of the differing morphology between the two samples.

6.3.2 Comparison of the two selection function methods

Figure 6.8 shows the results of this initial test with 1σ error bars. At low redshift the difference in RECOVERY efficiency is relatively small (at z = 0.1, the change when using the CLEF clusters is 91% to 85%, a relative drop of ~ 7%), however at high redshift the

differences become more important, at z = 1.0 XCS would detect ~ 60% more clusters (11% vs 17.5%) if the underlying sample was more CLEF-like than the isothermal β assumption made previously. The reasons for this difference in RECOVERY will be addressed in the following subsections. Within Figure 6.8 there appears to either be a slight drop in RECOVERY of the β profile clusters at z = 0.6, or a slight increase in RECOVERY at z = 0.7, this is most likely statistical noise in the data. Overall, the two methods are very similar, and are within the statistical errors. This similarity justifies the use of the β profiles in Sahlén et al. (2009).

Figure 6.8: A comparison of the detectability of CLEF clusters vs. the β profiles used in the standard XCS selection function ($\beta = 2/3$, $r_c = 160$ kpc).

6.3.3 RECOVERY efficiency of cool-core clusters

As discussed in Section 6.2, the majority of clusters in the CLEF sample contain cool cores. This property of CLEF enables us to test how effective XAPA is at RECOVERING cool-core clusters over a range of redshifts. Figure 6.9 demonstrates the trend in RECOVERY for two sub-samples of CLEF clusters, those with $f_T < 1.0$ (mild cool core), and those with $f_T <$ median f_T (strong cool core). There is little difference seen between these two sub-samples. This is not very suprising, the strength of the cool core is defined by f_T , but it is the X-ray concentration (f_L) that will influence detection (i.e. T is not particularly important, see Section 5.3 and Figure 5.5). Figure 6.7 showed that while there is a clear anti-correlation between f_T and f_L , there is also a significant amount of scatter. Understanding the detection trend with f_L will give us the best indication of how well XAPA is able to detect clusters that are most likely to contain a cool-core.

Figure 6.9: Detection and classification efficiency shown for 2 CLEF cluster sub-samples based on cool core strength: mild: $f_T < 1.0$, and strong: $f_T < \text{median } f_T$

6.3.4 RECOVERY efficiency of clusters with centrally peaked profiles

Figure 6.10 shows that when separating the sub-samples by f_L , a clearer difference in RECOVERY appears. The sub-samples are defined in Table 6.1. It can be seen in the figure that those clusters with the strongest core emission are RECOVERED 50% less than those that are less concentrated across much of the considered redshift range (e.g at z = 0.5: 60% of the Non-Cool-Core clusters are recovered, however only 30% of the Strong-Cool-Core sample is recovered).

Figures 6.11 demonstrates that the drop in RECOVERY is not due to a drop in detection. Figure 6.11 shows the fraction of input objects that are detected, regardless of extent classification or flagging (see Section 3.3.3 for details of the warning flags). The samples show similar behaviour at $z \leq 0.5$; beyond this redshift the detectability of the samples

Figure 6.10: RECOVERY efficiency shown for 3 CLEF cluster sub-samples based on X-ray concentration: non-cool-core: $f_L < \text{median } f_L$, mild-cool-core: $f_L > \text{median } f_L$, strong-cool-core: $f_L > 1.5 \times \text{median } f_L$

begins to diverge. The data shows that the stronger the core the more likely it is that the cluster will be detected at high z. We see from Figure 6.12 that the RECOVERY bias is due to XAPA's mis-classification of the Strong-Cool-Core sample as point sources, or due to the sources being flagged as suspicious. The clusters that are more concentrated are easier to detect, however they are also more likely to be classified as pointlike, having PSF-sized extent, or to be detected with significant internal point sources (See Figure 6.12) and so rejected from the final XCS Statistical Sample (see Section 3.6). This effect shows an increasing trend with redshift, and by z = 0.8, 5 times more clusters are rejected from the Strong-Cool-Core sample than the Non-Cool-Core sample for this reason. Figure 6.12(b) enables us to distinguish between the reasons for clusters not being RECOVERED; it shows that cool-core clusters are often correctly classified as extended, but XAPA also tends to detect the core as a contaminating point source within the region of extent. It may be that an adjustment of the flagging criteria would remove this trend. The flagging proceedures are in place to lessen the chance of mis-classification caused by inadequacies in the PSF model. A better model might not require the flags at all, although further investigation will need to be done when a new PSF model is implemented.

Sample name	f_L range	
non-cool-core	$f_L < \text{median } f_L$	
mild-cool-core	$f_L > \text{median } f_L$	
strong-cool-core	$f_L > 1.5 \times \text{median } f_L$	

Table 6.1: Definitions of the CLEF subsamples based on their X-ray concentration, f_L .

Splitting the CLEF sample into subsamples defined by f_T and f_L provides a useful way of examining the detection of clusters with largely differing core properties, however the divisions that create these samples are artificial. f_T and f_L are both parameters with continuous variation. Figure 6.13 demonstrates XAPA's sensitivity to f_T and f_L as a function of redshift. The median values are shown with solid black lines, and the 10 and 90 percentiles of the data are shown with dotted lines, beyond which the data is too sparse to draw strong conclusions. The peak in detection lies in the range $0.25 > f_L > 0.2$ across the whole of 0.1 < z < 1.0. The behaviour seen in Figure 6.10 is also apparent in Figure 6.13(b), where the clusters with higher f_L values are recovered less frequently. Figure 6.13(a) further supports the conclusions drawn from Figure 6.9, in that the contours are approximately vertical, indicating that f_T does not directly influence detection.

6.3.5 Detection of clusters containing substructure

CLEF also provides us with the opportunity to assess how the presence of internal cluster substructure influences detection. This is a very important question to investigate. Favoured models of structure formation predict increased merger rates at higher redshifts, therefore any attempt to detect clusters at high-z must take substructure into account.

Figure 6.11: Figure 6.10 without the constraint on classification. All detected objects are plotted regardless of extent.

Figure 6.12: Fig 6.12(a): The percentage of input clusters that are detected, but classified as pointlike, or have one or more of PSF-SIZED FLAG, POINTSOURCE CONTAMINATED FLAG or RUN1 CONTAMINATED FLAG, for the CLEF sub-samples defined by f_L . Fig 6.12(b) shows only those detected as extended but having the POINTSOURCE CONTAMINATED FLAG or RUN1 CONTAMINATED FLAG.

Figure 6.13: XCS StatSam recovery efficiency for CLEF clusters as a function of redshift and f_T (Fig6.13(a)), and redshift and f_L (Fig6.13(b)). The solid black line represents the median value at each redshift, the dotted lines mark the 10 and 90 percentiles of the data.

Figure 6.14(a) shows the XCS StatSam recovery efficiency for the regular ($S_X \leq 0.1$) and irregular $(S_X > 0.1)$ CLEF clusters (See Section 6.2.4 for definitions). The irregular sample is seen to be systematically easier to detect and correctly classify than the regular sample in the range 0.3 < z < 0.8. Figure 6.14(b) shows that this is due to regular clusters being more likely to be mis-classified as point sources or containing point source contamination. This result may however be an artifact of the nature of CLEF. Clusters in the simulation that have not undergone a recent merger event tend to have the coolest cores, and likewise irregular clusters tend to have low f_L values as the presence of a subcluster boosts the overall luminosity without affecting the core luminosity. The variation in recovery with S_X seen in figure 6.15 may be just as much a result of the absence of strongly peaked cool cores as it is the presence of substructure. It should be noted here that the apparent drop in RECOVERY at larger S_X is due to a lack of objects in this region of the plot, and not because of any real trend (the 90 percentile line shows that very few objects have $S_X > 0.15$). To investigate the effect of S_X on RECOVERY in more detail we would require a larger set of non-cool-core clusters that have a wide variation in amount of substructure. Larger simulations do now exist, containing more objects than CLEF, The Millenium Gas project (Gazzola and Pearce (2007), Hartley et al. (2008)) for example may contain such objects, however this will have to be investigated at a future date.

6.3.6 Applying a count cut to the sample

As discussed in Section 3.6.1, the addition of a minimum 500 count detection limit has been set on the cluster sample being used by XCS for cosmology. In Section 5.4.1 it was shown that the addition of this count cut removes some of the detection biases caused by profile variations. It is important at this point to see if the trends seen thus far in this chapter would be present in the XCS500, or whether a large enough number of counts enables XAPA to properly recover the CLEF clusters regardless of core strength or dynamical state. Figure 6.16 shows how the effect of f_L on recovery changes as a count limit is applied and increased through 100, 200 and 500 counts. It is clear that increasing the count cut reduces the large variation in recovery as a function of f_L . Based on this evidence the XCS500 should contain clusters with a range X-ray concentrations, and so should be unbiased with repected to Cool-Core clusters. If a 500 count criteria is applied to Figure 6.8 we should expect therefore that the CLEF sample and β profile clusters should have overlapping recovery trends (See Figure 6.17). Figure 6.17 shows that the two samples have similar behaviour with respect to redshift, and all the bins, except at z = 0.4, have overlapping 1σ uncertainties.

6.3.7 The impact of the selection function upon the L - T relation

The XCS cluster sample will be used to make an accurate measurement of the L - T relation; we expect to measure the normalization and slope to $\pm 6\%$ and $\pm 13\%$ respectively

Figure 6.14: Fig 6.14: Detection and classification efficiency for both the regular ($S_X \leq 0.1$) and irregular ($S_X > 0.1$) CLEF clusters. The XCS β profile data is overplotted for comparison (Dotted line). Fig 6.14(b) shows the percentage of input clusters that are detected, but classified as pointlike, PSF sized, or as having significant point source contamination.

Figure 6.15: XCS StatSam recovery efficiency for CLEF clusters as a function of redshift and the amount of substructure, S_X . The solid black line represents the median value at each redshift, the dotted lines mark the 10 and 90 percentiles of the data.

Figure 6.16: Same as Figure 6.13(b), but with additional requirements on the detected number of counts; Figure 6.16(a): ≥ 0 counts (same as Figure 6.10), Figure 6.16(b): ≥ 100 counts, Figure 6.16(c): ≥ 200 counts, Figure 6.16(d): ≥ 500 counts, .

Figure 6.17: Same as Figure 6.8, but with the additional requirement that clusters be detected with at least 500 counts.

(at 1σ) (Sahlén et al., 2009). Pacaud et al. (2007) demonstrated that the inclusion of selection effects is essential for the correct determination of the evolution of the L - T relation (See Figure 6.18). Pacaud et al. (2007) have shown that having an understanding of the selection function can significantly alter the measured evolution in the L-T relation, though they were not able to show if this is actually an improvement. As a precursor to the analysis of the real XCS L-T relation, we have used the selection functions from Chapter 5 to correct the "XCS - CLEF" L-T relation. The CLEF cluster sample can be treated as a complete, if not realistic, population. The sample can be run through the detection software in the same way as Section 6.3.1, producing a sub-sample of detected clusters. The scaling relations of the whole population can be compared that of the detected clusters. As expected XAPA preferentially detects clusters above the mean relation (See the red line in Figure 6.19). Using our standard selection function from Chapter 5 we have corrected the measured relation by weighting the data depending on how efficiently we expect to detect clusters with the same L, T, z combination (Yellow line), clusters detected less frequently are given a higher weighting than those detected more often.

6.4 Future Work

In Figure 6.19 the L, T, z data for the detected clusters are drawn straight from the simulation data. We do not take into account measurement errors, as a result of the limited size of the CLEF simulation. As a minimum, it would be desirable to make a count cut on the detected cluster sample, and then scatter the temperature values based on a real temperature error distribution. However the majority of CLEF clusters are in the 2-3keVrange, and so are not very luminous; a 300 or 500 count cut leaves so few clusters that this exercise becomes meaningless. So, instead, we plan to undertake this task with artificial catalogues of β profile clusters, it will be interesting to see if it is possible to distinguish between different types of L - T evolution using this method, and how many clusters we need at high redshifts in order to achieve this goal.

In future we will repeat our selection function analysis using the Millenium Gas simulation, since this is larger, and contains more high-redshift and high-temperature clusters.

6.5 Summary

We have shown in this chapter that the selection function of the CLEF sample does not differ substantially from that of the β profile clusters used in Sahlén et al. (2009). We have then focussed on specific cluster properties (i.e f_T , f_L , S_X), to test the selection function in a way we were not able to do in Chapter 5. This has shown that XAPA has no inherent biases with regard to cool-core clusters, though the often associated centrally peaked surface brightness profiles do affect RECOVERY. These centrally peaked surface brightness

Figure 6.18: Figure 7 and caption from Pacaud et al. (2007). "Evolution of the LX-T relation. (a): Raw analysis. The data points from several studies are plotted (stacked into redshift bins for clarity). Whenever possible, we converted luminosity estimates from the other samples to L_{500} using the information provided by the authors." "Overlaid are several enhancement factor fits from our baseline analysis: the (1 + z) power law and ad-hoc 2 parameter fits to our data alone (resp. short and long dashed lines), and the (1+z) power law and ad-hoc 2 parameter fits (resp. dot-dashed and 3dot-dashed lines) fitted to the C1 clusters combined with the samples of Kotov & Vikhlinin (2005) and Ettori et al. (2004). For comparison, the self-similar prediction is indicated by the solid line. (b): Taking into account selection effects. The filled circles and short dashed line recalls the location of our raw data points, and best fit model from the preliminary analysis. The corrected enhancement factor fit for the 2 parameter model is shown as the long dashed line. The final 1 parameter fit and its 1σ confidence interval is displayed by the solid line and the shaded region. Expectations from several intra-cluster gas models are plotted for comparison: the self-similar predictions (dotted line) and two models by Voit (2005) including non gravitational physics (dot-dashed and 3dot-dashed lines)."

Figure 6.19: The redshift evolution of the L - T normalisation, Y_0 . Shown in black is the data from the underlying CLEF population, the red line is the detected sub-sample, the yellow line is the detected sub-sample after correction for the selection function.

profiles are easily detected, but XAPA often associates the profile with heavy point source contamination, and so these objects are flagged and removed from the candidate list. This is likely another symptom of the inadequate PSF model; with a better model this bias may be substantially reduced. The results of the substructure investigation may indicate that morphologically disturbed clusters are more effectively RECOVERED, but the trend of S_X with f_L make this difficult to substantiate, and it is possible that this is the same f_L bias, diluted by the scatter in the S_X , f_L relation. Finally we see that a 500 count cut leaves the CLEF-selection function and the β -selection function with overlapping 1σ uncertainties, and so the XCS500 should not be significantly biased with respect to the considered parameters.

The selection function presented in Chapter 5 and in this chapter, with its dependencies on morphology, will allow the XCS to produce a statistical description of the cluster population. This will be a valuable tool for studies of cluster physics and structure formation, for example Santos et al. (2008) use the ratio of cool-core to non-cool-core clusters as a function of redshift to study cluster evolution (with possible links to merger rates). The use of cluster profiles drawn from N-body simulations has enabled this work to assess XCS's completeness with respect to cool-cores and dynamical state. As far as the author is aware this direct use of simulated clusters has not been done before, and highlights the ever increasing complementarity of observational surveys and theorectical studies. We have also carried out preliminary work to investigate the practicalities of using XCS selection functions to correct XCS L - T relations.

Chapter 7

Conclusions

In this thesis we have presented the XCS DR3, a major update of the source data produced by the XCS collaboration. The resultant cluster candidate list, after follow-up and confirmation, is expected to produce the largest homogenous sample of clusters ever compiled. XCS will grow with the XMM archive, thus we do not expect the XCS sample to be superceeded, in terms of size, with the current generation of satellites. A cluster catalogue is only of limited use for cosmology without a selection function; this is also presented in detail. The following discussion is a compilation of the summary sections at the end of Chapters 3, 4, 5 and 6, and contains no new work.

7.1 XCS and XCS DR1 & DR2

The DR1+DR2 StatSam will produce the first XCS catalogue of clusters (E. Lloyd-Davies, (in prep)). The DR2 clusters which comprise $\sim 25\%$ of this catalogue are a result of the work done by the author.

Using images, exposure maps and ECF's produced by K. Sabirli, and the XAPA pipeline designed by M. Davidson, we have been able to produce a source list of 81528 entries, and a StatSam cluster candidate list of 1874. Of these 1874, 250 already have redshifts. The author had responsibility for the DR2 extension of XCS, representing a 25% increase in the number of sources, cluster candidates, and confirmed clusters. The confirmed clusters from the XCS300 sample have now been subjected to X-ray spectroscopy and morphological analysis by E. Lloyd-Davies, see Appendix I.

7.2 The XCS DR3

The total, non-overlapping area of DR3 is 522.29 deg², and the available StatSam area amounts to 229.73 deg². DR3 has extended the total area covered by XCS (from the DR1+DR2 area) by ~ 70%, and increased the number of StatSam cluster candidates by a factor of 2. Using a 1' radius to search the literature: there are 1365 StatSam cluster candidates with > 300 counts, 159 of which are already listed in NED as being known clusters/groups. This corresponds to ~ 6 serendipitous > 300 count candidates per deg². This is greater than the source density in DR1+DR2 due to the improvements made in the source list creation (see Section 4.1). For comparison the 400d survey find ~ 0.75 candidates per deg² with fluxes > 1.4×10^{-13} ergs s⁻¹ cm⁻². The XMM-LSS find 5.4 'C1' clusters per deg² and estimate ~ 12 'C2' per deg² (the C2 clusters have not yet been published).

We can potentially measure temperatures for these all DR3 XCS300 candidates, once redshifts are known. 709 redshifts have already been obtained from NXS and SDSS and other literature data. The temperature fitting is currently underway (E. Lloyd-Davies); at present there are 227 DR3 clusters with both temperature and redshift measurements (See Table H.3 in Appendix H), although most of these have come from DR1+DR2. This is already a significant improvement over the samples in the literature, see Table 7.1. A preliminary XCS L - T relation is shown in Figure 7.1.

Survey	Data	Clusters	z range
HIFLUGS	Rosat	63	0.005 - 0.2
Maughan et al.	Chandra	115	0.1 - 0.3
O'Hara et al.	Chandra	70	0.18 -1.24
400SD	Chandra	36	0.35 - 0.9
XMM-LSS	XMM	29	0.05 - 1.05
XCS300	XMM	227	0.003 - 1.457

Table 7.1: Literature cluster samples with measured temperature and redshifts. Also added is the current size of the XCS300 sample with temperatures and redshifts.

In addition to the large cluster sample that will come from DR3, Campbell et al. (in prep) have used the DR3 point source catalogue to find 11 high quality isolated neuton star candidates. These candidates are mostly new to DR3.

With the construction of DR3 the XCS expects to have a sample of ~ 1000 clusters with redshifts, and the potential to measure temperatures for the majority of these. This will be significantly larger than any other homogenous sample of clusters.

The current distribution of the DR3 cluster redshifts is displayed in Figure 7.2.

Figure 7.1: A preliminary XCS L - T relation. Figure courtesy of E. Lloyd-Davies.

7.3 XCS Selection Function with Two-Dimensional β profiles.

The work presented in this chapter has demonstrated the way in which many variables can influence cluster detection.

The dependance of the selection function on cosmology enables cluster surveys to constrain cosmological parameters. The results presented and discussed in Section 5.3 enable the XCS to do just that, and were crucial for the production of Sahlén et al. (2009). The selection function used in Sahlén et al. (2009) assumed a fixed cluster profile, the impact of this assumption has been tested in Section 5.4. We see that r_c in particular can strongly influence the detection of clusters, however the more counts a source has, the more this effect is reduced, and the impact on the XCS500 sample is small.

As discussed above, it is widely recognised that an understanding of a surveys selection function must be had before any strong conclusions can be drawn, either for cosmology or scaling relation studies. The simulations presented so far in this chapter further highlight this, in particular it is clear that the morphology of the population must be better understood before any naive selection function is applied.

Figure 7.2: A histogram of the lookback time of DR3 clusters with measured redshifts. The red histogram is for spectroscopic redshifts, the blue histogram is for photometric redshifts. The numbers above the bins are the centre of the bin in redshift space. Figure courtesy of E. Lloyd-Davies.

In Section 5.6 we investigated the impact of exposure time on cluster detection. It was shown that in terms of cluster numbers, a shallower wide field survey would be preferable, and exposures greater than 30ks would not give substantial increases. However a 10deg^2 , 50 ks survey would yield significantly greater numbers of low T (and hence low mass) systems at high redshift.

7.4 XCS Selection Function with Two-Dimensional Cluster Profiles from Hydrodynamic Simulations.

We have shown in this chapter that the selection function of the CLEF sample does not differ substantially from that of the β profile clusters used in Sahlén et al. (2009). We have then focussed on specific cluster properties (i.e f_T , f_L , S_X), to test the selection function in a way we were not able to do in Chapter 5. This has shown that XAPA has no inherent biases with regard to cool core clusters, though the often associated centrally peaked surface brightness profiles do affect RECOVERY. These centrally peaked surface brightness profiles are easily detected, but XAPA often associates the profile with heavy point source contamination, and so these objects are flagged and removed from the candidate list. This is likely another symptom of the inadequate PSF model, with a better model this bias may be substantially reduced. The results of the substructure investigation may indicate that morphologically disturbed clusters are more effectively RECOVERED, however the trend of S_X with f_L make this difficult to substantiate, and it is possible that this is the same f_L bias, diluted by the scatter in the S_X , f_L relation. Finally we see that a 500 count cut leaves the CLEF-selection function and the β -selection function with overlapping 1σ uncertainties, and so the XCS500 should not be significantly biased with respect to the considered parameters.

The selection function presented in Chapter 5 and in this chapter, with its dependencies on morphology, will allow the XCS to produce a statistical description of the cluster population. This will be a valuable tool for studies of cluster physics and structure formation, for example Santos et al. (2008) use the ratio of cool-core to non-cool-core clusters as a function of redshift to study cluster evolution (with possible links to merger rates). The use of cluster profiles drawn from N-body simulations has enabled this work to assess XCS's completeness with respect to cool-cores and dynamical state. As far as the author is aware this direct use of simulated clusters has not been done before, and highlights the ever increasing complementarity of observational surveys and theorectical studies.

We have also carried out preliminary work to investigate the practicalities of using XCS selection functions to correct XCS L - T relations.

Bibliography

Abazajian, K. N., Adelman-McCarthy, J. K., Agüeros, M. A., Allam, S. S., Allende Prieto, C., An, D., Anderson, K. S. J., Anderson, S. F., Annis, J., Bahcall, N. A., Bailer-Jones, C. A. L., Barentine, J. C., Bassett, B. A., Becker, A. C., Beers, T. C., Bell, E. F., Belokurov, V., Berlind, A. A., Berman, E. F., Bernardi, M., Bickerton, S. J., Bizyaev, D., Blakeslee, J. P., Blanton, M. R., Bochanski, J. J., Boroski, W. N., Brewington, H. J., Brinchmann, J., Brinkmann, J., Brunner, R. J., Budavári, T., Carey, L. N., Carliles, S., Carr, M. A., Castander, F. J., Cinabro, D., Connolly, A. J., Csabai, I., Cunha, C. E., Czarapata, P. C., Davenport, J. R. A., de Haas, E., Dilday, B., Doi, M., Eisenstein, D. J., Evans, M. L., Evans, N. W., Fan, X., Friedman, S. D., Frieman, J. A., Fukugita, M., Gänsicke, B. T., Gates, E., Gillespie, B., Gilmore, G., Gonzalez, B., Gonzalez, C. F., Grebel, E. K., Gunn, J. E., Györy, Z., Hall, P. B., Harding, P., Harris, F. H., Harvanek, M., Hawley, S. L., Hayes, J. J. E., Heckman, T. M., Hendry, J. S., Hennessy, G. S., Hindsley, R. B., Hoblitt, J., Hogan, C. J., Hogg, D. W., Holtzman, J. A., Hyde, J. B., Ichikawa, S.-i., Ichikawa, T., Im, M., Ivezić, Z., Jester, S., Jiang, L., Johnson, J. A., Jorgensen, A. M., Jurić, M., Kent, S. M., Kessler, R., Kleinman, S. J., Knapp, G. R., Konishi, K., Kron, R. G., Krzesinski, J., Kuropatkin, N., Lampeitl, H., Lebedeva, S., Lee, M. G., Lee, Y. S., Leger, R. F., Lépine, S., Li, N., Lima, M., Lin, H., Long, D. C., Loomis, C. P., Loveday, J., Lupton, R. H., Magnier, E., Malanushenko, O., Malanushenko, V., Mandelbaum, R., Margon, B., Marriner, J. P., Martínez-Delgado, D., Matsubara, T., McGehee, P. M., McKay, T. A., Meiksin, A., Morrison, H. L., Mullally, F., Munn, J. A., Murphy, T., Nash, T., Nebot, A., Neilsen, E. H., Newberg, H. J., Newman, P. R., Nichol, R. C., Nicinski, T., Nieto-Santisteban, M., Nitta, A., Okamura, S., Oravetz, D. J., Ostriker, J. P., Owen, R., Padmanabhan, N., Pan, K., Park, C., Pauls, G., Peoples, J., Percival, W. J., Pier, J. R., Pope, A. C., Pourbaix, D., Price, P. A., Purger, N., Quinn, T., Raddick, M. J., Fiorentin, P. R., Richards, G. T., Richmond, M. W., Riess, A. G., Rix, H.-W., Rockosi, C. M., Sako, M., Schlegel, D. J., Schneider, D. P., Scholz, R.-D., Schreiber, M. R., Schwope, A. D., Seljak, U., Sesar, B., Sheldon, E., Shimasaku, K., Sibley, V. C., Simmons, A. E., Sivarani, T., Smith, J. A., Smith, M. C., Smolčić, V., Snedden, S. A., Stebbins, A., Steinmetz, M., Stoughton, C., Strauss, M. A., Subba Rao, M., Suto, Y., Szalay, A. S., Szapudi, I., Szkody, P., Tanaka, M., Tegmark, M., Teodoro, L. F. A., Thakar, A. R., Tremonti, C. A., Tucker, D. L., Uomoto, A., Vanden Berk, D. E., Vandenberg, J., Vidrih, S., Vogeley, M. S., Voges, W., Vogt, N. P., Wadadekar, Y., Watters, S., Weinberg, D. H., West, A. A., White, S. D. M., Wilhite, B. C., Wonders, A. C., Yanny, B., Yocum, D. R., York, D. G., Zehavi, I., Zibetti, S., and Zucker, D. B. (2009). The Seventh Data Release of the Sloan Digital Sky Survey. *ApJS*, 182:543–558.

- Abell, G. O. (1958). The Distribution of Rich Clusters of Galaxies. ApJS, 3:211-+.
- Abell, G. O., Corwin, Jr., H. G., and Olowin, R. P. (1989). A catalog of rich clusters of galaxies. ApJS, 70:1–138.
- Adami, C., Ulmer, M. P., Romer, A. K., Nichol, R. C., Holden, B. P., and Pildis, R. A. (2000). The Bright SHARC Survey: The Selection Function and Its Impact on the Cluster X-Ray Luminosity Function. ApJS, 131:391–412.
- Alexander, D. M., Bauer, F. E., Brandt, W. N., Schneider, D. P., Hornschemeier, A. E., Vignali, C., Barger, A. J., Broos, P. S., Cowie, L. L., Garmire, G. P., Townsley, L. K., Bautz, M. W., Chartas, G., and Sargent, W. L. W. (2003). The Chandra Deep Field North Survey. XIII. 2 Ms Point-Source Catalogs. AJ, 126:539–574.
- Allen, S. W., Schmidt, R. W., and Fabian, A. C. (2002). Cosmological constraints from the X-ray gas mass fraction in relaxed lensing clusters observed with Chandra. MNRAS, 334:L11–L15.
- Ameglio, S., Borgani, S., Pierpaoli, E., Dolag, K., Ettori, S., and Morandi, A. (2009). Reconstructing mass profiles of simulated galaxy clusters by combining Sunyaev-Zeldovich and X-ray images. *MNRAS*, 394:479–490.
- Arnaud, M., Aghanim, N., and Neumann, D. M. (2002). The X-ray surface brightness profiles of hot galaxy clusters up to vec $z \sim 0.8$: Evidence for self-similarity and constraints on Ω_0 . A & A, 389:1–18.
- Arnaud, M. and Evrard, A. E. (1999). The L_X-T relation and intracluster gas fractions of X-ray clusters. MNRAS, 305:631–640.
- Arnaud, M., Pointecouteau, E., and Pratt, G. W. (2007). Calibration of the galaxy cluster $M_{500} Y_X$ relation with XMM-Newton. A & A, 474:L37–L40.
- Bahcall, N. A. and Lubin, L. M. (1994). Resolving the beta-discrepancy for clusters of galaxies. ApJ, 426:513–515.
- Balogh, M. L., Pearce, F. R., Bower, R. G., and Kay, S. T. (2001). Revisiting the cosmic cooling crisis. MNRAS, 326:1228–1234.
- Bartelmann, M. and Schneider, P. (2001). Weak gravitational lensing. *Physics Reports*, 340:291–472.
- Bertin, E. and Arnouts, S. (1996). SExtractor: Software for source extraction. A&AS, 117:393–404.

- Böhringer, H., Collins, C. A., Guzzo, L., Schuecker, P., Voges, W., Neumann, D. M., Schindler, S., Chincarini, G., De Grandi, S., Cruddace, R. G., Edge, A. C., Reiprich, T. H., and Shaver, P. (2002). The ROSAT-ESO Flux-limited X-Ray (REFLEX) Galaxy Cluster Survey. IV. The X-Ray Luminosity Function. ApJ, 566:93–102.
- Böhringer, H., Schuecker, P., Guzzo, L., Collins, C. A., Voges, W., Schindler, S., Neumann, D. M., Cruddace, R. G., De Grandi, S., Chincarini, G., Edge, A. C., MacGillivray, H. T., and Shaver, P. (2001). The ROSAT-ESO flux limited X-ray (REFLEX) galaxy cluster survey. I. The construction of the cluster sample. A&A, 369:826–850.
- Böhringer, H., Schuecker, P., Pratt, G. W., Arnaud, M., Ponman, T. J., Croston, J. H., Borgani, S., Bower, R. G., Briel, U. G., Collins, C. A., Donahue, M., Forman, W. R., Finoguenov, A., Geller, M. J., Guzzo, L., Henry, J. P., Kneissl, R., Mohr, J. J., Matsushita, K., Mullis, C. R., Ohashi, T., Pedersen, K., Pierini, D., Quintana, H., Raychaudhury, S., Reiprich, T. H., Romer, A. K., Rosati, P., Sabirli, K., Temple, R. F., Viana, P. T. P., Vikhlinin, A., Voit, G. M., and Zhang, Y.-Y. (2007). The representative XMM-Newton cluster structure survey (REXCESS) of an X-ray luminosity selected galaxy cluster sample. A&A, 469:363–377.
- Burenin, R. A., Vikhlinin, A., Hornstrup, A., Ebeling, H., Quintana, H., and Mescheryakov, A. (2007). The 400 Square Degree ROSAT PSPC Galaxy Cluster Survey: Catalog and Statistical Calibration. ApJS, 172:561–582.
- Cavaliere, A. and Fusco-Femiano, R. (1976). X-rays from hot plasma in clusters of galaxies. A & A, 49:137–144.
- Cheng, L.-M., Borgani, S., Tozzi, P., Tornatore, L., Diaferio, A., Dolag, K., He, X.-T., Moscardini, L., Murante, G., and Tormen, G. (2005). Simulating the soft X-ray excess in clusters of galaxies. A&A, 431:405–413.
- Colless, M., Dalton, G., Maddox, S., Sutherland, W., Norberg, P., Cole, S., Bland-Hawthorn, J., Bridges, T., Cannon, R., Collins, C., Couch, W., Cross, N., Deeley, K., De Propris, R., Driver, S. P., Efstathiou, G., Ellis, R. S., Frenk, C. S., Glazebrook, K., Jackson, C., Lahav, O., Lewis, I., Lumsden, S., Madgwick, D., Peacock, J. A., Peterson, B. A., Price, I., Seaborne, M., and Taylor, K. (2001). The 2dF Galaxy Redshift Survey: spectra and redshifts. *MNRAS*, 328:1039–1063.
- Collins, C. A., Stott, J. P., Hilton, M., Kay, S. T., Stanford, S. A., Davidson, M., Hosmer, M., Hoyle, B., Liddle, A., Lloyd-Davies, E., Mann, R. G., Mehrtens, N., Miller, C. J., Nichol, R. C., Romer, A. K., Sahlén, M., Viana, P. T. P., and West, M. J. (2009). Early assembly of the most massive galaxies. *Nat*, 458:603–606.
- Croston, J. H., Pratt, G. W., Böhringer, H., Arnaud, M., Pointecouteau, E., Ponman, T. J., Sanderson, A. J. R., Temple, R. F., Bower, R. G., and Donahue, M. (2008). Galaxy-cluster gas-density distributions of the representative XMM-Newton cluster structure survey (REXCESS). A&A, 487:431–443.

- Davé, R., Katz, N., and Weinberg, D. H. (2002). X-Ray Scaling Relations of Galaxy Groups in a Hydrodynamic Cosmological Simulation. *ApJ*, 579:23–41.
- Davidson, M. (2005). A Serendipitous Survey of Galaxy Clusters with XMM-Newton. PhD thesis, Institute for Astronomy, University of Edinburgh.
- Ebeling, H., Edge, A. C., Bohringer, H., Allen, S. W., Crawford, C. S., Fabian, A. C., Voges, W., and Huchra, J. P. (1998). The ROSAT Brightest Cluster Sample - I. The compilation of the sample and the cluster log N-log S distribution. *MNRAS*, 301:881– 914.
- Eke, V. R., Navarro, J. F., and Frenk, C. S. (1998). The Evolution of X-Ray Clusters in a Low-Density Universe. ApJ, 503:569–+.
- Felten, J. E., Gould, R. J., Stein, W. A., and Woolf, N. J. (1966). X-Rays from the Coma Cluster of Galaxies. ApJ, 146:955–958.
- Finoguenov, A., Reiprich, T. H., and Böhringer, H. (2001). Details of the masstemperature relation for clusters of galaxies. A&A, 368:749–759.
- Forman, W., Kellogg, E., Gursky, H., Tananbaum, H., and Giacconi, R. (1972). Observations of the Extended X-Ray Sources in the Perseus and Coma Clusters from UHURU. *ApJ*, 178:309–316.
- Gazzola, L. and Pearce, F. R. (2007). A Heating Model for the Millennium Gas Run. In Böhringer, H., Pratt, G. W., Finoguenov, A., and Schuecker, P., editors, *Heating versus Cooling in Galaxies and Clusters of Galaxies*, pages 412–+.
- Ghizzardi, S. (2001). In flight Calibration of the PSF for the MOS1 and MOS2 Cameras. Technical report, Milano Calibration Team, Istituto di Fisica Cosmica.
- Giacconi, R., Zirm, A., Wang, J., Rosati, P., Nonino, M., Tozzi, P., Gilli, R., Mainieri, V., Hasinger, G., Kewley, L., Bergeron, J., Borgani, S., Gilmozzi, R., Grogin, N., Koekemoer, A., Schreier, E., Zheng, W., and Norman, C. (2002). Chandra Deep Field South. 1 Ms catalog (Giacconi+, 2002). VizieR Online Data Catalog, 213:90369-+.
- Gioia, I. M., Maccacaro, T., Schild, R. E., Wolter, A., Stocke, J. T., Morris, S. L., and Henry, J. P. (1990). The Einstein Observatory Extended Medium-Sensitivity Survey. I - X-ray data and analysis. ApJS, 72:567–619.
- Gladders, M. D. and Yee, H. K. C. (2000). A new method for galaxy cluster detection i: The algorithm. Astronomical Journal, 120:2148.
- Gladders, M. D. and Yee, H. K. C. (2005). The Red-Sequence Cluster Survey. I. The Survey and Cluster Catalogs for Patches RCS 0926+37 and RCS 1327+29. *ApJS*, 157:1–29.
- Gorenstein, P., Fabricant, D., Topka, K., Harnden, Jr., F. R., and Tucker, W. H. (1978). Soft X-ray structure of the Perseus cluster of galaxies. *ApJ*, 224:718–723.

- Gursky, H., Kellogg, E., Murray, S., Leong, C., Tananbaum, H., and Giacconi, R. (1971). A Strong X-Ray Source in the Coma Cluster Observed by UHURU. *ApJ*, 167:L81+.
- Hartley, W. G., Gazzola, L., Pearce, F. R., Kay, S. T., and Thomas, P. A. (2008). Nature versus nurture: the curved spine of the galaxy cluster X-ray luminosity-temperature relation. *MNRAS*, 386:2015–2021.
- Helsdon, S. F. and Ponman, T. J. (2000). The intragroup medium in loose groups of galaxies. MNRAS, 315:356–370.
- Henning, J. W., Gantner, B., Burns, J. O., and Hallman, E. J. (2009). On the Origin of Cool Core Galaxy Clusters: Comparing X-ray Observations with Numerical Simulations. *ApJ*, 697:1597–1620.
- Hilton, M., Collins, C. A., Stanford, S. A., Lidman, C., Dawson, K. S., Davidson, M., Kay, S. T., Liddle, A. R., Mann, R. G., Miller, C. J., Nichol, R. C., Romer, A. K., Sabirli, K., Viana, P. T. P., and West, M. J. (2007). The XMM Cluster Survey: The Dynamical State of XMMXCS J2215.9-1738 at z = 1.457. ApJ, 670:1000–1009.
- Hilton, M., Stanford, S. A., Stott, J. P., Collins, C. A., Hoyle, B., Davidson, M., Hosmer, M., Kay, S. T., Liddle, A. R., Lloyd-Davies, E., Mann, R. G., Mehrtens, N., Miller, C. J., Nichol, R. C., Romer, A. K., Sabirli, K., Sahlén, M., Viana, P. T. P., West, M. J., Barbary, K., Dawson, K. S., Meyers, J., Perlmutter, S., Rubin, D., and Suzuki, N. (2009). The XMM Cluster Survey: Galaxy Morphologies and the Color-Magnitude Relation in XMMXCS J2215.9 1738atz = 1.46. ApJ, 697:436-451.
- Jones, C. and Forman, W. (1999). Einstein Observatory Images of Clusters of Galaxies. ApJ, 511:65–83.
- Kaiser, N. (1986). Evolution and clustering of rich clusters. MNRAS, 222:323–345.
- Kaiser, N. (1991). Evolution of clusters of galaxies. ApJ, 383:104–111.
- Katz, N. (1992). Dissipational galaxy formation. II Effects of star formation. ApJ, 391:502–517.
- Katz, N. and White, S. D. M. (1993). Hierarchical galaxy formation Overmerging and the formation of an X-ray cluster. ApJ, 412:455–478.
- Kay, S. T., da Silva, A. C., Aghanim, N., Blanchard, A., Liddle, A. R., Puget, J.-L., Sadat, R., and Thomas, P. A. (2005). Clusters of galaxies: new results from the CLEF hydrodynamics simulation. *Advances in Space Research*, 36:694–697.
- Kay, S. T., da Silva, A. C., Aghanim, N., Blanchard, A., Liddle, A. R., Puget, J.-L., Sadat, R., and Thomas, P. A. (2007). The evolution of clusters in the CLEF cosmological simulation: X-ray structural and scaling properties. *MNRAS*, 377:317–334.
- Kay, S. T., Thomas, P. A., Jenkins, A., and Pearce, F. R. (2004). Cosmological simulations of the intracluster medium. MNRAS, 355:1091–1104.

