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UNIVERSITY OF SUSSEX

SAM BEARDSMORE-RUST, DOCTOR OF PHILOSOPHY

SUMMARY

The electric potential sensor is a novel, ultra high impedance sensor, previously developed
at the University of Sussex. These sensors have been applied to a range of applications,
including electrophysiology, non destructive testing of composite materials and novel

nuclear magnetic resonance NMR probes.

Some of these measurements can be made in a strongly coupled (>100pF) mode, where the
coupling capacitance is reasonably large and well defined, and ambient noise is therefore
less problematic. However for many applications, there exists a requirement for this
coupling to be much weaker. This weak and poorly defined coupling creates substantial
problems with ambient noise often causing sensors to saturate and become unusable. In
the past, therefore, these measurements have all been made inside electrically screened

rooms and enclosures.

The work discussed in this thesis explores the possibility of operating these sensors outside
of electrically screened environments. A number of techniques for resilience against noise
are explored and experiments to fully analyse and characterise the performance of the
sensors are discussed. As a result of this work, further results are then shown for a
number of experiments carried out in a busy lab environment, in the presence of noise
sources, and with little or minimal screening used. In this case, data is shown for the
collection of remote cardiac and respiratory data, imaging of the spatial distribution of
charge on insulating materials, detecting electric field disturbances for movement sensing

and early results for a microscopic XY scanning application.
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Chapter 1

Introduction and Background

7 wish to tell you of a new but terrible experiment which I advise you never to attempt
yourself.” - Pieter van Musschenbroek in a letter to Ren Raumur, 1746[1].

In 1746, Musschenbroek, a professor at Leiden University, began a letter to a colleague in
Paris to describe a recent discovery. The ability to generate static electrical energy using
friction based machines was already known, but at the time there was no known way to
store this energy. Musschenbroek had constructed a device, consisting of a glass jar coated
inside and out with a conducting metal foil, in an attempt to store some of this energy.
After charging the device, Musschenbroek had received such a powerful shock that he
felt compelled to begin his letter describing the discovery with a warning of considerable
magnitude. This device would later become known as the Leyden Jar, Volta would go on

to call it a condenser, and today it is known as a capacitor.

Later, in 1786, Luigi Galvani observed that a dissected frog leg twitched when connected
to the output from an electrostatic generating machine[2], work that would later inspire
the study of electrical properties of the human body and the entire field of bioelectricity
and electrophysiology. Many others, including Volta, Oerstad, Ampere, Faraday, Ohm
and Henry would contribute to this growing field, before in 1865, James Clerk Maxwell
published a paper called ”A Dynamical Theory of the Electromagnetic Field”[3]. The
discovery of electromagnetic fields, and the ability to detect, generate and manipulate
these fields, resulted in revolutionary applications and the development of the discipline

of electrical and electronic engineering, as well as a huge branch of modern physics.



1.1 Electric Field Measurement Techniques

The measurement of static and low frequency electric fields is, perhaps surprisingly, a
difficult measurement to make in an accurate and repeatable way, despite the vast array
of modern technology available to current scientists and researchers. In the case of an
electrostatic scenario, where the interest is in the presence rather than movement of some
quantity of charge, the measurement can be conceived in a number of ways. In some
cases it is easier to consider the measurement of the charge directly; at other times a
measurement of electric field strength is more appropriate; sometimes it is more useful
to measure the actual spatial distribution of the charge; and on occasion, none of these
measurements are practicable. This results in the absence of a standard technique for
making this measurement, and instead there exist a range of common, and less common,
measurement approaches available to those seeking to observe and establish the properties

of a quantity of electrostatic charge.

Despite this statement, it is nevertheless the case that there is some commonality between
measurement types. The charge @ induced on a surface, with area A(m?) at which the
electric field E(Vm™1) is

Q = ey, EA (1.1)

where €y = permittivity of free space and €, = relative permittivity of the medium. This
relationship, combined with the fact that capacitance C' is defined as the quotient of the

charge on a capacitor with the voltage present on the capacitor plates

C=5 (1.2)

creates a measurable quantity. In most cases, a known capacitance of value C' is allowed
to charge in a field of strength E, resulting in a voltage V' which can ideally be measured
in some way without affecting the quantity of charge on the capacitor. This relationship,
between electric field strength, measurement capacitance, probe dimensions and sensor

output voltage can be expressed as:

eoerAE

‘/sensor =S5
e

(1.3)

where S is a constant, or calibration factor, which varies with sensitivity and gain of the

measurement circuit.



1.1.1 Electrometer based measurement

Sensor
Plate

Figure 1.1: The induction probe electric field measurement approach

Induction, or induced charge[4], electric field meters are perhaps the simplest of all
conventional electric field measurement circuits. This approach, involves a sensor
electrode, shunted through a well defined capacitance, and connected to a specially
designed charge amplifier. The arrangement described is shown in Figure 1.1. The meter
must first be zeroed in the absence of an electric field, or in the presence of a field for
which the strength is well known. The sensor plate is then introduced into the field
to be measured, and a voltage occurs on the output of the amplifier which is directly
proportional to the strength of the field, as described in Eqn 1.3 There are two typical
styles of induction probe input stage, involving either a measurement of induced charge
across a known input capacitor, or the use of a virtual earth charge measurement circuit.
These are shown in Figure 1.2 and 1.3. There are, however, some shortcomings of these
conventional measurement circuits. A suitable amplifier must be designed such that it
provides minimal discharging of the front end input capacitor. In reality, maintaining the
extremely high input impedances required of these amplifiers is not a trivial task, and is
often impossible. Furthermore, not only must they be initially zeroed in a known field,
but this zero point can drift over time, and so must be verified after the measurement as

well to ensure that drift has not occurred.
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Figure 1.2: High impedance measurement of charge through voltage on a capacitor
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Figure 1.3: Virtual earth charge measurement circuit



1.1.2 Field Mill measurements
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Figure 1.4: The field mill electric field measurement approach

When accurate and high quality measurements of electric field are needed, a common
measurement involves the use of a type of field meter known as a field mill, a typical
design for which is shown in Figure 1.4. These instruments typically involve a sample
or electrode surface which is exposed to the electric field being measured. As a result, a
charge is allowed to build up on the electrode, and a voltage proportional to this charge is
generated with a charge amplifier circuit of some kind. This probe or electrode must then
be discharged with respect to a reference, before being allowed to charge again. In this
way, a DC field is ”chopped” to become an AC signal which is relatively straightforward
to measure. This system benefits from being straightforward in design, and makes use of a
conventional charge amplifier circuit which need not have extreme input characteristics or
DC drift stability, and is therefore relatively simple. These field meters exist in, essentially,
two categories. Those which involve a mechanically based chopper system, often known

as field mills, and those which instead vibrate a capacitive probe.

By ensuring that the coupling conditions between the field and the probe surface change
cyclically it is possible to mechanically chop the signal generated by the static electric
field, and thus produce an alternating signal. This has the effect of providing a constant

reference with which to relate the strength of the field, and therefore avoid problems which
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might otherwise arise as a result of a drifting zero point. Furthermore, it reduces the
necessity to maintain an extremely high input resistance and maintain very long settling
times, as an earthed plate is repeatedly placed between the field and the sensor plate.
The result is an electric field sensor with, effectively, an infinitely long settling time. The
only requirement is that the leakage discharge time of the probe surface is substantially
longer than the modulation speed. Furthermore, since this measurement is based on
sampling the field at discrete intervals, the field must be changing at a rate less than half
the sampling/modulation rate of the field mill. Since the modulation is brought about
by a mechanically rotated rotor, this rate is clearly limited by the speed of the motor.
Provided these conditions are maintained, there will be a direct relationship between the
probe voltage V and the electric field, as described in Eqn 1.3. Typical sensitivities for
such a system range from around 1kVm™! through to around 1000kVm ™! [5] however

greater sensitivities than this have been demonstrated[6].

A similar effect to that described in the section above can also be achieved by vibrating
an electrode perpendicular to an electric field. The amplitude of these vibrations must be
kept consistent in order to maintain accuracy, since the amplitude of the resulting signal
is proportional to the distance moved within the field. Various feedback techniques can
be used to null any variation caused by changes in modulation amplitude. This approach
means probes can be made significantly smaller than those requiring a mechanically driven
rotor, perhaps as small as a few cubic centimetres[7]. Use of small apertures can reduce

this to < Imm

1.1.3 Optical and Electro-optical Measurement

A more recently developed approach for measuring electric field involves the use of fibre
optic based techniques. The use of field mill electric field meters mandates the introduction
of earthed surfaces into an electric field. This will, at least, have the effect of disturbing
and distorting the field which they seek to measure. The range of electro-optical and
optical based techniques are therefore appealing because, as inherently non electrical
devices, they present little risk of modifying the field and are immune from electromagnetic
interference. These probes make use of a range of effects, with many being based on an

electro-optical phenomena known as the Pockels effect; this describes birefringence in an
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optical media produced by some crystalline materials when in the presence of static or
changing electric field[8]. Another form of optical electric field measurement technique
exploits piezoelectric [9] or electrostrictive [10] materials in combination with a fibre optic
interferometry technique to obtain electric field measurements. In comparison to the
Electric Potential Sensor technique, described below, these approaches are complex and

better suited to a laboratory environment than to other general purpose applications.

1.2 A Brief Overview of Electric Potential Sensors

This thesis will discuss a range of possible applications for a series of novel electric potential
sensors (EPS), developed and patented at the University of Sussex[11, 12, 13]. These
sensors detect, passively, changes in spatial potential (electric field) created by capacitively
coupling to an electric field. They are, in many respects, similar to the induction probes
described earlier in this chapter. However, through the use of several types of positive
feedback, guarding and active electrode techniques it has become possible to boost the
effective input impedance, (i.e. electronically manipulated resistance) to values as high
as 10'5Q and capacitance to values as low as 10716F. These values are more commonly
associated with laboratory electrometers, and allow these active probes to be remarkably
sensitive to electrostatic and low frequency electric fields. Unlike conventional laboratory
electrometers however, these sensors maintain a stable DC bias point, and therefore do not
suffer from drift problems more commonly associated with these devices. These properties
allow them to find a range of applications in the sensing of electric fields and spatial
electric potential, and thus to measure and observe many physical properties, including
movement, biologically originating electrical signals, material properties and the presence
of charge. A block diagram based schematic, showing the positive feedback techniques
employed to achieve this input impedance boost, is given in Figure 1.5. The operating
bandwidth depends on the particular design, coupling conditions and other requirements
such as noise performance, but in various versions these sensors can operate from <1
mHz to >100 MHz. Furthermore, by employing methods based on some of the techniques
described in the section above, it is possible to make the sensors effective at measuring

static fields in some instances.
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Figure 1.5: The EPS sensor schematic

These probes can therefore be seen either as capacitively coupled probes, where the sensor
is coupled through a known or well defined capacitance to a source, or as electric field
probes, where the coupling capacitance is less well defined and the performance is dictated
by the combination of the leakage capacitance between the probe electrode and ground,
and the input capacitance of the front end electrometer. In this case, their application is
closer to charge amplifiers and induction probes. The first scenario is referred to as contact
mode, since the sensors are generally in close physical contact (though not conductive
contact) with the signal source. The second scenario, where there is a physical spacing

between sensor and source, is known as remote mode.

To date we have already demonstrated proof of principle in many areas of inter-
est, including body electrophysiology[14, 15|, novel nuclear magnetic resonance NMR
probes[16], non destructive testing of composite materials[17], as well as in a range of

other fields[18, 19].



1.3 Applications of an Electric Potential Sensor

1.3.1 Electric Fields

When one considers the sensing of electric fields, it is perhaps most common to think of the
range of high frequency RF applications. These techniques form the basis of modern digital
communications and broadcast technologies and make up the vast majority of remote
electric field sensing applications. It is usual to think of this type of sensing as taking place
at MHz frequencies and above, and design considerations are typically focused around
impedance matching and antenna design. Some people might also think of manufacturing-
related electrostatic applications; the sensing of fields related to static charge on insulating
materials for the purposes of preventing electrostatic discharge damage or when handling
and storing potentially explosive substances. It seems likely that few would, when asked
about electric field sensing, immediately identify applications which operate in the range
of low frequency(0.1Hz - 1kHz), low intensity fields. This is perhaps because sensors which
operate in this region, with both the required bandwidth and sensitivity to make useful
measurements of ambient electric field at these frequencies and intensities have not been

commonly available outside of the laboratory.

