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Abstract 

 

In recent years, a range of detailed palaeoclimatic reconstructions have shown indications of a 

connection between changes in solar activity and Earth’s climate. However, a process that may 

explain such a relationship has yet to be reliably demonstrated. One proposed mechanism 

concerns the theoretical link between the solar-modulated galactic cosmic ray (GCR) flux and 

Earth’s cloud cover. Several microphysical pathways have been suggested which could account 

for this relationship, including (i) changes in the concentration of cloud condensation nuclei by 

an ion-mediated growth of aerosol particles, and (ii) the accumulation of charge at cloud 

boundaries predicted to influence the ability of cloud droplets to grow by scavenging processes. 

  

This work uses an original epoch-superpositional (composite) methodology to present new 

indications of statistically significant relationships between the rate of GCR flux (measured 

from neutron monitor sites across the globe) and changes in the rate of numerous large-scale 

atmospheric parameters (derived from satellite, reanalysis and weather station datasets) over 

daily timescales. Attempts are made to reproduce the observed anomalous atmospheric 

responses within a general circulation model. The results strongly suggest that some of the 

observed anomalies may be causally related to cloud changes and, furthermore, provide some 

support for possible links between the GCR flux, cloud anomalies and atmospheric responses. 

This relationship appears to be sensitive to changes in the rate of GCR flux and is also likely 

constrained by internal conditions. 
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 1 Chapter 1 – Introduction 
 

 

Chapter 1  An introduction to solar–terrestrial studies 
 

 

1.1 Introduction 

The primary aim of this thesis is to examine the effect of solar activity upon the climate system. 

The mean state of the climate system is subject to long-term variations which are the result of 

both internal and external forcing agents. Internal forcing agents include phenomena such as 

continental drift, volcanism and greenhouse gases, while external forcing agents include 

meteorite impacts, orbital variations and long-term changes in total solar irradiance (TSI). 

Although variations in TSI appear to be an important factor influencing climate change over 

decadal timescales (e.g. Usoskin et al., 2005; Camp and Tung, 2007), a number of recent 

palaeoclimatic reconstruction studies have proposed the existence of a relationship between 

small variations in solar activity and the climate system which cannot adequately be explained 

by irradiance variations alone (Foukal et al., 2004). Instead, an additional forcing mechanism 

that is capable of amplifying the effect of small changes in solar activity may be required to 

account for the presence of the solar–climate relationships suggested by palaeoclimatic 

reconstruction studies (Bond et al., 2001; Neff et al., 2001). Several such mechanisms have been 

proposed:  

(1) Variations in the ultraviolet (UV) spectrum which influence both (i) stratospheric ozone 

production (Haigh, 1996), and (ii) the production of sulphate aerosol species over clean 

marine environments (Kniveton et al., 2003). 

(2)  The variation of atmospheric ionisation by a solar modulation of the Galactic Cosmic 

Ray (GCR) flux which may theoretically influence cloud properties via two distinct 

microphysical pathways (via a direct effect on aerosol growth (a.k.a. the clean-air 

effect) and/or an effect on the accumulation of electrical charge at cloud boundaries 

(a.k.a. the near-cloud effect)). It has been proposed that variations in the GCR flux may 

ultimately result in an anticorrelation between solar activity and Earth’s albedo, 

governed by changes in cloudiness (Svensmark and Friis-Christensen, 1997). 

Additionally, it has been proposed that the GCR flux may also influence the terrestrial 

climate via a reaction pathway involving the modulation of halogenated compounds and 

Ozone destruction in the stratosphere (Lu, 2010). 

Of the proposed mechanisms linking solar activity and climate, a GCR-based relationship is of 

particular note, as the GCR flux arriving at the Earth is strongly modulated by several factors, 
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including the solar wind, Earth’s geomagnetic field and our local galactic environment. These 

factors vary over periods ranging from hourly timescales to billions of years. Due to this wide 

ranging temporal variability, a hypothetical link between the GCR flux and Earth’s atmosphere 

may potentially account for climatological variations across a large range of timescales (Veizer, 

2005; Kirkby, 2007): investigation of this important possibility will therefore be the primary 

focus of this study. 

 

 

1.2  A brief history of solar–terrestrial studies 

Of the proposed irradiance, UV and GCR-based theories, the purported relationship between 

cloud cover and the GCR flux is the most contentious. This theory has resulted in vigorous 

debate in the scientific literature in recent years. The GCR–cloud hypothesis has become 

regarded as highly controversial due to the claims by some researchers that it provides an 

alternative sun-driven explanation for recent climate change (Friis-Christensen and Lassen, 

1991; Svensmark and Friis-Christensen, 1997; Svensmark, 2007). However, despite the recent 

interest in the field, notions of a link between solar activity and climate are not new; the idea 

was first proposed more than 200 years ago by the Astronomer Royal, William Herschel, who 

observed a correlation between the numbers of sunspots and the price of wheat (Herschel, 

1801). Since this initial finding, many studies have observed a statistical connection between 

solar activity and climate over a range of timescales. In recent years, detailed palaeoclimatic 

reconstructions have provided good evidence of a centennial solar influence on climate which is 

difficult to refute. For example, the oxygen isotope signature of stalagmite growth in a cave in 

Oman over the Holocene period reveals decadal to centennial oscillations between wet and dry 

conditions; these oscillations strongly correlate with cosmogenic isotope records (Neff et al., 

2001; Fleitmann et al., 2003). Similar associations between cosmogenic isotopes (e.g. 14C)  and 

monsoon intensity have also been identified in the Asian monsoon, where a high resolution 

record of monsoon variability over the past 9 ka demonstrates an apparent correlation between 

monsoon intensity and changes in 14C (which may or may not also be correlated to solar 

irradiance changes) (Wang et al., 2005). This relationship includes eight distinct weakening 

events, each lasting around one to five centuries, and is broadly coincident with long-term 

fluctuations in solar activity.  

The association between cosmogenic isotopes and decadal to centennial variations in the Indian 

monsoon has been linked to a displacement of the inter-tropical convergence zone (ITCZ). 

Southerly shifts in the ICTZ appear to correlate with periods of increased cosmogenic isotope 
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production (indicating a decreased period of solar activity) and a decrease in monsoon rainfall 

(Neff et al., 2001).  Quaternary sedimentary records from Africa appear to confirm this pattern 

of variability; they demonstrate a low latitude decadal/centennial oscillation between wet and 

dry periods over southern Africa as a result of southerly shifts in the ICTZ (Garcin et al., 2007). 

Palaeoclimatic evidence drawn from sediment deposits also appear to show that Antarctic 

climate variability over the Holocene may be strongly linked to solar cycles over both 

centennial (Leventer et al., 1996) and decadal timescales (Costa et al., 2007).  

Perhaps the most tantalising evidence of a solar-terrestrial linkage over the Holocene period 

comes from the examination of North Atlantic oceanic sediment cores; these cores often reveal 

layers of rock debris, which appear with a regular periodicity incorporated within the fine-

grained oceanic sediment (Bond et al., 1997). The debris was originally carried into the North 

Atlantic as entrained material, frozen into vast numbers of icebergs, which originated north of 

Iceland. These iceberg ‘armadas’ periodically discharged in to the North Atlantic and deposited 

their debris on the ocean floor upon melting (Bond et al., 2001). The layers of ice-rafted debris 

(IRD), known as Heinrich layers (Heinrich, 1988), appear approximately every 1470 

±500 years, extending back throughout at least the last glacial. Throughout this period, climatic 

conditions shifted regularly and significantly, however, the rafting events continued with an 

uninterrupted periodicity and may have occurred simultaneously from disparate ice sheets 

(Grousset et al., 2000; Bond and Lotti, 1995). This suggests the operation of a pervasive 

external forcing mechanism, unrelated to internal climate processes. In support of this notion, 

variations in cosmogenic isotopes demonstrate a close relationship to the appearance of IRD in 

the stratigraphy; however, it is important to note there are many alternative ‘internal 

mechanism’ theories which have been proposed to account for IRDs, such as, MacAyeal’s 

‘binge-purge’ hypothesis (MacAyeal, 1993).  

Over centennial timescales, the sun undergoes periods of extremes of high or low activity 

(known as grand maximums and grand minimums respectively). Palaeoclimatological 

reconstructions suggest that temperature anomalies across Europe may be positively correlated 

to such periods of solar activity (Dahl-Jensen et al., 1998; Moberg et al., 2005). For example, 

the Medieval solar grand maximum (1100–1250 A.D.) corresponds to the Medieval Warm 

Period (MWP) (Jirikowic and Pallé, 1994), while the Maunder solar grand minimum (1645–

1715 A.D.) corresponds to the Little Ice Age (LIA) (Eddy, 1976). The spatial extent of the 

climate anomalies associated with the MWP/LIA is highly debated; a reconstruction of 

temperature over the Holocene period (based on a range of proxy data) appears to indicate that 

the MWP/LIA may have only been a regional phenomena (Mann et al., 1999). However, it has 

been argued that the sensitivity of most Holocene temperature proxies (such as those used in the 

reconstructions of Mann et al. [1999]) may be too low to successfully detect global temperature 
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variability associated with the MWP/LIA (which may have been less than ~1 °C). To account 

for this, two temperature proxies (mountain snowline fluctuations and borehole thermometry), 

which have a relatively high degree of precision (around 0.5 °C) should be favoured above 

alternative proxies (such as tree rings, coral and flora/faunal records). The mountain snowline 

and borehole thermometry proxy records both demonstrate a pattern of temperature change over 

the Holocene which is consistent with the occurrence of a global MWP/LIA (Broecker, 2001). 

There is also further evidence from a range of sources which suggests that the climate 

fluctuations associated with the MWP/LIA may have been global in their extent (Soon and 

Baliunas, 2003), including: the advance of glaciers in the Venezuelan Andes (Polissar et al., 

2006);  sea surface temperature changes and droughts in Mexico’s Yucatan peninsula (Hodell et 

al., 2005); the occurrence of abnormally cold and wet periods in south-western China (Chen et 

al., 2005); abnormal changes in lake levels across Africa (Russell and Johnson, 2005); and, 

abrupt changes in the extent of the Indian monsoon (Gupta et al., 2003). Considered together, 

the results of these studies implies that the LIA and MWP experienced across Europe may have 

been the most well documented (or strongest) part of a regionally widespread climatic responses 

to changes in solar activity, which may suggest a simultaneous influence of solar input 

influencing monsoon and polar front regions.  

Despite the evidence from palaeoclimatic studies, our current level of understanding of a 

physical solar–climate linkage is relatively poor. Consequently, such studies merely provide a 

tantalising indication of a possible connection, hinting that developing a further understanding 

of a solar–climate link may be a crucial aspect in improving our current level of understanding 

of natural climate variability, upon which anthropogenic climate change is superimposed.  

 

 

1.3  Controversy, politics and recent studies 

Some recent studies, which utilise satellite-based atmospheric datasets, have claimed to identify 

a correlation between low altitude cloudiness and the GCR flux operating over decadal 

timescales (Svensmark and Friis-Christensen, 1997; Marsh and Svensmark, 2000). Proponents 

of this theory have reasoned that, as solar activity has approximately doubled over the last 

century (Solanki et al., 2004) and the GCR flux has undergone a corresponding long-term 

decrease over this period, this may have resulted in a long-term reduction in low-level cloud 

amounts and may have consequently increased global surface temperatures in recent years. Such 

a relationship implies that recent anomalous climate change may be predominately attributable 

to solar activity and not anthropogenic emissions (Svensmark, 2007). However, such 
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conclusions are highly controversial and have been heavily criticised on a number of 

fundamental issues, which will be considered in the following chapter. 

Despite the overwhelming evidence supporting anthropogenic climate change coupled with the 

scientific ambiguities behind solar–climate interactions, the political importance of climate 

issues is such that in the popular media and public forums detractors of policies to mitigate 

human emissions have often attempted to dissuade public opinion by presenting arguments of a 

solar driven climate. Consequently, such theories have become inseparably associated with 

anthropogenic climate change scepticism and, as a result, the majority of scientists view solar–

terrestrial studies (and in particular a GCR–cloud link) as an unattractive field of study for fear 

of appearing to support a viewpoint which runs contrary to scientific consensus. Ultimately, a 

lack of evidence coupled with the political controversy has polarised much of the scientific 

community against notions of solar–terrestrial climate linkage (particularly via GCR connected 

pathways). This situation is unfortunate, as palaeoclimatic evidence indicates that this field of 

study may provide important advances to our understanding of natural climate variability. 

 

 

1.4  Key research question and purpose of investigation 

The core question this thesis essentially seeks to address is: ‘to what extent are small variations 

in solar activity able to influence Earth’s climate?’ While there is good palaeoclimatic data to 

support the existence of a relationship between solar activity and climate, similar evidence from 

modern climatological datasets is relatively sparse (Gray et al., 2005). It is crucial to determine 

if a relationship between solar activity and the climate system exists and how it operates, as, 

demonstrating such a process may ultimately lead to an improved understanding of natural 

climate variability. Crucially, if a quantifiable response between solar activity and climate can 

be established and incorporated in to climate models, our ability to predict future climate change 

may be improved. Enhancing the accuracy of climate predictions is of vital importance, as 

models are a critical tool in developing climate change mitigation strategies, yet they currently 

have many shortcomings (Gleckler et al., 2008). Furthermore, it is also possible that the 

identification of a link between the GCR flux and clouds may possibly result in the eventual 

establishment of a new branch of physical science concerning the interactions between 

atmospheric electricity and cloud microphysics and potentially offer new insights into 

atmospheric processes. 
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1.5 Aim and objectives  

Aims 

To assess the existence and nature of a daily timescale relationship between the GCR flux and 

Earth’s climate using a combination of remotely sensed atmospheric datasets and General 

Circulation Model (GCM) experiments.   

 

Objectives  

(1) To test for the existence of a relationship between clouds and the GCR flux using a 

methodological approach based on the epoch-superpositional (composite) sampling techniques 

of past daily timescale GCR climate studies. 

(2) If a relationship between clouds and the GCR flux is identified then it will be essential to 

determine: 

(A) If the observed clouds changes are capable of forcing significant atmospheric 

 changes. 

(B) If it is possible to reproduce the observed effects in a GCM. 

 

 

1.6  Structure of the thesis 

This thesis will be organised as follows: 

Chapter 2  Detailed background. Provides a detailed review of the theories and 

background science behind solar–terrestrial linkages. 

Chapter 3  Methods and datasets. Presents a general description of the datasets and data 

handling techniques employed in this study. 

Chapter 4  Forbush Decreases. Re-analyses the impacts of the rare high magnitude daily 

timescale disturbances in solar activity known as Forbush Decrease (FD) events 

on cloud cover.  

Chapter 5  Cloud based sampling. Provides an analysis of the relationship between cloud 

changes and solar activity using a novel sampling technique. 



 7 Chapter 1 – Introduction 
 

 

Chapter 6  Atmospheric analysis. Discusses and analyses the atmospheric impacts of 

samples discussed in chapters 4 and 5.  

Chapter 7  Climate model experiments. Describes and analyses several GCM 

experiments designed to simulate the cloud change scenarios observed in 

chapter 5. A comparison of the resulting modelled atmospheric anomalies 

against observations is presented, along with an evaluation of the ability of the 

GCM to replicate the observed circulatory and cloud conditions. 

Chapter 8  Discussion and concluding remarks. A discussion of the overall findings and 

the extent to which they fulfilled the primary aim of the thesis is presented, 

along with a broad overview of the wider significance of the findings in the 

context of the ongoing academic discussion concerning the field of study. 

Limitations and possible directions for future work are also discussed. 
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Chapter 2 The science behind solar–terrestrial linkages 
 

 

2.1 Introduction 

The primary reason for a low confidence in the role of solar forcing on Earth’s climate is due to 

a lack of a widely accepted physical mechanism to account for such a relationship (Gray et al., 

2005). Several mechanisms have been proposed, the theoretical and empirical evidence behind 

them will now be discussed in an attempt to provide an overview of the field of solar–terrestrial 

physics and a contextual framework for this thesis.  

 

 

2.2 Solar irradiance variations  

In the past it had been assumed that the Sun was able to influence Earth’s climate directly, 

simply through changes in total solar irradiance (TSI) resulting from sunspot blocking, facular-

emission and network emission in the Sun’s photosphere (Hoyt and Schatten, 1993). It is not 

possible to precisely measure TSI variations over a solar cycle at the Earth’s surface; 

consequently, the extent to which TSI varies through time was not known until the arrival of 

satellite-based instrumentation in 1987. Such measurements reliably showed that TSI varies by 

approximately 0.1 % over the course of an 11-year solar cycle (this is equal to a top of the 

atmosphere [TOA] radiative forcing of approximately 0.90 Wm-2) (Willson et al., 1981; Lean, 

1987; Haigh, 2003). Studies attempting to calculate the effects of such decadal TSI changes on 

global surface temperatures have arrived at a range of results, from around 0.1 K (Douglass and 

Clader, 2002; Lean, 2005; Scafetta and West, 2005) to ~0.2 K (Coughlin and Tung, 2004; Camp 

and Tung, 2007). Observational evidence appears to support the higher (~0.2 K) estimates 

(Labitzke et al., 2002; Haigh, 2003; Loon et al., 2004). The spatial pattern of the temperature 

changes resulting from decadal TSI oscillations (relative from solar minimum to solar 

maximum) indicates that the effects of TSI variations are largest over high latitude regions 

(Tung and Camp, 2008). The authors suggest this is due to a range of positive feedback 

processes, involving ice-albedo, cloud, water vapour and lapse rate feedback mechanisms over 

such regions. However, despite these claims, a decadal temperature variation of the appropriate 

magnitude has yet to be simulated by climate models via forcing changes in the TSI alone.  
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Although the time period covered by the satellites only extends back four decades, it is possible 

to reconstruct centennial timescale irradiance variations by calibrating the proxy records of solar 

activity against modern satellite measurements. From such calibrated reconstructions it has been 

found that since 1750, changes in TSI may have only contributed a radiative forcing of 

approximately 0.12[+0.06 -0.30] W m-2 to global temperature changes (IPCC, 2007). However, 

differing results have been suggested: a model study by Krivova et al. (2007) which reconstructs 

TSI variations back to 1700 using geomagnetic indexes suggests that TSI may have had a 

significantly larger impact on the climate, calculating an increase of approximately 1.3[+0.2 -

0.4] W m-2 since the Maunder minimum (Krivova et al., 2007).  

Longer reconstructions spanning 11.4 ka indicate that the current levels of solar activity are 

unusually high compared to the rest of the Holocene period. The last time that the sun was in a 

comparable state of activity was around 8 ka ago; indications suggest that the sun may only 

spend around 10 % of its time in such an active state (Solanki et al., 2004). It has been proposed 

that this anomalously active state may have contributed to climate variability during the last 

century, although it appears that since the 1970s, TSI changes cannot account for more than 

30 % of the observed climate variations (Solanki and Krivova, 2003). 

It is difficult to determine recent decadal TSI trends, as there exist no continuous measurements 

over the last 30 years; instead, TSI data must be reconstructed from various satellite datasets. 

There are two primary reconstructions of TSI, namely, the ACRIM (Willson and Mordvinov, 

2003) and PMOD (Lee et al., 1995) composites (ACRIM and PMOD are abbreviations of the 

Active Cavity Radiometer Irradiance Monitor and the Physikalisch-Meteorologisches 

Observatorium Davos respectively). The primary difference between the composites stem from 

adjustments made to the Nimbus 7 HF data made in the PMOD composite (Lockwood and 

Fröhlich, 2008). The (unadjusted) ACRIM composite finds that TSI has increased by around 

0.05 % over the last two solar cycles (producing a radiative forcing of 0.1 W m-2), whereas the 

PMOD composite shows a cooling of similar magnitude over the same time period (Willson and 

Mordvinov, 2003). The uncertainty in TSI trends is significant, as it may call in to question the 

reliability of long-term irradiance reconstruction studies, as such reconstructions are calibrated 

against the satellite data. It appears likely that the PMOD composite is the most accurate, as 

studies have demonstrated an agreement between the PMOD composite, the Earth Radiation 

Budget Experiment (ERBE) data (Lee et al., 1995; Fröhlich, 2006), the PMOD composite and 

magnetograms (Wenzler et al., 2006). These findings suggest the ACRIM data is in error, and 

that TSI may have undergone a slight decrease over the last 30 years.  

Overall, although uncertainties in the nature of TSI variability still exist, the evidence appears to 

suggest that over long timescales, TSI changes may be an important factor influencing climate 
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change. However, over shorter timescales irradiance changes may be too small to account for 

many of the observed solar-terrestrial linkages discussed in chapter 1 without invoking a wide 

range of feedback processes, the existence of which is unsupported by model studies (Tung and 

Camp, 2008). 

 

 

2.3 Variations in UV radiation  

Although TSI only varies by around 0.1 % over an 11-year solar cycle, changes in the absolute 

amount of radiation, and what height it is absorbed in the atmosphere are far greater, varying by 

as much as 10 % in the 150–300 nm range and by more than 50 % at shorter-wavelengths near 

121.6 nm (at the Ly-α emission line) (Floyd et al., 2003). Overall, wavelengths shorter than 

400nm (the UV range) constitute approximately 32–60 % of the TSI variability which occurs 

over an 11-year solar cycle (Haigh, 1996; Floyd et al., 2002; Krivova et al., 2006). UV 

variability may have important influences on the climate: emissions in the Ly-α UV range play a 

crucial role in upper stratosphere and mesosphere chemistry via several important 

photochemical pathways. Specifically, radiation at these wavelengths ionise nitric oxide, 

influencing electron density distribution and stimulating the dissociation of water vapour, 

thereby resulting in the production of chemically active OH(x) hydroxyl free radicals which 

catalyse recombination of oxygen to O3 and O2  species, leading to a thinner ozone layer than if 

the hydroxyl was not present (Krivova et al., 2009).  

In the stratosphere, the photochemical dissociation of oxygen by UV radiation is the primary 

process responsible for forming ozone molecules. The chemical reactions which recombine O2 

to O3 and vice versa occur rapidly in equilibrium; resulting in an absorption of radiation and a 

consequent generation of heat (Wallace and Hobbs, 1977). The majority of ozone formation 

takes place at low latitudes in the upper stratosphere. The UV radiation drives the photolyzation 

of oxygen molecules, which combine to form stratospheric ozone. Although the majority of 

ozone production occurs at low latitudes, ozone is distributed ubiquitously throughout the mid- 

to high latitude stratosphere due to meridional transport by stratospheric winds (Haigh, 2007). 

Under specific latitude and altitude conditions, stratospheric ozone exists in a dynamic 

equilibrium. The rate of photolyzation of oxygen molecules which form ozone and the rate of 

photodissociation of ozone by the absorption of UV radiation are equal; this equilibrium shields 

the surface of Earth from UV radiation. Decadal variations in UV emissions modify this 

equilibrium (Vallero, 2008). Such variations may potentially alter the thermodynamic structure 
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of the stratosphere; these changes are coupled to tropospheric dynamics, and consequently 

influence Earth’s climate (Haigh, 1996; Shindell et al., 1999). 

GCMs that take in to account the changes in upper stratospheric ozone over the course of the 

solar cycle, successfully demonstrate the coupling between the stratosphere and troposphere 

resulting from UV variations. Such models have been able to reproduce many of the observed 

climate features seen to occur in association with the solar cycle including circulatory changes 

which originate from the stratosphere and penetrate into the troposphere (Shindell et al., 1999). 

GCMs have been successful in reproducing observed general patterns of climate variability 

associated with solar activity such as: changes in geopotential heights, and changes in 

stratospheric zonal winds which alter the propagation of planetary scale waves (Shindell et al., 

1999). Such circulatory changes result from a solar-maximum associated warming of the 

summer stratosphere. This causes a strengthening of easterly winds, enabling them to penetrate 

in to the equatorial upper troposphere, thereby producing a pole-wards shift in the subtropical 

westerly jet stream. In turn, this forces a pole-ward shift in the descending portions of the 

Hadley circulatory cells, and shifts in the loci of mid-latitude storm-tracks (Haigh, 1996; Haigh 

and Blackburn, 2006). However, it is noted that the changes simulated by the GCMs are 

generally smaller than those observed in reality. Although it is highly likely that a combination 

of both UV and TSI variations influence Earth’s climate, these mechanisms may be unable to 

fully account for some of the observed solar–climate linkages.  

In addition to the ozone interactions, it has also been suggested that UV variations may affect 

the climate via an effect on dimethylsulphide (DMS) production. DMS is a key component of 

the sulphur cycle and its oxidation provides the primary source of cloud condensation nuclei 

(CCN) over clean marine environments. DMS itself is produced by the breakdown of planktonic 

algae through various pathways (such as physical turbulence via wave action and mechanical 

break-up by grazing zooplankton). The breakdown of phytoplankton releases 

dimethylsulphoniopropionate (DMSP), the precursor molecule of DMS (Kniveton et al., 2003). 

The DMSP is converted by marine bacteria to sulphur and DMS; due to its volatile nature, the 

DMS then readily evaporates in to the atmosphere.  

It has been suggested that the relationship between algae, DMS and CCN form a negative 

feedback cycle, whereby and increase in irradiance increases the growth of phytoplankton. In 

turn, this increases the atmospheric DMS concentration, leading to higher concentrations of 

CCN and hence more clouds, resulting in a decrease in shortwave (SW) radiation reaching the 

oceans (Charlson et al., 1987). UV radiation influences these processes in several distinct ways: 

(1) It results in DNA damage to phytoplankton and zooplankton (Lindell et al., 1995).  
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(2) It reduced the production of DMSP from phytoplankton (Hefu and Kirst, 1997). 

(3) It reduces the removal of DMSP from ocean water by bacterial organisms (Slezak et al., 

2001). 

(4) It enhances the rate of photolysis of DMS to other molecules (Hatton, 2002).  

Overall, UV radiation appears to be anticorrelated to DMS concentrations. This suggests that in 

addition to the stratospheric ozone modulating effects of oscillations in UV radiation, UV 

changes may  also possibly result in alterations in cloud formation over clean marine 

environments (Kniveton et al., 2003). 

 

 

2.4 Background to the galactic cosmic ray flux  

The Earth is constantly exposed to high-energy particles travelling at relativistic (near-light) 

speeds; these particles are ubiquitous throughout our galaxy. The particles (termed Galactic 

Cosmic Rays [GCRs]) are thought to originate from high energy astrophysical environments 

such as supernovae remnants (Berezhko, 2008). Of the GCR flux which reaches Earth 98 % is 

comprised of protons and 2 % of electrons. Of the proton component, around 87 % are 

individual protons, while 12 % are helium nuclei (alpha particles); the remaining 1 % are 

assorted species of heavier nuclei (Simpson, 1983). GCR particles range in energy levels from 

1.0 MeV–1000.0 TeV (1 x 106 – 1000 x 1012 electron volts), however particles with energy 

levels between  0.1–15.0 GeV (0.1 – 15 x 106 electron volts) carry around 60 % of all the total 

energy of the GCR spectrum and make up approximately 95 % of the total flux (Stozhkov, 

2003).  

In addition to radiation, the Sun also emits charged particles and magnetic fields; together these 

make up the solar wind. As the solar wind leaves the Sun it is travelling around several million 

kilometres per hour, although it slows with increasing distance from the Sun, as pressure from 

the interstellar medium increases. The solar wind ceases altogether as pressure from the 

interstellar medium eventually balances the pressure of the solar wind (this point is known as 

the heliopause and occurs at around 100 AU [Astronomical Unit]). The region within the 

heliopause is known as the heliosphere; within this region the density, velocity, strength and 

three dimensional structure of the magnetic field emanating from the Sun (known as the 

Interplanetary Magnetic Field (IMF)) and the Heliospheric Current Sheet (HCS) varies over the 

course of a solar cycle. The IMF is able to deflect GCRs with energy levels <10 GeV (Gleeson 
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and Axford, 1968): as the majority of the GCR flux possesses energy levels below 15 GeV, the 

GCR flux reaching Earth is strongly susceptible to modulation by the solar wind. As a result, 

the GCR flux within the local solar system demonstrates a strong anticorrelation to solar 

activity, with the GCR flux arriving at Earth varying by approximately 15 % over the course of 

an 11-year solar cycle (Carslaw et al., 2002).  

GCRs interact with Earth’s atmosphere at all levels, the maximum level of interaction is ~15 km 

(this is termed the Pfotzer maximum [Bazilevskaya and Svirzhevskaya, 1998]); they collide 

with molecules in Earth’s atmosphere and split their atomic nuclei. This process, termed 

spallation, produces a series of secondary charged-particles made up of pi-mesons (pions), 

which further collide with other atmospheric molecules producing muons and neutrinos. If the 

initial impetus is large enough, these secondary particles may be capable of generating a 

cascade of charged particles (known as a particle shower), which may penetrate to sea level. 

The majority of the particles produced by spallation are extremely unstable and decay before 

they reach the troposphere; as a result, the majority of remaining particles within the 

troposphere are comprised of muons. Muons loose energy by ionisation and are responsible for 

virtually all atmospheric ionisation away from terrestrial sources of radiation and electrically 

active clouds (termed the fair weather region) (Kirkby, 2007). Ultimately, the anti-correlation 

between solar activity and the GCR flux provides an indirect pathway linking small changes in 

solar activity to variations in tropospheric ionisation. 

In addition to the heliospheric modulation of the GCR flux, the Earth’s magnetosphere also 

influences incoming GCRs. Generally, the Earth’s geomagnetic shielding is strongest at low 

latitudes and altitudes, although in reality it does not vary quite so uniformly, as the magnetic 

poles of the Earth are offset from the geographically ‘true’ poles by some distance. As a result, 

the Earth’s magnetic field is not positioned symmetrically over the Earth, and so magnetic field 

strength varies in intensity to a small degree along the same latitudinal zone (figure 2.1). 

Furthermore, the structure of Earth’s magnetic field is also complicated by its interactions with 

the solar wind, which act to deform the field by compressing its sunward-facing side towards 

the Earth and extending the opposing side. Due to this interaction, the amount of magnetic 

shielding at a specific location varies with the time of day, Earth’s orbital position, and the 

space weather conditions (Smart et al., 2008). The magnetosphere itself also undergoes 

fundamental changes as the geomagnetic poles drift over decadal timescales (Courtillot et al., 

2007). The entire geomagnetic field fluctuates in strength by tens of percent over millennial 

timescales (geomagnetic excursions), and periodically undergoes complete geomagnetic 

reversals. While a consideration of such intricate variations and deformations of the 

magnetosphere are beyond the scope of this thesis, it is important to appreciate the non-uniform 
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nature of GCR related ionisation and how the terrestrial GCR flux is a function of both external 

and internal influences. 

 

Figure 2.1 Geomagnetic cut-off rigidity 

Geomagnetic shielding effect, indicating the minimum energy level (cut-off rigidity) an incident 
GCR must possess to penetrate at a given location (units in GeV). Figure sourced from 
http://bit.ly/d877IE (accessed 07/04/2010). 

 

For the purposes of this work, the magnetospheric influence on GCR flux can be considered as a 

shielding of low latitudes from the relatively low energy (and most abundant) GCRs, deflecting 

them to higher latitudes.  As a result, average ion production rates in the troposphere range with 

latitude and altitude from around 2 cm-3s-1 at ground level, to 10 cm-3s-1 at 5 km and 20–

50 cm-3s-1 at 15 km. It is important to note that the component of the GCR spectrum most 

susceptible to diversion to high latitudes by the magnetosphere is also the part most susceptible 

to modulation by the heliosphere. Consequently, during the course of a solar cycle high latitude 

ionisation rates vary by approximately 20–25 % in the upper troposphere and 5–10 % in the 

lower troposphere, whereas at low latitudes the ionisation rate only varies by around 4–7 % in 

the upper troposphere and 3–5 % in the lower troposphere (Yu, 2002). The positive ions and 

free electrons created by the GCRs quickly interact with atmospheric molecules to form 

complex positive and negative cluster ions known as small ions. The average ion pair 

concentrations in the atmosphere vary from around 200–500 cm-3 at ground level to 
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approximately 1000–3000 cm-3 in the lower stratosphere (Ermakov et al., 1997; Carslaw et al., 

2002).  

2.4.1 Ionisation and tropospheric aerosols 

Dickinson (1975) first suggested that atmospheric ionisation may potentially play some role in 

cloud formation, via an influence on the development of aerosols necessary for the growth of 

clouds. Since Dickinson’s initial suggestion several decades ago, two primary theories of GCR–

cloud interactions have developed. The first is known as the clean air effect (a.k.a. the direct 

effect) and refers to a process whereby atmospheric ionisation may influence the formation and 

growth of  aerosol particles, ultimately affecting the number of aerosols which reach CCN sizes 

(approximately 0.1 µm) (Carslaw et al., 2002). 

Unless otherwise explicitly specified, the term aerosol will hereafter refer to sulphate aerosols 

(as these are predicted to be the primary nucleating agents of the free troposphere). Aerosol 

particles are constantly being removed from the atmosphere through various processes such as 

wet and dry sedimentation, photolytic reactions, self coagulation and cloud droplet scavenging. 

Consequently, the typical lifespan of an aerosol particle ranges from around 6 hours to several 

weeks. As a result, they do not persist long enough to accumulate in large concentrations and so 

the rate of formation of new aerosol particles largely controls the ambient concentration of 

tropospheric aerosols (Rogers and Yau, 1989; Carslaw et al., 2002; Laakso, 2002; Tinsley and 

Yu, 2004; Kirkby, 2002).  

Due to the difficulties in observing sub-nanometre scale processes, the genesis of new (ultrafine 

[≤3 nm diameter]) aerosol particles is still poorly understood, despite decades of research, it is 

unknown exactly how new aerosol particles form (Yu and Turco, 2000). It is thought that 

nucleation of trace condensable vapours of gases such as H2SO4 in the atmosphere may be an 

important source of new ultrafine aerosol particles as such gases are often observed prior to the 

detection of ultrafine aerosols. Many observations of ultrafine aerosols have been made over the 

last decade; these indicate that the typical aerosol growth rates can vary with air temperature 

and condensable vapour concentrations. Rates of aerosol growth have been observed to range 

from approximately 1–20 nm hr-1 (at mid-latitude regions) to 0.1 nm hr-1 (at polar latitudes).  

Aerosol formation rates are found to be approximately 0.01–10 particles cm-3 s-1 in the boundary 

layer (although for costal environments and industrial plumes, formation rates may be as large 

as 104–105 particles cm-3 s-1) (Weber et al., 1998; Kulmala et al., 2004; Kirkby, 2007). 

Current theoretical models attempting to explain the formation of new ultrafine aerosols appear 

to largely underestimate rates of particle production. Traditional models of aerosol formation 

are based around neutrally charged nucleation theories, such as binary homogenous nucleation 
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theory (BHN) and ternary homogenous nucleation (THN) theory. Based on such classical BHN 

models, aerosol nucleation rates at low tropospheric levels are predicted to be far lower than 

observations suggest, by a factor of around 1010 (Jaecker-Voirol and Mirabel, 1989). However, 

models which include the speculative effects of charge on aerosol formation and growth (known 

as ion mediated nucleation (IMN)) are able to predict formation rates far greater than neutrally 

charged nucleation models allow. Consequently, it is proposed that IMN may potentially 

account for some of the discrepancies between observations and traditional nucleation 

mechanisms (Clarke et al., 1998).  

IMN operates by encouraging the condensation of polar non-water molecules (such as H2SO4), 

accompanied by a fraction of water molecules on to small ions by electrostatic attraction and 

enhanced particle coagulation, resulting in a rapid and large increase in ultrafine aerosol growth 

rates. In nature, large and sudden increases in tropospheric ultrafine aerosol concentrations have 

been observed; these are known as nucleation bursts. Theories of ultrafine aerosol nucleation, 

which do not invoke the electrostatic growth processes of IMN, are unable to account for the 

existence of such nucleation bursts (Horrak et al., 1998). IMN models, however, have been 

shown to successfully simulate nucleation events where traditional models have failed (Yu and 

Turco, 2008). In addition, the simulation of ion clusters in jet contrails provides further evidence 

of the existence of IMN processes, as IMN models are able to successfully describe the 

evolution of chemiions (negative aerosol cluster ions) in aircraft plumes (Kiendler and Arnold, 

2002).  

Model studies by Yu and Turco (2008) have identified two key parameters which control 

aerosol nucleation: (1) sulphuric acid vapour concentration, (2) air temperature, and (3) 

background aerosol concentration. Secondary parameters are also found to be important, 

including:  the ionisation rate, relative humidity, and condensation sinks. Models suggest that 

variations in the ionisation rate, resulting from changes in the GCR flux, can exert an influence 

over tropospheric aerosol production. This effect may be most pronounced in the marine 

boundary layer, where there is minimal pollution and a low availability of ions. It is postulated 

that the low ion concentrations in such environments may act as a limiting factor on nucleation 

processes (Yu and Turco, 2001).  

As aerosol production is a function of several variables, a change in ionisation may result in 

differing impacts to aerosol production at different locations. It has been predicted that the sign 

of change resulting from an increase in ionisation may be altitude dependant (Yu, 2002). This 

would result in an increase in particle production in low tropospheric levels (>680 mb), but a 

decrease in production at high tropospheric levels (<440 mb), whereas the nucleation change at 

mid-tropospheric levels (440–680 mb) is predicted to be negligible. The altitude dependence of 
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the sign of change is largely a function of the distribution of sulphuric acid vapour in the 

troposphere versus the abundance of tropospheric ions. In the lower troposphere, sulphuric acid 

vapour concentrations are relatively high, whereas ionisation rates are relatively low, 

consequently, nucleation is limited by the ionisation rate; therefore, an increase in the GCR flux 

is predicted to result in an increase in nucleation production at low tropospheric levels. 

Conversely, in the upper troposphere, the ionisation rate is relatively high while sulphuric acid 

vapour concentrations are relatively low; thus, particle formation is limited by sulphuric acid 

vapour and not by the ionisation rate (Yu, 2002). Model studies by different groups estimating 

the importance of IMN on aerosol production suggest that IMN may be an important process 

over several areas, for example: Boy et al. (2008) have estimated that over boreal forest 

environments IMN may contribute as much as 15 % of the new particle formation for particles 

between diameters of 3–10 nm in the mixing layer, while Kazil et al. (2006)  studied the 

formation of aerosols in the troposphere over ocean regions and found indications that the 

strongest aerosol production occurred at high tropospheric levels over regions with frequent 

convective activity, but that the net impacts of these effects were small (less than those resulting 

from changes in irradiance over a solar cycle).  

Ultimately, a link between the GCR flux and CCN concentrations may indirectly influence 

clouds, as the abundance of CCN determines cloud properties such as droplet concentration, 

albedo and cloud lifetimes. Variations in the CCN concentrations may also be indirectly capable 

of influencing cloud longevity by controlling the ability of a cloud to precipitate. Precipitation 

requires the formation of large cloud droplets (with radii of around 50 µm); high CCN 

concentrations produce small cloud droplets (with droplet radii of around 10 µm) which inhibits 

the development of precipitation in low-level stratus clouds and consequently increases cloud 

lifetimes. As a secondary effect, this process may also increase the amount of cloud water 

available, thereby influencing storm systems by controlling the amount of latent heat available 

to the system (Rogers and Yau, 1989; Carslaw et al., 2002; Tinsley and Yu, 2004). 

Observational evidence of a relationship between increases in atmospheric ionisation and the 

concentration of tropospheric sulphate and nitrate aerosols have been presented by Mironova et 

al. (2008). The authors demonstrated that following an extreme solar energetic particle (SEP) 

event, statistically significant increases in aerosol concentrations were observed over high 

magnetic latitudes (Mironova et al., 2008); these results provide a good indication that 

variations in ionisation may be linked to changes in aerosol concentrations. In addition, good 

observational evidence of IMN was also found by a sophisticated long-term (decadal) aerosol 

monitoring study (Kulmala et al., 2009); the work appears to indicate IMN may indeed 

encourage the formation and development of new aerosol particles, although the authors 

conclude that GCR-induced ionisation may only influence around 10 % of the ultrafine aerosol 
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population. Furthermore, evidence of IMN bursts in the Earth’s atmosphere have also been 

presented by other studies over a range of environments, including boreal forests and urban 

centres (e.g. Kulmala et al., 2004; Maso et al., 2005; Iida et al., 2008). A preliminary 

experimental study by Svensmark et al. (2007) showed indications that the production of new 

aerosol particles is proportional to negative ion densities. They concluded that their results 

demonstrated that ions are capable of generating a build-up of small, thermodynamically stable 

ultrafine aerosol clusters, which may ultimately influence the number of aerosols which grow to 

CCN sizes (Svensmark et al., 2007). The initial findings of Svensmark et al. (2007) have 

recently been added to by the pilot study of the CERN Proton Synchrotron in preparation for the 

Cosmics Leaving Outdoor Droplets (CLOUD) experiment. Preliminary CLOUD experiments 

suggest that ion-induced nucleation and ion-ion recombination contribute to the formation of 

neutral clusters and provide sources of new tropospheric aerosol particles with formation rates 

similar to those observed in nature (Duplissy et al., 2010). 

Despite the observational and experimental evidence, however, it is still unclear to what extent 

variations in IMN may be capable of altering global CCN concentrations and ultimately cloud 

cover (Carslaw, 2009). A recent model study by Pierce and Adams (2009) using a GCM with 

the inclusion of aerosol microphysics predicts that, although IMN may influence tropospheric 

aerosol production, its overall impact on cloud physics is likely to be two orders of magnitude 

too small to account for observed cloud cover changes. The authors predict that resulting 

changes in global CCN concentrations between solar minimum and maximum may be less than 

0.1 %, which equates to a radiative forcing of only 0.005 W m2. Consequently, the authors 

conclude that the effect of IMN on CCN may be unable to account for observed solar–terrestrial 

relationships (Pierce and Adams, 2009). Similar conclusions regarding the importance of IMN 

on CCN concentrations have also been drawn by other model-based studies (e.g. Pierce and 

Adams, 2007; Spracklen et al., 2008).  

 

 

2.4.2 The Global Electric Circuit 

The second mechanism whereby changes in the GCR flux may influence cloud is known as the 

near cloud effect (a.k.a the indirect effect). This theory is based on the relationship between the 

GCR flux and the Global Electric Circuit (GEC). To properly explain how this may impact 

cloud formation requires a brief explanation of the GEC itself. 
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The GEC was first proposed by Lord Kelvin, who suggested that the Earth’s surface and 

ionosphere together could act as a spherical capacitor. We now know that the ionosphere 

receives and transmits current generated by electrified clouds at low latitudes (Harrison, 2004). 

There are four quasi-direct current sources of charge generation which charge the ionosphere: 

thunderstorms, non-thunderstorm electrified clouds, a dynamo interaction between the solar 

wind and the magnetosphere, and the dynamo influence of atmospheric tides within Earth’s 

thermosphere (Roble, 1991; Bering et al., 1999). 

The most significant source of current (by a factor of 3) in the GEC is from thunderstorms 

(Roble, 1991), while the second most significant source is electrically active (non-thunderstorm) 

clouds. Large positive electric potentials are generated above thunderstorms and other 

electrically active clouds; if the thunderstorms are large enough, the currents that flow upwards 

from the tops of such clouds may be capable of penetrating into the ionosphere (this current is 

known as the Wilson current, after C.T.R. Wilson, who first hypothesised that thunderstorms 

may provide the principle source of current generation in the GEC (Wilson, 1920). The majority 

of these charge generating clouds are distributed at low latitudes. When averaged, the net 

upward charge generated from their cloud tops is approximately 1,000 A (this current is known 

to vary by around ±20 %). The upward current flows in to the highly conductive ionosphere, 

where it generates a diurnally varying ionospheric potential difference (Vi), with a daily average 

of roughly 250 kV. Due to the high conductivity of the ionosphere, this charge is equally 

distributed from the equator to approximately (50°N/S). At higher latitudes, there is an 

additional charge input from the interactions between the Earth’s magnetosphere and the IMF; 

this results in an additional dawn to dusk potential change of around 40–100 kV (Siingh et al., 

2006).  