- Kellogg, E., Gursky, H., Tananbaum, H., Giacconi, R., and Pounds, K. (1972). The Extended X-Ray Source at M87. ApJ, 174:L65+.
- Knop, R. A., Aldering, G., Amanullah, R., Astier, P., Blanc, G., Burns, M. S., Conley, A., Deustua, S. E., Doi, M., Ellis, R., Fabbro, S., Folatelli, G., Fruchter, A. S., Garavini, G., Garmond, S., Garton, K., Gibbons, R., Goldhaber, G., Goobar, A., Groom, D. E., Hardin, D., Hook, I., Howell, D. A., Kim, A. G., Lee, B. C., Lidman, C., Mendez, J., Nobili, S., Nugent, P. E., Pain, R., Panagia, N., Pennypacker, C. R., Perlmutter, S., Quimby, R., Raux, J., Regnault, N., Ruiz-Lapuente, P., Sainton, G., Schaefer, B., Schahmaneche, K., Smith, E., Spadafora, A. L., Stanishev, V., Sullivan, M., Walton, N. A., Wang, L., Wood-Vasey, W. M., and Yasuda, N. (2003). New Constraints on Ω_M, Ω_Λ, and w from an Independent Set of 11 High-Redshift Supernovae Observed with the Hubble Space Telescope. ApJ, 598:102–137.
- Koester, B. P., McKay, T. A., Annis, J., Wechsler, R. H., Evrard, A. E., Rozo, E., Bleem, L., Sheldon, E. S., and Johnston, D. (2007). MaxBCG: A Red-Sequence Galaxy Cluster Finder. ApJ, 660:221–238.
- Komatsu, E., Dunkley, J., Nolta, M. R., Bennett, C. L., Gold, B., Hinshaw, G., Jarosik, N., Larson, D., Limon, M., Page, L., Spergel, D. N., Halpern, M., Hill, R. S., Kogut, A., Meyer, S. S., Tucker, G. S., Weiland, J. L., Wollack, E., and Wright, E. L. (2009). Five-Year Wilkinson Microwave Anisotropy Probe Observations: Cosmological Interpretation. ApJS, 180:330–376.
- Kravtsov, A. V. and Yepes, G. (2000). On the supernova heating of the intergalactic medium. MNRAS, 318:227–238.
- Lamer, G., Schwope, A., Böhringer, H., Faßbender, R., Schuecker, P., Mullis, C., and Rosati, P. (2006). The XMM-Newton Distant Cluster Project. In A. Wilson, editor, *The X-ray Universe 2005*, volume 604 of *ESA Special Publication*, pages 729–+.
- Lewis, G. F., Babul, A., Katz, N., Quinn, T., Hernquist, L., and Weinberg, D. H. (2000). The Effects of Gasdynamics, Cooling, Star Formation, and Numerical Resolution in Simulations of Cluster Formation. ApJ, 536:623–644.
- Liddle, A. R., Viana, P. T. P., Romer, A. K., and Mann, R. G. (2001). Apparent and actual galaxy cluster temperatures. MNRAS, 325:875–880.
- Linder, E. V. and Jenkins, A. (2003). Cosmic structure growth and dark energy. *MNRAS*, 346:573–583.
- Markevitch, M. (1998). The L X-T Relation and Temperature Function for Nearby Clusters Revisited. ApJ, 504:27–+.
- Maughan, B. J., Jones, C., Forman, W., and Van Speybroeck, L. (2008). Images, Structural Properties, and Metal Abundances of Galaxy Clusters Observed with Chandra ACIS-I at 0.1 < z < 1.3. ApJS, 174:117–135.</p>

- Mazzotta, P., Rasia, E., Moscardini, L., and Tormen, G. (2004). Comparing the temperatures of galaxy clusters from hydrodynamical N-body simulations to Chandra and XMM-Newton observations. *MNRAS*, 354:10–24.
- Miller, C. J., Nichol, R. C., Reichart, D., Wechsler, R. H., Evrard, A. E., Annis, J., McKay, T. A., Bahcall, N. A., Bernardi, M., Boehringer, H., Connolly, A. J., Goto, T., Kniazev, A., Lamb, D., Postman, M., Schneider, D. P., Sheth, R. K., and Voges, W. (2005). The C4 Clustering Algorithm: Clusters of Galaxies in the Sloan Digital Sky Survey. AJ, 130:968–1001.
- Mohr, J. J., Evrard, A. E., Fabricant, D. G., and Geller, M. J. (1995). Cosmological Constraints from Observed Cluster X-Ray Morphologies. *ApJ*, 447:8–+.
- Muanwong, O., Kay, S. T., and Thomas, P. A. (2006). Evolution of X-Ray Cluster Scaling Relations in Simulations with Radiative Cooling and Nongravitational Heating. ApJ, 649:640–648.
- Muanwong, O., Thomas, P. A., Kay, S. T., and Pearce, F. R. (2002). The effect of cooling and preheating on the X-ray properties of clusters of galaxies. *MNRAS*, 336:527–540.
- Mullis, C. R., Rosati, P., Lamer, G., Böhringer, H., Schwope, A., Schuecker, P., and Fassbender, R. (2005). Discovery of an X-Ray-luminous Galaxy Cluster at z=1.4. *ApJ*, 623:L85–L88.
- Navarro, J. F., Frenk, C. S., and White, S. D. M. (1995). Simulations of X-ray clusters. MNRAS, 275:720–740.
- Navarro, J. F. and White, S. D. M. (1994). Simulations of dissipative galaxy formation in hierarchically clustering universes-2. Dynamics of the baryonic component in galactic haloes. MNRAS, 267:401–412.
- Onuora, L. I., Kay, S. T., and Thomas, P. A. (2003). Simulated X-ray cluster temperature maps. MNRAS, 341:1246–1252.
- Ota, N. and Mitsuda, K. (2004). A uniform X-ray analysis of 79 distant galaxy clusters with ROSAT and ASCA. A&A, 428:757–779.
- Pacaud, F., Pierre, M., Adami, C., Altieri, B., Andreon, S., Chiappetti, L., Detal, A., Duc, P.-A., Galaz, G., Gueguen, A., Le Fèvre, J.-P., Hertling, G., Libbrecht, C., Melin, J.-B., Ponman, T. J., Quintana, H., Refregier, A., Sprimont, P.-G., Surdej, J., Valtchanov, I., Willis, J. P., Alloin, D., Birkinshaw, M., Bremer, M. N., Garcet, O., Jean, C., Jones, L. R., Le Fèvre, O., Maccagni, D., Mazure, A., Proust, D., Röttgering, H. J. A., and Trinchieri, G. (2007). The XMM-LSS survey: the Class 1 cluster sample over the initial 5deg² and its cosmological modelling. MNRAS, 382:1289–1308.
- Pearce, F. R., Thomas, P. A., Couchman, H. M. P., and Edge, A. C. (2000). The effect of radiative cooling on the X-ray properties of galaxy clusters. *MNRAS*, 317:1029–1040.

- Percival, W. J., Cole, S., Eisenstein, D. J., Nichol, R. C., Peacock, J. A., Pope, A. C., and Szalay, A. S. (2007). Measuring the Baryon Acoustic Oscillation scale using the Sloan Digital Sky Survey and 2dF Galaxy Redshift Survey. *MNRAS*, 381:1053–1066.
- Perlmutter, S. and Schmidt, B. P. (2003). Measuring Cosmology with Supernovae. In K. Weiler, editor, Supernovae and Gamma-Ray Bursters, volume 598 of Lecture Notes in Physics, Berlin Springer Verlag, pages 195–217.
- Pierre, M., Chiappetti, L., Pacaud, F., Gueguen, A., Libbrecht, C., Altieri, B., Aussel, H., Gandhi, P., Garcet, O., Gosset, E., Paioro, L., Ponman, T. J., Read, A. M., Refregier, A., Starck, J.-L., Surdej, J., Valtchanov, I., Adami, C., Alloin, D., Alshino, A., Andreon, S., Birkinshaw, M., Bremer, M., Detal, A., Duc, P.-A., Galaz, G., Jones, L., Le Fèvre, J.-P., Le Fèvre, O., Maccagni, D., Mazure, A., Quintana, H., Röttgering, H. J. A., Sprimont, P.-G., Tasse, C., Trinchieri, G., and Willis, J. P. (2007). The XMM-Large Scale Structure catalogue: X-ray sources and associated optical data. Version I. MNRAS, 382:279–290.
- Ponman, T. J., Cannon, D. B., and Navarro, J. F. (1999). The thermal imprint of galaxy formation on X-ray clusters. Nat, 397:135–137.
- Pratt, G. W., Böhringer, H., Croston, J. H., Arnaud, M., Borgani, S., Finoguenov, A., and Temple, R. F. (2007). Temperature profiles of a representative sample of nearby X-ray galaxy clusters. A&A, 461:71–80.
- Pratt, G. W., Croston, J. H., Arnaud, M., and Boehringer, H. (2008). Galaxy cluster Xray luminosity scaling relations from a representative local sample (REXCESS). ArXiv e-prints.
- Press, W. H. and Schechter, P. (1974). Formation of Galaxies and Clusters of Galaxies by Self-Similar Gravitational Condensation. ApJ, 187:425–438.
- Puchwein, E., Sijacki, D., and Springel, V. (2008). Simulations of AGN feedback in galaxy clusters and groups: impact on gas fractions and the Lx-T scaling relation. ArXiv e-prints.
- Reiprich, T. H. and Böhringer, H. (2002). The Mass Function of an X-Ray Flux-limited Sample of Galaxy Clusters. ApJ, 567:716–740.
- Romer, A. K., Nichol, R. C., Holden, B. P., Ulmer, M. P., Pildis, R. A., Merrelli, A. J., Adami, C., Burke, D. J., Collins, C. A., Metevier, A. J., Kron, R. G., and Commons, K. (2000). The Bright SHARC Survey: The Cluster Catalog. *ApJS*, 126:209–269.
- Romer, A. K., Viana, P. T. P., Liddle, A. R., and Mann, R. G. (2001). A Serendipitous Galaxy Cluster Survey with XMM: Expected Catalog Properties and Scientific Applications. ApJ, 547:594–608.
- Rosati, P. (1998). Results from the ROSAT Deep Cluster Survey. Astronomische Nachrichten, 319:79-+.

- Rosati, P., Borgani, S., and Norman, C. (2002). The Evolution of X-ray Clusters of Galaxies. ARA&A, 40:539–577.
- Rozo, E., Wechsler, R. H., Rykoff, E. S., Annis, J. T., Becker, M. R., Evrard, A. E., Frieman, J. A., Hansen, S. M., Hao, J., Johnston, D. E., Koester, B. P., McKay, T. A., Sheldon, E. S., and Weinberg, D. H. (2009). Cosmological Constraints from the SDSS maxBCG Cluster Catalog. ArXiv e-prints.
- Sahlén, M., Viana, P. T. P., Liddle, A. R., Romer, A. K., Davidson, M., Hosmer, M., Lloyd-Davies, E., Sabirli, K., Collins, C. A., Freeman, P. E., Hilton, M., Hoyle, B., Kay, S. T., Mann, R. G., Mehrtens, N., Miller, C. J., Nichol, R. C., Stanford, S. A., and West, M. J. (2009). The XMM Cluster Survey: forecasting cosmological and cluster scaling-relation parameter constraints. *MNRAS*, 397:577–607.
- Sanderson, A. J. R. and Ponman, T. J. (2003). The Birmingham-CfA cluster scaling project - II. Mass composition and distribution. MNRAS, 345:1241–1254.
- Sanderson, A. J. R., Ponman, T. J., Finoguenov, A., Lloyd-Davies, E. J., and Markevitch, M. (2003). The Birmingham-CfA cluster scaling project I. Gas fraction and the $M-T_X$ relation. MNRAS, 340:989–1010.
- Santos, J. S., Rosati, P., Tozzi, P., Böhringer, H., Ettori, S., and Bignamini, A. (2008). Searching for cool core clusters at high redshift. A&A, 483:35–47.
- Sarazin, C. L. and Bahcall, J. N. (1977). X-ray line emission for clusters of galaxies. II -Numerical models. ApJS, 34:451–467.
- Schlegel, D. J., Finkbeiner, D. P., and Davis, M. (1998). Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds. ApJ, 500:525–+.
- Schneider, D. P., Hall, P. B., Richards, G. T., Strauss, M. A., Vanden Berk, D. E., Anderson, S. F., Brandt, W. N., Fan, X., Jester, S., Gray, J., Gunn, J. E., SubbaRao, M. U., Thakar, A. R., Stoughton, C., Szalay, A. S., Yanny, B., York, D. G., Bahcall, N. A., Barentine, J., Blanton, M. R., Brewington, H., Brinkmann, J., Brunner, R. J., Castander, F. J., Csabai, I., Frieman, J. A., Fukugita, M., Harvanek, M., Hogg, D. W., Ivezić, Ž., Kent, S. M., Kleinman, S. J., Knapp, G. R., Kron, R. G., Krzesiński, J., Long, D. C., Lupton, R. H., Nitta, A., Pier, J. R., Saxe, D. H., Shen, Y., Snedden, S. A., Weinberg, D. H., and Wu, J. (2007). The Sloan Digital Sky Survey Quasar Catalog. IV. Fifth Data Release. AJ, 134:102–117.
- Schuecker, P., Böhringer, H., Collins, C. A., and Guzzo, L. (2003). The REFLEX galaxy cluster survey. VII. $\Omega_m and\sigma_8$ from cluster abundance and large-scale clustering. $A \mathscr{C}A$, 398:867–877.
- Short, C. J. and Thomas, P. A. (2009). Combining Semianalytic Models with Simulations of Galaxy Clusters: The Need for Heating from Active Galactic Nuclei. ApJ, 704:915– 929.

- Smith, J. A., Tucker, D. L., Kent, S., Richmond, M. W., Fukugita, M., Ichikawa, T., Ichikawa, S.-i., Jorgensen, A. M., Uomoto, A., Gunn, J. E., Hamabe, M., Watanabe, M., Tolea, A., Henden, A., Annis, J., Pier, J. R., McKay, T. A., Brinkmann, J., Chen, B., Holtzman, J., Shimasaku, K., and York, D. G. (2002). The u'g'r'i'z' Standard-Star System. AJ, 123:2121–2144.
- Smith, S. (1936). The Mass of the Virgo Cluster. ApJ, 83:23-+.
- Springel, V. (2005). The cosmological simulation code GADGET-2. MNRAS, 364:1105– 1134.
- Stanford, S. A., Romer, A. K., Sabirli, K., Davidson, M., Hilton, M., Viana, P. T. P., Collins, C. A., Kay, S. T., Liddle, A. R., Mann, R. G., Miller, C. J., Nichol, R. C., West, M. J., Conselice, C. J., Spinrad, H., Stern, D., and Bundy, K. (2006). The XMM Cluster Survey: A Massive Galaxy Cluster at z = 1.45. ApJ, 646:L13–L16.
- Suginohara, T. and Ostriker, J. P. (1998). The Effect of Cooling on the Density Profile of Hot Gas in Clusters of Galaxies: Is Additional Physics Needed? ApJ, 507:16–23.
- Thomas, P. A. and Couchman, H. M. P. (1992). Simulating the formation of a cluster of galaxies. *MNRAS*, 257:11–31.
- Valdes, F. G. (1998). The IRAF Mosaic Data Reduction Package. In R. Albrecht, R. N. Hook, & H. A. Bushouse, editor, Astronomical Data Analysis Software and Systems VII, volume 145 of Astronomical Society of the Pacific Conference Series, pages 53-+.
- Véron-Cetty, M.-P. and Véron, P. (2006). A catalogue of quasars and active nuclei: 12th edition. A&A, 455:773–777.
- Viana, P. T. P. and Liddle, A. R. (1996). The cluster abundance in flat and open cosmologies. MNRAS, 281:323-+.
- Vikhlinin, A., Forman, W., and Jones, C. (1999). Outer Regions of the Cluster Gaseous Atmospheres. ApJ, 525:47–57.
- Vikhlinin, A., Kravtsov, A., Forman, W., Jones, C., Markevitch, M., Murray, S. S., and Van Speybroeck, L. (2006). Chandra Sample of Nearby Relaxed Galaxy Clusters: Mass, Gas Fraction, and Mass-Temperature Relation. ApJ, 640:691–709.
- Vikhlinin, A., Kravtsov, A. V., Burenin, R. A., Ebeling, H., Forman, W. R., Hornstrup, A., Jones, C., Murray, S. S., Nagai, D., Quintana, H., and Voevodkin, A. (2009). Chandra Cluster Cosmology Project III: Cosmological Parameter Constraints. *ApJ*, 692:1060–1074.
- Vikhlinin, A., Markevitch, M., Murray, S. S., Jones, C., Forman, W., and Van Speybroeck, L. (2005). Chandra Temperature Profiles for a Sample of Nearby Relaxed Galaxy Clusters. ApJ, 628:655–672.

- Vikhlinin, A., McNamara, B. R., Forman, W., Jones, C., Quintana, H., and Hornstrup, A. (1998). Evolution of Cluster X-Ray Luminosities and Radii: Results from the 160 Square Degree ROSAT Survey. ApJ, 498:L21+.
- Watson, M. G., Schröder, A. C., Fyfe, D., Page, C. G., Lamer, G., Mateos, S., Pye, J., Sakano, M., Rosen, S., Ballet, J., Barcons, X., Barret, D., Boller, T., Brunner, H., Brusa, M., Caccianiga, A., Carrera, F. J., Ceballos, M., Della Ceca, R., Denby, M., Denkinson, G., Dupuy, S., Farrell, S., Fraschetti, F., Freyberg, M. J., Guillout, P., Hambaryan, V., Maccacaro, T., Mathiesen, B., McMahon, R., Michel, L., Motch, C., Osborne, J. P., Page, M., Pakull, M. W., Pietsch, W., Saxton, R., Schwope, A., Severgnini, P., Simpson, M., Sironi, G., Stewart, G., Stewart, I. M., Stobbart, A.-M., Tedds, J., Warwick, R., Webb, N., West, R., Worrall, D., and Yuan, W. (2009). The XMM-Newton serendipitous survey. V. The Second XMM-Newton serendipitous source catalogue. A&A, 493:339–373.
- White, S. D. M. and Rees, M. J. (1978). Core condensation in heavy halos A two-stage theory for galaxy formation and clustering. *MNRAS*, 183:341–358.
- Wu, K. K. S., Fabian, A. C., and Nulsen, P. E. J. (2000). Non-gravitational heating in the hierarchical formation of X-ray clusters. *MNRAS*, 318:889–912.
- Young, M., Elvis, M., and Risaliti, G. (2009). The Fifth Data Release Sloan Digital Sky Survey/XMM-Newton Quasar Survey. ApJS, 183:17–32.
- Zwicky, F. (1933). Die Rotverschiebung von extragalaktischen Nebeln. Helvetica Physica Acta, 6:110–127.
- Zwicky, F. (1937). On the Masses of Nebulae and of Clusters of Nebulae. ApJ, 86:217-+.

Appendix A

Lumdist: The IDL routine used to calculate d_L

This is the code source for Lumdist. Written by W. Landsman , this code is used, unchanged, to calculate cosmological distances for use in the Selection function.

;+ ; NAME: ; LUMDIST : ; PURPOSE: ; Calculate luminosity distance (in Mpc) of an object given its redshift ; EXPLANATION: ; The luminosity distance in the Friedmann-Robertson-Walker model is ; taken from Caroll, Press, and Turner (1992, ARAA, 30, 499), p. 511 ; Uses a closed form (Mattig equation) to compute the distance when the ; cosmological constant is zero. Otherwise integrates the function using ; QSIMP. ; CALLING SEQUENCE: ; result = lumdist(z, [$H0 =, k =, Omega_M =, Lambda0 =, q0 =, /SILENT$]) ; INPUTS: ; z = redshift, positive scalar or vector ; OPTIONAL KEYWORD INPUTS: ; /SILENT - If set, the program will not display adopted cosmological ; parameters at the terminal. ; H0: Hubble parameter in km/s/Mpc, default is 70 ;

; No more than two of the following four parameters should be ; specified. None of them need be specified – the adopted defaults ; are given. ; k - curvature constant, normalized to the closure density. Default is ; 0, indicating a flat universe ; $Omega_m$ - Matter density, normalized to the closure density, default ; is 0.3. Must be non-negative ; Lambda0 - Cosmological constant, normalized to the closure density, ; default is 0.7; q0 - Deceleration parameter, numeric scalar = $-R * (R'')/(R')^2$, default ; is -0.5 ; OUTPUTS: ; The result of the function is the luminosity distance (in Mpc) for each ; input value of z. : EXAMPLE: ; (1) Plot the distance of a galaxy in Mpc as a function of redshift out ; to z = 5.0, assuming the default cosmology ($Omega_m = 0.3$, Lambda = 0.7, ; H0 = 70 km/s/Mpc) ; IDL; z = findgen(50)/10. ; IDL; plot,z,lumdist(z),xtit='z',ytit='Distance (Mpc)' ; ; Now overplot the relation for zero cosmological constant and ; $Omega_m = 0.3$; IDL; oplot,z,lumdist(z,lambda=0,omega=0.3),linestyle=1 ; COMMENTS: ; (1) Integrates using the IDL Astronomy Version procedure QSIMP. (The ; intrinsic IDL QSIMP function is not called because of its ridiculous ; restriction that only scalar arguments can be passed to the integrating ; function.) ; (2) Can fail to converge at high redshift for closed universes with ; non-zero lambda. This can presumably be fixed by replacing QSIMP with ; an integrator that can handle a singularity ; PROCEDURES CALLED: ; COSMO_PARAM, QSIMP ; REVISION HISTORY: ; Written W. Landsman Raytheon ITSS April 2000 ; Avoid integer overflow for more than 32767 redshifts July 2001 ;function ldist, z, q0 = q0, lambda0 = lambda0 $\text{term1} = (1. + z)^2$ term2 = 1.+2.*(q0+lambda0)*z

term $3 = z^{*}(2.+z)^{*}$ lambda0 denom = (term 1^{*} term2 - term3) out = $z^{*}0$. good = where(denom GT 0.0, Ngood) if Ngood GT 0 then out[good] = 1./sqrt(denom[good]) return, out end

FUNCTION lumdist, z, h0=h0, k = k, Lambda
0 = lambda0, $Omega_m = Omega_m, \$$ q0 = q0, Silent = silent

```
if N_params() eq 0 then begin
print,'Syntax: result = lumdist(z, H0 = ,k=, Lambda0 = ])'
print,'Returns luminosity distance in Mpc'
return, 0.
endif
```

 $n = N_elements(z)$ $cosmo_param, Omega_m, Lambda0, k, q0$

; Check keywords

endif else begin dlum = $z^*0.0$

c = 2.9979e5 ;; speed of light in km/s if N_elements(H0) EQ 0 then H0 = 70 if not keyword_set(silent) then \$ print,' $LUMDIST : H0 :', h0,' Omega_m :', omega_m,' Lambda0', lambda0, $$ 'q0: ',q0, 'k: ', k, f='(A,I3,A,f5.2,A,f5.2,A,f5.2,A,F5.2)'

```
; For the case of Lambda = 0, we use the closed form from equation 5.238 of
; Astrophysical Formulae (Lang 1998). This avoids terms that almost cancel
; at small q0*z better than the more familiar Mattig formula.
;
if lambda0 EQ 0 then begin
denom = sqrt(1+2*q0*z) + 1 + q0*z
dlum = (c*z/h0)*(1 + z*(1-q0)/denom)
return,dlum
; For non-zero lambda
```
for i=0L,N-1 do begin if z[i] LE 0.0 then dlum[i] = 0.0 else begin qsimp,'LDIST',0,z[i], lz,q0 = q0, Lambda0 = lambda0 dlum[i] = lz endelse endfor

```
if k GT 0 then $
dlum = \sinh(\operatorname{sqrt}(k)^* \operatorname{dlum})/\operatorname{sqrt}(k) $
else if k LT 0 then $
dlum = \sin(\operatorname{sqrt}(-k)^* \operatorname{dlum})/\operatorname{sqrt}(-k) \gtrsim 0
return, c^*(1+z)^* \operatorname{dlum}/h0
endelse
```

end

Appendix B

XAPA flow charts

Figure B.1: Detection Flow chart. Image credit: Davidson (2005)

158

Figure B.2: Reconstruction Flow chart. Image credit: Davidson (2005)

159

Figure B.3: Find Source Properties Flow chart. Image credit: Davidson (2005)

Figure B.4: Source List Cleaning Flow chart. Image credit: Davidson (2005)

Appendix C

The NXS

The following text has been edited from that provided by N. Merhtens, who undertook the data reduction and redshift fitting described in this Appendix.

Thirty-eight nights of wide-field mosaic CCD imaging were awarded at the NOAO 4m telescopes at KPNO, Arizona; and CTIO, Chile between November 2005 and April 2008 in 6 observing campaigns. An additional 10 nights were subsequently awarded and carried out in April 2009. Each mosaic field is 36' by 36' wide and thus encompasses an entire XCS ObsID usually containing multiple cluster candidates. This method therefore enables a relatively cheap and efficient method of cluster detection. During each observing campaign, Sloan r'- and z'- band imaging were taken in a sequence of exposures totaling 1200s and 1500s respectively. Using these exposure times the NXS survey reached a typical r'-band depth of 25.00 and z'-band depth of 23.79, allowing the detection of galaxy clusters out to a redshift of z=1.

Upon completion of the NXS survey, 174 XCS fields had been observed with full exposure times (160 from XCS DR1, 14 from XCS DR2), containing 473 cluster candidates (435 from XCS DR1, 38 from XCS DR2). Unfortunately $\sim 50\%$ of the awarded 48 nights were lost to bad weather and instrumentation failure.

Data reduction was largely carried out following version 7.02 of Buell Jannuzi's reduction notes ¹ using the IRAF MSCRED Valdes (1998) package which treats a mosaic field as a single CCD. Photometric calibration was conducted using a combination of SDSS photometric standard stars Smith et al. (2002), fields with SDSS coverage, and NXS fields used as standard frames achieving a zeropoint accuracy of ~2%. Galaxy catalogs were extracted from each NXS image using Source Extractor Bertin and Arnouts (1996) and magnitudes corrected for atmospheric extinction and galactic extinction using the Schlegel et al dust maps Schlegel et al. (1998).

¹http://www.noao.edu/noao/noaodeep/ReductionOpt/frames.html

The NXS survey uses a redshift algorithm which seeks out overdensities of galaxies with similar colours above that of the background field distribution (similar to the MAXBCG cluster finder Koester et al. (2007)). The NXS redshift algorithm derives photometric redshifts for the cluster candidates within each NXS image by comparing an observed cluster red sequence to an empirical red sequence model. The theoretical model is created from a fiducial low red-sequence colour magnitude relation at z=0.1 that has been evolved with redshift using a galaxy population synthesis code. Potential cluster galaxies are extracted from within twice the X-ray extent of each cluster candidate and a background field is derived from the remainder of the NXS image. An unbinned likelihood function is then used to identify overdensities in colour space of these potential cluster galaxies above that of the background field distribution. The colour of the overdensity peak corresponds to a redshift estimate for the cluster. The algorithm assumes a simple Gaussian distribution in colour as its cluster model (similar to MAXBCG) and a histogram in colour of the field galaxies within each NXS image as its background model. This model is then maximized to produce simultaneous redshift and richness estimates. Finally, a Kolmogorov-Smirnov test (KS-test) is used to assess the significance of the cluster detection and a high-z flag assigned by counting the number galaxies solely detected in the z'-band.

Appendix D

XCS DR3 StatSam Tables

XCS Name	Obsid	RA	Dec	Counts	Flux	Literature Name	Match Distance	Literature Redshift	Sig
XMMXCS 1033911 9 - 352621 8	0012830101	54 799616	-35 / 39397	2063 4316	1 53/11//e=13	CXOL 1033912 0-352609	12 8853	I .	123.05
XMMXCS J033911.9 = 332021.8 $XMMXCS J105341.9 \pm 573521.9$	0022740301	163 42487	57 589439	571 04563	4.7314597e - 14	BX J1053 7+5735	17 8693	1 140000	222.00
$XMMXCS J012435.2 \pm 040051.7$	0025541601	21.147054	4.0143851	90.921156	3.4976529e - 14	$XDCS mf_J012435.6\pm040107$	4.01732	0.422000	43.07
XMMXCS J230251.8 + 084135.3	0032140201	345.71622	8.6931421	88.770209	2.6913258e - 14	CXOMP J230252.0+084137	2.34371	0.041500	74.68
XMMXCS J230227.1 + 083906.4	0032140201	345.61297	8.6517960	49.229621	7.7738997e - 15	CXOMP J230227.7+083859	10.0271	0.425600	14.63
XMMXCS J022457.8 - 034851.1	0037980301	36.241172	-3.8142060	585.82884	8.1788013e - 14	XLSSC 001	11.8229	0.612800	466.41
XMMXCS J022643.7 - 034107.7	0037980401	36.682290	-3.6854855	186.41260	4.1341701e - 14	XLSSC 009	15.3508	0.327000	28.75
XMMXCS J022400.2 - 032517.8	0037980801	36.001190	-3.4216135	50.508664	1.9648002e - 14	XLSSC 032	8.79816	0.810000	34.16
XMMXCS J022721.8 - 032151.0	0037981001	36.841036	-3.3641888	495.92062	8.5185648e-14	XLSSC 010	12.1339	0.329000	255.96
XMMXCS J022738.4 - 031801.1	0037981501	36.910238	-3.3003186	212.31872	5.2785782e-14	XLSSC 003	5.64544	0.837800	99.76
XMMXCS J022145.4 = 0.04018.0 $XMMXCS J030317.3 \pm 0.01235.6$	0037982301	45 822455	0 20001020	152 04488	3.4308902e - 13 1 1630191e - 14	BLOX 10303 3±0012 8	17.0677	0.429000	51.17
XMMXCS J030211.2 - 000132.6	0041170101	45.546819	-0.025739038	213.52219	1.0640209e - 14	BLOX J0302.2-0001.5	11.4765	_	136.34
XMMXCS J030205.5 - 000001.8	0041170101	45.523223	-0.00051526286	393.51373	2.3111142e - 14	BLOX J0302.0-0000.0	3.17265	-	235.23
XMMXCS J163340.9 + 571422.0	0049540301	248.42046	57.239450	136.18277	1.1602591e - 14	RIXOS F223 572	12.7068	0.239000	32.60
XMMXCS J033831.2 - 352653.2	0055140101	54.630354	-35.448113	42221.219	3.6646123e - 12	NGC 1399 GROUP	23.3727	0.004600	-
XMMXCS J031833.0 - 030258.7	0056022201	49.637507	-3.0496424	5514.9682	3.7252625e - 13	400d J0318-0302	12.7990	0.370000	-
XMMXCS J133129.5 + 110755.9	0061940101	202.87332	11.132208	141.93434	6.7383514e - 14	RX J1331.5+1108	1.45478	.081	95.07
XMMXCS J052215.3 - 362514.2	0065760201	80.563976	-36.420612	1703.4121	1.3847965e-13	400d J0522-3624	17.2415	0.472000	-
XMMXCS J023759.7 - 522403.9	0067190101	39.498768	-52.401092	2338.2078	4.3529081e-13	ABELL 3038	18.1076	0.135000	-
XMMXCS J095341.4 + 014157.7 XMMXCS J125047.0 + 600702.8	0070940401	148.42280	1.0993759	0028.2509 785.61486	0.5754715e - 13 1 0867162c 12	SDS5-C4-DR3 1212 RDCS 11250 6007	4.89132	0.098000	- 144.56
$XMMXCS J133047.9 \pm 000702.8$ $XMMXCS J121334.8 \pm 025349.4$	0081340801	183 39536	2 8970609	2071 8156	1.0307102e - 13 1.5801000e - 13	BLOX 11213 5 \pm 0253 7	4 94957	0.409000	144.50
$XMMXCS J111834.4 \pm 074430.6$	0082340101	169.64362	7.7418598	206.91977	5.5889600e - 15	BLOX J1118.5+0744.5	5.95584	-	69.53
XMMXCS J111726.1 + 074327.5	0082340101	169.35893	7.7243106	1247.5803	8.5386703e-14	XDCS mf J111726.2+074316	7.51158	0.232000	547.21
XMMXCS J125313.8 + 155544.6	0082990101	193.30753	15.929061	1027.5642	1.2561390e - 13	NSCS J125309+155549	14.2621	0.275000	395.86
XMMXCS J135452.3 + 691727.2	0083960101	208.71793	69.290890	451.72417	3.7392553e - 14	RX J1354.8+6917	18.4760	0.207000	63.31
XMMXCS J084834.9 + 445339.7	0085150101	132.14568	44.894380	96.561593	4.0247268e - 15	Lynx W	9.38778	1.270000	23.05
XMMXCS J084848.2 $+$ 445606.1	0085150101	132.20084	44.935042	921.03782	4.4473035e - 14	RX J0848.7+4456	15.2344	0.574000	338.80
XMMXCS J052111.0 - 253106.2	0085640101	80.295973	-25.518411	174.12312	4.3218595e - 14	400d J0521-2530	22.7458	0.581000	73.09
XMMXCS J093709.6 + 611611.9	0085640201	144.29016	61.269984	464.32714	3.6124770e-14	MaxBCG J144.28663+61.27052	6.38664	0.229550	75.26
XMMXCS J141832.1 + 251112.8	0089960301	214.63394	25.186895	5467.8892	1.0868799e-11	WARP J1418.5+2511	26.8740	0.296000	
XMMXCS J113811.0 + 552120.0 XMMXCS J004231.6 + 005118.8	0090020101	10.632023	0.85523324	238 44844	1.32280028-14	MaxBCG 1010 63093±00 85021	18.5064	0.153950	61.43
$XMMXCS J004231.0 \pm 000118.8$ $XMMXCS J004333 8 \pm 010108 9$	0090070201	10.891174	1 0191638	573 97963	9.5037796e-14	SDSS CE 1010 888028 \pm 01 015296	18 2383	0.133930	204.08
XMMXCS J235117.1 + 201351.1	0093190301	357.82155	20.230863	168.29494	9.7921500e - 15	USGC U857	11.0332	0.014413	86.62
XMMXCS J101933.0 + 080353.4	0093640301	154.88759	8.0648583	1086.6229	1.4367639e - 13	MaxBCG J154.88074+08.06467	24.4322	0.178250	160.22
XMMXCS J014908.5 + 135740.4	0094383401	27.285609	13.961241	64.311101	9.1844736e - 14	SDSS-C4 2000	7.48944	0.069900	29.71
XMMXCS J023605.2 - 522508.0	0098810101	39.021978	-52.418893	708.28873	4.2614564e - 14	WARP J0236.0-5224	5.05512	-	505.00
XMMXCS J111729.8 + 174450.9	0099030101	169.37440	17.747478	470.38089	8.6510012e - 14	400d J1117+1744	8.44266	0.548000	195.46
XMMXCS J111654.6 + 180352.9	0099030101	169.22786	18.064714	172.37392	2.1542795e - 14	NGC 3607 GROUP	24.6281	0.002990	46.11
XMMXCS J222759.3 - 052859.9	0100440101	336.99751	-5.4833139	219.85798	2.5398469e-14	BLOX J2227.9-0528.9	6.62340	-	51.68
XMMXCS J222833.5 - 052827.8 XMMXCS J222818 8 050752 4	0100440101	337.13989	-5.4744131 5.1215176	310.41458	2.4811876e-14 1.0470227c 14	BLOA J2228.5-0528.3 BLOX J2228 2 0507 8	6.00480	-	32.60
XMMXCS J222818.8 = 0.00753.4 $XMMXCS J004615.6 \pm 853117.1$	0100440101	11 565363	85 521/25	1643 5328	7 22166826-14	C1 10046 3±8530	8.06370	0.615000	35.17
XMMXCS J003604.9 + 851324.8	0100640201	9.0204654	85.223563	728.92203	6.1558449e - 14	BDCS J0035+8513	13.0615	0.810000	199.25
XMMXCS J004753.0 + 852717.1	0100640201	11.971199	85.454773	717.66655	2.6583772e - 14	XMMU J004751.7+852722	5.08785	0.250000	217.36
XMMXCS J020019.3 + 001932.3	0101640201	30.080471	0.32564536	175.70533	4.2175398e - 14	SEXCLAS 03	3.61589	0.510000	64.14
XMMXCS J103059.9 + 305138.8	0102040301	157.74995	30.860793	895.45945	9.7710450e - 14	MaxBCG J157.75753+30.86197	23.7731	0.143150	257.98
XMMXCS J221556.7 - 175140.8	0106660101	333.98652	-17.861337	93.043787	3.8202192e - 15	BLOX J2215.9-1751.6	2.97920	-	25.65
XMMXCS J221559.5 - 173814.6	0106660101	333.99798	-17.637397	362.43867	1.4841887e - 14	BLOX J2215.9-1738.1	18.9971	1.450000	104.40
XMMXCS J221557.3 - 174034.7	0106660601	333.98878	-17.676305	219.26844	5.5262949e-15	BLOX J2215.9-1740.4	7.04118	-	57.57
XMMXCS J221621.1 - 173222.0	0100000001	334.08807	-17.539461	23.800007	1.5337418e-17	Mar BCC 1108 26268 25 22826	10.3481	0.700000	106.18
XMMXCS J151502.5 + 551940.5 XMMXCS J015415 1 - 593756 6	0109080201	28 563226	-59 632397	178 16024	7 7149755e-14	400d 10154-5937	0.08082	0.288950	76.64
XMMXCS J131339.5 - 325037.4	0109462301	198.41487	-32.843740	155.28376	1.3572797e - 13	400d J1313-3250	9.05490	0.052000	36.85
XMMXCS J022610.3 - 045804.9	0109520301	36.543201	-4.9680355	475.74949	4.4530185e - 14	XLSSC 011	10.0212	0.050000	179.70
XMMXCS J022303.1 - 043621.5	0109520601	35.763167	-4.6059941	89.539829	7.7526560e - 15	XLSSC 046	2.43570	1.220000	24.31
XMMXCS J133407.3 + 380633.0	0109660801	203.53063	38.109174	36.229759	2.5851510e - 15	[MJM98] 074	6.61722	0.382000	13.04
XMMXCS J133434.8 + 375700.2	0109661001	203.64540	37.950074	863.66345	1.6671176e - 14	NSC J133433+375708	4.07073	0.308000	347.60
XMMXCS J133457.3 + 375021.6	0109661001	203.73892	37.839343	696.32390	1.7645390e - 14	NSCS J133503+374945	9.30432	0.382000	139.21
XMMXCS J133531.0 + 374524.4	0109661001	203.87946	37.756778	159.01394	1.0497480e - 14	[MJM98] 077	15.4563	0.307000	22.26
XMMXCS J133514.4 + 374908.8	0109661001	203.81006	37.819134	349.44749	1.1532805e-14	[MJM98] 034	14.6573	0.595000	124.04
AMMACS J141731.9 + 251135.2 XMMXCS J005655.3 - 221407.4	0109960101	214.38323	25.193130	123.46935	3.4776528e - 14 3.2785699e - 12	MaxBCG J214.37758+25.19479 400d J0056-2213	19.3632	0.191750	26.40
XMMXCS J124454.0 = 003331.1	0110980201	191.22541	-0.55865638	1347.8584	4.1330734e - 14	SDSS CE J191.220871-00 560489	17.8469	0.231327	367.61
							1		1