Despite this, it would not be accurate to say no applications currently exist for the
sensing of low frequency electric fields. In the field of communications, very low frequency
communications systems have been developed which operate in this band. Both the
United States of America, and Russia, are known to have developed extremely low
frequency (ELF) communication systems for communicating with submarines without
the requirement for them to surface[20]. These applications exploit the fact that, while
most electromagnetic waves would be screened out by the presence of large volumes of
conducting seawater, very low frequency signals can penetrate through these materials.
Further to these communication applications, there are a number of other sources, both
natural and man-made, of ELF (Extremely Low Frequency 3Hz - 3kHz) and VLF (Very
Low Frequency 3kHz - 30kHz) electromagnetic waves, which are reviewed by Barr[21].
There has also been substantial work carried out to investigate the health implications of

human exposure to low frequency electric and magnetic fields, such as those present in
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the vicinity of power transmission systems[22]. In all these cases, however, the signals and

fields detected are of a substantial field strength.

In comparison, for the case of low strength, low frequency electric fields surprisingly little
prior work exists. It is perhaps unusual that while animals are known to exploit the
information which can be gathered from electric fields for both orientation, communication
and other critical behaviours[23], the current technological use of electric field sensors for

these applications is relatively rare, with other approaches usually being adopted.

This thesis will discuss the modification and application of an electric potential sensor for
use in detecting a range of signals generated some distance from the sensor. This includes
detection of the movement of large dielectric objects such as the human body (0.1Hz -
30Hz)[24]; the remote sensing of a cardiac (1Hz - 30Hz) and respiratory (0.1Hz - 5Hz)
signals in an open, unshielded laboratory some distance from the body[25]; the imaging
of the spatial distribution of charge on the surface of an insulating material (frequency
dictated by movement but typically < 1kHz)[26, 27]; and the topography of a material
sample using the sensing of electric potential. There is existing work[13, 12, 19, 18, 15,
28, 29, 30, 17, 31, 16] in all of these applications, but this thesis will specifically explore
the potential for applying highly sensitive low frequency electric potential sensors to these

areas and the role that these sensors have to play.

1.3.2 Movement Sensing

The ability to detect subject presence and movement, despite obstruction by walls and
other structures, would clearly be of particular interest to those working in areas of
law enforcement, search and rescue and the military. As a result of this need, there
has been substantial work done in this area[32, 33] with technologies being regularly
reviewed by defence and security organizations as early prototype products begin to
appear commercially[33]. In a number of these applications, it is sufficient to be aware
when a given space is occupied by an individual or individuals and to obtain information
about their movements around, into and out of the space. In such cases, there is often a

requirement for long term, unattended, surveillance systems which do not generate excess
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data or false alarms[34, 35]. In many such cases, existing sensor technologies are capable
of meeting the requirements for monitoring of this kind, however existing approaches are
either active (Radar, LIDAR) or have a requirement for maintaining line of sight (optical,

PIR).

There is also considerable interest in human motion analysis, and the information it may
be possible to extract from human motion for a range of general applications spanning
human machine interfaces, security and sports medicine[36]. Furthermore, the ability
to detect movement, and identify hand gestures, has attracted research interest as a
possible option for intuitive user interfaces, where it could represent an alternative to
conventional methods for interface and control, particularly in applications where existing
approaches are not ideal[37]. Much research effort has been dedicated to this topic, but
has been focused around image recognition techniques applied to video data collected with
cameras|[38, 39]. The ability to sense touch, movement and gestures allows for the design
of complex and powerful user interfaces. Furthermore, if interfacing could be carried out
remotely without any need for physical contact with the sensor, this would be particularly

powerful.

There have been previous examples of control schemes based around electric field sensors.
The best known, perhaps, is the work done by Lord Theremin[40] resulting in the invention
of the Theremin musical instrument in 1922. The reason why much further work in this
field did not take place until recently is somewhat unknown, but perhaps the explanation
lies in a combination of the lack of electronic devices requiring advanced control interfaces
at the time the Theremin was invented, combined with the fact that, in some cases, the
computational solutions required to build complex interfaces would have rendered the

control scheme impractical.

More recently, the application of electric field sensing to this area has yielded significant
progress, and substantial work has been carried out[41] to explore the possibilities of these
applications. Previously it has been shown that it is possible to use electric fields to
control a range of electronic based musical instruments other than a Theremin[42], as well
as develop a mouse style control system using electric fields[43]. Some commercialization
of these technologies has taken place, with at least one integrated circuit on the market

based on these techniques [44]. Notably, in these cases, an active measurement approach
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is adopted, whereby a subject or object is connected directly to a generated field. A
capacitive effect is then observed and measured by a sensor as, for example when a human
hand comes in close proximity to the object, thereby enabling position information to be

inferred.

Use of Radar for small, short range movement detection has also been commercialised, with
several types of Doppler module (e.g.8960 series modules[45]) brought to market. These are
sold with suggested applications including intruder alarms, speed measurement, vibration
measurement and proximity switches. These devices are based on the detection of Doppler-

shift in reflected microwave radiation, generated at a frequency of approximately 10 Ghz.

Existing passive techniques have previously tended to focus on either optical or infrared
sensors[46]. Both types of sensor can be obscured by objects, walls and poor visibility.
Moreover, where used in video imaging systems, the data sets generated are extremely
large, complex to analyse and may contain significantly more information than is required
for the application. Active techniques have therefore been favoured for through-wall
tracking and detection applications, however to date, much of this work has focused on the
use of RF Radar approaches for identifying movement through walls and debris [47, 48]. As
active techniques, while clearly effective, these methods have some disadvantages. Passive
techniques, in comparison, provide compatibility with a need for covert surveillance, the
removal of potential hazards due to irradiation, light weight construction, reduced power

requirements and a capability for extended use.

The sensors described in this thesis have been demonstrated as being sensitive enough,
in certain applications, to detect signals created by movement, at distances of at least
5-10m, without any need for an applied field. These electric field signals are generated by
measuring perturbations in the ambient electric field. Furthermore, as the measurement
made is of perturbations in the ambient electric field, it is unaffected by the presence
of walls or structures consisting of non-conducting material, or where any conducting
material is suitably electrically isolated from earth. As a result this creates the possibility

of detecting movement through concrete walls in an entirely passive way.

In this thesis, it is shown that by arranging arrays of sensors, it is possible to detect both

the presence and direction of movement, in such a way that real-time, passive gesture
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detection becomes a realistic prospect. A very early prototype is presented which clearly
demonstrates the possibility of sensing direction and speed of movement, by measuring
the perturbations in the electric field created by a small dielectric object; in this case a
small 120 ml plastic bottle of water, swinging in a pendulous fashion perpendicular to a
linear array of 8 electric potential sensors. With basic visualization in Labview, it becomes

clear that this information includes both velocity and direction information.

Data is then presented for a two dimensional experiment, in which the ability to reproduce
limited position information within a two-dimensional space is shown. Proof of principle
is provided for an application using only four sensors to infer position within a two
dimensional plane and shows that it would be possible to reproduce x and y location,
and velocity, using sensors in this arrangement. In this way, it is suggested that a human
body, or human hand, could be tracked within a two dimensional space to give position
and velocity information, and this information used to extract and detect gestures and

movements for the purposes of interfacing with a computer controlled device.

1.3.3 Electrophysiological Sensing

Much research effort has been invested in exploring techniques for measuring physiological
characteristics and information remotely. This information has a wide range of possible
uses, with applications in biometric identification, security, healthcare monitoring at home,

as well as the monitoring of people carrying out safety critical tasks.

The identification of an individual using only biometric information is considered perhaps
the ultimate goal of a substantial area of security related research[49]. Biometric data has
the unusual and useful property of being completely unrevokable[50]. A metric of this kind
could be used either for identification of an individual, from a large database of possible
users, or for the authentication of a user who has identified themselves[51]. At present,
the most popular metrics on which research is focused span fingerprint recognition[52],
iris scanning, facial feature identification, and voice recognition[53], with some research
taking place on the possibility of using other techniques such as key stroke timing and

pressure pattern recognition[54]. In this thesis it is suggested that data presented implies
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it may be possible to make a biometric measurement using an electric field sensor. This
opens up the possibility of acquiring electrophysiological signals remotely, in particular a

cardiac signal, without any need for physical contact with the body.

The remote measurement of electrophysiological signals is also clearly of interest within
a healthcare setting, whether that be for the monitoring of long term medical conditions
within the home or for the monitoring of pilots, drivers, soldiers and others in safety
critical situations. Data is presented in this thesis to demonstrate that it is possible to
monitor, passively, a combination of electrical and movement related signals and that, by
comparing signals acquired from the front and back of a subject, it is possible to separate
signals as a result of respiration and cardiac activity. Alternative methods of achieving
this result include optical vibrocardiology[55] and microwave Doppler radar[56]. These
techniques are both active, and require the irradiation of a subject with either a laser
or microwave source. Furthermore, these approaches both yield a signal related only to
the movement of the chest, and infer information about a heartbeat on that basis. This
potentially limits their usefulness to very specific parts of the body, typically the front and
often only the neck. In contrast, a technique based around electric field sensing has the
potential to detect the electro-physiological signal due to the heart directly, and therefore

provide more information as well as being relatively independent of sensor orientation.

1.3.4 Materials Testing

The need to characterize and study materials, as well as analyse them for potential changes
or faults which are not visible on the surface, creates a requirement for imaging and
measurement techniques and instrumentation. Many approaches exist for measuring and
imaging the properties of materials at the micrometre and nanometre scales, and the list
of imaging techniques at this scale is expansive. Many nano scale techniques are based
around the principles of scanning tunnelling microscopy[57]. In this case, a conducting tip
is brought to within approximately 10A of the surface, at which point electrons begin to
"tunnel” between the sample and the probe, where the tunnelling current (1I;) is given by

an exponential function of the distance:

I =e (1.4)



15

This exponential relationship gives the scanning tunnelling microscope (STM) remarkable
sensitivity, and allows measurements to be made at a sub nanometre scale. Significantly,
however, samples must be conductors or semiconductors in order for this measurement to

work.

Further development of these techniques led to the invention of the Atomic Force
Microscope (AFM) [57], which adopts a similar approach based around a mechanical
cantilever system. These methods can be applied to monitor the surface properties of
insulating materials, using a mechanical probe and cantilever to measure the surface
structure by exploiting the response to repulsive Coulomb interactions which exist between
the probe and the sample when the separation distance between them is very small.
Many variations on these atomic force microscopy techniques have then been explored
for a variety of possible applications. Scanning thermal microscopy[58] measures and
images temperature variations on the surface of a sample using a temperature sensitive
thermal tip as part of a Wheatstone bridge in addition to conventional AFM techniques.
Another AFM related technique, known as Scanning Capacitance Microscopy|[59], allows
for the characterization and imaging of semiconductor devices by measuring variations in

capacitance between a probe and semiconductor sample surface.

The disadvantage, however, of many of these techniques is that they rely on atomic forces
which exist only at extremely small separation distances between probe and sample. If
imaging is needed both at a very small scale, and simultaneously at a larger microscopic
or even macroscopic scale, these techniques are not suitable as scanning large areas (mm

scale or above) would take an extremely long time.

In this thesis, two different materials testing applications of the EPS sensor are described.
A technique is discussed in chapter 6 involving the development, based on an EPS, of a
charge scanning instrument capable of imaging spatial charge distribution on insulating
materials at a macroscopic scale. This measurement is entirely passive, involving no
excitation signal being applied to the sample. Instead the measurement involves making
a DC measurement of static charge on a surface by moving the highly sensitive Electric

Potential Sensors over the sample area to create an AC signal which they can measure.

The process by which charge can be built up on insulating materials as a result of rubbing

or contact is known as tribo-charging. Through this process it is possible for very large



16

voltages to exist on these materials. This tribo-charging appears to be a combination
of an effect due to movement, as well as an equilibrium effect[60]. Tribo-charging, as
a phenomenon, is not well understood. One possible explanation often given is that a
temperature gradient is formed between the rubbing and rubbed surfaces and that this
gives rise to the movement based component of the charging effect[60]. Opinions are more
widely divided on the cause of the contact electrification component of the charging, a

comprehensive review of the field is given by Fuhrmann[61]

Industrial processes involving electrostatics are typically based around the controlled
charging of particles and/or surfaces. There is often a requirement, therefore, to measure
the charge on particles, or collections of particles, and a measurement involving a Faraday
cup or Faraday pail is often used[62]. The charge density on an electret, or surface of
an insulating material, can be measured using a dissectible capacitor[63] and is discussed
and described by Sessler[64]. However, when a measurement of the spatial distribution
of charge on a surface is required, a different technique is often employed. This typically
involves bringing a low impedance field meter close to a charged surface, such that it
represents the closest earthed object coupling to the surface charge. As a result, field
lines will terminate on the electrode of the meter and a measurement will be made[65].
By moving this electrode, or applying some kind of aperture, it is possible to obtain a
crude measurement of the spatial distribution of the charge. This technique, however, has
limitations if more than one sensing electrode is to be used simultaneously. In this case,
field lines will terminate on both electrodes, and the presence of a second electrode will
compromise the measurement being taken by the other electrode, thereby making large

arrays of this type of sensor an unattractive proposition.