The flow of current in the GEC is uninterrupted as the low latitude generation of current is 

continual. On average, around 200 thunderstorms are active at one time (Williams, 1996). These 

mainly occur over the tropics during late afternoon (resulting in the diurnal variation of Vi) and 

cover around 10 % of the Earth’s surface at any one instant (Markson, 1978). The Vi produces a 

vertical current density (Jz) of approximately 1–6 pA m-2, which flows through all fair weather 

regions (the remaining 90 % of the Earth which is not undergoing thunderstorm activity); the 

return time of the GEC is around 2–10 minutes. The Jz results in a weak electrification at the 

boundaries of stratiform clouds (Harrison and Carslaw, 2003). Resistance of the atmospheric 

column in fair weather regions is on average approximately 300 ohms; however, the resistance 

at a given location varies greatly. It is principally determined by the surface altitude and the 

GCR flux. Thus, variations in the GCR flux affect both the upward current and the vertical 

return current. The Jz demonstrates variations on multiple temporal and spatial scales in 

association with solar activity, the GCR flux, internal changes in the GEC, and local variations 
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in natural and anthropogenic aerosol loading (although, the largest variations in Jz are a function 

of geographical location) (Hays and Roble, 1979; Rycroft et al., 2000; Harrison, 2004; Tinsley 

and Zhou, 2006; Tinsley et al., 2007). 

 

 

2.4.3 The near-cloud effect 

Variations in the GCR flux may be one of several inputs capable of modulating the vertical 

current density flowing from the ionosphere to the Earth’s surface, which may alter the current 

density passing through clouds thereby influencing their properties; this process may indirectly 

link cloud microphysics to changes in solar activity via the GEC (Tinsley, 2008).  

Microphysically, this process is the result of the build-up of elemental charges on particles and 

droplets at the boundaries of clouds and the effect this charge has on the scavenging and 

subsequent development of the clouds. Small ions within clouds are efficiently scavenged by 

droplets, resulting in decreased electrical conductivity by a factor of around 3–30 times relative 

to the surrounding cloud-free air (Griffiths et al., 1974). When the Jz encounters the conductivity 

gradient at the boundaries of stratiform clouds, it results in the formation of gradients in the 

electrical field and an accumulation of space charge density (the electric field generated is 

proportional to the current density, and inversely proportional to the conductivity). The charge 

generated attaches to cloud droplets and aerosol particles, producing highly charged droplets (of 

around 100 e) at both the upper and lower boundaries of the cloud. The sign of charge at the top 

and bottom cloud boundaries are opposing; the lifetime of charge on the particles at these 

boundaries is approximately 15 minutes (Tinsley et al., 2000; Tinsley et al., 2007). The presence 

of elemental charge at stratified cloud tops has been established by both aircraft (Beard et al., 

2004) and balloon measurements (Nicoll and Harrison, 2009).  

There are two potential effects resulting from the charging of droplets and aerosols at cloud 

boundaries:  

(1) An influence on the ice content of clouds. When charged droplets evaporate they leave 

behind highly charged, coated evaporation nuclei, which may be scavenged by falling cloud 

droplets more effectively than uncharged particles as a result of an image charge induced on to 

the cloud droplets; this processes is termed electroscavenging. Some of the electroscavenged 

particles will be ice forming nuclei (IFN). These are nuclei species capable of forming ice 

crystals by contact ice nucleation (Tinsley et al., 2001). Field measurements show that the tops 

of clouds often contain a significant amount of liquid water below freezing point; water can 
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remain supercooled in a liquid state in clouds between -40 to 0 °C as water requires a suitable 

nucleating surface for ice crystals to form. Since IFN are relatively scarce in the troposphere, an 

increase in the rate of scavenging may greatly increase the IFN content of such supercooled 

clouds. The presence of ice crystals in a water saturated cloud will result in the rapid growth of 

the ice crystals and encourage the development of precipitation via the Wegener-Bergeron-

Findeisen (WBF) mechanism. The WBF mechanism operates through the difference in vapour 

pressures between ice and water; water saturated clouds have a high supersaturation relative to 

ice and as a result fuel the rapid growth of ice by diffusion and deposition. This process 

continues as long as liquid cloud droplets are available to evaporate and maintain the vapour 

pressure at equilibrium relative to water (Rogers and Yau, 1989; Tinsley 2000; Tinsley et al., 

2000). 

(2) Modification of cloud microphysics via the alteration of the growth of liquid phase cloud 

droplets, controlled by the coalescence of aerosol particles and cloud droplets. Experiments 

indicate that charged raindrops approximately 0.5 mm in diameter are around 100 times more 

efficient at scavenging aerosols compared with neutral raindrops of the same size. This is 

predicted to occur even in weakly electrified cloud layers. If only one particle is charged then 

the collision efficiency is enhanced by electroscavenging. However, if both particles are 

charged, then the influence may be either attractive or repulsive (depending on the sign of both 

charges). For aerosols colliding with large cloud droplets (>10 µm), the influence of increasing 

same sign charge is to increase collision efficiency (by up to an order of magnitude for 100 e 

charged droplets). Conversely, for aerosols or small droplets (<4 µm), an increase in same sign 

charge results in a strong suppression of collision efficiency (by up to several orders of 

magnitude for 100 e charged particles); this is termed electroprotection and acts to inhibit 

coagulation otherwise caused by Brownian diffusion or phoretic forces (Tinsley et al., 2006). 

 

 

2.4.4 Some potential mesoscale GEC–cloud processes  

It has been suggested that electroscavenging and ice formation in clouds may influence the 

development of mid-latitude cyclones (Tinsley and Heelis, 1993). In regions of baroclinic 

instability, the layer clouds associated with the warm front of cyclones may be sensitive to 

enhanced ice production through electroscavenging (Tinsley and Deen, 1991). As the warm 

front advances and the layer cloud becomes forced to rise above the surrounding cold air-mass 

to greater altitudes, cloud top temperatures fall between 0–15 °C and the cloud becomes 

supercooled. An increase in Jz will result in an increase in space charge accumulation at the 
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boundaries of the layer cloud, thereby increasing the elementary charging on particles at the 

cloud boundaries. This may in turn result in increased ice formation in the supercooled cloud 

top through enhanced IFN scavenging. The consequent ice particle growth through the WBF 

mechanism may then increase precipitation in clouds at lower tropospheric levels of the frontal 

system through a seeder-feeder process, whereby ice particles generated in high level clouds fall 

through lower level clouds and continue their growth through vapour deposition processes 

previously discussed (Rutledge and Hobbs, 1983). Increased precipitation will result in an 

increase in the latent heat released into the cyclonic storms, producing enhanced updrafts and 

storm vorticity (Tinsley, 2008). Observations of mid-latitude cyclone variations following both 

energetic particle events (Tinsley and Deen, 1991; Veretenenko and Thejil, 2004) and the 11-

year solar cycle (Veretenenko et al., 2005; Veretenenko et al., 2007)  have been identified which 

support notions of a GCR-related influence on cyclone properties.  

In addition, for thin layer clouds where transfers of latent heat are not important, changes in 

cloud lifetime and optical depth may have significant impacts on the balance between incoming 

SW radiation and outgoing LW radiation, influencing tropospheric thermodynamics. 

Furthermore, if such GEC influences on clouds were to display meridional gradients (relating to 

the high variation in atmospheric ionisation at high latitudes relative to low latitudes) there may 

be a significant impact on baroclinic gradients, which may as a result influence mid-latitude 

cyclonic intensity (Tinsley, 2008). It has also been suggested that polar environments may be 

highly sensitive to GEC-related cloud responses and that radiative balance changes may 

influence the katabatic wind regime over Antarctica and Greenland (Troshichev and Janzhura, 

2004). The katabatic wind regime is crucial to the tropospheric circulation patterns over the 

Antarctic continent and any modification to the strength of the wind may have significant 

impacts on the strength of the circumpolar vortex and, by extension, climate over the southern 

hemisphere (Parish and Bromwich, 1991; Thompson and Solomon, 2002; Troshichev et al., 

2005; Tinsley, 2008). 

 

2.4.5 Studies of relationships between the GCR flux and cloud cover 

In 1997, Henrick Svensmark and Eigil Friis-Christensen published work which suggested the 

total cloud cover on Earth between 1983–1994 varied closely in phase with the terrestrial GCR 

flux (as measured from Climax Colorado neutron monitor (Simpson, 1957)) (figure 2.2). The 

authors concluded that this observation was evidence of a causal relationship between the GCR 

flux and Earth’s climate (Svensmark and Friis-Christensen, 1997). In an update to these initial 

findings, Svensmark further suggested that the Earth’s air temperature closely followed the 

decadal variations in the GCR flux as a result of a GCR–cloud relationship and also argued that 
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no other relationship between solar activity and climate (such as those related to TSI, UV, and 

IMF variations) was able to account for these observations (Svensmark, 1998). However, 

despite these claims, subsequent studies found that the observed correlation between cloud 

cover and the GCR flux over the 1983–1994 period was only limited to low-level clouds (Marsh 

and Svensmark, 2000; Pallé and Butler, 2000). As more time passed and further cloud data 

became available, even the GCR–low cloud relationship began to break down; between 1991–

1994, cloud cover began to lag changes in the GCR flux by around six months (Laut, 2003) 

(figure 2.3). Such a lag cannot be resolved by the response time of either the direct (ion–aerosol) 

or indirect (near-cloud) GEC pathways (which operate on the order of days and minutes 

respectively) (Yu and Turco, 2000; Tinsley, 2008). Finally, after 1994, the correlation between 

low-cloud and the GCR flux disappeared altogether (Laut, 2003).  In response to these findings, 

Svensmark and his team have argued that the temporal breakdown of the correlation between 

low-cloud cover and the GCR flux after 1994 is an artefact resulting from calibration issues 

related to the International Satellite Cloud Climatology Project (ISCCP) itself (Marsh and 

Svensmark, 2003), however, these claims are disputed (Rossow, 2010).  

 

Figure 2.2 Long-term GCR–cloud relationship (from Svensmark and Friis-Christensen 
1997) 

A 12-month running average of ISCCP C2 monthly cloud cover (red line) from geostationary 
satellite data over ocean areas only and normalised monthly mean cosmic ray intensity from 
Climax Colorado neutron monitor (blue dashed line). Figure reproduced from Svensmark and 
Friis-Christensen (1997), Fig. 2, pp. 1228. 
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Figure 2.3 Long-term GCR–low cloud relationship (from Laut 2003) 

Smoothed low-cloud cover (blue line) and cosmic ray flux from Huancayo, Peru (red line). 
Figure reproduced from Laut (2003), Fig. 2, pp. 804. 

 

The GCR–cloud link proposed by Svensmark and Friis-Christensen has also been criticised on 

several other issues: (1) it has been asserted that long-term climate periodicities (such as the El 

Niño oscillation) may have contributed to the observed cloud trends (Farrar, 2000); (2) the 

detected long-term cloud trends may be subject to errors resulting from satellite artefacts (Evan 

et al., 2007); (3) it has also been asserted that the original figures from Svensmark and Friis-

Christensen (1997) were presented in such a way that markers were superimposed on to the 

graph to intentionally mislead readers by obscuring the data content (Laut, 2003). Reanalysis of 

the original data made by Kristjánsson and Kristiansen (2000) finds that the obscured data did 

not contribute to the observed GCR–cloud relationship as implied by Svensmark and Friis-

Christensen (1997). Kristjánsson and Kristiansen (2000) argue that the data Svensmark and 

Friis-Christensen intentionally obscured would otherwise have weakened their argument 

(Kristjánsson and Kristiansen, 2000). 

In addition to Svensmark’s decadal studies there have been other attempts to discern a long-

term relationship between cloud and the GCR flux. Measurements of solar radiation taken from 

sites across the UK since 1947 have been compiled and used to infer daily cloud cover values 
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(Harrison and Stephenson, 2006); these workers used the ratio of diffuse to total solar radiation 

to calculate the diffuse fraction (DF). Comparing the DF to the GCR flux (measured at Climax 

Colorado neutron monitor [for which data are available between 1951–2000]), Harrison and 

Stephenson find, that on days of high neutron counts, the probability of an overcast day 

increases by approximately 20 % and the DF increases by around 2 %. Conversely, during rare 

high magnitude decreases (of  ≥3 %) in the GCR flux (known as Forbush Decrease [FD] events 

(Forbush, 1993)), small but statistically significant decreases were found to occur in the DF. 

These observations led the authors to conclude that changes in the DF are causally related to the 

GCR flux and, although over daily timescales this effect is small, over the longer-term the 

aggregate influence of this relationship may have a significant impact on climate (Harrison and 

Stephenson, 2006).  

Similar work analysing the long-term records of sunshine hours measured at sites across Ireland 

(1881–1998) has been carried out by Pallé and Butler (2001). The authors found that since 

records began there has been a gradual decrease in sunshine hours, implying an increase in 

cloud amounts over the last century. It was proposed that this trend may indicate a gradual 

increase in water vapour content of the troposphere, resulting from an increase in mean air 

temperatures over the period (conforming to the Clausius-Clapeyron relation). Pallé and Butler 

(2001) also report a correlation between sunshine hours and the length of the sunspot cycle. 

However, unlike Harrison and Stephenson (2006), they found no reliable relationship between 

sunshine hours and the GCR flux between 1951–1998 (using the Climax Colorado neutron 

monitor dataset) with either the overall GCR flux or FD events (Pallé and Butler, 2001).  

Over recent years, shorter (daily) timescale satellite based studies have been used to test for the 

presence of a GCR–cloud relationship. These studies are able to overcome many of the issues 

which plagued their longer term (annual/decadal) counterparts. They are based around a 

composite (epoch-superpositional) approach, focused around the occurrence of FD events. A 

detailed investigation of these events and the findings of past FD-based composite studies will 

be given in chapter 4. 

 

 

2.4.6 Clouds: importance and recent trends 

Over the last century there has been a long-term decline in the GCR flux arriving at the Earth 

due to increasing levels of solar activity (Lockwood et al., 1999). If cloud changes are linked to 

solar activity by the previously described processes, then there may be significant potential for 
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an underlying trend in solar-related climate variations over the last century (Svensmark, 2000). 

The presence of a relationship between the GCR flux and Earth’s cloud cover to even a small 

degree would be hugely important. Clouds have an enormous impact on Earth’s radiation 

budget as they reflect incoming solar shortwave (SW) radiation and absorb/re-emit outgoing 

terrestrial longwave (LW) radiation. Individually, the radiative impact of a single cloud depends 

on its specific properties, including morphology, droplet size, droplet concentration, water 

phase/content and altitude. Results from the Earth Radiation Budget Experiment (ERBE) have 

demonstrated that, overall, clouds reduce the absorbed solar radiation by -48 Wm-2, while 

simultaneously enhancing the greenhouse effect by 30 Wm-2, giving a net-cooling effect of -

18 Wm-2. This cooling effect is largest over the mid-latitude and high latitude oceans, whereas, 

in low latitude regions LW and SW forcings are approximately balanced (Ramanathan and 

Inamdar, 2006). Consequently, Earth’s climate is highly sensitive to even small changes in 

long-term cloud amounts. 

The question whether there are long-term trends present in Earth’s cloud cover is very difficult 

to answer. The only truly effective means of measuring global scale cloud systems are from 

satellite-based platforms such as the International Satellite Cloud Climatology Project (ISCCP) 

(Rossow et al., 1996), yet such datasets have major limitations. ISCCP provides an 8-times 

daily, global measurement of cloud cover over a 2.5° latitude/longitude grid, beginning in 1983. 

The data are constructed from both polar-orbiting and geostationary satellites. ISCCP uses a 

threshold method of identifying cloud, relying on the assumption that clouds are brighter and 

colder than their underlying surface. Consequently, dark warm pixels are identified as clear sky, 

whereas bright cold pixels are identified as cloudy. Numerous statistical tests which establish 

pixel radiances through space and time are performed to establish cloudy/clear sky radiance 

levels at each location (Rossow et al., 1993). It has been noted, however, that cloud detections 

may be problematic over high latitude ice-covered regions (Todd and Kniveton, 2004); in 

addition, the ISCCP dataset is also limited by obstructed views of low-level cloud (due to the 

top-down perspective of satellite views) (Norris, 2000). 

Studies based on ISCCP data have reported evidence of a long-term decline in global cloud 

cover between 1987 and 2000 (Pallé et al., 2004b; Hatzianastassiou et al., 2005; Pinker et al., 

2005). However, these findings have not been supported by either alternate satellite data or 

ground based measurements. Alternate satellite measurements from the High Resolution 

Infrared Radiometer Sounder (HIRS) and the Advanced Very High Resolution Radiometer 

(AVHRR) projects both indicate a slight increase in cloud amounts over recent decades 

(Jacobwitz et al., 2003; Wylie et al., 2005). On the other hand, long-term ground-based 

measurements show a small annual increase at Syowa station, Antarctica, over the past 50 years 

(of around 0.014 % yr-1) (Yamanouchi and Shudou, 2007) and a small increase in cloud cover 
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over the last century at Armagh, Ireland (Butler et al., 2008). These observations appear to 

contradict those of the ISCCP dataset and several authors have demonstrated good evidence to 

suggest why such trends may be present in the ISCCP data. 

For example, Norris (2000) showed regions of temporally correlated cloud anomalies within the 

ISCCP data which closely corresponds to the geostationary viewing footprint of Meteosat data 

(which is incorporated in to the ISCCP dataset). Norris suggests that the attempts to account for 

instrument degradation and miscalibration between datasets have not been fully successful and 

have consequently resulted in inhomogeneities in the data partly responsible for producing 

spurious trends (figure 2.4). Furthermore, Norris (2000) suggests that Marsh and Svensmark 

(2000) have mistakenly correlated these false trends to the GCR flux.  

 

 

Figure 2.4 ISCCP long-term correlation anomalies  

Correlation of ISCCP D-series grid box time series with ISCCP time series. Light grey shading 
indicates correlations above 0.4, dark grey indicates correlations below -0.4. Red dotted line 
shows approximate footprint of Meteosat. Sourced from Norris (2000), Figure 2, pp. 378. 

 

Secondly, Campbell (2004) demonstrated the existence of ‘seams’ in the ISCCP data, 

supporting the findings of Norris (2000). Based on these observations, Campbell suggested that 

more cloud is erroneously detected as the viewing angle of the satellites increases. This finding 

has important implications for the detection of long-term trends, because as the ISCCP project 

has progressed, increasing numbers of satellites have been added to the dataset. This resulted in 

a long-term decrease in the average viewing angle, reducing the amount of spurious cloud 
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detection and therefore giving the appearance of a long-term cloud decrease (Pallé, 2005; Evan 

et al., 2007). After applying a correction to account for the induced viewing angle error, 

Campbell noted that the long-term cloud decrease was largely reduced and suggested that the 

remaining decrease may potentially be explained by the presence of still further errors related to 

satellite calibration issues (Campbell, 2004; 2006). 

Finally, a discontinuity in the amount of cloud detected after October 2001 appears to have 

occurred, following the replacement of the NOAA 14 Advanced Very High Resolution 

Radiometer (AVHRR) by the NOAA 16 AVHRR satellite (Campbell, 2006; Knapp, 2008).  

 

 

2.5 The GCR flux and stratospheric ozone depletion 

In addition to the proposed connection between tropospheric cloud cover and the GCR flux, a 

relationship between the GCR flux and stratospheric ozone depletion (hereafter referred to as 

the GCR–ozone hypothesis) has also been proposed (Lu and Madley, 1999). This may provide a 

new mechanism to explain the formation of ozone holes in the polar stratosphere (Lu, 2010). 

This link was first suggested after a series of laboratory experiments which suggested that, 

following electron-dissociation, free-electrons may be absorbed on to polar surfaces (such as ice 

crystals) and react with halogenated molecules ultimately leading to the enhanced formation of 

ozone-depleting compounds (Lu and Madley, 1999; Lu and Sanche, 2001). Specifically, it is 

theorised that electrons produced by GCR ionisation are captured on the surface of polar 

stratospheric cloud (PSC) crystals (which are comprised of water, ice or nitric acid/ice) and the 

absorbed electron then converts inactive halogenated compounds (also absorbed by the PSC) 

such as chlorofluorocarbons (CFCs) or HCl molecules in to photoreactive Cl2(g) species, which 

release chlorine atoms that then destroy ozone (Lu, 2010). Model studies have suggested that 

this mechanism may have only a limited impact on stratospheric ozone (Müller, 2003), although 

direct measurements from satellite, balloons and ground stations suggest otherwise. These 

indicate that ozone loss is strongly correlated to latitudinal/altitudinal variations in GCR driven 

ionisation and this relationship extends over full two solar cycles-worth of NASA’s Total Ozone 

Measuring Spectrometer (TOMS) satellite data (Lu and Sanche, 2001; Lu, 2009). The GCR–

ozone hypothesis is also given support by the experimental and theoretical analysis of several 

other investigators (e.g. Fabrikant, 2007; Tachikawa and Abe, 2007).  Lu (2010) suggests that 

the GCR–ozone relationship has resulted in an 11-year cyclic variation of ozone loss and 

stratospheric cooling between 1956 and 2008; Lu also proposes that the concentrations of CFCs 

in the stratosphere may play a dominant role in global surface temperature change, which has 
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been underestimated by the IPCC. Lu (2010) suggests that, due to the importance of 

stratospheric CFC concentrations, the GCR–ozone relationship may be responsible for 

producing a weak, but detectable, decadal oscillation in surface temperatures. 

 

 

2.6 Solar modulation of extra-terrestrial dust  

Finally, there is evidence of one additional solar–terrestrial pathway. Spectral analysis of tree 

rings taken from several sites located in the Arctic circle suggest that periodicities of 

approximately 20-22, 30-33 and 80-90 years are detectable in the dendochronology of 

Fennoscandian and Kola sites (Kasatkina et al., 2006). It was proposed that the periodicities 

may be linked to oscillations in stardust flux within the solar system during solar cycles. The 

authors suggested that this relationship may modulate the amount of extra-planetary material 

entering Earth’s atmosphere, periodically altering atmospheric transparency and as a result the 

growth of the trees.  

Observations of interplanetary dust variations have been made by the Ulysses probe. 

Measurements indicate that dust levels inside the solar system underwent significant variations 

during the last solar maximum, suggesting that solar cycles may be related to the modulation of 

interplanetary dust concentrations. Ulysses measurements show that the interstellar dust stream 

present in the inner solar system may be influenced by several factors: (1) the solar radiation 

pressure force; (2) gravitational focusing; and, (3) the interaction of charged dust grains with 

IMF (Krüger and Grün, 2008). In 1996 a significant decrease in interstellar dust flux (from 

1.5x10-4 m-2 s-1 to 0.5x10-4 m-2 s-1) was observed. This decrease appears to have been the result of 

a combination of increased filtering of small (<0.2 µm)  dust grains by enhanced IMF 

variations, and increased filtration by solar radiation pressure of 0.4 µm grains  within 

heliocentric distances of 4 AU (Grün et al., 1994; Landgraf et al., 1999). This suggests that 

changes in the IMF may indeed be linked to large changes in interplanetary dust concentrations. 

However, the evidence for a link between interplanetary dust and the Earth’s climate is tenuous. 

The relationship proposed by Kasatkina and Shumilov (2006) is weakened by several factors:  

(1)  The lack of detection of an 11-year Schwabe cycle. This is the strongest solar 

oscillation and its lack of detection implies the observations do not relate to solar 

cycles.  

(2)  The detected periodicities are only present at 2 out of 3 sample sites. Northern Siberian 

tree rings do not demonstrate similar growth patterns, suggesting that the observed 

periodicities are not regional in their extent. 
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(3)  A separate dendochronology study, using the Sitka spruce trees (Picea sitchensis) from 

northern England, similarly finds indications of a consistent multi-decadal correlation 

between tree ring growth and solar activity between 1961 and 2005 (Dengel et al., 

2009). However, unlike Kasatkina and Shumilov (2006), the authors conclude that their 

findings suggest the existence of a relationship between the GCR flux and cloud cover. 

The authors speculate that a GCR–cloud relationship is able to influence tree growth by 

influencing the diffuse component of solar radiation, thereby modulating the 

photosynthetic activity of canopy level trees (Dengel et al., 2009).  

Thus, although it is likely that interplanetary dust is modulated by solar cycles, there has been 

no robust evidence yet demonstrated that this modulation is capable of influencing the Earth’s 

climate. 

 

 

2.7 General summary 

A range of mechanisms have been proposed linking solar activity to Earth’s climate, involving a 

range of processes including interactions between the IMF and Earth’s ionosphere, changes in 

TSI and solar UV output, variations in interplanetary dust concentrations and changes in the 

GCR flux. Of these mechanisms, those pertaining to a link between the GCR flux and cloud 

cover are of particular interest. This proposed relationship is highly controversial, as it has been 

suggested that a correlation between the GCR flux and cloud cover may potentially account for 

a significant portion of anomalous 20th century warming. However, such claims have been 

thoroughly dissected and it can be concluded that this possibility is highly unlikely, as the 

observed correlation between clouds and climate was found to discontinue after the 1990’s. 

Despite this, it is still possible that the GCR flux may modulate Earth’s cloud cover to a small 

degree; recent experimental and model evidence appears to support notions of a microphysical 

pathway between the GCR flux and clouds via either a direct ion-aerosol effect, or an indirect 

GEC based effect, implying that a relationship between the GCR flux and cloud cover may yet 

be found. The identification of a small relationship between the GCR flux and cloud cover 

would be highly significant, as the GCR flux on Earth varies by ~10 % over differing 

timescales; this would suggest that a GCR–cloud relationship may have significant implications 

to climate over long timescales. Consequently, gaining a deeper understanding of GCR–cloud 

processes may further our understanding of natural climate variability and provide explanations 

for the diverse range of observations of solar-terrestrial linkages suggested by palaeoclimatic 

reconstructions.  
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Chapter 3 Methods and datasets 
 

 

3.1 Introduction to datasets and methods 

The purpose of this chapter is to provide an overview to the datasets, data handling methods and 

statistical tests which will be used throughout this thesis. The chapter will first introduce the 

relevant datasets and explain why they have been selected and then a brief description and 

justification of the data handling techniques and statistical techniques employed throughout this 

work will be given. 

 

 

3.2 Datasets 

This thesis will utilise a range of space weather and atmospheric datasets (listed in table 3.1). 

The former are derived from either ground-based or space-based monitoring platforms, obtained 

from NOAA’s Space Physics Interactive Data Resource (SPIDR) (accessible from 

http://gcmd.nasa.gov/records/NOAA-SPIDR.html), while the latter (atmospheric) datasets come 

from a range of sources (detailed below).  

The International Satellite Cloud Climatology Project (ISCCP). Consists of cloud data based on 

radiance measurements taken from a suite of weather satellites in geostationary and polar orbits 

providing global coverage at a 2.5°x2.5° horizontal resolution at 3-hour time intervals (further 

information is available at http://isccp.giss.nasa.gov/) (Rossow et al., 1996). This thesis will use 

IR retrieved, daily averaged measurements of cloud cover at a range of pressure levels between 

10–1,000 mb. ISCCP will be the preferred source of cloud data used in this work due to its 

consistent spatial coverage and extensive temporal range. 

Moderate Resolution Imaging Spectroradiometer (MODIS). Cloud fraction and liquid cloud 

fraction data taken from the TERRA (EOS AM) polar orbiting satellite. MODIS has a 1°x1° 

horizontal resolution and provides partial global coverage over a 24-hour period (further 

information is available from http://modis.gsfc.nasa.gov/index.php). MODIS will not be widely 

utilised in this thesis due to its limited temporal range and only partial global coverage over a 

24-hour period. The dataset will primarily be used in chapter 4 to reproduce the results of a past 

study to investigate purported relationships between the GCR flux and atmospheric responses. 
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National Centres for Environmental Research (NCEP)/National Centre for Atmospheric 

Research (NCAR) Reanalysis II. Reanalysis data are produced by a state of the art 

analysis/forecast system based on the assimilation of observations from a range of sources 

(including land surface, ship, rawinsonde, piloted-balloon (pibal), aircraft, satellites and other 

data sources) to produce a 2.1°x2.1° horizontal resolution dataset, available over a range of 

temporal scales and vertical levels (available from http://www.esrl.noaa.gov/psd/data/gridded/) 

(Kalnaya et al., 1996). The NCEP/NCAR reanalysis data will be extensively employed due to 

its comparable spatio-temporal coverage to the ISCCP data, making it an excellent dataset with 

which to perform a comparative analysis. The choice to use the NCEP/NCAR reanalysis data 

over other similar datasets (such as those of the ERA40 project) was made based on 

observations of the NCEP/NCAR and ERA40 reanalysis datasets responses to variations in the 

solar activity, which showed that the ERA40 reanalysis demonstrates a substantially muted 

response to changes in solar irradiance compared to equivalent NCEP reanalysis data (Gleisner 

et al., 2005). 

Automatic Weather Station (AWS) data from Antarctica. The Antarctic Automatic Weather 

Station project provides real time meteorological observations from robotic monitoring sites 

across Antarctica. This study will use data from Dome C and Dome C II stations, located on the 

Antarctic plateau at 74.50°S, 123.00°E, 3,280 m asl (Dome C) and 75.121°S, 123.374°E, 

3,250 m asl (Dome C II) (further information regarding the AWS data are available from 

http://amrc.ssec.wisc.edu/aws.html). This dataset will be used to verify reanalysis observations 

over the Antarctic plateau which are known to be notoriously problematic over high latitude 

regions (Kanamitsu et al., 1997). 

10.7cm radio flux (F10.7). Dataset comprises absolute daily solar radio flux, measured at 

wavelengths of 10.7 cm (2.8 GHz), near the peak of solar radio emission. The values are a 

proxy for extreme UV activity, which is important for heating Earth’s thermosphere. Data is 

shown in flux units (fu) [1 fu = 10-22 W m-2 Hz-1]. Data has been adjusted to account for the 

varying distance between the Sun and Earth over the course of a year, recorded at Pentiction 

Ottawa radio observatory in Canada at local noon. 

Galactic Cosmic Ray (GCR) flux.  Daily averaged cosmic ray data from several neutron monitor 

sites located across the globe (see table 3.2 for list of sites, locations and data source) (measured 

units: counts). Data are adjusted for changes in barometric pressure at each monitoring station. 

Interplanetary Magnetic Field (IMF). A geocentric solar magnetospheric (GSM) based 

measurement of magnetic field strength in three axis in space (units measured in nanoteslas 

[nT]) with an x-axis directed along the line from the centre of the Earth to the centre of the Sun, 



 33 Chapter 3 – Methods 
 

 

a z-axis directed along Earth’s magnetic dipole (north=positive) on to the plane perpendicular to 

the x-axis, and the y-axis is defined as the cross product of the x-axis and magnetic dipole axis. 

The IMF OMNI data are obtained from NOOA’s SPIDR archive (further details are available at 

http://www.ysn.ru/ipm/omni_descr.htm). 

Ultraviolet (UV) emissions. The MG II core-to-wing ratio is a measurement of the amplitude of 

chromospheric Mg II ion emission at 280 nm. This parameter has a strong correlation with solar 

UV and EUV (150–400 mb) activity and provides a reliable indication of variations in solar 

activity. Data are based on daily observations recorded from polar orbiting NOAA satellites and 

scaled to the original NOAA TIROS NOAA9 measurements (Viereck and Puga, 1999). 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  
   

 

 

Table 3.1 Description of datasets parameter 

Table listing basic information about the resolution, sources and coverage of the atmospheric and space weather datasets used throughout this thesis.  
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Neutron monitors Location 
Altitude 
(m asl) 

Cut-off rigidity 
(GeV) Data range 

Coverage 
(%) 

Alma Ata-B 43.2°N, 76.6°E 3340 6.61 1973 - 2006 83.6 
Apatity 67.57°N, 33.39°E 181 0.65 1961 - 2007 99.3 
Climax 39.37°N, -106.18°W 3400 2.99 1953 - 2006 97.6 
Inuvik 68.4°N, 133.7°W 21 0.17 1964 - 2006 85.2 
Kiel 54.30°N, 10.10°W 54 2.36 1957 - 2006 98.6 

Magadan 60.04°N, 151.05°E 220 2.09 1971 - 2006 96.7 
Mcmurdo 77.9°S, 166.6°E 48 0.00 1960 - 2006 99.9 
Moscow 55.47°N, 37.32°E 200 2.43 1958 - 2006 99.6 
Newark 39.7°N, 75.7°W 50 2.09 1978 - 2006 81.4 

South Pole 90°S, -- 2820 0.09 1964 - 2005 100 
Thule 76.5°N, 68.7°W 26 0.00 1957 - 2006 99.6 

 

Table 3.2 Neutron monitor details 

List of various neutron monitors used in this thesis. All neutron monitor data was obtained from 
NOAA’s SPIDR archive, in 4096 format (adjusted for barometric pressure variations). 

 

 

3.3 Data handling and statistical techniques 

Although more specific data handling and statistical techniques will be discussed as and when 

appropriate throughout the thesis, certain practices will remain consistent, including (1) the use 

of rates of change; (2) the use of epoch-superpositional (composite) samples; (3) statistical 

significance testing using the Students T-test.  

 

 

3.3.1 Rates of change 

All values will be calculated as rates of change rather than absolute values. Primarily, this 

approach is adopted because it is speculated that GCR-enhanced cloud formation may be 

distinguishable from natural cloud variability by the rapidity of the cloud changes. This 

hypothesis is based on models and observations which suggest that electrically enhanced 

aerosol/cloud droplet growth processes are more efficient and rapid than growth under non-

charged conditions (Yu and Turco, 2000; Tinsley and Yu, 2004; Svensmark et al., 2007; 

Duplissy et al., 2010). There are also secondary benefits to using rates of change rather than 

absolute values, including the normalisation of the samples to account for the wide range of 

differing initial conditions present in the composite. In addition, the use of rates of change 
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results in a normal distribution of the samples, enabling the use of parametric statistical tests; if 

absolute values were considered, this would not be possible (as, for example, the GCR flux 

would demonstrate a bimodal distribution due to the solar cycle).  

The daily rates of change are calculated by means of the equation below (Eqn. 3.1), using a 

three-day averaging period which maintains a fixed relative position beginning five days prior 

to each date calculated. The two-day gap between the averaging period and the key date has 

been selected to minimise autocorrelation within the data; autocorrelation testing indicated this 

to be the optimum time period for both GCR and cloud datasets (figure 3.1). Although similar 

methodologies are common among studies concerning the daily timescale analysis of solar–

terrestrial connections, this approach has been adapted specifically from the work of Todd and 

Kniveton (2000; 2004) and has since been utilised in Laken and Kniveton (2010). 

 

𝐷𝑎𝑖𝑙𝑦 𝑟𝑎𝑡𝑒 = 𝑥 − �
∑�(𝑥 − 5) + (𝑥 − 4) + (𝑥 − 3)�

3
� 

Equation 3.1 Daily rate formulae 

Equation to calculate the daily rate of change, where x is a value corresponding to a specific 
day, i.e. if x equals average cloud cover on 06/01/1985, then x-5 equals average cloud cover on 
01/01/1985 (calculated units: unit day-1). 
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Figure 3.1 Rate of GCR flux and cloud autocorrelation 

Correlogram of A) the daily averaged rate of GCR flux time series, where the x-axis shows the 
incrementally increasing gap between a three-day averaging period and a key date (i.e. 0 day 
gap = day x - (average (day x -1) + (day x -2) + (day x -3))), and the y-axis shows the measure of 
correlation, and B) ISCCP globally-averaged IR retrieved cloud cover (1,000–10 mb). 
Correlation values = -0.06 and 0.009 (respectively) with a 2-day gap. Dashed and dotted red 
lines indicate correlation values of 0.2 and 0.1 respectively. 
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3.3.2 Composite samples 

When the use of epoch-superpositional (composite) samples is employed, key dates will be 

selected on the basis of criteria specified at the time. However, there will be a common 

procedure for the treatment of composite samples: 

(a)  After the list of key dates have been compiled, data are retrieved for a period of 

20 days prior to, and 3 days following, each date.  

(b) The difference between conditions prior to, during and after the key day is 

established by applying Eqn. 3.1 to calculate the normalised rate of change 

occurring over the composite period.  

(c) The changes of various atmospheric and space weather parameters are then 

statistically examined from a variety of spatio-temporal perspectives to test if 

any significant changes over the composite periods are occurring. 

This methodology has several important benefits over long-term correlation studies. These 

include: an ability to isolate small signals from noisy datasets; providing a method of separating 

out the influences of various space weather parameters (since over short term (daily) timescales 

the effects of various parameters are distinguishable from one another); and also preventing 

interference from either long-term instrumental errors, or long-term climate periodicities (such 

as El Niño/La Niña), from influencing the results. However, it should also be noted the 

usefulness of composite-based approaches can be unduly influenced by small sample sizes, and 

poor data quality. 

 

 

3.3.3 Sample distribution 

To determine the appropriate statistical test to apply to the composites, the nature of the sample 

distribution must be determined. Normal quantile-quantile (Q-Q) plots can graphically 

demonstrate the distribution of a population, comparing it to a theoretically perfect normal 

distribution; representative examples of these plots are presented for a range of datasets (figure 

3.2). Although only a subsample of the total datasets is presented, the normalcy demonstrated 

by these samples is representative of all datasets used. Results of the Shaprio-Wilks test, a 

quantitative measure which provides evidence of non-normality, is also presented in table 3.4 

(Shapiro and Wilk, 1965). Normalcy is accepted/rejected under the Shapiro-Wilks test if the W-

value is large/small and the probability (P) value is less/greater than 0.05 (at the 0.95 level 
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confidence interval). Interpretation of the Q-Q plots and Shapiro-Wilks tests indicates that the 

data can be considered to be normally distributed. Interestingly, the largest departures from this 

distribution appear to be from the rate of GCR flux and the MG II index. The rate of GCR flux 

undergoes high magnitude variations (referred to as Forbush Decreases (FDs) and Ground Level 

Enhancements (GLEs)) and the presence of these events is the source of the departure from 

normalcy. Unless otherwise stated, therefore, FDs and GLEs will be removed from the 

composites, thereby allowing an analysis of the comparatively low magnitude standard GCR 

variability (which demonstrates a more normal distribution (as indicated by the W statistic 

shown in table 3.3)). The MG II index of UV and EUV solar activity shows the lowest W 

statistic (of 0.432), indicating that the sample is not normally distributed. The data have a modal 

value of 0.0 which can be attributed to the low resolution of the index; the index is accurate to 4 

decimal places. However, it is found that for the majority of the sample there is no detectable 

change in the rate of MG II change over daily timescales, resulting in the non-normal 

distribution. Under periods of changing solar activity, space weather parameters tend to vary 

roughly in tandem and so it is unlikely that composite samples (which highlight changes in solar 

activity) will be greatly influenced by the occurrence of zero values. These results indicate that 

the use of parametric statistical tests is appropriate for all datasets except the MG II index, to 

which the non-parametric Mann-Whitney U test will be applied.  
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Figure continued overleaf... 
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Figure 3.2 Normal Q-Q plots  

Normal Q-Q plots illustrating typical representative sample distributions (circular markers) 
against an equivalent theoretically perfect normal distribution (red line). The rate changes of 
various datasets are shown: A) GCR flux measured from Climax Colorado, values are shown as 
a % change normalised against variation over an 11-year solar cycle; B–C) IMF By/Bz rates; D) 
MG II index of UV and EUV activity; E) 10.7 cm radio flux; F–I) ISCCP D1 IR retrieved cloud 
change between 1,000–10 mb over the globe (90°N–90°S) tropics (30°N–30°S) mid-latitudes 
(60°–30°N/S) and polar (90°–60°N/S) regions. 
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Parameter W value P value 
GCR rate 0.8578 2.20E-16 

GCR rate** 0.9224 2.20E+16 
IMF By rate 0.9929 1.30E-12 
IMF Bz rate 0.9789 1.10E-13 

10.7 cm radio flux rate 0.9768 2.20E-16 
MG II index rate 0.4327 2.20E-16 

10-1,000 mb Globe cloud rate 0.9958 7.70E-11 
10-1,000 mb Tropics cloud rate 0.9992 0.0215 

10-1,000 mb Mid-latitude cloud rate 0.9908 2.20E-16 
10-1,000 mb Pole cloud rate 0.999 0.00546 

 

Table 3.3 Shaprio-Wilks test of normalcy 

Results of the Shapiro-Wilks test of normalcy for a range of datasets. W value indicates 
Shapiro-Wilks statistic (where large values indicate normal distribution and small values 
indicate non-normal distribution). P-value shows probability level (where less than 0.05 
indicates statistical significance at a 0.95 level confidence interval). Two GCR rates are 
presented for comparative purposes; the GCR rate** has high magnitude FDs/GLEs removed. 

 

 

3.3.4 T-tests and Monte Carlo simulations  

With the exception of the MG II index, the datasets have been shown to demonstrate a normal 

distribution and therefore allow for the use of parametric statistical tools. A two-tailed Students 

T-test (assuming paired samples and unequal variance) is selected as the primary method of 

analysis, as this work will require the comparison of key dates against averaging periods, and 

the T-test is particularly suited to comparing populations of roughly equal sample size in this 

manner. Essentially, the T-test will compare the sample distribution of a composite of key dates 

against the distribution of an averaging period to determine if there are differences between the 

distributions of two populations which lie outside the realms of standard variability (quantified 

by significance levels).  

Critical T-values for determining significance (at the 0.95 level) are calculated for area-

averaged atmospheric samples and space weather data by the use of brute force Monte Carlo 

(MC) simulations; samples of 130 random observations are constructed from each dataset, and a 

T-test performed. This procedure is repeated 1,000 times and the resulting distribution of the 

T-values are plotted (figure 3.3). The T-values occurring at the 0.975 percentiles are extracted, 

and this value is assigned as the criteria for the critical T-value (±) to accept statistical 

significance at the two-tailed 0.95 confidence level. A range of MC-simulated critical T-values 
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are shown in table 3.4 as examples; the FORTRAN software developed to calculate these values 

is presented in Appendix 1. 

 

 

Figure 3.3 Monte Carlo simulated rate of GCR flux T-values 

Kernel density estimation of rate of GCR flux Student’s T-values, based on 1,000 random 
samples (each comprised of 100 data points) (kernel bandwidth = 0.2142). Grey shaded 
distribution tail cover the 0.975 interval, indicating a statistically significant T-value at the two-
tailed 0.95 significance level (according to MC simulations) is 2.1.   
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Parameter 0.95 MC Critical T-value 
GCR rate 2.11617 

IMF By rate 2.51999 
IMF Bz rate 2.7241 

10.7 cm radio flux rate 1.87198 
MG II index rate 2.25482 

10-1,000 mb Globe cloud rate 2.53095 
10-1,000 mb Tropics cloud rate 2.40315 

10-1,000 mb Mid-latitude cloud rate 2.52353 
10-1,000 mb Pole cloud rate 2.49494 

 

Table 3.4 Table of Monte Carlo simulated critical T-values 

Examples of MC simulated critical T-values produced by the software presented in Appendix 1. 

 

 

3.4 General summary 

This chapter has outlined the primary datasets and data handling techniques which will be used 

throughout this thesis, as well as justifying their selection. In addition, the chapter has also 

outlined the primary statistical procedures which will be used for significance testing and 

described the rationale behind their selection. 
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Chapter 4    High magnitude variations in the GCR flux and cloud 
cover 

 

 

4.1  Introduction  

In an attempt to test the validity of a possible GCR–cloud link a range of studies have focused 

on the onset of unique high magnitude low frequency decreases in the GCR flux known as 

Forbush decrease (FD) events. These events result from magnetohydrodynamic disturbances in 

the solar wind created by solar coronal mass ejections (Kirkby, 2007) and have been explicitly 

defined as a decline in neutron counts of greater than 3 % at the Earth’s surface as recorded by 

the neutron monitor at Mount Washington, USA (39.23°N, 76.41°W) (Todd and Kniveton, 

2004).  

This chapter will re-examine the results of several FD-based composite studies (Todd and 

Kniveton, 2001, 2004; Kristjánsson et al., 2008; Svensmark et al., 2009) and attempt to expand 

upon their findings by refining and extending their methodologies. Although FD-based 

superposed epoch analyses have several limitations (which mainly stem from small sample 

sizes) they provide an excellent starting point from which to begin a daily timescale analysis of 

the impacts of GCR variations on cloud cover.  

 

 

4.1.1  The advantages and findings of FD-based studies 

Superposed epoch analysis of FD events provides a unique opportunity to assess the influences 

of large (decadal magnitude) GCR variations on the Earth’s atmosphere over daily timescales. 

This analytical approach possesses a number of significant advantages over longer timescale 

approaches, for example:  

(1)  The ability to separate cloud changes from internal periodicities (e.g. El Niño); this is 

 something decadal studies are unable to achieve (Farrar, 2000).  