XCS Name	Obsid	RA	Dec	Counts	Flux	Literature Name	Match Distance	Literature Redshift
XMMXCS 1124453 1 - 002628 1	0110980201	101 22129	-0.44114727	418 82505	1.0227501e-14	SDSS CE 1191 220749-00 444507	11.9678	0.210081
XMMXCS J124433.1 - 002028.1	0110980201	101.00016	-0.44114727	418.82393	1.02275010-14	5D55 CE 5151.220745-00.444507	11.5078	0.215581
AMMACS J124448.5 - 001951.8	0110980201	191.20216	-0.33108290	228.62142	8.4844150e-15	BLOA J1244.8-0019.8	4.75895	-
XMMXCS J125233.8 - 292507.3	0111020101	193.14095	-29.418708	211.42549	2.9394916e - 12	CXOU J1252.6-2925	29.2852	-
XMMXCS J125204.1 - 292038.8	0111020201	193.01716	-29.344113	888.24503	6.3667399e-13	400d J1252-2920	18.2231	0.188000
XMMXCS J022401.8 - 050528.7	0111110401	36.007904	-5.0913221	341.32988	2.1693370e-14	XLSSC 018	19.7491	0.322000
XMMXCS 1005624 5 - 281831 9	0111280801	14 102132	-28 308874	90 726757	4.0017245e - 14	XMM2DE 1005623 2-281818	22 2284	
XMMXCS J003024.3 - 281831.9	0111280801	14.102132	-28.308874	90.120101	4.00172438-14	[DDC0004] 1005 415 100 005	22.2204	0 100000
XMMACS J134139.1 + 001730.0	0111281001	205.41329	0.29351054	263.25338	6.6658567e-14	[BPG2004] J205.417+00.287	2.95708	0.400000
XMMXCS J005656.5 - 274031.7	0111282001	14.235806	-27.675485	343.04627	9.4965273e - 14	J1888.16CL	4.01256	0.560000
XMMXCS J134446.4 - 003020.4	0111282501	206.19364	-0.50567028	40.895646	1.0037685e - 14	[GPB2005] 5	1.81118	-
XMMXCS J142758.2 + 263019.5	0111290601	216.99275	26.505436	2843.6834	1.5351829e - 13	400d J1427+2630	3.53336	0.032400
XMMXCS J113804.0 + 031535.5	0111970701	174.51680	3.2598773	265.69856	5.3311423e-14	BLOX J1138.0+0315.3	15.5559	_
VMMVCS 1112844 2 021526 2	0111070701	174 68450	2 2600651	976 97747	1 66416520 12	PLOY 11128 7 0215 6	5.02067	0.127000
XMMXCO 100047.2 + 001050.2	0110170701	114.00400	0.5014540	010.01141	1.004100000-10	NADD 10000 0 10040	0.40550	0.121000
AMMAC5 J250247.7 + 084555.5	0112170301	343.09898	8.7314743	333.88831	7.4504548e-14	WARF J2302.8+0843	9.40378	0.722000
XMMXCS J123144.3 + 413731.1	0112280201	187.93491	41.625314	564.23047	1.6301376e - 13	400d J1231+4137	6.03816	0.176000
XMMXCS J021832.4 - 050052.7	0112370101	34.635072	-5.0146475	266.73413	1.2885818e - 14	[VCB2006] 06	12.0406	0.870000
XMMXCS J021734.7 - 051326.7	0112370701	34.394646	-5.2241013	460,68948	2.2673008e - 14	[VCB2006] 01A	13.8629	0.650000
$XMMXCS$ 1110024 6 \pm 285844 3	0112550101	165 10260	28 978983	356 75777	6.2329394e - 14	NGC 3486 [HK83] 067	4 63385	
XMMXCC 110024.0 + 200044.0	0112550201	100.10200	25.516565	268 10411	0.20200040 - 14	DV 11026 0 2554	91 7459	-
$X_{1}X_{1}X_{1}X_{1}X_{2}X_{3}X_{3}X_{4}X_{4}X_{4}X_{4}X_{4}X_{4}X_{4}X_{4$	0112000301	100.00510	23.910020	208.19411	1.0000000 10	NA J1230.2+2334	21.7402	0.001050
AMMACS J120801.2 + 433927.3	0112551201	182.00510	43.657594	310.49142	1.8338923e-13	MaxBCG J182.00318+43.65537	9.40128	0.264650
XMMXCS J013352.2 - 401538.2	0112630201	23.467686	-40.260617	104.88210	1.5605955e - 14	BLOX J0133.8-4015.8	16.5133	-
XMMXCS J022709.4 - 041806.5	0112680101	36.789380	-4.3018110	93.397975	7.3699402e-15	XLSSC 005	4.03197	1.050000
XMMXCS J022634.6 - 040408.7	0112680101	36.644569	-4.0691111	278.35496	3.5319475e-14	CEHTLS CL J022635-040411	12.2719	0.400000
XMMXCS = 1022509.6 = 0.40141.2	0112680301	36 200004	-4.0281516	160 15032	2.4629350e - 14	CEHTLS CL 1022508-040119	28 5029	0.400000
XMMXCC 1022706 4 042207 4	0112000301	36.860013	4.5251010	268 25650	2.40200000-14	CELEUS CL 1022705-040110	10.6570	0.307000
AMMAC5 J022720.4 - 043207.4	0112080401	30.800012	-4.5555957	208.33039	2.4870203e-14	CFH1L5 CL J022725-045252	10.0370	0.307000
XMMXCS J022827.3 - 042543.9	0112680401	37.114047	-4.4288680	504.32073	5.2154970e-14	SL J0228.4-0425	4.09916	0.433000
XMMXCS J022812.5 - 100537.9	0112860101	37.052222	-10.093885	250.12329	1.4819385e - 13	WARP J0228.1-1005	10.0366	0.149000
XMMXCS J113232.3 - 344349.4	0112880101	173.13465	-34.730409	864.97301	7.7516266e - 14	BLOX J1132.5-3443.7	3.75332	-
XMMXCS J233227.5 + 195822.1	0112880301	353.11483	19.972828	410.14654	6.8399812e-14	SEXCLAS 19	17.5225	0.270000
XMMXCS 1022756 7 002850 8	0117800001	54 496401	0 49229295	277 15011	2 05012570 14	SDSS CE 1054 487712 00 485220	0.02424	0.222006
XMMXCO 1105045 1 + 554049 0	0100501001	169 10700	57 670065	170.00010	1.0147100 14	DY 1105044 4 574045	14 4795	0.022030
XMMACS J105245.1 + 574043.9	0123701001	163.18798	57.078805	170.80640	1.814/183e-14	KA J105244.4+574045	14.4735	0.074000
XMMXCS J122019.2 + 752203.9	0124110101	185.08034	75.367754	17730.285	5.7373422e-13	400d J1220+7522	7.11234	0.005900
XMMXCS J104407.5 - 012725.4	0125300101	161.03161	-1.4570575	100.29361	4.5127898e - 15	BLOX J1044.1-0127.3	3.41713	-
XMMXCS J141652.4 + 522052.5	0127921001	214.21841	52.347941	736.31771	1.7943891e - 14	HST J141653+52210	13.3378	-
XMMXCS J005053.5 - 521312.5	0133120401	12.722953	-52.220141	66.078830	1.2405779e - 14	BLOX J0050.9-5213.0	8.75148	_
$XMMXCS$ 1033556 1 \pm 003214 3	0134540601	53 984146	0 53730963	750 47982	7.5103445e - 14	SDSS CE 1053 980568±00 534098	17 5416	0.401519
XMMXCC 1154022 2 + 212202 2	0136040101	00.004140	21 550610	405 22007	5.8102000- 14	[B2002-1 20	2 86651	0.401010
AMMAC5 J154952.2 + 215502.2	0136040101	237.38440	21.550619	483.33887	5.8195990e-14	[B2002a] 50	3.80031	0.800000
XMMXCS J140615.8 + 283047.8	0140960101	211.56598	28.513296	372.56062	7.6151026e-14	NSCS J140614+282911	7.36728	0.546000
XMMXCS J030617.7 - 000829.8	0142610101	46.573831	-0.14161382	2902.1468	1.8228705e - 13	SDSS-C4 2007	7.17096	0.109000
XMMXCS J125047.4 + 263352.9	0143150201	192.69754	26.564714	406.84955	4.8128124e - 14	FSVS CL J125048+263418	26.2634	0.300000
XMMXCS J135358.8 + 335003.1	0143650801	208.49539	33.834209	566.63541	8.6297395e - 14	NSCS J135400+335023	24.1509	0.230000
$XMMXCS$ 1161720 3 \pm 345413 2	0143651101	244 33480	34 903683	1204 4903	7 2463496e 13	SDSS-C4-DB3 3091	7 74408	0.031000
XMMXCC 1082724 2 552251 0	0143652001	120.25122	54.505000	200 20122	1.1010117- 19	Mar DCC 1100 25220 55 54785	1.14400	0.031000
AMMAC5 J085724.5 + 555251.0	0143033901	129.33132	55.547525	290.29123	1.1010117e-13	MaxBCG J129.35350+55.54785	4.19899	0.278150
XMMXCS J083454.9 + 553420.7	0143653901	128.72883	55.572419	5846.5767	2.1742733e-12	CIG J0834 + 5534	0.358096	.240
XMMXCS J160434.1 + 174345.6	0147210101	241.14235	17.729345	54707.449	5.1513773e - 12	NSC J160433+174311	28.1155	0.037000
XMMXCS J105255.8 + 573210.2	0147511001	163.23261	57.536182	135.51925	4.9922303e - 15	SEXCLAS 13	13.0915	0.580000
XMMXCS J105345.9 + 573514.8	0147511601	163.44167	57.587455	1691.7534	4.1452755e - 14	RX J105346.6+573517	5.27265	1.263000
$XMMXCS$ 1105318 7 \pm 572048 4	0147511701	163 32815	57 346798	2124 1601	3 6705680e- 12	SL 11053 4±5720	3 24154	0.340000
XMMXCS 1004622.6 140054.0	0147020201	146 62505	14 165006	05 270469	2 74045450 14	DY 10046 5 1410	5.24104	0.340000
XMMXCG 1141550 0 + 000510 0	0140050001	140.03090	-14.103000	50.070408	1.0500051 10	ILA JU540.0-1410	0.20100	0.230000
AMMACS J141558.3 + 230718.6	0148250201	213.99328	23.121839	298.59398	1.3783651e-13	[D5M2002] OC03 J1415+2307	25.2692	
XMMXCS J092018.6 + 370621.1	0149010201	140.07781	37.105880	29168.788	8.3372082e-13	MaxBCG J140.07821+37.10510	3.05261	0.248450
XMMXCS J232018.1 + 082220.0	0149240101	350.07580	8.3722487	46.231165	4.0095044e - 15	WBL 708	28.1941	0.013640
XMMXCS J223924.4 - 054718.3	0149410401	339.85182	-5.7884370	2429.1388	2.3481101e - 13	WARP J2239.4-0547	14,9064	0.242000
XMMXCS 1223939 4 = 054327 0	0149410401	339 01/22	-5 7241804	2630 2471	2 68794680-12	WARP 12239 6-0543	11 8635	0.243000
XMMXCC 1999094.0 060010.1	0140410401	220 20122	6.0050550	577 96207	7 4994969- 14	WADD 19990 5 0600	6 86010	0.173000
AWIWACS J223934.0 - 060018.1	0149410401	339.89180	-6.0050550	077.80307	1.4884803e-14	WARP J2239.5-0600	0.80010	0.173000
XMMXCS J023345.5 - 085027.2	0150470601	38.439667	-8.8408931	339.75083	7.7964599e-14	MaxBCG J038.43299-08.84562	29.1979	0.256550
XMMXCS J072052.9 + 710907.3	0150495601	110.22048	71.152055	934.59980	1.3763511e - 13	400d J0720+7108	10.9360	0.230900
XMMXCS J103554.5 - 033155.2	0150870401	158.97745	-3.5320133	299.32627	3.9887178e - 14	BLOX J1035.9-0331.9	6.43056	-
XMMXCS J103636.4 - 033302.3	0150870401	159.15196	-3.5506489	176.07320	1.6190640e - 14	BLOX J1036.6-0333 0	5.70782	-
XMMXCS 1104126 8 061526 9	0151200101	160 40264	6 2602440	57 161040	2 27246210 15	[W79] 19	26 5524	02271
ANIMACS J104130.8 + 001330.8	010100101	100.40304	0.2002440	37.101949	5.5724021e-15		20.0024	.02271
AMMACS J011922.9 - 011017.8	0153170101	19.845632	-1.1716231	139.25164	2.9880426e - 14	SDSS CE J019.844770-01.170951	4.74575	0.197288
XMMXCS J154610.8 + 484851.4	0153220401	236.54521	48.814289	115.64894	1.9962146e - 14	MaxBCG J236.54322+48.81638	8.89938	0.118850
XMMXCS J041704.8 + 011325.8	0161160101	64.270103	1.2238562	676.62549	8.0326381e - 14	ZwCl 0414.3+0103	21.6631	0.320000
XMMXCS J142907.8 + 424106.0	0165770201	217.28258	42.685006	1080.1519	7.6507108e - 14	C1.J1429.0+4241	16.1324	0.920000
XMMXCS J014430 2 + 021231 6	0200430701	26 125883	2 2087784	304 64204	7.0403822e - 14	WABP J0144 5+0212	12 6635	0.166000
	0200400101	20.120000	2.2001104	304.04204	1.04000220-14	WIIII 00141.0 0212	12.0000	0.100000
XMMXCS 1081010 6 1 705455 5	0200470101	194 99100	70.016041	1590 9599	1 1976664 - 19	DV 10910 9 5054	17 9465	0.226000

166

ACS Name	Obsid	RA	Dec	Counts	Flux	Literature Name	Match Distance	Literature Redshift
XMMXCS 1123558 5 ± 131239 7	0200650101	188 00/11	13 211037	266 27563	1.6564751e-14	MaxBCC 1188 99457±13 20756	12.6185	0.170150
XMMXCC 1102552 5 470842 1	0200000101	156.46000	47 145049	200.21000	2 5807201- 12	DV 11025 8 4700	0E 7E4E	0.110100
$\Lambda M M \Lambda C5 J102552.5 + 470842.1$	0201040101	130.40909	47.145042	203.40328	2.5807201e-15	RA J1025.8+4709	23.7343	
XMMXCS J111926.2 + 210640.2	0201940201	169.85918	21.111169	93.902975	1.0615335e - 13	OC04 J1119+2107	15.5548	0.176000
XMMXCS J111942.8 + 212646.6	0201940201	169.92859	21.446284	41.876330	3.3452781e - 14	RIXOS F123 005	12.2865	0.061000
XMMXCS J100051.4 + 683347.7	0201980101	150.21427	68.563264	179.23767	1.2941637e - 14	MaxBCG J150.21758+68.56865	19.8788	0.256550
XMMXCS J124202.6 + 332203.5	0202180201	190.51104	33.367657	312,41560	1.0617652e - 14	MaxBCG J190.51188+33.37343	20.9739	0.137750
XMMXCS 1134305 1 - 000056 6	0202460101	205 77140	-0.015727482	1360 4507	1.2828690e - 13	[BPC2004] 1134304 8-000056 3	5.00527	0.670000
XMMXCS J134303.1 - 000030.0	0202400101	203.77140	-0.013727482	1300.4307	1.28280908-13	[B1 G2004] 5134304.8-000030.3	10 1100	0.070000
XMMXCS J134800.2 + 075219.1	0202890201	207.00107	1.8/19855	83.630668	3.0471893e-14	RX J1347.9+0752	13.1180	0.464900
XMMXCS J093205.6 + 473311.8	0203050701	143.02344	47.553295	263.05462	7.9942055e - 14	MaxBCG J143.01990+47.55526	11.1732	0.234950
XMMXCS J121156.6 + 502917.6	0203170101	182.98614	50.488237	532.67445	4.0517493e - 14	PCG J1211+5029	10.1134	-
XMMXCS J124928.8 - 060010.7	0203270301	192.37002	-6.0029972	352.01359	1.4167810e - 14	BLOX J1249.4-0600.0	8.18196	-
XMMXCS J100201.6 + 021333.0	0203360301	150.50685	2.2258393	826.65981	4.9792870e - 14	[FGH2007] 032	7.06212	0.900000
XMMXCS J100141 6 \pm 022538 6	0203360701	150 42368	2 4273895	2437 5963	1.0428107e - 13	CEHTLS CL 1100142+022510	29.6402	0 132350
XMMXCS 1100210 0 015548 0	0202260001	150 57026	1 0200158	122 72484	2 52257000 14	[ECH2007] 025	27 6005	0.200000
XMMXCS J100219.0 + 013548.0	0203300901	150.37920	1.5500158	100.12404	3.33337996-14	[FGH2007] 023	27.0555	0.300000
$AMMACS J100042.7 \pm 014551.4$	0203361001	150.17813	1.7642919	201.17288	3.0608887e-14	[SAB2007] LSS 28	15.9011	0.300000
XMMXCS J100023.0 + 022358.5	0203361201	150.09620	2.3996096	53.659732	5.8206053e - 15	[FGH2007] 085	24.8693	0.220000
XMMXCS J100027.0 + 022133.3	0203361301	150.11286	2.3592614	100.96848	8.1507819e - 15	[FGH2007] 078	22.1492	0.220000
XMMXCS J095950.7 + 021246.4	0203361301	149.96146	2.2128906	79.402358	6.8192231e-15	[FGH2007] 101	12.9681	0.430000
XMMXCS J100013.8 + 022234.8	0203361301	150.05786	2.3763404	71,989098	6.6101088e - 15	[FGH2007] 087	13,1846	0.400000
$XMMXCS$ 1100021 5 \pm 0222232 2	0203361301	150 08989	2 3023001	113 20600	1.0053055e-14	[FGH2007] 085	10.5659	0.220000
XMMXCC 1005040 0 + 000112 :	0200301301	140.00000	2.3323031	1001 20039	4.7040200 11	[F G112007] 000	10.3035	0.220000
AMMACS J095940.8 + 023112.4	0203361701	149.92005	2.5201357	1001.3396	4.7040269e-14	SL J0959.6+0231	21.7661	0.730000
xmmxCS J095901.3 + 024740.3	0203362101	149.75558	2.7945407	257.69402	1.1145482e - 14	[FGH2007] 120	3.95850	0.490000
XMMXCS J095737.1 + 023424.8	0203362101	149.40496	2.5735600	3132.7229	2.7575386e - 13	[SAB2007] LSS 26	17.6540	0.390000
XMMXCS J095823.4 + 024853.1	0203362101	149.59776	2.8147560	1321.2800	4.6951374e - 14	[FGH2007] 132	23.4989	0.340000
XMMXCS J111730.6 \pm 074630.7	0203560401	169.37751	7.7752137	959.29157	2.6918491e - 14	BLOX J1117.5+0746.3	13.4914	0.160000
XMMXCS 1231806 0 - 423536 1	0204610101	349 52520	-42 593367	1666 6277	1.0257638e - 13	400d 12318-4235	15.09/1	0.209000
XMMXCS 1000141 2 154020 5	0204010101	0.49996994	15 675140	1605 1206	0.2699979- 12	DMW HDL 1000141 2 154042	11 4028	0.205000
XMMACS J000141.3 - 154030.5	0204790101	0.42236334	-15.675149	1605.1326	9.3688878e-13	BMW-HRI J000141.3-154042	11.4938	
XMMXCS J122025.4 + 290534.2	0205010101	185.10600	29.092840	136.78945	1.6933036e - 14	NSC J122026+290511	25.7424	0.144400
XMMXCS J041646.5 - 552501.8	0205090201	64.193769	-55.417180	710.01685	2.0447368e - 13	RX J0416.7-5525	16.0144	0.365000
XMMXCS J010743.3 - 465448.8	0205470301	16.930784	-46.913574	1334.2872	4.8909151e - 13	ABELL 2870	10.8422	0.023700
XMMXCS J130749.6 + 292549.3	0205910101	196.95674	29.430371	7303.2244	3.5136078e-13	$ZwCl 1305.4 \pm 2941$	7.37226	0.241000
XMMXCS 1095343 5 + 694734 0	0206080101	148 43166	69 792778	2323 6088	1.9913353e - 13	$400d$ 10953 ± 6947	7 20762	0.214000
$XMMXCS$ 1080712 8 \pm 152701 5	0206100101	121 80341	15 450433	1631 7052	1.4156211e - 13	MaxBCC 1121 81094±15 45007	26 1419	0.108050
XMMXCS 1122024 0 001659 5	0211080701	204 80100	0.98909079	258 49016	7.8705704- 14	[BMA 2002] BU 601	20.1415 E 85402	0.100000
AMMACS J155954.0 - 001058.5	0211080701	204.89190	-0.28292073	238.42010	7.8703704e-14	[BMA2003] BH 001	5.85405	
XMMXCS J083811.1 + 250549.1	0302260201	129.54636	25.096996	411.95900	3.8653804e-13	400d J0838+2506	16.1969	0.028600
XMMXCS J163015.6 + 243423.8	0302260701	247.56512	24.573281	1075.3695	4.2417043e - 13	MCG +04-39-010	25.2430	-
XMMXCS J100109.4 + 013331.8	0302351001	150.28931	1.5588524	340.29942	2.2405591e - 14	[FGH2007] 057	17.9482	0.360000
XMMXCS J100047.4 + 013927.7	0302351001	150.19753	1.6577194	2969.7894	1.9535959e - 13	NSC J100047+013912	5.74633	0.220000
XMMXCS J100009.0 + 023258.1	0302351101	150.03783	2.5494802	906.23013	5.1448383e-15	[FGH2007] 093	24.6371	1.250000
XMMXCS 1005046 0 025510 7	0202251601	140.04572	2.0101002	50 456645	2 12244620 14	[FCH2007] 104	16 9791	0.1200000
XMMXCS J095940.9 + 023319.7	0302331001	149.94073	2.5221445	097 00040	2.12344030-14	GDUTLG GL 1005045 000605	15.5000	0.130000
XMMXCS J095944.4 + 023615.1	0302351601	149.93511	2.6042077	237.89383	1.5510422e-14	CFHILS CL J095945+023627	15.7923	0.260000
x mmx CS J095959.3 + 021534.3	0302351701	149.99731	2.2595438	31.137077	9.5156012e-15	CFHTLS CL J095959+021512	22.6600	0.400000
XMMXCS J095952.1 + 014048.7	0302352001	149.96717	1.6802212	523.17202	6.4509576e - 14	[FGH2007] 099	8.32374	0.370000
XMMXCS J103513.2 + 575025.7	0303260201	158.80508	57.840477	268.37577	1.1370028e - 13	[B2002a] 17	8.23296	-
XMMXCS J141534.9 + 282334.7	0304071701	213.89544	28.392989	737.30533	1.0430970e - 13	NSCS J141531+282421	22.9462	0.220000
XMMXCS J141553 8 + 281717 9	0304071701	213 97438	28 288319	126 31866	4.2659430e - 14	MaxBCG 1213 97657+28 28441	15 6887	0 137750
XMMXCS 1144811 2 002500 7	02042000001	222 04602	0.41026020	72 480700	4.22722260 14	SDSS CE 1222 052848 00 414720	20.7670	0.151004
XMMXCC 1010650 1 200024.0	0304200901	444.04092	-0.41930930	12.400100	4.3373220e-14 2.5412000- 15	4001 10106 2200	29.7070	0.131904
AMINIACS J010059.1 + 320934.9	0305290101	10.740207	32.139708	896.90197	2.3412090e-15	4000 J0100+3209	5.12937	0.112000
XMMXCS J023759.8 - 522434.2	0305370101	39.499496	-52.409504	3679.4186	4.3223530e-13	400d J0237-5224	13.0568	0.136000
XMMXCS J150824.8 - 001533.7	0305750201	227.10350	-0.25936155	468.31521	2.1093884e - 13	SDSS-C4 1011	28.5312	0.090000
XMMXCS J171521.3 + 572451.9	0305750401	258.83911	57.414433	6542.5490	3.4952146e - 12	SDSS-C4-DR3 3152	17.4160	-
XMMXCS J134124.7 - 010207.4	0305750901	205.35299	-1.0353977	199.11060	5.6323767e - 14	MaxBCG J205.35590-01.04186	25.5047	0.288950
XMMXCS 1005603 0 - 373248 1	0305860301	14 012611	-37 546719	13727 734	1.1731820e - 12	400d J0056-3732	24 3069	0.162500
XMMXCC 1005544 9 270509 0	0205860201	12.024275	- 51.540715	1440 2842	2 1807500- 12	ADELL 00100	24.0005	0.102000
AMINIAUS J005544.2 - 372503.8	0305860301	13.934375	-31.411138	1440.3843	2.189/599e-13	ABELL SUIUZ	24.5585	0.055825
x mmx CS J010720.5 + 141615.9	0305920101	16.835579	14.271108	7000.2976	3.6185377e-13	SDSS-C4 2049	20.6765	0.074410
XMMXCS J033810.8 - 225623.7	0305930101	54.545401	-22.939919	2714.6738	1.2974012e - 13	400d J0338-2256	12.5001	0.173000
XMMXCS J122227.7 + 142810.7	0306060101	185.61567	14.469664	373.41683	4.8066711e - 14	MaxBCG J185.62052+14.47192	18.7096	0.234950
XMMXCS J030433.9 - 005406.8	0307000701	46.141581	-0.90190258	982.05844	4.2369309e - 13	[SBV2004] RS 63	20.5600	0.158600
$XMMXCS J074100.8 \pm 650349.2$	0307001501	115 25358	65 063722	93 367900	5 69471769-15	$OC01 J0740 \pm 6504$	25 5602	0.300000
XMMXCC 10740040 + 050349.5	0207001501	115 64959	6E 00677E	222 00120	5.55471706-15	DIXOS E224 505	20.0002	0.167000
AWIWIACS JU(4234.2 + 051712.3)	0307001501	115.04258	05.280775	223.09136	5.1700010e-14	KIAUS F234 505	8.19330	0.167000
xmmxcs J090100.9 + 600607.8	0312191001	135.25415	60.102168	2202.9989	4.0418408e-13	MaxBCG J135.25325+60.10133	3.39452	0.291650
XMMXCS J092325.4 + 225648.0	0312191401	140.85595	22.946669	821.81453	1.1903365e - 13	MaxBCG J140.85564+22.94378	10.4513	0.183650
XMMXCS J033445.3 + 001705.7	0402320201	53.689032	0.28493253	119.22562	5.8398678e - 14	SDSS CE J053.695625+00.289605	29.9338	0.299404
$XMMXCS$ 1092540 1 \pm 362709 3	0402370101	141.41725	36.452610	3262.2503	3.0862664e - 13	RCS J092540+3626.8	20.7289	0.233000

167

Table D.1 – Continued										
XCS Name	Obsid	RA	Dec	Counts	Flux	Literature Name	Match Distance	Literature Redshift	Sig	
XMMXCS J092622.6 + 362132.2	0402370101	141.59456	36.358959	278.42167	1.7898745e - 14	RCS J092621+3621.8	17.5324	0.887000	73.01	
XMMXCS J004624.5 + 420429.6	0402561401	11.602322	42.074903	10961.142	6.2217720e-13	RX J0046.4+4204	7.21836	0.300000	-	
XMMXCS J003101.5 + 262632.4	0402750601	7.7565767	26.442357	412.40261	5.0393743e - 14	[B2002a] 01	7.17306	-	136.90	
XMMXCS J001639.6 - 010205.2	0403760701	4.1651984	-1.0348049	666.16877	6.6069339e - 14	MaxBCG J004.16184-01.03538	12.2284	0.162050	63.60	
XMMXCS J144720.1 + 631626.4	0404050301	221.83376	63.274004	106.71207	1.2335837e - 13	MaxBCG J221.83176+63.27200	7.87344	0.194450	65.03	
XMMXCS J103931.9 + 394737.1	0406610101	159.88300	39.793655	431.79124	7.8855494e - 14	400d J1039+3947	24.8884	0.092600	132.81	
XMMXCS J002314.1 + 001202.1	0407030101	5.8091391	0.20058627	405.04183	3.2320770e - 14	SDSS CE J005.801610+00.197059	29.9230	0.254019	52.27	
XMMXCS J220204.9 - 315909.2	0414580101	330.52079	-31.985890	3705.6457	2.2803301e - 13	KTS 66	21.1534	0.009000	-	
XMMXCS J095924.8 + 014613.5	0501170101	149.85374	1.7704194	862.66066	4.2559490e - 14	[FGH2007] 113	29.6833	0.120000	320.95	
XMMXCS J040448.2 - 435055.4	0501210701	61.201159	-43.848736	380.19895	5.7292331e - 14	ABELL S0416	12.9413	0.064800	97.31	
XMMXCS J084105.4 + 383157.7	0502060201	130.27263	38.532699	345.55096	3.4537263e - 14	MaxBCG J130.27341+38.53306	2.55156	0.240350	112.40	
XMMXCS J143120.8 - 005344.6	0502060301	217.83695	-0.89573268	778.64836	3.3044736e - 13	SDSS CE J217.834290-00.898368	13.6828	0.378827	502.38	
XMMXCS J102044.5 + 383113.7	0503601301	155.18576	38.520475	174.01154	1.3369924e - 13	400d J1020+3831	16.5775	0.053000	79.18	
XMMXCS J115641.1 + 524323.0	0504100901	179.17129	52.723067	112.37857	7.8134596e - 15	NSCS J115642+524329	10.0560	0.470000	35.49	
XMMXCS J232537.9 - 544408.9	0505383201	351.40810	-54.735828	791.92111	2.0925726e - 13	400d J2325-5443	14.1115	0.102000	224.40	
		•	•	•	•		•	-	•	
XMMXCS J102044.5 + 383113.7 XMMXCS J115641.1 + 524323.0 XMMXCS J232537.9 - 544408.9	0503601301 0504100901 0505383201	155.18576 179.17129 351.40810	38.520475 52.723067 -54.735828	174.01154 112.37857 791.92111	1.3369924e-13 7.8134596e-15 2.0925726e-13	400d J1020+3831 NSCS J115642+524329 400d J2325-5443	16.5775 10.0560 14.1115	$\begin{array}{c} 0.053000\\ 0.470000\\ 0.102000 \end{array}$	79.18 35.49 224.40	

Table D.1: DR3 StatSam Known Clusters. Column descriptions are given in Section 4.4

XCS Name	Obsid	RA	Dec	Counts	Flux	Literature Name	Match Distance	Literature Redshift	Sig
XMMXCS J002606 6 + 102750 4	0001930101	6 5275011	10 464019	37 707573	2.0515345e-14				7.88
$XMMXCS 1002635 8 \pm 103445 5$	0001930101	6 6492228	10.579308	310.05012	4.6093743e - 14				73.96
XMMXCS J125329 9 + 100653 9	0001930301	193 37494	10 114986	225 29630	2.6094818e - 14	-		_	28.25
XMMXCS J035424 1 + 233430 4	0002740101	58 600697	23 575131	282 26216	2.3190440e - 14	-		_	23.12
XMMXCS J122748.6 - 153612.5	0002740301	186.95270	-15.603497	84.693017	3.5875496e - 14	_	-	_	12.18
XMMXCS J130659 5 - 234926 3	0002940101	196 74795	-23.823976	41 740368	1.4235332e - 14	-		_	26.15
XMMXCS J130650 0 - 233127 0	0002940101	196 70846	-23.524179	355 08271	1.3599282e - 13	-		_	169.81
XMMXCS J011034 3 - 375637 9	0002942301	17 643264	-37.943863	48 239468	2.6303669e - 14	-		_	13.08
XMMXCS J233732.9 + 270136.6	0002960101	354.38745	27.026840	107.17602	3.4804412e - 14	_	-	_	19.96
XMMXCS J233858.1 + 270608.0	0002960101	354.74237	27.102249	125.18113	1.9474518e - 14	_	-	_	7.49
XMMXCS J144238.4 + 353720.4	0005010101	220.66028	35.622358	69.087270	1.9067509e - 14	_	-	_	15.61
XMMXCS J074528.1 + 280011.3	0006010301	116.36717	28.003151	1815.8652	9.1195714e - 14	-	-	_	672.84
XMMXCS J002409.8 - 771840.8	0006010401	6.0410802	-77.311344	74.055450	4.4135926e - 15	-	-	-	22.18
XMMXCS J002530.8 - 772852.3	0006010401	6.3785062	-77.481204	266.43540	2.9748008e - 14	-	-	-	54.63
XMMXCS J002323.1 - 771109.3	0006010401	5.8463702	-77.185926	63.934177	5.0792102e - 15	-	-	-	2.64
XMMXCS J002201.9 - 772042.7	0006010401	5.5082924	-77.345198	424.44078	9.1604672e - 14	-	-	-	122.06
XMMXCS J002807.2 - 771105.6	0006010401	7.0302973	-77.184891	480.49277	4.2308717e - 14	-	-	-	144.06
XMMXCS J123644.7 - 395637.4	0006220201	189.18638	-39.943743	192.76509	3.4179447e - 14	-	-	-	60.59
XMMXCS J125102.9 + 272205.6	0008220201	192.76234	27.368229	79.346917	7.9220135e - 15	-	-	-	28.28
XMMXCS J125219.1 + 273228.5	0008220201	193.07997	27.541263	93.268734	5.7630087e - 15	-	-	-	34.57
XMMXCS J125122.7 + 272550.5	0008220201	192.84492	27.430697	12.325972	2.1278322e - 15	-	-	-	35.68
XMMXCS J125220.8 + 274306.1	0008220201	193.08682	27.718369	90.205817	2.3350686e - 14	-	-	-	27.21
XMMXCS J061324.8 + 710342.3	0009220301	93.353451	71.061760	198.01655	5.4738060e - 14	-	-	-	33.06
XMMXCS J061804.5 + 711039.2	0009220301	94.518769	71.177582	46.820027	1.3997620e - 13	-	-	-	17.24
XMMXCS J061659.0 + 711435.0	0009220301	94.245924	71.243070	39.120656	2.0759854e - 14	-	-	-	10.48
XMMXCS J061335.8 + 710636.9	0009220301	93.399364	71.110252	165.31610	8.9440217e - 14	-	-	-	14.95
XMMXCS J061745.2 + 711254.5	0009220301	94.438727	71.215152	440.45467	7.8706526e - 13	-	-	-	84.18
XMMXCS J061606.9 + 711527.8	0009220401	94.028769	71.257745	37.899687	3.5039099e - 14	-	-	-	18.32
XMMXCS J061714.8 + 711206.7	0009220901	94.312026	71.201863	133.47813	3.5156778e - 14	-	-	-	25.18
XMMXCS J061503.8 + 710739.8	0009220901	93.766155	71.127748	103.21245	2.5542899e - 14	-	-	-	11.15
XMMXCS J061754.5 + 710320.7	0009221601	94.477201	71.055756	192.90458	-4.4379115e - 15	-	-	-	20.10
XMMXCS J061242.2 + 710720.4	0009221601	93.175964	71.122359	172.63235	1.7391183e - 13	-	-	-	29.31
XMMXCS J061456.2 + 711413.4	0009221601	93.734441	71.237058	179.06245	6.7635247e - 15	-	-	-	19.84
XMMXCS J061342.9 + 705048.9	0009221601	93.429004	70.846939	293.44183	1.9582875e - 13	-	-	-	19.46
XMMXCS J061238.9 + 710439.7	0009221601	93.162360	71.077710	147.54530	1.2691702e - 13	-	-	-	11.94
XMMXCS J225535.9 - 025746.0	0009650101	343.89974	-2.9627896	71.313036	2.2031117e - 14	-	-	-	13.51
XMMXCS J221726.0 - 082542.2	0009650201	334.35836	-8.4283945	99.848212	2.8527515e - 14	-	-	-	59.68
XMMXCS J221707.2 - 081936.1	0009650201	334.28031	-8.3267130	27.835966	9.4354616e - 15	-	-	-	16.23
XMMXCS J051507.8 + 010530.5	0010620101	78.782787	1.0918063	65.737479	6.0594314e - 15	-	-	-	47.46
XMMXCS J051609.8 + 010954.1	0010620101	79.041169	1.1650405	88.426726	1.3999095e - 14	-	-	-	23.49
XMMXCS J152609.4 + 513436.6	0011830201	231.53934	51.576853	29.971102	2.1827251e - 15	-	-	-	23.01
XMMXCS J152525.7 + 513043.2	0011830201	231.35722	51.512025	117.46977	6.7917493e - 15	-	-	-	33.89
XMMXCS J152516.7 + 513459.4	0011830401	231.31998	51.583172	657.79835	8.5171512e - 14	-	-	-	23.10
XMMXCS J152611.7 $+$ 515134.0	0011830401	231.54895	51.859450	1124.0912	6.0870259e - 13	-	-	-	127.75
XMMXCS J152418.0 + 513853.1	0011830401	231.07524	51.648099	469.61871	-1.6586233e - 13	-	-	-	26.03
XMMXCS J152421.5 + 514058.6	0011830401	231.08971	51.682955	606.60978	3.5309859e - 13	-	-	-	29.62
XMMXCS J152450.6 + 514805.0	0011830401	231.21088	51.801395	344.14885	1.9700112e - 13	-	-	-	70.46
XMMXCS J152458.1 + 512606.8	0011830401	231.24212	51.435221	1693.6530	7.9058866e - 13	-	-	-	139.40
XMMXCS J152437.5 + 514548.0	0011830401	231.15656	51.763354	1730.8564	1.0488748e - 12	-	-	-	135.78
XMMXCS J152535.8 + 515122.1	0011830401	231.39942	51.856157	2876.4145	1.4998913e-12	-	-	-	412.06
XMMXCS J005606.1 - 011215.0	0012440101	14.025767	-1.2041696	1239.1977	7.9585006e-14	-	-	-	250.68
XMMXCS J005623.2 - 010804.5	0012440101	14.096958	-1.1345888	2216.8483	2.0891278e-13	-	-	-	124.67
XMMXCS J005603.1 - 012038.6	0012440101	14.013030	-1.3440747	1071.0870	5.2765096e-14	-	-	-	118.84
XMMXCS J005625.7 - 011757.4	0012440101	14.107496	-1.2992863	6113.6675	3.0745087e-13	-	-	-	-
XMMXCS J005613.6 - 011508.5	0012440101	14.056752	-1.2523825	33239.670	1.8985971e-12	-	-	-	-
XMMXCS J005656.4 - 011221.4	0012440101	14.235101	-1.2059640	362.43045	3.7651803e-14	-	-	-	57.68
XMMXCS J220420.4 - 020546.3	0012440301	331.08502	-2.0962135	36.031990	7.9286510e-15	-	-	-	33.16
XMMXCS J220550.0 - 015931.7	0012440301	331.45864	-1.9921540	131.61500	1.0732504e-14	-	-	-	54.78
AMMACS J220559.2 - 015814.6	0012440301	331.49686	-1.9707268	97.568993	1.1500578e-14	-	-	-	32.60
AMMACS J033856.1 - 354035.1	0012830101	54.733901	-35.676440	55.325429	-8.5713031e-13	-	-	-	14.19
AMMACS J033901.8 - 353959.5	0012830101	54.757615	-35.666552	80.300050	-1.4933989e-11	-	-	-	19.68
AMMACS J223615.1 + 335639.1	0021140201	339.06325	33.944208	548.37276	1.6067912e-14	-	-	-	277.01
ANIMIAUS J223520.5 + 334800.7	0021140201	338.80038	33.800200	39.083319	1.4/2/300e-14 2.7426070- 15	-	-	-	0.41
XMMXCS 1223535.1 + 340356.0	0021140201	338.89004	34.0000000	48.32/448	2.7430079e-15 1.52577220 14	-	-	-	18.80
$XMMXCS 1124357 4 \pm 112614 0$	0021540201	100 08010	11 60/162	217 53001	1.0007700e-14 8 5068669e-15	-			63 21
AMMACO 3124337.4 T 113014.9	0021040201	190.96919	11.004102	211.000001	5.50080030-15	-	-	-	00.21
	1								