In this thesis, measurements are reported, taken on samples of Mylar, Kapton and PTFE
sheet, which demonstrate the imaging of the spatial charge distribution on these sheets
which occurs as a result of tribo-charging, by an earthed lead and by a human finger.
These measurements are compared with several published tribo-electric series[66] and,
by comparing measurements taken on various samples and thicknesses of material, we
show that it is possible to make fully quantitative measurements of the tribo-electrically
generated charge density and therefore to establish a quantitative tribo-electric series. This
opens up the possibility of absolute, rather than simply relative, positioning of materials

within a tribo-electric series using a repeatable and calibrated measurement technique.
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The ability to image charge distribution is shown, and complex distributions of tribo-
electrically generated charge ’drawn’ on these materials with an earthed lead can be clearly
identified. The measurement results in no measurable sample discharging effects, and
therefore can be used to investigate rates of decay of tribo-electrically generated charge
on varying material samples. In many cases, the periods of time over which these decays

occur span several days.

In contrast, an active measurement is described in chapter 7, whereby an AC signal is
applied to a conducting sample, and a capacitively coupled EP sensor used to measure
this signal as the sensor is moved over the sample surface at a constant height. A signal
proportional to the spacing between the conducting sample and the probe will exist and
since, as the surface topography changes the coupling capacitance and therefore amplitude
of the signal will change, this results in the ability to establish the shape of the sample
surface. The sensitivity of these sensors means that extremely small probes, in the order
of microns, can be used. In contrast to the methods described above, this technique can

be applied at a range of scales from 1 um to several metres.
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Chapter 2

Digital Control of Sensor
Characteristics and Phase Space

Mapping

2.1 Introduction

When operated in an open, remote and unscreened environment, noise can often saturate
the electric potential sensor and prevent signal acquisition. If saturation occurs at the
same time as a signal of interest, that information will be lost and cannot be recovered
through post processing. If, however, the sensor is not saturated, it should be possible
to recover small signals from within large noisy ones through the use of post processing
techniques. It is crucial, therefore, that these sensors operate with sufficient dynamic
range to prevent saturation under any potential operating conditions. There are many
possible solutions to this problem. One is the use of modified feedback paths to reduce
or enhance sensitivity at noise and signal frequencies respectively, as discussed in Chapter
3. While these techniques provide solutions under some circumstances, it was clear from
the experiments carried out and the data shown and discussed in that chapter that they
would not provide a generic solution for all applications. As such, other approaches must

be considered. One possible approach is the expansion of voltage rails through the use
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of discrete transistor based designs which allow much wider power supply rails whilst
maintaining sensitivity. This is being explored by another member of the group. Another
possible solution is clearly the reduction in gain of the sensor, in such a way that signal to
noise ratio is not compromised. This requires that the sensitivity does not decrease to the
point that the noise inherent in the sensor is sufficiently large as to overwhelm the signal

of interest.

2.2 Positive Feedback Techniques for Enhancing Instrumen-

tation Performance

In order to discuss the effect of positive feedback techniques used to enhance the input
characteristics of the sensor, they must first be defined in some detail. As such, this
section will begin by defining what is meant by the terms Bootstrapping, Neutralization

and Guarding.

2.2.1 Bootstrapping

Bootstrapping[67] is the name given to a positive feedback technique used to increase the
effective input resistance of an amplifier circuit. In this case, the signal at the output
of the amplifier is fed back and used to ensure that the presence of external components
on the input of the amplifier, necessary for dc biasing, does not compromise the input
resistance of the circuit. If the feedback is configured such that the signal voltage across
the component connected to the input is zero (i.e. the voltage on both sides of the
component is equal) and thus the component is arranged to draw no current from the
input, then the component can be seen to have effectively infinite resistance. Feedback
in excess of this value creates instability, so in practice the need to ensure this does not
occur limits the maximum effective input resistance which it is possible to reach with this
technique. Despite this, significant increases in input resistance may be achieved at the

signal frequency.
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2.2.2 Neutralization

Input capacitance can also be reduced (or cancelled) using a similar positive feedback
technique known as neutralization[67]. In this case, current is fed back from the output
through a feedback capacitor. This compensates for the input current which is shunted
by the input capacitance and nulls its effect. In much the same way as with bootstrap, it
is possible for this to be configured so that the input capacitance is completely cancelled,

but at a risk of instability.

2.2.3 Guarding

In order to screen against noise, the input of an electrometer or amplifier is often
surrounded by an earthed layer. This applies whether the input is an electrode, or in
the more common case where a coaxial cable is used to connect the input to a source.
The use of a dielectric spacer introduces a leakage resistance between the input of the
electrometer and ground which, while large, can compromise the input impedance of very
high impedance circuits. This creates a problem since, in the absence of any screening, it
is clear that noise would be increased by local sources. The solution involves the use of a
technique known as guarding[68] and is illustrated in Figure 2.1. The shielding, whether
it be the outer of a coaxial cable or a shield on the electrode and around the input on the
printed circuit board, is driven with a voltage that is approximately equal to the input

voltage, thus making the effective leakage resistance extremely large.

2.2.4 Positive Feedback in an EPS Sensor

To date, the need to overcome extremely large coupling impedances when operating the
EPS in a remote mode has meant that bootstrapping, neutralization and guarding have
all been employed for any application in which the sensor might find itself very weakly
coupled to a signal. The implications of using these techniques were not well understood,

particularly with regard to their effect on signal to noise ratio, however it had been
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Figure 2.1: Guarded and unguarded configuration

presumed that these techniques all resulted in improved performance. In this chapter,
the effects of combining all these techniques will be explored. Results will be presented
from a series of experiments designed to map out the sensor characteristics, showing the

effects of varying these positive feedback parameters in an EPS.

Since these are positive feedback techniques, their use dictates relatively high levels of
gain in the sensors. If these techniques yielded an improvement in signal to noise ratio,
then clearly they were highly beneficial to the design of the sensor. Conversely, if it could
be shown that under some circumstances they yielded no benefit, then these feedback
techniques would be compromising the performance of the sensor both by limiting the

dynamic range and restricting the usable bandwidth.

Since a capacitance is formed between the guard and input of a sensor, the application
of positive feedback through use of guarding at ratios of greater than unity is indistin-
guishable from the use of neutralization. The leakage capacitance and resistance which
exists between the inner and outer of the co-axial cable is shown pictorially in Figure 2.1.
With unity guarding, it is possible to neutralize the capacitance that would otherwise
exist between the input and the outer of the electrode. If greater than unity guarding is
applied, it is theoretically also possible to neutralize the input capacitance of the sensor
and increase sensitivity. However, if the noise level is also increased at a level equal to the

improvement in sensitivity, no improvement in signal to noise ratio is yielded.

With this in mind, a sensor was designed which would allow for automated digital control

of bootstrapping and guarding. In addition, a number of fixed value capacitors were
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constructed to provide well defined coupling capacitances of similar magnitude to that
experienced when using the sensors remotely. This allowed the automated mapping
of the sensor parameter space, by varying the amounts of guarding, neutralization and
bootstrapping, and plotting the effect these had on a frequency response. The objective
was to establish under which conditions these techniques provided a benefit to the sensor,

and under which they undermined performance by restricting dynamic range.

2.3 Programmable Sensor

A sensor was designed using digital potentiometers (Analog Devices 5290) [69] to provide
variable levels of bootstrapping and guarding. These devices are 256 position digital
potentiometers which are controlled using an SPI serial bus interface. A testing and
development board was designed and constructed in such a way that sensors of this type
could be easily connected. A microcontroller was used to adjust the potentiometers and
interface with a keypad, LCD display and USB data acquisition card [70]. This acquisition
card was in turn connected to a PC running Labview[70]. Microprocessor code was written
to facilitate communication between Labview and the sensor and allow manual settings
using the keypad, with adjustments indicated on the LCD display. The system described

is shown diagrammatically in Figure 2.2

A Rohde and Schwarz function generator (Model AFGU) was used to provide a reference
signal. A Labview VI was written to control the reference signal from the function
generator, feed this through a well defined capacitance into the sensor, acquire data from
the output of the sensor and calculate a frequency response. In this way, a frequency
response could be measured for every stable value of bootstrapping and guarding, and a

data set taken for several different coupling capacitances.

2.3.1 Results

Once data had been collected for all stable values of bootstrap and guarding, many

plots could be generated in order to visually present the effect of the controlled feedback
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characteristics

techniques on a frequency response. Two dimensional surface plots were generated as a
result of varying frequency and either bootstrap or guarding, while the other parameter
was kept constant. This allowed these techniques to be analysed both individually, but

also in combination.

The plots in Figure 2.3(a) and 2.3(b) demonstrate the effect of bootstrapping and guarding
acting independently of each other. Specifically, in Figure 2.3(b) the flat frequency
response at values of guarding close to unity can be seen narrowing, with the 3dB points

moving towards the middle of the frequency range as the level of guarding is increased.

This is perhaps to be expected, as a capacitance exists between the guard and the input

of the electrometer. In this way, with positive feedback applied through a capacitor, the
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Figure 2.3: Varying positive feedback techniques in isolation
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input capacitance of the sensor can be largely neutralized, resulting in the observable
improvement in gain at mid band frequencies. The fixed level of input resistance becomes
the limiting factor at lower frequencies. In these cases, it can clearly be observed that
guarding, in addition to the screening effect, also has an effect similar to neutralization

when at levels greater than unity.

Bootstrapping, on the other hand, increases the effective input resistance, but only at low
frequencies, since the input capacitance is the dominating characteristic at frequencies
above the 3dB point. This is seen in Figure 2.3(a). As the level of bootstrapping is
increased, it can be seen that in the absence of other positive feedback techniques a point
is reached where the frequency response has become flat. It should be noted that there
must still exist a lower cut off frequency, as the input resistance will always maintain a
finite value, but in this case it is below the lowest 1Hz frequency at which a measurement
is made. If bootstrapping is increased further, it is apparent that the response begins to
turn up at the low frequency end, eventually to the point of becoming tuned to very low

frequencies.
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Figure 2.4: Frequency response with 50% bootstrap setting and varied guarding
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Figure 2.5: Frequency response with 80% bootstrap and varied guarding
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Figure 2.6: Frequency response with 97% bootstrap and varied guarding
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Figures 2.4, 2.5 and 2.6 show the effect of varying guarding at increasing levels of bootstrap.
Applying bootstrap current has the effect of improving the low frequency response and
flattening out the peakiness in the response caused by the application of increased levels
of guarding. The ideal level of bootstrapping appears to vary depending on how much
neutralisation, provided by guarding, is applied. Once the level of bootstrapping becomes
very high (close to 100%) the combination of bootstrap and neutralisation brought about
by high levels of guarding causes the sensor to become unstable as a result of positive
feedback. This is visible in Figure 2.6 where the instability point can be seen to occur at

a far lower level of guarding than is present at other levels of bootstrap.

50
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2
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Figure 2.7: Frequency response with 110% Guarding and variable boostrap

Figures 2.7, 2.8 and 2.9 show that applying varying levels of bootstrapping while
maintaining constant values of guarding yields similar results. It can be seen in Figure
2.7 that additional guarding has resulted in increased gain, when compared to Figure
2.3(a), as a result of the reduction in effective input capacitance brought about by this
neutralization current. As the bootstrap current is increased, the low frequency gain is
increased and the frequency response flattened out until, as bootstrap is increased yet
further, the response turns up at lower frequencies. As the level of guarding is increased

further, it becomes impossible to completely flatten the response using bootstrapping
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without causing instability, as seen in Figure 2.8. Ultimately, once guarding is increased
to close to its stability limit, the maximum amount of bootstrapping that can be applied

without causing instability becomes limited as shown in Figure 2.9.

2.3.2 Simulations of Bootstrapping and Neutralization

It is possible to analyse bootstrapping and neutralization as techniques within a Spice
simulation. This allows a comparison to be made between the predicted effect these
techniques would have on the frequency response and performance of a sensor, and the
effect measured and observed when these parameters were varied in the way described
in this chapter. Two simulation circuits were designed to model the sensor’s input
characteristics and provide adjustable bootstrapping or neutralization respectively. The
input capacitance was fixed at 1pF to be representative of standard sensor performance,
while the coupling capacitance was set at 100fF to represent a weakly coupled scenario
in which bootstrapping and neutralization had a significant effect on sensor performance.