(2)  At a daily timescale resolution it is possible to distinguish variations in the GCR flux 

 from co-temporal variations in solar irradiance, UV wavelengths and the interplanetary 

 magnetic field (IMF).  
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(3) A composite approach minimises the impact of artificial errors related to long-term 

 instrumental issues contributing to any detected cloud variations in a daily timescale 

 composite; such errors may have potentially affected the results of decadal cloud studies 

 reducing their reliability (Evan et al., 2007).  

(4) The magnitude of the GCR variations associated with FD events is comparable to that 

 of GCR variations experienced over a decadal solar cycle; consequently the impacts of 

 FD events on clouds may provide a good indication of the extent to which GCR are able 

 to influence cloud changes over decadal timescales. 

Despite the noted advantages of FD-based composite analysis, the findings of past studies have 

not provided conclusive evidence of a relationship between GCR variations and cloud cover 

changes. Instead, past studies have demonstrated a wide range of conflicting results: some have 

found indications of statistically significant cloud decreases occurring over high latitude regions 

following FD events (Pudovkin and Veretenenko, 1995; Veretenenko and Pudovkin, 1997; 

Todd and Kniveton 2004), while others have found no statistically significant relationship at 

high latitudes (Lam and Rodger, 2002) or over southern hemisphere ocean regions (Kristjánsson 

et al., 2008). Some studies have even indicated increases in cloud following the onset of FD 

events (Wang et al., 2006; Troshichev et al., 2008). Due to this wide range of conflicting results 

the level of confidence we can place in the validity of a GCR–cloud link based on the results of 

FD studies is highly limited. 

 

 

4.2  An unusual FD study 

The findings of a recent study by Svensmark et al. (2009) (hereafter referred to as SBS) differs 

notably from other similar studies. Generally, FD studies have either failed to identify a 

coherent relationship between GCR and cloud cover or have identified a statistically significant 

but highly localised relationship at high latitude regions. In contrast to this, SBS claimed to 

show evidence of a globally significant variation in several atmospheric parameters following 

the onset of FD events, detectable in both the MODIS and ISCCP datasets. SBS claim the 

changes they observe provide good evidence of a widespread and significant relationship 

between cloud cover and the GCR flux. Based upon this and other work the authors suggest that 

solar activity is a primary driver of natural climate variability and a potential cause of the 

climatic anomalies of recent decades (Svensmark, 2007). Due to the enormous importance of 

issues relating to climate change it is essential to examine such claims in detail. Consequently, 
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the findings of SBS will now be carefully re-examined before a broader analysis of the 

importance of FD events is considered. 

 

 

4.2.1  A coherent and global response to FD events? 

The primary findings of SBS are based around an analysis of only five FD onset events selected 

from a total of 26 events occurring between 1987 and 2007. These five events were selected on 

the basis of two criteria:  

(1)  For each chosen event there needed to be data coverage in all datasets over a 

 period  of -15 days to 20 days around each event. 

(2)  The FD events selected needed to be the largest ranked decreases out of the 

  sample. 

 

The actual rank of the 5 decreases in relation to the full list of 26 dates selected by SBS was 1st, 

3rd, 4th, 6th and 7th due to a lack of data coverage during several the 2nd and 5th event. Using these 

events, SBS composited several atmospheric datasets including the MODIS liquid cloud 

fraction (hereafter referred to as LCF) and the ISCCP low cloud cover (hereafter referred to as 

LCC). Interestingly SBS reported that these parameters gave very similar time profiles, 

appearing to demonstrate a coherent global decrease in LCC and LCF at an approximately 6 day 

time lag following the onset of FD events (figure 4.1 displays the LCC and LCF changes as they 

appeared in SBS). They concluded that these findings provided good evidence of a global scale 

link between solar activity, clouds and Earth’s atmosphere operating via a GCR related 

modulation of aerosol formation. A re-analysis of the ISCCP LCC and MODIS LCF occurring 

over these events will now follow to test the validity of these claims.  
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Figure 4.1  MODIS and ISCCP changes presented by SBS  

A) Average global MODIS detected LCF and B) Average ocean area ISCCP detected LCC. 
Both parameters are compared against normalised GCR variations measured at Climax 
Colorado neutron monitor (indicated by the dashed line). Changes displayed are a composite of 
5 FD onset events. Figure adapted directly from SBS, figure 1, pp. 2. 

 

 

4.2.2  Re-analysing the temporal profile of liquid cloud fraction changes 

The average MODIS LCF values during the 5 key SBS dates have been re-calculated and 

presented in figure 4.2 for an extended time period (±40 days either side of the key dates). The 

LCF values are calculated as an equal area weighted daily average value and a simple linear fit 

has been applied to the data. The data have also been separated into ocean and land regions; this 

is because if a mechanistic relationship between aerosols and GCR exists and is responsible for 

a GCR–LCF interaction as SBS claim, then there may be appreciable differences in the response 

between land and ocean regions due to the differing sources and abundances of aerosols over 

these environments.  

Figure 4.2 shows that a decrease in the LCF does occur following the key date of the sample 

over both ocean and land regions as SBS claim. In both instances, these decreases reach a 

maximum around day 6 of the composite. Although the amplitude of the decrease appears to be 

comparable between the ocean and land regions (approximately -1 %) the ocean decrease is far 

more prolonged, LCF values do not return to day 0 levels for approximately 15 days over ocean 

regions, whereas, the LCF recovery over land regions occurs more rapidly after the FD event. 
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Despite this agreement to SBS’s results, it is clear that the day 6 SBS decreases are not the 

largest magnitude changes observed over the composite period. However, by plotting the LCF 

data over a shorter time period (identical to the time interval presented by SBS), the detected 

LCF changes become comparable to those demonstrated by SBS (figure 4.3). The selective time 

period presented in these graphs along with the skewed axis gives a misleading sense that the 

LCF decreases are abnormally large, when it is clear from figure 4.2, that the LCF decreases are 

not unusual.  

The downward sloping linear fit of figure 4.2B suggests that the oceanic LCF change is 

occurring during a longer term decrease. This change may provide an explanation for the 

extensive recovery time of the oceanic LCF previously noted. A 10-day running mean is plotted 

in order to better observe long-term trends underlying the LCF data (figure 4.4A). Additionally, 

using the running mean, anomalous LCF variations are also calculated, by subtracting the daily 

average LCF from the running mean (figure 4.4B). The 10-day running mean confirms the 

notion that the LCF data are underpinned by several long-term (approximately 20-day) 

decreases and partial recoveries; one of these decreases peaks on day 6, coinciding with the 

peak GCR–cloud change date claimed by SBS. Anomalous LCF changes are evident around 

day 6 of the composite as SBS suggest, however, the magnitude of the anomaly is unremarkable 

and anomalies of similar and greater magnitude are found to be common over the composite 

period.  
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Figure 4.2 MODIS LCF: Land and ocean regions  

A) Daily average LCF values over land-covered regions, and B) daily average LCF values over 
ocean regions. Vertical dashed line indicates key date (FD onset event). Line of best fit is also 
displayed (grey solid line). Values are based on a composite of the 5 SBS key events. 
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Figure 4.3 LCF values in SBS style 

A) Globally-averaged LCF (ocean and land) and B) ocean area only LCF values. The graphs are 
modified to present similar dimensions to those of SBS. Lines of best fit are also shown (solid 
grey lines). 
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Figure 4.4 LCF long-term trends and anomalies  

A) Global (ocean and land area) daily average LCF values taken over a 10-day running mean. 
B) Global LCF anomaly, calculated from subtracting the daily average global LCF value from 
the 10-day running mean. Vertical dashed line indicates key (FD onset) date. 
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4.2.3  Analysis of individual liquid cloud fraction changes 

One of the primary benefits of a composite analysis approach is the ability to identify small 

signals present in atmospheric datasets. Individual observations in a composite should not 

necessarily be expected to demonstrate similar changes over the sample period, as the 

background noise of atmospheric datasets is often greater than any underlying signal. However, 

SBS explicitly state that ‘the effects [of GCR] on clouds and aerosols are not dominated by any 

single event among the 5 averaged [observations]’ (Svensmark et al., 2009, p.2). Contrary to 

these claims, a plot of the individual LCF variations occurring over the 5 key events shows that 

there is no coherence between the changes occurring; the average LCF decrease following the 

key date (identified in figures 4.2–4.3) appears to be the result of a single event (19/01/2005) 

(Figure 4.5): this observation contradicts the assertions made by SBS. 

Furthermore, the event which is largely responsible for the mean LCF decrease (19/01/2005) 

has problematic complications to consider, which are not discussed by SBS. Figure 4.6 shows 

the cosmic ray intensity recorded by the Lomnický Štít neutron monitor (49.20°N, 20.22°E, 

2634 m asl) together with average LCF over ocean regions for the time interval of ±12 days 

centred around 17/01/2005 (two days before the key event of 19/01/2005). During this period, 

the GCR flux actually shows two separate FD events, occurring on the 18/01/2005 and 

22/01/2005, in addition, a SEP event occurs between these FD events on the 20/01/2005 

(Flueckiger et al., 2005). Any reduction in atmospheric ionisation occurring as result of the FD 

events may be negated over high latitude regions due to the effects of the SEP event (Usoskin et 

al., 2009). The LCF changes observed during the 19/01/2005 event appear to occur from the key 

date onwards (until around day 5). If one were to assume the global LCF value is influenced by 

FD in the manner described by SBS then it is surprising to find a uni-directional and consistent 

decrease during complex and multi-staged ionisation changes occurring over this period. 

Considering that this event is responsible for the majority of the LCF decrease observed by SBS 

this finding challenges the validity of their conclusions. 
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Figure 4.5 Individual daily average global area LCF  

The 5 individual events of SBS are displayed in descending chronological order (dates are 
stated on the y-axis). A line of best fit for each data series are also displayed (solid grey line). 
Vertical dashed line indicates key date of the composite (FD onset date). Arrow indicates most 
‘responsive’ date in accordance with the claims of SBS.    
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Figure 4.6 Cosmic ray and LCF variations on 19/01/2005 

Hourly neutron monitor data from Lomnický Štít (49.20°N, 20.22°E) neutron monitor (solid 
black line) over a ±12 day period around the 17/01/2005 during the onset of the associated FD 
event (two days prior to the date selected by SBS as the key day). The daily average ocean area 
LCF (black dashed line) is also displayed. Vertical grey dashed line indicates the onset of the 
FD event. 

 

 

4.2.4  An important note regarding SBS’s treatment of ISCCP data 

SBS state in their paper that the ISCCP D1 data used to calculate the LCC covers the ocean 

regions only. However, not explicitly stated is the fact that the SBS data do not cover the entire 

globe; instead, SBS only use data covering the subtropics/tropic regions between 40°N to 40°S. 

This detail only became apparent through personal correspondence with the authors and is now 

available as a formal note, accessible on request from the authors; this note is presented in its 

original form in Appendix 3. The restriction of the ISCCP data in this way is counterintuitive to 

the claims by SBS that their data demonstrate a ‘global’ signal. A full (90°N–90°S) analysis of 

the ISCCP LCC changes occurring during the 5 SBS events will now be given. 
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4.2.5  Re-analysing the temporal profile of low cloud cover changes 

The LCC parameter was constructed from three separate ISCCP D1 variables:  

(1) The total number of pixels. 

(2) Number of cloudy pixels 680 mb < PC <= 800 mb. 

(3) Number of cloudy pixels 800 mb < PC <= 1000 mb.  

The numbers of pixels on each of the two separate pressure levels are added together, and this 

value is divided by the total number of pixels to produces LCC.  For reference LCC variations 

reported by SBS has been shown in figure 4.1B. The LCC values are calculated for an extended 

composite period (identical to that described in section 4.2.2) and these changes are then 

separated into both ocean and land regions (figure 4.7).  

Figure 4.7 demonstrates that there is a very different response between land and ocean regions. 

While ocean regions do indeed show a decline in LCC as described by SBS, over land regions 

the decrease is far less prominent and only begins around 3 days after the FD onset date. 

Presenting the data in a similar format to that of SBS (i.e. a shorter time period of -15 to 20 

days, with an enlarged x-axis) the ocean area LCC changes appear to be similar to those 

reported by SBS (figure 4.8). However, the decrease is less confined; it appears that the 

supposedly arbitrary latitudinal restriction (40°N–40°S) placed on the data by SBS, had the 

serendipitous effect of producing a stronger and more uni-directional change over the composite 

period. 

A 10-day running mean of the LCC data designed to show longer-term variations, suggests that 

the anomalous decrease identified by SBS are occurring during a relatively longer term period 

of LCC decrease (figure 4.9A). This implies that the LCC decrease is, at the very least, being 

enhanced by relatively longer-term variations. LCC anomalies calculated by subtracting the 

daily average from the 10-day running mean show that, while the anomalous decrease is large 

(approximately -1.5 %) (figure 4.9B), the value is by no means unique; approximately 5 

decreases of comparable magnitude are found to occur over the observation period.  
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Figure 4.7 ISCCP LCC: Land and ocean regions 

A) Daily average LCC values over land regions and B) daily average LCC values over ocean 
regions. Vertical dashed line indicates key (FD onset) event. Line of best fit is also displayed 
(grey solid line). Values are based on a composite of the 5 SBS key events. 
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Figure 4.8 LCC ocean data in SBS style 

A) Ocean area data over the SBS restricted area of 40°N to 40°S. B) Ocean area LCF values 
over the whole globe. The graphs have been modified to present similar dimensions to that 
presented by SBS. Line of best fit is also shown (solid grey line). 
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Figure 4.9 LCC long-term trends and anomalies 

A) Ocean area LCC values taken over a 10-day running mean. B) Anomalous ocean area LCC 
values, calculated from subtracting the daily average ocean area LCC value from the 10-day 
running mean. Vertical dashed line indicates key (FD onset) date. 
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4.2.6  Individual LCC changes 

As with the MODIS LCF, LCC values during the 5 key events are again presented on an 

individual basis (figure 4.16). Before these data are discussed it should again be stated that over 

a composite sample the individual events should not necessarily be expected to display 

agreement. A lack of agreement does not necessarily invalidate a composite sample; but SBS 

have explicitly stated that across their chosen 5 events no one observation is contributing 

disproportionately to the average. However, contrary to this claim, figure 4.10 shows that the 

patterns of individual LCC change demonstrate a widely differing response. 

Relatively large decreases appear to follow the FD onset date on 3 out of 5 events (specifically, 

on the events of 16/07/2000, 31/10/2003 and 19/01/2005). Of those 3 events, only two 

(3/10/2003 and 19/01/2005) show decreases which appear to adhere to the changes proposed by 

SBS (specifically, these dates show an approximately 6 day decrease beginning after the FD 

onset event). Overall, the individual LCC changes broadly differ from the MODIS LCF data, 

suggesting that any apparent agreement between the two datasets is superficial. Consequently, 

the conclusion drawn by SBS that the ISCCP and MODIS datasets show a consistent response 

supporting a GCR-modulated cloud change is not supported by these findings. 
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Figure 4.10 Individual daily average ocean area LCC 

The individual 5 SBS events are displayed in descending chronological order (dates are stated 
on the y-axis). A line of best fit for each data series is also displayed (solid grey line). Vertical 
dashed line indicates key date of the composite (FD onset date).  
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4.2.7  Aerosol microphysics of the detected cloud anomalies 

As discussed in section 2.4, the GCR flux may potentially influence cloud microphysics via 

either IMN or by a GEC related mechanism. SBS claim that the cloud changes they observe are 

the result of an IMN effect, whereby, GCR decreases alter the growth rate of ultrafine particles 

to CCN sizes over a period of 6 days. SBS state that approximately 5 days after the FD onset 

date, the amount of aerosols detected by AERONET at 340 nm and 440 nm wavelengths 

undergoes a rapid decline. They suggest that this decline may result specifically from either a 

decrease in the abundance of ultrafine aerosol particles, or an enhancement of the scavenging of 

smaller particles by larger aerosol particles themselves. 

No other FD-based study has found indications of an IMN effect occurring after such long time 

delay, for example: indirect measurements of cloud changes using DF variations suggest a small 

but immediate (same day) response to FD events (Harrison and Stephenson, 2006). While direct 

measurements of changes in various atmospheric parameters (including cloud, precipitation, 

temperature and pressure) occurring during composites of FD events show a 1–2 day response 

time (Veretenenko and Pudovkin, 1995; Egrova et al, 2000; Todd and Kniveton, 2001, 2004). A 

review of evidence considering theoretical, observational and laboratory studies of IMN 

pathways suggests that a response time between 6 hours to several days is plausible (Kazil et al., 

2008; Rycroft et al., 2008). No observational precedents or theoretical support can be found to 

verify the validity of a 6-day lag time as proposed by SBS. 

Furthermore, it is difficult to reconcile the notion that IMN could be effective enough to result 

in a globally detectable cloud response following FD events, as it has been widely suggested the 

modulation of CCN concentrations in the troposphere by GCR changes may be a highly 

ineffective process (Pierce and Adams, 2009; Kulmala et al., 2010). It has been argued that 

CCN concentrations are relatively insensitive to GCR variations, as only a limited amount of 

ultrafine particles ever grow to CCN sizes, regardless of nucleation rate. This is because during 

the time it takes for ultrafine particles to grow to CCN sizes, pre-existing aerosols deplete the 

ambient ultrafine particle numbers through coagulation processes (Carslaw, 2009).  

 

 

4.2.8  Conclusions on the findings of SBS 

SBS claim to have identified a relationship between decreased in the GCR flux and decreases in 

both the LCF over the globe and LCC over the oceans. The authors propose that this 

relationship results from an ion-aerosol effect, and that it provides a strong indication that GCR 

variations drive climate by modulating the cloud cover over the globe. The authors even go so 
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far as to conclude “so marked is the response to relatively small variations in the total 

ionisation, we suspect that a large fraction of Earth’s clouds could be controlled by ionisation” 

(Svensmark et al., 2009, pp.4). However, after re-examining the data, the claims of SBS are 

found to be unsupported on a number of issues:  

(1)  SBS suggest that the decrease in LCF and LCC is abnormally large. However, upon 

considering the data over an extended time period both datasets show that anomalous 

decreases of similar and greater magnitude are common. 

(2)  SBS state that the cloud changes are occurring across all 5 FD events. However, an 

individual analysis of both the LCF and LCC variations occurring over the key events 

demonstrated a poor agreement between the samples, with only one or two events 

contributing to the observed decrease. 

(3) The most responsive event selected by SBS (19/01/2005) is actually comprised of two 

separate FD events and a GLE. The LCC/LCF changes occurring during this complex 

event to not appear to in any way reflect this situation, suggesting that the global 

LCC/LCF changes are insensitive to these variations. 

(3) SBS claim that the MODIS and ISCCP datasets show complementary changes. 

However, they are comparing two distinct cloud properties at two different spatial 

domains (global MODIS LCF, to ocean area ISCCP LCC restricted to 40°N–40°S). 

Their claim of a comparable change between these datasets breaks down when ISCCP 

is considered over a global area (at either ocean or land covered regions).  

(4) The physical mechanism suggested by SBS linking the cloud decreases to FD events is 

a reduction in global CCN concentration as a result of decreased IMN. However, the 

suggestion of a 6-day time lag between GCR decreases and CCN reductions are 

physically unsupported by theoretical or observational evidence. 

An analysis of the ISCCP detected cloud changes occurring during events selected by SBS has 

also been carried out by Calogovic et al. (2010). They performed a detailed correlation analysis 

between atmospheric ionisation changes and cloud changes at 3 different altitudes (for high 

>6.5 km, middle 3.2–6.5 km and low clouds <3.2 km) at 3 hour time intervals with a 0 to 10 day 

lag time. From this study, the authors concluded that: (1) there exists no significant global 

(ISCCP) cloud/ionisation correlation during the dates selected by SBS, (2) nor did they find any 

regional correlation to atmospheric ionisation variations regardless of the time lag and, (3) both 

cloud changes showed no statistically significant difference before or after the FD events 

(Calogovic et al., 2010). These conclusions confirm the findings presented here, strongly 

indicating that SBS did not detect a globally significant cloud response related to FD events. 
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4.3  Results of past FD studies 

Generally, FD-based studies have demonstrated widely conflicting results: some have found 

indications of significant decreases in cloud at high latitudes (Pudovkin and Vertenenko, 1995; 

Todd and Kniveton, 2001, 2004; Solovyev and Kozlov, 2009; Laken and Kniveton, 2010), 

while others have failed to identify any significant cloud changes (Pallé and Butler, 2001; Lam 

and Rodger, 2002; Kristjánsson et al., 2008), or have even found indications of significant 

increases in cloud (Wang et al., 2006). There are several possible explanations for the lack of 

agreement between FD studies:  

(1)  FD events may be unrelated to cloud cover changes. 

(2)  FD events may merely be a proxy indicator for periods when other solar parameters 

(such as the IMF) are influencing cloud cover.  

(3) FD events may only poorly define periods when GCRs are influencing cloud cover and 

as a result, composites based upon FD events may be producing relatively weak 

observations of a GCR–cloud relationship.  

(4)  If a GCR–cloud relationship is constrained by precursor conditions (e.g. if certain 

conditions are needed for a GCR-related mechanism to operate) then a small composite 

sample based on quasi-random (FD) events may be unlikely to identify a significant 

relationship (as it has no capacity to account for such conditions). 

With respect to the third possibility, there has been some recent effort to determine the 

usefulness of FD onset dates as a basis for composite analysis studies. Using satellite 

measurements of cloud, Todd and Kniveton (2004) (hereafter TK04) demonstrated the 

occurrence of statistically significant zonal mean cloud decreases over high tropospheric (10–

180 mb) levels during austral winter over parts of the Antarctic plateau; these changes were 

observed immediately following the onset of FD events. Troshichev et al. (2008) reassessed 

several of the dates selected by TK04 and suggested that FD onset dates were only poorly 

defined indicators of GCR change, arguing that between various studies onset dates can differ 

by as much as 5 days. After realigning the key dates of their composite to reflect the maximal 

GCR decrease rather than the FD onset date, they observed increases in cloud cover over 

regions of Antarctica (although it should be noted that these results cover only a limited period 

and were based on visual assessments of cloud from several Antarctic stations). The results hint 

that it may be more appropriate to consider the date of maximal decrease in the GCR flux over 

the FD period rather than the FD onset date itself. By isolating the maximal GCR decrease 

occurring over past FD events it should potentially increase the detectibly of a GCR–cloud 

signal (if one is present). 
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4.3.1  FD composite construction 

In order to construct an adjusted composite, 47 FD onset dates (occurring between 1988 and 

2006) were sourced from two past studies (Todd and Kniveton, 2004; Kristjánsson et al., 2008). 

The dates were then adjusted to align the key date of the composite to the date of maximal rate 

of GCR decrease occurring in closest proximity to the FD onset date. During the FD analysis, 

measurements of GCR variations are taken from the McMurdo neutron monitor data in order to 

provide a precise indication of variations in the GCR flux over Antarctica. It is to this dataset 

that the maximal GCR decrease alignment is performed (it is important to note that neutron data 

from varying sites can demonstrate a difference in the maximal decrease key date due to the 

differing geomagnetic latitudes of the neutron monitors).  

Similar to the methodology of TK04 and Kristjánsson et al. (2008), any key date which falls 

within a three day (±) range of a SEP event is excluded from the composite. This is necessary as 

it has been speculated that during SEP events, increases in atmospheric ionisation may act to 

oppose any decreases in atmospheric ionisation resulting from a reduced GCR flux over high 

latitude regions (Pudovkin and Veretenenko, 1995). Data regarding the timing of SEP event 

were obtained from the NOAA space environment services centres web page on SEP events 

affecting the Earth environment (Kristjánsson et al., 2008). This treatment resulted in the 

exclusion of 15 SEP events coincident dates from the composite, leaving a sample size of n = 

32; the full list of dates (including the dates sourced from original studies) are displayed in table 

4.1. 
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Event Original Adjusted Event Original Adjusted 
1 20/02/1988 21/02/1988 28 29/11/2000 29/11/2000** 
2 20/07/1988 18/07/1988 29 12/04/2001 12/04/2001** 
3 11/02/1989 13/02/1989 30 29/04/2001 29/04/2001** 
4 19/08/1989 20/08/1989 31 28/08/2001 28/08/2001 
5 28/08/1989 28/08/1989 32 26/09/2001 26/09/2001** 
6 18/09/1989 19/09/1989 33 25/11/2001 25/11/2001** 
7 17/05/1990 20/05/1990 34 30/07/2002 30/07/2002 
8 12/03/1991 10/03/1991 35 19/11/2002 19/11/2002 
9 24/04/1991 26/04/1991 36 31/05/2003 31/05/2003** 

10 18/08/1991 19/08/1991 37 23/06/2003 23/06/2003 
11 07/11/1991 29/10/1991** 38 31/10/2003 31/10/2003** 
12 25/02/1992 27/02/1992 39 24/11/2003 18/11/2003** 
13 08/09/1992 10/09/1992 40 10/01/2004 11/01/2004 
14 19/02/1993 24/02/1993 41 25/01/2004 22/01/2004 
15 22/10/1993 26/10/1993 42 27/07/2004 27/07/2004** 
16 16/04/1994 17/04/1994 43 10/11/2004 10/11/2004** 
17 17/06/1994 20/06/1994 44 19/01/2005 19/01/2005** 
18 03/04/1998 09/04/1998 45 16/05/2005 09/05/2005 
19 12/01/1999 14/01/1999 46 17/07/2005 17/07/2005** 
20 07/10/1999 15/10/1999 47 13/09/2005 11/09/2005** 
21 06/12/1999 03/12/1999 

   22 04/02/2000 07/02/2000 
   23 01/05/2000 03/05/2000 
   24 20/05/2000 24/05/2000 
   25 09/07/2000 04/07/2000 
   26 16/07/2000 16/07/2000** 
   27 18/09/2000 18/09/2000 
    

Table 4.1 Original and adjusted dates 

A list of the original dates sourced from TK04 and Kristjánsson et al. (2008) and the adjusted 
dates (aligned to maximal GCR decrease). SEP event coincident dates are indicated by markers 
(**). 
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4.3.2  FD composite results: GCR variations, F10.7 and space weather 

A comparison between changes in the mean rate of GCR flux during the original (FD onset) 

dates (of TK04 and Kristjánsson et al., 2008) and the adjusted FD dates initially suggests that a 

similar pattern and magnitude of GCR change is found across both samples (figure 4.11). 

Although the sample means appear fairly similar, an examination of the GCR changes occurring 

over the individual events shows that the original sample demonstrates a considerable range of 

variability not present in the adjusted sample (figure 4.12). This is further illustrated by box 

plots, which indicate that the adjusted FD sample has isolated a far more statistically significant 

and confined GCR decrease than was obtained by the use of FD onset dates (figure 4.13). This 

suggests that composites based around FD onset events may have not properly isolated a GCR 

decrease associated with FD events and may have consequently failed to capture an accurate 

representation of GCR related cloud changes during FD periods. 

With regards to solar activity variations occurring during the adjusted FD composite, no 

statistically significant change in the rate of F10.7 or UV variations are observed (figure 4.14). 

However, an increase in F10.7 is observed around day -3 of the sample (figure 4.14A) and a non 

decrease in UV activity is seen on the key date (figure 4.14B).  

Large variations in the IMF By component are identified during the composite period. The By 

component undergoes a large negative (westwards) increase around day -7, followed by a large 

positive (eastwards) increase which reaches a statistically significant peak on day -3, before 

again undergoing negative changes which peak on day 1. A less pronounced, but comparable 

sequence of variations is also evident in the Bz component (figure 4.15). This pattern of change 

indicates that large disturbances in the IMF are occurring; such changes likely signify the 

passage of coronal mass ejections which are producing the FD events. It should be noted that 

the IMF, UV and F10.7 datasets have a limited coverage over the sample period; restricting the 

confidence that can be placed in these results (coverage of the datasets is detailed in table 4.2).  
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 Figure 4.11 Original and adjusted FD samples mean rate of GCR flux 

The mean daily neutron count measured at McMurdo over the A) original FD sample and, B) 
adjusted FD sample. The 0.95 confidence interval is displayed (dotted line), days of statistically 
significant change are indicated by markers. GCR variations are normalised against the peak to 
peak variations of the 11-year solar cycle. 
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Figure 4.12 Individual rate of GCR flux 

The average rate of GCR flux occurring during each individual event in A) the original (FD 
onset) sample and, B) the adjusted FD sample. Based on data from Mucmurdo neutron monitor. 
GCR variations are normalised against the peak to peak variations in the 11-year solar cycle. 
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Figure 4.13 Original and adjusted GCR sample distribution  

Changes in the sample distribution for the rate of GCR flux, between the key date and its 
relative averaging period (comprising the average rate of GCR flux on day -5, -4 and -3). A) 
Original (FD onset) sample and, B) adjusted FD sample. GCR variations are normalised against 
the peak to peak variations in the 11-year solar cycle. 

 

Parameter Data coverage (%) 

IMF By 23 

IMF Bz 47 

UV 59 

F10.7 66 

 

Table 4.2 Data coverage during the adjusted FD sample 

IMF, UV, and F10.7 data coverage over the adjusted FD composite, showing the number of 
events for which data are available (as a percentage of the sample) (only events for which there 
is complete coverage over the composite period (-15 to +3 days) are used in the analysis). 
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Figure 4.14 Adjusted FD sample solar activity changes 

Variations in the mean rate of A) F10.7 (10.7 cm 2800 MHz radio flux) and, B) UV (MG II 
index) variations. The 0.95 confidence interval is displayed (dotted line). 
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Figure 4.15 Adjusted FD sample solar wind changes 

Variations in the average rate of IMF A) Bz and B) By flux occurring over the adjusted FD 
composite. Statistically significant variations are indicated with markers. Dashed line indicates 
the 0.95 level confidence interval. 
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4.3.3  Cloud anomalies observed with adjusted FD composite  

Anomalous variations in the rate of cloud cover change are presented over a variety of spatio-

temporal domains to identify any statistically significant anomalies that may be occurring over 

the FD period. A plot of globally-averaged cloud changes occurring between 10 and 1,000 mb 

over the composite period shows statistically significant decreases in the rate of cloud change 

(of around -0.8 %) develop after day -3 in the upper troposphere; this decrease persists until the 

key date of the composite (figure 4.16). In addition, several small significant anomalies are also 

observed throughout the period. 

Latitudinally-averaged cloud cover anomalies occurring between 10 and 180mb over the sample 

show that the cloud changes are limited to high southern latitude regions and occur most 

intensely around day -2 of the composite period (figure 4.17).  A pressure level/latitude profile 

of the cloud anomalies on day -2 shows that statistically significant anomalous decreases (of 

around -3.6 %) are located in the lower stratosphere/upper troposphere region between 70°S and 

90°S. A smaller area of statistically significant cloud decrease (of around -1 %) is also observed 

at mid-tropospheric levels around 50°S (figure 4.18). An analysis of anomalous rates of cloud 

changes between 10–180 mb, on day -2 of the composite over a latitude/longitude grid, shows 

the presence of intense regions of locally significant cloud decreases (of up to -16 %) over areas 

of the Antarctic plateau (figure 4.19). Although these changes are locally intense, their spatial 

extent is highly limited and they are not found to be field significant. 

Similar results have been found as early as 1960’s, when Schuurman (1965) and also 

Schuurman and Oort (1969) demonstrated a detectable influence of SEPs on high latitude 

pressure changes immediately following solar flares. SEPs arrive at Earth’s atmosphere within 

hours of a flare event, and their effects last for approximately 1 day, whereas IMF disturbances 

resulting from the same flare activity arrive 3–4 days later (and produces the onset of FD 

events). Consequently, SEP events may be a good candidate for perturbing Earth’s atmosphere 

at high geomagnetic latitudes prior to FD events producing the observed pressure anomalies. 
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Figure 4.16 Anomalous cloud changes during the adjusted FD sample 

Globally-averaged cloud anomalies occurring at pressure levels between 10 and 1,000 mb 
during the adjusted FD sample. Regions of statistically significant change (above the 0.95 level) 
are indicated by solid contours. 
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Figure 4.17 Latitude/time adjusted FD sample cloud change 

A plot of 10–180 mb, 5° latitudinal mean, anomalous rates of cloud cover change occurring 
over the adjusted FD composite. Regions of statistically significant change (above the 0.95 
level) are indicated by solid contours. 
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Figure 4.18 Tropospheric profile of adjusted FD sample cloud anomalies 

A plot of 5° latitudinal mean, anomalous cloud changes (occurring from 10–1,000 mb) during 
day -2 of the adjusted FD sample. Regions of statistically significant change (above the 0.95 
level) are indicated by solid contours. 
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Figure 4.19 Adjusted FD sample Antarctic anomalous cloud change 

Locally statistically significant cloud anomalies, occurring at 10–180 mb during day -2 of the 
adjusted FD sample over the South Pole.  
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4.3.4   Analysis of FD related cloud changes 

The adjusted FD sample has shown indications of an anomalous decrease in the rate of cloud 

change over the highest ISCCP monitoring level (10–180 mb) over Antarctica. However, these 

changes are observed to occur two days in advance of the maximal GCR decrease. These 

findings are broadly similar to the results of TK04, who demonstrate comparable (yet more 

widespread) anomalies over the Antarctic region at identical pressure levels. The changes 

identified by TK04 occurred several days after the onset of FD events. Although the timing is 

different, the similar nature of the anomalies suggests that these may be related cloud changes; 

the timing conflict may simply be a consequence of the date adjustment applied. Since the cloud 

changes identified in this work occur during a more isolated GCR signal than those of TK04, 

the fact that the size and area of the cloud anomalies identified by this work are diminished and 

occur before the maximal GCR decreases implies that the anomalies may be unrelated to GCR 

variations. It should be stressed that the anomalies over the Antarctic have been focused upon 

simply because no other cloud changes suggested the occurrence of any statistically significant 

anomalies which may be linked to the FD period. In addition, it is known that satellite cloud 

retrievals are particular problematic for high level clouds over high latitude regions (Rossow 

and Schiffer, 1999). This issue is of particular relevance to cloud changes detected over the 

Antarctic plateau (TK04) and consequently, the confidence that can be placed in these results is 

relatively low.  

Troshichev et al. (2008) suggest that cloud cover changes associated with FD events may be 

causally related to variations in the IMF Bz (north-south) component. The Bz was found to 

undergo a positive increase around the key date of the composite (figure 4.15); this change 

suggests a decreased coupling between the IMF and Earth’s magnetosphere, which may 

theoretically result in a decrease in high altitude ionisation and a consequent decrease in cloud 

cover. However, the Bz variations were not found to be statistically significant above the 0.95 

critical level. Furthermore anomalous cloud decreases were found to begin around day -3; 

during this time, Bz variations of an opposite sign were occurring. This implies Bz changes 

cannot be responsible for the observed anomalies. Variations in the IMF By (east-west) 

component may also potentially influence cloud changes over the sample, as changes in the By 

are associated with variations in the ionospheric potential at magnetic latitudes greater than 80° 

(Burns et al., 2007).  However, similar to Bz, the By component demonstrates an oscillatory 

behaviour during the anomalous cloud changes, implying no relationship to the cloud decreases. 

However, it must be noted that the IMF data coverage is limited and consequently any 

conclusions drawn from this analysis are subject to uncertainty. 
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4.4  Verifying observed FD related cloud variations 

To further test for the presence of a relationship between FD events and cloud changes a 

secondary composite sample was constructed. This new composite is based around the largest 

decreases in the rate of GCR flux measured by both Mcmurdo and South Pole neutron monitors 

(located in Antarctica). This composite is designed to isolate the largest, daily timescale, 

regional decreases, in atmospheric ionisation over the Antarctic continent. The previously 

utilised events in the adjusted FD sample were based on neutron monitor decreases detected at 

Mt. Washington; this neutron monitor is situated at lower latitudes than the Antarctic neutron 

monitor sites and consequently may be relatively insensitive to lower energy GCR changes 

experienced over high latitude regions. 

Any anomalous cloud changes detected over the new composite will be compared to the 

previously identified cloud anomalies to determine if similar patterns of change are observed.  If 

similar GCR related processes are influential over both samples then it is logical to assume that 

similar cloud anomalies should be observed: the presence or absence of such anomalies may 

provide an indication of GCRs relationship to cloud cover (if any exists).  

 

4.4.1  Constructing a composite of the largest Antarctic GCR decreases  

The secondary composite sample (hereafter referred to as the ‘Antarctic GCR decrease’ (AGD) 

sample) is constructed from the largest 5 % decreases in the rate of GCR flux measured at 

Mcmurdo neutron monitor between 1988 and 2006. The events were filtered to remove any 

dates from the sample which reoccurred within the composite period and any events which 

occurred within 3 days (±) of a SEP event. In addition, only key dates which were also 

coincident with the largest 5 % decreases in neutron count rate at the South Pole neutron 

monitor (90.0°S, 0.0°E) were considered; this ensures that the GCR decrease are widespread 

over the Antarctic region rather than merely being a localised phenomenon. This treatment 

results in the generation of a sample of 28 observations (events are listed in table 4.3). Only 6 

out of the 28 AGD events were found to be coincident with the adjusted FD events, verifying 

the assertion made in section 4.4 that largest Antarctic GCR decreases were not necessarily 

isolated by observing FD events recorded at Mt. Washington neutron monitor.  
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Event 

AGD 
sample Event 

AGD 
sample 

1 13/02/1989 15 18/02/1999 
2 30/12/1989 16 20/06/1999 
3 15/03/1991 17 14/12/1999 
4 27/04/1991 18 13/02/2000 
5 19/08/1991 19 24/05/2000 
6 29/01/1992 20 18/09/2000 
7 21/02/1992 21 30/10/2000 
8 13/07/1992 22 18/12/2001 
9 23/08/1992 23 21/10/2002 
10 09/09/1992 24 19/11/2002 
11 09/10/1992 25 11/04/2003 
12 05/11/1992 26 10/01/2004 
13 12/04/1997 27 28/12/2004 
14 25/10/1997 28 09/05/2005 

 

Table 4.3 List of AGD sample key dates 

Dates during which the largest 5 % decreases in the rate of GCR flux at Mcmurdo and South 
Pole neutron monitors occurred. 

 

 

4.4.2  AGD sample: GCR, F10.7, UV and IMF variations 

The GCR changes occurring over the AGD sample are shown in figure 4.20. These changes 

show an intense, statistically significant and highly isolated decrease (of approximately -33 %) 

occurring centred on the key date of the composite. During this period, no statistically 

significant variations in the IMF Bz or By, UV or F10.7 are observed (figure 4.21–4.22). 

However, sharp decreases centred on the key date, in both the UV and IMF By parameters are 

observed. It must be noted that to a lack of continuous measurements data coverage for the IMF, 

F10.7 and UV parameters was incomplete over the AGD sample, exact coverage is detailed in 

table 4.4.  
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Figure 4.20 Rate of GCR flux during AGD sample  

Rate of GCR flux recorded at Mucmurdo, A) mean GCR flux with 0.95 level confidence 
interval displayed (dotted line). Statistically significant changes indicated by markers. B) 
Notched box plots showing sample distribution of key date and relative averaging period 
(average GCR rate of day -5, -4 and -3). GCR variations are normalised against the peak to peak 
changes over the 11-year solar cycle. 
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Parameter Data coverage (%) 

IMF By 83 

IMF Bz 84 

UV 88 

F10.7 68 

 

Table 4.4 Data coverage during AGD sample  

Data coverage of the: IMF, UV, and F10.7 datasets over the AGD composite. Only sample 
events with complete coverage over the composite (-15 to 3 days) are used in the sample. 
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Figure 4.21 AGD sample solar wind changes 

Variations in the mean rate of IMF A) Bz and, B) By flux occurring over the AGD composite. 
Dotted line indicates the 0.95 level confidence interval. 
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Figure 4.22 AGD sample solar activity changes  

Variations in the mean rate of A) F10.7 (10.7 cm 2800 MHz radio flux) and, B) UV (MG II 
index) variations. The 0.95 confidence interval is displayed (dotted line). 
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4.4.3  Analysis of AGD sample cloud change results 

Cloud changes occurring between 10 and 180 mb during the AGD sample show that, similar to 

the adjusted FD sample, anomalous decreases in the rate of cloud change occur over high 

southern latitudes around day -4 and persist until day 1; however, unlike the adjusted FD 

sample, these anomalies are not found to be statistically significant above the 0.95 critical level 

(figure 4.23). A pixel by pixel analysis of anomalous cloud changes occurring at high 

tropospheric/low stratospheric levels (between 10 and 180 mb) identifies several locally 

significant cloud decrease (of around -10 %) over a limited regions of the Antarctic plateau on 

day -2 (figure 4.24). These anomalies do not show field significance at the 0.95 critical level. 

Although the cloud changes appear to show anomalies which appear comparable to the adjusted 

FD sample (which may hint at the action of a common process), the lack of any reliable 

statistical significance over the samples leads to the conclusion that FD-based composites do not 

provide good evidence of a GCR–cloud link. 

 

 

Figure 4.23 Latitude/time AGD cloud change  

A plot of 5° latitudinal mean, anomalous rates of cloud change, occurring between 10 to 180 mb 
over the AGD composite.  
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Figure 4.24 AGD sample Antarctic cloud changes 

Mean rates of cloud change, occurring between 10 and 180 mb, on day -2 of the AGD sample. 
Only locally significant changes are displayed.  
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4.5 Do FD events effectively isolate GCR decreases? 

The assumption that sampling based on FD events can provide a unique method of 

distinguishing the influences of GCR on Earth’s environment from solar irradiance changes 

may require re-examination, as it has been noted that during the extreme solar flare events 

known as the ‘Halloween Storms’ (which took place between 28/10/2003 and 04/11/2003) 

irradiance variations were observed to occur in association with solar flare activity (Woods et 

al., 2004). This observation implies that FD events may not fully isolate GCR changes from 

variations in solar activity. TSI is known to increase in white-light flares, but generally there is a 

poor correlation between TSI and flare activity. 

Although the adjusted FD and AGD samples previously discussed in this chapter did not show 

any statistically significant indications of F10.7 changes over the composite period it may be 

useful to re-examine the relationship between GCR and F10.7 variations associated with FD 

events. This may provide further insights in to the often conflicting results of existing FD-based 

GCR–cloud studies. A composite sample of 269 FD onset events (occurring between 1955 and 

2006) is used; these dates are adjusted to the maximal GCR decrease date (in an identical 

method to the adjusted FD sample). The FD onset events are drawn from several sources, 

including: NOAA/NGDC’s online archives (accessed from http://www.ngdc.noaa.gov/stp 

/solar/cosmic.html#FDs (last accessed on 25/05/2010)), Todd and Kniveton (2001) and 

Kristjánsson et al. (2008); the full list of adjusted dates are presented in table 4.5. 

The GCR/F10.7 changes observed over this composite are presented in figure 4.25. These 

results clearly show that, several days prior to the key date GCR decrease F10.7 values show 

increased activity. This increased state persists for several days, lasting until the maximal GCR 

decrease, after which time both GCR and F10.7 slowly recover to undisturbed values over a 

period of approximately one week. A notched box plot of the sample distribution changes 

occurring both before and during the peak F10.7/GCR variations demonstrates that these 

changes are statistically significant (figure 4.26). These results confirm that during FD events, 

both F10.7 and GCR variations undergo related changes; the time lag between peak F10.7/GCR 

changes is most likely due to the time difference between increased irradiance activity from 

sunspot/solar flare activity (which travels at the speed of light) and the time it takes the CMEs 

(travelling at super-sonic speeds) to journey from the Sun to the near-Earth environment.  

A scatter plot of the relationship between peak F10.7 and GCR variations shows, that in general, 

there is not a strong relationship between the two parameters (figure 4.27A). However, a plot of 

the extreme (top10) largest single day GCR decrease events (measured from Climax Colorado 

neutron monitor) shows that for high magnitude FD events the strength and significance of the 

relationship increases dramatically. This indicates that a connection between GCR/F10.7 
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variations may only be apparent when considering strong FD events. Consequently, this finding 

is relevant to the results of past FD-based studies, as it is a common practice to sort FD samples 

by the magnitude of the FD events (as it is assumed that doing so will provide the clearest 

indications of GCRs effects on climate). These results suggest the opposite may be true and that, 

in actuality, this approach may be biasing their samples by the inclusion of F10.7 related 

influences.  