	1			Table D.2	- Continued				
XCS Name	Obsid	RA	Dec	Counts	Flux	Literature Name	Match Distance	Literature Redshift	Sig
					-				
XMMXCS J124302.7 + 113351.4	0021540201	190.76144	11.564303	156.08189	7.4137164e - 15	-	-	-	32.07
XMMXCS J124300.3 + 113656.0	0021540201	190.75154	11.615572	275.51750	1.9590673e - 14	-	-	-	62.16
XMMXCS J124252.5 + 112838.1	0021540201	190.71877	11.477270	164.40386	1.0464831e - 14	-	-	-	46.52
XMMXCS J150653.2 $+$ 014415.7	0021540501	226.72189	1.7376955	155.81034	2.7630881e - 14	-	-	-	29.96
XMMXCS J150707.0 + 013215.5	0021540501	226.77938	1.5376522	207.01893	3.8473172e - 14	-	-	-	32.50
XMMXCS J094034.9 + 355950.2	0021740101	145.14570	35.997280	520.74654	4.0762153e - 14	-	-	-	51.30
XMMXCS J131020.0 + 272319.3	0021740201	197.58361	27.388696	79.161355	5.7985200e - 15	-	-	-	16.71
XMMXCS J131049.2 + 274043.8	0021740201	197.70523	27.678839	207.63234	1.6566674e - 14	-	-	-	59.52
XMMXCS J173053.0 + 520851.3	0021750201	262.72091	52.147588	45.446667	1.7423953e - 14	-	-	-	27.80
XMMXCS J173015.8 $+$ 520551.6	0021751001	262.56589	52.097691	147.49030	4.5771371e - 14	-	-	-	22.71
XMMXCS J105044.5 + 572926.0	0022740301	162.68559	57.490560	51.555503	1.0228134e - 14	-	-	-	29.73
XMMXCS J041859.2 + 153944.1	0024140101	64.747013	15.662262	84.050128	8.1321936e - 15	-	-	-	10.70
XMMXCS J041855.6 + 153243.6	0024140101	64.731957	15.545460	79.824628	1.3114479e - 14	-	-	-	28.62
XMMXCS J041939.1 + 153417.7	0024140101	64.913038	15.571594	165.60620	5.7211694e - 15	-	-	-	24.30
XMMXCS J041905.3 + 154439.9	0024140101	64.772230	15.744429	87.806324	5.2788535e - 15	-	-	-	13.87
XMMXCS J041924.7 $+$ 153205.1	0024140101	64.853277	15.534764	38.066403	2.5164011e - 15	-	-	-	12.57
XMMXCS J042021.7 + 154738.8	0024140101	65.090739	15.794137	131.47387	8.5254719e - 15	-	-	-	35.13
XMMXCS J010730.5 - 171932.1	0025540101	16.877426	-17.325608	43.355225	1.0897040e - 14	-	-	-	20.84
XMMXCS J010739.7 - 174504.2	0025540101	16.915606	-17.751182	228.97219	4.0608651e - 13	-	-	-	30.21
XMMXCS J010725.2 - 172029.1	0025540101	16.855205	-17.341444	89.642252	3.5359041e - 14	-	-	-	12.75
XMMXCS J010744.2 - 171807.1	0025540101	16.934577	-17.301973	248.27725	5.6260335e - 14	-	-	-	39.98
XMMXCS J083856.0 + 253807.3	0025540301	129.73363	25.635362	108.91032	3.2499490e - 14	-	-	-	40.95
XMMXCS J083905.4 + 254447.6	0025540301	129.77264	25.746557	89.680495	3.1470008e - 14	-	-	-	40.53
XMMXCS J084837.8 + 741702.6	0025540401	132.15763	74.284068	43.558967	2.4687061e - 14	-	-	-	11.32
XMMXCS J012414.9 + 033705.0	0025541601	21.062281	3.6180716	38.335559	7.4377874e - 15	-	-	-	11.12
XMMXCS J012400.0 + 035110.8	0025541601	21.000162	3.8530210	61.002209	1.2616481e - 14	-	-	-	21.74
XMMXCS J012414.4 + 035642.6	0025541601	21.060150	3.9451898	79.275142	2.0626172e - 14	-	-	-	40.82
XMMXCS J084924.5 + 735441.2	0025541701	132.35239	73.911451	59.065560	2.4018955e - 14	-	-	-	19.75
XMMXCS J093958.5 + 711404.6	0026340101	144.99404	71.234612	37.266919	1.7499200e - 15	-	-	-	10.71
XMMXCS J093941.5 + 710715.1	0026340101	144.92298	71.120889	178.70444	1.2575072e - 14	-	-	-	35.02
XMMXCS J094130.3 + 711132.3	0026340101	145.37645	71.192313	274.76637	2.2830160e - 14	-	-	-	41.10
XMMXCS J101051.1 - 045340.1	0026340201	152.71293	-4.8944952	223.76292	3.1824195e - 14	-	-	-	15.97
XMMXCS J101032.7 - 045201.0	0026340201	152.63646	-4.8669718	232.08992	-2.5356470e - 14	-	-	-	21.55
XMMXCS J101049.4 - 042722.0	0026340201	152.70594	-4.4561294	311.19349	8.4524158e - 14	-	-	-	133.36
XMMXCS J101007.5 - 044552.3	0026340201	152.53136	-4.7645417	111.09518	4.9557916e - 14	-	-	-	38.10
XMMXCS J101016.5 - 044940.3	0026340201	152.56906	-4.8278731	2185.2489	7.1885387e - 13	-	-	-	198.56
XMMXCS J101018.6 - 043359.1	0026340201	152.57757	-4.5664256	16689.930	5.5913016e - 12	-	-	-	-
XMMXCS J102744.3 + 681121.1	0026340301	156.93497	68.189201	222.45187	4.6457032e - 14	-	-	-	114.90
XMMXCS J102837.6 + 682102.5	0026340301	157.15687	68.350701	186.90044	1.5720937e - 14	-	-	-	110.73
XMMXCS J001436.6 - 390016.6	0028740101	3.6525911	-39.004631	184.52686	1.8651399e - 14	-	-	-	28.64
XMMXCS J001636.3 - 392511.5	0028740201	4.1515426	-39.419864	99.195958	4.5794767e - 14	-	-	-	8.87
XMMXCS J001610.8 - 391659.3	0028740201	4.0452627	-39.283143	341.39513	1.6746034e - 14	-	-	-	128.83
XMMXCS J001528.7 - 392636.5	0028740201	3.8696708	-39.443497	303.17812	2.5584192e - 14	-	-	-	45.16
XMMXCS J101738.3 + 413233.1	0028740301	154.40972	41.542554	124.80602	2.2318085e - 14	-	-	-	27.21
XMMXCS J063945.8 + 821850.3	0029340101	99.941079	82.313978	1178.1340	4.8774927e - 14	-	-	-	394.47
XMMXCS J064424.0 + 822628.6	0029340101	101.10034	82.441287	211.34071	3.8997640e - 14	-	-	-	63.69
XMMXCS J064016.8 + 822903.5	0029340101	100.07036	82.484323	127.92240	1.8254562e - 14	-	-	-	33.84
XMMXCS J064802.9 + 821000.0	0029340101	102.01219	82.166670	242.77372	2.4279953e - 14	-	-	-	13.50
XMMXCS J063551.6 + 821206.5	0029340101	98.965057	82.201819	203.43195	9.1948648e - 15	-	-	-	7.23
XMMXCS J064245.1 + 822832.7	0029340101	100.68826	82.475756	79.150404	1.4701133e - 14	-	-	-	12.68
XMMXCS J063819.2 + 821306.0	0029340101	99.580067	82.218350	362.73643	1.4145071e - 14	-	-	-	39.39
XMMXCS J133502.1 - 341136.3	0029740101	203.75915	-34.193420	267.63880	1.7099814e - 13	-	-	-	56.23
XMMXCS J133640.6 - 341115.7	0029740701	204.16953	-34.187705	115.26744	8.4949018e - 15	-	-	-	14.24
XMMXCS J133514.7 - 341624.3	0029740801	203.81151	-34.273432	547.30148	1.7990754e - 14	-	-	-	140.34
XMMXCS J133639.1 - 341047.6	0029740801	204.16309	-34.179900	175.37302	1.0379034e - 14	-	-	-	11.67
XMMXCS J133608.7 - 340506.0	0029740801	204.03643	-34.085013	396.12655	2.5655907e - 14	-	-	-	31.78
XMMXCS J121927.4 + 473603.7	0032140101	184.86426	47.601028	252.72238	-4.3360599e - 13	-	-	-	101.34
XMMXCS J121857.4 + 472823.9	0032140101	184.73930	47.473313	55839.036	1.0697450e - 11	-	-	-	-
XMMXCS J121749.6 + 472435.5	0032140101	184.45677	47.409881	4255.7086	-3.7451711e - 12	-	-	-	- 1
XMMXCS J121930.2 + 473913.6	0032140101	184.87601	47.653783	952.63009	2.1160410e - 13	-	-	-	127.07
XMMXCS J121832.5 + 475131.3	0032140101	184.63548	47.858716	3347.8765	4.9932048e - 13	-	-	-	220.49
XMMXCS J230159.0 + 082242.9	0032140201	345.49620	8.3786073	37.124491	2.8897053e - 14	-	-	-	41.14
XMMXCS J230159.9 + 084633.0	0032140201	345.49970	8.7758569	34.178236	2.0700831e - 14	-	-	-	21.84
XMMXCS J230246.9 + 084816.2	0032140201	345.69554	8.8045240	37.597299	1.3160412e - 14	-	-	-	18.21
XMMXCS J230218.6 + 082408.9	0032140201	345.57760	8.4024925	63.482666	3.1777174e - 14	-	-	-	19.03
Continued on Next Page	1								

Table D_{2} – Continued

				Table D.2	- Continued				
XCS Name	Obsid	RA	Dec	Counts	Flux	Literature Name	Match Distance	Literature Redshift	Sig
XMMXCS J014153.0 - 675142.1	0032140401	25.470842	-67.861712	51.916427	1.6637990e - 14	-	-	-	11.05
XMMXCS J233146.2 + 192413.4	0032140701	352.94271	19.403731	28.360306	2.6491984e - 14	-	-	-	29.55
XMMXCS J233145.3 + 194309.9	0032140701	352.93880	19.719431	52.838462	9.6588888e - 15	-	-	-	18.52
XMMXCS J130549.4 - 102716.0	0032141201	196.45608	-10.454452	52.495484	6.7315378e - 15	-	-	-	22.96
XMMXCS J130456.6 - 101011.0	0032141201	196.23605	-10.169741	64.064383	1.2484013e - 14	-	-	-	25.49
XMMXCS J130424.2 = 102927.9 XMMXCS J120514.5 = 102206.4	0032141201	196.10109	-10.491100	201 66420	4.6842723e-14 2.7408174c 14	-	-	-	27.35
XMMXCS J130514.5 = 102500.4 XMMXCS J130505 7 = 101643 6	0032141201	196 27407	-10.333113 -10.278802	115 77475	1.3502817e - 14	-	_	_	81.65
XMMXCS J120850.9 + 452951.2	0033540601	182.21218	45.497580	712.47090	2.1788872e - 13	-	-	-	248.09
XMMXCS J120911.3 + 453012.1	0033540601	182.29714	45.503364	117.08965	3.2388204 e - 14	-	-	-	28.16
XMMXCS J163248.1 + 373846.9	0033540901	248.20055	37.646364	113.22123	1.5432262e - 14	-	-	-	35.46
XMMXCS J163133.4 + 374905.6	0033540901	247.88932	37.818240	91.800607	1.8831066e - 14	-	-	-	25.03
XMMXCS J163056.9 + 374223.2	0033540901	247.73713	37.706460	69.044594	2.7985967e-14	-	-	-	45.06
XMMXCS J103130.7 + 374031.2 $XMMXCS J121508.6 \pm 362007.4$	0035940901	183 78598	36 335303	164 79248	2 2937452e 14	-	-	_	29.85
XMMXCS J133946.7 - 314218.6	0035940301	204.94482	-31.705172	119.05165	4.7954930e - 15	_	_	_	22.96
XMMXCS J133943.6 - 314709.7	0035940301	204.93205	-31.786030	155.83973	1.0470582e - 14	-	-	-	24.14
XMMXCS J033858.7 + 001530.3	0036540101	54.744615	0.25843751	71.366414	7.2658997 e - 15	-	-	-	31.80
XMMXCS J022214.5 - 034616.9	0037980101	35.560674	-3.7713786	76.283924	1.1470757e - 14	-	-	-	9.63
XMMXCS J022246.3 - 035155.8	0037980101	35.693243	-3.8655209	125.00147	1.1565626e - 14	-	-	-	40.60
XMMXCS J022148.0 - 034609.2	0037980101	35.450353	-3.7692432	358.74941	1.0901185e-13	-	-	-	133.03
XMMXCS J022405.8 - 035503.4 XMMXCS J022206.4 025020.5	0037980201	36.024398	-3.9170325	109.08572	2.3048061e-14 2.8855511c 14	-	-	-	32.45
XMMXCS J022500.4 = 035025.5 XMMXCS J022528.9 = 040032.2	0037980201	36.370728	-4 0089458	200 71659	4.8020206e - 14	-	_	_	52.60
XMMXCS J022551.4 - 034524.9	0037980401	36,464499	-3.7569292	60.668957	2.1898269e - 14	-	_	-	14.17
XMMXCS J022343.3 - 033051.2	0037980801	35.930812	-3.5142476	38.050067	2.8424535e - 14	-	-	-	21.55
XMMXCS J022454.0 - 032844.1	0037980801	36.225406	-3.4789352	80.309078	1.7027369e - 14	-	-	-	32.14
XMMXCS J022251.0 - 031144.4	0037981101	35.712809	-3.1956828	86.107201	1.0114141e - 14	-	-	-	37.78
XMMXCS J022236.6 - 025708.5	0037981101	35.652753	-2.9523687	67.522051	2.3957334e - 14	-	-	-	16.89
XMMXCS J022356.1 - 030558.0	0037981201	35.983939	-3.0994473	129.83887	1.7980823e-14	-	-	-	39.89
XMMXCS J022539.9 = 031127.6 XMMXCS J022544.1 = 031150.0	0037981301	36.433981	-3.1910223 -3.1972245	4220.3493	4.5454143e - 13	-	-	-	366.65
XMMXCS J022707.7 - 030114.8	0037981401	36.782442	-3.0207855	107.98377	2.8405438e - 14	-	-	-	40.95
XMMXCS J022801.6 - 030257.6	0037981501	37.006911	-3.0493477	46.539544	1.0341428e - 14	-	-	-	20.41
XMMXCS J022347.6 - 025127.8	0037981601	35.948428	-2.8577273	232.67330	3.9539765e - 14	-	-	-	62.25
XMMXCS J022616.2 - 023954.0	0037981801	36.567810	-2.6650095	682.35118	1.2234775e - 13	-	-	-	569.05
XMMXCS J022511.4 - 024432.6	0037981801	36.297637	-2.7424117	6.2704901	1.2010762e - 15	-	-	-	51.93
XMMXCS J022744.4 = 025648.4 XMMXCS J022102.1 = 042556.6	0037981901	36.935265	-2.9468055	24.415879	4.2656185e-15	-	-	-	16.30
XMMXCS J022103.1 = 042330.0 XMMXCS J022157 8 = 043800 0	0037982101	35.203112	-4.4324021	115 57224	2.5156870e - 14	-	-		14 09
XMMXCS J022142.3 - 042723.0	0037982101	35.426345	-4.4564009	39.156323	4.8937429e - 15	-	_	-	44.81
XMMXCS J022130.4 - 040545.3	0037982201	35.376775	-4.0959314	183.89859	2.6633716e - 14	-	-	-	28.60
XMMXCS J021929.6 - 043312.2	0037982301	34.873683	-4.5533958	84.728663	1.4431453e - 14	-	-	-	55.64
XMMXCS J022003.1 - 041212.0	0037982401	35.013316	-4.2033374	32.424068	4.8155441e - 15	-	-	-	26.71
XMMXCS J022023.9 - 040303.5	0037982401	35.099712	-4.0509926	79.923779	1.1114892e - 14	-	-	-	21.71
XMMXCS J021951.1 - 033231.8	0037982601	34.962993	-3.5421913	123.57391	3.3443316e-14	-	-	-	31.68
XMMXCS J022045.0 = 032536.6 XMMXCS J021939.2 = 032517.1	0037982601	34.913582	-3.4324081 -3.4214217	45.154822	3.2339793e - 14	-	-	-	47.42
XMMXCS J022038.8 - 030145.9	0037982701	35.162076	-3.0294234	80.477074	1.6489568e - 14	-	-	-	42.64
XMMXCS J022118.7 - 032323.9	0037982701	35.328285	-3.3899933	59.246544	1.1669731e - 14	-	-	-	10.95
XMMXCS J022045.3 - 030100.0	0037982701	35.188884	-3.0166753	89.405989	$2.5613865 \mathrm{e}{-14}$	-	-	-	31.89
XMMXCS J210406.9 - 121659.9	0038540301	316.02905	-12.283306	67.392736	1.1616354e - 14	-	-	-	83.79
XMMXCS J104030.1 + 085653.3	0038540401	160.12549	8.9481531	1890.7845	4.9755196e - 13	-	-	-	118.71
XMMXCS 1103937.2 + 090327.7 XMMXCS 1103929.6 + 090706.7	0038540401	159.90535	9.0577098	2840.8761	3.0701082e-13 5.2578205e-12		-		409.38
$XMMXCS J103929.0 \pm 090700.7$ XMMXCS J103941.4 ± 091851.1	0038540401	159.92256	9.3142078	18370.093	-3.2553469e - 11	-	_	_	- 200.01
XMMXCS J015924.2 + 081141.9	0038541101	29.850960	8.1949764	219.95582	1.6393187e - 13	-	-	-	15.28
XMMXCS J153301.5 + 322840.5	0039140101	233.25666	32.477945	829.24744	9.4914467e - 14	-	-	-	100.90
XMMXCS J153352.9 + 324448.4	0039140101	233.47080	32.746792	459.85434	1.4064702 e - 13	-	-	-	19.35
XMMXCS J153240.2 + 325632.2	0039140101	233.16765	32.942289	979.33267	2.4046910e - 13	-	-	-	45.57
XMMXCS J153323.3 + 323021.1	0039140101	233.34739	32.505863	2618.3018	6.5197030e-13	-	-	-	253.45
XMMXCS J153345.9 + 323555.2	0039140101	233.44146	32.598685	1029.3016	8.5936575e-08	-	-	-	113.29
XMMXCS J030139.2 = 000219.0 $XMMXCS J030145.6 \pm 000333.6$	0041170101	45.440261	0.059341301	102.42464	1.4391110e - 14 1.5797800e - 14	-		_	42.91
XMMXCS J095957.4 + 251631.3	0041170201	149.98926	25.275364	1798.9276	1.1867326e - 13	-	-	-	-
		•		•	•				•

Table D.2 – Continued									
XCS Name	Obsid	RA	Dec	Counts	Flux	Literature Name	Match Distance	Literature Redshift	Sig
XMMXCS J100115.4 + 250612.7 XMMXCS J100056.0 + 250648.4	$\begin{array}{c} 0041170201 \\ 0041170201 \end{array}$	$150.31452 \\ 150.23350$	25.103551 25.113453	$317.97156 \\ 57.195137$	$\begin{array}{c} 2.5535198\mathrm{e}{-14} \\ 2.2304574\mathrm{e}{-15} \end{array}$		-	-	113.81 12.21

Table D.2: DR3 StatSam New Candidates. Column descriptions are given in Section 4.4. This table has been truncated to 200 candidates, the full version has 3825 candidates and is available online.

Appendix E

A description of the XCS database tables

Column name	Description
obsid	XMM pointing identifier
dateObs	Date and time of begining of exposure
dateEnd	Date and time of end of exposure
revolut	XMM revolution number
target	Name of observed object
observer	Name of PI observer
raTarget	RA of target (Deg)
decTarget	Dec of target (Deg)
raNom	RA of nominal boresight (Deg)
decNom	Dec of nominal boresight (Deg)
equinox	Equinox of sky co-ordinates
raPnt	Mean RA of pointing (Deg)
decPnt	Mean Dec of pointing (Deg)
paPnt	Mean position angle (Deg)
cdelt2	Pixel size (Deg)
nhval	Hydrogen column density
type	Pointing type
maskflag	Binary flag indicating existence of image mask

Table E.1: Column descriptions of the XCS Observation table.

Column name	Description
id	Index for table
name	IAU XCS name
obsid	XMM pointing identifier
ra	Right Ascension (Deg)
dec	Declination (Deg)
х	Image x position
У	Image y position
xerr	1σ error on x
yerr	1σ error on y
major	Object ellipse major axis
minor	Object ellipse minor axis
orient	Object ellipse orientation
theta	Offaxis angle (arcmin)
phi	Azimuthal angle (Deg)
scts	Soft band source counts
ctrate	Soft band count rate
ctrateerr	Soft band count rate error
flux	Soft band flux
sig	Source significance
ppoint	Probablity of source being point-like
class	Source classification
psfsizeflag	Potential mis-classification flag
pntconflag	Potential contamination flag
run1conflag	Potential Run1 contamination flag
rinnermaj	Background annulus inner edge major axis
rinnermin	Background annulus inner edge minor axis
routermaj	Background annulus outer edge major axis
routermin	Background annulus outer edge minor axis
srcpix	Number of pixels used for source aperture
bkgpix	Number of pixels used for background aperture
avsrcexp	Average exposure across source
avbkgexp	Average exposure across background
bkgcts	Counts in background annulus
bkgctssrc	Background counts in source aperture
totcts	Total counts in source aperture
masterid	ID for master detection

Table E.2: Column descriptions of the XCS Detection table.

Column name	Description
id	Index for table
xcsname	IAU XCS name
detectionid	ID from Detection table
masterid	Master ID from Detection table
obsid	XMM pointing identifier
camera	EPIC camera
ident	Exposure identifier
scts	Individual exposure soft band source counts
ctrate	Individual exposure count-rate
flux	Individual exposure source flux
sig	Source significance
rinnermaj	Background annulus inner edge major axis
rinnermin	Background annulus inner edge minor axis
routermaj	Background annulus outer edge major axis
routermin	Background annulus outer edge minor axis
srcpix	Number of pixels used for source aperture
bkgpix	Number of pixels used for background aperture
avsrcexp	Average exposure across source
avbkgexp	Average exposure across background
bkgcts	Counts in background annulus
bkgctssrc	Background counts in source aperture
totcts	Total counts in source aperture

Table E.3: Column descriptions of the XCS IndivExpProp table.

Column name	Description
xcsname	IAU XCS name
obsid	XMM pointing identifier
ra	Right Ascension
dec	Declination
softcts	Soft band source counts
tmax	Maximum source exposure in soft band
softflux	Soft band source flux
hardcts	Hard band source counts
tmaxhard	Maximum source exposure in hard band
hardnessratio	Hardness ratio for source
softsig	Soft band source significance
hardsig	Hard band source significance
softppoint	Probability of source being point-like (soft band)
class	Source classification
master detection id	Master ID in Detection table
${ m masterps} { m fsize} { m flag}$	Master Detection PSF size warning
${\it masterpnt} {\it conflag}$	Master Detection point contamination
masterrun1 conflag	Master Detection Run1 contamination
targetflag	Warning that source may be pointing target
clobsflag	Warning that source is in a Cluster Pointing
snrobsflag	Warning that source is in a SNR Pointing

Table E.4: Column descriptions of the XCS Source table.

Appendix F

XCS Selection function plots

Following are the full set of plots demonstrating the XCS selection function, all the data is for clusters with $r_c = 160 kpc$, $\beta = 2/3$, and e = 0.0, in a $\Omega_{\Lambda} = 0.7$, $\Omega_m = 0.3$ cosmology.

Figure F.1: XCS StatSam detection and classification efficiency for 2keV clusters.

Figure F.2: XCS StatSam detection and classification efficiency for 3keV clusters.

Figure F.3: XCS StatSam detection and classification efficiency for 4keV clusters.

Figure F.4: XCS StatSam detection and classification efficiency for 5keV clusters.

Figure F.5: XCS StatSam detection and classification efficiency for 6keV clusters.

Figure F.6: XCS StatSam detection and classification efficiency for 7keV clusters.

Figure F.7: XCS StatSam detection and classification efficiency for 8keV clusters.

Appendix G

A description of the XCS reduction of the XMM ODF's

The following text has been edited from that provided by E. Lloyd-Davies, who undertook the work described in this Appendix.

G.1 Data reduction

Each observation in the XMM-Newton public archive that contains EPIC camera data was used. The data was download from the XMM-Newton Science Archive (XSA) using the Archive InterOperability System (AIO) to automate the process.

G.1.1 Software versions

The data reduction pipeline was written using Python 2.5 but involved the use of several different software packages. Version 7.1.0 of the Science Analysis Software (SAS) was the main software package used in the data reduction but version 6.6.3 of HEASoft and version 4.0 of CIAO were also extensively used.

G.1.2 Reduction procedure

The reduction of the XMM-Newton data was carried out in a standard way using the SAS software package. Only events with patterns 0-4 were used for the EPIC-pn and 0-12 for the EPIC-mos.

G.1.3 Flare cleaning

To increase the signal-to-noise of the data, periods of high background (such as those resulting from enhanced solar activity) were removed. This was achieved by creating a lightcurve of the high energy (particle dominated) events (12-15 keV for the EPIC-pn and 10-12 keV for the EPIC-mos cameras). An iterative 3-sigma clipping procedure was then used to select the periods to remove. This involves calculating the mean and standard deviation of the lightcurve and then excluding bins more than 3-sigma from the mean. The mean and standard deviation are then recalculated and the choice of bins to exclude made using the new values. This procedure was repeated until a stable state was reached. On the initial pass the bins with values more than 25 percent greater than the mean are excluded. This is to handle cases where there is more bad (high background) data than there is good, as without this the algorithm would exclude the good data and keep the contaminated data. Starting from a position of excluding any data considerably greater than the mean makes this an unlikely outcome of the iteration procedure. Finally images and spectra can be produced using the good time intervals identified by this procedure.

G.1.4 Energy conversion factors

In order to be able to convert source counts in the images into fluxes, energy conversion factors need to be calculated. These are necessarily model dependent and are affected not only by the source and instrument properties but also by the galactic column in the field. Since in general the source properties are not known (without much more detailed spectroscopic study) a generic model has to be assumed. Since the vast majority of the sources detected by XCS are point source that are likely to have powerlaw spectra, the model used to calculate the conversion is a powerlaw with an index of 1.7, with a photoelectric absorption set to the galactic HI radio column for the field. ECFs were calculated for each camera exposure in each observation. The XSpec spectral fitting package was used with the aforementioned model and the on-axis spectral responses for the observation to calculate the conversion factors.

G.1.5 Image production

The images to be used for the source searching were produced for the cleaned event lists by binning spatial binning the events with a pixel size of 4.35 arcsec. Images were produced in two bands, soft (0.5-2.0 keV) and hard (2-10 keV). Exposure maps were also created for each image. EPIC-pn images were corrected for out of time events in the standard way (this correction was not used for the EPIC-mos images since their much lower readout rate results in the effect being negligible). The images and exposure maps for the individual cameras were merged to create single image and exposure map per observation. Due to the fact that the EPIC-mos cameras receive only about half the light that the EPIC-pn does in a second of exposure. In order to correct for this when merging the exposure maps, the maps for the EPIC-mos cameras were scaled using the ECFs to that of the EPIC-pn camera.

Appendix H

Tables of XCS cluster properties

XCS name	R.A (J2000)	Dec (J2000)	Soft Counts	Redshift	Ngal
XMMXCS J000014.0-251057.3	0.058558	-25.182606	1264.520	0.140	35
XMMXCS J000018.8-245711.8	0.078654	-24.953297	46.650	0.690	1
XMMXCS J000047.1-251546.2	0.196368	-25.262848	56.424	0.180	15
XMMXCS J000103.5-250352.6	0.264907	-25.064621	470.416	0.910	15
XMMXCS J000626.3+195937.3	1.609940	19.993700	164.575	0.460	38
XMMXCS J000634.9+201722.3	1.645555	20.289532	251.639	0.860	19
XMMXCS J002935.4+345323.1	7.397867	34.889776	216.535	0.740	26
XMMXCS J002953.8+350505.8	7.474367	35.084960	128.684	0.450	32
XMMXCS J003407.3-432237.7	8.530773	-43.377148	214.181	0.400	12
XMMXCS J003412.4-433154.9	8.551851	-43.531933	115.382	0.610	6
XMMXCS J003414.9+852003.9	8.562299	85.334427	291.388	0.430	19
XMMXCS J003427.6-431855.8	8.615233	-43.315502	3550.930	0.410	50
XMMXCS J003439.3-120716.0	8.663751	-12.121112	487.336	0.440	50
XMMXCS J003503.2-432839.4	8.763538	-43.477636	40.823	0.110	1
XMMXCS J003513.5-431016.2	8.806275	-43.171169	160.382	0.150	6
XMMXCS J003547.2-430530.0	8.947032	-43.091675	66.306	0.370	3
XMMXCS J003548.2-432230.6	8.951163	-43.375168	884.349	0.550	46
XMMXCS J003551.3-431217.8	8.964063	-43.204964	479.606	0.390	19
XMMXCS J003603.7+851321.4	9.015593	85.222633	590.678	0.700	10
XMMXCS J003627.4-432835.6	9.114320	-43.476566	1172.100	0.410	50
XMMXCS J003646.4-432020.6	9.193531	-43.339073	601.299	0.250	37
XMMXCS J003832.0+853105.5	9.633369	85.518211	244.621	0.650	5
XMMXCS J004047.2+850536.2	10.196878	85.093399	58.778	0.490	2
XMMXCS J004128.7+852832.4	10.369600	85,475693	233.885	0.460	8
XMMXCS J004616.1+853116.7	11.567438	85.521309	1688.790	0.660	24
XMMXCS J004753.1+852716.9	11.971525	85.454704	584.735	0.310	11
XMMXCS J005126.0+852456.3	12.858494	85.415665	120.815	0.590	4
XMMXCS J011023 7+330543 4	17 598979	33 095399	372 837	0.600	38
XMMXCS J011138.6-453858.9	17.911226	-45.649704	846.144	0.390	50
XMMXCS J011244.0-454237.5	18.183615	-45.710442	69.387	0.680	4
XMMXCS J011624.2+325718.5	19.101153	32.955143	175.020	0.450	50
XMMXCS J011632 0+330324 6	19 133688	33 056855	408 671	0.630	50
XMMXCS J011954 7+141655 1	19 977931	14 281974	93 330	0.550	16
XMMXCS J014449 9=043231 5	26 208227	-4 542109	1053 650	0.170	15
XMMXCS J014506 3-043921 5	26.276590	-4 655992	180 585	0.720	5
XMMXCS 1014523 2-042305 7	26.346951	-4.384943	1/9/191	0.660	8
XMMXCS 1014525 9-044751 7	26.358202	-4.797698	120 700	0.100	9
XMMXCS 1014547 5 049914 4	26.448021	4.270684	145 991	0.100	4
XMMXCS 1014547.5-042214.4 XMMXCS 1014557 2 042411 7	26.499795	4.560032	41.012	0.490	4
XMMXCS 1014602 4 044450 4	26.514175	4.747250	90.091	0.100	
XMMXCS 1014003.4-044430.4 XMMXCS 1014801.2 055247.2	20.314173	5 970905	224 501	0.080	12
XMMXCS 1014000.6 055518 5	27.003044	5 021812	121 210	0.410	12
XMMXCS 1015652 6 284228 7	20.000019	28 727442	451.506	0.400	42
XMMXCS 1015656 0 275012 2	29.2233334	27 087026	401.000	0.280	43
XMMXCS J015050.0+575915.2	29.233040	37.987020	1242 200	0.100	50
XMMXCS J015719.5+575055.8	29.331343	37.943302	112 878	0.240	17
XMMXCS J015731.0+380207.1	29.379307	38.033309	113.676	0.700	20
XMMXCS J015740.3+284918.1	29.442976	20.021097	02.750	0.400	20
XMMXCS J015754.8+375239.1	29.478340	37.877537	250.217	0.630	1
XMMXCS J015800.7+284256.6	29.503201	28.715744	91.267	0.840	2
XMMXCS J021939.3-032514.8	34.913826	-3.420789	45.817	0.500	12
XMMXCS J021951.2-055254.5	34.903303	-3.342804	101.813	0.170	05
XMMXCS J022045.1-032555.8	35.187920	-3.432190	357.249	0.300	35
XMMXCS J022145.3-034617.7	35.439041	-3.771597	1855.860	0.100	0
XMMXCS J022205.0-043240.6	35.521023	-4.544619	314.954	0.350	50
XMMXCS J022206.5-030311.2	35.527328	-3.053137	373.981	0.470	23
XMMXCS J022222.3-024837.8	35.593155	-2.810502	32.488	0.470	3
XMMXCS J022225.4-043735.8	35.605961	-4.626612	43.209	1.020	3
XMMXCS J022247.0-035148.6	35.696087	-3.863516	81.117	0.100	0
XMMXCS J022251.2-041642.5	35.713482	-4.278484	87.958	0.300	12
XMMXCS J022258.6-040639.0	35.744167	-4.110844	91.214	0.290	33
XMMXCS J022258.8-041609.5	35.745140	-4.269324	39.414	0.380	10
XMMXCS J022303.0-043620.6	35.762665	-4.605742	79.649	0.490	5
XMMXCS J022307.3-041307.3	35.780560	-4.218706	171.212	0.100	0
XMMXCS J022317.0-030718.5	35.821033	-3.121817	47.534	0.340	3
XMMXCS J022328.1-042150.5	35.867149	-4.364036	265.112	0.670	9
XMMXCS J022341.7-043032.0	35.923981	-4.508895	59.896	0.460	8
XMMXCS J022341.8-025405.1	35.924229	-2.901422	53.302	0.120	10
XMMXCS J022346.7-042435.3	35.944989	-4.409833	120.841	0.590	3
XMMXCS J022347.5-025133.5	35.948063	-2.859329	269.228	0.110	16
XMMXCS J022351.0-044910.1	35.962662	-4.819490	60.459	0.480	3
XMMXCS J022351.4-041842.5	35.964333	-4.311832	103.922	0.100	0
XMMXCS J022356.2-030557.1	35.984318	-3.099217	152.141	0.270	12
XMMXCS J022404.2-041327.9	36.017582	-4.224425	405.688	0.910	50
XMMXCS J022406.1-035502.7	36.025448	-3.917422	184.711	0.500	50
XMMXCS J022433.8-041433.1	36.141029	-4.242555	1989.460	0.260	50
XMMXCS J022434.4-041427.1	36.143620	-4.240875	340.109	0.250	50
XMMXCS J022500.0-040021.8	36.250122	-4.006071	72.375	0.100	15
Continued on Next Page					