These are shown in Figure 2.10 and 2.11.

Oscilloscope

Input Capacitance

Te-13F T
0—| + -
1pF
1M Ohm 470k Oh

100000 kW Ohin

——

— 10uF

L|:| [RIF100 k Ohim f0%

47 k Ohm

Bode Plotter L

Figure 2.10: Bootstrap simulation circuit
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Figure 2.11: Neutralization simulation circuit

Using these circuits it is possible to generate simulated frequency responses for different
amounts of applied bootstrap. The circuits shown are simplified significantly from final
sensor designs, but demonstrate the application of these techniques individually. This
should allow these effects to be isolated and tested in simulation. Figure 2.12 shows a

frequency response generated from this circuit with no bootstrapping applied.

Applying bootstrapping increases the effective input resistance and thereby extends the
usable bandwidth towards the low frequency end of the response. This was observed in
the experimentally collected data, and is reproduced in simulations as shown in Figure
2.13. In this case, bootstrapping is applied in amounts large enough to flatten the low
frequency response as much as possible and give maximum usable bandwidth at the low
end. It should be noted that this results in a large phase shift at low frequencies, which
could represent a serious problem if attempting to collect and analyse electrophysiological

signals such as an ECG.

Applying further bootstrapping creates a peak in the response at low frequencies, before
ultimately the circuit begins to oscillate. Again, this was observed experimentally, and
the effect on the frequency response of applying the maximum amount of bootstrapping

possible before oscillation occurs is shown in Figure 2.14.



31

o bootstrap simulator.ewb

1z o
6
~ 4] $3dB
2
=]
Rz
[& I
-12 4
—z0 1
100m 1 18 i0 100
180 4
108 H
w ae _1
L&)
=
s
L&)
2
2
i —-36
-105 A
-180 T T |

100w 1 10 100
Frequency (Hz)

Figure 2.12: Frequency response with no bootstrapping applied to the input, with signal

applied through 100fF coupling capacitance

Neutralisation of input capacitance also occurs when positive feedback is applied through
a capacitance to the input of the sensor. This effect becomes similar to guarding when
a guarding signal of amplitude more than 1.0 x input voltage is applied. This enables
guarding and neutralization to be combined as a technique, leading to a significantly
simplified circuit design. As with the bootstrapping, the results obtained from the
experimental sensor are largely reproduced in simulation. Figure 2.15 shows a frequency
response with unity guarding applied. In this case, only the capacitance between the input
and the outer of any connectors and electrodes is neutralised, while the input capacitance

of the sensor remains unaffected.

By adding more guarding, it is possible to neutralise some of the input capacitance of the
sensor, thereby increasing the gain at mid band frequencies. This is shown to some extent
in Figure 2.16. Adding more neutralisation allows more of the input capacitance to be

neutralised until gain reaches a level almost commensurate with an input capacitance of
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flat low frequency response, with signal applied through 100fF coupling capacitance

zero Farads. This is shown in Figure 2.17. After this point, the circuit quickly becomes

unstable.

2.4 Conclusions

The application of positive feedback techniques can be demonstrated, both experimentally
and in simulation, to increase the input impedance characteristics significantly. As a
result, it could therefore be concluded that since the use of bootstrap and neutralization
techniques appear to boost the input resistance and decrease the input capacitance
respectively, that these techniques result in an improved sensor and should therefore always

be applied. This has always been the assumption made when constructing EPS sensors
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instability occurs, with signal applied through 100fF coupling capacitance

for a variety of applications in the past. However, the nature of these techniques as
positive feedback techniques means that, in almost all cases, these improvements in input
impedance do not yield concomitant increases in signal to noise. Since noise, as well as
signal, which is present on the output of the sensor is fed back, there will be no signal
to noise improvement unless a lower noise or noiseless source can be used to bootstrap or

neutralize the input.

However, where these techniques can be extremely helpful is in the modification of the
response to fit the requirements of the signal being acquired. Where a particularly low
frequency signal remains of interest, the ability to maintain a flat response down to very
low, in some cases almost DC, frequencies proves beneficial. Furthermore, where a very
low coupling capacitance exists, the ability to boost the gain at mid band frequencies has
the potential to increase gain, while simultaneously reducing sensitivity to potential noise

sources such as low frequency movement related signals.
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Figure 2.15: Frequency response with unity guarding thus no neutralisation of input

capacitance, with signal applied through 100fF coupling capacitance

These increases in gain, however, come at the cost of reduced dynamic range. It will be
shown in later chapters that this creates a problem, and it is a lack of dynamic range,
more than other characteristics, that limits performance in a significant number of remote
applications. In these cases, it is arguably better to avoid the use of neutralisation, and

to some extent bootstrapping. This has the effect of improving dynamic range, since gain

is reduced, without compromising signal to noise ratio.
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Chapter 3

Tuned Sensors

3.1 Introduction

It has previously been shown that it is possible to operate the EP Sensors in a remote
mode, where the coupling capacitance between the sensor and the source is sufficiently
small as to be dominated by the self capacitance of the sensors[15]. This enables the sensors
to act in a manner analogous to a magnetometer measuring a magnetic field. When doing
so, however, the ability of the EPS to operate in an open and unshielded environment is
seriously compromised. In contact mode, the proximity of the sensor to the signal source
ensures that the coupling capacitance is relatively large (1pF to 1nF), and sufficient self-
screening from external sources of noise is in place. However, in remote applications, where
a substantial spatial gap is present between the sensor and the source, no self screening
effect is present. The result of this is that the sensor must either be operated within a
screened environment, as required in earlier work when a remote ECG was measured[15],
or with a significantly reduced sensitivity in order to prevent external noise, often mains
related noise, from saturating the sensor and preventing any measurement. It is worth
noting that no amount of conventional post acquisition signal processing, whether analogue

or digital, would be capable of recovering a signal from regions of saturation.



38

3.2 Signal specific sensors

One possible solution to this problem is to implement a sensor design which is sensitive
only at frequencies of interest. The technique described in this section involves the use
of filter networks, incorporated into the feedback loop of the sensor. This allows the
tailoring of the frequency response of the sensor to match the frequency components of
signals of interest. There are two very clear and immediate advantages to this approach
when compared to the conventional solution of applying signal processing to the output
of the sensor. Significantly, the effective bandwidth of the sensor is reduced substantially,
leading to a concomitant improvement in signal to noise ratio. Furthermore, since all
sources of noise which do not coincide with one of the selected Fourier components are

excluded, they cannot cause the sensor to saturate.

Positive Feedback
(Bootstrapping and
Neutralisation)

‘ Guarding

——— +
‘ P Out

Gain limiting
negative feedback

Tuneable multiple notch

filter to produce gain

only at frequencies of
interest.

Figure 3.1: Block diagram showing an electric potential sensor with four bandstop(notch)

filters incorporated into the feedback loop
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Figure 3.1 shows a typical schematic for a sensor capable of responding to a signal contai-
ning four distinct frequency components. In reality these would normally be harmonically
related for periodic signals, thus simplifying the implementation considerably. In this way
the bandstop(notch) filter functions are transformed into a set of bandpass functions in
the response of the sensor. The technique of using multiple high quality factor (Q) filters,
which is proposed here, results in a substantial reduction in the bandwidth of the sensor
required to obtain a signal with a large number of harmonics. For example, a signal
consisting of a fundamental at 1kHz and harmonics at 3, 5, 7, and 9kHz would require
10kHz of bandwidth. However, if acquired using a tuned sensor, with a Q of 50, centred

on these five frequencies would require a total bandwidth of
20 4+ 60 + 100 + 140 4 180 = 500H =z

This reduction in signal bandwidth from 9kHz to 500Hz, assuming noise is white (flat in

the frequency domain) yields an improvement in signal to noise ratio by a factor of

9000

—— =4.24=12.5dB
500

If the Q factor of the filters involved is increased beyond this, the improvement is also
increased and becomes even more significant. With a Q factor in the filters of 100, the
bandwidth for the sensor reduces to just 250Hz, yielding a further improvement in the
signal to noise ratio of 6 dB. With a Q in the order of 1000, the bandwidth becomes just
25Hz, yielding a signal to noise ratio improvement of nineteen, or 26dB. Furthermore, these
calculations rely on the assumption that background noise is white and therefore uniformly
distributed across the frequency spectrum. In reality, this is rarely the case. The primary
concern, as discussed, is that of large amplitude noise signals which potentially drive the
sensor into saturation and limit the dynamic range. The techniques discussed here could
potentially reduce these signals by 60dB, which would yield a much larger dynamic range

provided that noise exists at frequencies which do not overlap those of interest.

In practice, these large noise signals are often the result of movement, either of a subject
or sample being measured, or of the sensor itself. The ability to differentiate between a
signal of interest and the large low frequency movement-related noise components would be
particularly helpful in enhancing the usability of the sensor for remote electro-physiological

applications.
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In order to explore this possibility, switched capacitor filters (LMF100[71]) were used to
create a series of filters, the centre frequency of which was controlled by a variable clock
frequency for each filter. Furthermore, the Q factor of each filter can be adjusted using
a digital potentiometer. These filters were integrated into the feedback loop of an audio
frequency sensor with a bandwidth of 1Hz to 100kHz. With these filters in feedback, the
sensor had a flat low gain response, with high gain peaks occurring at the filter centre
frequencies. This results in the sensor having high sensitivity at these frequencies, and a

flat, low level of sensitivity, across the rest of the sensor’s frequency range.

3.2.1 Tuned Sensor Architecture

In order to achieve a tuned signal selective sensor architecture, a multiple notch filter was
needed in the feedback path, thus ensuring gain only at the centre frequencies of these
notches. Several possible approaches exist when designing such a filter. Clearly, notch
filters could be placed in series to create a multiple notch response. In this case, however,
the digital nature of these filters made this impractical. Anti aliasing filters would need
to exist between each stage, in order to prevent noise from the clock of one filter feeding
directly into the input of the next. This would introduce phase shifts which could not be
tolerated in a feedback network without introducing oscillation. An alternative approach
was therefore selected, by which band pass filters were placed in parallel in the feedback
loop of an operational amplifier, to create an active multiple notch filter. This filter was
then used in the sensor feedback network to result in a multiple band pass (or multiple

inverted notch) response. This arrangement is shown in Figure 3.2

3.2.2 Real-Time Adaptability

A programmable waveform generator (Analog Devices AD9833) IC was used to generate
programmatically variable clock signals with a high degree of precision. This device is
capable of generating a clock signal by dividing a given master clock (farcrk), by 228 then
multiplying the result by a value stored in a serially programmable register(FREQREG).

This technique could be used to generate programmatically variable centre frequencies
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Figure 3.2: The nested feedback approach used to avoid the requirement that digital filters

be placed in series

for the filters used in the feedback loop of the sensor. A Microchip PIC micro-controller
was used to generate the serial instructions required to set and vary the value of the
FREQREG register. This allows clocks to be swept, or adjusted very rapidly, to respond
to changes in noise frequencies. Alternatively, in the case of a signal selective sensor,
a particular shape signal could be selected by selecting frequencies with pre-determined
harmonic relationships. These could then be swept, while maintaining these harmonic
relationships, to look for a signal with particular shape characteristics. The circuit
for generating the clock signals is shown in Figure 3.3, and assembler code for the

microcontroller given in Appendix B.

Switched capacitor filters were used to create filters which very closely approximate
continuous analogue filters, while allowing for centre frequencies to be continually variable.
In this case National Semiconductor LMF100[71] switched capacitor filters were used.

These can operate in one of a number of modes, as shown in Table 3.1
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Figure 3.4: The filter circuit

In this case, the filters were configured to operate in Mode 1, as this allowed for independent
control over the Q, gain, and centre frequency of the filter. The design equations used were
Q= Bfi&/ = % and band pass gain (Hopp) = —% as given by the data sheet [71]. This
allowed configuration as band pass filters, while maintaining independent control over the
Q (Quality Factor) of the filters, and the band pass gain (Hopp). The circuit used can

be seen in Figure 3.4.

3.2.3 Circuit design

A sensor was designed which incorporated connections to a number of sockets for attaching
additional modular boards to allow for the planned modifications. Four sockets were
used to allow the attachment of a clock generation board (Figure 3.3); two filter boards,
where each was capable of containing four filters; and a summing amplifier board to sum

these signals together before they were fed back into the electrometer. Designing the
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electrometer in this modular way, as shown in Figure 3.5, ensured that each section was
capable of being developed separately; redesigned and replaced if necessary; and that small

design changes to one section did not require a complete rebuild of a very complex system.