These results also offer an additional explanation for the cloud anomalies observed in the 

adjusted FD, and AGD composite samples presented in this chapter: weak (or non-) significant 

cloud decreases were detected several days in advance of the maximal GCR decrease during FD 

events. The timing of these anomalies corresponds to the observed timing of F10.7 variations 

detected during FD events (figure 4.25). Although no statistically significant F10.7 variations 

were observed during either the adjusted FD or AGD sample, it is possible that any relationship 

between F10.7 and these cloud changes is only apparent over a small portion of the events 

(specifically large FD events) and so overall the signal may be masked by noise. However, to 

this suggestion it must be stated that theoretically it is most likely that any relationship between 

climate and irradiance variations would be most readily expressed at low latitudes rather than 

high latitudes, due to the decreasing angle of incidence of the sun’s rays at high latitudes 

coupled with the fact that during polar night no irradiance variations would be able to influence 

the sample; this strongly argues against an irradiance influence. 
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22/09/1956 04/12/1959 07/06/1967 01/11/1972 30/11/1980 06/10/1988 03/04/1998 

11/11/1956 25/12/1959 30/10/1967 20/01/1973 20/12/1980 18/12/1988 14/01/1999 

26/12/1956 14/01/1960 27/01/1968 15/04/1973 31/01/1981 07/01/1989 10/10/1999 

22/01/1957 01/04/1960 07/04/1968 15/05/1973 21/02/1981 13/02/1989 07/02/2000 

11/03/1957 01/05/1960 12/06/1968 07/05/1974 27/03/1981 14/03/1989 03/05/2000 

18/04/1957 10/05/1960 11/07/1968 07/07/1974 18/05/1981 27/03/1989 24/05/2000 

23/06/1957 23/05/1960 21/08/1968 14/09/1974 01/06/1981 11/08/1989 16/07/2000 

05/08/1957 29/05/1960 03/10/1968 31/03/1976 26/07/1981 15/08/1989 18/09/2000 

30/08/1957 06/06/1960 30/10/1968 14/09/1977 10/08/1981 19/08/1989 27/11/2000 

23/09/1957 28/06/1960 17/11/1968 22/09/1977 03/10/1981 28/08/1989 12/04/2001 

30/09/1957 15/07/1960 06/12/1968 04/01/1978 14/10/1981 07/09/1989 29/04/2001 

23/10/1957 29/08/1960 01/03/1969 30/01/1978 12/11/1981 06/09/1989 28/08/2001 

27/11/1957 06/10/1960 17/03/1969 15/02/1978 01/02/1982 19/09/1989 26/09/2001 

18/12/1957 25/10/1960 25/03/1969 09/03/1978 12/02/1982 21/10/1989 25/11/2001 

18/01/1958 14/11/1960 13/04/1969 11/04/1978 02/03/1982 29/11/1989 30/07/2002 

11/02/1958 26/12/1960 28/04/1969 19/04/1978 26/04/1982 22/03/1990 18/11/2002 

26/03/1958 14/03/1961 15/05/1969 02/05/1978 10/06/1982 10/04/1990 31/05/2003 

30/05/1958 14/04/1961 09/06/1969 29/05/1978 14/07/1982 20/05/1990 20/06/2003 

03/07/1958 14/07/1961 28/09/1969 03/06/1978 07/08/1982 01/02/1991 31/10/2003 

09/07/1958 14/07/1961 10/11/1969 26/06/1978 07/09/1982 10/03/1991 24/11/2003 

18/08/1958 27/07/1961 23/11/1969 14/07/1978 22/09/1982 24/03/1991 10/01/2004 

24/08/1958 01/10/1961 30/01/1970 12/11/1978 25/11/1982 26/04/1991 22/01/2004 

16/09/1958 29/10/1961 01/04/1970 21/12/1978 10/12/1982 29/05/1991 27/07/2004 

02/10/1958 02/12/1961 02/06/1970 20/02/1979 10/01/1983 05/06/1991 08/11/2004 

23/10/1958 21/04/1962 19/06/1970 29/03/1979 05/02/1983 13/06/1991 19/01/2005 

12/11/1958 03/05/1963 25/07/1970 26/04/1979 13/05/1983 03/07/1991 15/05/2005 

16/12/1958 17/09/1963 09/09/1970 08/06/1979 10/06/1983 09/07/1991 17/07/2005 

27/01/1959 23/09/1963 07/11/1970 07/07/1979 07/05/1984 19/08/1991 11/09/2005 

12/02/1959 30/10/1963 08/11/1970 20/08/1979 29/06/1984 01/11/1991   

26/02/1959 08/10/1965 29/01/1971 12/11/1979 07/09/1984 08/11/1991   

10/04/1959 24/03/1966 16/04/1971 07/02/1980 28/04/1985 27/02/1992   

24/04/1959 31/08/1966 07/10/1971 07/10/1979 09/02/1986 10/05/1992   
 

Table 4.5 List of Forbush Decrease events  

List of FD onset dates taken from various sources, including: NOAA’s database 
(http://www.ngdc.noaa.gov/stp/solar/cosmic.html#FDs), Todd and Kniveton (2004), and 
Kristjánsson et al. (2008) (n = 269). Original FD onset events were adjusted so as to align day 0 
with the maximal GCR reduction below background levels (identical methodology to Laken and 
Kniveton (2010)). 
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Figure 4.25 Absolute GCR/F10.7 variations during FD events 

Mean GCR flux (solid line) and F10.7 (dashed line) variations occurring over a composite of 
269 FD events (1955–2005). Day 0 indicates maximal GCR decrease date associated with FD 
events (highlighted by the vertical dashed line). Dotted line around mean GCR/F10.7 values 
denotes 0.95 level confidence intervals. GCR data are taken from Climax Colorado neutron 
monitor (adjusted for barometric pressure variations). F10.7 data are taken from the 10.7cm 
(2.8 GHz) radio flux, measured from adjusted Pentiction Ottawa. Each event in the composite is 
normalised against day -1 values for display purposes. 
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Figure 4.26 F10.7/GCR sample distribution variations during FD events 

Absolute A) F10.7 and B) GCR flux sample distribution changes between an averaging period 
(Avg.) taken from day -10,-9,-8 (for F10.7) and -5, -4 and -3 (for GCR flux) displayed next to 
the sample distribution of a key period (Key) of FD-related change  on -3,-2,-1 (for F10.7) and 
day 0,1,2 (for GCR flux). Average and key periods for F10.7/GCR are offset due to lag between 
responses. Notches on the box plots indicate the 0.95 level confidence interval around the 
median value, markers indicate outlying data points. GCR data are taken from Climax Colorado 
neutron monitor (adjusted for barometric pressure variations), F10.7 values are taken from 
10.7cm (2.8 GHz) radio flux, from adjusted Pentiction Ottawa data. 
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Figure 4.27 F10.7/GCR FD scatter plots 

Relationship between the peak F10.7 (day -2) and GCR flux (day 0) changes. Linear regression 
displayed (blue line), along with regression equation (y) and correlation coefficient (R2). Plots 
are shown for A) entire sample (n = 269), and B) top 10 largest single-day GCR decrease 
events. Values of F10.7 and GCR are normalised against their respective day -1 values. GCR 
data are taken from Climax Colorado neutron monitor (adjusted for barometric pressure 
variations), F10.7 values are taken from 10.7cm (2.8GHz) radio flux from adjusted Pentiction 
Ottawa data. Dates used are: 14/07/1982, 22/01/1957/ 12/05/1959, 15/02/1978, 05/08/1972, 
30/08/1957, 13/06/1991, 21/10/1989, 11/09/2005, 16/07/1959. 
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4.6 Discussion 

Objective 1:  To test for the existence of a relationship between clouds and the GCR flux 

using a methodological approach based on the composite sampling techniques 

of past daily timescale GCR studies. 

The composite samples presented in this chapter did not identify a statistically robust 

relationship between GCR changes and cloud cover and have therefore failed to fulfil 

objective 1. 

The adjusted FD and AGD samples were successful in isolating a high magnitude decrease in 

the rate of GCR flux to an extent greater than previous studies have achieved. However, despite 

this confinement, it was found that only a limited number of statistically significant anomalous 

cloud changes at high tropospheric levels were detected. MC significance testing showed that 

these anomalies were not field significant. Despite the lack of statistical significance, it is 

intriguing to note that at a 5° latitudinally-averaged resolution the magnitude and temporal 

evolution of the cloud anomalies over the two samples was comparable; this may imply the 

action of a common process. However, due to the lack of reliable statistical significance over 

the samples, it must be concluded that FD events did not provide robust evidence of a GCR–

cloud relationship, but correlated changes in any meteorological parameters are important. It is 

however vital to state that the observed cloud anomalies were confined to a region where 

satellite based cloud retrievals are known to be of a questionable quality (Rossow and Schiffer, 

1999; Todd and Kniveton, 2004); this strongly limits the confidence that can be placed on any 

conclusions drawn from these results.  

Interestingly, with regard to the cloud changes detected over the Antarctic, the peak in cloud 

changes observed in both the adjusted FD and AGD samples occurs on day -2 rather than during 

the maximal GCR decrease on the key date. This result may be interpreted in several ways:  

(1)  It may indicate there is no relationship between the GCR flux and the observed cloud 

 changes.  

(2)  It may suggest that the onset of statistically significant GCR decreases is more

 important than the maximum change. 

(3)  The cloud anomalies may be more related to irradiance changes found to occur with FD 

 events than to GCR variations. 

(4) The cloud detections may be erroneous.  
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It may be useful to consider the possible GCR–cloud mechanisms which may explain Antarctic 

cloud decreases during FD events in order to see if there is any theoretical support for the 

observed cloud changes observed being linked to GCR decreases:  

Ion-mediated nucleation: it has been established that atmospheric ions may seed new particles 

and experimental evidence has suggested that a large ionisation increase over Antarctica related 

to a particularly intense GLE is linked to a statistically significant increase in sulphate/nitrate 

aerosol concentrations (Mironova et al., 2008). This evidence may imply that decreases in 

atmospheric ionisation may similarly result in a reduction of CCN production and theoretically 

explain a decrease in cloud amount. However, the increased aerosol concentrations observed by 

Mironova and workers occurred 2 days after the GLE. This time lag suggest that an IMN 

process is not influencing the cloud changes observed during the adjusted FD or AGD samples 

described in this chapter, as these cloud changes occur approximately 2 days in advance of the 

maximal GCR decrease.  

Near-cloud effect: it has been hypothesised that a decrease in the Jz of the GEC as a result of 

decreased GCR flux may reduce the charge accumulation at cloud boundaries. This may affect 

aerosol scavenging rates of cloud droplets, thereby influencing a range of properties such as 

cloud lifetimes, droplet concentrations and albedo (Tinsley, 2008). Such a process may be 

important to supercooled stratus clouds which are a common feature over the Antarctic plateau 

(Morley et al., 1989). At a local-scale, specific atmospheric responses may rely on a 

combination of how thunderstorm generation at low latitudes responds to ionisation changes 

and how the variation in the latitudinal distribution of ionisation balances the local current flow 

in the GEC (Tinsley, 2008).  It has been postulated by Burns et al. (2008) that cloud cover over 

the Antarctic plateau may increase following a local current increase; therefore a reduction in 

current may be expected to similarly result in a cloud decrease. However, this process cannot 

account for the cloud changes being in advance of the maximal GCR decrease.  

The fact that FD-based samples have revealed no clear evidence of a significant cloud 

relationship weakens the hypothesis that GCR changes may affect cloud cover. A possible 

reason why FD-based studies have failed to identify a significant relationship may come from a 

consideration of the microphysical mechanisms behind GCR–cloud interactions: in all instances 

these interactions are strongly second order. That is, they require certain conditions to be met 

before GCR may influence cloud (i.e. a relationship between GCR–cloud is strongly 

constrained by environmental precursor conditions). This holds true regardless of the 

mechanism. For example, for ion-induced processes, precursor aerosols and low concentrations 

of pre-existing CCNs are essential, whereas, the near-cloud effect requires the presence of 

stratified cloud layers of appropriate dimensions and droplet sizes to function. Although it may 
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be expected that over long-timescales or for large datasets a GCR–cloud effect may be 

detectable regardless of considerations to precursor conditions (as in such instances a sensitive 

dependence on precursor conditions may merely decrease the signal-to-noise ratio (SNR)), in 

the context of FD-based composites, initial conditions may be a critical factor determining 

whether a GCR–cloud response will occur. As the sample sizes are small (and thus a high SNR 

ratio will greatly impact the results). Considering this, it may be unlikely that evidence of a 

widespread GCR–cloud relationship may be obtained by an FD sample based approach, as this 

sampling basis is totally defined by a quasi-random parameter that is external to the climate 

system (FD events) and such an approach cannot account for a sensitive-dependence upon 

precursor conditions.  

 

 

4.7 General summary 

An overview of the results of several FD studies were given, these studies have not yet 

demonstrated a clear GCR–cloud response and instead show inconsistent responses. One recent 

study has controversially claimed to show a global scale relationship between cloud decreases 

and FD events. The findings of this study were reanalysed in detail, the results strongly indicate 

that the conclusions of this study are flawed for several reasons.  

In an attempt to improve upon the approaches of existing FD studies and gain a clearer 

understanding of cloud responses during FD periods, a method of adjustment was applied to a 

composite of FD onset events which realigned the composite to reflect the date of maximum 

rate of GCR decrease (this was done as maximal GCR deviations are often offset from FD onset 

dates by several days). Although this new ‘adjusted’ FD sample showed a significantly more 

isolated and intense GCR decrease than previously obtained, it did not provide good indications 

of a GCR–cloud relationship: the only cloud response observed was from locally intense cloud 

decreases located at the uppermost pressure level of the ISCCP data (10–180 mb) over areas of 

the Antarctic plateau. An attempt was made to verify these findings, using the construction of a 

second composite sample based on the largest periods of Antarctic GCR decrease. Although 

roughly comparable anomalies were detected, these results still did not provide unambiguous 

statistical evidence of a GCR–cloud relationship. Several potential reasons for this shortcoming 

were discussed. 
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Chapter 5    An internal sampling approach 
 

 

5.1  The need for an internal sampling approach  

The previous chapter demonstrated that FD-based composite studies were unable to identify a 

significant GCR–cloud relationship. This may possibly be due to the limitations associated with 

FD-based composites, especially those related to: (1) small sample sizes, and (2) the inability to 

account for a sensitive-dependence upon precursor conditions. With regards to the first issue, 

the limitation of small sample sizes is a problem inherent to FD-based studies, as there are only 

a limited number of FD events upon which to base a composite, while the second issue may be 

critical if a GCR–cloud relationship proves to be a second order phenomenon. Both of these 

problems may potentially be overcome by constructing samples around a parameter internal to 

Earth’s environment (such as cloud cover); it is this possibility which will be explored in this 

chapter. 

 

5.1.1  Constructing cloud based samples 

A new sampling methodology based around the largest daily timescale variations in the rate of 

cloud change will now be considered. As in previous sections, this new analysis will continue to 

use a composite based approach. The samples are based on the daily average rates of cloud 

change derived from the ISCCP dataset. The cloud data are divided into five distinct sample 

groups based on regional area, these are: global (equal-area-adjusted 90°N–90°S); tropical 

latitudes (20°N–20°S); mid-latitudes (60°S–20°S and 20°N–60°S); Arctic latitudes (90°N–

60°N); and, Antarctic latitudes (60°S–90°S). Dates with the largest (top 5 %) increases and 

decreases in the daily rate of cloud change throughout these five aforementioned regions will be 

selected as key dates for separate composites. Any key dates which were found to recur over the 

composite period (of -15 to 3 days) or be coincident (within a ±3 day range) of a SEP event 

were removed from the sample. For each sample, an analysis of the temporal coverage of the 

neutron monitor data and standard deviations of neutron counts recorded at each individual 

monitor site are displayed (table 5.1). Any neutron monitor site found to have a standard 

deviation greater than 1.5x the average standard deviation of the combined neutron monitor data 

are removed from the final sample: this procedure is designed to minimise the impact of data 

from monitors found to show abnormally high variability. Stations found to have standard 

deviations of such values are flagged in red (table 5.1).  
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An analysis of the distribution of the average standard deviation at each neutron monitor site 

shows that the sites ‘Alma B’ (Alma Ata-B) and ‘Inuvik’ consistently demonstrate an 

abnormally high variability in comparison to the other neutron monitor sites (figure 5.1). Alma 

Ata-B is found to be above the threshold standard deviation in each of the ten samples (table 

5.1), while Inuvik is found to be above the threshold standard deviation in eight out of the ten 

samples. Consequently, in the majority of samples, both of these sites are removed from the 

final composites prior to significance testing. 

There were three samples which were found to demonstrate statistically significant changes in 

the rate of GCR flux on the key date of the composites, these were:  

Global increase (GI) sample 

Antarctic increases (AI) sample 

Mid-latitude decreases (MLD) sample 

These three composite samples will now be considered in detail throughout the remainder of 

this chapter and will be used as the basis for a forthcoming atmospheric analysis and climate 

modelling experiments in later chapters. 



  
 

 

Site     Global increase  Global decrease      Tropic increase       Tropic decrease Mid Lat. Increase 
  stdev n(x/134) stdev n(x/114) stdev n(x/138) stdev n(x/134) stdev n(x/133) 
Alma Ata-B 4.51 95 4.88 83 4.44 93 3.65 97 3.88 87 

Apatity 1.76 132 2.34 113 1.73 135 1.92 132 2.05 131 
Climax 1.29 117 1.15 100 1.21 124 1.30 121 1.23 120 
Inuvik 3.27 109 2.98 89 2.62 110 3.00 106 3.46 104 
Kiel 1.20 129 1.26 106 1.56 131 1.61 130 1.14 127 

Magdan 2.25 120 1.74 105 2.01 122 2.14 122 2.26 117 
Mcmurdo 1.26 133 1.13 113 1.19 162 1.32 132 1.77 133 
Moscow 2.05 134 1.93 114 1.54 138 2.06 134 1.88 133 
Newark 1.59 97 1.92 80 1.51 101 1.61 100 1.86 95 

South Pole 1.46 93 1.40 77 1.45 97 1.56 96 1.43 90 
Thule 1.95 131 1.64 110 1.83 132 1.52 130 1.93 130 

Average 2.05   2.03   1.92   1.97   2.08   
 

 

Table continued overleaf... 

 

 

 

 

 

 

 

 



  
 

 

Site Mid Lat. Decrease Antarctic Increase Antarctic Decrease Arctic Increase Arctic Decrease 
  stdev n(x/130) stdev n(x/114) stdev n(x/115) stdev n(x/122) stdev n(x/108) 
Alma Ata-B 4.09 93 5.54 78 4.37 79 5.01 92 5.13 79 

Apatity 2.17 129 1.76 111 2.25 112 2.30 119 2.52 105 
Climax 1.11 117 1.20 104 1.21 101 1.31 110 1.31 96 
Inuvik 3.55 107 3.71 89 3.75 89 3.35 95 3.83 81 
Kiel 1.43 124 1.14 110 1.39 107 1.19 119 1.37 105 

Magadan 2.29 116 2.79 104 1.89 104 1.93 109 2.40 102 
Mcmurdo 1.24 128 1.14 113 1.17 111 1.19 120 1.30 107 
Moscow 1.59 130 2.20 114 1.54 115 1.84 122 1.81 108 
Newark 1.35 91 1.07 87 1.93 83 1.18 88 1.26 102 

South Pole 1.36 84 1.37 87 1.49 84 1.51 86 1.53 77 
Thule 1.79 129 1.52 114 2.03 113 1.94 118 1.68 106 

Average 2.00   2.13   2.09   2.07   2.19   
 

Table 5.1 Mean standard deviations at each neutron monitor site  

Mean rate of GCR flux standard deviations at each neutron monitor site occurring over each individual sample. Standard deviation denoted by ‘stdev’, 
units in % day-1. Total potential sample size (n) is stated for each sample at the table header (e.g. potential sample size for mid-latitude decrease sample 
is 130 observations). Data coverage varies between neutron monitors varies. Sites are highlighted in red if the average standard deviation is greater than 
1.5x the average standard deviation of the sample; such sites are not incorporated in to the final sample prior to significance testing. 
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Figure 5.1 Standard deviation at each neutron monitor site  

Notched box plots showing the mean standard deviation at each neutron monitor site over all of 
the composite samples. Standard deviation is calculated as a percentage GCR rate normalised 
against the peak-to-peak GCR variations over an 11-year solar cycle. Dashed line indicates 
overall mean standard deviation of the sites. 
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Region   

       

Increase     

     

Decrease   

  n sites (x/11) T.Val n sites (x/11) T.Val 

Globe 134 9 2.99 117 10 1.86 

Tropics 138 10 0.83 134 9 -1.23 

Mid-Lats. 133 9 -0.91 130 9 3.25 

Arctic 122 9 -1.45 108 9 2.01 

Antarctic 114 9 3.30 115 9 0.86 

 

Table 5.2 Significance of key date cloud sample GCR variations  

Sample size (indicated by ‘n’), number of neutron monitor sites used in the composite (indicated 
by ‘sites (x/11)’) and Students T-value (indicated by ‘T.Val’) are all displayed for both the 
largest (top 5 %) increases and decreases in the average daily rates of cloud change (1,000 –
 10 mb). Statistically significant samples (above the 0.95 confidence level) are highlighted in 
yellow. All highlighted changes were found to demonstrate a positive relationship between the 
rate of GCR flux and cloud cover change.  

 

 

5.1.2  Seasonal sensitivity of samples 

Although the three samples were selected due to the occurrence of statistically significant GCR 

variations on the key date of the composites, it is possible that the samples may also reflect 

seasonal variations in cloud formation rates as seasonality is likely to be a strong influence 

governing changes in the rate of cloud formation over large areas. Logically, a sample which 

does not contain a seasonal pattern may be more likely to contain a successfully isolated GCR 

cloud relationship, as variations in the GCR flux have no seasonal component. Whereas, a 

sample that does display a seasonal component may imply that a GCR–cloud relationship has 

not been fully isolated from internal climate variability. Alternatively, it is also plausible that 

seasonal influences may potentially have an impact on GCR-related cloud formation via an 

effect on precursor conditions.  

An analysis of the annual distribution of the key events across the (1) GI sample indicates that 

the annual distribution of events is random (figure 5.2A); a lack of seasonality in the GI sample 

is unsurprising, as at a global scale seasonality should not be an influential process. However, 

the distribution of the AI sample shows peak during the southern hemisphere winter (figure 

5.2B), while the MLD sample shows a bimodal distribution, peaking around the times of the 
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equinoxes (figure 5.2C). The presence of seasonality in the AI and MLD samples may be 

interpreted in several ways: 

1) It may suggest that the AI/MLD samples are causally unconnected to GCR variations, 

and are instead merely the result of seasonal variability. 

2) It may imply that during certain times of the year cloud conditions are more conducive 

to a GCR–cloud link. 

3) It may simply be an artefact of sampling: i.e. the most rapid cloud changes are in 

periods when both GCR and seasonal changes are acting to alter cloud in a 

complementary manner, thus producing the most rapid cloud changes over the period. 

 

There is also another potential (but less likely) explanation for the presence of seasonality in the 

samples: if a GCR–cloud link operates via a GEC related mechanism then it is possible that 

seasonal variability in the state of the GEC may be influence a GCR–cloud mechanism. It has 

been suggested that the GEC has both an annual and semi-annual oscillation (Williams, 1994; 

2008). The annual oscillation of the GEC is attributed to the asymmetrical distribution of land 

between the northern and southern hemispheres. The annual variations in air temperature that 

accompany this asymmetry result in an air-earth current maximum during the northern 

hemisphere summer. While the proposed semi-annual component of the GEC is related to an 

enhancement of tropical convection during equinoxial crossings, which has been suggested to 

increase low latitude lightning activity (Williams, 1994; 2008; Christian et al., 2003). If a GCR–

cloud relationship operates via a GEC-related mechanism, GCR-related cloud changes may 

potentially be enhanced by seasonal variations in the GEC. However, it is most likely that the 

seasonal component of the samples is more related to simple seasonal variations in the rate of 

cloud change. 
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 Figure 5.2 Annual distribution of sample events  

The distribution of key over the A) GI, B) AI, and C) MLD composites on a month-by-month 
basis. 
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5.2  GI sample: GCR, IMF and irradiance variations 

The average rate of GCR flux undergoes a sustained increase of approximately 3.3±0.3 % 

between days -5 to 0 over the GI sample. These changes peak on the key date of the composite 

period and are found to be statistically significant on days -1 and 0. This suggests that a 

relationship may exist between increased rates of global cloud change and increases in the rate 

of GCR flux (figure 5.3).  

In contrast to these changes, the IMF Bz and By components showed no statistically significant 

changes over the composite (figure 5.4). Similarly, the UV and F10.7 variations also showed no 

significant variations and demonstrated no coherent changes with respect to the key date 

(figure 5.5). It should be noted that the IMF, UV and F10.7 datasets only have partial coverage 

over the GI sample (specific coverage is detailed in table 5.3). Overall, these results show that a 

statistically significant co-temporal relationship exists between the largest global increases in 

the rate of cloud change and increases in the rate of GCR flux which are unconnected to IMF, 

UV or F10.7 variations. 

 

Figure 5.3 GI sample: rate of GCR flux  

Rate of GCR flux calculated from daily average neutron counts (based on data from 9 out of 11 
neutron monitor sites; see table 5.1 for specific sites included). Units are calculated as a 
percentage relative to the peak-to-peak variations experienced over an 11-year solar cycle. 
Statistically significant changes indicated by markers. The confidence interval at the 0.95 level 
is shown by the dotted lines. 
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Figure 5.4 GI sample: IMF variations 

Average rate of IMF A) Bz (north south) and B) By (east west) components over the GI sample. 
Dotted lines indicate the 0.95 level confidence interval. 
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Figure 5.5 GI sample: solar activity variations 

Average rate of: A) F10.7 (10.7 cm 2.8 GHz radio flux) and, B) UV (MG II index) variations 
over the GI sample. Dotted lines indicates the 0.95 level confidence interval. 
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Parameter Data coverage (%) 

IMF By 87 

IMF Bz 84 

UV 75 

F10.7 44 

 

Table 5.3 GI sample: IMF and solar activity data coverage  

IMF, UV and F10.7 temporal coverage over the GI sample, expressed as a percentage.  

 

 

5.2.1  GI sample: anomalous cloud changes 

A plot of the globally-averaged, anomalous cloud changes, occurring across the GI sample 

shows the presence of large, statistically significant increases beginning around day -2. These 

anomalies are centred around the key date of the composite and occur throughout the 

troposphere; these changes reach a maximum intensity of around 3 % on the key date of the 

composite, at approximately 600 mb. In addition, small negative anomalies (of around -0.4 %) 

are also evident around day -5 at high pressure levels (figure 5.6).  

Extending the analysis, a plot of 5° latitudinally-averaged cloud anomalies reveals that the 

largest changes are occurring at high latitude regions. The development of these anomalies is 

found to be symmetrical across both hemispheres (figure 5.7). The cloud changes are found to 

be widely statistically significant: the anomalous cloud changes appear to extend from high to 

mid-latitudes, diminishing towards the tropics (figure 5.7). 

A latitude/pressure level profile of anomalous rates of cloud change on the key date of the 

composite shows statically significant Antarctic cloud anomalies which extend from 

approximately 10–500 mb (roughly from the lower stratosphere/tropopause to the surface of the 

Antarctic plateau) (figure 5.8). Comparable Arctic anomalies are also evident, located in the 

mid-troposphere (between 400–800 mb). The Arctic cloud changes appear to be more intense 

than those over the Antarctic (by approximately 3 %) (figure 5.8).  

Locally significant Antarctic cloud changes are observed to be widespread across the continent; 

the magnitude of the anomalies range between 2.5–22.5 %. In the Arctic, anomalous cloud 

changes are again found to be slightly more intense, ranging from between 2.5–27.5 %. Both the 

Arctic and Antarctic cloud changes are found to decrease in magnitude and extent with 
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decreasing latitude (figure 5.9). Although the anomalies are found to be largest over high 

latitude regions, smaller anomalies are also observed across the globe. In particular, they appear 

to be relatively widespread over oceanic regions of the southern hemisphere (figure 5.9). 

 

 

Figure 5.6 GI sample: globally-averaged cloud anomalies  

Anomalous cloud changes, occurring across globally-averaged pressure levels as a function of 
time. Statistically significant changes are indicated by solid contours. 
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Figure 5.7 GI sample: latitude/time cloud anomalies  

A 5° latitudinally-averaged plot of mean anomalous cloud changes (between 10 and 1,000 mb) 
across the GI composite. Statistically significant changes are indicated by solid contours. 
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Figure 5.8 GI sample: pressure level/latitude cloud anomalies  

A tropospheric profile of 5° latitudinally-averaged anomalous cloud changes occurring on the 
key date of the sample. Regions of statistically significant changes are indicated by solid 
contours. 
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Figure 5.9 GI sample: global cloud anomalies  

Robinson projection of anomalous cloud changes (between 10 and 1,000 mb) occurring on the 
key date of the GI sample. Only locally significant changes are displayed. 

 

 

5.2.2  GI sample: discussion 

Statistically significant increases in the rate of GCR flux were found to develop co-temporally 

with significant cloud increases over the GI sample; no other solar activity parameter was found 

to demonstrate any comparable or significant changes over the GI composite period. This 

finding supports notions of a solar–terrestrial link operating via a connection between the GCR 

flux and cloud cover.  

During the GI sample a significant global average increase in cloud cover of around 3 % was 

observed; these changes mainly resulted from simultaneous increases in cloud (of around 30 %) 

over high latitude regions in both hemispheres. The largest magnitude cloud changes were 

found to occur over regions of the weakest horizontal component of the geomagnetic field, this 

implies the operation of a process related to variations in atmospheric ionisation. Furthermore, 

the latitudinally symmetrical pattern and simultaneous development of cloud anomalies across 

both northern and southern high latitude regions during the composite period provides another 
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strong indication of a forcing agent external to Earth’s environment, as no known internal 

process could produce such a pattern of variability.  

Numerous studies have identified relationships between cloud/atmospheric parameters and the 

GCR flux/ionisation changes over high latitude regions in the Arctic and Antarctic (e.g. 

Veretenenko and Pudovkin, 1994; Pudovkin et al., 1996; 1997; Egrova et al., 2000; Mironova 

and Pudovkin, 2005; Mironova et al., 2008). Such regions may be particularly sensitive to GCR 

related ionisation changes, as they are undergo relatively large variations in atmospheric 

ionisation as a result of GCR variations (due to their weak geomagnetic shielding). In addition, 

high latitude environments have relatively clean and unpolluted atmospheres; this potentially 

makes clouds over such locations sensitive to small changes in CCN concentrations. The results 

of the GI sample appear to confirm notions that high latitude regions are sensitive to GCR 

variations. These results provide highly robust evidence of a link between the GCR flux and 

cloud cover. 

Global scale observations of cloud changes are not well suited to determine detailed information 

about the microphysical mechanisms responsible for the observed cloud changes. However, 

aspects of the observed GCR–cloud relationship may provide general indications which may 

imply the action of a specific GCR–cloud process, for instance: the GI sample shows that cloud 

and GCR changes develop co-temporal; this suggests that if a causal relationship exists between 

the GCR and cloud changes, the process involved has a rapid (same-day) response time. The 

IMN (clean-air) mechanism has a response time which is estimated to range from around 6 

hours to several days (Kazil et al., 2008; Mironova et al., 2008), while the GEC (near-cloud) 

mechanism appears to have a rapid response time (on the timescale of minutes) (Rycroft et al., 

2008; Harrison and Ambaum, 2009); this implies that a GEC mechanism is most likely. Further 

indications of a mechanism may also be drawn from the spatial nature of the cloud changes: 

while the efficiency of IMN processes varies with latitude due to ion production, it is also 

additionally constrained by precursor aerosol concentrations. It is predicted that an effect 

resulting from changes in CCN concentrations due to IMN may show its strongest effects over 

low-altitude relatively clean marine environments (Kristjánsson and Kristiansen, 2000), 

whereas, it could be expected that a GEC process may be most influential at locations where 

atmospheric ionisation changes are strongest. Overall, this implies that if the observed cloud 

changes are causally related to GCR variations, then it is likely that the responsible mechanism 

is related to the GEC.  
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5.3  AI sample: GCR, IMF and irradiance variations 

During the AI sample, the rate of GCR flux showed a prolonged decrease (of around -5±0.1 %) 

between days -9 to -3. These changes were statistically significant on days -5 and -4. After day 

-3, the rate of GCR flux increased until the key date (recovering by around 3.5±0.1 %) and 

showed statistical significance on days 0 and 1 (figure 5.10).   

The Bz component of the IMF showed no statistically significant variations over the composite, 

although it did show a negative (southwards) increase around day -4, which was then followed 

by positive (northwards) changes peaking on the key date, however these anomalies did not 

show any statistical significance). Similarly, the By component underwent a negative 

(westwards) increase around day -4, after which time positive (eastwards) increases occurred, 

peaking on day 1 of the composite. The By changes were found to be statistically significant on 

days -4 and 1 (figure 5.11).  

Variations in F10.7 and UV over the composite period were found to be non-significant. F10.7 

changes showed a prolonged increase from days -10 to 2 (figure 5.12A). Whereas changes in 

the solar UV component were more variable, lacking in any coherent variations around the key 

date (figure 5.12B). Temporal coverage of the IMF, UV and F10.7 datasets is detailed in table 

5.4. Considering the GCR, IMF and irradiance variations together, these results indicate that 

only variations in the rate of GCR flux showed a statistically significant change during the key 

date of the AI sample.  
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Figure 5.10 AI sample: rate of GCR flux  

The rate of GCR flux is calculated from daily average neutron counts (drawn from 9 out of 11 
neutron monitor sites, see table 5.1). Units are calculated as a percentage relative to the peak-to-
peak variations experienced over an 11-year solar cycle. Statistically significant changes are 
indicated by markers. The confidence interval at the 0.95 level is shown by the dotted lines. 
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Figure 5.11 AI sample: IMF variations  

Average rate of IMF A) Bz and B) By components over the AI sample. Dotted lines indicate the 
0.95 confidence interval. Statistically significant changes are indicated by markers. 
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Figure 5.12 AI sample: solar activity variations  

Average rate of A) F10.7 (10.7 cm 2800 MHz radio flux) and B) UV (MG II index) variations 
over the AI sample. Dotted lines indicate the 0.95 level confidence interval. 
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Parameter Data coverage (%) 

IMF By 59 

IMF Bz 34 

UV 81 

F10.7 44 

 

Table 5.4 AI sample IMF, UV and F10.7 data coverage  

Data coverage over the AI sample expressed as a percentage.  

 

 

5.3.1  AI sample: anomalous cloud changes 

A plot of globally-averaged anomalous cloud changes occurring over the sample period shows a 

statistically significant anomalous decrease in globally-averaged high level cloud cover (of 

around -0.8 %) occurring between days -6 to -4 (figure 5.13). After day -4, the statistically 

significant cloud anomalies reverse sign and show a mid- to high level cloud cover increase of 

2.4 %, centred around the key date of the composite. Both the decreases and increases in 

globally significant cloud change show a positive relationship to statistically significant 

co-temporal anomalous GCR variations. 

It appears that the statistically significant average cloud cover anomalies are restricted to high 

southern latitude regions (figure 5.14). A vertical profile of the anomalous cloud changes during 

the key date shows that the significant cloud anomalies occur at 90°S–60°S between 

approximately 10 and 500 mb; this interval roughly spans from the tropopause to the surface of 

the Antarctic plateau (figure 5.15). 

A pixel by pixel analysis of the locally significant anomalous cloud changes on the key date of 

the composite shows that intense locally significant anomalies are widespread across the 

Antarctic region. These anomalies are found to be most intense near the interior of the continent 

(around 38%) and appear to diminish with decreasing latitude. Some positive anomalies (of up 

to 8 %) are also identified over high latitudes of the South Pacific and around regions of the 

southern Australian coast (figure 5.16–5.17). 
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Figure 5.13 AI sample: globally-averaged cloud anomalies  

Anomalous cloud changes occurring across globally-averaged pressure levels between 10 and 
1,000 mb, as a function of time. Statistically significant changes are indicated by solid contours. 
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Figure 5.14 AI sample: cloud anomalies (latitude/time)  

A plot of 5° latitudinally-averaged  anomalous cloud changes (10–1,000 mb) occurring over the 
composite period. Statistically significant changes are indicated by solid contours. 
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Figure 5.15 AI sample: cloud anomalies (pressure level/latitude)  

A vertical profile of 5° latitudinally-averaged anomalous cloud changes (10–1,000 mb) 
occurring during the key date of the AI sample. Regions of statistically significant changes are 
indicated by solid contours. 
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Figure 5.16 AI sample: global cloud anomalies  

A Robison projection of anomalous cloud changes (10–1,000 mb) occurring on the key date of 
the AI sample. Only locally statistically significant changes are displayed. 
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Figure 5.17 AI sample: Antarctic cloud anomalies  

A polar stereographic of anomalous cloud changes (10–1,000mb) occurring on the key date of 
the AI sample. Only locally statistically significant changes are displayed. 
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5.3.2  AI sample: discussion 

The AI sample identifies a statistically significant positive co-temporal relationship between 

variations in the rate of GCR flux and anomalous cloud changes over the Antarctic region. The 

previous GI sample showed a comparable relationship between Antarctic cloud and the GCR 

flux. However, the GI sample also showed corresponding Arctic cloud changes, whereas the AI 

sample does not. Several possibilities may explain the independent nature of the Antarctic cloud 

response: 

1) There is no causal relationship between the observed cloud changes and the GCR flux. 

 

2) A relationship between the GCR flux and cloud changes is strongly controlled by 

internal factors. For example, the relative differences in the height of the troposphere 

over the Antarctic/Arctic regions may be an important factor: low energy GCRs may 

ionise the upper atmosphere of high latitude regions, if such low energy GCRs are 

responsible for the observed GCR changes in figure 5.10 it may imply that a GCR 

related mechanism is unable to influence the relatively low altitude cloud cover over the 

Arctic region (which is predominately located below 500 mb). Whereas, the Antarctic 

cloud cover (which occurs between 10 and 500 mb) may be susceptible to modulation 

by the GCR flux (figure 5.18). 

 
3) GCRs are acting to enhance seasonally high levels of cloud change. It has been 

observed that the AI sample demonstrates a seasonal distribution (figure 5.2); this may 

imply that GCRs may merely be acting to enhance natural variability (which in this 

instance has been isolated over the Antarctic region). 

Antarctica has one of the cleanest atmospheres on Earth; this is largely due to consistent and 

intense circum-polar vortex which effectively isolates the Antarctic troposphere. This feature is 

not present in the Arctic, which in comparison to Antarctica has an abundance of aerosols. Such 

differences may also possibly account for varying responses between the northern/southern 

regions with respect to the same GCR forcing, for example, IMN requires low concentrations of 

pre-existing CN/CCN (to prevent loss by scavenging) (Carslaw et al., 2002), while changes in 

local resistivity in the GEC are highly sensitive to local aerosol concentrations (as aerosols 

scavenge ions and consequently increase atmospheric resistivity) (Harrison, 2004). 

As discussed in the context of the GI sample, several authors have reported findings which 

suggest that high latitude atmospheres may be sensitive to changes in the GCR flux (Veretenko 

and Pudovkin, 1994; Pudovkin et al., 1996; 1997; Egrova et al., 2000; Mironova and Pudovkin, 

2005). The results of the AI sample complement such notions. The same arguments made 
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during the GI discussion (section 5.2.2) regarding potential microphysical mechanisms 

responsible for the observed GCR–cloud relationship also applies over this sample: the rapid 

(same day) response time between GCR–cloud and localised nature to the cloud changes to 

regions sensitive to large GCR related changes in atmospheric ionisation again suggest the 

action of a GEC related mechanism. 

The changes occurring in the IMF, irradiance and GCR variations occurring during the AI 

sample may possibly suggest a connection to the approximately 27-day solar (Carrington) 

rotation. Two pieces of evidence may support this hypothesis: (1) the approximately 12-day 

coherent increase in irradiance, which may arguably comprise a harmonic of the solar rotation 

and suggest a long-term change in solar activity is underlying the sample and, (2) statistically 

significant variations in By are seen to occur on day -4 and 1: from trough to peak these changes 

last approximately 5 days, this period is approximately another harmonic of the Carrington 

rotations. Furthermore, the By increases between day -4 and 1 are preceded by a 6 day decrease 

of comparable (but opposite) magnitude; By changes are often due to quasi-stable oscillations in 

association with Carrington rotations (or harmonics of this rotation) (Burns et al., 2007). These 

changes may give a tentative indication that the samples are reflecting short term solar 

maxima/minima resulting from the influence of Carrington rotations. 
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Figure 5.18 ISCCP cloud profile: latitude/height  

A 5-year mean vertical profile of 5° latitudinally-averaged cloud cover distribution from ISCCP, 
using seven layers of IR-retrieved cloud amounts between 10 and 1,000 mb. 

 

 

5.4  MLD sample: GCR, IMF and irradiance variations 

During the MLD sample the rate of GCR flux demonstrated a statistically significant increase of 

approximately 3.3±0.2 % around day -5, after this time it then underwent a statistically 

significant decrease of approximately 5±0.1 % centred around the key date of the composite 

(figure 5.19). Over this period there was an increase in both the Bz and By components of the 

IMF. The Bz showed a sharp (but non-significant) peak of around 0.6 n/T between days -2 and 

0, whereas the By underwent a more protracted increase, beginning on day -6 and peaking on 

day -1. The By changes were statistically significant on days -4 and -3 (figure 5.20).  
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F10.7 changes showed a decrease over the composite period of around -1 fu. These changes 

began on day -6 and reached a maximal decrease on day -1, these changes were not found to be 

statistically significant. The rate of UV output increased on the key date of the composite; 

however, these changes were not statistically significant (figure 5.21).  The temporal coverage 

of the IMF, F10.7, and UV datasets is detailed in table 5.5.  

GCR, IMF By and F10.7 variations appear to demonstrate broadly complementary changes over 

the key date of the composite: while F10.7 and GCR decrease, UV shows an increase in 

activity. Although the various solar parameters show indications of related variations, only the 

GCR demonstrates statistically significant changes on the key date of the MLD composite.  

 

 

 

Figure 5.19 MLD sample: rate of GCR flux  

Rate of GCR flux calculated from daily average neutron counts (drawn from 9 out of 11 neutron 
monitor sites, see table 5.1 for specific sites). Units are calculated as a percentage relative to the 
peak-to-peak variations experienced over an 11-year solar cycle. Statistically significant 
changes are indicated by markers. The confidence interval at the 0.95 level is shown by the 
dotted lines. 
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Figure 5.20 MLD sample: IMF variations  

Average rate of IMF A) Bz and B) By components over the MLD composite. Dotted lines 
indicate the 0.95 level confidence interval. Statistically significant changes are indicated by 
markers. 
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Figure 5.21 MLD sample: solar activity variations  

Average rate of A) F10.7 (10.7 cm 2.8 GHz radio flux) and B) UV (MG II index) variations 
over the MLD composite. Dotted lines indicate the 0.95 level confidence interval. 
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Parameter Data coverage (%) 

IMF By 59 

IMF Bz 42 

UV 74 

F10.7 42 

 

Table 5.5 MLD sample IMF, UV, and F10.7 data coverage  

IMF, UV and F10.7 data coverage over the MLD composite expressed as a percentage. 

 

 

5.4.1  MLD sample: anomalous cloud changes 

A plot of globally-averaged anomalous cloud changes occurring over the MLD composite 

period shows that statistically significant increases in the rate of cloud change (of approximately 

0.6 %) are observed, centred around day -6 at mid-tropospheric levels (figure 5.22). These cloud 

changes correspond to a statistically significant increase in the rate of GCR flux. After day -2 

the cloud anomalies were seen to reverse sign, reaching a maximal decrease on the key date of 

the composite of around -2 % (figure 5.22); these anomalies were observed to occur primarily at 

mid- to low tropospheric levels (between 500–1,000 mb) (figure 5.22). The statistically 

significant increases and decreases in cloud observed on days -6 and 0 show a positively 

correlated co-temporal relationship to statistically significant variations observed in the rate of 

GCR flux. 

A plot of latitudinally-averaged cloud anomalies occurring over the sample period indicates that 

the statistically significant anomalies are concentrated at mid-latitude regions and show a 

remarkably symmetrical pattern of change about the equator. The statistically significant 

northern hemisphere anomalies ranged between approximately 60°N–20°N and demonstrated a 

bimodal peak at 50°N and 25°N of around -4 %. On the other hand, the southern hemisphere 

anomalies occurred between approximately 15°S–60°S and were concentrated around a single 

centre of activity located at 25°S (where anomalies of up to -5 % were observed). The positive 

anomalies around day -5 appear to be far more limited in extent and magnitude than the 

subsequent key date changes (figure 5.23). 