XCS name	B A (12000)	Dec (12000)	Soft Counts	Bedshift	Ngal
XMMXCS J022508.9-040832.7	36.287441	-4.142435	87.792	0.380	7
XMMXCS J022509.6-041900.6	36.290016	-4.316840	226.987	0.100	12
XMMXCS J022510.2-040139.8	36.292763	-4.027745	151,400	0.190	25
XMMXCS J022529.1-040037.5	36.371342	-4.010441	230.381	0.840	2
XMMXCS J024249.6+372130.6	40.706852	37.358501	105.116	0.370	8
XMMXCS J024311.6+372331.3	40.798641	37.392052	44.566	0.520	29
XMMXCS J024403.9+372628.4	41.016441	37.441238	56.671	0.450	10
XMMXCS J024409.8+373128.8	41.041058	37.524681	818.672	0.660	34
XMMXCS J024426.3+371753.4	41.109715	37.298187	52.870	0.600	14
XMMXCS J024902.2-312010.6	42.259411	-31.336304	165.652	0.130	15
XMMXCS J025006.5-310400.2	42.527138	-31.066734	740.896	0.800	36
XMMXCS J030159.0-000221.0	45.495949	-0.039173	54.600	0.190	9
XMMXCS J030205.5-000002.4	45.523251	-0.000684	452.118	0.530	30
XMMXCS J030211.3-000133.5	45.547230	-0.025999	193.837	0.550	11
XMMXCS J030212.0+000600.6	45.550259	0.100193	88.238	1.040	3
XMMXCS J030212.0+001119.3	45.550388	0.188709	186.390	0.550	31
XMMXCS J030237.0-000506.4	45.654472	-0.085129	213.173	0.130	14
XMMXCS J030248.6+002131.5	45.702866	0.358768	628.134	0.410	4
XMMXCS J030253.9-000606.6	45.724693	-0.101858	59.510	0.560	7
XMMXCS J030317.4+001239.7	45.822582	0.211037	138,309	0.520	36
XMMXCS J030534.3-000514.4	46.393321	-0.087348	94.524	0.870	1
XMMXCS J030542.3-001457.6	46.426316	-0.249355	89.472	0.650	1
XMMXCS J030614.6-000537.0	46.561031	-0.093636	1297.670	0.440	15
XMMXCS J030617 3-000837 7	46 572441	-0 143828	2686 600	0.130	41
XMMXCS J030625.3+001306.1	46.605831	0.218380	236.782	0.590	6
XMMXCS J030707 1-001600 9	46 779909	-0.266935	77 423	0.100	0
XMMXCS J035317.9-000535.6	58.324852	-0.093232	74.610	0.480	3
XMMXCS J035415 8-001006 0	58 566212	-0.168347	437 403	0.200	18
XMMXCS J035726 1+011807 8	59 358776	1 302173	1244 480	0.130	50
XMMXCS J035744.5+010137.0	59.435566	1.026969	897.978	0.280	50
XMMXCS J041938.0+142116.4	64.908745	14.354565	53.912	0.590	3
XMMXCS J041944.9+143905.9	64.937363	14.651662	300.172	0.350	14
XMMXCS 1041945 6+021319 0	64 940331	2 221969	281 903	0.100	1
XMMXCS 1042029 2+022645 3	65 121780	2 445937	87 364	0.330	5
XMMXCS 1045438 5-531907 9	73 660744	-53 318878	65 115	0.460	4
XMMXCS 1045459 9-532945 4	73 7/0863	-53 /9596/	50.740	0.400	-1
XMMXCS J045506 0-532342 5	73 775154	-53 305140	803 746	0.300	45
XMMXCS 1051326 2 702010 F	78 250770	70 /88777	42 284	0.350	-±0
$XMMXCS$ 1051510 9 \pm 010600 6	78,795685	1.102675	53 101	0.110	3
XMMXCS J051528 4±703425 4	78 868675	79 573746	312 687	0.410	26
XMMXCS J051549 8±794000 0	78 957771	79 666924	302.882	0.410	12
XMMXCS J051554 0±010412 0	78 975397	1 070524	53 568	0.120	7
XMMXCS J051609.9+010946 3	79,041267	1.162873	156.729	0.240	16
XMMXCS 1063945 9+821849 6	99 941635	82 313782	1149 960	0.410	50
XMMXCS 1064023 4+822858 3	100 097542	82 482864	153 628	0.790	25
XMMXCS 1064246 4±822837 5	100.693398	82 477104	122 887	0.700	5
XMMXCS 1064424 1±822634 0	101 100609	82 442780	289.835	0.840	5
XMMXCS 1065046 2±742838 1	102 692551	74 477264	190.866	0.540	5
XMMXCS 1075427 9±220952 1	118 616287	22 16/482	275 158	0.370	50
XMMXCS 1075433 7±214839 3	118 640450	21.810928	42 720	0.370	2
XMMXCS 1075457 7±221313 2	118 740593	22.010325	44.945	0.670	21
XMMXCS 1075534 3±220240 2	118 8031/3	22.220333	53 201	0.070	21
XMMXCS 1075602 0 215840 5	110.009552	22.044014	75 222	0.130	2
XMMXCS 1080522 0 152126 0	121 292569	15 260264	96 674	0.400	6
XMMXCS 1080613 2±152243 8	121.555307	15 378855	153 567	0.010	ä
$XMMXCS$ 1080633 4 \pm 153224 5	121.0000357	15 540142	82 966	0.180	19
XMMXCS 1080713 6±152658 8	121.0033003	15 449694	722.051	0.110	14
XMMXCS 1083025 8±524129 1	127.607658	52 691/133	3886 600	0.780	45
XMMXCS J083054.3+524538.9	127.726547	52.760807	63.108	0.660	3
XMMXCS J083115 4+523453 8	127 814339	52 581615	263 184	0.520	38
XMMXCS J083147 8+525036 1	127.949257	52 843365	668 885	0.460	50
XMMXCS J083154 4+523217 7	127.976768	52 538277	179 977	0.370	8
XMMXCS J083213 6+524830 2	128.056839	52 808395	360.823	0.490	9
XMMXCS J083215.3+525808.9	128.063828	52.969158	104.674	0.730	3
XMMXCS J083216 6+523201 8	128.069275	52 533855	110 117	0.360	16
XMMXCS 1083856 2+253806 7	129 734406	25 635206	57 246	0.900	16
XMMXCS J083901 2+705003 7	129 755249	70 834366	110 209	0.450	18
XMMXCS 1083913 9+704803 1	129 808243	70.800880	129 715	0.470	10
XMMXCS J091821.8+211447.5	139.590973	21.246546	345.749	0.690	14
XMMXCS J092544.7+305430.7	141.436560	30.908543	112.484	0.400	11
XMMXCS 1092545 6+305857 2	141 440400	30 982583	1101 520	0.520	50
XMMXCS J092555.3+304944.2	141.480440	30.828957	108.894	0.480	22
XMMXCS 1092641 3+310309 5	141 672450	31 052644	145 989	0.670	20
XMMXCS J092650 5+310128 8	141 710800	31 024669	481 382	0.490	38
XMMXCS J092655.0+305007 5	141.729380	30.835443	86.314	0.150	4
XMMXCS J092703.2+310037 9	141.763520	31.010551	141.151	0.480	18
XMMXCS J092726.0+310306.6	141.858520	31.051858	175.255	0.960	2
XMMXCS J092735.8+305339.7	141.899220	30.894361	66.844	0.540	4
XMMXCS J093259.4+551545.0	143.247894	55.262505	380.345	0.520	3
XMMXCS J093350.2+552620.1	143.459259	55.438927	187.277	0.490	40
XMMXCS J093358.2+550946.1	143.492538	55.162830	52.454	0.180	9
XMMXCS J093423.1+551743.5	143.596283	55.295433	130.094	0.620	1
XMMXCS J093438.5+551335.7	143.660675	55.226585	172.692	0.810	20
XMMXCS J093532.8+552142.6	143.887054	55.361851	80.043	0.390	3
XMMXCS J095105.8+391741.3	147.774429	39.294827	113.257	0.440	17
XMMXCS J095127.7+392009.1	147.865601	39.335869	48.611	0.440	4
XMMXCS J095957.8+251630.4	149.990982	25.275124	1740.810	1.070	2
XMMXCS J100031.5+251714.3	150.131592	25.287312	119.786	0.650	11
XMMXCS J100104.2+252625.0	150.267670	25.440285	156.436	0.530	14
XMMXCS J100115.3+250612.4	150.314117	25.103470	353.618	0.670	35
XMMXCS J100124.2+250653.9	150.351166	25.114977	50.458	0.490	9
XMMXCS J104348.0-012408.2	160.950104	-1.402283	82.808	0.410	3
XMMXCS J104407.2-012722.2	161.030029	-1.456194	86.810	0.180	4
XMMXCS J104448.6-011155.7	161.202805	-1.198813	113.625	0.510	4
XMMXCS J104507.9-013617.7	161.283325	-1.604921	93.622	0.100	4
XMMXCS J113055.0+311332.7	172.729385	31.225756	195.889	0.810	13
XMMXCS J122114.6+280234.2	185.311111	28.042847	243.077	0.270	1
XMMXCS J122118.7+275732.3	185.327957	27.958979	402.026	0.740	19
XMMXCS J122124.3+275410.3	185.351471	27.902882	170.297	0.540	31
XMMXCS J130424.4-102932.0	196.102036	-10.492246	109.054	1.000	6
XMMXCS J130456.5-101012.4	196.235718	-10.170132	86.367	0.640	17
XMMXCS J130505.8-101645.5	196.274506	-10.279314	136.651	0.330	20
XMMXCS J130514.7-102311.5	196.311279	-10.386551	385.894	0.130	2
XMMXCS J130549.2-102717.5	196.455093	-10.454864	47.346	0.280	9
XMMXCS J130650.1-233129.4	196.708878	-23.524857	306.803	0.210	50
XMMXCS J131455.1-163838.3	198.729980	-16.643982	489.975	0.610	14
XMMXCS J131507.4-163206.9	198.780975	-16.535254	707.865	0.110	4
XMMXCS J131524.8-163227.9	198.853745	-16.541088	533.012	0.490	10
XMMXCS J131825.4-145030.3	199.605835	-14.841766	165.457	0.800	2
XMMXCS J131844.6-150133.9	199.686157	-15.026097	208.355	0.300	9
XMMXCS J131937.2-145444.5	199.905212	-14.912371	250.930	0.190	15
XMMXCS J131950.1-144957.5	199.958817	-14.832642	234.516	0.340	17
XMMXCS J133511.6-232919.0	203.798580	-23.488623	704.471	0.100	20
XMMXCS J140408.4-341135.3	211.035385	-34.193146	77.918	0.900	1
Continued on Next Page					