This first version of the electrometer involved just a single filter in the feedback loop
to create sensitivity at a single frequency. This allowed the concept to be explored and
ensured that no major problems were immediately apparent. Having constructed and
tested this version of the system, and verified its operation, the filter board was then

modified to include first two and then four filters.

3.2.4 Results

Discrimination between the sensitivity at frequencies of interest and the background noise
level, and the ability to achieve distinct, adjacent peaks in sensitivity at harmonically
related frequencies are two of the most important characteristics in determining the
performance of the combined filter and sensory system. Preliminary results have been
presented using an EPS with two switched capacitor filters incorporated into the feedback
loop [72]. Figure 3.6 shows a typical frequency response for such a system. In this case
a multiple band pass function has been successfully implemented, and two harmonically
related frequencies (100Hz and 400Hz) selected for the purposes of demonstrating the
technique. The measured discrimination shown is in excess of 50dB, and the centre
frequency adjustable over a frequency range spanning from 10Hz to 10kHz, in steps of
0.01Hz. Adjusting this centre frequency has the effect of adjusting both frequencies and
maintaining their harmonic relationship, however independent adjustment of frequencies
is also achievable. The system (Q measured is of the order of 1000, with the sensor
weakly coupled (coupling capacitance of 2pf) to the tracking generator output of the

signal analyser.

Further filters were added to the feedback loop to create a sensor with four harmonically
related frequencies. A frequency response for such a sensor, with centre frequencies of
9, 18, 27 and 36 Hz is shown in Figure 3.7. Clearly 50dB of differentiation can be seen
between signals at these frequencies, which have a gain of 25dB, and sensitivity at other

frequencies, with a gain of -25dB.
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Figure 3.6: Measured response for an EPS with two switched capacitor filters incorporated

into the feedback loop
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Figure 3.7: Measured response for an EPS with four switched capacitor filters incorporated

into the feedback loop, configured for movement immunity experiment
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This sensor was then used in an experiment designed to test the performance of the system
in terms of discriminating between a low frequency movement signal and a higher frequency
in band signal from a source electrode. An electrode was attached to reciprocating arm,
and moved back and forth in a sinusoidal fashion towards and away from the sensor. The
arrangement is shown in Figure 3.8. The arm was moved at a frequency of 2.4 Hz, over a
distance of between 20mm and 30mm from the sensor. A 12V motor was used to drive
the arm, and a signal applied to the electrode with a frequency of 18 Hz, and an amplitude

of 0.15V.

5mm — 60mm

Function Tuned
Generator ﬁ Electrometer
| I

Electric Motor

Figure 3.8: Arrangement of reciprocating electrode

Figures 3.9 and 3.10 show data collected from the sensor with 4Hz high pass and 30Hz
low pass filtering applied to the sensor output. Signal to noise ratios were compared both
with and without the presence of the tuned feedback electronics, and the improvement
yielded as a result of the tuned sensor electronics was clearly visible. The same sensor was

used for both measurements.

3.2.5 Settling times and Aliasing

The highly tuned nature of the signal specific sensors introduced a number of issues related
to settling time which should be discussed for a full assessment of these techniques. The
extremely long settling times associated with these techniques present a serious issue and
an impediment to their use in a large number of applications. Depending on the Q selected

for the filters, settling times can reach hundreds of time periods of the tuned frequency,
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Figure 3.9: Output from untuned sensor showing a large amount of movement interference

at 2.4Hz with a small 18Hz signal superimposed

limiting the usefulness of these techniques in sensors intended to detect quasi periodic
signals such as those occurring due to a human heart beat. Figure 3.11 shows the time
domain response of a tuned filter, with a tuned frequency of 9Hz, responding to the
introduction of a 9Hz signal in the vicinity of the sensor. Similarly, Figure 3.12 shows the

settling time after the 9Hz signal is removed.

In this case settling times were in the region of approximately 60 seconds. By adjusting
the Q of the filters in the feedback loop it was possible to reduce this settling time, at the
cost of sensor selectivity, but in order to ensure a useful level of selectivity in the sensors

a settling time of several seconds was still required.

Furthermore, despite addressing some of the aliasing issues, these filters were still
susceptible to aliasing problems as a result of leakage from clock lines into the inputs
of the filters. This would typically be addressed using low pass anti aliasing pre filters
on the inputs of these integrated circuits. However, since these were being used in a
feedback loop where phase shift was crucial, it was not possible to use this technique.

This compounded settling time and instability problems.
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Figure 3.10: Output from tuned sensor showing large 18Hz signal and small 2.4Hz ripple

as a result of movement

3.3 Noise immune sensors

The EPS is capable of detecting small changes in an ambient electric field which occur
as a result of a wide range of phenomena. These include electro-physiological signals,
movement signals, and variations in an actively generated electric field which has been
actively created for the purposes of materials testing and characterization. All of these
measurements, however, have in common the requirement that they involve looking for
small signals in the presence of much larger ambient fields. In particular, the presence of
mains electrical noise at a frequency of 50Hz and multiples thereof, and the large signals
which occur as a result of movement in the vicinity of the sensor, pose a problem if these

sensors are to be used in open, unshielded environments.

One solution has been to explore the performance of these sensors inside an electro-
magnetically screened room [15]. Another possible solution is to explore the use of
sensors designed to be sensitive only at specific frequencies of interest, as described above.
However, an option remains to design a sensor which is conditioned to be insensitive
to specific frequencies identified as noise. Unlike the design above, such a sensor would
feature a broadband frequency response, but contain notches in the response at particular
frequencies. This would be particularly suitable for reducing the problems posed by mains
noise, which can in some applications saturate the sensor and therefore preclude the

detection of a signal.
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Figure 3.12: Settling of sensor output when signal at tuned frequency is deactivated
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Creating a sensor insensitive to large noise signals is preferable to post-processing in the
case where the high sensitivity required would cause this noise to saturate the sensor. Since
the output of a saturated sensor does not contain a signal, no amount of post-processing
can recover information which has been lost in this way. By using these techniques, it is
possible to increase the dynamic range of the sensor by a factor approaching the rejection
ratio. In addition the settling time of the filters will not cause ringing of the signal

frequency, as was the case in the previous section.

3.3.1 Sensor design

The modular design described in the previous section allowed the filters to be replaced
with multiple band pass filters, while the rest of the sensor was left unchanged. This
resulted in a sensor with a multiple notch response as described above. Since a multiple
notch response was required, the problems described in Section 3.2.1 did not exist, and
band pass filters could simply be placed in paralel, directly in the feedback loop of the
sensor to create the desired response. This resulted in a much simpler implementation
than was required for the signal selective sensor as described in section 3.2. The new

sensor architecture is shown in Figure 3.13

As with the signal specific sensor, the centre frequencies of the notches are dictated
by a clock signal, which is derived for each filter from a master clock and an AD9833
programmable waveform generator. This allows the notches to be positioned at frequencies
containing the largest noise components, and moved to track changes in noise frequencies

which might occur over time (for example a drifting mains frequency).

3.3.2 Results

The concept was tested in much the same way as the tunable sensor. Initially a sensor
with a single notch in the response was designed and constructed. The resulting frequency
response is shown in Figure 3.14. This shows a rejection of 95 dB achieved at 50 Hz with

a -3 dB bandwidth of only 4 Hz. This measurement is made through a 0.1pF capacitor
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A frequency response for a filter with multiple notches applied is shown in Figure 3.15.
In this case, the measurement is made through a well defined 0.1pF capacitor. Later,
in chapter 4, a response is shown for a very similar sensor being applied to a remote
physiological sensing application, where the response is measured through a 15cm air gap in
order to provide data more representative of the applications for which this sensor may be
useful. The bandwidth, as dictated by the -3dB points, can be seen to be 0.8Hz to 1.5kHz.
This bandwidth is dictated by the characteristics of the sensor (input resistance and input
capacitance), the feedback techniques used (bootstrapping, neutralization, guarding) and

the coupling conditions.

The four notch frequencies are set to 50, 100, 150 and 200 Hz in this case, but could easily
be set to any desired combination of frequencies within the operational bandwidth of the
EPS by modifying the clock frequencies in the PIC start-up routine. The depth of the
measured notches appears significantly reduced from that seen in the data of Figure 3.14,
however this is an artefact due to the limited frequency resolution of the analyser when
spanning a large range of frequency space. Clearly if the predicted attenuation figures of
95 dB are obtained with each of the notch filters it should be feasible to operate the sensor
in an open unscreened environment in the presence of electrical noise related to the mains

supply frequency and harmonics

This response allowed the remote measurement of a human heart beat as shown here in

Figure 3.16, and this application and data is discussed in more detail in chapter 4.

3.4 Conclusions

Two novel approaches to the design of an adaptive sensor, capable of being configured to
respond only to signals of interest, or alternatively to reject signals which can be identified
as noise or interference, are described in this chapter. An adaptive sensor designed to
respond only to a particular mix of harmonics and which is tunable over a large range
of frequencies, has many possible benefits. This selectivity greatly enhances the effective
dynamic range of the sensor and also impacts significantly on the signal to noise ratio.

Preliminary results have been presented for a simple implementation using four switched
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capacitor filters. The frequency and Q of the filters, and hence the sensor, are controlled by
a PIC microcontroller. This allows for combinations of harmonics to be specified, and the

response of the sensor and the amount of selectivity to be varied for different applications

In this chapter a number of techniques have been discussed which aim to provide the
ability to use high impedance electric field sensors in open and electrically unshielded
environments, where the presence of large amounts of electrical noise is inevitable. Signal
specific feedback techniques have been described to dictate the response of the sensor. In
this case, feedback is either used to ensure sensitivity only at frequencies of interest, and
therefore to signals of interest, or to ensure sensitivity is reduced at frequencies known to
contain large noise components, allowing a broadband frequency response with resilience
against large noise components. Clearly both approaches have limitations which make
them unsuitable for general use across any generic application, but equally are useful and
beneficial under certain conditions. In the event that a signal is periodic and continuous
over long periods of time, a signal specific sensor could be shown to have a number of
advantages over a broadband sensor. However, issues are apparent due to the long settling
times that these sensors exhibit. Where high sensitivity is required, and noise can be
identified as existing only at fixed and well known frequencies, an alternative approach of
reducing sensitivity to signals known to be noise related can be used. This can provide
high levels of immunity to some types of noise, such as mains noise, but is less helpful
when dealing with other noise signals, for example the large signals which arise due to

movement of large dielectric objects in the vicinity of the sensor.
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Figure 3.16: Human heart signal measured at a distance of 40 cm from the front of the
body in a noisy unshielded environment. This is raw data with no signal averaging or

digital signal processing applied.
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Chapter 4

A Remote Cardiac Measurement

4.1 Introduction

With the performance of the EPS Sensors now more fully understood than ever before,
a range of remote applications have become possible. These make use of the sensors in
an open, remotely coupled configuration where an electrode is simply pointed at a signal
source, with no well defined coupling capacitance in place. The input capacitance of the
measurement then becomes dominated by the self capacitance of the sensor, and as such
the measurement becomes more comparable to a measurement of electric field, as opposed
to a capacitive measurement of a voltage source. In this chapter we present a sensor which
incorporates the techniques described in chapter 3 and exploits the understanding gained
from the work in chapter 2. This sensor is used to obtain a remote cardiac measurement,

outside of a screened environment and through an air-gap of 40cm.

4.2 Remote Electrophysiological Signals

4.2.1 Introduction

In 1843, Carlo Matteucci recorded electrical currents flowing in pigeon hearts for the first

time. Later, in 1855, Albert von Kollicker and Heinrich Muller established that electrical
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signals similar to these could be detected and shown to correspond to the beat of a frog’s
heart. By 1887, Austus Waller had recorded the first human electrocardiogram (ECG),
and by 1900 William Einthoven had identified a set of distinctive waves and given them
the names OPQRSTX. These letters, now referred to as a PQRS complex, are still used
to describe the wave paterns observed in human ECG measurements[73, 2|. This work
laid the foundation for modern electrocardiogram and bio-physiological measurement and
monitoring techniques, and is discussed in many text books and summarized recently by

Breathnach and Westphal[74].

Electric Potential Sensors have been previously demonstrated as being capable of detecting
high quality Electro-physiological signals, including electrocardiogram, electroencephalo-
gram, electromyogram and electro-oculogram based signals[19, 15, 75, 29, 76, 28|. In these
cases, the use of an EPS based sensor, as compared with conventional methods, allows
for the acquisition of medical quality signals without the need for gel based electrodes or
skin preparation. The ability to measure some of these signals remotely would provide
a host of additional benefits. Since electric fields average with distance from the source,
it is unlikely that data of an equivalent quality could be collected remotely, however the
ability simply to detect basic signs of life would prove extremely useful. Furthermore, if a
heart rate can be detected, it becomes possible to make measurements such as Heart Rate
Variability (HRV) simply and over significant periods of time, without inconveniencing
the patient. Analysis of HRV has been developed as a technique over the previous twenty
to thirty years and has been shown to have applications in the diagnosis of a range of

conditions, both directly cardiac related[77] and other conditions such as diabetes [78].