A vertical profile of the anomalous cloud changes occurring during the key date of the 

composite confirmed that statistically significant anomalies were predominately located at mid- 

to low tropospheric levels (figure 5.24). The most intense cloud changes across both 



 130 Chapter 5 – Internal Sampling 
 

 

hemispheres were found to occur at approximately 800 mb. Interestingly, a moderately intense 

anomalous decrease in cloud is also apparent over high tropospheric (10–180 mb) levels at high 

southern latitudes; this change is similar to the AGD and  adjusted FD samples, however this 

decrease is not statistically significant (figure 5.24). 

A pixel by pixel analysis of the cloud changes occurring on the key date shows locally 

significant anomalies (of around -12%) that are widespread across the mid-latitudes over both 

land and sea (figure 5.25). The sign of cloud changes observed on the key date is not found to 

be unidirectional; several spatially limited but intense areas of locally significant anomalous 

increases in cloud formation at low latitudes are also observed of up to 10 % (figure 5.25). To 

understand the detected changes, a plot of all anomalous cloud changes (significant and non-

significant) is presented (figure 5.26A) along with the climatology of the key date cloud cover 

(figure 5.26B). The patterns and positions of the intense low latitude anomalous cloud increases 

are suggestive of cyclonic activity, indicating that the composite has not been fully successful at 

isolating atmospheric variability from the sample. However, an area averaged plot of cloud 

anomalies occurring over the MLD composite period for differing land cover regions over mid- 

latitude zones (Pacific, Atlantic and land) shows, that on average, all areas demonstrated a 

comparable pattern of cloud change (figure 5.27). 
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Figure 5.22 MLD sample: globally-averaged cloud anomalies  

Anomalous cloud changes, occurring across globally-averaged pressure levels between 10 and 
1,000 mb as a function of time. Statistically significant changes are indicated by solid contours. 
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Figure 5.23 MLD sample: latitude/time cloud anomalies  

A plot of 5° latitudinally-averaged cloud anomalies (10–1,000 mb) over the composite period. 
Statistically significant changes are indicated by solid contours. 
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Figure 5.24 MLD sample: pressure level/latitude cloud anomalies  

A vertical profile of 5° latitudinally-averaged anomalous cloud changes (10–1,000 mb) 
occurring on the key date of the MLD sample. Regions of statistically significant changes are 
indicated by solid contours. 
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Figure 5.25 MLD sample: locally significant cloud anomalies 

A Robinson projection of locally significant anomalous cloud changes (10–1,000 mb) occurring 
on the key date of the MLD sample. 
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Figure 5.26 MLD sample: global cloud anomalies  

A) Robinson projection of mean anomalous cloud changes (10–1,000 mb) occurring on the key 
date of the MLD sample. All anomalies are displayed regardless of statistical significance. B) 
average cloud cover (10–1,000 mb) on the key date of the MLD composite. 
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Figure 5.27 MLD sample: Pacific, Atlantic and land area cloud  

Area-averaged cloud anomalies in mid-latitude zones over the MLD composite period, for 
Pacific, Atlantic and land area pixels. Cloud anomalies are calculated between 10 and 1,000 mb. 

 

5.4.2  MLD sample: discussion 

In agreement with the previous GI and AI samples, the MLD sample identified a statistically 

significant positive co-temporal relationship between the rate of GCR flux and cloud anomalies. 

In this instance, the anomalies were located at mid- to low tropospheric levels over mid-latitude 

regions. Past studies have suggested the existence of a relationship between mid-latitude regions 

and the GCR flux, for example: Harrison and Stephenson (2006) identify a small but 

statistically significant relationship between the GCR flux and the diffuse fraction (DF) 

measured from UK meteorological sites. While studies by Tinsely and Deen (1991) and 

Veretenenko et al. (2005) have suggested that GCRs may enhance the activity of mid-latitude 

cyclones during winter months. In addition, the work by Kniveton and Todd (2001) shows a 

positive relationship between the GCR flux and precipitation/precipitation efficiency over mid-

latitude storm track regions. The locally significant cloud anomalies seen in the MLD sample do 

not appear to be directly located over storm track regions, in fact several centres of activity are 
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located in prominent semi-permanent high pressure blocking regions (such as the North 

American high, and Siberian High).  

 

An analysis of the annual distribution of the MLD sample key dates indicates that the sample 

has a bimodal nature, peaking at around the time of the solstices. This complements the findings 

of Tinsley and Deen (1991), who’s work indicates that significant decreases in mid-latitude 

cyclonic activity are correlated with significant reductions in the rate of GCR flux during 

northern and southern hemisphere winter months. Tinsley and Deen (1991) suggest that the 

mechanism controlling this relationship is electrofreezing: a GEC related process which 

influences the growth and development of ice crystals within high level clouds, which in turn 

are capable of glaciating mid-level clouds in cyclonic systems (via a seeder-feeder process) 

(Tinsley, 2000).  

 

It is possible that the cloud anomalies shown over the MLD sample may be attributable to a 

direct IMN effect. A recent study has proposed an interesting mechanistic insight into how IMN 

may affect cloud changes over sensitive (aerosol impoverished) regions which may be of 

relevance to the observations presented here: it has been suggested that Rayleigh-Bérnard (RB) 

convection cell cloud systems (located in the high-pressure return-flow regions of the Hadley 

cells) may be highly sensitive to changes in cloud condensation nuclei (CCN) (Rosenfeld et al., 

2006) and that differences in CCN concentrations may drive a change from closed state to open 

state RB cells, varying the amount of cloud over mid-latitude regions. As IMN processes are 

most likely to be significant over aerosol impoverished clean-air oceanic regions (such as those 

where RB cells are located) (Yu et al., 2008), potential changes in CCN populations by IMN 

processes over mid-latitude oceanic regions may potentially play a role in regional cloud 

modulation. Although the response also depends on several factors including: the state of low 

latitude thunderstorm generators; the local profile of aerosols and radon; and, whether ice or 

warm-cloud processes are locally dominant. Furthermore, it is theoretically implausible that a 

GEC mechanism is influencing the observed MLD cloud anomalies for the following reason: 

after decreases in the GCR flux atmospheric ionisation is reduced; the magnitude of this 

reduction corresponds to Earth’s geomagnetic field strength and is therefore largest at high 

latitudes weakest at low latitudes (Hays and Roble, 1979). As a consequence of the non-uniform 

nature of the increased atmospheric resistivity, Jz is diverted from high latitudes to lower 

latitudes. This results in a decrease in Jz at high latitudes during GCR decreases, but an increase 

in Jz at low (< 50°) latitudes (Sapkota and Varshneya, 1990, Tinsley and Yu, 2004). Thus during 

the MLD sample, it is likely that Jz increases are occurring at mid- to low latitudes during the 

key date of the sample; these changes are of the incorrect sign to account for cloud decreases. A 

review and discussion of these findings are presented in Laken et al. (2010). 
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5.5  General discussion  

Objective 1:  To test for the existence of a relationship between clouds and the GCR flux 
using a methodological approach based on the composite sampling techniques 
of past daily timescale GCR studies. 

 

The composite methodologies previously utilised in FD-based analysis have been modified to 

create a sampling regime based on internal (cloud) datasets. From this novel sampling basis, a 

number of composites have been selected which identify a statistically significant, positive, co-

temporal relationship between cloud anomalies and variations in the rate of GCR flux, 

successfully meeting the requirements of objective 1.  

The relationships identified, suggest the occurrence of two seemingly different cloud responses: 

(1) A high latitude/mid- to high level cloud response. For the GI and AI samples the cloud 

anomalies are found to be largest at high latitude regions; this may imply a connection between 

the observed anomalous cloud changes and variations in atmospheric ionisation (occurring 

during changes in the rate of GCR flux); this potentially implies that a GEC related mechanism 

is responsible for the observed effects. (2) A mid-latitude/mid-to low-level cloud response. The 

MLD sample shows cloud changes occurring at low tropospheric levels over mid-latitude 

regions in association with changes in the rate of GCR flux. Past studies have suggested that 

low tropospheric levels may be key areas with regards to the expression of a GCR–cloud link ( 

Marsh and Svensmark, 2000; Pallé et al., 2004a). This effect is thought to be most relevant over 

clean environments with relatively low abundances of tropospheric aerosols (Kristjánsson and 

Kristiansen, 2000; Rosenfeld et al., 2006). The identification of statistically significant 

anomalous cloud changes over mid-latitude/low-level regions may imply an IMN effect 

(although the inefficacy of this process has been suggested by several studies (Carslaw, 2009)). 

Alternatively, decreases in mid-latitude cloud cover may also relate to the GCR flux via 

microphysical cloud changes mediated by a GEC mechanism. Like-sign charges are conferred 

upon cloud droplets and aerosol particles at the boundaries of clouds as a result of current flow 

in the GEC. This produces both long-range repulsive forces (termed electro-anti-scavenging) 

and short-range attractive forces (termed electro-scavenging). For small cloud droplets with a 

radius <0.05 μm, electro-anti-scavenging processes dominate. This reduces the collision 

efficiency below normal levels, resulting in a decrease in the growth of cloud droplets. 

However, for larger droplets (with a radius >0.05 μm) electro-scavenging processes dominate: 

the attractive, short-range, electrical image forces increases the collision rates of the cloud 

droplets. Consequently, the net droplet growth resulting from changes in droplet charging is a 

function of the droplet size distribution within the clouds. If larger (>0.05 μm radii) droplet 
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particles dominate the clouds present in the MLD sample, then a reduction in cloud amount may 

feasibly result from a decrease in electro-scavenging processes which may theoretically occur 

during a reduction in the rate of GCR flux (Zhou et al., 2009). 

While variations in the rate of GCR flux occurring over the FD-based studies in chapter 4 were 

related FD events, the AI and MLD samples may show indications of a relationship to short 

term minima/maxima in solar activity connected to the 27-day solar (Carrington) rotation. 

Indications of this are found in the linked responses of the IMF, UV and F10.7 changes, which 

may possibly show a harmonic relationship to Carrington rotation periods. 

Large and often statistically significant variations in the rate of cloud change of opposite sign 

appear to occur several days in advance of the key date of each sample. These alternate sign 

anomalies may simply be a consequence of the sampling approach: essentially, the process of 

compositing the largest cloud changes may have produced this pattern of change because the 

dates of most rapid cloud increase (decrease) are likely to follow a lull (increase) in activity. 

Over most of the samples, both the alternate sign cloud changes and the key date cloud changes 

are found to develop co-temporally with statistically significant variations in the rate of GCR 

flux. 

The observed variations in the rate of GCR flux occurring during the MLD sample and AI 

sample are roughly inverse: the MLD sample experiences an increase in the rate of GCR flux 

around day -5 and is immediately followed by a decrease which persists until the key date, 

whereas, the AI sample undergoes a significant decrease in the rate of GCR flux at around day 

-5, followed by an increase in the rate of GCR flux on the key date. However, despite the 

similar (but inverted) nature of the rate of GCR flux, the centres of statistically significant 

anomalous cloud activity occur over differing regions. Several possibilities may account for 

this: 

1) The cloud changes are unrelated to changes in the rate of GCR flux. 

2) The cloud response is a second order phenomenon. The MLD and AI samples may 

demonstrate differing underlying conditions as a result of the seasonal distribution 

identified in the samples. This coupled with the fact that the samples are engineered 

identify extreme cloud anomalies over specified regions may account for the differing 

response.  

As previously noted, the GI sample appears to be devoid of any apparent seasonal weighting to 

its distribution. The GCR variations observed over this sample show a clear a statistically 

significant peak in activity on the key date of the composite; no other solar activity parameter 

was found to demonstrate a similar change. Over the GI sample the anomalous cloud changes 
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demonstrate a strongly symmetrical nature of in both hemispheres, with the locally significant 

cloud anomalies decreasing in magnitude and extent towards low latitudes. These properties 

provide a strong indication that this sample has indeed identified a robust and reliable indication 

of the effect of changes in the GCR flux on cloud change. The GI sample indicates variations in 

cloud cover over regions such as the Arctic may be influenced by changes in the rate of GCR 

flux. However, significance testing of the largest Arctic cloud changes indicates no statistically 

significant relationship to GCR (table 5.2). If it is assumed that GCR variations do influence 

cloud over the Arctic, this situation may illustrate a limit of this method of analysis, as natural 

variability across the Arctic region may outstrip GCR-enhanced cloud variations, making them 

undetectable; such a scenario may potentially apply to other regions. This suggests that the 

internal composite method may be a brute force approach, only able to detect the most apparent 

signals. Hence it may be wise to consider the GCR–cloud relationships identified by this 

analysis as merely preliminary, more sensitive approaches that account for internal variability 

need to be developed to more accurately gauge the nature of a GCR cloud relationship. 

Additionally, it should be noted that while the use of the ISCCP data allows for a global scale 

examination of the GCR–cloud hypothesis, the low spatial resolution of the ISCCP dataset 

prohibits an analysis of cloud changes at scales where information regarding microphysical 

mechanisms may be obtained. Therefore, while an analytical approach such as this is useful for 

validation of the presence of a GCR–cloud connection, it should be used in conjunction with 

high resolution monitoring of clouds to gain an understanding of the specifics behind GCR–

cloud mechanisms. 

Another aspect of the methodological approach which warrants discussion concerns the use of 

rates of change. It is clear that the use of rates has allowed the identification of a GCR–cloud 

connection. However, it is unclear if this is merely a detection artefact, or if rates changes are 

related to a GCR–cloud microphysical process. With regards to IMN, it may be argued that rates 

of change may potentially be involved in microphysical processes in the following manner: it 

has been proposed that IMN may be an ineffective process because before newly nucleated 

aerosol particles may accumulate in significant concentrations in the troposphere they will be 

depleted by CCN scavenging (Carslaw, 2009). However, CCN scavenging can only occur at a 

finite rate. Consequently, if the rate of aerosol production undergoes a rapid increase, beyond 

the capacity of CCNs to control the population by scavenging, an accumulation of aerosols may 

occur. Consider the following scenario: a change in the GCR flux of x % occurs over a given 

time (t) at a constant rate (scenario A), now consider the same change x % occurs over t x 2 

(scenario B). In scenario B the rate of GCR flux is double that of scenario A, although the 

absolute change is the same; however, in scenario A aerosol nucleation occurs relatively slowly, 

consequently CCN are more able to maintain aerosol concentrations at a steady level relative to 



 141 Chapter 5 – Internal Sampling 
 

 

scenario B by scavenging processes. A similar scenario may be envisaged for GEC mechanisms 

in relation to the accumulation of space charge at cloud boundaries; with a greater rate of GCR 

change it may be expected that the accumulation of space charge is more intense (as the charge 

has less time to dissipate), potentially increase the magnitude of GEC based mechanisms. It is 

therefore argued that rates of GCR flux are important to GCR–cloud processes. 

A major limitation of the cloud analysis involves the reliability of satellite based cloud retrievals 

over high latitude regions, such detections are problematic as retrieval algorithms essentially 

differentiate between cloud and surface based on temperature and reflectivity (Rossow and 

Schiffer, 1999; Todd and Kniveton, 2004). Consequently, over ice covered surfaces clouds are 

difficult to detect, this problem is further exacerbated during polar night when intense 

temperature inversions occur. These issues are of relevance as the GI and AI samples 

highlighted statistically significant cloud anomalies over high latitude regions. Consequently, it 

would be wrong to place confidence in these results without confirming these findings in 

alternative datasets: a consideration of this signal validation will be given in the following 

chapter.   

 

 

5.6 General summary 

It has been speculated that an internal sampling approach may be successful in detecting a 

GCR–cloud signal, as relationships between GCR and cloud changes may be constrained by 

preceding atmospheric conditions. This chapter presented the results of such an internal 

sampling approach and identifies several statistically significant, positive, co-temporal 

relationships between changes in the rate of GCR flux and cloud anomalies. Over these samples 

it is possible to distinguish variations in the GCR flux from solar irradiance and IMF changes; 

the results strongly suggest that no other solar activity parameter may be causally related to the 

detected cloud anomalies. The spatial and temporal characteristics of the anomalous cloud 

changes are described in detail and these features are discussed in relation to both previously 

reported GCR–cloud relationships and potential mechanisms. Overall, these results show the 

clearest evidence yet presented of a GCR–cloud link. However, it is noted that many of the 

identified cloud anomalies are located in regions where ISCCP data is known to be subject to 

retrieval errors. 



 142 Chapter 6 – Atmospheric Analysis 
 

 

Chapter 6   Atmospheric Analysis 
 

6.1 An atmospheric perspective 

Clouds are capable of exerting a strong influence on climate both directly and indirectly. Direct 

effects result from modifications to Earth’s radiation balance, while indirect effects can result 

from either dynamic or thermodynamic processes. Many aspects of the interactions between 

clouds and the climate system are not fully understood and are consequently inadequately 

incorporated in to climate models (Quante, 2004). As a result, the IPCC indentifies clouds and 

cloud-related feedbacks as one of the largest sources of uncertainties associated with predicting 

future climate change (Houghton et al., 2001). This chapter will use NCEP/NCAR reanalysis 

data in order to determine if any significant atmospheric variations are occurring during the 

composite samples described in chapters 4 and 5; this analysis will demonstrate the extent to 

which GCR related cloud changes may interact with the atmosphere. Any anomalous changes 

detected will be useful for several reasons: (1) they will aid in developing an understanding of 

the exact nature of a GCR–climate relationship; (2) they will provide a basis upon which to 

compare the results of subsequent climate model experiments; and (3) they will provide a 

method of signal triangulation (i.e. detecting atmospheric variations related to observed cloud 

anomalies will both confirm and validate the presence of the satellite retrieved cloud 

anomalies). Such an approach is particularly important as satellite cloud retrievals are known to 

be notoriously erroneous over high latitude regions (Rossow and Schiffer, 1999; Todd and 

Kniveton, 2004). Consequently, verification of the signal in alternate atmospheric datasets will 

enable a higher level of confidence to be placed in the results. 

 

 

6.1.1 Chapter format 

The results of the atmospheric analysis will be presented in four sub-sections, each of which 

will relate to a separate composite sample discussed in previous chapters. 

Section 6.2 – Adjusted Forbush decrease (FD) sample 

Section 6.3 – Global cloud increase (GI) sample 

Section 6.4 – Antarctic cloud increase (AI) sample 

Section 6.5 – Mid-latitude cloud decrease (MLD) sample 
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Within each sub-section a concise presentation, description and analysis of the changes in 

various atmospheric parameters over the samples will be given. This analysis will be primarily 

based on the NCEP/NCAR reanalysis data, although samples which have demonstrated the 

possibility of an Antarctic cloud response will also be supplemented with automatic weather 

station data from Dome C (located on the Antarctic plateau [77.50 °S, 123.00 °E, 3280 m]), as 

this provides independent ground-based verification for the reanalysis data over a region where 

retrievals are arguably the most questionable (Hines et al., 2000; Marshall, 2002). A description 

of the atmospheric datasets and data handling procedures applied to them has been given in 

chapter 3.  

 

 

6.2 Adjusted FD sample: cloud anomalies 

To recap the cloud change findings of the adjusted FD sample, no widespread or statistically 

significant cloud anomalies over the globe were detected. Although, several small locally 

significant cloud decreases were observed at high southern latitudes over limited regions of the 

Antarctic plateau the anomalies were not found to be field significant. These anomalies occurred 

around day -2 of the composite at high (10–180 mb) pressure levels. The timing of these 

anomalies corresponds to the onset of statistically significant GCR decreases (which begin on 

day -3 and continue until day 3 of the composite). 

 

 

6.2.1 Adjusted FD sample: air temperature 

During the adjusted FD sample, globally-averaged air temperature anomalies do not 

demonstrate any statistically significant variations at any pressure level over the sample period 

(figure 6.1). However, a vertical profile of day -2 air temperature anomalies does show the 

presence of a statistically significant anomalous decrease of around -0.6 K located around 50°S 

and an increase of approximately 0.6 K located between 10°S and 10°N. In both instances these 

anomalies occur at low tropospheric levels (between 950 and 500 mb) (figure 6.2). An 

examination of the locally significant air temperature changes occurring over the Antarctic 

region identifies several highly localised anomalous surface level air temperature increases of 

around 4 K which occur on the Antarctic plateau (figure 6.3). 
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Figure 6.1 Adjusted FD sample: global air temperature anomaly  

Globally-averaged anomalous air temperature changes occurring between 50 and 1,000 mb 
during the adjusted FD sample. 
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Figure 6.2 Adjusted FD sample: day -2 air temperature anomaly  

A plot of 5° latitudinally-averaged air temperature anomalies, occurring on day -2 of the 
adjusted FD sample. Statistically significant changes are indicated by solid black contours. 
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Figure 6.3 Adjusted FD sample: Antarctic air temperature anomaly  

Locally significant surface level anomalous air temperature changes, occurring on day -2 of the 
adjusted FD composite over the Antarctic region.  
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6.2.2 Adjusted FD sample: pressure 

Globally-averaged geopotential height (GPH) anomalies do not demonstrate any statistically 

significant changes over the sample period (figure 6.4), although latitudinally-averaged GPH 

anomalies occurring on day -2 did show the presence of statistically significant anomalies 

located in the southern hemisphere. The sign of the anomaly varies with latitude: at 

approximately 70°S, GPH increases by approximately 15 m; while between 60°S and 40°S GPH 

decreases by as much as -30 m; between 30°S and 10°S, GPH increases by as much as 40m. 

These statistically significant anomalies are found to be most intense at high pressure levels 

(between 50 and 150 mb) (figure 6.5). Despite the latitudinally-averaged significance, no locally 

significant pressure anomalies are detected. 

 

Figure 6.4 Adjusted FD sample: global GPH anomaly  

Globally-averaged anomalous GPH changes occurring between 50 and 1,000 mb, during the 
adjusted FD sample. 
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Figure 6.5 Adjusted FD sample: day -2 GPH anomaly  

A plot of 5° latitudinally-averaged GPH anomalies, occurring on day -2 of the adjusted FD 
sample. Statistically significant changes are indicated by solid black contours. 
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6.2.3 Adjusted FD sample: wind 

Globally-averaged wind anomalies do not show any statistically significant zonal or meridional 

variations over the composite period at any pressure level (figure 6.6). However, latitudinally-

averaged anomalies show several small yet statistically significant positive (westerly) zonal 

anomalies occurring on day -2 of the composite, the most intense of which is located at low 

tropospheric levels around 40°S with changes of around 0.3 m s-1 observed (figure 6.7A). 

Meridional wind anomalies demonstrate the most widespread statistically significant variations, 

with two large areas of significant changes in the Southern hemisphere: an increase (indicating 

enhanced southerly flow) located between 60°S and 40°S, and a decrease (indicating enhanced 

northerly flow) located between 30°S and 10°S. Although the anomalies extend to surface level, 

the changes are only statistically significant between 300 and 50 mb (figure 6.7B). The pattern 

of the meridional anomalies (opposing flows) may suggest the presence of a cyclonic system.  

A plot of horizontal vector wind changes on day -2 (figure 6.8) illuminates the findings of figure 

6.7 and suggests that a number of changes are occurring, including an easterly intensification of 

Arctic zonal winds in the upper troposphere, with an associated increase in wind towards the 

Arctic around the Icelandic and Aleutian low pressure regions, and increased flow from the 

Arctic to the North Pacific over the easternmost region of Siberia. These anomalies appear to 

violate the average mean flow patterns (for a ready comparison, the average horizontal vector 

wind conditions are shown in figure 6.9). Similarly, in the southern hemisphere, vector wind 

anomalies again appear to violate the mean state; anomalous cyclonic flows around mid-latitude 

regions appears to be highly disturbed. It is these flows which resulted in the patterns of 

significant meridional anomalies (figure 6.7B). Furthermore, anomalous northerly winds are 

observed at peripheral regions of the Antarctic continent around 0° and 140°W and anomalous 

westerly winds are also observed over Antarctica around 150°E. The extent to which these 

anomalous circulation patterns may influence regional climate is indicated by figure 6.10; this 

figure overlays locally significant anomalous surface level air temperature variations with 

horizontal vector wind over the Antarctic region. The data suggest that the statistically 

significant air temperature increases of around 4 K (previously presented in figure 6.3) are 

closely related to anomalous northerly flows, suggesting that the temperature changes may be 

the result of enhanced lateral advection.  
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Figure 6.6 Adjusted FD sample: global wind anomaly  

Globally-averaged anomalous A) zonal and B) meridional wind changes, occurring between 50 
and 1,000 mb during the adjusted FD sample.  
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Figure 6.7 Adjusted FD sample: day -2 wind anomaly  

A plot of 5° latitudinally-averaged anomalous A) zonal and B) meridional wind changes, 
occurring between 50 and 1,000 mb on day -2 of the adjusted FD sample. Statistically 
significant anomalies are indicated by solid black contours. 
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Figure 6.8 Adjusted FD sample: day -2 vector wind anomaly  

Horizontal vector wind anomaly on day -2 of the adjusted FD sample at 50 mb. 

 

 

Figure 6.9 Horizontal wind vector mean conditions  

Five-year average surface level vector winds. Size of the vectors indicates their magnitude, 

reference vector of 10 m s-1 is shown (top right corner). 
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Figure 6.10 Adjusted FD sample: day -2 Antarctic atmospheric disturbance  

Day -2 locally significant surface level air temperature anomalies (displayed by filled contours) 
with anomalous horizontal vector winds overlaid on to a polar stereographic projection of the 
Antarctic region. 
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6.2.4 Adjusted FD sample: precipitable water content 

To further analyse the atmospheric variations occurring over Antarctica on day -2 of the 

composite, locally significant anomalous precipitable water content (PW) changes are plotted 

(figure 6.11). The location of significant PW anomalies correspond to anomalous air 

temperature/vector wind changes observed in figure 6.10. The spatial correlation of these 

changes implies that there is a lateral advection of warm and relatively moist air from lower 

latitudes occurring due to anomalous wind patterns; resulting in increased temperature and 

precipitation over small areas of Antarctica.  

 

Figure 6.11 Adjusted FD sample: Antarctic precipitable water content  

Day -2 locally significant precipitable water content anomaly over the Antarctic region. 
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6.2.5 Adjusted FD sample: Dome C station data 

Automatic weather station (AWS) data from Dome C located on the Antarctic plateau (77.50°S, 

123.00°E, 3280m) provides meteorological observations at a 10-minute resolution, from 1984 to 

the present day. From this dataset, daily averages of air temperature and pressure are 

constructed; these data are presented here for the adjusted FD sample (figure 6.12). 

A statistically significant air temperature increase of approximately 4 K is observed around day 

-2 of the composite period. Pressure anomalies appear to demonstrate a comparable pattern of 

variability although, no statistically significant changes are observed.  The AWS data support 

the indications from the NCEP/NCAR reanalysis data that significant anomalous increases in air 

temperature are observed over limited areas of the Antarctic plateau on day -2 of the composite. 
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Figure 6.12 Adjusted FD sample: Dome C AWS data  

Anomalous A) air temperature and B) pressure data recorded at the Antarctic plateau Dome C 
AWS (77.50°S, 123.00°E) during the adjusted FD sample period. Dotted line displays the 0.95 
confidence interval, while markers indicate statistically significant anomalies (above the 0.95 
critical level).   
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6.2.6 Adjusted FD sample: analysis and discussion 

Generally, the adjusted FD sample demonstrated a low-level of statistical significance; although 

no significant anomalies were detected at a global scale, some areas of significant atmospheric 

variability were detected in the southern hemisphere at a latitudinally-averaged scale. The 

majority of these latitudinally significant atmospheric anomalies were observed on day -2 of the 

sample, in agreement with the development of locally significant cloud decreases over small 

areas of the Antarctic plateau. Although the anomalous cloud and temperature/wind changes 

may be linked via the Antarctic katabatic circulation, it seems unlikely that the cloud anomalies 

bear a causal relationship to the temperature/wind anomalies. It seems more likely that the upper 

level Antarctic cloud decreases observed around day -2 might be connected to atmospheric 

variability rather than a GCR-related process: it is known that the formation and development of 

cirrus clouds (of which it is possible the clouds in this instance are comprised) are influenced 

dynamically by gravity waves (Kärcher and Ström, 2003), these are a widespread phenomenon 

which commonly result from mesoscale atmospheric variability. As widespread atmospheric 

variability was observed over high Southern latitude ocean regions it may be plausible, that the 

observed cloud decreases are merely a consequence of dynamic atmospheric variability. Such 

issues highlight the problems associated with the low signal-to-noise ratio (SNR) of FD-based 

analysis and again highlights the need to utilise large sample sizes when dealing with such 

composites. 

Both the cloud and air temperature anomalies detected by the adjusted FD composite compare 

well to the findings of Todd and Kniveton (2001; 2004) (hereafter collectively referred to as 

TK). The adjusted FD sample is partially based on the dates of TK and consequently may be 

reflecting similar atmospheric variability. The high level cloud decreases and surface level 

temperature increases detected by both the adjusted FD sample and TK are not compatible with 

a contemporary understanding of the impacts of clouds over high latitude ice-covered surfaces; 

the effect of clouds over such regions should be to promote warming (Stone and Khal, 1991). 

This implies the temperature changes are not causally related to the cloud anomalies, instead, it 

is more likely that the temperature (and possibly cloud) changes are the result of mesoscale 

atmospheric variability detected over the Southern hemisphere circumpolar region. 

Additionally, further studies should focus on possible solar affects on the katabatic circulation 

and polar vortex in response to inputs from the IMF or SEP events, as it has been suggested that 

these factors may be more significant than GCR variations during FD events (Schuurman and 

Oort, 1969; Troshichev and Janzhura, 2004). 

Some research suggests that Antarctic wind anomalies may be linked to FD events and this 

relationship may influence climate across the Southern hemisphere (Egorova et al., 2000; 
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Troshichev et al., 2008). However, there is no evidence for a physical process linking the 

limited upper tropospheric cloud decreases to the anomalous wind flow patterns demonstrated 

within this sample. A dynamic link between the observed cloud changes, wind patterns and 

regional atmospheric variability as proposed seems unlikely in this instance due to the small 

scale and isolated nature of the (upper-level) cloud anomalies relative to the  (low-level) 

tropospheric disturbances. This suggests that the cloud variations are not responsible for driving 

the anomalous atmospheric variations. Instead, it is more likely that the cloud changes are 

themselves related to the variations via tropospheric dynamics (such as atmospheric waves 

producing high level cloud formations). 

 

 

6.3 GI sample: cloud anomalies 

This sample (discussed in section 5.2) appears to provide the most geographically widespread 

and statistically robust evidence currently found of a GCR–cloud change link. It identified 

locally significant increases in cloud cover over widespread areas of high latitude regions in 

both hemispheres. These changes range from approximately 10–25 %, and occurred in 

conjunction with statistically significant increases in the rate of GCR flux observed at neutron 

monitor sites across the globe. The results of this sample are perhaps the most compelling 

evidence yet shown of a GCR–cloud link.  

 

 

6.3.1 GI sample: air temperature  

An examination of globally-averaged air temperature anomalies occurring across the GI 

composite period indicates that no statistically significant changes (above the 0.95 critical level) 

are occurring. However, the data show that a negative temperature anomaly (of approximately 

-0.1 K) develops at low tropospheric levels around the key date of the sample (figure 6.13). A 

plot of latitudinally-averaged key date air temperature anomalies reveals that a complex range 

of significant temperature anomalies are occurring. An increase in air temperatures is identified 

at high southern latitudes in the upper troposphere from 90°S–50°S, located between 50 and 

400 mb. At latitudes greater than 50°S the anomaly is located at high tropospheric levels; 

however, around 50°S it extends throughout the remaining troposphere to sea level. It is at this 

position where the anomaly shows statistical significance. Additionally, significant decreases in 
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air temperature are also observed between 35°S and 25°S and 30°N–50°N occurring between 

100 and 300 mb and 500–800 mb respectively; the magnitude of these decreases ranges from 

approximately -0.8 to -2.0 K (figure 6.14). A pixel-by-pixel analysis of anomalous surface level 

air temperature changes on the key date reveals that only air temperature decreases over the 

polar regions are locally significant;  these decreases are observed in both hemispheres at 

latitudes greater than 75°N/S. The most intense decreases are around -3 K and are observed over 

the interior of the Antarctic continent and regions of the Arctic ocean (figure 6.15). Such 

temperature anomalies are probably responsible for the observed (non-significant) global 

average low altitude temperature decrease detected around the key date in figure 6.13. 

 

 

Figure 6.13 GI sample: global air temperature anomaly 
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Globally-averaged anomalous air temperature changes occurring between 50 and 1,000 mb 
during the GI sample. 

 

Figure 6.14 GI sample: key date air temperature anomaly  

A plot of 5° latitudinally-averaged air temperature anomalies, occurring on the key date of the 
GI sample. Statistically significant changes are indicated by solid black contours. 

 

 

 

 

 



 161 Chapter 6 – Atmospheric Analysis 
 

 

 

Figure 6.15 GI sample: global air temperature anomaly  

Locally significant surface level anomalous air temperature changes occurring on the key date 
of the GI sample.  

 

  

6.3.2 GI sample: pressure 

Globally-averaged anomalous GPH changes over the sample period show a statistically 

significant decrease of approximately -1 m occurring between 400 and 200 mb on day -2 

(figure 6.16). This anomaly appears to be associated with a widespread GPH decrease occurring 

at upper to mid- tropospheric levels between days -6 to 0. A latitudinally-averaged plot of key 

date GPH anomalies indicates that the statistically significant changes occur predominately at 

mid- tropospheric levels. These changes are most intense in the southern hemisphere, however 

they also occur to a lesser extent around 0°, 10°N–20°N, 35°N–55°N and 75°N–85°N (figure 

6.17). In the southern hemisphere, a GPH decrease of around -5 m is detected between 75°S and 

40°S while between 40°S and 20°S an anomalous increase in GPH of around 6m is detected. 

This pattern of change is similar to that observed in the air temperature data and may suggest 

the presence of a circulatory anomaly over the southern hemisphere (this idea will be explored 

further in section 6.3.7). 
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A pixel-by-pixel analysis of key date, surface level, pressure anomalies identifies a locally 

significant decrease in pressure (of approximately 300 Pa day-1) centred over the Antarctic 

plateau. Two additional intense (but spatially limited) areas of significant pressure variations are 

also observed in the North and South Pacific regions (figure 6.18).  

 

 

 

Figure 6.16 GI sample: global GPH anomaly  

Globally-averaged anomalous GPH changes occurring between 50 and 1,000 mb during the GI 
sample. Statistically significant changes are indicated by solid black contours. 
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Figure 6.17 GI sample: key date GPH anomaly  

A plot of 5° latitudinally-averaged GPH anomalies, occurring on the key date of the GI sample. 
Statistically significant changes are indicated by solid black contours. 
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Figure 6.18 GI sample: global pressure anomaly  

Locally significant surface level anomalous pressure changes occurring on the key date of the 
GI sample (units in Pascals).  

 

 

6.3.4 GI sample: wind 

Whilst no statistically significant globally-averaged anomalous zonal or meridional wind 

changes were observed over the sample period (figure 6.19), zonal wind anomalies do show 

indications of a coherent positive (westerly) increase (of up to 0.1 m s-1 day-1) between days -4 

to 2. Latitudinally-averaged zonal wind anomalies show intense, statistically significant, 

negative (easterly) changes of around -0.12 m s-1 day-1 at low tropospheric levels (between 

1,000 and 700 mb) located at approximately 60°S and 20°N. Non-significant positive (westerly) 

zonal wind anomalies of up to 0.1 m s-1 day-1 also occur at higher altitudes directly above both 

of these negative anomalies (figure 6.20). These westerly zonal anomalies correspond spatially 

to the locations of the sub-tropical jet streams and may indicate that an intensification of the jet 

streams is occurring. These changes appear to be responsible for the previously discussed global 

average positive zonal wind increase around the key date of the composite (figure 6.19). These 

zonal anomalies are situated directly between statistically significant positive (southerly) and 

negative (northerly) meridional anomalies (located between 60°S and 30°S and between 5°N 
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and 50°N); this may indicate a relationship between meridional variability in the low 

troposphere and the position of the sub-tropical jet streams.  

A plot of surface level, horizontal vector wind anomalies on the key date reveals the occurrence 

of widespread disturbances of around 2 m s-1 day-1over regions of the southern hemisphere 

around 60°S (particularly over the South Pacific) and also, to a lesser extent in areas of the 

Arctic ocean (around 80°N) (figure 6.21). The disturbed wind flow patterns prevalent over mid-

southern latitude regions may indicate that a regional alteration to the polar atmospheric 

circulation has occurred, since climate variability in this region is dominated by the state of the 

Antarctic circumpolar flow (Thompson and Solomon, 2002). 



 166 Chapter 6 – Atmospheric Analysis 
 

 

 

Figure 6.19 GI sample: global wind anomaly  

Globally-averaged anomalous A) zonal and B) meridional wind changes occurring between 50 
and 1,000 mb during the GI sample.  
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Figure 6.20 GI sample: day -2 wind anomaly  

A plot of 5° latitudinally-averaged anomalous A) zonal and B) meridional wind changes 
occurring between 50 and 1,000 mb on the key date of the GI sample. Statistically significant 
anomalies are indicated by solid black contours. 
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Figure 6.21 GI sample: key date vector wind anomaly  

Surface level, horizontal vector wind anomaly on the key date of the GI sample. A 5 m s-1 
reference vector is displayed on the bottom right hand corner of graph. 

 

 

6.3.5 GI sample: precipitable water content 

A pixel-by-pixel analysis of variations in PW over the key date of the composite indicates 

locally significant decreases of around -0.8 kg m2 occurred across high latitude regions in both 

hemispheres: in the northern hemisphere these decreases primarily occur over Greenland and 

the Arctic ocean, whereas over the southern hemisphere the decreases primarily occur over the 

interior of the Antarctic continent (figure 6.22). 
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Figure 6.22 GI sample: global precipitable water content anomaly  

Locally significant precipitable water content anomaly occurring on the key date of the GI 
sample. 

 

6.3.6 GI sample: Dome C station AWS data 

Dome C AWS data show a statistically significant decrease in anomalous air temperatures on 

day -6 of around -2 K. Following this decrease, air temperatures recover to an undisturbed state 

by around day -4, after which time another statistically significant decrease of around -2 K 

occurs on day 0. A statistically significant decrease in pressure of around -2 mb also occurs on 

day -1 of the sample (figure 6.23). The pattern of air temperature changes over the GI sample 

detected at Dome C may possibly be explained by the series of cloud changes observed over the 

GI composite period. Around day -6, a significant anomalous decrease in cloud cover occurs at 

polar latitudes, whereas around day 0 a significant anomalous increase in cloud cover occurs. 

Although these cloud changes are opposing, they may result in air temperature decreases in both 

instances via different cloud–atmosphere interactions. A direct radiative cloud forcing on day -6 

may be capable of resulting in decreased air temperatures, while it may be hypothesised that an 

indirect dynamic cloud forcing on the key date may also be capable of reducing surface level air 

temperatures over the Antarctic plateau (this point will be explored further in the following 

section). Such a change may also offer an explanation for the observed pattern of pressure 

variability seen at the AWS. However, alternatively these observations may also suggest issued 

with the ISCCP cloud retrievals (this point will be elaborated upon in the following section). 
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Figure 6.23 GI sample: Dome C AWS data  

Anomalous A) air temperature and B) pressure data recorded at the Antarctic plateau Dome C 
AWS (77.50°S, 123.00°E) during the GI sample. Dotted lines display the 0.95 level confidence 
interval, while markers indicate statistically significant anomalies (above the 0.95 critical level). 
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6.3.7 GI sample: analysis and discussion 

The GI sample was based around the top 5 % most rapid increases in cloud cover across the 

Earth (over an equal-area-adjusted grid) occurring over daily timescales; the global cloud 

increase signal was found to be the result of cloud changes (of around 25%) at high latitude 

regions in both hemispheres. An atmospheric analysis identified locally significant temperature, 

pressure and precipitation changes over comparable regions to the identified polar cloud 

changes and also showed a number of statistically significant anomalies occurring across a 

range of lower latitude zones; the implications of these findings will now be discussed. 

The surface level air temperature decrease detected over widespread regions of the Arctic and 

Antarctic are of particular note. Assuming cloud increases are occurring, this anomaly is 

unexpected, as it is well established that the dominant influence of clouds over high latitude ice 

covered regions should be to warm the local environment (Stone and Khal, 1991). This suggests 

several possibilities: (1) the detected cloud increases are false, (2) the cloud–temperature 

changes are unrelated, or (3) if the cloud–temperature changes are both real and related then it 

implies the occurrence of a previously unrecognised cloud–climate interaction. 

With regards to the first possibility, it is known that both reanalysis and ISCCP data are subject 

to errors over high latitude regions (Kalnaya et al., 1996; Rossow and Schiffer, 1999). However, 

the verification of decreased temperatures over Antarctica during the key date by AWS data 

suggests that the findings of the reanalysis are reliable. The ISCCP detection of cloud relies on 

temperature and reflectivity, consequently temperature changes over (highly reflective) ice-

covered regions may be incorrectly interpreted as cloud changes. These findings may suggest 

that the cloud detections are artefacts resulting from the air temperature changes themselves 

(although if this possibility is correct, this raises the question why are the air temperature 

changes occurring and why do they demonstrate a co-temporal relationship to GCR variations). 

The second and third possibility will be tested by the use of GCM based experimentation. With 

regards to the third possibility, a theory as to how a high latitude temperature decrease might 

result from cloud increases can be postulated. The surface level temperature anomalies may be 

the result of an indirect circulatory change over the region (as opposed to a direct radiative 

forcing), which could be explained by the following scenario: 

Step 1 Widespread high latitude increases in high level cloud warm the surrounding air by 

absorption and re-emission of outgoing LW radiation. 

Step 2 Air at high tropospheric levels over the Antarctic plateau normally descends towards 

surface level in a key component of polar circulation (the polar vortex (PV)), however, 

the warmed air is less likely to converge towards surface level. 
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Step 3 The reduction in the descent of air in the PV results in a reduction of surface level 

temperature. This is because the superposition of constant radiative cooling of surface 

level air and the adiabatic warming of descending air maintains a quasi-stable thermal 

equilibrium which can be disrupted by a reduction in the descent of air in the PV 

(Troshichev and Janzhura, 2004). 

Step 4 The PV is crucial to climate across both hemispheres. As air descending in the PV 

reaches surface level, it undergoes intense radiative cooling and then drains towards 

lower latitudes in the katabatic wind regime under gravity. As the cold air meets 

warmer air masses at mid-latitudes, it is deflected eastwards; the constant flow of cold 

air maintains the cold low pressure system which surrounds high latitude regions 

(referred to as the circumpolar vortex). Consequently, due to the close association 

between the PV, katabatic wind regimes, and circumpolar vortices, changes to the 

system may result in alterations to the circumpolar vortices capable of influencing 

atmospheric variability at lower latitudes (Parish, 1992). 

Step 5 A weakened circumpolar vortex allows the encroachment of relatively warmer lower 

latitude air masses in to high latitude regions, and a shift in synoptic scale circulatory 

patterns across the globe.  

Tentative evidence supporting this hypothesis can be observed over the sample in both the air 

temperature and pressure data. The latitudinally average profile of key date air temperatures 

indicates a warming at high tropospheric levels over southern and northern polar latitudes 

(figure 6.14). In both hemispheres these air temperature increases approximately relate to the 

height of the observed cloud cover increases (over the Arctic, cloud cover increases occur at 

mid-tropospheric levels, whereas over the Antarctic, they occur at high tropospheric levels). 

Furthermore, the decrease of descending air in the PV should theoretically result in a 

corresponding decrease in pressure; such a decrease is observed over the Antarctic plateau 

(figure 6.18).  

It has already been established that atmospheric variations over the Antarctic region may 

indirectly affect climate at lower latitudes across the southern hemisphere (Trenberth, 1980; Mo 

et al., 1987; Smith and Stearns, 1993). Therefore, it is logical to suggest that the latitudinally-

averaged significant anomalies detected at lower latitudes may result from the observed high 

latitude climate anomalies. This may also provide an indication as to why the latitudinally-

averaged anomalies appeared more widespread and intense in the southern hemisphere, since 

there are large differences between the magnitude, duration, and integrity of polar circulations 

in the Arctic and Antarctic regions (Waugh and Randel, 1999).  
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6.4 AI sample: cloud anomalies 

The AI sample identified a statistically significant decrease in cloud cover of approximately 

-10 % between days -6 and -4 and a significant increase in cloud cover of approximately 30 % 

between days -2 and 1. These changes occurred at mid-to high tropospheric levels and were 

found to have a positive relationship to co-temporal, statistically significant, variations in the 

rate of GCR flux. 