XCS name R.A (J2000) Dec (J2000) Soft Counte Redshift Neal XMMXCS J140439.3-341235.3 211.164139 -34.209827 471.146 0.440 22 XMMXCS J150643.3-013639.9 226.430832 1.611093 77.038 0.630 28 XMMXCS J150643.3-013639.9 226.728302 1.734854 190.307 0.630 28 XMMXCS J156026.5-234255.2 223.0102386 -23.171359 225.000 0.660 9 XMMXCS J155628.5-234255.2 239.102386 -23.171359 225.000 0.660 9 XMMXCS J20138.0-1547.8 303.408722 -24.896633 104.658 0.630 5 XMMXCS J20138.0-1547.8 303.408722 -41.896633 104.658 0.630 5 XMMXCS J20138.4-34354.7 303.476470 -24.661587 132.714 0.720 5 XMMXCS J204130.545163.8 311.79852 -35.16244 2264.734 0.990 2 XMMXCS J204130.54163.8 311.79852 -55.85974 91.897 0.720 6 XMMXCS J210010.410404.7 315.	Table H.1 – Continued						
XMMXCS 1140436.9-334921.2 211.153778 -33.822563 174.229 0.160 8 XMMXCS 1150643.3-013639.9 226.430832 1.611093 77.038 0.630 15 XMMXCS 1150644.7-014405.4 226.728302 1.734545 190.307 0.630 28 XMMXCS 1153226.0-88402.6 232.891647 -8.552355 74.69 0.170 8 XMMXCS 11552625.2-325138.7 230.119814 -8.672410 55.639 0.130 5 XMMXCS 11556285.2-325138.7 230.1199514 -23.660764 224.576 0.110 16 XMMXCS 1201354.3-243414.7 303.476470 -24.661587 132.714 0.720 5 XMMXCS 1204134.7.35090.7 310.377360 -35.150218 2062.290 0.510 33 XMMXCS 1204304.54565.9 31.523682 -15.791275 221.991 0.270 38 XMMXCS 1204014.6.15309.5 31.523682 -15.791275 221.991 0.720 6 XMMXCS 1204024.7450946 31.022.08743 9.897 0.210 10 XMMXCS 120420.44459.0 322.087	XCS name	R.A (J2000)	Dec (J2000)	Soft Counts	Redshift	Ngal	
XMMXCS J140439.3-41235.3 211.164139 -34.209827 471.146 0.40 22 XMMXCS J150643.4-014405.4 226.728302 1.611093 77.038 0.630 28 XMMXCS J151313.9.08306.4 226.728302 1.734854 190.307 0.630 28 XMMXCS J155226.0-084020.6 233.108414 -8.552355 74.459 0.170 8 XMMXCS J155226.0-084020.6 233.108414 -8.672410 59.639 0.660 9 XMMXCS J20138.0-110251.6 201.905514 -11.047685 255.332 0.10 16 XMMXCS J20138.0-41547.8 303.408722 -41.896633 126.743 0.900 2 XMMXCS J204130535653.8 310.755930 -35.15804 246.734 0.900 2 XMMXCS J20450.6-15309.5 31.3770935 -15.885074 91.897 0.270 6 XMMXCS J20100.1+41618.1 31.528697 10.667993 8.011 0.470 0 XMMXCS J21010.2+140418.1 31.528697 10.67993 8.011 0.400 1 0.440 7	XMMXCS J140436.9-334921.2	211.153778	-33.822563	174.229	0.160	- 8	
XMMXCS J150643.3+013639.9 226.430832 1.611093 77.038 0.630 15 XMMXCS J150643.7+014405.4 232.851647 -8.552355 74.459 0.170 8 XMMXCS J153226.0+8402.6 233.108414 -8.672410 56.639 0.130 5 XMMXCS J155628.5-23158.7 239.102386 -23.713509 235.090 0.660 9 XMMXCS J155628.5-23518.7 239.102386 -23.61657 122.714 0.700 5 XMMXCS J201354.3-24341.7 30.476470 -24.661587 112.2714 0.700 5 XMMXCS J204310.5-351655.8 310.377360 -35.15218 2266.290 0.670 5 XMMXCS J20430.5-451654.9 310.719670 -35.162844 254.734 0.360 4 XMMXCS J205050.51530.5 31.3.523682 -15.791275 221.991 0.270 8 XMMXCS J210101.6+10404.7 315.28560 10.67593 8.011 0.510 4 XMMXCS J210101.4+10404.7 315.28697 19.846 0.160 10 XMMXCS J21010.27.2444095.0 322.008728 <td>XMMXCS J140439.3-341235.3</td> <td>211.164139</td> <td>-34.209827</td> <td>471.146</td> <td>0.840</td> <td>22</td>	XMMXCS J140439.3-341235.3	211.164139	-34.209827	471.146	0.840	22	
XMMXCS 1150664.7+014405.4 226.728302 1.734854 190.307 0.630 28 XMMXCS 1153133.908308.4 223.2891647 -8.552355 74.459 0.170 8 XMMXCS 1155624.5.235118.7 230.119386 -23.715359 235.090 0.660 9 XMMXCS 1155624.5.235118.7 230.119914 -23.60763 246.729 0.610 13 XMMXCS 120138.0-41547.8 303.408722 -41.896633 104.658 0.630 5 XMMXCS 1204130.54563.8 310.755030 -35.161271 2206.00 0.610 33 XMMXCS 1204420.7350946.2 310.755030 -35.16124 224.734 0.900 2 XMMXCS 1206405.6-155309.5 313.770935 -15.885074 91.897 0.248 0.410 7 XMMXCS 1210103.1+40518.1 315.28610 10.667993 84.011 0.410 7 XMMXCS 1210163.1+40518.1 315.28610 10.667993 84.011 7 7 7 70.	XMMXCS J150543.3+013639.9	226.430832	1.611093	77.038	0.630	15	
XMMXCS J15313.9-08308.4 232.891647 -8.552355 74.459 0.170 8 XMMXCS J155262.0-084020.6 233.108414 -8.672410 59.639 0.130 5 XMMXCS J15628.5-235138.7 239.119034 -23.80764 24.576 0.660 13 XMMXCS J200758.9-110251.6 301.99514 -11.047685 285.332 0.110 16 XMMXCS J20138.0-451541.7 303.498724 -44.1996637 13.654 0.630 0.670 XMMXCS J204130.5-35165.8 310.377360 -35.281627 2062.290 0.510 33 XMMXCS J204301.4-51856.9 310.75590 -35.162844 254.734 0.990 2 XMMXCS J20450.6-164728.5 313.77035 -55.162857 91.897 0.720 6 XMMXCS J21010.6-144458.0 315.256670 10.667963 84.011 0.510 4 XMMXCS J21010.1-4144559.0 322.008728 -44.333080 144.888 0.390 20 XMMXCS J21210.1-2744459.0 322.008728 -44.333080 144.888 0.390 20 XMMXCS J21218.2-274347.9 322.008728 -44.333080 144.888 0.390 </td <td>XMMXCS J150654.7+014405.4</td> <td>226.728302</td> <td>1.734854</td> <td>190.307</td> <td>0.630</td> <td>28</td>	XMMXCS J150654.7+014405.4	226.728302	1.734854	190.307	0.630	28	
XMMXCS J155226.0-084020.6 233.108414 -8.672410 59.639 0.130 5 XMMXCS J156624.5-24325.2 239.102386 -23.715359 23.6090 0.566 9 XMMXCS J156624.5-243138.7 239.110934 -23.860764 284.576 0.960 13 XMMXCS J201383.0-415347.8 303.498722 -41.896633 104.658 6.32 5 XMMXCS J201383.0-415347.8 303.477640 -24.561587 12.2714 0.720 5 XMMXCS J20143.0-531663.7 310.377600 -35.16244 25.4734 0.900 60 XMMXCS J204050.1-55309.5 313.75030 -35.315830 144.294 0.360 4 XMMXCS J204050.1-55309.5 313.75085 -15.79175 221.991 0.270 38 XMMXCS J210051.4+104518.1 315.2286501 10.755046 139.846 0.160 10 XMMXCS J21010.1+10458.7 312.20027 14.4939 0.248 0.410 7 XMMXCS J21212.2-2444509.7 322.000243 -44.90265 264.253 0.500 16 XMMXCS J21212.2-274347.9 328.046703 -27.729444 0.410 7 <	XMMXCS J153133.9-083308.4	232.891647	-8.552355	74.459	0.170	8	
XMMXCS J155624.5-234255.2 239.1103286 -23.715359 235.090 0.560 19 XMMXCS J200758.9-110251.6 301.995514 -11.047685 285.332 0.110 16 XMMXCS J20138.0-41547.8 303.408722 -41.896633 104.658 0.630 5 XMMXCS J20138.0-41547.8 303.408722 -44.61587 132.714 0.720 5 XMMXCS J201434.7-35090.7 310.34660 -35.281672 202.290 0.510 33 XMMXCS J204252.7-350946.2 310.715930 -35.315830 144.294 0.600 4 XMMXCS J20460.0-1650946.1 315.72582 -15.791275 21.991 0.270 38 XMMXCS J20100.1+40404.7 315.226870 10.667963 14.401 0.610 10 XMMXCS J21200.11.44459.0 322.008728 -44.833080 144.888 0.390 20 XMMXCS J212080.744459.0 322.008728 -44.833080 144.888 0.390 20 XMMXCS J212080.744459.0 322.048784 -45.07265 264.253 0.500 16 XMMXCS J21250.72.444590.0 328.046906 -77.29941 13.5966 0.250 </td <td>XMMXCS J153226.0-084020.6</td> <td>233.108414</td> <td>-8.672410</td> <td>59.639</td> <td>0.130</td> <td>5</td>	XMMXCS J153226.0-084020.6	233.108414	-8.672410	59.639	0.130	5	
XMMXCS J155628.5-235138.7 239.119034 -23.860764 284.576 0.966 13 XMMXCS J201338.0-415347.8 303.496722 -41.896633 104.658 28.322 0.110 16 XMMXCS J201338.0-415347.8 303.476470 -24.661587 132.714 0.720 5 XMMXCS J204134.7-360940.7 310.334650 -35.15218 266.030 0.670 50 XMMXCS J20422.7-360946.2 310.719670 -35.162844 254.734 0.990 2 XMMXCS J204056.6-154728.5 313.570935 -15.858974 91.897 0.720 6 XMMXCS J210056.0-155309.5 313.770360 -15.858974 91.897 0.720 6 XMMXCS J21010.1-6140404.7 315.286970 10.667993 84.011 0.510 4 XMMXCS J212180.2-444599.0 322.008728 -44.833080 144.888 0.390 20 XMMXCS J212180.2-444599.0 323.04248 -44.902695 264.253 0.650 35 XMMXCS J212180.2-444599.0 328.04206 -27.7393440 135.966 0.70 14 XMMXCS J21218.2-47347.9 328.042066 -27.7393440	XMMXCS J155624.5-234255.2	239.102386	-23.715359	235.090	0.560	9	
XMMXCS J200788.9-110251.6 301.99514 -11.047685 285.322 0.110 16 XMMXCS J20138.0-415417.8 303.408722 -41.896633 104.658 0.630 5 XMMXCS J20143.1-351653.8 303.408722 -24.561587 132.714 0.720 5 XMMXCS J20143.1-35090.7 310.394650 -35.281627 2062.290 0.510 33 XMMXCS J204252.7.560946.2 310.719670 -35.16284 254.7734 0.990 2 XMMXCS J20401.4-351856.9 310.755930 -35.315830 144.294 0.60 4 XMMXCS J2060.0-153015.1 315.77826 -10.885046 0.10 10 10 XMMXCS J21000.1+104004.7 315.228670 10.667963 144.011 0.50 10 XMMXCS J21200.1244459.0 322.008728 -44.83380 144.888 0.390 20 XMMXCS J212820.44459.0 322.008728 -44.83380 144.888 0.390 20 XMMXCS J212820.44459.0 732.20043 -44.902695 264.253 0.500 16 XMMXCS J212482.44459.0 732.20043 -44.902695 264.253 0.500 3	XMMXCS J155628.5-235138.7	239.119034	-23.860764	284.576	0.960	13	
XMMXCS J201338.0-415347.8 303.408/22 -24.6501587 132.714 0.720 5 XMMXCS J201354.3-43341.7 303.476470 -24.6511587 132.714 0.720 5 XMMXCS J204134.7-530900.7 310.3476470 -35.150218 3266.030 0.670 50 XMMXCS J204304.7530900.7 310.3496470 -35.15218 2266.030 0.670 50 XMMXCS J204304.7531856.9 310.755590 -35.15530 -35.15530 -35.31530 144.294 0.360 4 XMMXCS J20505.0-15509.5 313.77036 -15.85974 91.897 0.720 6 XMMXCS J21010.54.8+104518.1 315.2268607 10.664939 70.248 0.410 7 XMMXCS J212020.72-4449650.7 322.008728 -44.833080 144.888 0.390 20 XMMXCS J212820.72-445495.7 322.040724 -45.07966 264.253 0.500 10 XMMXCS J21281.8-272363 327.44073 -27.99644 135.660 0.201 10 XMMXCS J2121.8-272363 328.04993 -27.79964 132.29 0.400 2 2 XMMXCS J21251.8-27367447.9 329.8987785	XMMXCS J200758.9-110251.6	301.995514	-11.047685	285.332	0.110	16	
XIMIXCS J201394.3-243341.7 303.470340 -24.901387 132.714 0.720 53 XIMIXCS J204130.7-55163.8 310.377306 -35.150218 3266.030 0.670 50 XIMIXCS J204252.7-550946.2 310.719670 -35.15218 3266.030 0.670 50 XIMIXCS J204301.4-551856.9 310.715530 -35.315830 144.294 0.360 4 XIMIXCS J205405.6-154728.5 313.523860 10.755046 139.846 0.160 10 XIMIXCS J210054.8+104518.1 315.22860 10.755046 139.846 0.160 10 XIMIXCS J210101.6+104004.7 315.256670 10.657903 84.011 0.510 4 XIMIXCS J212002.0-444950.0 322.008728 -44.83080 144.888 0.390 20 XIMIXCS J212807.2-4445409.0 322.008728 -44.83080 144.888 0.390 20 XIMIXCS J212120.2-7445409.0 322.008728 -44.83080 144.888 0.390 20 XIMIXCS J212120.2-72336.3 328.087343 -27.729844 119.222 0.420 25 XIMIXCS J212521.2-77336.3 328.08785 -27.729844 119.222	XMMXCS J201338.0-415347.8	303.408722	-41.896633	104.658	0.630	5	
XIMIXCS J204134.7-350900.7 310.347300 -35.281021 206.230 0.570 50 XIMIXCS J204134.7-350900.7 310.394650 -35.152018 3266.030 0.670 50 XIMIXCS J204301.4-351856.9 310.755030 -35.155201 32266.030 0.670 50 XIMIXCS J204506.6-154728.5 313.523682 -15.791275 221.991 0.270 6 XIMIXCS J210054.8+104018.1 315.228507 10.666439 70.248 0.410 7 XIMIXCS J2120052.444569.0 715.252670 10.667993 84.011 0.510 4 XIMIXCS J212807.2-444569.7 322.00874 -44.83080 144.888 0.390 20 XIMIXCS J21211.8-272383.3 327.840973 -27.393440 135.966 0.250 10 XIMIXCS J21521.2-274347.9 328.046906 -27.72984 119.922 0.420 25 XIMIXCS J21520.9-272525.3 328.087433 -27.423706 45.349 0.880 2 XIMIXCS J21520.9-272525.3 328.087433 -27.73984 119.922 0.420 25 XIMIXCS J21520.9-272525.3 328.08733 -27.423706 45.349	AMMACS J201354.3-243341.7	303.476470	-24.301387	132.714	0.720	C C	
XNMINCC 1204151.7-350946.2 310 719020 -35.119314 J540.703 0.900 2 XNMINCS 1204451.7-350946.2 310 756930 -35.116830 144.294 0.360 4 XNMINCS 1204451.7-351946.2 310 756930 -35.116830 144.294 0.360 4 XNMINCS 1205406.1-15729.5 313.770335 -15.855974 91.897 0.720 6 XNMINCS J210101.6+104104.7 315.25860 10.75046 139.846 0.160 10 XNMINCS J212007.444509.0 322.008728 -44.83080 144.488 0.390 20 XNMINCS J212807.2-444509.0 322.008728 -44.83080 144.888 0.390 20 XNMINCS J212807.2-444509.0 322.008728 -44.83080 144.888 0.390 20 XNMINCS J2125121.2-27235.3 328.087433 -27.729844 119.222 0.420 25 XNMINCS J21573.2-27452.5 328.087433 -27.729846 102.701 0.280 2 XNMINCS J21593.3-69656.8 29.392731 -69.788469 103.1600 0.50 12 <t< td=""><td>XMMXCS 1204130.3-351033.8 XMMXCS 1204124 7 250000 7</td><td>210.204650</td><td>-33.281027</td><td>2062.290</td><td>0.510</td><td>50</td></t<>	XMMXCS 1204130.3-351033.8 XMMXCS 1204124 7 250000 7	210.204650	-33.281027	2062.290	0.510	50	
XMMXCS J204301.4-351856.9 310.755930 -35.102433 244.14 0.360 4 XMMXCS J204301.4-351856.9 310.755930 -35.15830 144.294 0.360 4 XMMXCS J205605.0-155309.5 313.77093 -15.885974 91.887 0.720 6 XMMXCS J210104.4-104004.7 315.256970 10.667993 84.011 0.510 4 XMMXCS J212802.0-444599.0 322.005728 -44.83080 144.888 0.390 20 XMMXCS J212807.2-444599.7 322.003728 -44.83080 144.888 0.390 20 XMMXCS J212807.2-445499.7 322.046728 -44.83080 144.888 0.390 20 XMMXCS J212807.2-445499.7 322.046758 -77.393440 135.966 0.250 10 XMMXCS J21521.1-2-274347.9 328.046906 -27.7393440 15.966 0.250 12 XMMXCS J21520.9-27525.3 328.087433 -27.423706 45.349 0.980 2 XMMXCS J21590.0-015930.4 331.45758 -19.1975 7.72984 110.00 520 12 XMMXCS J21593.4-695256.8 329.92731 -69.628700 133.283 <td>XMMXCS 1204252 7 250046 2</td> <td>210.710670</td> <td>25 162844</td> <td>254 724</td> <td>0.070</td> <td>30</td>	XMMXCS 1204252 7 250046 2	210.710670	25 162844	254 724	0.070	30	
XMMXCS J205405.6-154728.5 313.523682 -15.791275 -221.991 0.270 38 XMMXCS J21054.6-154728.5 313.523682 -15.791275 -221.991 0.270 38 XMMXCS J210016.6-154728.5 313.523682 -15.755146 139.846 0.160 10 XMMXCS J210101.6+104004.7 315.256970 10.667993 84.011 0.510 4 XMMXCS J212802.0-444599.0 322.008728 -44.83080 144.888 0.390 20 XMMXCS J21521.2-274347.9 322.008724 -44.902695 264.253 0.500 16 XMMXCS J21521.2-274347.9 328.046906 -27.739844 119.222 0.420 25 XMMXCS J21521.0-273025.5 328.087585 -27.507092 215.998 0.770 14 XMMXCS J21596.9-694342.1 329.778931 -69.728386 102.701 0.280 7 XMMXCS J21593.4-69526.8 333.458588 -1.91795 79.872 0.600 4 XMMXCS J221593.4-6175064 33.458588 -1.917932 68.170 0.570 10 XMMXCS J221593.4-175149.8 333.9974 69.628700 133.283 10.03<	XMMXCS 1204202.1-550540.2 XMMXCS 1204301 4-351856 9	310 755930	-35 315830	144 294	0.360	4	
XMIXCS J250505.0-155309.5 313.770035 -15.885074 91.807 0.720 6 XMMXCS J21001.6+10404.7 315.256070 10.667993 139.846 0.160 10 XMMXCS J210109.1+108847.1 315.256070 10.667993 139.846 0.410 7 XMMXCS J212807.2-445499.7 322.008728 -44.83080 144.888 0.390 20 XMMXCS J212807.2-445499.7 322.030243 -44.902695 264.253 0.500 16 XMMXCS J212807.2-445499.7 322.04606 -27.7393440 135.966 0.250 10 XMMXCS J215212-274347.9 328.046960 -27.73984 119.222 0.420 25 XMMXCS J21520.9-272525.3 328.087433 -27.423706 45.349 0.980 2 XMMXCS J21590.4-069526.8 329.97731 -69.882469 131.600 0.520 12 XMMXCS J21590.4-175343.3 329.889374 -69.628700 133.283 1.010 3 XMMXCS <td>XMMXCS J205405 6-154728 5</td> <td>313 523682</td> <td>-15 791275</td> <td>221 991</td> <td>0.270</td> <td>38</td>	XMMXCS J205405 6-154728 5	313 523682	-15 791275	221 991	0.270	38	
XMIXCS J210054.8+104518.1 315.228560 10.755046 139.846 0.160 10 XMIXCS J210109.1+103847.1 315.2286070 10.666793 84.011 0.510 4 XMIXCS J212802.0-444950.0 322.003728 -44.833080 144.888 0.390 20 XMMXCS J212807.2-444405.0 322.00243 -44.902695 264.253 0.500 16 XMMXCS J212858.6-153422.6 322.244507 -15.572965 295.882 0.650 35 XMMXCS J21511.2-27347.9 328.046906 -27.729984 113.922 0.420 25 XMMXCS J215211.0-273025.5 328.087585 -27.507092 215.998 0.770 14 XMMXCS J215906.9-694342.1 329.778931 -69.728366 102.701 0.280 7 XMMXCS J215906.9-694342.1 329.89374 -69.628700 133.283 10.10 3 XMMXCS J215906.9-049434.1 329.89374 -69.628700 133.283 10.01 3 XMMX	XMMXCS J205505.0-155309.5	313.770935	-15.885974	91.897	0.720	6	
XMXXCS J210101.6+104004.7 315.256970 10.667993 84.011 0.510 4 XMMXCS J212802.0-444959.0 322.008728 -44.833080 144.888 0.390 20 XMMXCS J212807.2-444409.7 322.030243 -44.902695 264.253 0.500 16 XMMXCS J212858.6-153422.6 322.244507 -15.72995 295.882 0.650 35 XMMXCS J212515.4 327.3440973 -27.339440 13.9666 0.250 10 XMMXCS J21521.0 -273057.3 328.087585 -27.43706 45.349 0.980 2 XMMXCS J21550.6 329.392731 -69.72836 102.701 0.280 7 XMMXCS J21506.0 0.694342.1 329.778931 -69.72836 102.701 0.280 7 XMMXCS J221473.4-175248.3 33.4697266 -17.80089 501.048 0.340 18 XMMXCS J221457.3-172903.3 33.306487 -17.4843578 231.552 0.470 2	XMMXCS J210054.8+104518.1	315.228560	10.755046	139.846	0.160	10	
XMXXCS J210109.1+103847.1 315.288130 10.646439 70.248 0.410 7 XMMXCS J212807.2-445409.7 322.030243 -44.83080 144.888 0.390 20 XMMXCS J212858.6-155422.6 322.24507 -15.572965 295.882 0.650 35 XMMXCS J21511.8-27238.3 327.840973 -27.393440 133.966 0.250 10 XMMXCS J215211.2-27347.9 328.046906 -27.729984 119.222 0.420 25 XMMXCS J215221.0-273025.5 328.087853 -27.507092 215.998 0.770 14 XMMXCS J215906.9-694342.1 329.778931 -69.78286 102.701 0.280 7 XMMXCS J220550.0-015930.4 331.458588 -1.991795 79.872 0.600 4 XMMXCS J221459.6-17508.8 333.097266 -17.840578 231.552 0.470 2 XMMXCS J221459.6-17508.8 333.905487 -17.843578 231.552 0.470 2 XMMXCS J221559.4-17508.8 333.905487 -17.843578 231.552 0.470 2	XMMXCS J210101.6+104004.7	315.256970	10.667993	84.011	0.510	4	
XMMXCS J212802.0-444595.0 322.003728 -44.830800 144.888 0.390 20 XMMXCS J212858.6-15342.6 322.003243 -44.902695 264.253 0.500 16 XMMXCS J21521.8-277336.3 327.840973 -27.393440 135.966 0.250 10 XMMXCS J21521.8-277336.3 328.087433 -27.729984 119.222 0.420 25 XMMXCS J215220.9-27252.5.3 328.087585 -27.7507092 215.998 0.770 14 XMMXCS J215933.4-693743.3 329.78931 -69.728386 102.701 0.280 7 XMMXCS J215050.9-001530.0 331.445588 -1.991795 79.872 0.600 4 XMMXCS J21459.6-175036.8 333.748535 -17.880089 501.048 0.340 18 XMMXCS J21456.9-175036.8 333.745786 21.7878 231.552 0.470 2 XMMXCS J21555.9-175149.8 333.995181 -17.84255 67.461 0.350 2 XMMXCS J221556.9-175149.8 333.997589 -17.637657 443.712 0.420 23	XMMXCS J210109.1+103847.1	315.288130	10.646439	70.248	0.410	7	
XMMXCS J212807.2-445409.7 322.030243 -44.902695 264.253 0.500 16 XMMXCS J2125121.8-272336.3 327.840973 -27.393440 135.966 0.250 10 XMMXCS J21511.2-274347.9 328.046906 -27.729984 119.222 0.420 25 XMMXCS J21521.0-273025.5 328.087433 -27.43706 45.349 0.980 2 XMMXCS J215304.2-69526.8 329.92731 -69.82469 131.600 0.520 12 XMMXCS J215304.2-69526.8 329.92731 -69.728386 102.701 0.280 7 XMMXCS J21500.9-015930.4 331.458588 -1.991795 79.872 0.600 4 XMMXCS J221447.3-175248.3 333.697266 -17.840089 501.048 0.340 18 XMMXCS J21559.4-17504.8 333.905487 -17.48425 67.461 0.350 2 XMMXCS J21559.4-17504.8 333.905487 -17.48425 67.461 0.350 2 XMMXCS J21548.4-173827.4 333.905487 -17.48425 67.461 0.350 2 XMMXC	XMMXCS J212802.0-444959.0	322.008728	-44.833080	144.888	0.390	20	
XMMXCS J212858.6-153422.6 322.244507 -15.572965 295.882 0.650 35 XMMXCS J215211.2-274347.9 328.046906 -27.729984 119.222 0.420 25 XMMXCS J215210.0-273025.5 328.087585 -27.507092 215.998 0.770 14 XMMXCS J215734.2-695266.8 329.392731 -69.822469 102.701 0.280 7 XMMXCS J215033.4-693743.3 329.889374 -69.628700 133.283 1.010 3 XMMXCS J20559.3-015815.7 331.497131 -1.971032 68.170 0.570 10 XMMXCS J21549.6-175036.8 333.74853 -17.84089 501.048 0.340 18 XMMXCS J21549.6-175036.8 333.74853 -17.840578 231.552 0.470 2 XMMXCS J21549.6-175036.8 333.74853 -17.63657 43.17 0.420 23 XMMXCS J2155.9+175149.8 333.97589 -17.636853 106.661 0.140 9 XMMXCS J212155.9+175149.8 333.97589 -17.637657 443.712 0.420 23 XMMXCS J222150.4+173415.5 339.7589 -17.637657 43.712 0.450 <td>XMMXCS J212807.2-445409.7</td> <td>322.030243</td> <td>-44.902695</td> <td>264.253</td> <td>0.500</td> <td>16</td>	XMMXCS J212807.2-445409.7	322.030243	-44.902695	264.253	0.500	16	
XMMXCS J215121.8-272336.3 327.840973 -27.393440 135.966 0.250 10 XMMXCS J21521.2-274347.9 328.0464906 -27.729984 119.222 0.420 25 XMMXCS J21521.0-273025.5 328.087433 -27.423706 45.349 0.980 2 XMMXCS J215201.0-273025.5 328.087585 -27.507092 215.998 0.770 14 XMMXCS J215906.9-694342.1 329.778931 -69.728386 102.701 0.280 7 XMMXCS J220550.9-015930.4 331.458588 -1.991795 79.872 0.600 4 XMMXCS J221546.0-175036.8 333.4697266 -17.880089 501.048 0.340 18 XMMXCS J22155.9-175148.3 333.905487 -17.484255 67.461 0.350 2 XMMXCS J22155.9-175149.8 333.991789 -17.637657 443.712 0.440 6 XMMXCS J22155.9-175149.8 33.997589 -17.637657 443.712 0.420 23 XMMXCS J22155.9-173149.8 33.7076721 -5.586149 279.243 0.450 7 XMMXCS J222155.9-173149.8 33.7076721 -5.56149 7 0.501 <td>XMMXCS J212858.6-153422.6</td> <td>322.244507</td> <td>-15.572965</td> <td>295.882</td> <td>0.650</td> <td>35</td>	XMMXCS J212858.6-153422.6	322.244507	-15.572965	295.882	0.650	35	
XMMXCS J215211.2-274347.9 328.046906 -27.729984 119.222 0.420 25 XMMXCS J215220.9-272525.3 328.087433 -27.423706 45.349 0.980 2 XMMXCS J215734.2-695256.8 329.392731 -69.882469 131.600 0.520 12 XMMXCS J215933.4-693743.3 329.889374 -69.628700 133.283 1.010 3 XMMXCS J220550.0-015930.4 331.48558 -1.991795 79.872 0.600 4 XMMXCS J221450.4-175036.8 333.697266 -17.880089 501.048 0.340 18 XMMXCS J221457.4-175036.8 333.965487 -17.484255 67.461 0.350 2 XMMXCS J221537.3-172903.3 33.995487 -17.484255 67.461 0.350 2 XMMXCS J22155.9-175149.8 333.995487 -17.484255 67.461 0.420 23 XMMXCS J22155.9-175149.8 333.997589 -17.68653 106.671 0.440 6 XMMXCS J2221605.1-175418.3 34.021332 -17.905100 160.777 0.280 6 XMMXCS J222769.3-052858.7 36.997467 -5.482976 166.520 10 <td>XMMXCS J215121.8-272336.3</td> <td>327.840973</td> <td>-27.393440</td> <td>135.966</td> <td>0.250</td> <td>10</td>	XMMXCS J215121.8-272336.3	327.840973	-27.393440	135.966	0.250	10	
XMMXCS J215220.9-272525.3 328.087433 -27.423706 45.349 0.980 2 XMMXCS J215201.0-273025.5 328.087585 -27.507092 215.998 0.770 14 XMMXCS J215906.9-694342.1 329.778931 -69.882469 131.600 0.520 12 XMMXCS J215906.9-694342.1 329.778931 -69.728386 102.701 0.280 7 XMMXCS J220550.0-015930.4 331.458588 -1.991795 79.872 0.600 4 XMMXCS J221447.3-175248.3 333.697266 -17.880089 501.048 0.340 18 XMMXCS J221549.6-175036.8 333.748535 -17.843578 231.552 0.470 2 XMMXCS J221559.5-175149.8 333.95181 -17.640953 33.817 0.440 6 XMMXCS J221559.5-175149.8 333.997589 -17.637657 443.712 0.420 23 XMMXCS J22159.4.173815.5 334.056824 -17.58863 246.973 1.030 2 XMMXCS J222736.8-052113.6 36.903656 -5.353783 151.782 0.550 10 XMMXCS J222818.4-053405.3 37.076721 -5.548149 279.243 0.	XMMXCS J215211.2-274347.9	328.046906	-27.729984	119.222	0.420	25	
XMMXCS J215221.0-273025.5 328.087585 -27.507092 215.998 0.770 14 XMMXCS J215734.2-695256.8 329.92731 -69.828469 131.600 0.520 12 XMMXCS J215906.9-694342.1 329.778931 -69.628700 133.283 1.010 3 XMMXCS J215053.4-693743.3 329.898374 -69.628700 133.283 1.010 3 XMMXCS J220559.3-015815.7 331.497131 -1.971032 68.170 0.570 10 XMMXCS J221457.3-175036.8 333.748535 -17.843578 231.552 0.470 2 XMMXCS J22153.7-175036.8 333.905487 -17.484255 67.461 0.350 2 XMMXCS J221547.3-172903.3 333.905487 -17.484255 67.461 0.440 6 XMMXCS J22155.9-175149.8 333.997589 -17.66767 443.712 0.420 23 XMMXCS J221605.1-175418.3 34.021332 -17.905100 160.777 0.280 6 XMMXCS J222736.8-052113.6 36.903656 -5.353783 151.782 0.550 10 XMMXCS J222818.4-053405.3 337.076721 -5.568149 279.243 0.4	XMMXCS J215220.9-272525.3	328.087433	-27.423706	45.349	0.980	2	
XMMXCS J215734.2-695256.8 329.392731 -69.882469 131.600 0.520 12 XMMXCS J215906.9-694342.1 329.778931 -69.728366 102.701 0.280 7 XMMXCS J215050.0-015930.4 331.485588 -1.991795 79.872 0.600 4 XMMXCS J220550.0-015815.7 331.497131 -1.971032 68.170 0.570 10 XMMXCS J22147.3-175248.3 333.697266 -17.880089 501.048 0.340 18 XMMXCS J221547.3-172903.3 333.905487 -17.484255 67.461 0.350 2 XMMXCS J22155.9-175149.8 333.9951813 -17.6657 443.712 0.420 23 XMMXCS J221654.4-173815.5 333.997589 -17.686353 106.671 0.420 23 XMMXCS J221613.6-173519.9 334.056824 -17.58863 246.973 1.030 2 XMMXCS J222768.4052113.6 336.997467 -5.482976 196.150 0.520 18 XMMXCS J222818.4053405.3 37.076721 -5.129668 351.375 0.130 2 XMMXCS J222856.905365.5 337.237305 -5.129668 351.375 0.130 </td <td>XMMXCS J215221.0-273025.5</td> <td>328.087585</td> <td>-27.507092</td> <td>215.998</td> <td>0.770</td> <td>14</td>	XMMXCS J215221.0-273025.5	328.087585	-27.507092	215.998	0.770	14	
XMMXCS J215906.9-694342.1 329.778931 -69.728386 102.701 0.280 7 XMMXCS J215933.4-693743.3 329.889374 -69.628700 133.283 1.010 3 XMMXCS J220550.0-015930.4 331.458588 -1.991795 79.872 0.600 4 XMMXCS J220550.9-015815.7 331.478538 -17.880089 501.048 0.340 18 XMMXCS J221548.6-175036.8 333.748535 -17.843578 231.552 0.470 2 XMMXCS J221548.4-173827.4 333.905487 -17.484255 67.461 0.350 2 XMMXCS J221559.5-175149.8 333.995485 -17.637657 443.712 0.420 23 XMMXCS J221605.1-175418.3 334.021332 -17.905100 160.7777 0.280 6 XMMXCS J222736.8-052113.6 36.993665 -5.353783 151.782 0.550 10 XMMXCS J222818.4-053405.3 37.076721 -5.568149 279.243 0.450 7 XMMXCS J22288.4-053405.3 37.078400 -5.124968 351.375 0.130 2 XMMXCS J22288.4-05345.5 337.086121 -5.24759 139.107 0.640<	XMMXCS J215734.2-695256.8	329.392731	-69.882469	131.600	0.520	12	
XMMXCS J221593.3.4-693743.3 329.889374 -69.628700 133.283 1.010 3 XMMXCS J220550.0-01580.4 331.48558 -1.991795 79.872 0.600 4 XMMXCS J220559.3-015815.7 331.497131 -1.971032 68.170 0.570 10 XMMXCS J221457.3-175036.8 333.697266 -17.880089 501.048 0.340 18 XMMXCS J221537.3-172903.3 333.905487 -17.484255 67.461 0.350 2 XMMXCS J22155.9-175149.8 333.995487 -17.863853 106.661 0.140 9 XMMXCS J221605.1-175418.3 333.997589 -17.66577 443.712 0.420 23 XMMXCS J221616.1-175418.3 34.021332 -17.905100 160.777 0.280 6 XMMXCS J222759.3052858.7 336.997467 -5.482976 196.150 0.520 18 XMMXCS J222818.4-053405.3 37.076721 -5.5619 219.243 0.450 7 XMMXCS J222818.4-05405.3 337.078400 -5.129668 351.375 0.130 2 XMMXCS J222832.0-52826.2 337.138733 -5.473969 333.731 0.210	XMMXCS J215906.9-694342.1	329.778931	-69.728386	102.701	0.280	7	
XMMXCS J220550.0-015830.4 331.48588 -1.991/35 79.872 0.600 4 XMMXCS J221447.3-175248.3 333.697266 -17.880089 501.048 0.340 18 XMMXCS J221548.6-175036.8 333.748535 -17.843578 231.552 0.470 2 XMMXCS J221548.6-175036.8 333.905487 -17.484255 67.461 0.350 2 XMMXCS J221559.5-175149.8 333.951813 -17.640953 33.817 0.440 6 XMMXCS J221559.5-175149.8 333.997589 -17.637657 443.712 0.420 23 XMMXCS J221613.6-173819.9 334.056824 -17.588633 246.973 1.030 2 XMMXCS J222736.8-052113.6 336.997467 -5.482976 196.150 0.520 18 XMMXCS J222818.4-053405.3 337.076721 -5.568149 279.243 0.450 7 XMMXCS J22283.2-05286.2 337.13730 -5.17366 33.731 0.210 8 XMMXCS J22283.2-05286.2 337.138733 -5.473969 33.731 0.210 8 XMMXCS J222830.2-25574.2 338.84808 -27066 33.717 0.100	XMMXCS J215933.4-693743.3	329.889374	-69.628700	133.283	1.010	3	
XMMXCS J2243039.3-018815.7 331.497191 -1.971032 08.170 0.370 10 XMMXCS J221447.3-175248.3 333.697266 -17.880089 501.048 0.340 18 XMMXCS J221459.6-175036.8 333.748535 -17.843578 231.552 0.470 2 XMMXCS J221548.4-173827.4 333.905487 -17.484255 67.461 0.350 2 XMMXCS J221559.4-173149.8 333.995485 -17.640953 33.817 0.440 6 XMMXCS J221605.1-175418.3 334.021332 -17.905100 160.777 0.280 6 XMMXCS J222160.5.1-175418.3 334.021332 -17.905100 160.777 0.280 6 XMMXCS J222736.8-052113.6 336.993665 -5.353783 151.782 0.550 10 XMMXCS J222818.8-050746.8 337.076721 -5.568149 279.243 0.450 7 XMMXCS J222818.8-050746.8 337.078400 -5.129668 351.375 0.130 2 XMMXCS J222818.9-050365.3 337.237305 -5.514864 237.397 0.100 0 XMMXCS J222447.3-260459.4 338.4697144 -26.083181 68.388 <t< td=""><td>XMMXCS J220550.0-015930.4</td><td>331.408088</td><td>-1.991795</td><td>79.872</td><td>0.600</td><td>4</td></t<>	XMMXCS J220550.0-015930.4	331.408088	-1.991795	79.872	0.600	4	
XMMXCS J22144, 3-170246.3 333.05/200 -17.845078 031.048 0.340 18 XMMXCS J221456, 6-175036.8 333.74853 -17.843578 231.552 0.470 2 XMMXCS J221573.3-172903.3 333.905487 -17.484255 67.461 0.350 2 XMMXCS J221554.4-173827.4 333.905487 -17.643578 231.552 0.440 6 XMMXCS J221559.4-175149.8 333.98185 -17.637657 106.661 0.140 9 XMMXCS J221613.6-173519.9 334.056824 -17.588633 16.077 0.280 6 XMMXCS J222759.3-052858.7 36.997467 -5.482976 196.150 0.520 18 XMMXCS J222818.4-053405.3 337.076721 -5.568149 279.243 0.450 7 XMMXCS J222818.2-05286.2 337.1078400 -5.129668 351.375 0.130 2 XMMXCS J222818.2-05286.2 337.138733 -5.473969 333.31 0.210 8 XMMXCS J222850.2-05505.5 337.237305 -5.514864 237.397 0.100 10 XMMXCS J223550.2-25554.3 338.879462 -25.931772 66.622 0.310 </td <td>XMMXCS J220559.3-015815.7</td> <td>331.497131</td> <td>-1.971032</td> <td>58.170</td> <td>0.570</td> <td>10</td>	XMMXCS J220559.3-015815.7	331.497131	-1.971032	58.170	0.570	10	
XMMXCS J221543.5.174903.3 333.905487 -17.843076 211.302 0.410 2 XMMXCS J221544.4.173827.4 333.905487 -17.484255 67.461 0.360 2 XMMXCS J221559.9-175149.8 333.905487 -17.640953 33.817 0.440 6 XMMXCS J221559.9-175149.8 333.997589 -17.637657 443.712 0.420 23 XMMXCS J221613.6-173519.9 334.056824 -17.588863 246.973 1.030 2 XMMXCS J222736.8-052113.6 336.997667 -5.482976 196.150 0.520 18 XMMXCS J222818.4-053405.3 337.076721 -5.568149 279.243 0.450 7 XMMXCS J22280.6-051329.1 337.078400 -5.129668 351.375 0.130 2 XMMXCS J22283.2-052826.2 337.138733 -5.473969 333.731 0.210 8 XMMXCS J22283.2-052826.2 337.138733 -5.473969 139.107 0.640 2 XMMXCS J222844.7.3-260459.4 338.4807144 -26.083181 68.388 0.270 6 XMMXCS J223557.0-25554.3 38.4808 -25.961729 14.148 0.990 </td <td>XMMXCS J221447.5-175248.5 XMMXCS J221450.6 175026.8</td> <td>222 749525</td> <td>-17.8600089</td> <td>221 552</td> <td>0.340</td> <td>10</td>	XMMXCS J221447.5-175248.5 XMMXCS J221450.6 175026.8	222 749525	-17.8600089	221 552	0.340	10	
$ \begin{array}{c} \mbox{XMMXCS} 12215548.4-173827.4 \\ \mbox{S122155.9-175149.8} \\ \mbox{S12155.9-175149.8} \\ \mbox{S12155.9-175149.8} \\ \mbox{S122155.9-175149.8} \\ \mbox{S122155.9-175149.8} \\ \mbox{S1221605.1-175418.3} \\ \mbox{S1222736.8-052113.6} \\ \mbox{S1220736.8-052113.6} \\ \mbox{S1222736.8-052113.6} \\ \mbox{S12222818.4-053405.3} \\ \mbox{S17076721} \\ \mbox{S1222818.4-053405.3} \\ \mbox{S17076721} \\ \mbox{S1222836.0-053052.8} \\ \mbox{S1222836.0-053052.8} \\ \mbox{S1222836.0-053052.8} \\ \mbox{S1222833.2-052826.2} \\ \mbox{S17076721} \\ \mbox{S1222834.7-3260459.4} \\ \mbox{S1222834.7-3260459.4} \\ \mbox{S1223447.3-260459.4} \\ \mbox{S1223550.3-255742.2} \\ \mbox{S1848808} \\ \mbox{S1229172} \\ \mbox{S1223550.3-255742.2} \\ \mbox{S1848808} \\ \mbox{S25.961729} \\ \mbox{S142.4} \\ \mbox{S1223550.3-255742.2} \\ \mbox{S16184} \\ \mbox{S1223350.3-255742.2} \\ \mbox{S16184} \\ \mbox$	XMMXCS 1221435.0-175030.8 XMMXCS 1221537 3-172003 3	333.005487	-17 484255	67.461	0.470	2	
XIMIXICS J22155.9-175149.8 333.983185 -17.863853 106.661 0.140 9 XIMIXICS J221559.4-173815.5 333.997589 -17.637657 443.712 0.420 23 XIMIXICS J221613.6-173815.5 333.0917589 -17.637657 443.712 0.420 23 XIMIXICS J221613.6-173819.9 334.056824 -17.588863 246.973 1.030 2 XIMIXICS J222759.3-052858.7 336.997467 -5.482976 196.150 0.520 18 XIMIXICS J2222759.3-052858.7 336.997467 -5.568149 279.243 0.450 7 XIMIXICS J222818.8-050746.8 337.076721 -5.568149 279.243 0.450 7 XIMIXICS J222828.0-6051329.1 337.086121 -5.224759 338.3731 0.210 8 XIMIXICS J222828.0-205286.2 337.138733 -5.473969 333.731 0.210 8 XIMIXICS J22355.0-25554.3 38.4808 -25.961729 142.148 0.990 2 XIMIXICS J223814.7-204710.6 339.561584 -20.786285 82.041 0.630 5 XIMIXICS J223852.1-202610.3 339.717224 -20.436209	XMMXCS 1221548 4-173827 4	333 051813	-17.640953	33 817	0.440	6	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	XMMXCS J221555 9-175149 8	333 983185	-17.863853	106 661	0.140	9	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	XMMXCS J221559.4-173815.5	333.997589	-17.637657	443.712	0.420	23	
XMXCS J221613.6-173519.9 334.056824 -17.58863 246.973 1.030 2 XMMXCS J222736.8-052113.6 336.903656 -5.553783 151.782 0.550 10 XMMXCS J222736.8-052113.6 336.903656 -5.452976 196.150 0.520 18 XMMXCS J222781.8-053405.3 337.076721 -5.568149 279.243 0.450 7 XMMXCS J22283.8-050746.8 337.078400 -5.129668 351.375 0.130 2 XMMXCS J22283.2-052826.2 337.138733 -5.473969 333.731 0.210 8 XMMXCS J222846.9-053053.5 337.237305 -5.514864 237.397 0.100 10 XMMXCS J222856.9-053053.5 337.237305 -5.514864 237.397 0.100 10 XMMXCS J222347.3-260459.4 338.84808 -25.961729 142.148 0.990 2 XMMXCS J22355.0-255554.3 338.979462 -25.931772 66.622 0.310 4 XMMXCS	XMMXCS J221605.1-175418.3	334.021332	-17.905100	160.777	0.280	6	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	XMMXCS J221613.6-173519.9	334.056824	-17.588863	246.973	1.030	2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	XMMXCS J222736.8-052113.6	336.903656	-5.353783	151.782	0.550	10	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	XMMXCS J222759.3-052858.7	336.997467	-5.482976	196.150	0.520	18	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	XMMXCS J222818.4-053405.3	337.076721	-5.568149	279.243	0.450	7	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	XMMXCS J222818.8-050746.8	337.078400	-5.129668	351.375	0.130	2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	XMMXCS J222820.6-051329.1	337.086121	-5.224759	139.107	0.640	2	
XMMXCS J222856.9-053053.5 337.237305 -5.514864 237.397 0.100 10 XMMXCS J22247.1-2-06459.4 338.697144 -26.083181 68.388 0.270 6 XMMXCS J223520.3-255742.2 338.834808 -25.961729 142.148 0.990 2 XMMXCS J22355.0-25554.3 338.979462 -25.931772 66.622 0.310 4 XMMXCS J223557.3-254928.4 338.989075 -25.824583 57.013 0.630 5 XMMXCS J223551.1-202610.3 339.717224 -20.436209 324.598 0.350 34 XMMXCS J223925.1-202610.3 339.717224 -20.436209 324.598 0.350 34 XMMXCS J223925.1-202610.3 339.717224 -20.436209 324.598 0.350 34 XMMXCS J223124.1-6194515.9 350.352844 19.7544488 4335.900 0.400 50 XMMXCS J232152.7+195333.2 350.469757 19.892576 456.425 0.300 30 XMMXCS J232152.7+19533.2 350.489071 19.648857 600.383 0.230 33	XMMXCS J222833.2-052826.2	337.138733	-5.473969	333.731	0.210	8	
XMMXCS J223447.3-260459.4 338.697144 -26.083181 68.388 0.270 6 XMMXCS J223550.3-25574.2 338.834808 -25.961729 142.148 0.990 2 XMMXCS J223555.0-255554.3 338.979462 -25.931772 66.622 0.310 4 XMMXCS J223557.3-254928.4 338.980075 -25.824583 57.013 0.630 5 XMMXCS J223852.1-202610.3 339.561584 -20.786285 82.041 0.780 6 XMMXCS J223852.1-202610.3 339.717224 -20.436209 324.598 0.350 34 XMMXCS J223852.9+032144.0 339.858032 3.362236 49.005 0.790 1 XMMXCS J23216.4+194515.9 350.52844 19.754438 4335.900 0.400 50 XMMXCS J232152.7+195333.2 350.469757 19.892576 456.425 0.300 30 XMMXCS J232152.7+195333.2 350.469757 19.892576 456.425 0.300 30 XMMXCS	XMMXCS J222856.9-053053.5	337.237305	-5.514864	237.397	0.100	10	
XMMXCS J223520.3-255742.2 338.834808 -25.961729 142.148 0.990 2 XMMXCS J223550.0-255544.3 338.979462 -25.931772 66.622 0.310 4 XMMXCS J223557.0-255544.3 338.979462 -25.931772 66.622 0.310 4 XMMXCS J223557.0-255544.3 338.979462 -25.824583 57.013 0.630 5 XMMXCS J223852.1-202610.3 339.717224 -20.436209 324.598 0.350 34 XMMXCS J223925.9+032144.0 339.717224 -20.436209 324.598 0.790 1 XMMXCS J223152.9+032144.0 339.558032 3.362236 49.005 0.790 1 XMMXCS J223124.6+194515.9 350.352844 19.754438 4335.900 0.400 50 XMMXCS J232152.7+19533.2 350.469757 19.892576 456.425 0.300 30 XMMXCS J232152.7+19533.2 350.589081 19.648857 660.383 0.230 33 XMMXCS J232227.7+195948.2 350.615479 19.996746 35.848 0.100 0	XMMXCS J223447.3-260459.4	338.697144	-26.083181	68.388	0.270	6	
XMMXCS J223555.0-25554.3 338.979462 -25.931772 66.622 0.310 4 XMMXCS J223557.3-254928.4 338.989075 -25.824583 57.013 0.630 5 XMMXCS J223557.3-254928.4 338.989075 -25.824583 57.013 0.630 5 XMMXCS J223814.7-204710.6 339.561584 -20.786285 82.041 0.780 6 XMMXCS J223852.1-202610.3 339.717224 -20.436209 324.598 0.350 34 XMMXCS J22395.9+032144.0 339.858032 3.362236 49.005 0.790 1 XMMXCS J232154.6+194515.9 350.352844 19.754438 4335.900 0.400 50 XMMXCS J232152.7+195333.2 350.469757 19.892576 456.425 0.300 30 XMMXCS J232152.7+193852.8 350.589081 19.644857 600.383 0.230 33 XMMXCS J232221.3+193855.8 350.589081 19.648857 600.383 0.230 33 XMMXCS J232227.7+195948.2 350.615479 19.996746 35.848 0.100 0 <	XMMXCS J223520.3-255742.2	338.834808	-25.961729	142.148	0.990	2	
XMMXCS J22355/.3-254928.4 338.989075 -25.824583 57.013 0.630 5 XMMXCS J223857.7-204710.6 339.561584 -20.786285 82.041 0.780 6 XMMXCS J223852.1-202610.3 339.717224 -20.436209 324.598 0.350 34 XMMXCS J223852.1-202610.3 339.717224 -20.436209 324.598 0.350 34 XMMXCS J22325.9+032144.0 339.858032 3.362236 49.005 0.790 1 XMMXCS J223215.9+132144.0 339.52844 19.754438 4335.900 0.400 50 XMMXCS J232152.7+195333.2 350.469757 19.892576 456.425 0.300 30 XMMXCS J232152.7+195335.8 350.589081 19.648857 660.383 0.420 10 XMMXCS J232227.7+195948.2 350.615479 19.996746 35.848 0.100 0 XMMXCS J233950.6-120641.8 354.961151 -12.111625 55.422 0.520 4 XMMXCS J233950.6-120641.8 359.285797 -24.2428260 370.905 0.510 50	XMMXCS J223555.0-255554.3	338.979462	-25.931772	66.622	0.310	4	
XMMXCS J223814.7-204710.6 339.501584 -20.780285 82.041 0.780 0 XMMXCS J223821.1-202610.3 339.717224 -20.436209 324.598 0.350 34 XMMXCS J223825.1-202610.3 339.717224 -20.436209 324.598 0.350 34 XMMXCS J223925.9+032144.0 339.858032 3.362236 49.005 0.790 1 XMMXCS J224113.3+03283.0 340.305634 3.475834 409.158 0.190 15 XMMXCS J232124.6+194515.9 350.352844 19.754438 4335.900 0.400 50 XMMXCS J232152.7+195333.2 350.469757 19.892576 456.425 0.300 30 XMMXCS J232152.7+195338.2 350.589081 19.648267 660.383 0.230 33 XMMXCS J232227.7+195948.2 350.615479 19.996746 35.848 0.100 0 XMMXCS J233950.6-120641.8 354.961151 -12.11625 55.422 0.490 8 XMMXCS J2335708.5-241453.7 359.285797 -24.248260 370.905 0.510 50	XMMXCS J223557.3-254928.4	338.989075	-25.824583	57.013	0.630	5	
XMMXCS J223952.1-202010.3 339.11724 -20.430209 324.598 0.350 34 XMMXCS J223952.9+032144.0 339.858052 3.362236 49.005 0.790 1 XMMXCS J223925.9+032144.0 340.305634 3.475834 409.158 0.190 1 XMMXCS J223152.4ch+194515.9 350.352844 19.754438 4335.900 0.400 50 XMMXCS J232124.ch+194515.9 350.352844 19.754438 4335.900 0.400 50 XMMXCS J232152.7+195333.2 350.469757 19.892576 456.425 0.300 30 XMMXCS J232215.9+193802.4 350.482971 19.634026 144.953 0.420 10 XMMXCS J232221.3+193855.8 350.589081 19.648857 660.383 0.230 33 XMMXCS J232321.7+195948.2 350.615479 19.996746 35.848 0.100 0 XMMXCS J233950.6-120641.8 354.961151 -12.11625 55.422 0.420 4 XMMXCS J2335708.5-241453.7 359.285797 -24.2428260 370.905 0.510 50	XMMACS J223814.7-204710.6	339.561584	-20.786285	82.041	0.780	0	
XMMXCS 322432.57+02144.0 359.50502 3.00220 49.003 0.190 1 XMMXCS 32411.3+032833.0 340.0305634 3.475834 400.158 0.190 15 XMMXCS 322124.2+194515.9 350.45077 19.892576 456.425 0.300 30 XMMXCS 322152.7+195333.2 350.469757 19.892576 144.953 0.420 10 XMMXCS 322215.9+193802.4 350.482971 19.634026 144.953 0.420 10 XMMXCS 322221.3+193855.8 350.452974 19.996746 35.848 0.100 0 XMMXCS 3223227.7+195948.2 350.615479 19.996746 35.848 0.100 0 XMMXCS 3233950.6-120641.8 354.9671428 -12.218653 330.287 0.490 8 XMMXCS 3235708.5-241453.7 359.285797 -24.248260 370.905 0.510 50	XMMXCS 1222852.1-202610.3	339.717224	-20.436209	324.398	0.350	34	
XMMXCS J2321415.3+022855.0 540.50054 5.473654 405.155 6.150 15 XMMXCS J2321416.3+042855.0 340.50054 19.754488 435.5900 0.400 50 XMMXCS J232152.7+195333.2 350.469757 19.892576 456.425 0.300 30 XMMXCS J232152.7+195333.2 350.469757 19.634026 144.953 0.420 10 XMMXCS J232221.3+193855.8 350.589081 19.648857 660.383 0.230 33 XMMXCS J232227.7+195948.2 350.615479 19.996746 35.848 0.100 0 XMMXCS J233950.6-120641.8 354.961151 -12.11625 55.422 0.490 8 XMMXCS J233950.6-120641.8 354.961151 -12.4248260 370.905 0.510 50	XMMXCS J223923.9+032144.0	240 205624	2 475924	49.005	0.790	15	
XMMXCS J232152.7+19533.2 350.502577 19.892576 456.425 0.300 30 XMMXCS J232152.7+19533.2 350.489757 19.892576 456.425 0.300 30 XMMXCS J23215.9+193802.4 350.4899751 19.634026 144.953 0.420 10 XMMXCS J232227.7+195948.2 350.615479 19.996746 35.848 0.100 0 XMMXCS J233294.7-121307.1 354.957428 12.218653 330.287 0.490 8 XMMXCS J233950.6-120641.8 354.961151 -12.111625 55.422 0.520 4 XMMXCS J235708.5-241453.7 359.285797 -24.248260 370.905 0.510 50	XMMXCS J232124 6+194515 9	350 352844	19 754438	4335 900	0.190	50	
XMMXCS J23121.1.9 903302.4 350.482971 19.634026 144.953 0.420 10 XMMXCS J232221.3+193855.8 350.589081 19.648857 660.383 0.230 33 XMMXCS J232221.3+193855.8 350.615479 19.996746 35.848 0.100 0 XMMXCS J233949.7-121307.1 354.957428 -12.218653 330.287 0.490 8 XMMXCS J233950.6-120641.8 354.961151 -12.111625 55.422 0.520 4 XMMXCS J235708.5-241453.7 359.285797 -24.248260 370.905 0.510 50	XMMXCS J232152 7+105333 2	350 469757	19 892576	456 425	0.300	30	
XMMXCS J232221.3+193855.8 350.589081 19.648857 600.383 0.230 10 XMMXCS J232227.7+195948.2 350.615479 19.996746 35.848 0.100 0 XMMXCS J232247.7+195948.2 350.615479 19.996746 35.848 0.100 0 XMMXCS J233960.7-121307.1 354.967428 12.218653 330.287 0.490 8 XMMXCS J233950.6-120641.8 354.961151 -12.111625 55.422 0.520 4 XMMXCS J235708.5-241453.7 359.285797 -24.248260 370.905 0.510 50	XMMXCS J232155.9+193802.4	350.482971	19.634026	144.953	0.420	10	
XMMXCS J232227.7+195948.2 350.615479 19.996746 35.848 0.100 0 XMMXCS J233949.7-121307.1 354.957428 -12.218653 330.287 0.490 8 XMMXCS J233950.6-120641.8 354.961151 -12.111625 55.422 0.520 4 XMMXCS J235708.5-241453.7 359.285797 -24.248260 370.905 0.510 50	XMMXCS J232221.3+193855.8	350.589081	19.648857	660.383	0.230	33	
XMMXCS J233949.7-121307.1 354.957428 -12.218653 330.287 0.490 8 XMMXCS J233950.6-120641.8 354.961151 -12.111625 55.422 0.520 4 XMMXCS J233950.6-20641.8 359.285797 -24.248260 370.905 0.510 50	XMMXCS J232227.7+195948.2	350.615479	19.996746	35.848	0.100	0	
XMMXCS J233950.6-120641.8 354.961151 -12.111625 55.422 0.520 4 XMMXCS J235708.5-241453.7 359.285797 -24.248260 370.905 0.510 50	XMMXCS J233949.7-121307.1	354.957428	-12.218653	330.287	0.490	8	
XMMXCS J235708.5-241453.7 359.285797 -24.248260 370.905 0.510 50	XMMXCS J233950.6-120641.8	354.961151	-12.111625	55.422	0.520	4	
	XMMXCS J235708.5-241453.7	359.285797	-24.248260	370.905	0.510	50	

Table H.1: XCS DR1 and DR2 redshifts produced using NXS

XCS name	R.A (J2000)	Dec (J2000)	Soft Counts	Redshift	Ngal
XMMXCS J001639.6-010205.3	4.165087	-1.034814	649.772	0.170	18
XMMXCS J001737.3-005235.4	4.405744	-0.876519	16715.614	0.200	50
XMMXCS J002314.2+001202.0	5.809201	0.200577	350.682	0.320	8
XMMXCS J004119.5+252617.7	10.331591	25.438252	1410.006	0.160	50
XMMXCS J004156.2+253146.0	10.484416	25.529459	494.076	0.150	14
XMMXCS J004252.7+004301.4	10.719820	0.717058	383.325	0.290	31
XMMXCS J004333.8+010108.9	10.891174	1.019164	574.477	0.140	19
XMMXCS J004350.0+004720.3	10.958621	0.788977	322.688	0.460	25
XMMXCS J005614.3-011451.7	14.059875	-1.247713	38673.365	0.100	35
XMMXCS J005623.1-010806.0	14.096478	-1.135001	1382.514	0.100	22
XMMXCS J005656.4-011221.2	14.235170	-1.205889	364.385	0.290	11
XMMXCS J005656.5-274031.7	14.235769	-27.675484	339.385	0.170	7
XMMXCS J005730.5-272331.8	14.377097	-27.392188	306.063	0.170	12
XMMXCS J010531.1+004300.7	16.379761	0.716872	1496.276	0.210	9
XMMXCS J010720.5+141615.9	16.835566	14.271108	7101.062	0.100	29
XMMXCS J011632.1+330325.0	19.133912	33.056950	419.339	0.640	7
XMMXCS J012059.3+141603.8	20.247299	14.267730	1732.432	0.210	46
XMMXCS J012103.0+142428.5	20.262710	14.407918	1291.993	0.100	8
XMMXCS J012459.7+320148.1	21.249024	32.030045	408.868	0.340	16
XMMXCS J012526.2+321452.9	21.359398	32.248055	1404.063	0.280	40
XMMXCS J013915.5+062542.9	24.814901	6.428591	2277.453	0.100	11
XMMXCS J014007.6+062322.6	25.031825	6.389614	1338.597	0.260	8
XMMXCS J014044.0+062154.9	25.183375	6.365274	559.513	0.370	10
XMMXCS J015444.8+003109.3	28.686848	0.519268	493.833	0.120	11
XMMXCS J015448.8+002232.6	28.703670	0.375734	1049.041	0.160	50
XMMXCS J015451.6+003446.5	28.715166	0.579605	670.818	0.120	12
XMMXCS J015522.9+003818.5	28.845623	0.638487	704.819	0.100	24
XMMXCS J015617.4+003506.4	29.072891	0.585124	944.541	0.110	34
XMMXCS J020056.5-092123.3	30.235776	-9.356496	392.504	0.320	7
XMMXCS J020341.8-074705.4	30.924181	-7.784840	983.716	0.390	24
XMMXCS J021012.9-001451.6	32.554122	-0.247681	311.217	0.220	14
XMMXCS J021339.5-004419.9	33,414619	-0.738870	515.157	0.350	18
XMMXCS J021402.3-005645.3	33.509666	-0.945938	360.454	0.300	40
XMMXCS J021505.1-003445.3	33.771645	-0.579273	635.054	0.100	13
XMMXCS J021527.4-004711.2	33.864194	-0.786448	830.287	0.590	14
XMMXCS J023152 1-072907.5	37.967342	-7.485422	936.376	0.200	27
XMMXCS J030433.9-005406.8	46.141581	-0.901903	976.856	0.520	7
XMMXCS J030617.6-000830 1	46.573584	-0.141706	3083.093	0.110	40
XMMXCS J030634 1-000422 2	46 642350	-0.072844	507 993	0.100	13
XMMXCS J030720 5-002352 9	46 835685	-0.398028	301 245	0.340	5
XMMXCS 1033556 1±003214 3	53 08/125	0.537317	752 218	0.310	33
XMMXCS 1033557 5±003259 5	53 989603	0.549884	580 535	0.190	50
XMMXCS 1033640 4±002150 0	54 168552	0.533070	1068 758	0.100	30
Continued on Nort Page	04.100000	0.00010	1000.100	0.100	9
VOULTURED OF NEXT FASE					