The remote measurement of electrophysiological signals, such as this, has the potential
to make a significant contribution to modern healthcare. As a result, techniques for
measuring physiological characteristics and information remotely have become increasingly
an area of interest and rapid development in recent years. The ability to record biologically
significant information over long periods of time without discomfort to the patient, or in
the patients own home, has clear benefits in terms of monitoring those with long term
medical conditions or where medical complaints may only be detectable at infrequent
points in time. Furthermore, the availability and low cost of modern sensors makes the
pervasive use in all areas of daily life plausible. Examples of diverse applications include
biometric identification, security, assisted living, healthcare monitoring at home as well as

the monitoring of people carrying out safety critical tasks.
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4.2.2 Methodology

An experiment was designed, using a modified ultra-high input impedance electric
potential sensor configured to reject noise at 50Hz mains frequency, and harmonics thereof.
These sensors are discussed in detail in Chapter 3. The remote detection of a cardiac
signal was chosen to demonstrate the noise reduction techniques, through the use of a
sensor as detailed in Chapter 3, resulting in the ability to detect very small electric field
based signals in an open and unshielded environment. A cardiac signal is particularly
useful as the signal is comparatively large for a body electrophysiological signal, and other
techniques are available for acquiring related data which can be used for comparison with

EPS data to establish the validity of the measurement.

Results have previously been reported, using an electric potential sensor, demonstrating
the ability to detect and measure a cardiac signal in an electrically screened room[15] with
detection possible at spacings of up to 1m between the surface of the body and the sensor.
Here we provide evidence of the capability to reproduce some of these results in a working,
open and unshielded laboratory. In this case, the sensor was located approximately 1.5m
from a wall, and surrounded by mains operated equipment and cabling. Typically this
would result in the saturation of the sensor with 50Hz and related harmonics, making

signal acquisition impossible.

As shown in Figure 4.1, a chair was arranged with a sensor positioned behind it, at a
separation distance of 10cm, such that the sensor was facing the back of the subject. A
second sensor was then placed in front of the chair, at a distance of 40cm, with the sensor
directed towards the chest of the subject. Data was processed in real time using Labview,
in order to restrict the bandwidth of the sensors to a narrow 1 to 50Hz band. Furthermore,
feedback was customized to ensure as high an order roll-off as possible at frequencies below
1Hz, in order to try and provide insensitivity to the very large low frequency signals caused
by movement. In this case, the sensor was intended for obtaining cardiac related signals
remotely, and therefore this movement immunity was important. With the exception of

very basic low and high pass filtering, no further signal processing was required .

Data was collected using a National Instruments data acquisition card (NI-USB-6009)[70]

at a sampling rate of 10 kSamples per second. Blocks of 1000 samples were collected,



61

o
o
3
A

40cm

Figure 4.1: The experimental sensor arrangement

processed and visualized immediately, resulting in a real time display of the signal, updated

at a rate of 10Hz.

4.2.3 Results

Data from the front facing and back facing sensors is presented here in Figures 4.2 and 4.3.
In both cases the subject was able to hold their breath for the duration of the measurement,
and some signal processing was applied to minimise movement signals. In this case, fourth
order, Butterworth notch filters were applied in Labview with center frequencies at 50Hz
and 100Hz. The signal was then band pass filtered to restrict the bandwidth to 1-50Hz.
This 1Hz high pass filter had the effect of removing sensitivity to low frequency movement
signals which occur as a result of breathing and other body movement. As a result there
is no movement signal due to respiration visible in the data. The similarity between the
front facing and back facing data is indicative of the fact that this signal is electrical in

nature.

It was also possible, if the subject was to continue breathing while data was being collected,
to obtain data containing both cardiac and respiration related signals as shown in figure
4.4. Since the time-scales over which these signals occur is quite different, this data could
then be processed using Matlab, and two separated signals obtained. This was done using
a high order low pass FIR filter with a cut off frequency of 1Hz. The result of this is shown
in figure 4.5.

The data shown is generally consistent with the data obtained previously in screened

room environments[15], but it is notable that it does not closely resemble a set of contact
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Figure 4.2: Data collected from the front of the subject with a 40cm air gap between
the sensing electrode and the surface of the body. Data taken in an open unshielded

environment, with the subject holding their breath for the duration of the measurement.
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Figure 4.3: Data collected from the back of the subject with a 10cm air gap between
the sensing electrode and the surface of the body. Data taken in an open unshielded

environment, with the subject holding their breath for the duration of the measurement.

ECG data. Despite this, an argument can clearly be made that the measurement is, none
the less, an electrocardiogram, since the signal is electrical in nature and representative
of cardiac activity. The correlation between the signal obtained and the heartbeat was
verified by measuring a signal using a pulse oximeter and comparing this data with remote

ECG data obtained from the experimental sensors.

The temporal relationship between the data collected using these remote physiological
sensors and a conventional contact ECG was very apparent, with the main peak in the data
being coincident with the arterial pulse. The most probable explanation for the widening of
the signal along the time axis is that the signal observed represents a combination of signals
made up from both electrical and movement components. The combined respiration and
cardiac data, showing cardiac data modulated on a respiration signal, provides supporting

evidence for this theory.
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4.3 Future work

A range of potential applications exist for this remote detection capability, and a number
of possible routes forward for this research are clear. The ability to separate the movement
and electrical signals would clearly expand the range of possible applications, and future
work could include a study of the relative sensitivity of the sensor to these two signals,
and seek to develop techniques for separating them. Modelling the effect of movement
on the sensors would clearly provide information on this, and some modelling data is
provided in the following chapter with this in mind. It may also be the case that this new
technique opens up the possibility of a class of biometric measurement which contains
both physiological and behavioural components, which may find applications in the fields

of healthcare and security.
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Figure 4.4: Raw data, with no analogue or digital signal processing applied, showing both
the respiration and heart signal collected from the front sensor. Sensor positioned 40cm

away from the front surface of the body.
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Figure 4.5: The result of applying a digital FIR filter technique to separate the low
frequency respiration signal from the higher frequency cardiac signal. (a) 1Hz low pass
filter applied to the data of Fig. 4.4 showing the signal due to respiration and (b) 1Hz

high pass filter applied to the data of Fig. 4.4 revealing the cardiac component.
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Chapter 5

Detecting electric field
disturbances for passive through
wall movement and proximity

sensing

5.1 Introduction

Several possible mechanisms exist to explain the existence of changing electric field signals
which occur as a result of movement. When a dielectric object is placed in a static
electric field it will, over time, become polarised, such that its potential will rise to the
potential at that point in the field. If this object then moves, a changing electric field will
be generated. Since a static electric field, of the order of 100Vm ™! exists between the
ground and ionosphere[79], most objects will continuously become polarised when left in
unscreened environments on the earth’s surface. When moved, they will then generate a

changing electric field which could be measured.

Additionally, a phenomena known as tribo-charging offers an alternative possible mecha-

nism. This process, strongly linked to what is more commonly known as static electricity,
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involves the polarisation of charge on an insulating material as a result of rubbing or
contact between two dissimilar materials. As an object passes through air, it has the
capability to acquire charge as a result of this tribo-charging process. Similarly, any contact
between the object and other insulating materials leads to further charging effects. Tribo-
charging, and other effects, result in people becoming charged as a result of touching
floors, walls and objects as they move around[80]. As large potentials build up on an

object, movement then leads to a changing electric field.

Yet another possible mechanism is apparent if an object is conducting, and in contact with
the earth. The presence of an earthed body will distort the vertical potential gradient in
the vicinity of the object. If a human body is modelled as a conductor, in contact with
the earth’s surface, the distortion to the ambient electric field of 100V m ™! is significant.
This is described in Feynman’s famous lecture notes[81] and shown in Figure 5.1. As this
earthed conductor moves around, variations in electric field are generated. Therefore, as a

person approaches and then moves away from a sensor, variations in field can be detected.
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Figure 5.1: (a)The vertical potential distribution above the earth, (b)The disturbance to
this potential distribution caused by a human body. Figure taken from The Feynman

Lectures on Physics[79]

Any of the above mentioned mechanisms enable movement to be detected using an entirely
passive technique, based only on this electric field variation. Furthermore, since all
dielectric objects will become polarised in a charged atmosphere, substantial effort would

need to be made to engineer a scenario in which movement did not result in electric field
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disturbances. This detection technique only works well if the object is not obstructed by
conducting materials, in common with the other technologies. However, it is unaffected
by non-conducting obstructions or by conducting material which is suitably electrically
isolated from earth. Most importantly, it is passive, providing a low power system which

is potentially undetectable.

5.1.1 Method

With EP sensors operating in a remote mode, input capacitance is extremely significant,
and dictates the sensitivity of the measurement. In order to detect large scale movements,
an 8 element linear array of electrodes was constructed and mounted in a wooden frame.
Screened and guarded co-axial cabling was used to connect the guard rings and electrode
faces to a surface mount PCB positioned behind the centre of the array. The physical
characteristics of the co-axial cabling were varied to ensure a balanced capacitance on each
channel of the electrode, in an attempt to mitigate any variation in input capacitance that
was likely to occur as a result of large differences in cable lengths at the front end of the
sensors. This was achieved by varying the sizes of the internal conductors. A schematic

of the array is shown in figure 5.2 and photographs in figures 5.3 and 5.4.

Signals are created as a direct result of movement, in front of the sensors, of large dielectric
objects such as people. These signals can be very large when compared to ambient 50 Hz
mains (line) noise and other electrical signals often detected by these sensors. While this
has many benefits it means dynamic range, and appropriate levels of gain, must be given
great consideration. A low level of gain (in this case a gain of two) was used in an attempt
to prevent the sensors from saturating in the presence of large signals, and care was taken
in the design to ensure the quality of the grounding on the board and ensure that output
from one channel was suitably screened from other channels. In this way it was possible

to maximize the dynamic range available.

The outputs from the sensors were connected to an 8 channel National Instruments USB
6009 data acquisition module[70], with the 5 V power supply being used to supply power to

the sensors such that no additional supply was needed. 30 kSamples were taken from each
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Figure 5.2: The 8 element sensor array - schematic

channel, at a sampling rate of 1 kSamples/s. These samples were then broken into blocks
of 40 and an average DC value calculated. The effect of this operation was effectively to
low pass filter the data at 25 Hz, giving a single value, per channel, every 25th of a second.
This reduced the mains related 50 Hz noise, while leaving all the significant parts of the

movement signal.

A pendulum was constructed, consisting of a 120 ml bottle of water, attached to a 2.6 m
length of nylon fishing line, and swung in front of the sensor array, at a variety of spacings
ranging from 100 mm to 700 mm. The data from all channels was collected in Labview
and written to ASCII data files for processing and visualisation in Matlab. Labview code

for this experiment is shown in Appendix A

A second experiment was then carried out, in order to explore the possibility of visualizing
in real time the speed and direction of movement. To achieve this aim, data was collected,
in 200 sample intervals at a sampling rate of 5kSamples/s. These blocks were then
averaged to find a DC average, again giving a 25 Hz low pass filtered signal. As compared
with the previous experiment, this allowed the data to be filtered in real time, rather
than collected in advance and then processed. A 1 by 8 element false colour image was
generated for each sample, with colour being used to denote the amplitude of the signal. In
this way, with very little signal processing, it was possible to gain a clear visual indication

of both direction and speed of the object as it moved past the sensors.
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Figure 5.3: The 8 element sensor array - photo

Figure 5.4: The 8 element electrode array
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5.1.2 Experimental Results

In Chapter 4 the collection of remote electrophysiological data, including remote ECG,
was discussed. With the sensitivity turned down however, these sensors have sufficiently
high dynamic range that they become capable of detecting both very large, as well as

small movements, at significant distances and close to the sensing electrode.
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Figure 5.5: (a) - Experimental data from pendulum (b) - Theoretical data from finite

element model

Figure 5.5 shows data collected from a single electrode in the array, placed 750 mm from
a sample, and offset by about 300 mm from the centre of motion. The arrangement of
sensor and sample is shown in Figure 5.6. The variation in the height of the peaks can
be explained by the fact the sensor is significantly offset from the centre of motion, and
therefore as the pendulum reverses direction the movement is asymmetric with respect to

the sensor.