 

 

6.4.1 AI sample: air temperature 

During the AI sample, globally-averaged air temperature anomalies did not show any 

statistically significant changes at any pressure level, although an anomalous decrease in air 

temperatures (of up to -0.1 K day-1) is observed at low tropospheric levels around the key date 

of the sample (figure 6.24). Latitudinally-averaged air temperature anomalies occurring on the 

key date demonstrate regionally significant decrease of around -0.24 K day-1 at high southern 

latitudes (90°S–60°S) at mid-to low tropospheric levels between 500 and 1,000 mb. Other 

statistically significant air temperature anomalies are also observed on the key date, although 

these are not as widespread or intense as the 90°S–60°S anomaly. These include several 

relatively small air temperature decreases of around -0.18 K at 30°S–10°S, 5°N and 30°N–

50°N; a low-level air temperature increase of 0.18 K day-1 directly adjacent to a significant 

south pole cooling located around 40°S and, a small upper level (50–300 mb) cooling of around 

-0.16 K day-1 located above the 40°S anomaly (figure 6.25).   

A pixel-by-pixel analysis of anomalous surface level air temperature changes on the key date 

shows that a locally significant cooling of up to -5 K day-1 occurs over the interior of the 

Antarctic continent (figure 6.26); these results are similar to those of the previously discussed 

GI sample. An anomalous zonal warming of around 0.8 K day-1 can be observed in the upper 

tropospheric levels between 90°S and 60°S (figure 6.25); this is broadly consistent with the 

previously discussed notion that the large cloud increase observed in this location warms the 

surrounding air, indirectly resulting in a significant cooling near surface level. This effect may 

also account for the observed zonally significant anomalies detected at lower latitudes, as a link 

between Antarctic cloud anomalies and atmospheric variability may influence synoptic-scale 

climate patterns across the southern hemisphere (as discussed in section 6.3.7).  
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Figure 6.24 AI sample: global air temperature anomaly  

Globally-averaged anomalous air temperature changes occurring between 50 and 1,000 mb 
during the AI sample. 
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Figure 6.25 AI sample: key date air temperature anomaly  

A plot of 5° latitudinally-averaged air temperature anomalies, occurring between 50 and 
1,000 mb on the key date of the AI sample. Statistically significant changes are indicated by 
solid black contours. 
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Figure 6.26 AI sample: Antarctic air temperature anomaly  

Locally significant surface level anomalous air temperature changes occurring on the key date 
of the AI sample. 

 

 

6.4.2 AI sample: pressure 

Similar to the previously discussed air temperature anomalies, globally-averaged GPH 

anomalies occurring over the sample period do not demonstrate any statistically significant 

changes at any tropospheric level (figure 6.27). However, at a latitudinally-averaged resolution, 

key date GPH anomalies do show a statistically significant decrease (of around -8 m) occurring 

between approximately 85°S and 60°S at high to mid-tropospheric levels (figure 6.28). Several 

other small, but significant GPH anomalies of both positive and negative sign also occur across 

a range of lower latitude zones around 400 mb. Generally, the strongest and most widespread 

latitudinally significant GPH anomalies observed are those at high southern latitudes. This 

supports the theory that atmospheric variability across the Antarctic region may itself be 

generating the lower latitude anomalies by affecting large-scale circulatory features at lower 

latitudes. 

A pixel-by-pixel plot of surface level pressure anomalies shows an intense, locally significant 

pressure decrease of approximately -400 Pa day-1, occurring over the interior of the Antarctic 
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plateau. This change is similar to that observed in the GI sample and may suggest a reduction in 

the descent of air in the PV has occurred. In addition, a localised but intense pressure decrease 

of around -500 Pa day-1 is also seen off the south-west coast of South America; this particular 

anomaly may correspond to cyclonic activity in the region (figure 6.29).  

 

 

Figure 6.27 AI sample: global GPH anomaly  

Globally-averaged anomalous GPH changes occurring between 50 and 1,000 mb during the AI 
sample. 
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Figure 6.28 AI sample: key date GPH anomaly  

A plot of 5° latitudinally-averaged GPH anomalies, occurring between 50 and 1,000 mb on the 
key date of the AI sample. Statistically significant changes are indicated by solid black 
contours. 
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Figure 6.29 AI sample: global pressure anomaly  

Locally significant surface level anomalous pressure changes occurring on the key date of the 
AI sample (units in Pascals). 

 

 

6.4.3 AI sample:  wind 

Globally-averaged zonal and meridional wind anomalies show no statistically significant 

changes at any pressure level, although a coherent positive (westerly) zonal anomaly does 

appear at upper tropospheric levels between days -5 and 0 (figure 6.30); this pattern of change is 

similar to that observed in the GI sample. A plot of latitudinally-averaged zonal and meridional 

anomalies on the key date indicates that whilst these westerly (zonal wind) increases are 

widespread throughout the upper troposphere, they are largely non-significant (with the 

exception of one location over the equator). Additionally, a statistically significant easterly 

(zonal wind) anomaly of approximately 1 ms-1 is also observed around 30°S, between 700 and 

200 mb (figure 6.31A). In contrast, no statistically significant meridional wind anomalies are 

identified at any pressure level at a 5° latitudinally-averaged resolution (figure 6.31B). 

An examination of the surface level anomalous vector winds occurring on the key date reveals  

that disturbed flows occur at mid-to high southern latitudes (between 40°S and 90°S). The most 

intense disturbance observed involves a large scale cyclonic anomaly located off the south-west 
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coast of South America, with southerly wind speeds of around 2.5 m s-1. This anomaly 

possesses a spatio-temporal correspondence to a previously discussed locally significant 

pressure decrease (figure 6.29) and a locally significant surface level air temperature anomaly 

(figure 6.32). These atmospheric variations suggest the effects of a cyclonic weather system. 

Separate to the cyclonic anomaly, westerly winds are observed across the interior of the 

Antarctic plateau (from 0° to 90°E). These data indicate that unusual wind activity is occurring 

over the Antarctic continent, potentially supporting notions of an indirect cloud–climate 

interaction operating over this region. 
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Figure 6.30 AI sample: global wind anomaly  

Globally-averaged anomalous A) zonal and B) meridional wind changes, occurring between 50 
and 1,000 mb during the AI sample.  
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Figure 6.31 AI sample: key date wind anomaly  

A plot of 5° latitudinally-averaged anomalous A) zonal and B) meridional wind changes, 
occurring between 50 and 1,000 mb on the key date of the AI sample. Statistically significant 
anomalies are indicated by solid black contours. 



 183 Chapter 6 – Atmospheric Analysis 
 

 

 

Figure 6.32 AI sample: key date horizontal vector wind anomaly  

Surface level horizontal vector wind anomaly on the key date of the AI sample. 

 

 

6.4.4 AI sample: precipitable water content 

A pixel-by-pixel analysis of anomalous key date PW changes over the globe shows that locally 

significant decreases occur over areas of the eastern Antarctic of around -0.7 kg m-2 day-1; this 

decrease corresponds spatially to locally significant air temperature and pressure anomalies. In 

addition, an intense decrease of approximately -2.4 kg m-2 day-1 is also detected off the south-

west coast of South America in the same region as a cyclonic weather system (figure 6.33). 

Several other smaller PW anomalies are also observed, the largest of which is located south of 

Africa at around 60°S; however, a connection between this anomaly and the various 

atmospheric changes detected during the AI sample is not readily apparent. 
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Figure 6.33 AI sample: global precipitable water content anomaly  

Key date, locally significant precipitable water content anomaly. 

 

 

6.4.5 AI sample: Dome C AWS data 

AWS data from Dome C show that anomalous decreases in air temperature of approximately 

-2.3 K occur between days -5 and 0; these changes are found to be statistically significant 

between days -3 and 0. Similarly, a statistically significant pressure decrease of approximately 

6 mb is observed between days -5 and -2 (figure 6.34). These findings are comparable to the 

NCEP/NCAR reanalysis data, which also showed significant decreases in pressure and air 

temperature occur over the Antarctic plateau around the key date of the AI sample. 
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Figure 6.34 AI sample Dome C AWS data  

Anomalous A) air temperature and B) pressure data measured  by Dome C AWS (77.50°S, 
123.00°E) during the AI sample period. Dotted lines display the 0.95 level confidence interval, 
while markers indicate statistically significant anomalies (above the 0.95 critical level). 
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6.4.6 AI sample: analysis and discussion 

The AI sample demonstrated a detectable atmospheric response located at high southern 

latitudes. Statistically significant anomalous activity was found to occur around the key date and 

around day -6; both of these periods correspond to statistically significant co-temporal 

variations in the rate of GCR flux and Antarctic cloud cover changes, suggesting a relationship 

between GCR, cloud and atmospheric anomalies over the Antarctic region comparable to that 

observed over the GI sample. The pattern of air temperature and pressure variations over the 

Antarctic continent may provide tentative support for the previously discussed notions of an 

indirect cloud forcing over polar regions. However, the sample did also show some indications 

that internal (cyclonic) variability may be influencing the results to some extent.  

 

 

6.5 MLD sample: cloud anomalies 

Over the MLD sample, the rate of GCR flux and cloud changes were found to undergo 

statistically significant, co-temporal, positively related variations. The rate of GCR flux and 

mid-latitude cloud change showed a significant increase between days -5 and -4, followed by a 

significant decrease between days -1 and 1. The largest cloud decreases occurred on the key 

date at low tropospheric levels (between 700 and 1,000 mb), around 40°–20° (in both 

hemispheres).  

 

 

6.5.1 MLD sample: air temperature 

Although globally-averaged air temperature anomalies over the MLD sample show no 

statistically significant changes occurring around the key date at any pressure level 

(figure 6.35), 5° latitudinally-averaged key date air temperature anomalies do detect a 

significant increase in air temperature of approximately 0.24 K at low tropospheric levels 

(between 500 and 900 mb) around 30° in both hemispheres. Additionally, in the southern 

hemisphere a significant decrease and increase (of approximately 0.24 K) is also detected at 

60°S and 90°S respectively (figure 6.36). A pixel-by-pixel analysis of surface level air 

temperature anomalies indicates that only a limited number of locally significant anomalies are 

occurring; the largest of which is a temperature increase over North America of around 2 K 

(figure 6.37). The finding of latitudinally averaged significant temperature changes but no 
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locally significant changes suggests that mid-latitude temperature changes may be occurring via 

a regionally diffuse process; if the temperature changes are causally linked to cloud anomalies 

this may suggest a small but regionally widespread cloud change is occurring.  

The dominant effect of a reduction in low cloud cover at mid-latitudes should be to reduce 

albedo and consequently warm low tropospheric levels (Ramanathan et al., 1989).  Latitudinally 

significant decreases in cloud cover were observed around 30° (north and south); the correlation 

of these changes to statistically significant temperature increases implies a causal relationship, 

as such findings are in agreement with the expected temperature forcing resulting from a mid-

latitude cloud decrease.  

 

Figure 6.35 MLD sample: global air temperature anomaly  

Globally-averaged anomalous air temperature changes occurring between 50 and 1,000 mb 
during the MLD sample.  
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Figure 6.36 MLD sample: key date air temperature anomaly  

A plot of 5° latitudinally-averaged air temperature anomalies, occurring between 50 and 
1,000 mb on the key date of the MLD sample. Statistically significant changes are indicated by 
solid black contours. 
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Figure 6.37 MLD sample: global air temperature anomaly  

Locally significant surface level anomalous air temperature changes occurring on the key date 
of the MLD sample. 

 

 

6.5.2 MLD sample: pressure 

Globally-averaged GPH anomalies demonstrate no statistically significant changes over the 

sample period at any pressure level (figure 6.38). However, 5° latitudinally-averaged anomalous 

GPH changes on the key date show the occurrence of statistically significant changes across a 

wide range of latitudinal zones (figure 6.39). These anomalies occur predominately at mid-to 

high tropospheric levels (between 500 and 50 mb), with the exception of an anomalous increase 

in near-surface level GPH of around 6 m s-1 at 65°S. Positive GPH anomalies of around 6 m s-1 

occur between the latitude ranges of 90°S–70°S, 30°S–10°S and 30°N–50°N, while negative 

GPH anomalies of around -7 m s-1 occur between the latitude ranges of 60°S–40°S, 10°N–30°N 

and 60°N–90°N. A pixel-by-pixel analysis of anomalous surface level key date pressure 

changes indicates that there are virtually no areas of locally significant pressure change over the 

globe, although anomalous pressure increases of around 280 Pa day-1 are detected around areas 

of the Antarctic continent (figure 6.40). 
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Figure 6.38 MLD sample: global GPH anomaly  

Globally-averaged anomalous GPH changes occurring between 50 and 1,000 mb during the 
MLD sample. 
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Figure 6.39 MLD sample: key date GPH anomaly  

A plot of 5° latitudinally-averaged GPH anomalies, occurring between 50 and 1,000 mb on the 
key date of the MLD sample. Statistically significant changes are indicated by solid black 
contours.  
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Figure 6.40 MLD sample: global pressure anomaly  

Locally significant surface level anomalous pressure changes occurring on the key date of the 
MLD sample (units in Pascals). 

 

 

6.5.3 MLD sample: wind 

Globally-averaged zonal and meridional anomalous wind changes over the sample period show 

no statistically significant variations at any pressure level (figure 6.41). However, latitudinally-

averaged key date anomalous zonal and meridional changes do demonstrate small regions of 

statistical significance (figure 6.42); significant positive (westerly) zonal anomalies of around 

0.6 m s-1 occur at approximately 30°S and 35°N–50°N throughout the troposphere. 

Additionally, a significant negative (easterly) zonal anomaly of around -0.6 m s-1 also occurs 

between 0° and 10°N (figure 6.42A). Significant positive (southerly) meridional wind anomalies 

of around 0.75 m s-1 are found around the 200 mb level in the same position as the positive 

zonal anomalies (30°S and 35°N–50°N). Moreover, several localised but significant (positive 

and negative) meridional anomalies are also detected at low tropospheric levels between 850 

and 1,000 mb. The position of these zonal/meridional anomalies (also at 30°S and 35°N–50°N) 

may be linked to the significant latitudinally average GPH anomalies previously discussed 
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(figure 6.39); the anomalous wind flow detected may result from the increased pressure 

difference between these adjacent latitude zones.  

A surface level vector plot of anomalous wind flow indicates that disturbances of approximately 

2 m s-1 day-1 are present around mid-to high latitude regions of the southern oceans (40°S–80°S). 

In contrast, far less anomalous wind activity is observed in the northern hemisphere (figure 

6.43). 
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Figure 6.41 MLD sample: global wind anomaly  

Globally-averaged anomalous A) zonal and B) meridional wind changes occurring between 50 
and 1,000 mb during the MLD sample.  
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Figure 6.42 MLD sample: key date wind anomaly  

A plot of 5° latitudinally-averaged anomalous A) zonal and B) meridional wind changes 
occurring between 50 and 1,000 mb on the key date of the MLD sample. Statistically significant 
anomalies are indicated by solid black contours. 
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Figure 6.43 MLD sample: key date horizontal vector wind anomaly  

Surface level horizontal vector wind anomaly on the key date of the MLD sample. 
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6.5.4 MLD sample: precipitable water content 

Although several small locally significant PW anomalies are observed on the key date, these 

anomalies do not appear to be anything more than random variability. The appearance of the 

anomalies suggests that, in general, no locally significant changes are occurring across the globe 

in response to the mid-latitude cloud decreases (figure 6.44). 

 

 

Figure 6.44 MLD sample: global precipitable water content anomaly  

Key date locally significant precipitable water content anomaly. 

 

 

6.5.5 MLD sample: analysis and discussion 

The MLD sample robustly indicates that latitudinally significant mid-latitude cloud decreases 

are accompanied by corresponding latitudinally significant air temperature increases. Such a 

relationship should be expected following a decrease in mid-to low tropospheric clouds as a 

consequence of decreased albedo. The detected air temperature anomalies were however not 

found to be locally significant, which may indicate either: (1) the operation of a small but 

widespread process occurring throughout the mid-latitude regions; or alternatively, (2) a low 
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SNR at the individual pixel level, resulting in the capability to detect a statistically significant 

signal only after an area-averaged approach is applied. 

Latitudinally significant GPH anomalies are also observed at subtropical, mid- and polar 

latitudes, which may suggest a globally widespread climate forcing may be occurring. Although 

in general there were no observed significant cloud changes occurring at latitudes above or 

below 30°–60° (N/S), the detected GPH changes outside of these areas may be indirectly related 

to the detected mid-latitude GCR–cloud relationship. 

The GI and AI samples both showed a statistically significant precipitation response which 

correlated with anomalous temperature/cloud and pressure changes; however, the MLD sample 

showed no such response. A past study has indicated that, precipitation and precipitation 

efficiency show statistically significant change over ocean surfaces, of approximately 7–9 % 

during the 11-year solar cycle at high southern latitudes (between 45°S and 90°S) (Kniveton and 

Todd, 2001). Most of the cloud changes detected during the MLD sample occur outside of the 

latitude range highlighted by Kniveton and Todd (2001), implying that observations of 

precipitation changes may be unlikely. Furthermore, a lack of precipitation decreases may also 

suggest that the cloud decreases are occurring in cloud systems which do not produce 

precipitation. As the majority of the detected cloud changes occur at low tropospheric levels 

(between 600 and 1,000 mb) and do not involve precipitation, it is likely that the clouds are 

either of a shallow cumulus or stratocumulus variety.  

 

 

6.6 Vertical velocity evidence of an indirect cloud–climate forcing? 

After analysing the GI and AI samples it was speculated that an indirect cloud–climate 

relationship might be operating. Whereby, increased upper/mid level cloud in the 

Antarctic/Arctic regions warms the surrounding air and reducing the volume of air descending 

in the PV. It was suggested that this process may theoretically explain the decreased surface 

level air temperatures identified during the GI sample (described in section 6.3.7). The validity 

of this hypothesis can be tested by examining changes in the vertical velocity parameter 

(omega).  

Omega is calculated by combining the effects of vorticity and thermal advection to derive the 

resulting vertical motion. For reference, a mean of the latitudinally-averaged Arctic (90°N–

60°N) and Antarctic (60°S–90°S) omega parameter  between 1985 and 2006) is shown in figure 

6.45 (positive values indicate descending air, while negative values indicate rising air). The 
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mean state clearly demonstrates the convergence of air at mid- to low tropospheric levels that 

occurs over polar regions.  

An analysis of the latitudinally-averaged omega anomalies occurring during the GI sample is 

shown in figure 6.46.  This plot indicates that over the Arctic there is a relative reduction in the 

descent of upper level (100–200 mb) air on the key date of approximately 0.0002 Pa s-1 day-1. 

Whereas, at lower tropospheric levels (200–1,000 mb), there is a relative increase in the rate of 

descending of air on the key date of the composite of around 0.0008 Pa s-1 day-1 (figure 6.46A).  

In Antarctica, the changes in omega are more intense: there is a change from negative to 

statistically significant positive conditions (at all tropospheric levels), suggesting that on the key 

date of cloud increase the convergence of air towards the surface level undergoes a relative 

increase of around 0.0013 Pa s-1 day-1 (figure 6.46B). 

A plot of anomalous omega changes at low (1,000–850 mb), mid- (600–400 mb) and upper 

(200–100 mb) tropospheric levels shows a different response between the Antarctic an Arctic 

regions (figure 6.47). In the Antarctic region, omega generally decreases around day -5 and then 

increases towards the key date. The mid- and low-level anomalies appear to undergo the largest 

changes: mid-level changes show a statistically significant positive anomaly centred on day -1 

of approximately 0.001 Pa s-1 day-1, while low-level anomalies also demonstrate a statistically 

significant positive anomaly of approximately 0.0007 Pa s-1 day-1 centred on day 1 of the 

composite. The upper level Antarctic omega anomalies demonstrate a pattern of change 

comparable to the mid-level anomalies but are relatively weaker (figure 6.47A). The Arctic 

omega anomalies also indicate the occurrence of a negative anomaly around day -5, followed by 

a shift towards more positive conditions on the key date. Although the negative anomalies 

centred on day -5 are of a comparable magnitude to those observed in the Antarctic, the positive 

anomalies in the Arctic are only around half the magnitude of their Antarctic counterparts. 

Furthermore, in the Arctic, a mid-level omega response is virtually non-existent, while the 

upper-level anomaly shows no clear relationship to the key date.  The differing magnitude and 

timing of the response between omega anomalies at the Arctic and Antarctic leads to the 

conclusion that, although, there may be a response in vertical movement to the cloud anomalies, 

this response cannot be responsible for producing observed low-level temperature decreases on 

key date.  

A pixel by pixel analysis of omega anomalies supports this conclusion, as it shows that virtually 

no statistically significant anomalies can be detected over the Arctic or Antarctic regions (figure 

6.48–6.49); indicating that the influence of the cloud changes on omega is only observable 

when observing area-averaged changes. If omega anomalies were responsible for producing the 

observed locally significant changes in surface level temperature and pressure, then it should be 
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expected that locally significant omega anomalies of similar spatio-temporal dimensions would 

be detectable. 

Finally, these results show that over both polar regions the opposite sign anomalies to those 

predicted is occurring: rather than a reduction in the descent of air, an increase in the rate of 

descent in observed. Consequently, it appears that the hypothesised relationship between the 

observed cloud increases and air temperature decreases is incorrect. However, it is important to 

note, when considering these results that the omega reanalysis parameter has been found to be 

of questionable quality over polar regions, as a result conclusions drawn from this parameter 

should be treated with caution (Bromwich and Wang, 2005). 

  

Figure 6.45 Mean omega 

A mean of omega between 1985 and 2006, for 90°N–60°N (dashed line) and 60°S–90°S (solid 
line) between 100 and 1,000 mb.   
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Figure 6.46 GI sample omega anomaly 

Latitudinally-averaged omega anomalies occurring over the GI sample during the averaging 
period (days -5, -4 and -3) (grey line) and key date (black line) over the A) Arctic (90°N–60°N) 
and B) Antarctic (60°S–90°S) regions. With the 0.95 level confidence interval shown by the 
dashed lines and statistically significant changes indicated by markers. 
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Figure 6.47 Omega anomalies over the GI sample 

Upper level (200–100 mb) (red line), mid-level (400–600 mb) and low-level (1,000–850 mb) 
omega anomalies occurring over the A) Antarctic (60°S–90°S) and B) Arctic (90°S–60°N) 
regions during the GI sample period. Dotted lines show the 0.95 level confidence interval, 
statistically significant changes are indicated by markers. 
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Figure 6.48 Upper level polar region omega anomalies 

Anomalous A) Arctic region 200 mb and B) Antarctic region 200 mb key date GI sample 
omega anomalies. Locally significant anomalies indicated by dashed contours. 
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Figure 6.49 Mid- to low-level polar omega anomalies 

Anomalous A) Arctic region 850 mb and B) Antarctic region 400 mb key date GI sample 
omega anomalies. Locally significant anomalies indicated by dashed contours. 
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6.7 General summary 

An FD-based analysis did not provide any robust evidence of a GCR–climate relationship, 

instead, the atmospheric analysis has offered an alternative explanation to account for the upper 

tropospheric cloud decreases observed over the Antarctic region during the FD sample. Data 

suggest that internal atmospheric variability occurring around high southern latitude regions 

may have dynamically influenced cirrus cloud formation and development over Antarctica. 

Such a proposition weakens the already highly questionable results of the adjusted FD sample. 

The composite samples constructed from the internal cloud datasets however, yielded more 

positive results. Most notably, an analysis of these samples suggested that the occurrence of an 

unexpected high latitude cloud–climate interaction is occurring; whereby, increases in upper-

mid tropospheric cloud are accompanied by low-level tropospheric cooling and pressure 

decreases at high latitude regions.  

The negative relationship detected between cloud and high latitude surface temperatures 

contradicts the contemporary understanding of the radiative impacts of high latitude clouds on 

climate. Consequently, it was postulated that if the temperature/pressure anomalies are casually 

related to the detected cloud changes, the cloud–climate interaction may possibly operate 

indirectly (rather than radiatively), via a disruption to the quasi-stable equilibrium between 

radiative cooling and adiabatic warming operating over high latitudes under the influence of the 

PV. However, an analysis of changes in the vertical atmospheric motions over the key date did 

not support this notion. Alternatively, the temperature variations may be the result of changes in 

moist convective systems around Antarctica affected by variations in the current flow in the 

GEC, which may be dynamically linked to changes over the Antarctic continent. However, as 

the majority of cloud changes were detected over the Antarctic continent itself (rather than in 

frontal weather systems surrounding circumpolar region) this explanation seems unlikely.  

Additionally, a statistically significant temperature/pressure response was also detected over 

mid-latitude regions. The observed anomalies may potentially be accounted for by changes in 

the radiative balance over mid-latitude regions as a result of significant cloud cover decreases. 

This implies that the sample may have successfully identified a robust atmospheric response to 

GCR related cloud changes. 

In the forthcoming chapter, a number of climate model based experiments will be performed in 

an attempt to replicate the cloud–climate interactions observed in this chapter: the ability of the 

models to replicate the anomalies based solely on inputted cloud parameters will allow 

conclusions to be drawn regarding the casual relationship between the atmospheric anomalies to 

the cloud changes. 
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Chapter 7   Climate Model Experiments 
 

 

7.1 Introduction 

This chapter presents the findings of several climate model experiments designed to simulate 

the cloud anomalies described in chapter 5. The aim of these experiments is to determine the 

relationship of the associated atmospheric changes described in chapter 6 to the cloud 

anomalies. The rationale behind this approach is that, if atmospheric anomalies similar to 

observations can be simulated in a GCM by simply modifying cloud, then this may provide a 

good indication that the cloud changes themselves are responsible for producing the 

atmospheric anomalies via either radiative or dynamic interactions. When considered together 

with the statistically significant positive relationship between peak cloud cover changes and 

variations in the rate of GCR flux (described in chapter 5), such a finding would provide good 

evidence of a link between GCR, cloud and climate.   

 

 

7.1.1 Background to GCMs and cloud simulations  

One of the primary causes of uncertainty in GCM climate change projections comes from inter-

model differences in cloud simulations and cloud–climate feedbacks (Williams et al., 2003; 

Williams and Tselioudis, 2007; Ogura et al., 2008). Generally, GCMs calculate the location and 

type of clouds present over an area based on parameters such as relative humidity, vertical 

velocity and vertical stability. If the air is found to be in a saturated state and vertically stable, 

then the models will generate stratified clouds or fog, whereas if conditions of saturation and 

convection occur, then cumulus clouds will be generated. For models with grid scale resolutions 

of around 100 m, the cloud cover of grid cells can be classified as a binary function (i.e. 1/0, 

meaning present/absent respectively) (van der Wal, 1998).  

This work will utilise HadAM3, the global atmosphere-only version of the climate modelling 

hierarchy known as the Unified Model (UM), operated by the UK Meteorological Office Hadley 

Centre (van der Wal, 1998). The UM includes atmosphere-only, ocean-only and coupled 

components and can be run at either global or regional domains. The GCM experiments in this 

chapter will be run at the N48 resolution of 2.5° x 3.75°, which equates to an array of 96 x 73 

grid cells (east-west/north-south) for a single atmospheric layer. The model has 19 vertical 
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layers, ranging from 10–1,000mb. Equations are solved at half-hour time steps (48 time steps 

per day). The equations of the UM’s atmospheric prediction scheme are solved for the motion 

of a fluid on a rotating, near-spherical planet. The scheme is based on hydrostatic primitive 

equations, meaning that the atmosphere is always in hydrostatic balance with no vertical 

accelerations. The UM solves the equations using a grid-point scheme on a regular latitude-

longitude grid in the horizontal domain and a hybrid scheme in the vertical domain, wherein 

vertical levels follow the terrain at the surface but change to constant pressure levels aloft (van 

der Wal, 1998; Williams, 2006).  

At the N48 resolution, partial cloud coverage is far more likely than a binary situation. To 

calculate grid cell cloud cover in HadAM3, the large scale standard cloud parameterisation 

scheme 1A is used. This calculates both fractional cloud coverage (or non-clear sky fraction) 

and partitions water content in a grid cell between water vapour and cloud water content, 

dividing water into solid/liquid phases in accordance with temperature. Such parameterisations 

only take into account macroscopic processes responsible for the general location of cloud and 

not localised (sub-grid scale) micro-/nano-scale physical processes of nucleation and droplet 

growth (Bushell, 1998). The simulation of fractional cloud cover within grid cells is achieved 

using a statistical parameterisation method (van der Wal, 1998). Fluctuations in the total water 

content of an individual grid cell is calculated using a method based on probability density 

functions (PDFs), where the width of the PDF relates to the model’s critical relative humidity 

parameter (Smith, 1990; Smith et al., 1997). As a consequence of this method, the model 

simulates an unrealistically close relationship between cloud fraction, cloud water contents and 

relative humidity. A further weakness of the HadAM3 cloud scheme is that it is only semi-

prognostic in nature, i.e. for each new time step of the HadAM3 model, cloud is overwritten and 

re-calculated rather than being updated as a fully prognostic variable would be. However, since 

the cloud interacts with other schemes of the model, cloud variability is able to influence the 

evolution of the GCM by affecting other aspects of the model, such as air temperature (Bushell, 

1998). 

Although many of the problems faced by GCMs attempting to simulate cloud are connected to 

their inability to simulate sub grid-scale cloud formation processes, it is also known that GCMs 

(including the HadAM3) encounter additional difficulties with regards to cloud simulations, for 

example:  

(1)  An inability to reproduce cirrus over land. It is known that the HadAM3 is unable to 

sufficiently simulate high cloud cover over land. This is a problem faced by most 

GCMs and appears to result from the lack of a representation of orographic cirrus 

generated by sub-grid scale orography (Dean et al., 2005). In addition, cirrus simulation 
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is hampered by improper simulation of tropical thunderstorms: such thunderstorms are 

responsible for generating widespread cirrus, which are an integral part of the tropical 

radiation balance. Comparisons of field measurements of ice-phase cloud in 

thunderstorms to current-generation cloud-resolving models highlighted the models 

inability to properly simulate ice-phase cloud, and correctly capture the dynamics of 

thunderstorms responsible for producing tropical cirrus (Wang et al., 2009) 

(2)  Issues simulating diurnal cloud variations. Comparisons of simulated diurnal cloud 

variations to high resolution tropical cloud data from the European Union Cloud 

Archive User Service (CLAUS) project has shown that the HadAM3 model struggles to 

capture the observed phase of the convective diurnal cloud cycle. These problems may 

be related to fundamental difficulties in the model’s physical parameterisations (Yang 

and Slingo, 2001). 

Before performing any experiments with the GCM, it is important to understand more 

specifically the strengths and weaknesses of the HadAM3’s cloud/climate simulations; these 

will now be assessed. 

 

 

7.1.2 Validating mean cloud cover 

Comparing the mean cloud cover from a 5-year HadAM3 run to 5-years of observed ISCCP D1 

IR retrieved cloud cover shows that the HadAM3 is able to broadly simulate synoptic cloud 

patterns (figure 7.1). In particular, the model appears to reproduce patterns of cloud cover over 

the South Pacific Ocean, northern Pacific/Atlantic regions and simulate features such as the 

ICTZ to a good degree. However, the model also appears to underestimate cloud cover over 

several regions, such as the western coast of North/South America and continental South 

America, while also overestimating cloud over Antarctica and Greenland. 

Comparing simulated and observed cloud cover on a 5° latitudinally-averaged basis suggests 

that there is a poor agreement between the model and observations (R2=0.32) (figure 7.2). 

Furthermore the cloud amount is underestimated by the model over virtually all regions (figure 

7.2A): the difference between 5° latitudinally-averaged, observed/modelled mean cloud cover 

demonstrates a median difference of -12.2 % (the differences range from -29.9 % [at 37°S] to 

12.8 % [at 85°S]). 
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Scatter plots of observed vs. modelled cloud amounts show that the ability of the model to 

simulate realistic cloud conditions decreases with increasing latitude zone (figure 7.3). 

Correlation coefficients indicate that the model is most effective at reproducing mean cloud 

cover over the tropics (R2=0.41), whereas the mid-latitude region demonstrates a correlation 

coefficient of approximately half the tropical value (R2=0.28) and polar regions demonstrate the 

lowest correlation coefficients of all (R2=0.04). 

The GCM’s ability to reproduce the vertical structure of mean cloud cover appears to be 

particularly deficient (figure 7.4). The vertical ISCCP cloud conditions clearly shows key 

elements which are absent from the GCM simulation. In particular, the model fails to reproduce: 

(1) upper Antarctic cloud cover; (2) the correct magnitude and height of southern and northern 

hemisphere mid-latitude cloud cover; (3) mid- to low latitude low-level cloud structures (related 

to the trade winds); (4) the vertical structure and magnitude of the equatorial convective clouds; 

and (4) the magnitude, location and vertical structure of Arctic cloud. These issues are 

highlighted in figure 7.5, which displays the difference between the ISCCP and GCM vertical 

profiles. Overall, these data indicate that the GCM’s simulation of mean cloud cover is 

rudimentary: over regions where it initially appears that the horizontal, synoptic-scale, 

tropospheric-averaged cloud conditions have been simulated to a reasonable degree (such as the 

southern hemisphere oceans), it is found that the vertical simulation of cloud shows major 

discrepancies relative to observations. Such issues may have a significant impact on the ability 

of the forthcoming experiments to accurately reproduce observed cloud–climate relationships. 

These results suggest that for the forthcoming experiments the most meaningful cloud–climate 

interactions may come from samples where a large-scale area averaging is applied. By 

extension, this also suggests that, at a local-scale, modelled cloud–climate responses may differ 

significantly from observations (implying that meaningful results may not be gleaned at high 

spatial resolutions). 
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Figure 7.1 Mean observed and modelled cloud cover.  

Average cloud cover observed from A) a 5-year HadAM3 climate model and B) a 5-year period 
of ISCCP D1 IR observations. 
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Figure 7.2 Zonal mean cloud cover 

Latitudinally-averaged A) mean cloud cover from HadAM3 simulations (solid line) and ISCCP 
observations (dashed line), and B) the difference (model subtracted from observation) between 
modelled and observed cloud cover. 
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Figure 7.3 Correspondence between zonal mean cloud cover 

Latitudinal average mean ISCCP observed cloud cover (x-axis) plotted against simulated 
HadAM3 cloud cover (y-axis) at: A) global latitudes (90°N–90°S); B) tropical latitudes (30°N–
30°S); C) mid-latitudes (60°N–30°N and 30°S–60°S); D) polar latitudes (90°N-60°N and 60°S–
90°S). Linear fit (blue line) and correlation coefficients (R2) are also shown. 
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Figure 7.4 Comparing the vertical cloud structure of the GCM to ISCCP 

A 5-year mean latitude/height profile of: A) the HadAM3, and B) ISCCP D1 cloud cover.  
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Figure 7.5 Vertical cloud distribution difference 

HadAM3 5-year mean latitudinally-averaged cloud cover subtracted from observed (ISCCP) 
cloud cover (model minus observation). Negative (positive) regions indicate where the GCM 
has underestimated (overestimated) vertical cloud cover. 

 

 

7.1.3 Validating model cloud standard deviation  

Data from a 5-year HadAM3 control run was used to determine standard deviation cloud 

amount; this is contrasted against 5 years of observed ISCCP cloud variability. The results 

indicate a fairly good regional agreement between models and observations. Synoptic-scale 

features of cloud variability (such as the low variability seen over southern latitude ocean 

regions) are successfully captured by the model (figure 7.6).  

A plot of latitudinally-averaged cloud variability again shows that the model is relatively 

successful at reproducing the correct magnitude and pattern of cloud variability (R2=0.41). 

However, the success of the model varies regionally; the model shows the largest deviations 
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from observed values over mid-latitude regions, where the model overestimates variability by as 

much as 6.8 %. Despite this, the model is successful at reproducing the overall pattern of 

latitudinal variability; for example, the model is able to reproduce a high correlation between 

variability occurring over 50°S–90°S (R2=0.97) (figure 7.7). 

Scatter plots of observed vs. modelled cloud variability divided into tropical, mid-latitude and 

polar latitude regions, show that the lowest correlation coefficient between observed and 

modelled cloud variability was found over polar regions (R2=0.42), while the mid-latitudes 

showed the highest correlations (R2=0.78) (figure 7.8). 
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Figure 7.6 Modelled and observed cloud variability 

Standard deviation cloud cover observed from A) a 5-year HadAM3 climate model, and B) a 
5-year period of ISCCP D1 IR observations. 
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Figure 7.7 Zonal cloud variability 

Latitudinally-averaged standard deviation cloud cover, from A) HadAM3 simulations (solid 
line) and ISCCP observations (dashed line), and B) the difference between modelled and 
observed standard deviation cloud cover (model minus observations). 
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Figure 7.8 Correspondence of zonal cloud standard deviation 

Latitudinal average standard deviation ISCCP observed cloud cover (x-axis) plotted against 
simulated HadAM3 cloud cover (y-axis) at: A) global latitudes (90°N–90°S); B) tropical 
latitudes (30°N–30°S); C) mid-latitudes (60°N–30°N and 30°S–60°S); D) polar latitudes 
(90°N–60°N and 60°S–90°S). Linear fit (blue line) and correlation coefficients (R2) are also 
shown. 

 

 

7.1.4 Conclusions on the accuracy of HadAM3 cloud simulations 

Although generally the model was able to reproduce the correct sign/synoptic patterns of mean 

cloud cover and variability, the accuracy of these simulations was found to vary between 

latitude zones; the poorest correspondence between modelled and observed cloud was found at 

high latitude regions, whereas the strongest correspondence was found at tropical latitudes.  
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These results indicate that over most regions of the Earth the HadAM3 model is only able to 

reproduce cloud conditions to a limited degree. Such a result is typical of GCMs: most models 

have been found to be capable of reproducing principal cloud regimes, yet commonly struggle 

to correctly resolve regional cloud features (Williams and Tselioudis, 2007). The poor 

agreement between observations and the model over the polar regions may prove particularly 

problematic, as model experiments will require the manipulation of cloud over these regions.  

In comparison with other GCMs, however the HadAM3 simulates cloud reasonably well: 

evidence of this can be seen from the IPCC’s inter-model comparisons of outgoing SW 

radiation over a latitudinally-averaged basis (figure 7.9). This provides a proxy measurement of 

model cloud differences (as clouds are responsible for around 50% of outgoing SW radiation 

(IPCC, 2007). The global fully coupled atmosphere-ocean version of the UM (HadCM3) is 

featured on figure 7.9 integrates the HadAM3 model and the UM ocean-only model (HadOM3). 

The results of the HadCM3 can be considered to be roughly indicative of the HadAM3 model’s 

performance relative to other GCMs. These data show that the HadCM3 model performs 

comparatively well in simulating outgoing SW radiation, suggesting that the model is one of the 

more accurate GCMs with respect to cloud simulations. 
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Figure 7.9 Model simulation of outgoing SW/LW radiation 

Root-mean-square (RMS) model error as a function of latitude for A) SW radiation, and B) LW 
radiation, calculated from multi-year 12-month model climatology against the Earth Radiation 
Budget Experiment (ERBE) (Barkstrom et al., 1989). The data provide an indirect comparison 
of the various GCM’s abilities to simulate latitudinally-averaged cloud cover. Figure adapted 
from IPCC AR4 Working Group I: The Physical Science Basis, Chapter 8, figure 8.4. 

 

 

7.2 Assessing the models ability to simulate regional polar circulation patterns 

It is necessary to evaluate the GCM’s ability to reproduce circulation patterns over polar 

regions. This is crucial, since in chapter 6 several samples suggested that large cloud increases 

at high tropospheric levels over high latitudes may be capable of indirectly affecting climate 

(possibly via an indirect influence on regional circulation). Consequently, in an attempt to test 

this hypothesis, it is necessary for the GCM to correctly simulate polar circulation.   
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To assess the model’s ability to simulate polar circulation, three model parameters will be 

evaluated against observations: (1) the position of the Antarctic polar low pressure system; (2) 

the wind flow at surface level over Antarctica; and (3) the vertical velocity (omega) of air over 

the globe and polar regions. 

(1)  A plot of 5-year mean 200 mb GPH reanalysis data shows a strong region of low 

pressure over the interior of the Antarctic continent (figure 7.10A). This low pressure 

region indicates the location of the PV, where upper tropospheric air converges before 

descending to lower tropospheric levels.  Identical data from HadAM3 indicates that the 

model is capable of correctly reproducing the magnitude of the low pressure region. 

However, its extent is highly overestimated (figure 7.10B). This suggests that, in order 

to reproduce the observed reduction in the convergence of air in the PV, it may be 

necessary to increase the spatial extent of artificially enhanced cloud changes beyond 

that of the observed cloud anomalies.     

(2)  After the air has descended from upper tropospheric levels to the surface of the 

Antarctic continent it undergoes intense radiative cooling. The dense cold air then 

drains off the continent via the path of least topographic resistance, resulting in a 

katabatic wind. A plot of five years of averaged 1,000 mb vector wind from 

NCEP/NCAR reanalysis data clearly shows the drainage patterns of the katabatic wind 

regime (figure 7.11A).  The model is able to broadly replicate these drainage features. 

However, the wind velocity is found to be approximately 4 m s-1 less than the reanalysis 

data (figure 7.11B). The underestimation of wind speeds may be connected to the 

overestimated area of the PV observed in figure 7.10B, which may produce less intense 

wind drainage. 

(3)  Omega from NCEP/NCAR reanalysis data over a 5-year period is shown at a 5° 

latitudinally-averaged resolution (figure 7.12A). These data show the patterns of large 

scale vertical atmospheric motion around the globe. The detail of the data has been 

largely removed, so as to simply show areas of ascending or descending motion. 

Broadly, the plot indicates that at tropical and mid-latitudes the air is ascending, while 

at sub-tropical and polar latitudes the air is descending. A 5-year mean of HadAM3 

omega shows that the model is broadly able to reproduce these observed patterns (figure 

7.12B). It is important to note that the observed (NCEP/NCAR) omega (shown in figure 

7.12A) indicates the presence of ascending air directly over the north and south pole (at 

low/upper tropospheric levels respectively). Such a situation is physically implausible, 

since over such regions, air undergoes intense radiative cooling resulting in a strong 

descending tendency. This suggests that the omega reanalysis data may not be accurate 
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over these (high latitude) regions. There are comparable precedents in the literature 

which suggest that reanalysis data may be of questionable quality over high latitude 

regions (Hines et al., 2000; Smith et al., 2001; Bromwich and Wang. 2005). An analysis 

of the regionally-averaged vertical omega profile over the north and south polar regions 

individually shows that at both poles the vertical profile of the modelled omega agrees 

well with observations (figure 7.13). There are some important differences however. 

For example, over mid-tropospheric levels of the Arctic region, the HadAM3 and 

observations disagree on the sign of omega, with the GCM suggesting that air at mid-

tropospheric levels shows an ascending tendency (this situation is physically 

implausible). On the other hand, over Antarctica, HadAM3 is found to produce 

weaker-than-observed omega values at almost all pressure levels.  

From these comparisons, there appears to be a general consensus at the synoptic scale between 

observations and the GCM over key elements of the climate system. These elements are likely 

to play an important role in the forthcoming GCM experiments. However, at a local-scale 

resolution, differences are identified between the HadAM3 and observations in several areas, 

specifically, the GCM is found to overestimate the area of the PV, underestimate the intensity of 

the katabatic wind, and produce a weaker vertical motion of air over high latitude regions than 

observed. 
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Figure 7.10 Comparison of Antarctic upper tropospheric convergence 

A plot of 5-year mean, GPH at 200 mb from A) reanalysis data, and B) HadAM3 data, 
indicating the extent of the Antarctic PV. 
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Figure 7.11 Comparison of the Antarctic katabatic wind regime 

A plot of 5-year mean vector winds over the Antarctic region from A) reanalysis data, and B) 
HadAM3 data at the 1,000 mb level. 
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Figure 7.12 Latitudinally-averaged omega  

A plot of 5-year mean vertical velocity from A) reanalysis data and, B) the UM (HadAM3) 
model (negative values indicate ascending air, positive values indicate descending air) at a 5° 
latitudinal average resolution. 
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Figure 7.13 Polar region UM vs. observed omega  

A latitudinally-averaged vertical 5-year mean of A) Antarctic (60°S–90°S) and B) Arctic 
(90°N–60°N) regions, for NCEP/NCAR reanalysis data (solid line) and UM data (dashed line). 
Note differing x-axis scales on panel A and B. 
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7.3 Description of model experiments 

The use of ensembles is common practice when dealing with climate models, since they allow a 

reduction in the uncertainty which results from natural internal climate variability (Stott and 

Forest, 2007). The compositing procedures performed throughout this work are essentially a 

form of an initial-condition ensemble (initial-condition ensembles are ensembles which contain 

consentient model forcings and physics schemes, but differing initial states). Consequently, the 

continued use of the composite-based methodology during the forthcoming GCM analysis 

should preclude the need to perform any additional ensemble approaches. Another issue which 

warrants consideration is that of climate drift, which may potentially cause spurious trends in 

GCM results due to the alteration/drift of the mean state of the climate system over time as the 

model equilibrates. However, as each of the results were based on an ensemble constructed from 

several separate 5-year runs there was no possibility of climate drift influencing the results (as 

the timescales used are too short for this effect to be an issue). 