XCS name	B.A (J2000)	Dec (J2000)	Soft Counts	Redshift	Ngal
XMMXCS J033700.8+003421.6	54.253541	0.572687	372.359	0.360	7
XMMXCS J033701.2+003521.9	54.255315	0.589444	895.404	0.100	6
XMMXCS J033756.7+002900.1	54.486313	0.483371	370.740	0.270	16
XMMXCS J035415.7-001005.5 XMMXCS J035744 5±010136.2	58.565808	-0.168195	499.164	0.170	36
XMMXCS J044758.0-061537.1	71.991868	-6.260306	439.567	0.470	8
XMMXCS J044813.7-063444.7	72.057300	-6.579086	1642.936	0.330	8
XMMXCS J051544.8-001034.8	78.937081	-0.176336	326.015	0.510	5
XMMXCS J071853.2+661106.1	109.721740	66.185040	577.258	0.340	13
XMMXCS 1073005.8+433909.6 XMMXCS 1074134 3±305922 2	114.024500	43.052087	2009.414	0.430	25
XMMXCS J074207.4+312104.2	115.531060	31.351187	420.777	0.330	6
XMMXCS J074213.0+310857.7	115.554180	31.149371	61300.175	0.220	50
XMMXCS J075722.6+392011.8	119.344270	39.336636	1273.978	0.100	50
XMMXCS J075839.1+351942.0	119.662940	35.328344	667.307	0.120	13
XMMXCS 1080053 8±280455 9	121.807140	28 082206	446 543	0.100	14
XMMXCS J081020.6+482052.8	122.585860	48.348021	1691.434	0.410	19
XMMXCS J081058.1+500530.1	122.742320	50.091713	454.958	0.370	24
XMMXCS J082412.9+300438.0	126.054130	30.077241	564.401	0.320	25
XMMXCS J082857.3+495545.4	127.239110	49.929300	2303.302	0.140	16
XMMXCS J082921.4+493438.3 XMMXCS J083021.2+524823.2	127.588400	52.806467	2815.910	0.130	19
XMMXCS J083021.9+501646.0	127.591590	50.279444	3172.236	0.140	16
XMMXCS J083025.5+524128.2	127.606350	52.691171	3593.663	0.490	6
XMMXCS J083027.4+500015.5	127.614290	50.004316	40254.573	0.120	50
XMMXCS J083029.8+523054.4 XMMXCS J083127 8+523212 9	127.024320	52.536920	3057 691	0.100	18
XMMXCS J083147.7+525043.8	127.948800	52.845523	929.058	0.500	9
XMMXCS J083227.4+523430.3	128.114280	52.575091	587.597	0.130	5
XMMXCS J083301.2+524344.5	128.255250	52.729044	1926.333	0.140	6
XMMXCS J083454.9+553420.7 XMMXCS J082724.2 552251.0	128.728830	55.572419	208 060	0.280	38
XMMXCS J083811.1+250549.1	129.546360	25.096996	411.959	0.360	<i>∠∂</i> 9
XMMXCS J084044.2+383049.3	130.184570	38.513718	449.049	0.150	16
XMMXCS J084052.5+383845.4	130.219140	38.645969	340.185	0.110	8
XMMXCS J084105.4+383157.8	130.272520	38.532724	331.877	0.170	25
XMMXCS J084124.5+004638.6 XMMXCS J084140.4+544319 5	130.352150	0.77400 54,722101	609.497	0.410	8 6
XMMXCS J084244.3+544342.1	130.684730	54.728364	1617.863	0.270	34
XMMXCS J084311.3+544909.9	130.797320	54.819427	921.118	0.180	18
XMMXCS J084346.9+495855.8	130.945500	49.982178	7011.876	0.420	50
XMMXCS J084439.2+502207.4 XMMXCS J084452 0 500520.6	131.163720	50.368737	1003.504	0.310	23
XMMXCS J084452.0+500555.0 XMMXCS J084500.8+501911.9	131.253720	50.319979	3358.819	0.250	16
XMMXCS J084637.5+185456.8	131.656500	18.915793	414.065	0.530	10
XMMXCS J084640.9+184933.4	131.670640	18.825962	3322.780	0.230	17
XMMXCS J084848.2+445606.1	132.200940	44.935043	903.376	0.490	19
XMMXCS J084957.5+445932.7 XMMXCS J085307 8+180340 1	132.489770	44.992421 18.061149	410.864 824.077	0.520	20
XMMXCS J085331.9+150135.8	133.383280	15.026617	633.336	0.380	20
XMMXCS J085337.7+180128.8	133.407490	18.024680	1888.148	0.170	28
XMMXCS J085604.5+585705.8	134.019080	58.951614	870.577	0.160	8
XMMXCS J085758.0+170414.7 XMMXCS J085822 5 165722 2	134.492000	17.070753	464.435	0.290	30
XMMXCS J083822.5+105723.5 XMMXCS J090100.9+600607.9	135.254040	60.102202	2198.493	0.240	37
XMMXCS J090541.9+005846.1	136.424760	0.979497	2977.034	0.240	43
XMMXCS J090635.8+010938.5	136.649560	1.160700	3093.314	0.720	5
XMMXCS J090715.0+005030.0 XMMXCS J001146 2 525511 5	136.812900	0.841687	6156.910	0.320	35
XMMXCS J091140.2+52511.5 XMMXCS J091200.2+525128.6	137.942820	52.857972	945.194	0.260	9
XMMXCS J091341.0+531024.0	138.421080	53.173346	1028.069	0.110	5
XMMXCS J091413.3+530853.4	138.555780	53.148191	365.170	0.160	6
XMMXCS J091421.8+525304.5	138.591190	52.884590	45584.045	0.150	50
XMMXCS J091426.1+530707.3 XMMXCS J092018 6±370621.2	138.609080	53.118717 37 105905	2091.767	0.150	20
XMMXCS J092325.4+225648.0	140.856000	22.946674	903.386	0.170	23
XMMXCS J092335.8+225303.8	140.899570	22.884415	577.012	0.180	19
XMMXCS J092540.1+362709.3	141.417250	36.452610	3263.760	0.140	50
XMMXCS J092545.7+305857.5 XMMXCS J092650 6±310128 3	141.440740	30.982652	991.578 426.955	0.530	19
XMMXCS J092030.0+310128.3 XMMXCS J093709.5+611612.0	144.289980	61.270025	482.181	0.200	19
XMMXCS J093846.5+414158.7	144.694100	41.699660	402.486	0.100	5
XMMXCS J094034.9+355950.3	145.145700	35.997318	517.782	0.320	9
XMMXCS J094055.4+032309.0	145.231170	3.385858	6493.403	0.450	24
XMMXCS J095343.6+694734 2	148.431740	69.792855	2324.977	0.200	33
XMMXCS J095418.1+012257.4	148.575580	1.382633	1495.768	0.430	6
XMMXCS J095437.0+013039.2	148.654170	1.510897	4841.748	0.400	50
XMMXCS J095737.1+023424.8 XMMXCS J095823 4 + 024852 1	149.404960 149.597760	2.573560	3132.723	0.310	36
XMMXCS J095851.2+014100.0	149.713590	1.683334	3013.690	0.230	20 6
XMMXCS J095905.7+130455.5	149.774030	13.082109	1434.966	0.360	36
XMMXCS J095917.6+015617.4	149.823500	1.938189	1709.478	0.390	10
XMMXCS J095917.7+013752.5	149.824060	1.631264	46063.698	0.130	50
XMMXCS J095932.7+303112.8	149.886650	30.520230	8432.274	0.150	50
XMMXCS J095940.8+023112.6	149.920030	2.520179	985.279	0.660	7
XMMXCS J095953.2+130438.5	149.971850	13.077372	585.312	0.100	9
XMMXCS J095957.4+251631.3	149.989260	25.275364	1820.274	0.100	10
XMMXCS J100000.9+015310.3 XMMXCS J100009 2+023257 2	150.003890	2 549229	964 137	0.110	10
XMMXCS J100011.9+305427.4	150.049730	30.907621	1365.454	0.240	7
XMMXCS J100015.0+015056.8	150.062820	1.849115	1792.135	0.130	12
XMMXCS J100017.9+013827.9	150.074590	1.641086	31450.010	0.140	50
AMMACS J100019.2+025721.8 XMMXCS J100020 7±303730 4	150.080350	2.956070 30.625114	501.041 46028 117	0.290	5 50
XMMXCS J100029.6+305030.1	150.123750	30.841710	6036.462	0.150	31
XMMXCS J100047.4+013927.8	150.197560	1.657748	3024.574	0.180	50
XMMXCS J100050.3+023005.5	150.209990	2.501536	703.595	0.500	8
XMMXCS J100059.8+683945.3 XMMXCS J100109 4±013332 2	150.249500	08.002595	080.464 348.852	0.470	9 14
XMMXCS J100114.7+023502.0	150.311360	2.583899	2505.852	0.250	50
XMMXCS J100125.7+024147.3	150.357120	2.696487	838.869	0.170	15
XMMXCS J100141.6+022538.2	150.423720	2.427300	2446.651	0.140	30
XMMXCS 1100200.6+021333.0 XMMXCS 1100200.4+022601.2	150.506850	2.225839	832.920	0.250	5
XMMXCS J100309.4 \pm 022001.9 XMMXCS J100452.0 \pm 411626 2	151.216780	2.433870 41,273958	2034.334 2417.431	0.140	34 5
XMMXCS J101058.3+293403.0	152.742980	29.567502	3240.208	0.140	50
XMMXCS J101110.4+295115.2	152.793740	29.854239	42045.065	0.140	50
XMMXCS J101128.3+293155.0	152.867950	29.531959	2823.636	0.150	26
XMMXCS J101301.1+463441.8 XMMXCS J101838 7±105041 0	153.254760	40.078302 19.844746	010.074	0.110	7
XMMXCS J101843.6+370839.9	154.681960	37.144434	930.449	0.440	16
Continued on Next Page					

	Table H.2	- Continued			
XCS name XMMXCS 1101901 7+371020 8	R.A (J2000) 154 757150	Dec (J2000) 37 172449	Soft Counts 1230 960	Redshift 0.160	Ngal 40
XMMXCS J101903.2+200322.8	154.763560	20.056348	326.159	0.100	9
XMMXCS J101922.9+371522.6 XMMXCS J101933 0+080353 5	154.845830 154.887690	37.256290	2247.246	0.130	50 50
XMMXCS J101933.0+080333.3 XMMXCS J102013.4+194131.9	155.056130	19.692202	350.818	0.100	15
XMMXCS J102017.7+075931.8	155.073870	7.992190	526.053	0.190	21
XMMXCS J102033.9+195236.1 XMMXCS J102133.7+213748.9	155.141270 155.390440	21.630269	1164.135	0.210	20
XMMXCS J102245.9+194741.5	155.691640	19.794887	542.659	0.120	10
XMMXCS J103007.1-030642.1 XMMXCS J103023 1+310142 1	157.529880	-3.111717 31.028362	918.610 348.340	0.400	19 37
XMMXCS J103100.0+305138.7	157.750040	30.860774	925.623	0.130	50
XMMXCS J103104.9+052626.8	157.770680	5.440791	1182.362	0.230	24
XMMXCS J103131.0+311313.9 XMMXCS J103212.7+581623.3	158.053320	58.273147	631.192	0.320	17
XMMXCS J103421.8+395113.1	158.591220	39.853656	396.218	0.100	9
XMMXCS J103454.4+585054.2 XMMXCS J103501 2+580456 4	158.726850 158.755400	58.848408 58.082341	378.131	0.420	15
XMMXCS J103506.8+585601.5	158.778670	58.933761	2538.327	0.440	37
XMMXCS J103508.1+584000.8	158.783980	58.666890	13041.753	0.110	50
XMMXCS J103516.3+580845.2 XMMXCS J103931.8+394737.1	159.882880	39.793651	852.460 443.945	0.340	10
XMMXCS J103937.1+090329.2	159.904940	9.058136	3096.085	0.160	13
XMMXCS J103941.3+091849.2 XMMXCS J104030 1+085654 1	159.922310 160.125780	9.313687	17995.979	0.190	50
XMMXCS J104041.4+395704.9	160.172830	39.951386	8497.983	0.150	50
XMMXCS J104422.3+213025.7 XMMXCS J104422.6+064514.0	161.093050	21.507142	2002.498	0.450	25
XMMXCS J104422.0+064514.9 XMMXCS J104546.9+063421.4	161.445440	6.572623	710.341	0.180	11
XMMXCS J104551.8+213345.9	161.466110	21.562776	305.548	0.440	14
XMMXCS J104947.8+572353.2 XMMXCS J105132.5+572107.0	162.449210 162.885680	57.398120 57.351967	541.377 944.430	0.410	5 12
XMMXCS J105134.9+572720.0	162.895670	57.455571	3782.039	0.590	28
XMMXCS J105245.7+574208.0 XMMXCS J105247 2 572612 2	163.190590	57.702224	2059.013	0.100	34
XMMXCS J105302.1+571529.4	163.259120	57.258169	2800.793	0.120	40
XMMXCS J105318.7+572048.4	163.328150	57.346798	1655.742	0.320	20
XMMXCS J105352.0+573458.3 XMMXCS J105419.1+572514.9	163.466670 163.579630	57.582877 57.420816	1587.485 3256.334	0.290	15 15
XMMXCS J105655.6+065841.1	164.231760	6.978101	307.566	0.310	23
XMMXCS J110340.4+382113.1 XMMXCS J110359 5+380509 4	165.918550	38.353660 38.085972	581.367 16248 726	0.490	30 50
XMMXCS J110400.1+381543.5	166.000830	38.262085	2977.804	0.490	34
XMMXCS J110400.5+380759.9	166.002320	38.133328	1489.300	0.100	5
XMMXCS J110414.0+380828.3 XMMXCS J110421.8+380551.4	166.090830	38.097639	1546.239	0.100	13
XMMXCS J110442.1+381534.7	166.175460	38.259659	2347.918	0.100	5
XMMXCS J110447.6+381747.8 XMMXCS J110451 1+381019 7	166.198670 166.213110	38.296628 38.172155	2393.565 2142.707	0.470	12
XMMXCS J110454.6+380940.1	166.227690	38.161159	3453.797	0.100	35
XMMXCS J110724.4-182731.0	166.851730	-18.458614	106266.410	0.470	50
XMMXCS J110954.2+482704.8 XMMXCS J111153.7+022856.2	167.973950	2.482299	622.487	0.100	5
XMMXCS J111307.7+401759.0	168.282350	40.299730	471.357	0.100	23
XMMXCS J111357.7+061053.3 XMMXCS J111515.4+531948.3	168.490650 168.814420	6.181479 53.330096	790.086 2307.456	0.140	14 50
XMMXCS J111726.1+074327.8	169.358930	7.724394	1238.075	0.450	40
XMMXCS J111729.8+174450.7 XMMXCS J111730 6+074631 2	169.374380 169.377600	17.747439	481.976	0.480	22
XMMXCS J111745.0+074031.2 XMMXCS J111745.0+073813.5	169.437770	7.637092	808.799	0.490	10
XMMXCS J112006.6+600127.9	170.027530	60.024440	1275.644	0.440	7
XMMXCS J112259.2+465915.6 XMMXCS J112349.5+052951.7	170.747010 170.956440	46.987675 5.497718	328.490	0.440	12
XMMXCS J112419.7+470006.9	171.082420	47.001938	409.136	0.490	6
XMMXCS J113657.5+570617.2 XMMXCS J113844 3+031536 5	174.239600 174.684970	57.104780 3.260144	539.942 912 236	0.120	38
XMMXCS J113909.8+170334.2	174.791170	17.059504	433.755	0.270	27
XMMXCS J114041.4+314811.1	175.172740	31.803111	38085.101	0.120	50
XMMXCS J114057.5+602303.5 XMMXCS J114213.2+602933.6	175.555130	60.492685	13840.521	0.380	50
XMMXCS J114333.1+602902.8	175.888170	60.484114	1291.754	0.130	17
XMMXCS J114725.5+530343.4 XMMXCS J115112 0+550654 5	176.856650 177.800230	53.062057 55.115150	26524.362 5241 947	0.100	50 21
XMMXCS J115123.7+545010.0	177.849120	54.836129	573.406	0.150	27
XMMXCS J115131.8+014814.5	177.882670	1.804033	338.903	0.170	16
XMMXCS J115204.1+545848.1 XMMXCS J115222.8+364652.7	178.095070	36.781319	843.262	0.120	29
XMMXCS J115331.2+365306.3	178.380170	36.885098	1240.386	0.150	50
XMMXCS J115817.9+524131.2 XMMXCS J115824.9+440536.6	179.574860 179.603910	52.692026 44.093526	1023.075 452.411	0.660	5 42
XMMXCS J120550.8+351059.9	181.461830	35.183329	741.476	0.450	11
XMMXCS J120801.2+433927.3 XMMXCS J120850.9+452951.2	182.005100 182.212180	43.657594 45.497580	312.983 756.808	0.270	30 23
XMMXCS J120916.9+652242.4	182.320450	65.378465	1617.728	0.100	10
XMMXCS J120929.4+392804.7 XMMXCS J120924.2+292222.6	182.372880	39.467997	539.312	0.210	22
XMMXCS J120934.3+392233.0 XMMXCS J121156.6+502917.7	182.986040	50.488254	521.970	0.110	9
XMMXCS J121334.8+025349.4	183.395360	2.897081	2044.047	0.390	28
XMMXCS J121722.4+033242.3 XMMXCS J121729.3+373020.3	184.343700 184.372370	3.545084 37.505641	642.072 784.383	0.130	29 5
XMMXCS J121749.5+472436.0	184.456570	47.410005	4864.739	0.260	50
XMMXCS J121753.1+472902.1 XMMXCS J121755 5 472824.6	184.471510	47.483916	918.408	0.260	50
XMMXCS J121755.5+472854.0 XMMXCS J121806.9+373833.8	184.528860	37.642736	733.164	0.230	20
XMMXCS J121811.9+374302.9	184.549920	37.717489	362.599	0.170	5
XMMXCS J121848.3+293601.0 XMMXCS J121857.5+472826.5	184.739620	47.474033	403.054 76621.968	0.250	5 50
XMMXCS J121916.1+474439.1	184.817130	47.744201	2975.801	0.100	9
AMMACS J121929.1+474034.7 XMMXCS J121936.3+141609 2	184.871640 184.901560	47.676331 14.269235	3359.011 17203.620	0.100	16 50
XMMXCS J121938.1+143339.3	184.908910	14.560933	2804.330	0.100	8
XMMXCS J121952.3+472622.8	184.968030	47.439694	466.596	0.220	14
XMMXCS J122021.1+300737.4 XMMXCS J122040.0+302041.6	185.166830	30.344916	563.399	0.210	12
XMMXCS J122122.7+143253.8	185.344760	14.548284	344.308	0.450	7
XMMXCS J122227.8+142809.7 XMMXCS J122235.7+143536 0	185.615950 185.648880	14.469379 14.593359	336.934 703.703	0.160 0.510	10 13
XMMXCS J122522.1+311817.4	186.342200	31.304847	662.290	0.330	24
XMMXCS J122528.0+004228.3 XMMXCS J122544 9±312516 5	186.367030 186.437220	0.707883 31.421276	577.087 811-218	0.230	50
XMMXCS J122553.1+334609.3	186.471580	33.769267	2098.096	0.470	27
XMMXCS J122600.5+333348.3	186.502450	33.563433	8101.708	0.290	39
XMMXCS J122845.5+015501.2 XMMXCS J122900.7+015226.2	187.253050	1.873971	100.771 520.543	0.270	5 7
Continued on Next Page			-	-	
	Table H.2	- Continued			
--	--------------------------	------------------------	----------------------	----------------	----------
XCS name	R.A (J2000)	Dec (J2000)	Soft Counts	Redshift	Ngal
XMMXCS J122908.8+014723.0 XMMXCS J122925.5+075522.2	187.356360	7.922838	14742.005	0.100	30
XMMXCS J122929.3+015130.6	187.372290	1.858510	764.333	0.250	5
XMMXCS J122932.5+015030.6 XMMXCS J122944 5+133450 8	187.385580	1.841848	1565.835	0.100	15 14
XMMXCS J123001.8+080841.5	187.507820	8.144880	4603.839	0.100	32
XMMXCS J123002.6+021018.4	187.510850	2.171789	2707.465	0.140	16
XMMXCS J123012.8+080124.6 XMMXCS J123014.6+080044.4	187.553740 187.560860	8.023521 8.012341	695,948	0.140 0.240	13
XMMXCS J123017.0+133905.0	187.571150	13.651398	368.745	0.270	8
XMMXCS J123019.1+110059.1	187.579950	11.016431	640.675	0.130	16
XMMXCS J123144.3+413730.9 XMMXCS J123313.0+001130.0	188.304570	0.191694	467.154	0.240	43
XMMXCS J123525.3+480154.6	188.855530	48.031832	966.367	0.100	10
XMMXCS J123652.1+615817.6	189.217140	61.971580	706.131	0.250	11
XMMXCS J123033.3+131428.7 XMMXCS J124024.7-114806.2	190.103160	-11.801748	814.544	0.120	18
XMMXCS J124127.2-015824.2	190.363710	-1.973391	352.297	0.150	14
XMMXCS J124138.9+322822.5	190.412150 100.445170	32.472943	408.067	0.390	8
XMMXCS J124140.8+141923.0 XMMXCS J124158.7+331716.7	190.494860	33.287978	866.357	0.220	50
XMMXCS J124202.5+332203.9	190.510810	33.367753	322.324	0.100	19
XMMXCS J124208.1+331320.2 XMMXCS J124212.3+331949.5	190.534070 190.551520	33.222284 33.330436	727.078 330.506	0.230	27
XMMXCS J124229.0+143100.0	190.620940	14.516680	391.889	0.460	5
XMMXCS J124230.8+024049.7	190.628740	2.680474	2779.297	0.100	5
XMMXCS J124235.4-112412.1 XMMXCS J124240.4+024651.2	190.668590	2.780904	621.262	0.110	10
XMMXCS J124241.8-112844.5	190.674180	-11.479044	1344.966	0.110	5
XMMXCS J124248.7+112637.8 XMMXCS J124259 2+332353 7	190.703120	11.443852	687.657 906.400	0.190	9
XMMXCS J124200.0+141806.8	190.750170	14.301895	431.625	0.440	7
XMMXCS J124305.2+023313.5	190.771780	2.553772	1240.391	0.190	15
XMMXCS J124310.2+142022.2 XMMXCS J124312.3+131305 4	190.792880 190.801670	14.339511 13.218184	803.184 390.338	0.340	26 5
XMMXCS J124349.6+112025.9	190.956770	11.340543	773.354	0.320	6
XMMXCS J124412.6+112404.3	191.052800	11.401196	749.124	0.220	11
XMMXCS J124453.1-002627.9	191.221250	-0.441086	435.418	0.480	18
XMMXCS J124454.1-003331.1	191.225430	-0.558641	1339.641	0.190	28
XMMXCS J124926.2+051221.9 XMMXCS J124928 8-060010 7	192.359520 192.370020	5.206089 -6.002997	894.236 351 930	0.570	6 18
XMMXCS J125047.4+263352.9	192.697640	26.564700	416.542	0.440	16
XMMXCS J125313.8+155544.6	193.307570	15.929056	1025.031	0.260	42
XMMXCS J125403.2+310149.4 XMMXCS J125612.4+474303.2	193.513370 194.051770	47.717556	413.588 4119.872	0.480	50
XMMXCS J125704.5+270632.7	194.268840	27.109105	336.255	0.280	11
XMMXCS J125727.7+475213.7 XMMXCS J125749 0+473358 0	194.365560	47.870474	1990.491 5120.129	0.130	22
XMMXCS J125800.7+472646.4	194.502930	47.446243	14517.583	0.140	50
XMMXCS J125808.1+271114.3	194.533970	27.187321	368.386	0.390	5
XMMXCS J125808.7+344432.7 XMMXCS J125813.7+474638.0	194.536270 194.557340	34.742430 47.777235	1288.836	0.170	22
XMMXCS J125836.5+474344.5	194.652140	47.729051	833.486	0.370	5
XMMXCS J125932.8+274937.2	194.887020	27.827027	12675.608	0.100	33
XMMXCS J125958.8+550005.0 XMMXCS J125950.0+344658.9	194.958360	34.783055	1332.168	0.120	10
XMMXCS J125950.4+274920.6	194.960220	27.822392	5428.498	0.470	13
XMMXCS J125956.2+345652.0 XMMXCS J130009.8+281016.2	194.984380 195.041100	34.947781 28.171169	508.346 548.584	0.100	6 8
XMMXCS J130020.6+275526.7	195.085990	27.924107	1891.141	0.100	7
XMMXCS J130348.5+534607.3	195.952260	53.768695	726.624	0.320	50
XMMXCS J130749.0+292349.3 XMMXCS J130802.4+213115.9	197.010190	21.521083	23031.925	0.230	50
XMMXCS J130852.3+213652.5	197.218120	21.614596	6256.827	0.180	50
XMMXCS J130902.9+211532.2 XMMXCS J130933 6±573928.0	197.262380	21.258973 57.657789	12852.924 566 587	0.350	44
XMMXCS J130937.9+212932.1	197.408240	21.492266	10830.035	0.200	29
XMMXCS J131058.3+572042.1	197.743200	57.345027	417.874	0.530	19
XMMXCS J131114.8+231317.1 XMMXCS J131122 5+232908 7	197.812020 197.844000	23.221429 23.485774	576.589 2535.066	0.270	10 44
XMMXCS J131139.3+232017.7	197.913990	23.338270	695.093	0.100	9
XMMXCS J131154.4+352242.3	197.976680	35.378421	754.049	0.180	47
XMMXCS J131158.1+233416.7 XMMXCS J131302.5+351946.6	197.992150	35.329629	319.504	0.320	36
XMMXCS J131626.3+415134.5	199.109640	41.859592	79241.442	0.100	25
XMMXCS J131934.2-144619.2	199.892890	-14.772012	661.642	0.150	5
XMMXCS J132053.8+335521.6	200.224520	33.922687	678.987	0.200	50
XMMXCS J132324.5+432317.4	200.852320	43.388190	870.657	0.100	6
XMMXCS J132434.4+053419.6 XMMXCS J132959.5+583423.1	201.143620 202.497970	5.572135 58.573103	033.323 319.985	0.230 0.270	50 19
XMMXCS J133434.9+375700.2	203.645450	37.950070	874.775	0.320	36
XMMXCS J133443.6+380828.1 XMMXCS J133457 2 + 275021 9	203.682070	38.141146	3548.495	0.250	21
XMMXCS J133514.4+374908.8	203.810030	37.819115	358.514	0.320	21
XMMXCS J133529.0+374519.3	203.871220	37.755386	39923.883	0.290	50
XMMXCS J133604.9+514530.9 XMMXCS J133620 1+242014 5	204.020450 204.083880	51.758608 24.337380	1015.107 366.116	0.530	27 17
XMMXCS J133817.8+242450.5	204.574430	24.414054	368.244	0.450	17
XMMXCS J134305.1-000056.6	205.771410	-0.015748	1374.531	0.550	25
XMMXCS J134921.9+261449.8 XMMXCS J134937.0-035948.7	207.341450 207.404450	-3.996882	415.310	0.100	23
XMMXCS J135047.9+600702.7	207.699650	60.117426	623.321	0.400	6
XMMXCS J135358.8+335003.1 XMMXCS J135442 1 052848 2	208.495390	33.834209 5.480074	566.679 368 469	0.370	38
XMMXCS J140154.6+620008.9	210.477890	62.002478	732.847	0.330	5
XMMXCS J140354.4+431608.7	210.976710	43.269086	1304.789	0.100	5
XMMXCS J140555.2+540839.6 XMMXCS J140615.8+283047.8	211.565980	28.513296	372.561	0.130	0 11
XMMXCS J140919.5+262550.3	212.331360	26.430643	935.123	0.100	5
XMMXCS J140938.5+260639.9 XMMXCS 1141534 0 282224 6	212.410800	26.111086	713.404	0.450	10
XMMXCS J141643.6+105306.1	214.181960	10.885041	314.602	0.100	8
XMMXCS J141832.0+251105.4	214.633730	25.184837	6336.790	0.290	50
AMMACS J141857.7+250815.0 XMMXCS J142023.3+462056 7	214.740520 215.097220	25.137517 46.349091	098.683 729.648	0.460	26 6
XMMXCS J142041.3+462253.6	215.172210	46.381560	1366.782	0.550	35
XMMXCS J142115.1+030745.9	215.313100	3.129434	550.423	0.300	7
XMMXCS J142207.1+193253.9	215.529900 215.555890	19.689333	399.431	0.330	34 14
XMMXCS J142232.8+193824.7	215.636680	19.640204	732.631	0.120	12
XMMXCS J142244.4+194804.9 XMMXCS J142510 1+415710 2	215.685190 216.292160	19.801368 41.955386	792.197	0.140	16
Continued on Next Page	210.202100	11.000000	010.024	0.100	J

XCS name	B A (12000)	Dec (J2000)	Soft Counts	Bedshift	Ngal
XMMXCS J142730.8+262900.6	216.878360	26.483511	759.361	0.350	14
XMMXCS J142946.1+415221.8	217.442430	41.872729	378.605	0.380	6
XMMXCS J142954.4+421848.6	217.476940	42.313513	335.144	0.210	6
XMMXCS J143024.2+421939.8 XMMXCS J142102.2+421421.2	217.600910	42.327724	360.447	0.170	25
XMMXCS J143102.2+421431.3 XMMXCS J143118.8+415842.4	217.828400	41.978450	567.748	0.370	23
XMMXCS J143120.8-005344.6	217.837000	-0.895733	768.773	0.360	44
XMMXCS J143425.6+190414.6	218.606980	19.070723	1233.140	0.280	11
XMMXCS J143456.4+192655.4	218.735210	19.448739	1306.048	0.290	32
XMMXCS J143610.3+363152.5 XMMXCS J142612 2+262810 4	219.043120	36.531251	4050.092	0.170	22
XMMXCS J143615.2+363810.4 XMMXCS J143656.6+364646.7	219.236070	36.779646	49854.907	0.130	50
XMMXCS J143934.8+002216.4	219.895080	0.371237	498.959	0.120	50
XMMXCS J144010.3+000845.6	220.043320	0.146014	782.036	0.220	50
XMMXCS J144103.1+352501.8	220.262940	35.417178	377.895	0.480	6
XMMXCS J144125.1+353655.9 XMMXCS J144154.6 002256.1	220.354850	35.615540	307.692	0.320	10
XMMXCS J144216.7+353138.9	220.569900	35.527479	769.128	0.260	8
XMMXCS J145009.3+090429.1	222.539090	9.074751	669.104	0.600	8
XMMXCS J145317.4+033443.0	223.322540	3.578627	890.822	0.330	15
XMMXCS J145847.6+493456.8	224.698570	49.582451	306.554	0.440	18
XMMXCS J150234.0+473840.9 XMMXCS J150333 6+472426 6	225.844510	47.040380	403.133	0.320	5
XMMXCS J150824.8-001533.7	227.103500	-0.259362	468.315	0.100	23
XMMXCS J151051.6+670631.4	227.715020	67.108737	1510.097	0.400	30
XMMXCS J151537.8+560512.1	228.907700	56.086702	2037.294	0.280	8
XMMXCS J151555.3+070857.7 XMMXCS J151603.2+560607.8	228.972100	56.102177	859.478	0.310	13
XMMXCS J151803.1+671917.5	229.513260	67.321542	46825.364	0.460	50
XMMXCS J152035.3+671804.9	230.147270	67.301372	18622.863	0.400	50
XMMXCS J152312.5+084206.7	230.802440	8.701887	905.613	0.170	14
XMMXCS J152535.8+515121.5 XMMXCS J152620 2 512246 5	231.399260	51.855990	2924.192	0.400	33
XMMXCS J152713.8+513102.5	231.807700	51.517375	47267.599	0.140	50
XMMXCS J152715.8+514442.6	231.815870	51.745195	2351.729	0.120	11
XMMXCS J153132.0+324344.2	232.883630	32.728969	581.629	0.110	7
XMMXCS J153132.6+240345.6	232.886200	24.062687	849.934	0.100	10
XMMXCS J153135.3+323931.5 XMMXCS J153206 6+325427 8	∠32.897090 233.027540	32.008707 32.907736	20425 362	0.100	50 50
XMMXCS J153237.6+325617.7	233.156840	32.938267	583.784	0.100	8
XMMXCS J153240.3+325632.8	233.168130	32.942446	1005.998	0.100	22
XMMXCS J153256.5+325624.9	233.235530	32.940254	6372.533	0.100	46
XMMXCS J153301.6+322840.8	233.256910	32.478013	926.199	0.100	16
XMMXCS J153358.1+233427.8	233.492180	23.574394	14901.052	0.180	50
XMMXCS J153510.7+544056.5	233.794630	54.682372	2182.701	0.120	50
XMMXCS J153543.1+232917.4	233.929860	23.488172	3221.006	0.100	50
XMMXCS J153644.9+543729.0	234.187220	54.624748	329.039	0.340	10
XMMXCS J154233.1+535921.3 XMMXCS J154405 4±534715 8	235.038100	53.989200 53.787733	326 664	0.640	10
XMMXCS J154443.1+483352.1	236.179800	48.564480	1145.130	0.100	15
XMMXCS J154454.6+483241.3	236.227640	48.544812	2209.602	0.110	11
XMMXCS J154541.5+483144.1	236.423130	48.528925	13282.744	0.100	50
XMMXCS J154546.1+483801.1 XMMXCS J154626.2 485044.0	236.442110	48.633643	1774.682	0.130	5
XMMXCS J154636.7+4836044.9 XMMXCS J154636.7+483603.8	236.653160	48.601073	1865.319	0.170	12
XMMXCS J154931.5+255220.0	237.381570	25.872240	892.130	0.100	7
XMMXCS J154932.2+213302.1	237.384360	21.550590	476.923	0.690	5
XMMXCS J155004.1+255152.7	237.517450	25.864656	1959.500	0.140	26
XMMXCS J155011.8+201250.0 XMMXCS J155022.8+260548.0	237.595120	26.096684	1492.043	0.170	50
XMMXCS J155146.2+551721.9	237.942890	55.289416	366.959	0.390	5
XMMXCS J155204.2+552413.8	238.017530	55.403853	655.929	0.100	8
XMMXCS J160129.7+083901.6	240.373870	8.650461	1079.236	0.220	18
XMMXCS J160413.8+325146.7 XMMXCS J160434 1±174345 7	241.057760	32.862974	31428.697 60712 334	0.130	28
XMMXCS J160434.5+323757.1	241.142840	32.632545	2117.795	0.110	11
XMMXCS J160451.0+173430.0	241.212610	17.575010	313.754	0.480	6
XMMXCS J160456.3+254437.2	241.234780	25.743684	799.278	0.540	18
XMMXCS J160543 5+260530 8	241.415740	26 001001	811 340	0.140	10
XMMXCS J160549.9+253827.5	241.458070	25.640979	618.469	0.100	11
XMMXCS J160612.9+272106.6	241.553830	27.351852	424.550	0.260	8
XMMXCS J160620.9+601856.8	241.587150	60.315800	1411.407	0.530	18
XMMXCS J160637.1+254403.6	241.654680	25.734355	495.104	0.270	16
XMMXCS J160730.3+270401.9	241.876260	27.067216	753.603	0.100	9
XMMXCS J160952.1+544658.6	242.467320	54.782957	17588.854	0.100	50
XMMXCS J160957.2+542352.7	242.488660	54.397988	829.566	0.260	6
AMMACS J161040.3+540556.9 XMMXCS J161057 2 544148 0	242.667970 242.738770	54.099146 54.696670	590.067	0.330	33
XMMXCS J161136.1+541629.8	242.900720	54.274965	1951.358	0.340	50
XMMXCS J161137.7+544240.7	242.907360	54.711329	3123.877	0.100	27
XMMXCS J161237.6+540817.5	243.156810	54.138206	535.133	0.150	9
XMMXCS J161657 7 245205 0	243.976320	12.325011	627.855	0.340	38
XMMXCS J161754.9+060539.9	244.478980	6.094426	70850.207	0.240	50
XMMXCS J161755.5+350328.7	244.481630	35.057990	780.325	0.330	7
XMMXCS J163015.6+243423.8	247.565120	24.573281	1075.567	0.100	28
AMMACS J163141.4+340440.0 XMMXCS 1165651 1 + 252007 9	247.922760	34.077787 35.509176	570 372	0.140	16 E
XMMXCS J165705.8+353255.6	254.274180	35.548788	646.373	0.210	8
XMMXCS J165725.5+351729.9	254.356550	35.291661	719.020	0.110	5
XMMXCS J170933.1+590201.0	257.387970	59.033631	1733.197	0.140	6
AMMACS J170942.5+585443.6 XMMXCS 1171015 9 595120 5	257.427350	58.912129 58.858106	324.667	0.190	16
XMMXCS J171149.5+584705.3	257.956600	58.784825	2072.685	0.210	28
XMMXCS J171218.2+584912.3	258.075890	58.820111	353.666	0.220	10
XMMXCS J171231.3+585310.3	258.130780	58.886211	1708.845	0.360	23
XMMXCS J171410 8±434402.5	208.400500 258.545170	43.734039	942 110	0.490	о 6
XMMXCS J171420.2+434034.1	258.584270	43.676155	588.421	0.500	7
XMMXCS J171521.4+572451.9	258.839190	57.414441	6506.194	0.100	15
XMMXCS J171934.0+590403.0	259.892070	59.067526	567.326	0.500	8
AMMACS J171953.7+263005.9 XMMXCS J172006 1 522210 7	259.973950	26.501662	23355.409	0.150	31
XMMXCS J172000.1+585810.7 XMMXCS J172106.3+583857 6	260.276590	58.649335	685.027	0.750	5
XMMXCS J172123.5+585951.5	260.348140	58.997656	595.985	0.110	12
XMMXCS J172151.9+584830.0	260.466480	58.808351	1481.799	0.100	8
AMMACS J172214.4+342344.2 XMMXCS 1172228 7+240752 8	260.560380	34.395638	363.774	0.110	16
XMMXCS J172303.1+342319.0	260.763260	34.388630	839.934	0.100	20
XMMXCS J172345.1+341734.0	260.937980	34.292779	355.062	0.160	10
XMMXCS J172414.1+341742.7	261.059080	34.295218	494.844	0.380	5
Continued on Next Page					

Table H.2 – Continued								
XCS name	R.A (J2000)	Dec (J2000)	Soft Counts	Redshift	Nga			
XMMXCS J173334.3+604553.8	263.393220	60.764949	872.028	0.460	- 7			
XMMXCS J173353.9+604950.9	263.474640	60.830808	489.357	0.310	7			
XMMXCS J173411.7+605429.3	263.549100	60.908152	805.314	0.470	8			
XMMXCS J173424.7+603637.1	263.602960	60.610332	644.083	0.190	9			
XMMXCS J173429.2+605814.8	263.621990	60.970785	540.398	0.330	6			
XMMXCS J173632.8+604353.1	264.136970	60.731427	909.321	0.470	7			
XMMXCS J173711.0+660316.7	264.296120	66.054652	503.092	0.380	10			
XMMXCS J200758.0-110256.9	301.991660	-11.049159	308.757	0.280	1:			
XMMXCS J211430.2+061540.2	318.625840	6.261170	312.525	0.230	(
XMMXCS J211506.8+060823.7	318.778420	6.139918	515.542	0.370	1:			
XMMXCS J211510.7+055757.4	318.794710	5.965971	1067.326	0.180	2			
XMMXCS J211511.6+055832.6	318.798430	5.975725	1365.580	0.180	2			
XMMXCS J213037.9+045522.6	322.658310	4.922968	559.974	0.600	20			
XMMXCS J213341.1-003842.7	323.421340	-0.645205	655.493	0.220	10			
XMMXCS J215437.6-091534.2	328.656840	-9.259518	776.701	0.110				
XMMXCS J215807.6-302250.4	329.532060	-30.380677	474.637	0.390	1:			
XMMXCS J215850.5-302451.1	329.710790	-30.414202	601.156	0.400	9			
XMMXCS J223546.8+335243.7	338.945080	33.878825	316.525	0.350	į			
XMMXCS J223615.1+335639.0	339.063220	33.944182	548.044	0.510				
XMMXCS J223633.6+343000.2	339.140010	34.500080	634.337	0.120	1			
XMMXCS J231932.9+081809.2	349.887150	8.302559	5467.971	0.100	2			
XMMXCS J232125.0+194513.5	350.354550	19.753756	4666.836	0.330	13			
XMMXCS J232813.5+144112.0	352.056570	14.686683	3862.003	0.130				
XMMXCS J232841.5+143931.7	352.173040	14.658823	26574.822	0.100				
XMMXCS J235001 8+362521 7	357 507530	36 422718	682 011	0.150	13			