The data collected is then compared to data obtained from a Comsol Multiphysics model,
developed by a colleague Dr Peter Stiffell, which uses finite element analysis to solve
Laplace’s equation for the field. This comparison is discussed in more detail in the next
section, however a clear match is apparent. The experimental data is displayed in Figure
5.5(a), while the modelled data is visible in Figure 5.5(b). The general shape, and relative

magnitudes of the peaks, can clearly be distinguished.
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Figure 5.6: Arrangement of sensors and pendulum sample

The real time data visualisation of the data is also compelling. The movement of the bottle
in a pendulous motion is clearly visible, with the approaching increase and corresponding
decrease in signal amplitude as the bottle approached, passed, and then moved away from
the sensor clearly visible in the false colour image. This data is shown pictorially in
Figure 5.7 with a line showing motion of the pendulum as it passed in front of the array,
superimposed on successive frames of data. Zero disturbance of the field is shown in white,

while positive and negative disturbances are shown as an amplitude dependent grayscale.

A clearer, though less detailed, set of data was obtained by adopting an alternative
approach for measuring position. The sensor with the largest amplitude signal was
identified and the sample position defined as being at this point. The result of this process
is shown in Figure 5.8. In this case, clearly information is being discarded. Any ability
to infer position with any greater resolution than the spacing of the sensors is lost. In
contrast, by comparing the amplitude of the outputs of the sensors, it could be possible to
identify how close the sample was to two adjacent sensors and therefore improve resolution.

Despite this, however, a simplified approach yields data which is easier to analyse.

Since the position and spacing of the sensors was known, a plot was then generated showing
position against time. This is shown in Figure 5.9. As the pendulum is 2.60m in length,

the expected period can be approximately calculated as

/length 2.
27 engg =2(3.14) £:3.23 seconds

The value measured in the data is 3.24 seconds, demonstrating that tracking of position

is possible.

Furthermore, it is possible to infer the velocity of the object using the data, since a single
pass across the array can be seen to take 0.80 seconds and cover a distance of 70cm. This

. . . . . . 0.70 __ -1
yields an estimated average velocity for this section of the swing, of g5 = 0.88ms
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Figure 5.7: Frames of data from visualisation program arranged to show pendulous motion.
Scale shown using white when no disturbance is present, and increasing grayscale for

positive and negative disturbances.
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Figure 5.8: Motion visualised by selecting sensor with largest output signal
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Figure 5.9: Plot of position against time calculated from sensor data



75

5.1.3 Simulation

A colleague, Dr Peter Stiffell, used Comsol Multiphysics[82], which is a unified physics
simulation package for finite element analysis, to create a model of the experiment. Here,
a moving mesh type model was defined, with a charge being allocated to a point object and
the charged object being moved in a pendulous fashion past a sensing point, configured
to be in a similar position to that of an element of the linear sensing array. A sensor
was picked for modelling which was a significant distance from the centre of movement,
in order to try and recreate the unusual shape of the signals obtained from this position.
The simulation was carried out in a two dimensional plane, with all motion of the charge

considered to be parallel to the sensing array.

Figure 5.10: A finite element model showing equipotential lines induced by a field which
occurs as a result of the presence of a charged object. The linear array of field measurement

points is also shown.

The data from this model was then compared to the experimental data which is presented

in this chapter. The arrangement of the model is shown in Figure 5.10 where the red dots
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Figure 5.11: Data shown for sensor at one end of experimental linear array commencing
after initial transients as a result of setting the pendulum in motion have died away.

Amplitude is shown referred to voltage at the input of the sensor.
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Figure 5.12: Data from simulation for measurement point positioned as for Fig.5.11
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Figure 5.13: Data shown for sensor approximately in centre of experimental linear array
commencing after initial transients as a result of setting the pendulum in motion have

been allowed to die away. Amplitude is shown referred to voltage at the input of the

Sensor.
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Figure 5.14: Data from simulation for point positioned as for Fig.5.13



78

0.02 :
0.0151 .
0.011 :
0.005 -
>
2 of 1
E
£
£ -0.005
0.01F -
-0.015F :
_002 1 | |
0 75 15 225 30

time(seconds)

Figure 5.15: Data shown for sensor at opposite end of experimental linear array
commencing after initial transients as a result of setting the pendulum in motion have
been allowed to die away. Amplitude is shown referred to voltage at the input of the

sensor.
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Figure 5.16: Data from simulation for point positioned as for Fig.5.15
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depict the position of the measurement points, and equipotential lines are shown to depict

the field originating from the point charge.

An electric potential induced by the field as the charged object moves back and forth
in a pendulous movement in front of the array of measurement points can be plotted,
using one adjustable parameter (the charge on the object). This simulation was then
compared with data collected experimentally from the array. While significant noise is
present in the experimental data, the functional form of the signal is reproduced. Figure
5.11 and Figure 5.12 show data for a sensor positioned at one end of the linear array, both
experimentally and in simulation respectively. Here the matching of the form of the signals
is apparent. A large variation in the height of alternate peaks can be clearly seen, and this
is representative of the fact that the motion about this point is not symmetric, since the
sensor is offset significantly from the centre of motion. Data from a more central sensor,
shown in 5.13 and simulated in Figure 5.14, has a more even oscillation, and despite the
presence of some noise in the experimental data, it can be observed that the form remains
essentially the same. For further comparison, the sensor data collected from the other end
of the array, shown in 5.15 when compared with simulation data in Figure 5.16 shows some
variations from the simulation, and the presence of significant noise. However, within the
later half of the data, the form shown in the simulated data can still essentially be seen

in the experimental data.

The simulations presented are only for comparison with the experimental data. However, it
is significant that it is possible to crudely reproduce the functional form of the experimental
data in simulation, suggesting that the experimental data can be largely explained in the

ways outlined in this chapter.

5.2 Further two-dimensional movement detection for ges-

ture recognition and analysis

5.2.1 Method

A further experiment was carried out to explore the opportunities for inferring position

and tracking movement within a two-dimensional space. Four EP sensors were constructed
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with specifications which made them suitable for the remote detection of movement in an
open environment. A low level of gain (in this case a gain of two) was used to reduce
the probability of saturation in the presence of large signals and maximise the dynamic
range available. The sensors were designed specifically to capture movement signals which
have a typical frequency response of quasi-DC to =~ 10Hz. Circuit specifications were
therefore chosen to enhance input resistance, irrespective of the impact on other input
characteristics, and hence preserve as much usable low frequency bandwidth as possible.
The low frequency roll-off was ~ 10mHz. The result was a set of sensors with settling
times of the order of 100s of seconds, resulting in a quasi-DC response. It was expected
that, since movements are relatively slow, this bandwidth would ensure movement signals
were not differentiated by the sensor front end. Without this extended low frequency
bandwidth, the component frequencies of the movement signal would have occurred within
the roll off region of the sensor, resulting in a differentiated signal. This would have made
comparison between simulation and experiment more difficult. The system behaved as a

combined zero and first order system.

A small scale demonstration system was constructed using four sensors placed at the
corners of a square area, of dimensions 0.5 m x 0.5 m. In this way, each opposed pair
defined an axis, with the two axes perpendicular. This arrangement, with four sensors

defining x and y axes, is shown in Figure 5.17.

The outputs from the sensors were connected to an 8 channel National Instruments USB
6009 data acquisition module[70] with the 5V power supply being used to supply power
to the sensors such that no additional supply was needed. Data was collected at 10
kSamples/sec for 40 ms, resulting in 400 samples. Basic digital signal processing included
averaging these samples, which had the effect of low pass filtering the data. In particular,
the sampling frequency and sample times were chosen to cancel line noise by averaging the
50 Hz across precisely 2 cycles and sampling for 40 ms. The same effect occurs for higher
frequency harmonics of the line noise and the technique is analogous to using a simple

comb filter.

The target object consisted of a 120 ml, 50 mm diameter bottle of water attached to a
length of nylon line, chosen to be long enough to allow the assumption that the bottle was

moving in the two-dimensional (2D) plane of the sensors. Measurements were preceded
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Figure 5.17: Arrangement for two-dimensional pendulum movement sensing experiment

by allowing the sensors to settle in the absence of the target. The bottle was then located
in the centre of the plane and the offsets caused by the presence of a charged object in
the detection field were recorded. These values were then used to define the zero point
as the location at the centre of the two-dimensional space to which all other locations
were referred. With the target allowed to move in the plane, differential measurements
were made between each pair of sensors defining an axis. Three types of movement were
investigated. Firstly, the target was swung in as straight a line as possible, oriented in the
x direction. This was repeated for a line trajectory in the y direction. Finally, the target

was swung in an approximately circular orbit in the x-y plane.

The data from all channels was collected and processed in Labview. In these preliminary
measurements, it was assumed that the output of the differential measurements was
linearly related to the position of the target at a given time. This assumption is only
adequate provided the excursions are small compared to the sensor spacing and taking
place some distance from the sensor. In order for this to apply, the trajectories described

above were limited to excursions of around 1/3 of the linear dimensions of the area.
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The position was then shown in real-time using an intensity plot to define a dot within a
two-dimensional plot. An algorithm was used to generate a matrix of data representing
the position of the object. This involved first initializing a 200 by 200 array of zeros. The
x and y positions were then found by taking a differential of the two sensors defining each
axis, and multiplying by a factor designed to allow adjustment for different levels of sensor
sensitivity. This value, which could be both positive or negative, was then offset by half
the length of the array, with the intention of ensuring that the zero point in the array
existed not at location zero, but at a location in the center of the data structure. The
position was used to identify a corresponding position in the array, and the value at this
position was changed to a 1. This technique is described in Matlab style pseudo-code in

eqn 5.1. The VI used is detailed in Appendix A

array [0:500,0:500] = 0

xpos = sensitivity *(sensor3—sensorl) + (sizeof(array),l)/2

ypos = sensitivity x(sensor4d—sensor2) + (sizeof(array),2)/2
1

array (xpos,ypos) =

Listing 5.1: Matlab style pseudo-code describing differential position calculation equation

Experimental data was collected for small (compared to the detection area) linear
movements parallel to each pair of sensors. Figures 5.18 and 5.19 show the real time
outputs of the sensor array collected over 30 excursions of the target in the x and y
directions respectively. The data confirms that the excursions were limited to around 1/3
of the area dimensions, as intended. It is clear from comparing Figures 5.18 and 5.19
that independent motion in the x and y directions is easily distinguished. In addition,
Figure 5.18 shows that, where the movement is purely linear, there is minimal output
from the pairs of sensors opposed to the direction of movement. In Figure 5.19 the data
which indicates displacement in the opposed, x, direction is well reproduced over many
trajectories and indicates that, in this case, the movement was not purely linear but
comprised a small, 2D loop. This is not surprising, given the difficulty of restricting the

movement of the freely swinging target to 1 dimension.

Finally, the target was moved in a nearly circular orbit and data was collected at random

times during the movement. The output, in the form of an array, is shown in Figure 5.20,
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Figure 5.18: Data as a result of movement in x axis
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Figure 5.19: Data as a result of movement in y axis
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along with a simple best fit trajectory. This is a very preliminary result and was limited
by the need to keep target at an appreciable distance from all sensors at every point of its

trajectory.
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Figure 5.20: Data collected as a result of circular movement within XY sensor space

The experimental data of Figure 5.21 was compared against a COMSOL simulation,
developed by Dr Peter Stiffell, of the time dependent position of a small charged sphere
moving on a circular path within a 2D plane. The area was of dimensions 10 m x 10 m and
the motion was determined from the voltages detected by four electric potential sensors
located at the corners of the area. The finite element solutions of Laplace’s equations
were used to generate the voltages at the sensors for each point in time of the trajectory.
A reverse calculation then used these simulated voltages to determine the proportional
distance of the object between each orthogonal pair of sensors with time. In so doing, it
was assumed that the field decreased in proportion to one over the distance of the source
from each sensor. This % approximation is valid in the case of small amplitude excursions,
when compared to the size of the sensing area. Triangulation between the pairs of sensors
was then used to find the location of the source as predicted by the simulated voltages.
By using sensor pairs to define the x and y axes, this triangulation becomes a solution of
the intersection of two ellipses. For each point in time, a plot of the predicted location of
the object was generated in order to construct a video of the full trajectory. Four frames
of this are shown in Figure 5.21. The colour scale is arbitrary and indicates the likelihood

of locating the object, with 1 equal to 100% likelihood.
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Figure 5.21: Result of simulation of positioning of charged object based on electric field

detection. Red dot shows position of object as calculated in simulation.

It may be seen that this simple model for the way in which EP sensors can be used to track
an object reproduces the trajectory of a moving charged object well. If real, as opposed
to simulated, data is used with this model it would provide a straightforward method for

extracting velocity of movement along with the trajectory.