In the coming sections, the results of several GCM experiments will be analysed and discussed. 

These experiments were designed to simulate the observed cloud changes that were identified in 

earlier chapters. The experiments will mimic the cloud changes of the GI sample (which 

identified polar cloud anomalies [described in section 5.2.1]) and the MLD sample (which 

identified mid-latitude cloud anomalies [described in section 5.5.2]). There will be no GCM 

experiment to relate to FD-based samples (described in section 4.3.3), as no statistically robust 

cloud–climate interactions were identified under FD sampling regimes. Nor will there be an 

individual experiment for the AI sample, as the AI results were essentially found to be identical 

to those of the GI sample and thus an individual treatment should not be required. 

The cloud anomalies were inserted into the HadAM3 by directly manipulating the physics of the 

SW and LW radiation schemes; these radiative changes were inserted directly into the UM code 

by a modset [FORTRAN code addition], the added code itself (including the explicit points of 

insertion) are presented in appendix 4 and 5. These modsets forced a repeating sequence of 

cloud changes every 24 days within the model over two 5-year periods using multiplication 

(scale) factors derived from observations. Following a one-year spin-up period, the model data 

were then composited, producing a sample of 120 observations. After compositing, the 

anomalous rates of change in various model parameters were then calculated from the 

composite sample in an identical method to that of previous chapters (using equation 3.1). This 

procedure resulted in the anomaly being calculated for 19 days of the composite period, which 

directly relates to the -15 to 3 day sampling period used throughout this work (i.e. days of 

repeating cloud changes occurring once every 24 days were composited, and from these a rate 



 228 Chapter 7 – Climate Model Experiments 
 

 

of change was calculated [using equation 3.1], resulting in 19 days of useful data in the 

composite).  

In this thesis anomalous cloud changes have been calculated using area-averaged rates of 

change. There has been no specific regard given to the exact origin of the cloud changes at the 

individual cloud scale, as it is not possible to determine this at the resolution of the ISCCP or 

NCEP/NCAR reanalysis data. Consequently, it is unclear if the cloud changes are a result of: (1) 

an increase in the area of existing clouds (figure 7.14A), (2) generation of new clouds (figure 

7.14B); or (3) an increase in cloud longevity (figure 7.14C). It is most physically plausible 

however, that the 1st and 3rd situations are occurring and that GCR variations are modifying 

existing cloud via an edge-effect, or by altering cloud properties (such as albedo and lifetime). If 

the 2nd scenario was occurring and cloud cover underwent absolute increases due to GCR 

variations, then a cloud response following FD events should have been observed.  

The use of scale factors within the model experiments assumes scenario 1: cloud cover will be 

multiplied by a scale factor, resulting in a cloud change which will be directly relative to the 

original cloud amount. Scenario 2 will not be used within the model, as this would involve 

forcing cloud changes into locations where the presence of cloud is physically unrealistic (i.e. if 

the model has determined that cloud should not exist over an area, then it would be physically 

incorrect to forcibly insert it). Concerning scenario 3, although this is a likely mechanism and 

one which potentially plays an important role in the observed cloud changes, there is no way to 

include this scenario within the model due to the semi-prognostic nature of the GCM’s cloud 

scheme (which re-calculates cloud at each time interval). Consequently, only the first of the 

three cloud change scenarios will be represented within the model. This limitation may result in 

an under-estimation of modelled anomalies.  

The two GCM experiments performed were (1) the Mid-latitude cloud decrease (MLCD) 

experiment, and (2) the Polar cloud increase (PCI) experiment. 
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Figure 7.14 Simplified conceptual models of cloud increase  

Simple conceptual models of GCR–cloud growth at the scale of individual clouds. These 
increases result from: A) an edge effect (growth at cloud boundaries), a concept supported by 
GEC theories and observations of the effects of space charge built up at cloud boundaries 
(Tinsley, 2008; Harrison and Ambaum, 2009); B) the growth of new, distinct, cloud bodies, 
most likely as a result of increased CCN concentrations due to IMN (Yu and Turco, 2001); C) 
increased cloud longevity, due to the effects of the GEC or IMN which may alter cloud 
properties such as cloud droplet sizes and concentrations (Yu and Turco, 2001; Tinsley, 2008). 
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7.3.1 MLCD experiment design 

The MLCD experiment is based on the pattern of mid-latitude (30°–60°N/S) averaged, 

statistically significant cloud anomalies described in chapter 6; the regionally-averaged cloud 

changes associated with this sample are presented below  (figure 7.15). The specific cloud 

forcing scheme applied to the MLCD experiment to simulate these cloud anomalies is detailed 

in table 7.1.   

 

 

Figure 7.15 Observed mid-latitude cloud changes  

Area-averaged mid-latitude cloud changes occurring during the MLCD sample. Dotted lines 
indicate 0.95 confidence interval, markers indicate statistically significant changes. 
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Day  Latitude zones (N & S) Pressure level (mb)  Scale factor 

-6 50°–30° 1,013–658  1.04 

-5 50°–30° 1,013–658  1.06 

-4 50°–30° 1,013–658  1.04 

-2 60°–20° 1,013–557  0.97 

-1 60°–20° 1,013–557  0.94 

0 60°–20° 1,013–557  0.90 

1 60°–20° 1,013–557  0.94 

2 60°–20° 1,013–557 0.97 

 

Table 7.1 MLCD experiment cloud forcing scheme  

Day, latitude zone and height range of the applied cloud forcings. All cloud changes are based 
on a scale factor applied to the LW and SW model radiation schemes. The scale factor is 
multiplied against the cloud values of each individual model grid cell. Any changes forced 
above or below the maximum/minimum cloud amounts are reset to the maximum/minimum 
values.  

 

The complete annotated FORTRAN code inserted in to the GCM to produce the observed cloud 

anomalies is presented in Appendix 4 (the method of inserting/modifying the code of the 

HadAM3 model in this manner is referred to as a modest). A plot of the regionally-averaged 

mid-latitude cloud changes produced by the modset are presented in figure 7.16. The model 

output shows that the overall pattern of cloud change over the composite period has been 

reproduced: increased rates of cloud change have been created between days -6 to -4, which 

then change sign between days -2 to 1. The magnitude and timing of the anomalies correspond 

well to observations, although the modelled anomalies are around 0.5 % weaker (with respect to 

key date anomalies). The spatial extent of the statistically significant modelled anomalies is 

found to be more limited than those seen in the observed data. A plot of 5° latitudinally-

averaged cloud anomalies occurring over the composite period shows that statistically 

significant anomalous cloud changes develop with comparable magnitude and timing across 

both hemispheres (figure 7.17). This suggests that the changes to the GCM have effectively 

reproduced the symmetrical pattern of cloud change observed over the MLD sample. However, 

there are also a number of unintentional statistically significant anomalies located at high 

latitudes, which appear throughout the composite period (these are particularly evident in the 

northern hemisphere). The reason for the existence of such high levels of Arctic region 

variability are unclear. It is unknown at this stage how such variability may impact the 
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experiment, although it is probable that it will increase the SNR of the sample. This may 

complicate the detection of potential cloud–climate signals present in the data. Some attempts 

were made to overcome this issue. For example, test experiments were performed using 

composites of doubled sample size, however these samples did not remove the problem and, 

due to the increase in computational intensiveness which accompanied the doubling of sample 

sizes, their use continued use for experimentation was unfeasible with regard to computing 

resources. 

A plot of locally significant cloud changes observed on the key date shows that statistically 

significant anomalies occur over a wide range of locations (including areas outside of mid-

latitude regions) (figure 7.18). Approximately 12.2 % of the modelled troposphere demonstrates 

statistically significant pixels and, of these, 42 % are located within mid-latitude zones. The 

largest significant anomalous cloud decreases seen within the mid-latitude regions correspond to 

areas of cyclonic activity (e.g. in the North Atlantic); this suggests that the cloud change created 

by the modset have disproportionately influenced regions of high storm activity. 

Experimentally, such a change is unfavourable, as it does not properly reflect the situation seen 

in the observations, which show no locally significant cloud anomalies over these regions.  
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Figure 7.16 Forced MLCD experiment cloud changes 

The area-averaged (30°–60° N/S) total cloud changes resulting from the MLCD experiment 
code changes. The 0.95 level confidence intervals is shown by the dotted lines; days of 
statistically significant cloud change are indicated by the markers. 
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Figure 7.17 Simulated MLCD cloud changes  

A plot of 5° latitudinally-averaged cloud cover changes occurring over the composite sample 
from day -10 to 3. The horizontal dashed lines indicate the mid-latitude zones where cloud 
changes are intentionally forced. Solid contours show statistically significant anomalies above 
the 0.95 critical level. 
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Figure 7.18 Locally significant key date cloud changes 

Anomalous key date cloud changes across the globe, with statistical significance overlaid 
(dashed contours). Dashed solid lines indicate the mid-latitude regions where negative cloud 
changes are forced. 12.2 % of the total grid shows a statistically significant cloud change, of 
which 42.0 % is located within mid-latitude zones. Of the statistically significant changes 
42.0 % are positive, while 58.0 % are negative. 

 

 

7.3.2 MLCD experiment results: air temperature 

The results of the MLCD experiment show that, although a change between negative/positive 

anomalies is observed both before and after the key date, no statistically significant air 

temperature anomalies were produced at a globally-averaged resolution over the composite 

period (figure 7.19A). A plot of 5° latitudinally-averaged surface level temperature anomalies 

occurring over the composite period indicates that the regions of largest temperature variability 

occurred at high latitude zones (figure 7.19B). This implies that the temperature changes 

observed over the globally-averaged sample is reflecting (unintentional) polar variability as 

opposed to the desired mid-latitude cloud changes produced by the modset.   

During the key date of the composite, no statistically significant air temperature changes were 

detected at any pressure level (at a 5° latitudinally-averaged resolution) within mid-latitude 

regions. Overall however, temperature anomalies did appear to be of a positive sign, which may 
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suggest the influence of cloud decreases on temperature, although these anomalies were of 

relatively low magnitude (around 0.1 K) (figure 7.20). In comparison, large ( ≥0.5 K) 

statistically significant anomalies of both sign were identified over high latitude regions during 

the key date (figure 7.20); the difference in magnitude between mid-latitude and high latitude 

temperature variations again implies that, as a global average, a cloud–temperature signal 

should not be expected  from this experiment.  

A plot of locally significant surface level air temperature anomalies occurring on the key date 

finds almost no significant changes identified over any regions; significant anomalies occur 

over only 3.8 % of the globe (less than the 5 % uncertainty allowed by a 0.95 confidence level 

T-test) (figure 7.21). Since the cloud changes within mid-latitude regions were found to be 

relatively localised (figure 7.18), a lack of spatially corresponding temperature anomalies 

suggests that the forced cloud changes may have only had a small impact on air temperature. 

The realism of this response is difficult to determine, as locally significant cloud change 

comparable to those produced in the model did not occur in reality.  

Regional averaging of the modelled air temperature response shows far more encouraging 

results. A negative relationship between forced cloud changes and air temperatures has been 

reproduced over mid-latitude regions that is highly comparable to observations (figure 7.22). 

The correlation coefficient between observed cloud and air temperature changes (between day -

5 to 3) shows an R2 value of -0.91, while the correlation coefficient of the forced cloud changes 

and modelled air temperature response (over the same period) is -0.93, suggesting that the 

HadAM3 has successfully reproduced the observed cloud/temperature signal at a regional scale. 

However, it is noted that the modelled air temperature changes lack statistical significance and 

are only around 25 % of the magnitude of the observed temperature changes. The lack of 

statistically significant and weaker changes produced by the GCM may be explained in several 

ways:  

(1) Differences between the observed and modelled significant cloud anomalies. Locally 

significant cloud anomalies in the GCM were not found to demonstrate similar 

characteristics to observed cloud anomalies. Consequently, it is possible that their 

atmospheric impacts may also diverge from observations. 

(2) Type of cloud changes may not be appropriately captured. As discussed in 7.3, the 

types of cloud change occurring at the scale of individual cloud systems may not be 

fully represented. As a result, differences between observed/modelled effects may 

potentially arise. 
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(3) Cloud–climate interactions may not be fully resolved by the model. Although the cloud 

simulations of the HadAM3 are reasonably accurate in relation to other GCMs, 

modelled cloud and cloud–climate interactions still bear significant inaccuracies. 

(4) Issues of SNR. A problem of relatively low SNR may be prevalent in the GCM 

experiments, this problem will be discussed in more detail in 7.3.4. 
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Figure 7.19 MLCD global air temperature anomalies  

A) Globally-averaged anomalous air temperatures occurring throughout the troposphere during 
the composite period, and B) 5° latitudinally-averaged surface level air temperature anomalies 
occurring during the composite period, dashed horizontal line denotes mid-latitude regions. 
Statistically significant anomalies are indicated by solid black contours. 
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Figure 7.20 Key date modelled air temperature anomalies  

A plot of 5° latitudinally-averaged GCM air temperature anomalies occuring on day 0 of the 
composite. Dashed vertical lines delinate regions of forced cloud changes at mid-latitude 
regions; solid contours indicate regions of statistical significance.  
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Figure 7.21 Locally significant MLCD air temperature changes 

Key date anomalous surface level air temperature changes over the globe. Locally significant 
anomalies are indicated by dashed contours, dashed lines indicate the mid-latitude regions, 
wherein negative cloud changes are forced. Locally significant air temperature anomalies were 
found to occur over 3.8 % of the globe (49.6:50.4 % positive: negative), 53.3 % of the locally 
signifiant anomalies occur within the mid-latitude regions. 
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Figure 7.22 Mid-latitude cloud and air temperature anomalies 

Solid line shows averaged cloud cover anomaly (between 60° and 30°N/S) (left-hand axis), 
while dashed line shows the surface level air temperature anomaly (over same region) (right-
hand axis). Data are presented for both A) the observed (ISCCP and NCEP/NCAR reanalysis), 
and B) the modelled cloud/temperature response. Statistically significant anomalies (above 0.95 
level) are indicated by markers, grey shading and dotted lines both indicate the 0.95 level 
confidence intervals. 
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7.3.3 MLCD experiment results and analysis: pressure  

At a globally-averaged resolution, no statistically significant changes in GPH were identified at 

any pressure level during the composite period (figure 7.23A). A 5° latitudinally-averaged plot 

of surface level pressure anomalies over the composite period also shows that, over the mid-

latitude regions, no significant pressure anomalies were observed. However, a number of 

statistically significant anomalies were identified at high latitude regions throughout the 

composite period (figure 7.23B); the timing and location of these anomalies suggests that they 

are unconnected to the intentionally forced mid-latitude cloud decreases. These anomalies 

suggest that unrealistically large variability is produced over high latitude regions.  

A 5° plot of latitudinally-averaged anomalous GPH changes on the key date reveals no 

statistically significant changes over the mid-latitude regions at any pressure level (figure 7.24). 

Small, but significant, anomalies are apparent over the high latitude regions, but seem to be 

unrelated to the forced mid-latitude cloud changes. Over the mid-latitude region of the southern 

hemisphere two relatively large (but non-significant) anomalous GPH changes occur (of -3 and 

5 m day-1); however, it is not clear whether these are the result of large (6 m day-1) changes in 

GPH detected between 90°S–60°S, or the cloud changes produced by the modset.  

A plot of surface level pressure anomalies occurring on the key date of the composite reveals 

the presence of two areas of locally significant pressure decreases within mid-latitude regions 

(figure 7.25). Confidence in the field significance of this result is low, as locally significant 

GPH anomalies were found to occur over only 3.0 % of the globe (less than the random 5.0 % 

expected at a 0.95 confidence level). In addition, the modelled pressure changes failed to show a 

locally significant increase in surface level pressure around the periphery of the Antarctic 

continent, as identified in the NCEP/NCAR reanalysis data (figure 6.40); this result is 

unsurprising given the large atmospheric variability observed at high latitudes during the 

MLCD experiment.  

Theoretically, it should be expected that a decrease in mid-latitude cloud cover should result in 

increased surface level air temperatures and decreased pressures. So far, globally-averaged and 

5° latitudinally-averaged plots have not yet shown indications of a statistically significant 

pressure response. However, area-averaged, mid-latitude observations of pressure changes 

during the composite shows a statistically significant surface level decrease of approximately 

-16 Pa day-1: this decrease begins on day -7 and peaks on day -1 (figure 7.26A). Modelled 

surface level pressure changes over an identical domain show a comparable pattern of change, 

with pressure decreases beginning on day -7 and peaking on day -1 (at around -12 Pa day-1) 

(figure 7.26B). However, it should be noted that the modelled pressure changes failed to 

demonstrate statistical significance. This result is similar to the air temperature changes of the 
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MLCD sample, which also only showed changes comparable to observations after area 

averaging was applied.  
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Figure 7.23 MLCD GPH changes over composite period  

A) Globally-averaged GPH anomalies occurring throughout the troposphere, and B) 5° 
latitudinally-averaged 1,000 mb GPH anomalies. Solid contours indicate statistically significant 
anomalies. Horizontal dashed line denotes mid-latitude region wherein negative cloud 
anomalies are simulated. 
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Figure 7.24 Key date GPH changes  

A plot of 5° latitudinally-averaged GPH anomalies occurring on the key date of the MLCD 
composite throughout the troposphere. Vertical dashed lines denote mid-latitude regions, 
wherein negative cloud changes are simulated. 
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Figure 7.25 Pressure anomalies over the MLCD experiment  

Key date anomalous surface level pressure changes over the globe. Locally significant 
anomalies are indicated by dashed contours; dashed lines indicate the mid-latitude regions, 
wherein negative cloud changes are forced. Locally significant pressure anomalies were found 
to occur over 3.0 % of the globe (41.4 : 58.5 % positive : negative); 51.6 % of those anomalies 
were located within mid-latitude regions.  
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Figure 7.26 Modelled vs. observed pressure changes  

Averaged cloud cover anomaly (solid lines) (between 60° and 30°N/S) (values plotted on left-
hand axis) and mid-latitude surface level pressure anomalies (values plotted on right-hand axis). 
Data are displayed for both A) the observed (ISCCP and NCEP/NCAR reanalysis), and B) the 
modelled cloud/pressure response. Statistically significant anomalies (above 0.95 level) are 
indicated by markers; grey shading and dotted lines both indicate the 0.95 level confidence 
intervals. Note differing scales on vertical axes between panels. 
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7.3.4 MLCD experiment: further analysis 

Overall, while the MLCD experiment was unable to reproduce small scale (5° latitudinally-

averaged) features detected in the MLD sample (discussed in section 6.5), the experiment was 

able to successfully capture the observed area-averaged pressure and temperature responses of 

the mid-latitude regions (although the temperature response was weaker than observed). This is 

demonstrated in figure 7.27, which compares the area-averaged relationship of the 

observed/modelled mid-latitude air temperature/pressure anomalies to cloud cover changes over 

the composite period and shows that, in general, the model was able to appropriately capture a 

regional cloud–climate response. However, the model underestimates the temperature and 

pressure response by around 75 % and 31 % respectively. In addition, no detectable 5° 

latitudinally-averaged changes were identified (contrary to observations) and the 

temperature/pressure response of the MLCD experiment were not statistically significant.  

The fact that the response was only detectable when considering large areas may be explained 

as follows. The cloud–atmospheric response is a second-order phenomenon: they require the 

presence of cloud before a cloud change can be applied (i.e. the modset can only change cloud 

when there is cloud to change). As a consequence, it is likely that there is a large amount of 

noise present (where noise in this instance simply refers to atmospheric variations unrelated to 

cloud modifications). Changes at small scales within the mid-latitudes are therefore likely to be 

partially caused by the modset (if cloud conditions allow) and partially by noise and hence give 

no overall indications of a signal. Area averaging overcomes this, as it has the effect of 

increasing the SNR (as over large areas, random noise tends to cancel itself out). As the cloud–

climate response only becomes apparent after area averaging, this strongly implies that, at a sub-

regional scale, the modelled noise is too great to observe a cloud–atmosphere response 

(although it is probably present).  

This explanation also offers insights into why the temperature/pressure response appeared non-

significant and relatively muted compared to observations. The MLD internal sample essentially 

represents a composite which had been pre-selected by precursor conditions, i.e. the premise of 

the sample was that ‘if a GCR–cloud connection exists, then it should be distinguishable based 

on the rapidity of cloud changes’, tests of the MLD sample indicated that this was the case 

(discussed in chapter 5). Hence, it is logical to assume that if the MLD sample represents rapid 

cloud changes enhanced by GCR variations, then the conditions required for these changes to 

have occurred were met and so, in effect the procedure has pre-sorted the sample to minimise 

noise (where noise relates to natural ‘non-GCR-enhanced’ processes). What this means is that in 

comparison, the MLCD experiment essentially represents a relatively noisy version of the MLD 

sample; this may account for the lack of statistical significance and relatively smaller changes 
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detected. Some further issues regarding the MLCD experiment may lie with the forced cloud 

decreases themselves; the decreases appear to be concentrated over regions where cloud is 

formed most frequently and several of these locations are also of cyclonic activity (figure 7.28). 

For example, an intense cloud decrease (of around -12 %) at 40°S 170°E which coincides with 

anti-cyclone observations did not show comparable results. The physical effects of decreasing 

cloud cover within cyclonic systems differs from that implied by the MLD sample; the effect of 

decreasing cloud in baric systems may have very different (and unintended) climatic 

consequences, such as the reduction of meridional energy exchange within the model. 

 

Figure 7.27 Scatter plots of MLCD sample relationships  

A) Modelled cloud changes (y-axis) and air temperature changes (x-axis); B) modelled cloud 
changes (y-axis) and pressure changes (x-axis); C) observed cloud changes (y-axis) and air 
temperature changes (x-axis); and D) observed cloud changes (y-axis) and pressure changes (x-
axis). Blue lines show linear regressions; the correlation coefficient (R2) values are also shown 
on the graphs (the critical value of R2 with 14 degrees of freedom at the 0.95 level is ±0.50). 
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Figure 7.28 MLCD sample cloud/pressure anomalies in relation to vector winds  

Anomalous vector wind changes overlaid onto A) cloud changes and B) surface level pressure 
anomalies on the key date of the composite. 
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7.4 PCI experiment: design 

The PCI experiment is based on the anomalous cloud changes observed during the GI sample 

(discussed in section 5.2). These cloud changes were found to be predominately located at high 

latitudes between 90° and 60°N/S. Vertically, the northern hemisphere cloud anomalies were 

located at mid-tropospheric levels, whereas the southern hemisphere anomalies were located at 

mid- to high tropospheric levels. The tropospheric-averaged (ISCCP observed) cloud changes at 

the polar regions (90°–60°N/S) during the GI sample is shown in figure 7.29. The specific cloud 

forcing scheme applied during the PCI experiment to reproduce these changes is shown in table 

7.2.  The complete annotated FORTRAN modset inserted in to the GCM to simulate these 

anomalies is presented in Appendix 5. 

The latitudinally-averaged polar cloud changes produced by the PCI experiment successfully 

demonstrates a close agreement to observations (figure 7.30). An anomalous cloud decrease of -

1.2 % was produced on day -5, after which time anomalous cloud change increased to day 0, 

peaking at 7.6 %. In comparison, observed cloud changes showed values of -2.8 % and 8.8 % 

on days -5 and 0 respectively. To illustrate the degree of association between the observed and 

modelled cloud anomalies, the parameters are presented in a scatter plot (figure 7.31). This 

figure indicates that a strong agreement between observations and the model has been achieved 

(quantitatively demonstrated by a statistically significant R2 value of 0.85). A latitude/time plot 

of 5° latitudinally-averaged cloud anomalies shows that statistically significant anomalies of 

approximately 10 % occur around the key date at high latitude regions (90°–60°N/S). This again 

indicates that the modset was successful in altering polar cloud cover and reproducing observed 

high latitude cloud anomalies. However, it should be noted that locally these changes were 

smaller than observed (figure 7.32).   

A latitude/longitude plot of the cloud anomalies on the key date of the composite is shown in 

figure 7.33. This plot confirms the presence of large and significant cloud anomalies at latitudes 

greater than 60° (N/S) (as suggested by figure 7.32). The widespread nature of the significant 

polar anomalies is well illustrated by the contrast between the percentages of statistically 

significant pixels in non-polar/polar regions: 4.2 % of pixels at latitudes lower than 60° are 

locally significant (less than the 5 % uncertainty range), whereas at latitude greater than 60° 

(N/S) 76.9 % of pixels show statistically significant changes.  

Although the PCI experiment has successfully increased cloud at a regional level, there is 

considerable local variation to the significant cloud changes. For example, statistically 

significant anomalies were not produced over large areas of the Arctic Ocean or within the 

continental region of Antarctica. The lack of significance over such locations may be 

attributable to the GCM’s cloud scheme itself. It was previously noted that the models and 
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observations differed significantly over polar regions. In particular, the simulation of 

appropriate cloud amounts at specific pressure levels was observed to be very poor (figure 7.4). 

In the upper/mid tropospheric levels of the Antarctic/Arctic respectively (locations critical for 

the experiment), cloud amounts are very poorly reproduced. As a result, the lack of significant 

cloud anomalies at locations over polar regions may be a direct consequence of the GCM’s 

underestimation of high latitude cloud cover.  

Observations from the previous chapter suggested the possibility that an indirect cloud–climate 

link (operating via changes to polar circulation) may exist. The model’s apparent weakness in 

reproducing the correct vertical structure of polar clouds may ultimately make confirming or 

refuting this hypothesis impossible and potentially prove to be a critical limitation on the PCI 

experiment. In light of this, it is important to re-state that the model’s weakness in reproducing 

accurate polar conditions is not a limitation unique to HadAM3, but rather is a widespread issue 

of GCMs, as polar environments represent geophysical extremes and are consequently difficult 

to accurately model (CCSP, 2008).  

 

 

Figure 7.29 Observed high latitude cloud changes  

ISCCP cloud changes occurring between 90°–60° (N/S) over the GI internal sample. Dotted 
lines show the 0.95 level confidence interval; markers indicate statistically significant changes. 
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Day Latitude zone   Pressure level (mb)  Scale factor 

 

 

-6 & -4 

60°N–75°N 

75°N–90°N 

60°S–75°S 

75°S–90°S 

845–759 & 465–390 

759–465 

658–390 

390–10 

0.85 

0.80 

0.85 

0.80 

 

 

-5 

60°N–75°N 

75°N–90°N 

60°S–75°S 

75°S–90°S 

845–759 & 465–390 

759–465 

658–390 

390–10 

0.80 

0.75 

0.80 

0.75 

 

 

-2 & 2 

60°N–75°N 

75°N–90°N 

60°S–75°S 

75°S–90°S 

845–759 & 465–390 

759–465 

658–390 

390–10 

1.35 

1.45 

1.35 

1.45 

 

 

-1 & 1 

60°N–75°N 

75°N–90°N 

60°S–75°S 

75°S–90°S 

845–759 & 465–390 

759–465 

658–390 

390–10 

1.60 

1.75 

1.60 

1.75 

 

 

0 

60°N–75°N 

75°N–90°N 

60°S–75°S 

75°S–90°S 

845–759 & 465–390 

759–465 

658–390 

390–10 

1.90 

1.99 

1.90 

1.99 

 

Table 7.2 Cloud changes forced during the PCI experiment  

The table shows the timing (day), location (latitude zone), altitude (pressure level) and 
magnitude (scale factor) of the cloud changes inserted in to the GCM to produce the PCI 
experiment. The scale factor is multiplied against the cloud values of each individual model grid 
cell. Any cloud change forced above or below the maximum/minimum grid box value is 
automatically decreased/increased to the maximum/minimum value to prevent model errors. 
Although the scale factors are based on observations, these values have often been increased as 
a result of the model being relatively insensitive (i.e. large scale factors are necessary to achieve 
observed cloud changes as the forced cloud change depends on cloud conditions within the 
model, which deviate from observations). 
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Figure 7.30 Forced PCI experiment cloud changes  

Area-averaged PCI experiment cloud changes occurring between 90° and 60°N/S over the 
composite period. Dashed line shows the 0.95 level confidence interval; statistically significant 
changes are indicated by markers. 
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Figure 7.31 Scatter plot of observed vs. modelled PCI experiment cloud changes 

Observed ISCCP cloud anomalies (y-axis) vs. modelled cloud anomalies (x-axis) over the polar 
(90°–60° N/S) region, with the line of best fit (blue line) and correlation coefficient (R2) value 
displayed.  
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Figure 7.32 PCI experiment cloud changes  

Latitude/time tropospheric average cloud changes forced within the GCM. Statistically 
significant changes at the 0.95 level indicated by the solid contours, dashed line indicates the 
areas of forced cloud changes (90°–60°N/S); see table 7.2 for exact changes applied to the 
GCM. 
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Figure 7.33 PCI experiment key date cloud anomalies 

Key date PCI experiment cloud change anomalies; locally statistically significant changes 
indicated by dotted contours. Outside of polar latitudes (60°N–60°S) only 4.2 % of pixels are 
locally significant, whereas, within polar latitudes 76.9 % of pixels are locally significant. 
100 % of locally significant pixels within polar latitudes are of a positive sign. 

 

 

7.5.2 PCI experiment results: air temperature  

During the PCI experiment, no statistically significant globally-averaged air temperature 

anomalies were detected at any pressure level over the composite period (figure 7.34A). 

However, at a latitudinally-averaged resolution, statistically significant surface level air 

temperature anomalies were found to occur at high latitude regions in both hemispheres across 

the composite period (figure 7.34B). A 5° latitudinally-averaged vertical profile of the key date 

air temperature anomalies found the occurrence of a small but significant mid-tropospheric level 

temperature decrease (of approximately -0.4 K) at high southern latitudes and two small but 

significant temperature increases (of approximately 0.6 K) at low tropospheric levels (figure 

7.35). At a local level, there were virtually no statistically significant anomalies detected during 

the key date at any location (figure 7.36), although there were several significant decreases (of 

around -1.6 K) identified over limited areas of the western Antarctic ice sheet. 
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Overall, the air temperature anomalies appear to occur indiscriminately throughout the 

composite period at high latitudes; significant anomalies occur with an inconsistent sign in both 

hemispheres (e.g. around the key date the Arctic demonstrates a significant temperature 

increase, whilst a significant decrease occurs over the Antarctic). The inconsistency in both the 

sign and timing of the anomalies strongly suggests that these changes are not due to the forced 

cloud changes, but instead are probably related to unrealistically high simulations of polar 

atmospheric variability, similar to those observed during the MLCD experiment (figure 7.19).  

A regionally-averaged (60°–90°N/S) plot of observed/modelled cloud and surface level air 

temperature changes shows that, while observations identified the occurrence of a strong and 

statistically significant negative relationship between cloud and air temperature, the model 

produced a relatively weak positive relationship (figure 7.37). Although figure 7.36 

demonstrated the existence of locally significant temperature decreases over areas of Antarctica 

on the key date (which appears to contradict this assertion), the positive temperature response of 

figure 7.37B is found to occur in both hemispheres simultaneously (figure 7.38). These results 

indicate that the positive regional air temperature response resulting from the forced cloud 

changes is only detectable after regional averaging (similar to the findings of the MLCD 

experiment); this relationship was not detectable at higher spatial resolutions. The results of 

figures 7.37–7.38 suggest that the forced cloud changes in the PCI experiment did have a weak 

but widespread effect on temperatures at polar latitudes, but that this effect was contrary to 

observations. However, the modelled response  agrees with the accepted notion that clouds have 

a warming impact on polar environments (Stone and Khal, 1991). This conflict suggests that 

either the observations are in error, or an unknown cloud–climate relationship, which cannot be 

resolved by the GCM, is occurring. 
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Figure 7.34 Global PCI air temperature anomalies  

A) Globally-averaged air temperature anomalies occurring during the composite at different 
tropospheric levels, and B) 5° latitudinally-averaged surface level air temperature anomalies 
occurring during the composite period as a function of latitude. Statistically significant 
anomalies are indicated by solid contours; dashed horizontal line shows boundary of polar 
regions. 
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Figure 7.35 Vertical profile of PCI key-date air temperature anomalies 

A plot of 5° latitudinally-averaged air temperature anomalies occurring on the key date of cloud 
change of the PCI experiment. Dashed vertical lines indicate limit of polar regions; solid 
contours indicate statistically significant anomalies. 
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Figure 7.36 Key date air temperature anomalies 

Anomalous surface level air temperature changes occurring on the key date of the PCI 
experiment. Horizontally dashed lines indicate the limits of the polar latitudes; dashed contours 
indicate regions of statistical significance. 1.6 % of pixels located in non-polar regions (60°N–
60°S) are locally significant, while 3.5 % of polar pixels are locally significant. Of the 
significant polar pixels, 60.6/39.4 % are positive/negative, compared with 36.3/63.7 % 
positive/negative over non-polar regions.  
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Figure 7.37 Observed and modelled cloud/temperature anomalies 

Latitudinally-averaged polar cloud change (solid line) and surface level air temperature (dashed 
line) anomalies, for both A) ISCCP and NCEP/NCAR reanalysis GI sample observations, and 
B) the GCM PCI experiment. The dotted lines/grey shading shows the 0.95 level confidence 
interval for the air temperature/cloud data respectively. Markers indicate statistically significant 
changes. Note differing scales on vertical axis of panels. 
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Figure 7.38 PCI experiment Arctic/Antarctic air temperature anomalies  

Latitudinally-averaged GCM surface level anomalous air temperatures during the PCI 
experiment for the A) Arctic and B) Antarctic regions. Dotted lines indicate the 0.95 level 
confidence interval; markers indicate statistically significant anomalies. 
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7.5.3 PCI experiment results: pressure  

A globally-averaged plot of GPH anomalies occurring over the PCI composite period shows an 

increase of approximately 0.5–0.18 m occurring around the key date. These changes are found 

to be statistically significant at upper tropospheric levels (figure 7.39A). A plot of 5° 

latitudinally-averaged surface level pressure anomalies shows that a number of statistically 

significant changes took place during the composite period (figure 7.39B). In general, negative 

anomalies of around -120 mb occurred at polar latitudes in both hemispheres between days -10 

to -4, but between days -4 to 0 these were replaced by stronger positive anomalies of around 

200 mb. Several significant anomalies are also identified at mid- and low latitude regions 

around day -4 and following day 0. The pressure changes occurring during the PCI composite 

appear to occur slightly out of phase with the forced polar cloud changes.  

A latitude/height profile of 5° latitudinally-averaged GPH anomalies occurring on the key date 

of the PCI experiment show the presence of strong positive anomalies (of approximately 8 m) 

over high southern latitudes at all tropospheric levels, while strong negative anomalies of 

around -10 m are identified at mid- to high northern latitudes. In addition, a relatively weak 

positive mid- to low tropospheric level anomaly (of around 4 m) is also observed at high 

northern latitudes (figure 7.40). A latitude/longitude plot of key date surface level pressure 

anomalies indicates that the areas of the largest and most widespread pressure change were over 

high southern latitudes, which showed intense increases in pressure within the Antarctic 

continental interior. However, only limited areas within this region were found to demonstrate 

any local statistical significance (figure 7.41); only 1.6 % of polar pixels were found to be 

locally significant, while 6.4 % of pixels at non-polar latitudes were significant. The statistically 

significant pressure anomalies located outside of the polar regions were found in mid-latitude 

regions of cyclonic activity; this suggests that no direct relationship exists between the 

anomalies and the forced polar cloud changes.  

A regionally-averaged plot of observed/modelled polar cloud and surface level pressure 

anomalies showed that, during the observed increase in the rate of polar cloud change, a non-

significant protracted pressure decrease was occurring (figure 7.42). However, during the PCI 

experiment a more complex pattern of statistically significant increasing pressure occurs 

(centred around day -3), followed by a non-significant decrease in pressure (centred around day 

0) (figure 7.42). This pattern bears no clear relationship to the observed changes, but it does 

broadly suggest that broadly the model shows a weak negative relationship between cloud and 

pressure over the polar regions. The implications of this pressure change in relation to the 

atmospheric changes occurring during the key date of the PCI experiment will be considered in 

section 7.5.5. 
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Figure 7.39 PCI experiment pressure anomalies 

A) Globally-averaged GPH anomalies at various tropospheric levels, and B) surface level 
pressure anomalies occurring over the PCI composite. Horizontal dashed lines indicate limits of 
polar regions; solid contours mark regions of statistical significance. 
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Figure 7.40 PCI experiment key date GPH anomalies 

A vertical profile of GPH anomalies occurring on the key date of the PCI experiment. Vertical 
dashed lines indicate limits of polar regions. Solid contours show areas of statistically 
significant changes. 
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Figure 7.41 Key date PCI experiment pressure anomalies 

Anomalous surface level pressure changes occurring on the key date of the PCI experiment. 
6.4 % of pixels at non polar (60°N–60°S) latitudes demonstrate local significance, while 1.6 % 
of polar latitude pixels are locally significant. Of the locally significant polar pixels, 
65.0/35.0 % are positive/negative; whereas at non-polar latitudes, 59.6/40.4 % are 
positive/negative. 

 



 268 Chapter 7 – Climate Model Experiments 
 

 

 

Figure 7.42 Observed and modelled pressure/cloud anomalies 

Latitudinally-averaged cloud anomalies (dashed line) and surface level pressure anomalies 
(solid line) for both A) ISCCP and NCEP/NCAR observations, and B) the PCI experiment. 
Dotted lines/grey shading indicates the 0.95 level confidence interval for the mean 
pressure/cloud anomalies. Markers indicate statistically significant changes. Note differing 
vertical scales on panels. 
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7.5.4 PCI experiment: vertical velocity 

Observations indicated that during the GI sample there were anomalous changes to the vertical 

velocity (omega) over polar regions (described in section 6.6). The detected omega anomalies 

will now be compared to their modelled counterparts from the PCI experiment.  

A regionally-averaged (polar) vertical profile of omega anomalies occurring on the key date and 

its relative averaging period (days -5 to -3) showed that observations identified a negative 

anomaly of around -0.0002 Pa s-1 (i.e. a relative reduction in the descent of air) at upper 

tropospheric levels (100–200 mb) and a positive anomaly of approximately 0.0008 Pa s-1 (i.e. a 

relative increase in the descent air) over lower-tropospheric levels (400–1,000 mb) (figure 

7.43A). It should be noted that these changes were not statistically significant. A comparable 

but inverse pattern of change was produced in the Arctic by the PCI experiment (figure 7.43B). 

The modelled omega anomalies were found to be larger than their observed counterparts and 

demonstrate statistical significance at tropospheric levels below 400 mb.  

Over the Antarctic, a relative increase of approximately 0.0012 Pa s-1 in the descent of air at all 

tropospheric levels (relative to the averaging period) is observed. These anomalies are found to 

be statistically significant between 150 and 600 mb (figure 7.43C). Again, the modelled omega 

anomalies demonstrate an inverse sign relative to observed values, indicating that an anomalous 

(but non-significant) decrease of approximately 0.0016 Pa s-1 has occurred (figure 7.43D). 

Broadly, similar results are found from an analysis of the anomalous changes occurring over the 

entire composite period (figure 7.44). Although generally there is a similar magnitude and 

timing of anomalies, with comparable features (such as the weakest changes being located at 

upper levels and a 1 to 2 day lag between mid- and low-level anomalies over the Antarctic), the 

modelled omega responses appear to be of inverse sign to observations. This implies either (1) 

that the model has failed to capture the cloud–climate interaction correctly, or (2) that the 

NCEP/NCAR reanalysis omega data are incorrect. Consequently, it is difficult to draw firm 

conclusions. An overview of the observed omega changes in the context of accompanying 

temperature and pressure changes may provide further clarity, as will a wider discussion of the 

PCI results. 
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Figure continued overleaf 
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Figure 7.43 Modelled and observed vertical omega profile 

Regionally-averaged polar (60°–90°N/S) omega anomaly, during the key date (red line) and 
relative averaging period (blue line) (day -5, -4 and -3), for GI sample observations and the PCI 
experiment. Negative/positive values indicate ascending/descending air motion. Note differing 
scales on vertical axis of panels. 
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Figure continued overleaf 
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Figure 7.44 Observed and modelled omega anomaly during composite period 

Omega anomaly occurring over the Arctic (90°N–60°N) and Antarctic (60°S–90°S) regions 
during the composite period at: upper (200–100 mb), mid (400–600 mb) and lower (600–
1,000 mb) pressure levels. Negative/positive values indicate ascending/descending air motion. 
Note differing scales on vertical axis of panels. 
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7.5.5 PCI experiment: further discussion 

Overall, while the PCI experiment reproduced the correct timing and magnitude of regional-

scale polar cloud changes, the experiment was unable to correctly simulate the observed air 

temperature, pressure or omega responses detected during the GI internal sample (figure 7.45). 

Although the simulated relationship between air temperature and cloud was found to be 

significant (R2=0.60), the relationship was of inverse sign to that observed. Additionally, the 

simulated pressure/omega variables were not found to demonstrate a statistically significant 

relationship to cloud anomalies (R2=0.03/0.40 respectively).  

Observations from chapter 6 unexpectedly indicated that anomalous polar cloud increases were 

accompanied by significant air temperature decreases; this observation is contrary to 

contemporary understanding of the impacts of clouds over ice covered surfaces (Stone and 

Khal, 1991). Consequently, it was hypothesised that this observation was therefore either (1) 

evidence of a previously unrecognised indirect cloud–climate forcing (described in section 

6.3.7), or (2) an indication of a detection error. A successful simulation of a negative 

relationship between cloud and air temperature would have provided good evidence in support 

of the first scenario, however, since no such evidence was found it must therefore be concluded 

that either that the PCI experiment was not sophisticated enough to successfully reproduce the 

observations, or that the observation of a cloud increase is merely an artefact, possibly resulting 

from the temperature anomalies themselves. Cloud determinations are performed based on 

radiative properties, which is a problem over ice covered surfaces as it is difficult for satellites 

to distinguish between clouds and ice. Consequently, it is possible that changing temperature 

conditions may be erroneously interpreted as a change in cloud cover or snow cover by the 

satellites.  

Although it is unclear which scenario is correct from these results, an overview of the climatic 

changes occurring during both the PCI experiment and GI sample may provide more insight. 

Figure 7.46 presents a summary chart of the cloud, temperature, pressure, and omega anomalies 

occurring on the key date over the polar regions. The GI sample shows a key date cloud increase 

accompanied by a relative temperature decrease, pressure decrease and increase in the descent 

of air (positive omega). Physically, these changes are irreconcilable to cloud increases. It is 

important to note that the temperature and pressure changes were independently confirmed by 

measurements from Dome C AWS station (presented in section 6.3.6). The PCI experiment 

indicates that an increase in polar cloud is accompanied by a rise in temperatures, a decrease in 

pressure and negative omega values (a relative ascending motion); this chain of events is 

physically plausible and directly relates to the known impacts of cloud cover increases over 

high latitude regions (Stone and Khal, 1991).  
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From this overview it is logical to suggest that the observed cloud (and possibly omega) 

anomalies may be in error. However, if this line of thinking is continued and the cloud changes 

are dismissed, then this simply raises the difficult question ‘why do temperature changes 

correlate to changes in the rate of GCR flux?’ Although the cloud increase/temperature 

decrease scenario is currently inexplicable, it seems unlikely that the observed GCR–

temperature connection could be explained without the presence of cloud changes to act as an 

intermediary, amplifying the effects of GCRs. 
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Figure 7.45 Modelled and observed relationships between cloud and climate 

Scatter plots showing the relationship between anomalous cloud changes and air temperature, 
pressure and omega for both observations and models. Linear regression is shown (blue line), as 
are the correlation coefficients (R2). 
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Figure 7.46 Summary chart of PCI experiment key date findings related to GI sample 

Summary chart of PCI experiment key date atmospheric changes in relation to the GI internal 
sample key date changes. Average tropospheric cloud, surface level air temperature (temp.), 
surface level pressure (press.), and omega (Ω) (where omega values are calculated between 
400–600 mb) are all shown. Values for each variable represent key date differential changes 
(i.e. difference between the key date and a 3-day averaging period beginning on day -5). 