Table H.2: XCS300 DR3 redshifts produced using SDSS DR7

_

Cluster	Z	nH	Tx	$L_{500} = 1$	Z	r _c	β
XMMXCS 1120020 2 202756 2	0.22108	(10 ²⁰ cm ²) 1.04 ^{+15.00}	(keV) 1.06 \pm 0.31	$(10^{11} \text{ erg s}^{-1})$	(Solar)	(arcmin)	0.67+0.00
XMMXCC 1144040 61 084728 2	0.22100	-1.04 0.71+18.07	-0.38	-0.05 -0.05 0.17 $+0.02$	-0.15 -0.15 0.07+0.22	-0.02 0.26 ± 0.05	-0.00 -0.00
XMMXCS 1125047 2 262256 4	0.38804	-0.71 0.61 \pm 0.00	-0.53 -0.53 1.76+0.89	-0.17 -0.17 -0.17 -0.83	-0.07 -0.07 -0.07	-0.04 0.10 $+1.90$	-0.00 -0.00 -0.40
XMMXCS J125047.3+263556.4	0.43184	-0.00	-0.57	-0.12	-0.00	-0.00 -0.00	-0.20 -0.20
XMMXCS J033225.3-275836.9	0.12400	0.89^{+} -0.00	-0.06 -0.06 -2.203	0.01 - 0.00 - 0.00	0.30 - 0.00 -0.20	1.29 - 0.04	0.67 - 0.00
XMMXCS J015719.5+375635.8	0.24000	6.87 + 5.51 -3.44 ± 2.60	3.79 + 2.00 -1.13 ± 2.10	0.96 + 1.41 -0.68	0.00+0.20 -0.00 ± 1.24	1.96 + 0.04 -1.86 ± 0.04	0.67 + 0.20 -0.32 ± 0.00
XMMXCS J111729.8+174452.9	0.54800	0.10 ± 2.00 -0.10	3.05 ± 2.10 -1.52	1.85 + 0.30 -1.06	$0.39^{\pm 1.24}_{-0.39}$	0.15 + 0.04 - 0.04	0.67 ± 0.00
XMMXCS J121334.9+025350.7	0.40900	0.61 + 2.01 -0.61	5.49 + 1.30 -1.13	2.25 + 0.44 - 0.36	0.31 ± 0.30 -0.30	0.78 ± 0.11 -0.10	0.84 + 0.09 - 0.10
XMMXCS J003427.6-431855.8	0.40000	2.74 + 1.11 - 1.04	3.43 + 0.34 - 0.32	2.16 + 0.10 - 0.10	0.40 + 0.13 - 0.13	$0.19^{+0.01}_{-0.01}$	$0.42^{+0.01}_{-0.01}$
XMMXCS J134807.0+261645.0	0.56181	0.00 + 1.75 - 0.00	7.09 + 4.67 - 2.40	1.35 + 0.07 - 0.34	0.16 + 0.16 - 0.16	0.19 + 0.01 -0.01	0.67 + 0.00 - 0.00
XMMXCS J112349.4+052955.1	0.67928	$4.43 \pm 0.00 \\ -0.00$	$3.39^{\pm 1.77}_{-0.90}$	1.55 + 1.10 - 0.42	0.30 + 0.00 - 0.00	$0.10^{+1.90}_{-0.00}$	$0.37 \substack{+0.58 \\ -0.02}$
XMMXCS J083025.8+524129.1	0.99000	$5.90^{\pm 1.60}_{-1.42}$	$6.44^{\pm1.25}_{-1.04}$	$11.59 \substack{+0.47 \\ -0.56}$	$0.21 + 0.14 \\ - 0.14$	$0.77^{+0.01}_{-0.01}$	$0.67 \substack{+0.00 \\ -0.00}$
XMMXCS J172814.0-142813.9	0.40530	$26.62^{+13.82}_{-9.84}$	5.15 + 4.16 - 1.86	$4.80^{+0.64}_{-1.13}$	$0.34 + 0.45 \\ - 0.34$	$0.50 + 0.06 \\ - 0.05$	$0.35 \substack{+0.00 \\ -0.00}$
XMMXCS J123144.3+413729.5	0.19100	2.04 + 4.73 - 2.04	3.14 + 1.63 - 1.16	$0.33^{+0.17}_{-0.13}$	$0.40 + 0.63 \\ - 0.37$	0.43 + 0.13 - 0.10	0.53 + 0.10 - 0.07
XMMXCS J054710.3-511155.0	0.28200	$4.92^{+0.00}_{-0.00}$	2.15 + 0.33 - 0.23	0.48 + 0.04 = 0.04	0.30 + 0.00	$0.12 + 0.01 \\ - 0.01$	0.42 + 0.01 - 0.01
XMMXCS J073603.7+433911.9	0.38000	5.72 ± 0.00	3.58 + 1.15 -0.75	1.29 ± 0.18 -0.17	0.30 + 0.00	0.35 + 0.04	0.67 + 0.06
XMMXCS J130545.0+175318.9	0.55763	2.06 + 0.00	3.49 + 2.88	0.67 + 0.09 = 0.11	0.30 + 0.00	1.19 + 0.12	0.67 + 0.00
XMMXCS J100141.8+022538.2	0.12412	2.47 + 0.00	1.49 + 0.14	0.14 + 0.09	0.30 + 0.00	$1.73^{+0.19}_{-1.62}$	$0.67^{+0.28}_{-0.22}$
XMMXCS J083454.8+553420.3	0.29282	$4.38^{+1.26}$	$4.29^{+0.89}$	14.57 + 0.56	$0.23^{+0.17}_{-0.15}$	0.21 ± 0.00	$0.67^{+0.00}_{-0.00}$
XMMXCS J022045.1-032555.8	0.33000	$2.49^{+0.00}$	$2.17^{+0.78}$	$0.36^{+0.12}$	$0.30^{+0.00}$	$0.12^{+0.03}$	$0.67^{+0.00}$
XMMXCS J132053.9+335522.9	0.18200	-0.00 $0.10^{+1.51}$	-0.45 4.47 $+1.88$	-0.06 $0.70^{+0.24}$	-0.00 $0.58^{+0.81}$	$^{-0.04}_{2.00^{+0.18}}$	-0.00 $0.80^{+0.04}$
XMMXCS J005655.6-221358.7	0.11600	-0.10 $1.50^{+0.00}$	$^{-1.28}_{1.76}$	-0.54 $0.11^{+0.02}$	-0.52 $0.30^{+0.00}$	-1.90 $0.10^{+0.00}$	-0.09 $0.41^{+0.01}$
XMMXCS J003548.2-432230.6	0.55000	$2.82^{+0.00}$	$^{-0.24}_{2.39}$	-0.02 $0.55^{+0.07}$	-0.00 $0.30^{+0.00}$	$0.10^{+0.01}$	-0.01 $0.52^{+0.04}$
XMMXCS J130534 8+175659 5	0.51261	-0.00 $3.52^{+4.40}$	-0.73 $3.87^{+2.15}$	-0.06 1 84 $+0.60$	$0.13^{+0.00}_{-0.40}$	-0.01 $0.62^{+1.38}$	$0.67^{+0.03}$
XMMXCS 1091821 8+211447 5	0.69000	-3.18 3.98+0.00	-1.41 6 83+6.47	-0.50 -0.59 -0.59	-0.13 -0.13 -0.00	$0.10^{-0.08}_{-0.05}$	-0.32 0.50+0.45
XMMXCS 1145009 4±090429 9	0.49674	-0.00 -0.00 -0.00	$^{-2.63}_{3.19}$	-2.96 0.99 $+0.09$	-0.00 0.30+0.00	-0.00 0.47 $+0.02$	-0.15 0.35 $+0.00$
XMMXCS 1040646 7 711620 7	0.22000	-0.00 -0.00 -0.00	-0.63 2.52+0.78	-0.09 -0.22	-0.00 -0.00 -0.39	-0.02 -0.03	-0.00 -0.00 -0.00
XMMXCS 1101220 2 450640 0	0.22900	$^{0.31}_{11.68}$ $^{-2.45}_{0.00}$	$^{0.02}_{1.27}$ - 0.69	$^{2.73}_{0.21}$ $^{-0.30}_{-0.28}$	0.38 - 0.27 0.20 + 0.00	0.47 - 0.02 0.10 + 1.90	0.33 - 0.00 0.35 + 0.60
XMMXCS 1929194 6 104515 0	0.11930	-0.00 5 00+1.69	-0.08	-0.19 -0.19 -0.19	-0.00 -0.00 0.18+0.16	0.10 - 0.00 0.40 + 1.51	-0.00 -0.00 -0.35
XMMXCS J232124.6+194515.9	0.41000	$^{5.83}_{-1.55}_{-1.00}$	-0.46	3.28 - 2.71 0.10+0.04	0.18 - 0.14 0.00 + 0.00	0.49 - 0.39 0.10 + 0.03	0.60 - 0.25 0.00 + 0.02
XMMXCS J223934.0-060019.1	0.17300	3.88 - 0.00	$^{1.72}_{-0.30}$	0.10 - 0.03 0.00 + 0.01	0.30 - 0.00	$0.10^{+}-0.03$	0.36 - 0.02
XMMXCS J022610.7-043812.0	0.05000	2.55 - 0.00	-0.13	-0.00	-0.00	-0.59 -0.59 -0.05	-0.05
XMMXCS J100115.3+250612.4	0.67000	2.77 - 0.00	2.54 - 0.78 + 2.21	0.55 - 0.10 = +0.50	0.30 - 0.00	$^{1.47}_{-0.05}$	0.67 - 0.00
XMMXCS J022827.3-042536.3	0.43300	2.65 - 0.00 + 0.00	4.22 + -1.22 + 0.68	$0.69^{+0.11}$	0.30 - 0.00 + 0.00	0.46 - 0.15 + 0.07	0.95 - 0.56 + 0.01
XMMXCS J232221.3+193855.8	0.26000	4.64 + 0.00 + 0.00 + 0.00	2.12 + 0.00 -0.41 +0.71	$0.29^{+0.00}_{-0.05}_{+0.13}$	0.30 + 0.00 + 0.00 + 0.00	2.00 + 0.07 + 0.07 + 0.12	$0.35 + 0.01 \\ + 0.60$
XMMXCS J130553.5+181439.6	0.44645	2.04 + 0.00 + 0.00 + 0.00	1.50 + 0.11 -0.38 +2.43	0.35 + 0.10 +0.10	0.30 + 0.00 - 0.00 + 0.00	0.71 + 0.12 +0.05	$0.95 + 0.60 \\ + 0.00$
XMMXCS J145015.1+270832.2	0.40698	2.50 + 0.00 -0.00	3.01 + 2.40 -0.88 +0.64	0.52 + 0.11 -0.11	0.30 + 0.00	0.23 + 0.05 - 0.05 - 0.12	0.67 + 0.00 - 0.00
XMMXCS J094034.7+355952.5	0.29427	1.46 + 0.00	1.44 ± 0.04 -0.31	0.11 + 0.04 - 0.03 + 0.03	0.30 ± 0.00	0.18 + 0.12 -0.06	0.67 ± 0.00 -0.00
XMMXCS J000429.1+633127.1	0.37400	72.61 ± 0.00	1.94 + 0.43 - 0.27	3.51 + 0.09 - 0.96	0.30 + 0.00 - 0.00	2.00 + 0.00 - 1.90	0.72 + 0.23 - 0.37
XMMXCS J003603.7+851321.4	0.57000	$7.84^{+0.00}_{-0.00}$	$5.33^{+2.25}_{-1.40}$	3.23 + 0.25 - 0.32	0.30 + 0.00 - 0.00	2.00 + 0.00 - 0.00	0.67 + 0.00 - 0.00
XMMXCS J005558.3-373301.2	0.16200	2.53 + 0.65 - 0.63	$5.22^{\pm 0.43}_{-0.44}$	$2.22^{+0.77}_{-0.49}$	$0.36 + 0.11 \\ - 0.11$	$0.74^{+0.30}_{-0.21}$	$0.67 \substack{+0.00 \\ -0.00}$
XMMXCS J130650.1-233129.4	0.27000	$9.01^{\pm 0.00}_{-0.00}$	$3.17^{\pm 1.42}_{-0.83}$	$1.24^{+1.39}_{-0.72}$	$0.30 + 0.00 \\ - 0.00$	$1.22 + 0.78 \\ -1.12$	$0.67 \substack{+0.28 \\ -0.32}$
XMMXCS J093709.1+611612.5	0.20789	$2.67 \substack{+0.00 \\ -0.00}$	$1.34 \substack{+0.45 \\ -0.27}$	$0.08 \substack{+0.04 \\ -0.04}$	$0.30 \substack{+0.00 \\ -0.00}$	$0.10 \substack{+0.03 \\ -0.03}$	$0.42^{+0.08}_{-0.05}$
XMMXCS J130514.7-102311.5	0.70000	$3.32 \substack{+0.00 \\ -0.00}$	2.30 + 0.66 - 0.51	$0.88 \pm 0.16 \\ -0.15$	0.30 ± 0.00	$0.21 + 0.07 \\ - 0.07$	$0.35 + 0.02 \\ - 0.02$
XMMXCS J161554.2+121928.5	0.35019	4.54 + 0.00 -0.00	3.75 + 1.97 -1.16	$1.49 + 0.26 \\ - 0.29$	0.30 + 0.00	1.49 + 0.13 -0.11	0.67 + 0.00 = 0.00
XMMXCS J140615.7+283049.2	0.54600	$0.10 \stackrel{+2.12}{-0.10}$	$6.44 + 7.10 \\ -2.45$	$2.40^{+1.23}_{-1.12}$	$0.60^{+1.42}_{-0.60}$	0.35 + 1.65	$0.67 \substack{+0.06 \\ -0.06}$
XMMXCS J123019.4+110118.5	0.24546	2.17 + 0.00	1.89 + 0.68 = 0.32	0.05 + 0.01	0.30 + 0.00	0.25 + 0.04 - 0.07	0.95 + 0.45 - 0.22
XMMXCS J103131.2+311315.9	0.37290	0.10 + 1.33	5.18 + 2.92	1.97 + 0.33	$0.97^{+1.49}_{-0.87}$	$0.34^{+0.27}_{-0.18}$	0.39 + 0.09
XMMXCS J143252.1-441909.5	0.10360	$10.70^{+1.56}$	$4.29^{+0.41}$	4.75+0.75	$0.48^{+0.17}$	$0.14^{+0.02}$	0.35+0.01
XMMXCS J062210.7+781831.0	0.12910	$8.90^{+7.91}$	-0.41 3.39 $+3.18$	-0.42 $0.50^{+0.07}$	$0.36^{+1.15}$	-0.02 1.91 $+0.04$	$0.67^{+0.00}_{-0.00}$
Continued on Next Page		-5.67	-1.55	-0.15	-0.36	-0.03	-0.00

Cluster	z	nH Tabl	e H.3 – Continu Tw	ued Leoo	Z	r.a.	в
Cluster	Z	$(10^{20} \text{ cm}^{-2})$	(keV)	$(10^{44} \text{ erg s}^{-1})$	(Solar)	(arcmin)	ρ
XMMXCS J015241.1-133855.1	0.82000	1.60+0.00	5.78+4.76	3.37+0.37	0.30+0.00	0.10+0.00	$0.36^{+0.01}$
XMMXCS 1223924 4-054718 5	0.24200	$^{-0.00}_{3.98}$ +0.00	$^{-2.04}_{2.73+0.31}$	$^{-0.45}_{1.15}$ +1.96	-0.00 0.30+0.00	-0.00 0.17 $+1.83$	-0.01 0.51 $+0.44$
NANAX CO. 1001550 4 150015 5	1.45500	-0.00 -0.00 +2.67	-0.26 -0.26 +8.38	-0.68	-0.00 - 0.00	-0.07 -0.01	-0.16
XMMXCS J221359.4-175815.5	1.43700	-0.10	-3.49	-1.29	-0.00 ± 1.52	0.11 - 0.01 + 0.12	-0.00
XMMXCS J074921.2-674951.4	0.27400	9.87 + 6.82 - 6.82	3.24 - 1.32	0.84 + 0.120 - 0.46	-0.73	0.56 + 0.12 -0.12	0.67 + 0.07 - 0.07
XMMXCS J104422.4+213024.7	0.65463	$2.10^{+0.00}_{-0.00}$	$3.92^{\pm 0.42}_{-0.37}$	$2.47^{\pm 0.10}_{-0.10}$	0.30 ± 0.00 -0.00	$0.27^{\pm 0.01}_{-0.01}$	$0.63^{\pm 0.02}_{-0.02}$
XMMXCS J092114.4+370129.8	0.42975	1.56 + 0.00	0.82 + 0.28	0.08 ± 0.05	0.30 ± 0.00	1.11 + 0.70	0.66 ± 0.29
XMMXCS J004753.1+852716.9	0.33000	$7.71^{+0.00}$	$5.82^{+3.34}$	$0.57^{+0.43}$	$0.30^{+0.00}$	$0.10^{+1.01}$	$0.67^{+0.00}$
VMMVCC 1995709 5 941459 7	0.51000	-0.00	-1.63	0.14	-0.00	-1.71 0.21 \pm 0.15	-0.00 -0.01
XMMXCS J235708.5-241453.7	0.51000	1.85 -0.00	-1.97	2.19^{+} -0.52	0.30 - 0.00	0.31^{+} -0.10	0.35^{+} -0.01
XMMXCS J160129.7+083856.6	0.18753	3.80 ± 0.00 -0.00	$1.93 \pm 1.73 \\ -0.47$	0.34 + 0.25 -0.10	0.30 ± 0.00 -0.00	0.44 ± 0.17 -0.18	0.75 + 0.22 -0.21
XMMXCS J120934.4+392234.8	0.54702	$0.00^{+4.17}_{-0.00}$	4.70 + 2.60 - 1.66	0.75 + 0.04 - 0.57	$0.44^{+0.81}_{-0.44}$	$0.10^{+0.01}_{-0.01}$	$0.40^{+0.55}_{-0.02}$
XMMXCS J233949.7-121307.1	0.19000	2.98 + 0.00	1.30 + 0.14	0.13+0.06	0.30+0.00	0.12 + 0.06	0.45 + 0.04
XMMXCS J131455 1-163838 3	0.61000	$5.07^{+0.00}$	$^{-0.16}_{3.62}$	-0.03 $0.97^{+0.23}$	-0.00 $0.30^{+0.00}$	-0.06 $0.10^{+0.04}$	-0.02 0.51 $+0.06$
XMMXCC 1025006 5 310400 2	0.80000	-0.00	-1.16	-0.18 +0.35	-0.00	-0.04 0.12 $+0.03$	-0.03 -0.01
XMMXC3 5025000.5-510400.2	0.80000	$^{1.92}_{-0.00}$	-1.82 +0.93	-0.40 +0.09	-0.00 +0.32	-0.02 +1.71	-0.01 +0.54
XMMXCS J011952.1-441519.9	0.11800	0.50 - 0.50	1.36 - 0.41	0.04 + 0.03	0.14 - 0.13	0.29 - 0.33	0.41 - 0.08
XMMXCS J022457.7-034852.6	0.61000	$2.49^{\pm 0.00}_{-0.00}$	$4.09^{\pm 1.55}_{-1.02}$	$3.02 \pm 0.39 \\ -0.35$	0.30 ± 0.00 -0.00	0.12 + 0.04 - 0.07	$0.39^{\pm 0.02}_{-0.02}$
XMMXCS J140439.3-341235.3	0.83000	$5.52^{+0.00}$	4.13 + 2.65	$2.26^{+0.25}_{-0.20}$	$0.30^{+0.00}$	$2.00^{+0.02}$	$0.67^{+0.00}_{-0.00}$
XMMXCS J004333.8+010107.8	0.18600	$2.50^{+0.00}$	1.48 + 0.32	0.21 + 0.05	0.30 + 0.00	$0.24^{+0.02}$	$0.35^{+0.01}$
XMMXCS 1151424 7±363710 1	0.37200	-0.00 1 35 $+0.00$	$^{-0.30}_{5.44}$ +5.78	-0.04 5 55+1.05	-0.00 0.30+0.00	-0.08 1.51+0.12	-0.01 0.67 ± 0.00
	0.37200	-0.00	-2.25	-1.19	-0.00 - 0.00	-0.10	-0.00
XMMXCS J010607.9+005013.2	0.27700	2.84 -2.34	3.42 - 0.91	2.81 - 0.46	0.58	2.00 - 0.07	-0.00
XMMXCS J224113.3+032833.0	0.25000	5.25 + 0.00 - 0.00	$1.67^{+1.40}_{-0.44}$	0.18 + 0.07 - 0.06	0.30 + 0.00 - 0.00	$0.10^{+0.01}_{-0.01}$	$0.67^{+0.00}_{-0.00}$
XMMXCS J014449.9-043231.5	0.18000	$2.84 \substack{+0.00 \\ -0.00}$	$1.36^{+0.19}_{-0.14}$	$0.08 + 0.01 \\ - 0.01$	$0.30 + 0.00 \\ - 0.00$	2.00 + 0.00 - 0.00	$0.67 \substack{+0.00 \\ -0.00}$
XMMXCS J022539.3-031124.4	0.14000	$2.93^{\pm 1.56}$	$3.67^{+0.83}$	$2.24^{\pm 0.14}$	$0.13^{+0.22}$	2.00 + 0.00	0.35 + 0.02
XMMXCS J161132.8+541635 5	0.37900	$^{-1.45}_{1.37}$	-0.60 $6.86^{+4.92}$	$2.16^{+1.48}$	-0.13 $0.30^{+0.00}$	$0.37^{+0.02}$	$-0.00 \\ 0.95 + 0.37$
XMMXCS 1084059 1 445047 4	0.54645	-0.00 -0.00	-2.16 2.50 $+1.20$	-0.27 0.82 $+0.11$	-0.00 0.20+0.00	-0.05 0.51 $+0.12$	-0.10 0.25 $+0.01$
AMINIACS JU04958.1+445947.4	0.04040	2.00 -0.00	-0.69	-0.10 +0.58	-0.00	-0.09 +1.90	-0.01 +0.52
XMMXCS J030614.6-000537.0	0.44000	6.51 - 0.00	2.73 - 0.58	0.68-0.28	0.30 - 0.00	0.10 - 0.00	0.43 - 0.02
XMMXCS J031833.0-030258.1	0.37000	$4.77^{\pm 0.00}_{-0.00}$	$5.80 \pm 0.70 \\ -0.54$	$6.73^{\pm 0.43}_{-0.41}$	0.30 ± 0.00 -0.00	$0.53 \pm 0.03 \\ -0.02$	$0.68^{\pm 0.02}_{-0.02}$
XMMXCS J120801.1+433928.2	0.26569	0.10 + 4.32 -0.10	3.02 + 1.27 -1.17	1.28 ± 0.70 1.28 ± 0.52	0.55 ± 0.76 -0.51	0.15 + 0.04 - 0.07	0.67 ± 0.00
XMMXCS J022722.1-032145.3	0.32900	$2.61^{+0.00}$	$2.93^{+1.29}$	$0.42^{+0.06}$	0.30 + 0.00	0.31 + 0.03	$0.95^{+0.06}$
XMMXCS 1092018 9±370618 0	0 18512	-0.00 1 57 $+0.00$	-0.72 2.48+0.07	-0.06 2.04 ± 0.04	-0.00 0.30 ± 0.00	-0.03 0.16 \pm 0.00	-0.06 0.55 $+0.00$
XMMXC5 5052010.5 510010.0	0.10012	-0.00	-0.07 +3.77	-0.04	-0.00 -0.28	-0.00	-0.00
XMMXCS J133514.4+374908.0	0.59500	0.10 -0.10	4.02 - 1.76	0.69 - 0.27	0.01 -0.01	0.25 - 0.05	0.58 - 0.06
XMMXCS J133459.5+375024.5	0.38200	$0.10 + 3.50 \\ -0.10$	$3.99^{\pm 2.25}_{-1.24}$	$0.27 \pm 0.06 \\ -0.09$	$0.75 \pm 0.98 \\ -0.63$	$0.61 \pm 0.24 - 0.18$	$0.67^{\pm 0.00}_{-0.00}$
XMMXCS J003646.4-432020.6	0.25000	$2.82^{+0.00}_{-0.00}$	$1.28 + 0.55 \\ - 0.29$	$0.14 + 0.06 \\ - 0.05$	$0.30 + 0.00 \\ - 0.00$	$1.00^{+0.44}_{-0.13}$	0.35 + 0.11 - 0.06
XMMXCS J130526.8+181156.4	0.42202	2.05 + 0.00	4.04 + 1.05	$2.07^{+0.35}_{-0.48}$	0.30 + 0.00	$1.29^{+0.52}$	0.45 + 0.18
XMMXCS J110954.1+482705.2	0.49513	-0.00 $1.23^{+0.00}$	-0.81 $6.91^{+3.04}$	$^{-0.43}_{2.66^{\pm 0.42}}$	-0.00 $0.30^{+0.00}$	-0.30 $0.15^{+0.03}$	-0.08 $0.38^{+0.02}$
	0.50000	-0.00	-1.75 -1.75 -1.75	-0.39 -0.10	-0.00 -0.00 -0.00	-0.03 -0.05	-0.01
XMMXCS J093259.4+551545.0	0.52000	2.02 - 0.00 + 14.01	2.32 - 0.74 + 0.21	0.39 - 0.10 + 0.02	0.30^{+} +0.00 +0.48	0.30^{+} +0.04 +0.13	0.07 - 0.00 + 0.00
XMMXCS J112245.6+013332.7	0.12973	7.83 - 7.83	0.90 + 0.16	0.07 + 0.02 - 0.06	0.15 + 0.10 -0.10	2.00 + 0.13 -0.12	0.67 + 0.00 - 0.00
XMMXCS J124235.3-112412.9	0.06800	$3.55 + 0.00 \\ - 0.00$	1.05 + 0.12 - 0.11	$0.03 \substack{+0.00 \\ -0.00}$	$0.30^{+0.00}_{-0.00}$	$1.83^{+0.07}_{-0.06}$	$0.67^{\pm 0.00}_{-0.00}$
XMMXCS J005656.6-274032.0	0.56000	1.86 + 0.00	$3.02^{\pm 1.52}$	1.55 + 0.30	$0.30^{+0.00}$	$0.10^{+0.05}$	0.48 + 0.05
XMMXCS J054732.7-511014.4	0.07600	-0.00 $7.77^{+17.33}$	$0.63^{+0.13}$	$0.01^{+0.00}$	$0.13^{+1.09}$	$1.35^{+0.11}$	$0.67^{+0.02}$
XMMXCS 1082147 8 525026 1	0.46000	-7.77	-0.15 5.21 $+1.84$	-0.01 0.84 ± 0.08	-0.10 0.20+0.00	-0.09 1.02 ± 0.07	-0.00 0.25 ± 0.01
XMMXCS 5085147.8+525050.1	0.40000	-0.00	-1.23	0.34 - 0.08	-0.00	-0.06	-0.01
XMMXCS J051549.8+794000.9	0.61000	8.05 -0.00	5.01 - 1.66	-0.19	0.30 - 0.00	-0.04	-0.00
XMMXCS J133804.0+482105.9	0.08807	1.67 + 0.00 - 0.00	0.53 + 0.10 -0.10	0.02 + 0.00 -0.00	0.30 + 0.00	0.32 + 0.03 - 0.03	0.35 + 0.00 - 0.00
XMMXCS J084859.0+445149.6	1.26100	$2.72^{+0.00}_{-0.00}$	$5.36^{+2.03}_{-1.31}$	$2.22^{\pm 0.27}_{-0.27}$	$0.30^{+0.00}_{-0.00}$	0.70 + 0.03 - 0.04	0.95 + 0.07 - 0.06
XMMXCS J115043.3+545639.0	0.22806	1.13 + 0.00	2.13 + 0.41	0.49 + 0.45	0.30 + 0.00	1.38 ± 0.17	0.67 + 0.10
XMMXCS J210849.1-051640.2	0.31900	$5.64^{+0.00}$	$4.77^{+2.69}$	1.55 + 0.79	0.30 + 0.00	0.21 + 0.13	$0.35^{+0.06}$
XMMXCS 1233402 4±485108 5	0.06230	-0.00 14.08 $+0.00$	$^{-1.39}_{5.51}+0.48$	-0.52 0.35 $+0.69$	-0.00 0.30 ± 0.00	-0.08 0.34+0.02	-0.07 0.52 $+0.01$
AMMACO 5250402.4 400100.0	0.00200	-0.00 +4.96	-0.46	-0.03	-0.00	-0.01	-0.01
AMMAUS J034808.5+241603.0	0.12130	$^{11.92}_{-4.19}$	2.68 - 0.60	0.18 - 0.03	0.60 - 0.37	0.24 - 0.01 ± 1.00	$0.67 + 0.00 \\ \pm 0.44$
XMMXCS J120943.5+391435.1	0.35511	0.00 + 1.01 -0.00	6.38 + 7.13 - 2.53	0.61 + 0.18 -0.43	0.99 + 1.89 - 0.98	0.10 + 1.90 -0.00	0.51 + 0.44 - 0.16
XMMXCS J022616.3-023954.2	0.06000	$2.67 \substack{+0.00 \\ -0.00}$	$0.61 \substack{+0.04 \\ -0.04}$	$0.02 \substack{+0.01 \\ -0.00}$	$0.30 + 0.00 \\ - 0.00$	$0.46 \substack{+0.10 \\ -0.08}$	$0.70 \substack{+0.11 \\ -0.08}$
XMMXCS J222818.8-050746.8	0.75000	5.15+0.00	1.20 + 0.70	0.63 + 0.42	0.30 + 0.00	0.10 + 0.03	0.42 + 0.05
XMMXCS J223939.4-054327.4	0.24300	5.53 + 2.35	2.65 + 0.53	$0.91^{+0.16}$	$0.34^{+0.27}$	$0.77^{+0.10}$	$0.80^{+0.10}$
XMMXCS 1062045 0 221240 6	0.40000	$^{-2.07}_{4.02}$	-0.49	-0.15 0.80 ± 0.17	-0.20 0.20 ± 0.00	-0.09 0.22 ± 0.05	-0.08 0.41 $+0.54$
XMMXC3 3003943.97821849.0	0.40000	4.93 - 0.00	-1.10	-0.37	-0.00	-0.13	-0.02
XMMXCS J045506.0-532342.5	0.40000	4.07 - 0.00	-0.67	0.67 - 0.09	0.30 - 0.00	2.00 - 0.06	0.35 + 0.01 - 0.01
XMMXCS J122929.0+015126.0	0.46022	$1.79^{+0.00}_{-0.00}$	10.00 + 5.41 - 2.84	2.66 + 5.25 - 1.09	0.30 + 0.00 - 0.00	$0.44^{+1.50}_{-0.03}$	$0.67^{+0.28}_{-0.32}$
XMMXCS J223228.7+391518.3	0.27100	11.75 + 0.00	3.54 + 3.18 - 1.06	$1.56^{+0.68}_{-0.73}$	0.30 + 0.00	$1.92^{+0.10}_{-0.43}$	0.95 + 0.43 - 0.25
XMMXCS J111515.3+531949.1	0.46647	$0.92^{+0.00}$	8.11 + 2.59	18.42 + 1.97	0.30 + 0.00	0.45 + 0.02	0.67 + 0.00
XMMXCS 1233231 0±485406 9	0.11100	-0.00 13 93 $+0.00$	$^{-1.82}_{1.70+1.35}$	-1.80 0.07 ± 0.07	-0.00 0.30+0.00	-0.02 0.10+0.02	-0.00 0.95+0.10
XMMXCG 1195959 91 995009 4	0.10007	-0.00	-0.40	-0.03 1.01 ± 0.93	-0.00	-0.02 +1.88	-0.08 -0.48
AMMAUS J135358.8+335003.4	0.46897	1.25 - 0.00	2.41 -0.79	1.21 - 0.16	0.30 -0.00	0.12 -0.01	0.47-0.12
XMMXCS J200312.6-324754.9	0.21510	10.15 ± 4.37 -3.76	2.95 ± 0.80 -0.58	0.70 + 2.14 - 0.40	0.41 ± 0.37 -0.28	0.10 + 1.90 - 0.00	0.57 ± 0.38 -0.22
XMMXCS J000259.0-295504.8	0.15560	$1.31^{+0.00}_{-0.00}$	$1.34 \substack{+0.32 \\ -0.23}$	$0.04 \substack{+0.03 \\ -0.02}$	0.30 + 0.00	$0.10 \substack{+0.08 \\ -0.08}$	$0.40^{+0.10}_{-0.05}$
XMMXCS J121743.8+472915.4	0.27900	1.25 + 0.00	7.43+8.56	2.35+3.38	0.30+0.00	0.83+0.13	0.95+0.60
XMMXCS J121205.5+131743.3	0.44875	$^{-0.00}_{1.72}$	$^{-2.54}_{1.71}$	-0.80 $0.64^{+0.15}$	$^{-0.00}_{0.01}$	$^{-0.37}_{0.10^{+0.01}}$	-0.40 $0.35^{+0.01}$
XMMXCS 1002551 2 421217 0	0.28000	$^{-1.72}_{2.72+0.00}$	-0.73 1 79 $+0.78$	-0.49	-0.01 0.30+0.00	-0.01 $0.22^{+0.07}$	-0.01 0.37+0.03
AMMACO J000001.3-431217.8	0.38000	-0.00	-0.34	-0.03	-0.00	-0.05	-0.03
XMMXCS J232152.7+195333.2	0.30000	4.62 - 0.00	2.55 - 0.87	0.35 - 0.06	0.30 - 0.00	0.13 + 0.05 - 0.05	0.35 + 0.01
XMMXCS J022205.0-043240.6	0.32000	$2.64^{+0.00}_{-0.00}$	$1.96^{+1.12}_{-0.46}$	$0.23^{\pm 0.32}_{-0.08}$	0.30 + 0.00 - 0.00	$1.96^{+0.11}_{-1.86}$	$0.95 \substack{+0.60 \\ -0.50}$
XMMXCS J223633.7+342959.3	0.05900	$8.62^{+0.00}_{-0.00}$	$0.64 \substack{+0.05\\-0.05}$	$0.02^{+0.00}_{-0.00}$	0.30 + 0.00	$0.18 \substack{+0.02 \\ -0.02}$	$0.67^{+0.00}_{-0.00}$
XMMXCS J131524.8-163227.9	0.49000	4.98+0.00	3.30+2.33	22.24+6.36	0.30+0.00	1.37 + 0.41	0.67+0.00
XMMXCS 1003439 3-120716 0	0.25500	$^{-0.00}_{2.46}$	$^{-1.05}_{5.30}$	-5.24 $0.48^{+0.10}$	-0.00 $0.30^{+0.00}$	-0.24 0.41 $+0.04$	$0.67^{+0.00}$
Continued on Next Page			-1.87	-0.11	-0.00	-0.04	-0.00

Table H.3 – Continued								
Cluster	z	nH	T_{x}	L500	Z	r _c	β	
		$(10^{20} \text{ cm}^{-2})$	(keV)	$(10^{44} \text{ erg s}^{-1})$	(Solar)	(arcmin)		
XMMXCS J122118.7+275732.3	0.76000	$1.88^{+0.00}_{-0.00}$	$1.90^{+1.02}_{-0.52}$	$0.45 + 0.17 \\ -0.12$	$0.30^{+0.00}_{-0.00}$	$0.86^{+0.88}_{-0.25}$	$0.43^{+0.17}_{-0.17}$	
XMMXCS J133604.6+514531.5	0.46291	$1.09^{+0.00}_{-0.00}$	$2.09^{+1.30}_{-0.64}$	$0.51^{+0.09}_{-0.08}$	$0.30 \substack{+0.00 \\ -0.00}$	$2.00 \substack{+0.03 \\ -0.03}$	$0.67 \substack{+0.00 \\ -0.00}$	
XMMXCS J101931.6+080345.2	0.17200	$2.90^{+0.00}_{-0.00}$	$2.54^{+1.27}_{-0.68}$	$0.56 \substack{+0.31 \\ -0.22}$	$0.30^{+0.00}_{-0.00}$	$0.30^{+0.15}_{-0.08}$	$0.36 \substack{+0.06 \\ -0.05}$	
XMMXCS J095957.8+251630.4	1.05000	$2.70 \substack{+0.00 \\ -0.00}$	$3.70^{+0.75}_{-0.61}$	$2.04 \substack{+0.17 \\ -0.18}$	$0.30 \substack{+0.00 \\ -0.00}$	$0.10^{+0.00}_{-0.00}$	$0.53 \substack{+0.01 \\ -0.01}$	

Table H.3: XCS Spectral and surface brightness fitting results.

Appendix I

A description of the XCS Spectral and Surface brightness fitting

I.1 Spectral fitting

The spectral fitting was carried out using version 12.5.0ac of the XSpec X-ray spectral fitting package. The models were simultaneously fitted to the spectra for the available observations and cameras using the maximum likelihood Cash statistic. The spectral bins were grouped such that there was a minimum number of counts per bin. This minimum number of counts was based on the number of counts in the spectrum and varied from 1 for spectra with 250 counts and below up to 5 for spectra with 850 counts and above, scaling as a powerlaw with an index of 0.75 for values in between. This scaling of the minimum number of counts per bin was derived from simulations of spectral fitting EPIC data and is designed to minimise the bias in the derived parameters while also minimising the errors. Data between 0.3 and 7.9 keV were used for the fitting in order to maximise the signal-to-noise.

Four different models were fitted to the data. All the models included a photoelectric absorption component (WABS) to simulate the absorption from the neutral gas in our galaxy and a hot plasma component (MEKAL) to simulate the X-ray emission from the intracluster medium (ICM). The first model involved fitting these components with the hydrogen column and ICM metallicity frozen (at the galactic radio column for the hydrogen column and the canonical value of 0.3 for the metallicity). The second model was the same as the first except that the hydrogen column and metallicity were allowed to vary. The third model included an extra powerlaw component to simulate a potential contaminating point sources, and the fourth model had two MEKAL components rather than one in order to simulate the case where there is a significant cool core in the cluster. The best fitting model was used to derive the luminosity and temperature of the cluster.

I.1.1 Background Subtraction

The background subtraction from the spectral fitting was done using an in-field method, since XCS clusters do not have large angular sizes. The background spectra were taken from an annulus around the source (in the case of sources very near the edge of the field of view an ellipse perpendicular to the direction of the centre of the field of view with a circular region centred on the cluster excluded, was used instead). The outer edge of the annulus in 1.5 times the maximum radius identified for the source by XAPA and the inner edge is at 1.05 times that radius.

I.2 Surface brightness fitting

The surface brightness fitting was performed by simultaneously fitting a model to the individual images for each camera and observation of the source. The model was convolved with the 1-dimensional "Extended Accuracy" XMM-Newton point spread function model, multiplied by the exposure map and have a background map added before being compared with the data. The maximum likelihood Cash statistic was used for the comparison and the MINUIT package of minimisation algorithms was used to find the best fit. The main function used the characterise the shape of the clusters was a a 1-dimensional King profile consisting of a core with a powerlaw decline outside that. Three different models were fitted to the data. First a simple King model with β frozen at the canonical value of $\frac{2}{3}$. Second a King model with β allowed to vary. Thirdly a King model by with an inner powerlaw cusp where inside a certain radius (usually of the order of the core radius) the surface brightness increase as a powerlaw into the centre. The best fitting model was used to calculate the scaling of the luminosity from the extraction region to r_{500} .

I.2.1 Background Subtraction

The same background regions were used for the surface brightness fitting as were used for the spectral fitting. However in addition to . Since the background can be considered as two components, an 'X-ray' component that is focused (and so vignetted) by the telescope mirrors and a 'particle' component that is not. In reality the 'X-ray' component includes soft protons that are focused by the mirrors and the 'particle' component includes high energy photons that are created as the result of particle collisions with the telescope structure. These need to be treated separately as their spatial variation is different. To calculate the 'particle' component which should be approximately constant across the field of view the number of counts and effective exposure time is measured for two regions with significantly different off-axis angles. The comparison of these quantities allows the 'particle' background rate to be calculated. Using the total rate estimated from the annular background region and the exposure map, background map can then be constructed consisting of the sum of the constant 'particle' background and the spatially varying X-ray background.