5.2.2 Future work

Varying the arrangement of the sensors would provide an opportunity to look for very
different types of signals. Possible future directions for this technology include arranging
the sensors into the corners of a room (Figure 5.22). By comparing the relative amplitudes
of a signal generated as a subject moved around a room, it would be possible to triangulate

and track the position of a person moving around inside it.

Alternatively, by arranging for a grid of sensors to be constructed, as shown in Figure
5.23, it would be possible to reproduce the movement of a human hand. This would allow

for detection of hand gestures, with potential applications in human machine interfaces.
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Figure 5.22: A possible arrangement of sensors, with corners being used and position of a

person triangulated based on relative signal amplitudes
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Figure 5.23: A grid arrangement of sensors for hand gesture detection
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5.3 Conclusions

In this section we have demonstrated the ability to sense movement using a technique which
is entirely passive, through sensing changes in the ambient electric field. We show that,
with a sparse array of Electric Potential Sensors, it is possible to determine the position
and trajectory of a single target with respect to the sensors located at the corners of a
two dimensional plane. Extension to three dimensions would simply require an additional

array to the orthogonal plane.

It is now necessary to develop a more sophisticated model of how the potential varies
with distance of the source from any sensor in order to allow for larger excursions. The
simulation would be used to verify the model by comparison with data from better defined

trajectories.

A simulation of the experiment confirms that the trajectory of a single object can be
determined from a simple analysis of the sensor signals. By using this model it becomes
possible to extract velocity of movement, The drawback of this simple approach is that it
is only able to track the motion of a single charged object or, more precisely, the motion
of the ”centre of charge” of all of the moving charged objects in the area defined by the
sensor array. However, with the introduction of a small number of additional sensors, the
area can be divided up into a sparse grid of detection zones. This provides the ability to
determine when multiple objects are contributing to the total ” centre of charge”. Once the
number of contributing elements is identified, the combined signal could be disaggregated
into separate trajectories using methods such as blind source separation and frequency

analysis.

This technique has been shown to yield movement signals, despite the presence of large
walls and structures between the sensor and the sample, as long as the wall or structure
is suitably isolated from, and does not form a good path to, earth[24]. This opens up the
possibility of using a passive technique for the sensing of movement through-wall, with a
variety of possible security applications. The measurement would be entirely undetectable,

and therefore could be used in situations where radar based techniques were inappropriate.
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Where a single individual is to be monitored, such as an elderly person in the home or
the occupant of a detention cell, this system could be combined with remote life sign
monitoring in a multi-modal sensor network to provide data on movement and state of
health of at risk individuals. The technology is low power and easily integrated with

wireless communication systems for remote data collection.
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Chapter 6

Materials Characterisation

6.1 Introduction

The measurement and characterization of materials is an endeavour in which large amounts
of effort have been expended. Knowledge of the structure and condition of materials is
crucial in many manufacturing and industrial processes. Whether it be seeking to identify
and locate internal fractures in an aircraft wing, looking for imperfections in a silicon wafer
or attempting to align sapphire wafers for LED fabrication; materials measurement and
testing is essential in enabling the production of goods and the provision of engineering
services. Many techniques exist for measuring the physical properties and assessing the
uniformity of a material, however the development of the Electric Potential Sensor creates

an opportunity for a number of new and novel materials testing techniques.

In this chapter we show that charge distributions can be imaged, and that shapes drawn
in charge on insulating materials with both a finger, or an earthed lead, can be clearly
identified. The measurement is non invasive, such that no charge is added or removed to
the sample as a result of the measurement, and entirely passive, with no excitation signal
required. Instead the measurement involves making a DC measurement of static charge
on a surface by moving the highly sensitive Electric Potential Sensors over the sample area

to generate an AC signal which can be detected by the sensors. The technique is carried
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out using a custom designed charge scanning instrument capable of imaging spatial charge

distribution on insulating materials at a macroscopic scale.

The nature of the sensors involved allows measurement at resolutions limited only by the
density of sensors that it is possible to fabricate. Furthermore if a CMOS process was
employed, sensors at arbitrarily high densities, and therefore arbitrarily high resolutions,
become plausible. Since the measurement is non-invasive, it is possible to measure and
observe the decay of tribo-electrically generated charge, across time periods which vary

between samples but are often in the order of many days.

6.2 Measurement of charge on insulating materials

6.2.1 Introduction

The EPS is capable of making an accurate measurement of spatial charge distribution,
using a non-invasive technique. This measurement, based on a 16 element array of ultra-
high impedance electric field sensors, is capable of producing both quantitative results for
the total amount of surface charge present, as well as imaging the charge to produce plots
representing spatial charge distribution. In this chapter we show the ability to calibrate
the measurement against a conventional charge measurement which discharges the sample.
Further to this, we show that our technique has no discharging effect on the sample and,
as a result, it is possible to observe the discharging of insulating materials over periods of

several days.

The generation of static charge on insulating materials, is a process that is still not well
understood, and the exact cause of this effect remains the subject of scientific debate. A
review of this area is given by Fuhrmann[61], and this background is discussed in more

detail in chapter 1.

Surface-charge density on dielectric materials has, for some time, been classically measured

using a dissectible capacitor[63] with this measurement being described in more detail by
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Sessler[64]. The majority of industrial electrostatic processes involve controlled charging
or discharging of particles and/or surfaces. A technique for measuring charge on particles
is therefore useful, and traditionally a Faraday pail or Faraday cup is used[62]. When
measuring charge on surfaces, a typical technique involves bringing a low impedance field
meter close to a charged surface. If the field meter represents the only earthed object
coupling to the surface charge, field lines will terminate on the electrode of the meter
and a measurement can be obtained[65]. This clearly presents problems if more than one

sensor is to be used simultaneously.

While a low impedance measurement is most often used to measure charge, there
are examples of other high impedance measurements. A comprehensive review of
electrostatic measurement instrumentation was published by Secker and Chubb[5] and
includes examples of high impedance measurements of a similar style, such as Hughes and
Secker[83]. In this chapter we report another approach to these measurement techniques,
based on ultra high impedance sensors developed at Sussex, which create the possibility
of arbitrarily high-resolution measurements. These could potentially be built using very

high density arrays of sensors for real time imaging of charge distributions.
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6.2.2 Overview of the charge scanner

A conventional flatbed scanner was disassembled, and the mechanical components
combined with redesigned control electronics to allow Labview[70] control over the stepper
motors mounted on the scanner head. Microprocessor code to control the motors and
interface with Labview via the data acquisition card is given in Appendix B. The imaging

sensor and related electronics were removed to allow mounting of an array of EPS sensors.

A linear array of sixteen ultra high input impedance electric potential sensors was
constructed. Two PCBs, each containing eight channels, were assembled and attached
to the sixteen electrode PCB. The electrodes each measured 6.5mm by 4.5mm, the exact
arrangement is shown in Figure 6.1. The sensors use a combination of established high
impedance techniques such as bootstrap and guarding, as well as a means of supplying

the required DC bias current required by the amplifier to remain stable.

The two sets of sensors were connected to a multiplexer, to enable them to be read by an
8 channel National Instruments USB 6009[70] data acquisition module integrated into the
scanner. The 16 element linear electrode was then mounted in the scanner and attached
to the sensors. Guarding was applied to ensure maximum possible screening between

channels and thus reduce the risk of cross channel leakage.

The total scanning area was 175mm wide and 230mm in length. The length was divided
into 92 steps. A Labview Virtual Instrument (see Appendix A) was developed which
stepped the scanner head, sampled all sixteen channels, waited a suitable period of time
for the sensors to settle, then triggered another step to advance to the next position. By
continuing with this step, sample, settle scheme across the entire surface it was possible to
obtain a measurement which represented the derivative of the charge at each step. This
data was therefore 16 elements wide, and 92 elements in length. In order to recover the
charge distribution information it was necessary to then integrate the output data as given

by equation 6.1

Fav
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This equation holds providing the velocity of the sensor is kept consistent throughout the
measurement. The integration was achieved in real-time for visualization using Labview,
and also processed using an identical technique in Matlab for analysis and use in figures.
In this way the charge distribution on the surface of the material could be displayed in
real time. Raw data was logged and processed in Matlab to yield a 16x92 pixel image of

the charge distribution.

The scanner, shown in Figure 6.2 was covered by an aluminium lid hinged at one end
to screen against electrical noise as well as to ensure, where possible, that ambient air
movements did not affect the presence of charge. No attempt was made to control
temperature or humidity, and the scanner was operated in an open and busy laboratory
in the presence of other equipment, ambient movement and temperature changes. In

practice, this additional screening was only required for the longer experimental runs.

Samples of Mylar, PVC, Polyester, Acetate and Polythene were mounted in cardboard
overhead transparency frames to form test slides. Samples were of varying thickness, as
specified in Table 6.1. Two sets were built, one containing pure test materials and the other
with flat copper discs, 30mm in diameter, attached to the underside centre of the slide
with a small charging aperture cut in the sheet to allow charging of the conducting disc
from the top. These discs were then charged to a known voltage of 1kV, whilst ensuring
suitable safe practice guidelines were observed, and scanned using the scanner. The total
charge over the area of the disc was summed to give an indication of the quantity of charge
present on the disc. By measuring the total charge present on the disc using a conventional
electrometer-based charge measurement it was possible to obtain a calibration factor that

related the charge values obtained by the scanner to accepted SI units of charge.

Materials Thickness of Sample Charge after tribo-charging with earthed lead

Acetate 0.100mm +8.91nC
Mylar 0.130mm -0.528nC
Polyester 0.075mm -0.251nC
Polythylene 0.025mm -1.496nC
PVC 0.070mm -13.2nC

Table 6.1: Samples and charge after tribo-charging

Each sample was charged, using the charging aperture, to 1kV, before being measured

continuously to monitor the discharging of the disc. This data was then processed in
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Matlab allowing the plotting of charge against time. These continuous measurements
were taken every 3 minutes for between several hours and 8 days, with the length of
measurement determined by the length of time required before the sample had discharged

to a level below the resolution of the sensor.

The sample was then exposed to an ionizing blower, to ensure it was completely discharged,
before being charged again to 1kV. Spot measurements were taken every few hours, in order
to demonstrate that continuous measurement did not significantly affect the discharge

time.

Samples without conductive discs were discharged using an ionizing blower, and then
imaged to ensure they were fully discharged. The samples were then tribo-charged, using
an earthed cable, before being scanned again to image the charge distribution as a result

of tribo-charging.
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Figure 6.2: The charge scanner
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6.2.3 Experimental Results

In order to demonstrate the non invasive nature of the measurement, a Mylar sample
with a conducting charge island at its centre, as described in the previous section, was
first charged using a 1kV voltage source, ensuring suitable safe practice guidelines were
observed. By imaging the charge on the conductive disc continuously, with each scan
taking 3 minutes to complete, it was possible to measure the discharge time over 8 days.
This is shown in Figure 6.3. Units of charge, shown in nano coulombs on the y-axis,
are established using a calibration technique described in Section 6.2.2 and verified with
another calibration approach, described later in this chapter in Section 6.3.2. In this case,
the spot data points have been normalized for the same initial charge, to compensate
for errors in the charging process which make it difficult to reproduce the exact amount
of initial charge prior to each measurement. Also plotted on Figure 6.3 are exponential
decay curves fitted to both the continuous and non-continuous data sets. The correlation
between the spot data points and continuous measurement, demonstrates that continuous
measurement does not significantly affect discharge and that the measurement is truly
non-invasive. It is clear from visual inspection that the decay shown in the spot data
measurements is approximately equal to that in the continuous data, within the accuracy
of the measurement. A measure of how closely the variance of the data may be explained by
the fit can be calculated by squaring the residuals of the data, after the fit. This measure,
known as R-Squared, yields values of 0.9775 and 0.9945 for the fits on the continuous and

spot data points respectively, thus suggesting the fits accurately represent the data.

This continuous measurement was then repeated, for samples consisting of Mylar,
Acetate and Polythene. This discharge data is presented as Figure 6.4. The discharge
times involved are clearly very different for different materials, with Acetate having a
substantially shorter (less than a day) discharge time, while Mylar and Polythene took
approximately a week to reach the same level of discharge. From the polythene and
Mylar data there are what appears to be erroneous fluctuations which become particularly
significant after 2 x 10° seconds once the charge has fallen to a significantly low level.
These sinusoidal fluctuations roughly correspond to a diurnal cycle, and it is suggested
that these fluctuations occur as a result of the uncontrolled temperature and humidity
conditions under which the measurement took place. The fact that the acetate discharge

data, shown enlarged as the inset in Figure 6.4, took place over a much shorter period of
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