  

 

7.6 Discussion 

7.6.1 Addressing objective 2B 

Objective 2B:  Test if the relationship observed between clouds and climate can be 

reproduced in a GCM. 

Although observations have provided a statistically robust link between changes in the rate of 

GCR flux and cloud/atmospheric changes it is unclear if the cloud changes are producing the 

variations, or are merely a product of the atmospheric variations themselves. If the former is 

true, then it would provide a good indication of a causal link between cloud and climate, 

whereas if the latter is true, it would instead suggest that the detected cloud anomalies are the 

result of atmospheric variations; implying no direct link between observed GCR variations and 
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cloud anomalies. Alternatively, the possibility also exists that the cloud retrievals themselves 

may be in error.    

The two experiments (MLCD and PCI) demonstrated differing results. The MLCD experiment 

appeared to correctly simulate the pattern of large scale (regionally-averaged) 

temperature/pressure changes associated with cloud anomalies. Although these 

temperature/pressure changes were not found to be statistically significant and were only 

approximately 25 % of observed magnitudes, they provided good indications that cloud 

anomalies may account for the atmospheric changes observed during the mid-latitude decrease 

sample (described in chapter 5–6). In contrast to the encouraging MLCD results, the PCI 

experiment did not produce atmospheric variations in agreement with observations. There are 

several possible explanations which may account for shortcomings of the MLCD/PCI 

experiments:  

(1)  Improper climate simulations within the model may result in differing responses 

between the model and reality.  

(2)  The GCM may have an inadequate spatial resolution to resolve cloud–climate 

relationships, as cloud processes operate at sub-grid scale levels and consequently cloud 

processes tend to be based around over simplifications and parameterisations that do not 

accurately capture the behaviour of clouds.  

(3)  The experiments may be hindered by an incorrect simulation of cloud anomalies at a 

local level. In other words, although the experiments successfully produced correct 

cloud anomalies at a regional level, they were generally found to be problematic at 

higher spatial resolutions. For example, MLCD cloud decreases were incorrectly 

distributed throughout mid-latitude regions.  

(4)  The cloud anomalies may bear no causal relationship to observed atmospheric 

anomalies; therefore their inclusion in the model may be physically unable to produce 

comparable atmospheric anomalies.  

(5)  Cloud–climate signals may be obscured/retarded by a high SNR. This is likely to affect 

both the MLCD and PCI experiments, and probably contributed to the relatively small 

temperature/pressure responses produced relative to observations (this problem is 

considered in greater detail in section 7.3.4). 

(6) Cloud changes may be lacking from the model experiment as a result of only being able 

to reproduce relative cloud changes, but not changes in absolute cloud, or cloud 

longevity (see 7.3.4). 
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7.7 General summary 

The rationale behind performing climate model experiments was to determine if the detected 

atmospheric anomalies demonstrated in earlier chapters could be causally linked to observed 

cloud anomalies. In summary, this chapter can be considered in two parts: the first described 

and evaluated the ability of the HadAM3 GCM to produce realistic cloud and climate 

simulations required for the experiments, while the second presented the results of two GCM 

experiments. Regarding the former, the selected GCM was able to broadly simulate synoptic 

cloud and climate patterns thought necessary to perform the experiments. However, the regional 

scale details were found to be poor; this limitation is ubiquitous across GCMs. Regarding the 

latter, the GCM experiments performed were designed to simulate the impacts of a mid-latitude 

cloud decrease and a polar cloud increase. Results indicated that the GCM was able to simulate 

the overall temperature and pressure changes associated with a mid-latitude cloud decrease, 

suggesting that cloud changes are indeed driving atmospheric variations over the sample via an 

alteration to the radiation balance at mid-latitudes. However, experimentation failed to 

reproduce the atmospheric anomalies detected with observed polar cloud increases; several 

reasons for this shortcoming were proposed and discussed.  
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Chapter 8   Discussion and concluding remarks 
 

 

8.1 Introduction 

This chapter will provide an overview and discussion to the key themes of this thesis. These will 

chiefly be concerned with addressing: (1) the overall findings of this work in relation to the 

primary aim of this thesis; (2) how the findings of this work relate to the existing body of 

literature; (3) the wider significance of the overall findings and conclusions of this work in the 

context of recent anomalous climate change; (4) the contributions this work has made to 

advance the field of study and; (5) limitations and potential for future improvements. 

 

 

8.2 Meeting the overall aim 

Aim:  To assess the existence and nature of a daily timescale relationship between the GCR 

flux and Earth’s climate using a combination of remotely sensed atmospheric datasets 

and GCM experiments.   

Initially, attempts were made to identify a link between the GCR flux and the atmosphere by re-

analysing the methods and results of past studies. This involved the composite analysis of 

satellite-detected cloud cover changes based around daily timescale FD events (primarily those 

of Todd and Kniveton [2001; 2004], Kristjánsson et al. [2008] and Svensmark et al. [2009]). 

This approach was one of two methods widely adopted in the literature to test the validity of a 

GCR–cloud relationship, the other being that of long-term correlation studies (e.g. Svensmark 

and Friss-Christensen [1997]); this alternative method was ignored due to the numerous 

limitations associated with it (discussed in section 2.4.5). The re-analysis of FD-based studies 

did not provide any new or compelling evidence confirming or denying the existence of a GCR–

climate relationship (see figure 8.1 for a summary of these findings). Overall, the examination 

of FD events suggested that there may be anomalous high level cloud decreases occurring over 

the Antarctic preceding large GCR decreases. However, it seems that these cloud changes may 

ultimately be more closely related either to irradiance variations or to internal atmospheric 

variations observed during the composite sample, rather than to changes in the GCR flux.  

The lack of a statistically significant GCR–atmosphere relationship present in the FD-based 

samples prompted the development of a novel sampling procedure (termed internal sampling). 
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This approach was based on the assumption that if GCR changes are causally related to cloud 

changes, then GCR-related cloud changes should be distinguishable from background (non-

GCR enhanced) cloud variability by the rapidity of the cloud changes. Theoretically, this may 

be explained by the estimated higher efficiency of electrically-enhanced cloud processes relative 

to neutral cloud processes (Yu and Turco, 2000; 2001; Tinsley and Yu, 2004). 

Several composite samples were constructed using the internal sampling method, which 

represented the most rapid (top 5%) ISCCP observed cloud changes over a range of different 

areas during both increases and decreases in the rate of cloud change. Several samples showed 

that a statistically significant change in the rate of GCR flux occurred during the key dates of 

these samples (see summary figures 8.2 for an example of the GCR–cloud relationship detected 

during the GI sample). These changes were distinguishable from variations in solar irradiance 

and the IMF. When considered together, these samples provided support for notions of a GCR–

cloud link operating over daily timescales. 

To triangulate and verify the detected GCR–cloud signal, NCEP/NCAR reanalysis datasets 

were used. These provided atmospheric (air temperature, pressure, wind, precipitation and 

vertical velocity) data for the internal samples. This analysis revealed that, during increases in 

global and Antarctic cloud cover, a range of unexpected atmospheric responses were occurring: 

on the key date, statistically significant cloud increases were accompanied by temperature 

decreases, pressure decreases and increases in vertical velocity over high latitude regions (see 

figure 8.3 for a summary of locally significant atmospheric anomalies detected during the GI 

sample). These changes cannot be accounted for by a conventional understanding of cloud–

climate interactions and experiments attempting to simulate these anomalies within a GCM 

were not successful. This suggests that the cloud–climate relationship observed was either 

evidence of (1) erroneous satellite/reanalysis changes, or (2) a previously un-described cloud–

climate relationship over polar regions. The ambiguity associated with these samples leads to 

the conclusion that these findings do not currently provide strong evidence of a GCR–climate 

link over polar regions, although they may highlight an important area upon which to focus 

future research efforts. 

In addition to the GCR–atmospheric anomalies detected over the poles (in the GI/AI internal 

samples), a statistically significant co-temporal relationship between the rate of GCR flux and 

cloud anomalies was also identified over mid-latitude regions (figure 8.4). This sample showed 

associated temperature and pressure responses which suggested a relationship to changes in the 

radiative balance over mid-latitude regions by clouds (figure 8.5); these findings were verified 

in a GCM experiment (figure 8.6); indicating that the atmospheric variations observed over the 

sample period may potentially be casually attributed to changes in cloud cover. This result 
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provided good evidence of a relationship between GCR, cloud cover and atmospheric responses 

operating over daily timescales over mid-latitude regions, successfully fulfilling the overall aim 

of this thesis. 

 

 

 

 

 

 

 

 

 

 



  
 

 

 

  

 

 Figure 8.1 FD analysis summary 

A summary of A) the rate of GCR 
flux (measured from pressure 
adjusted Mcmurdo neutron 
monitor), and B) rate of F10.7 
change occurring during the 
adjusted FD sample (discussed in 
section 4.3.2). Statistically 
significant anomalies are indicated 
on line graphs by markers; the 
dotted lines show the 0.95 level 
confidence interval. Also shown are 
the anomalous locally significant 
cloud changes detected on day -2 of 
the composite (occurring between 
10 and 180 mb). 
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Figure 8.2 GI sample cloud and GCR variations 

Changes in the rate of A) cloud change (10–1,000 mb) and B) GCR flux (changes normalised 
against peak-to-peak variations experienced over an 11-year solar cycle). Markers indicate 
statistically significant variations; dotted lines show the 0.95 level confidence intervals. Vertical 
dashed line indicates key date of cloud change during GI sample. 
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Figure 8.3 Summary of locally significant atmospheric anomalies 

Locally significant atmospheric anomalies occurring on the key date of the GI sample. 
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Figure 8.4 MLD sample GCR and cloud changes 

Summary of MLD sample rate of A) GCR change (normalised against the peak-to-peak 
variations experienced over an 11-year solar cycle) (statistically significant changes are 
indicated by markers, dotted lines show the 0.95 level confidence interval), and B) 5° 
latitudinally-averaged cloud changes (10–1,000 mb) occurring over the composite period. Solid 
lines indicate areas of statistically significant cloud anomalies. 
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Figure 8.5 Atmospheric changes observed during MLD composite  

Summary of cloud (10–1,000 mb), surface level air temperature and surface level pressure 
changes observed during the MLD composite period. Markers indicate days of statistically 
significant changes; dotted lines show the 0.95 level confidence interval. 
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Figure 8.6 Modelled atmospheric changes 

Summary of forced cloud changes and resulting modelled surface level air temperature and 
pressure changes during the MLCD experiment (presented in chapter 7).  

 



 289 Chapter 8 – Final discussion 
 

 

8.3 How this work relates to existing studies 

8.3.1 FD-based findings 

In relation to the findings of past FD-based studies, two distinct lines of research were carried 

out. The first investigated the claims of Svensmark et al. (2009), who suggested that a 

significant global cloud change was observed in several datasets (including MODIS and ISCCP) 

that was causally related to GCR changes during five FD events with a time lag of 

approximately 6 days. A detailed re-analysis of the MODIS and ISCCP changes occurring 

during these FD events (performed in section 4.2) found no evidence in support of the claims of 

SBS (a synthesis of the primary findings and arguments on this topic with regard to MODIS has 

been given in Laken et al. [2010]). A similar conclusion regarding the findings of SBS was also 

reached by Calogovich et al. (2010); these researchers used a detailed correlation analysis which 

examined the relationship between cloud cover changes and modelled atmospheric ionisation 

changes at 3 hour intervals with a lag time between 0 and 10 days. They concluded that no 

statistically significant correlation between cloud changes and atmospheric ionisation was found 

over the events of SBS at any time lag. These findings complement the arguments made in this 

work that the cloud changes demonstrated by SBS (1) do not show evidence of a response to 

changes in the GCR flux, and (2) are suggested to operate over mechanistically unfeasible time 

scales.  

The second line of investigation pursued with regards to FD samples relates to the creation of an 

adjusted FD composite. A summary of the results found during this composite is shown in 

figure 9.1. This sample was based upon the events selected by TK04 and Kristjánsson et al. 

(2008). The adjusted FD composite was based on a methodological approach adapted from 

Troshichev et al. (2008), whereby FD onset dates were realigned to reflect the maximal GCR 

decrease associated with the FD event (as opposed to the FD onset date); this approach allowed 

the sample to focus on a highly isolated GCR decrease signal (shown in figure 8.1A). However, 

unlike the study by Troshichev et al. (2008), who used only ground-based visual assessments of 

cloud changes, satellite retrieved cloud datasets are used in this work. Troshichev and co-

workers suggested that, following their sample adjustment, they observed changes in the IMF to 

be more related to variations in cloud cover than the GCR flux; however, the adjusted FD 

composite showed no indications of this.  

Kristjánsson et al. (2008) found no strong indications of any statistically significant cloud 

changes over pristine, southern hemisphere, oceanic environments with MODIS data using a 

composite of FD onset events. Kristjánsson and co-workers chose to focus on such regions, as it 

has been suggested that these locations may be most likely to provide a clear GCR–cloud signal 

due to their relatively high sensitivity to changes in tropospheric aerosol concentrations 
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(Carslaw et al., 20020). The adjusted FD composite showed virtually no statistically significant 

cloud changes at any location; this finding confirms the results of Kristjánsson et al. (2008). 

However, the adjusted FD sample did suggest that a cloud change may be occurring over one 

area: the Antarctic plateau, at high pressure levels (10–180mb) (figure 8.1C). A similar result 

was also obtained by Todd and Kniveton (2001; 2004). It is important to note that during the 

adjusted FD composite, the region highlighted as statistically significant represents less than 

0.4 % of the total number of ISCCP pixels (counted on days where statistically significant 

changes in the rate of GCR flux are observed) and, furthermore, that these pixels are located in a 

region of the atmosphere where cloud detections are known to be highly problematic (Rossow 

and Schiffer, 1999). 

It was suggested that FD events themselves may not isolate variations in the GCR flux from 

changes in solar irradiance; indications of this were given by Woods et al. (2004). These authors 

presented the first evidence of variations in solar irradiance during a solar flare event occurring 

during the unusually intense solar storms, which took place between 28/10/2003 and 04/11/2003 

(a period which has since become known as the ‘Halloween Storms’). In chapter 4, the results 

of a detailed statistical analysis of F10.7 variations during 269 FD events was given. These 

results showed a strong indication that irradiance variations precede GCR decreases during FD 

events and that this effect was, to an extent, dependent on the magnitude of the individual FD 

events; these conclusions complement the findings of Woods et al. (2004). The detection of a 

comparable increase in F10.7 during the adjusted FD sample suggests that irradiance changes 

may be of relevance to this sample (figure 9.1B). 

 

 

8.3.2 Internal sampling approach 

Although the internal sampling methodology used in chapters 5 and 6 was a novel approach and 

consequently had no pre-existing counterparts from which a comparative discussion could be 

based, the samples identified several key features (stated below in italics) which can be 

evaluated in relation to the existing literature: 

A positive co-temporal relationship between GCR and cloud changes. Throughout this work 

statistically significant GCR changes were found to develop co-temporally with positively 

related cloud changes. This result is similarly found by studies which have reported theoretical, 

experimental or observational evidence in favour of a GCR–cloud link (Svensmark and Friis-

Christensen, 1997; Marsh and Svensmark, 2000; Kniveton, 2004; Pallé et al., 2004; Harrison 
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and Stephenson, 2006; Svensmark et al., 2007; Harrison and Ambaum, 2009). Although there is 

an instance where a negative relationship between the GCR flux and cloud cover changes has 

been reported (Wang et al., 2006), generally, studies which demonstrate evidence of a 

significant relationship between the GCR flux and cloud cover suggest a positive relationship. 

The samples show an atmospheric response detected across several parameters. Although some 

studies have shown evidence of localised temperature or pressure variations (e.g. Pudovkin et 

al., 1996; Egrova et al., 2000), such findings have generally been conspicuous for their lack of 

evidence of accompanying cloud changes. Most GCR studies have usually presented evidence 

only of cloud changes rather than atmospheric changes (see references in previous paragraph). 

In contrast, the internal samples identified in this work clearly demonstrated a statistically 

significant response in temperature, pressure cloud changes and other atmospheric parameters 

(figure 8.3 and 8.5). Although several studies have demonstrated changes detected in a single 

parameter (usually cloud), this work provides evidence of a statistically significant signal 

present across a range of complementary datasets. A similar approach was taken by Todd and 

Kniveton (2004), who compared ISCCP detected cloud changes to NCEP/NCAR reanalysis 

data for surface level air temperature anomalies over the Antarctic region. The use of multiple 

atmospheric datasets in this work has enabled both signal verification and triangulation and also 

provided further insights in to the nature of a link between GCR and the atmosphere. 

Furthermore, it has allowed a GCM model experiment to be performed to validate the 

hypothesis that cloud changes are likely responsible for producing the observed 

temperature/pressure variations during the MLD sample (figure 8.6).  

No time lag between GCR changes and internal samples atmospheric response. The results of 

studies involving the effects of GCR on the atmosphere have suggested a wide range of 

response times, ranging between 6 hours and several days (Pudovkin et al., 1997; Egrova et al., 

2000; Kazil et al., 2008; Mironova et al., 2008). In some instances the time lags have been so 

great (up to 7 days) as to draw criticisms for being physically unconnected to GCR variations 

(Svensmark et al., 2009; Calogovich et al., 2010). While it is feasible that a response time of 

around three days exists as a result of aerosol growth times to CCN sizes (Arnold, 2006, 2008), 

rapid responses on the timescale of minutes have also been observed with changes in the 

vertical electric field (Harrison and Ambaum, 2009). The absence of a time lag between GCR 

variations and atmospheric changes observed during the internal samples implies that the 

mechanism involved does not relate to the growth of CCN over multi-day timescales. 

Regional sensitivity to GCR–cloud effects. The internal samples appear to have isolated cloud 

anomalies with two very distinct characteristics:  
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(1) The MLD internal sample identified cloud changes at mid- to low tropospheric levels 

(around 500–1,000 mb) and mid-latitude regions as being sensitive to decreases in the GCR 

flux. It is possible that these changes are causally related to variations in the GCR flux via IMN 

processes. The rationale behind this suggestion is that it is understood that variations in 

atmospheric ion concentrations resulting from changes in the GCR flux are unlikely to produce 

a spatially uniform cloud response due to differences in their relative abundances. At low 

latitudes and low tropospheric levels, therefore, the ionisation rate is predicted to be a limiting 

factor on the formation of new aerosol particles (as there is an abundance of precursor gases 

from which to form new aerosols, but limited ionisation to facilitate production). At high 

altitudes and high latitudes however, ion production is far greater and consequently, variations 

in the GCR flux are predicted to be less likely to constrain aerosol production (instead aerosol 

production over such regions is limited by the lack of sufficient concentrations of precursor 

gases from which aerosols may form) (Carslaw et al., 2002; Yu, 2002).  

In fact, GCR–cloud studies have suggested that cloud changes may be occurring mostly at low 

latitudes and low altitudes (Marsh and Svensmark, 2000; Pallé et al., 2004a). In addition to IMN 

theory and global scale observations, which suggest a GCR–cloud response in low-level/low 

latitude cloud systems, there has also been some interesting progress in understanding how 

these changes may function with regards to cloud systems at a local-scale. Rosenfeld et al. 

(2006) have described the response of marine boundary layer cloud changes to changing CCN 

concentrations over regions where cloud states transition between a closed cellular convection 

(total cloud cover), to a CCN-depleted state of open cellular convection (partial cloud cover), to 

a CCN-starved state of almost no cloud cover. Rosenfeld and co-workers suggest that these 

cloud systems are sensitive to small changes in aerosol concentrations which may potentially 

result from GCR-related mechanisms and may influence the transitions between these three 

cloud states, resulting in large impacts to cloud cover over sensitive (aerosol starved) 

environments where RB convection governs cloud formation (Rosenfeld et al., 2006).  

The MLD sample demonstrated no observable lag time (same day response) between cloud and 

GCR variations; consequently if GCR is causally related to the observed cloud anomalies, it  

may be via a rapid (same day) IMN response. Alternatively, a GEC-related mechanism may be 

responsible: during decreases in the GCR flux, atmospheric ionisation decreases, these changes 

conform to Earth’s horizontal geomagnetic shield strength and consequently atmospheric 

ionisation decreases are highest at polar latitudes and decrease towards the equator. It has been 

demonstrated that during decreases in atmospheric conductivity associated with FD events, Jz is 

diverted away from higher latitude regions towards lower latitudes (Roble and Hays, 1979). 

Consequently, during GCR decreases, Jz increases at mid- to low latitude regions. It is unclear 

what influence such changes may have on mid-latitude cloud cover, as the exact effects of such 
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changes on clouds likely depend on several factors including: cloud microphysics, the 

dominance of cold cloud/warm cloud processes, cloud type and the state of the thunderstorm 

generators (Sapkota and Varshneya, 1990; Tinsley and Yu, 2004; Zhou et al., 2009). 

(2) The GI/AI samples identified intense cloud anomalies over high latitudes at mid- to high 

pressure levels. This pattern of cloud change may imply the action of a process that is connected 

to changes in atmospheric ionisation resulting from GCR variations. This mechanism may 

possibly operate via GEC pathways: increases in atmospheric conductivity may influence the 

build of space charge at the boundaries of stratified clouds, potentially resulting in the enhanced 

scavenging of aerosols by electroscavenging processes. This may alter cloud properties such as 

cloud droplet concentration, cloud reflectivity and longevity (this mechanism is discussed in 

detail in section 2.4.2). Evidence of statistically significant cloud changes (of around 13–15 %) 

detected in the ISCCP D1 dataset have been reported over high latitude regions following 

extreme increases and decreases in the vertical electric field measured at Vostok, Antarctica 

(Kniveton et al., 2007). These results give good indications that changes in current flow in the 

GEC may influence cloud cover over high latitude regions, providing support for a GEC-related 

explanation for the anomalies observed over the GI/AI samples. 

Although only the GI, AI and MLD samples were investigated extensively 10 composite 

samples were created in total. These composites were based around the largest increases and 

decreases in the rate of cloud change over a range of area-averaged regions: global (90°N–90°S 

equal-area-adjusted), tropical (30°N–30°S), mid-latitude (30°–60°N/S), Arctic (90°N–60°N) 

and Antarctic (60°S–90°S) (discussed in section 5.1.1). It is useful to question why no other 

samples showed statistically significant relationships to the GCR flux, particularly in regions 

where it might be expected. For example, the GI sample identified locally significant cloud 

anomalies over both polar regions, occurring with co-temporal statistically significant increases 

in the rate of GCR flux. While an examination of the AI sample confirmed the presence of this 

relationship over Antarctica, the Arctic cloud increase sample did not. This result implies a 

more general problem with the internal sampling approach presented in this work, namely that 

the compositing of internal datasets in this method is likely to isolate high variability and thus 

the samples which identified a statistically significant relationship to the GCR flux are samples 

where a high SNR allowed for the detection of a relationship. This implies that the internal 

sampling approach is a brute force method, merely capable of showing the most evident GCR–

cloud relationships; it is likely that more exist that remain undetected by this approach. 
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8.3.3 GCM experiments 

A key feature of this work has been the use of GCM experiments in chapter 7, which sought to 

reproduce observed cloud–atmosphere relationships. The use of GCMs in this manner is 

comparable to the work of Haigh (1996), who successfully used the ECMWF spectral model 

developed within the UK Universities Global Atmospheric Modelling Programme (UGAMP) to 

test the influence that variations in stratospheric ozone have on the climate as a result of changes 

in UV output during the 11-year solar cycle. The spatial dimensions of the model used by Haigh 

were similar to those of the HadAM3 model used in chapter 7 (running at 2.8°x2.8° horizontal 

resolution, with 19 vertical steps). Haigh (1996) ran three experiments of 1,080 days each 

(excluding spin-up), with each experiment representing a different phase of the solar cycle 

under different conditions. For comparison, the model experiments performed in chapter 7 ran 

for a period of 2,880 days each (excluding spin-up). Haigh’s experiment identified a 

stratospheric warming effect in summer months during solar maximum, which produced a shift 

in patterns of tropospheric variability comparable to observations (although of a smaller 

magnitude) (Haigh, 1996). A similar result was identified by the MLCD GCM experiment in 

chapter 7, which also produced anomalies comparable to observations, although again, these 

anomalies were of a smaller magnitude than observations. 

Unlike the MLCD experiment, the PCI experiment was unsuccessful at reproducing observed 

atmospheric anomalies. Potential reasons for this shortcoming have been previously suggested 

(see section 7.6.1). Next to reproducing cloud, accurately modelling polar environments is one 

of the toughest challenges faced by GCMs. These environments are essential for the accurate 

replication of global climate, yet highly difficult to model due to the range of problematic 

elements which need to be incorporated in to the model, such as sea ice, seasonally frozen 

permafrost, seasonal snow cover variations, clear-sky precipitation, highly stable boundary 

layers and cloud microphysics in clean atmospheres (CCSP, 2008). Consequently, if the 

shortcomings of the PCI GCM experiment result from model limitations, the use of a different 

type of model (specifically designed to reproduce polar environments) may be required in future 

investigations. 
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8.3.5 The importance of rates 

The methodology of selecting large changes in the rate of cloud cover as a basis for composite 

sampling has allowed the identification of statistically significant GCR–cloud signals. However, 

it is unclear if the use of rates of change is simply highlighting periods where a relationship is 

detectable over certain areas, or alternatively, if rates of change are themselves involved in a 

GCR–cloud mechanisms. It may be postulated that rates of change are influential to GCR 

processes as follows:  

In relation to IMN mechanisms. It has been predicted that changes in IMN over the 11-year 

solar cycle may only have a small influence on global CCN concentrations and a limited impact 

on changes in cloud cover (Pierce and Adams, 2009). This is mainly due to aerosol scavenging 

by pre-existing CCN, which remove aerosol particles before they are able to accumulate in 

significant concentrations to grow to CN and CCN sizes (Carslaw, 2009). As a result, it is likely 

that IMN processes are only able to influence cloud cover over areas where CCN concentrations 

are relatively low, such as over pristine ocean environments (Kristjánsson and Kristiansen, 

2000; Rosenfeld et al., 2006). To consider if changes in the rate of GCR flux give a mechanistic 

advantage over changes in absolute flux it is useful to consider two scenarios. In scenario A, a 

change in the GCR flux of x % occurs over a given time (t); whereas in scenario B, the same 

GCR change of x % occurs in half the time (t½). Both scenarios have the same absolute GCR 

change, however scenario B occurs at twice the rate of scenario A. This may generate higher 

numbers of aerosol particles over shorter timescales, potentially reducing the ability of pre-

existing CCN to scavenge enough aerosols to prevent the growth of new CN and CCN particles 

relative to scenario A. The proposed advantage given by scenario B may also imply that, if IMN 

processes are responsible for the changes occurring during the MLD sample as a result of 

changes in the rate of GCR flux, a rapid cloud response is more likely than a protracted 

response (as the longer the timescales involved, the more scavenging that is able to take place 

and the less likely IMN may produce a significant/widespread impact on cloud properties). 

In relation to electroscavenging mechanisms. It may be speculated that rates of change may also 

have an advantage over absolute changes in relation to GEC mechanisms. For example, 

considering changes in atmospheric conductivity resulting from scenarios A and B given above, 

it may be argued that the higher conductivity changes associated with more rapid atmospheric 

ionisation (in scenario B) may result in a higher space charge density accumulation at cloud 

boundaries (as opposed to scenario A, where a lower space charge density would occur, but be 

maintained over a longer time period).  Charges are transferred from air ions to aerosol particles 

at cloud boundaries and are efficiently entrained within the cloud by electroscavenging 

processes. Electroscavenging itself depends on the radius of the cloud droplets and the charge of 
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the aerosol particles (Tinsley et al., 2000; Tinsley and Yu, 2004). Hence, for scenario B, the 

charging of aerosol particles is likely to be greater than scenario A, implying another 

mechanistic advantage that rapid GCR variations have over relatively slower changes of equal 

magnitude. However, it is unknown if a rapid but more intense period of electroscavenging 

(produced by scenario B) would have greater implications for cloud changes than a weaker but 

more prolonged period of electroscavenging (produced by scenario A). In addition, over 

environments such as Antarctica, it is possible that electroscavenging processes may be 

additionally limited by the relatively low abundance of aerosols (potentially suggesting that 

scenario B may not produce greater impacts on cloud than scenario A). Further work is needed 

to better understand the influence of GEC-related processes on cloud cover (Tinsley, 2010). 

While it may be possible that rapid GCR changes have a mechanistic advantage over relatively 

slower changes of a comparable magnitude, this does not necessarily explain why a statistically 

significant GCR–cloud relationship has been detected via the use of rates of cloud change as a 

sampling basis instead of absolute cloud amounts. To gain indications of this, it is useful to 

consider the underlying difference between rates and absolute cloud changes over the course of 

a year; this is shown in figure 8.7. Absolute cloud values show a peak around Vernal equinox 

and minimum around the northern hemisphere solstice: constructing a composite sample based 

on the largest/smallest absolute cloud values would reflect this seasonal variation. However, this 

spring/summer cloud maximum/minimum is notably absent from the daily rates of cloud change 

(figure 8.7), this is because although this seasonality results in a large absolute change, it takes 

place slowly. This implies that composites based around rates of cloud change may be able to 

distinguish natural (seasonal/periodic) cloud variability (which operates slowly), from GCR 

related cloud variability, which is predicted to influence the efficiency of cloud forming 

processes by up to several orders of magnitude (and therefore may potentially occur over 

relatively rapid timescales) (Clarke et al., 1998; Yu and Turco, 2000, 2001; Laakso et al., 2003; 

Tinsley and Yu, 2004; Tinsley et al., 2006).  
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Figure 8.7 Changes in cloud cover and rate of cloud change over a year 

Average daily absolute cloud cover (red line) and rate of cloud change (blue line) shown over 
the course of a year. Values are average daily values between 1988 and 2006 for the ISCCP D1 
IR dataset, showing total (10–1,000 mb) cloud cover. 

 

 

8.4 Overview of main findings and the contribution of this work to the field of study 

A brief summary of the main contributions that this work has made to the field of solar-

terrestrial studies will now be given: 

1) Provided a reanalysis on the influence of FD events on the atmosphere. This work has 

verified the results of some FD studies (Todd and Kniveton, 2001, 2004; Kristjánsson et 

al, 2008), while questioning the validity of others (Svensmark et al., 2009). 

 

2) Demonstrates a new method of identifying connections between the GCR flux and cloud 

cover. A novel sampling method is presented which successfully identifies statistically 

robust links between variations in the rate of GCR flux and atmospheric changes 

operating over daily timescales at mid-latitude regions, which are distinguished from 

solar irradiance and IMF changes. 
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3) Provides evidence of a climatic response to GCR variations. For perhaps the first time, 

a clear indication of an atmospheric response to GCRs is given over mid-latitude 

regions. This relationship is verified in multiple datasets and successfully reproduced by 

a GCM experiment. 

 

4) Identifies locations which may prove to be sites of interest for further investigation. The 

identification of GCR–atmospheric relationships via the internal sampling methodology 

identified several regions where GCR–cloud responses appear to be particularly strong 

(over mid-latitudes and polar latitudes). This identifies regions which may potentially 

provide useful sites for further study. 

 

5) Highlights the importance of changing conditions (rate of GCR flux). While past studies 

have focused on the absolute GCR flux, this work has focused instead on the role of 

changes in the rate of GCR flux. Importantly, differences between the rate/absolute 

GCR flux may provide indications for the (often) transient nature of observed solar–

climate relationships. Rates may also be potentially important with regards to a 

microphysical GCR–cloud link. 

 

8.5 Limitations and future work 

There are many limitations and caveats which have been considered throughout this work and 

these will not be re-stated here. Instead, this section aims to provide an overview of the 

limitations relevant to a broader discussion of the work, with specific regard for future areas of 

improvement. 

Individually, both the NCEP/NCAR reanalysis datasets and the ISCCP cloud datasets have 

associated flaws (particularly with regard to high latitude regions) (Kalnaya et al., 1996; 

Rossow and Schiffer, 1999). However, the combined use of these datasets along with AWS data 

aimed to strengthen the confidence that could be placed in the results. Despite this, a clear 

indication of the nature of the atmospheric changes occurring over the GI/AI samples was not 

obtained; instead, atmospheric anomalies which appeared to be in conflict were detected. This 

suggests either an insufficient understanding of the specifics of polar climate, or that there were 

errors present in the data. Either way, this result highlights a region where further work is 

necessary. Ideally, a further investigation employing the use of ground based measurements, in 

conjunction with high-resolution satellite datasets and regional climate models specifically 

designed to replicate polar climates should be employed to better understand these anomalies. 
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With regard to the internal sampling methodology, although it has successfully identified robust 

relationships between the rate of GCR flux and the atmosphere (as set out in the original aims of 

this thesis) it is important to note that it is essentially a brute force method and, as such, may 

only be capable of highlighting the most readily apparent relationships. A good example of this 

is shown by the situation over the Arctic region. When sampling over a global area (using the 

GI sample), the Arctic is highlighted as a region where anomalous cloud changes are connected 

to significant GCR changes. However, when sampling over the Arctic region itself, no 

statistically significant relationship was found. This is likely the result of internal variability 

outstripping GCR-related variability. Thus, it can be argued that this approach is not a wholly 

effective basis for compositing to isolate the effects of GCR on the climate. However, there may 

be ways to refine the approach and potentially provide hitherto unseen details and statistical 

significance. One such method of approaching this may be to composite samples based on 

latitudinal symmetry about the equator. The MLD and GI samples both indicated the existence 

of a very strong symmetrical nature to the detected cloud/temperature anomalies about the 

equator; from this observation it can be hypothesised that it may be possible to detect a GCR–

atmosphere relationship based on latitudinal symmetry. If this is the case then samples 

composited on this basis may identify a far more isolated GCR–climate signal than obtained by 

the current internal compositing technique.  

Another area where the internal samples perform crudely is with regards to their ability to 

provide insights in to a mechanism responsible for the cloud changes. In section 7.3, three 

distinct models of cloud change were outlined, involving: (1) relative changes in cloud amount 

(from an edge effect) by electroscavenging processes (Tinsley et al., 2000); (2) absolute changes 

in cloud amount (regardless of pre-existing cloud) by the formation of new CCN particles via 

IMN (Yu and Turco, 2000); and (3) changes in cloud amount/properties via alterations to the 

longevity/reflectivity of existing cloud systems via IMN or GEC related mechanisms (Tinsley 

and Yu, 2004). An understanding of variations in cloud cover from the basis of cloud changes at 

the individual scale (in conjunction with additional datasets such as aerosol data and vertical 

current density) may provide good evidence of the specific microphysical mechanisms 

involved. No such understanding can be gleaned from this current work due to the low spatial 

resolution of the datasets. An attempt to isolate cloud changes at the scale of individual clouds 

may itself present many difficulties, as it has been noted that a GCR–atmosphere effect is likely 

to be a second order phenomenon strongly controlled by precursor conditions. Developing an 

understanding of these conditions will likely be a crucial element of future studies. Some 

promising work has already been done in this area, involving direct measurements of clouds and 

atmospheric electricity variations by Harrison and Ambaum (2009). 
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In summary, future studies should seek to focus on refining methods of global-scale sampling 

using a wide range of atmospheric datasets. This approach should be utilised in conjunction 

with high resolution monitoring of regions deemed to be sensitive to a GCR–climate 

relationship and local (ground-based) monitoring at the scale of individual cloud systems, while 

also validating observations against both GCMs and more specialised climate models 

specifically designed to replicate key environments.  
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Appendices 
 

 

Appendix 1 Monte Carlo simulation FORTRAN program 

FORTRAN program designed to read in lists of daily average rates of various parameters and 

randomly generated numbers from which to base 1,000 random samples (of n=100). 

 

>  Start of code 

     PROGRAM MONTE_CARLO_T_CRITS 
 parameter  (nobs=100) 
 parameter   (sux=7666) 
 integer count(1000,100),iday,zcount,cntr,isigprop 
 real sum,avrg,i,ix,flux(sux),sample1(100),sample2(100) 
 real var1,sdev1,mean1,mean2 
 real var2,sd1,sd2,gcr,sighist(1000),ts 
   
c open file containing the GCR data from 1994 to 2004 
c read this data into a 1-d array 
c opens *.prn file produced in excel of 1000*80 random nos. 
       call system('rm shistttest.dat') 
  call system ('rm sproptttest.dat') 
  open(unit=7,file='shistttest.dat',status='new') 
  open (unit=8,file='sproptttest.dat',status='new') 
69  format(I5,F5.2) 
 
 open(unit=1,file='cloud_v7_1.prn',status='old') 
         
20    format(20i8) 
 do ix=1,1000 
 read(1,20)(count(ix,i),i=1,20) 
c write(*,*)(count(ix,i),i=1,20)  
 enddo 
  
 open(unit=2,file='cloud_v7_2.prn',status='old') 
 do ix=1,1000 
 read(2,21)(count(ix,i+20),i=1,20) 
      enddo 
21    format(20i8) 
              
      open(unit=3,file='cloud_v7_3.prn',status='old')         
22    format(20i8) 
 do ix=1,1000 
 read(3,22)(count(ix,i+40),i=1,20) 
      enddo 
  
 open(unit=4,file='cloud_v7_4.prn',status='old')  
 do ix=1,1000 
 read(4,23)(count(ix,i+60),i=1,20)  
        enddo 
23    format(20i8) 
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        open (unit=7,file='cloud_v7_5.prn',status='old') 
27      format(20i8) 
        do ix=1,1000 
        read(7,27)(count(ix,i+80),i=1,20)            
        enddo 
  
        open(unit=32,file='model_press_mid.prn',status='old')   
24      format(f10.6)  
 do i=1,sux 
 read (32,*)(flux(i)) 
 enddo 
  
 call system ('rm tvalues.dat') 
 open (unit=31,file='tvalues.dat',status='new') 
  
 call system('rm svalues.dat') 
 open (unit=33,file='svalues.dat',status='new') 
  
 call system('rm randoms.dat') 
 open (unit=34,file='randoms.dat',status='new') 
    
c      read gcr at 100 rand numbers and calculate gcr avg at -5,-4,-3  
c      from 100 random numbers          
c i=do the run 1000times j=random number samples 1 line,     
  cntr=0 
c         call system ('rm samples.dat')  
c         open(unit=16,file='samples.dat',status='new') 
c  write(16,*)count(i,j) 
     
  do i=1,1000 
    mean1=0.0 
    mean2=0.0 
    do j=1,100 
     iday=count(i,j) 
            write(34,*) count(i,j) 
     sample2(j)=flux(iday) 
      s0=flux(iday) 
c  mean1= averaging period (-5,-4,-3) mean2=average of key dates 
      s1=flux(iday-3) 
      s2=flux(iday-4) 
      s3=flux(iday-5) 
      sample1(j)=(s1+s2+s3)/3.0 
 
      mean1=(mean1+sample1(j)) 
      mean2=(mean2+sample2(j)) 
    enddo 
    mean1=mean1/100.0 
    mean2=mean2/100.0 
 
    anom=mean2-mean1 
    sd1=0.0 
    dev=0.0 
           do j=1,100 
 
      dev=sample1(j)-mean1 
      dev=dev*dev 
      sd1=sd1+dev 
    enddo 
c variance - sum of dev squared divided by n-1     
    sd1=(sd1/99.0) 
c    se1=sd1/(sqrt(99.0)) 
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c  correct var here     
           dev2=0.0 
          sd2=0.0   
     do j=1,100 
      dev2=sample2(j)-mean2 
      dev2=dev2*dev2 
      sd2=sd2+dev2 
     enddo 
 
c      T-test below (above calc means/sdev) 
           sd2=sd2/99.0 
c good var 2     
       s=sqrt((sd1/99.0)+(sd2/99.0)) 
            
      ts=anom/s 
         write (31,*) ts 
  enddo   
  
168      continue        
  stop 
  end 
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Appendix 2 Personal communiqué from Professor William Rossow  

 

Personal communiqué referenced in thesis as (Rossow, 2010). The message is presented below 

in its original and unedited form (reproduced with permission from Professor William Rossow 

(NASA Goddard Institute for Space Studies)). 

 
 
Benjamin, Sorry for the delay but wanted to think about the answer 
carefully. The main comment about M&S is that they are "adjusting" the 
observations to fit their hypothesis, which is badly flawed 
methodology... they have not presented any evidence to invalidate the 
alternate hypothesis that the quality of the ISCCP record is uniform, 
instead they are trying only to invalidate the PART of the ISCCP 
record that disagrees with their hypothesis. 
 
Having said that, their hypothesis is easy to refute but nobody really 
wants to waste the time doing so. However, I can make four statements 
and support two of them with publications. 
 
(1) M&S have a fundamental mis-understanding of calibration: they 
interpret discontinuities in the calibration COEFFICIENT time record 
as discontinuities in the RADIANCE time record. The whole point of 
changing coefficients is to remove changes in radiances. We haven't 
published any updates on calibration since 1997 but you can look at 
the ISCCP website and the plots of long-term anomalies in cloud 
optical thickness, together with surface reflectance, for VIS and 
cloud top temperature, together with surface temperature, for IR to 
see that there are no radiance discontinuities larger than a few 
percent. Surface temperature does present some noticeable changes but 
these have been explained as due to the atmospheric dataset used for 
retrievals and NOT calibration. The point is we have a complete record 
of radiances (and there are now some as yet unpublished verifications) 
that shows no significant discontinuities in the record. 
 
(2) The ISCCP cloud detection algorithm is BY DESIGN almost 
independent of radiance calibration as explained in Rossow and Garder 
(1993). TOTAL cloud amount does not depend on calibration. We have 
done, but not published yet (paper in preparation), the test: changing 
calibrations (both VIS and IR) by as much as 20% changes TOTAL cloud 
amount by less than 1% and, since the estimated precision of 
calibration over the record is about 3% or less, the variation over 
the record of TOTAL cloud amount due to calibration is no more than 
0.1-0.2%. This point undercuts M&S whole argument. 
 
(3) The amounts of ISCCP cloud TYPES depend directly on calibration 
but in a very specific way. We monitor all of the TYPE time records to 
watch for such changes. If VIS calibration changes, then the amounts 
of Cumulus/Cirrus and Stratus/Deep Convection MUST change in the same 
way for each pair divided by "/" and in opposite ways the two pairs; 
moreover surface reflectance of land areas and ice sheets MUST change 
in the same way as Stratus/Deep Convection. If IR calibration changes, 
then the amounts of Cumulus/Stratus and Cirrus/Deep Convection MUST 
change in the same way for each pair divided by "/" and in opposite 
ways for the two pairs; moreover, surface temperature MUST change in 
the same way as Cumulus/Stratus. Again you can look at the ISCCP 
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website plots to see that the overall change in TOTAL cloud amount 
does not reveal coordinated changes of either of these kinds. 
 
(4) If you put the entire ISCCP cloud property record into a radiation 
code and calculate top-of-atmosphere and surface radiative fluxes, you 
get results that are very consistent with the long-term ERBE 
(nonscanner) record and the shorter BSRN record (which does span the 
supposed discontinuity in the record). In particular, the "global" 
monthly mean SW reflected anomalies from ERBE (which actually only 
cover plus-minus 60 degrees of latitude) agree with the calculated 
ones to within 1 watt per meter squared....so the variations of total 
cloud cover in ISCCP (together with almost no variation of optical 
thickness) are confirmed by the agreement with ERBE (see Zhang et al. 
2004). This exercise has been done by 3-4 groups, which use different 
combinations of information from ISCCP. In other words, if the latter 
half of the ISCCP cloud amount record were in error, we would have 
noticed a disagreement with ERBE and BSRN. 
 
Rossow, W.B., and L.C. Garder, 1993a: Cloud detection using satellite 
measurements of infrared and visible radiances for ISCCP. J. Climate, 
6, 2341-2369. 
 
Zhang, Y-C., W.B. Rossow, A.A. Lacis, M.I. Mishchenko and V. Oinas, 
2004: Calculation of radiative fluxes from the surface to top-of-
atmosphere based on ISCCP and other global datasets: Refinements of 
the radiative transfer model and the input data. J.Geophys. Res., 109, 
doi 10.1029/2003JD004457 (1-27 + 1-25). 
 
You may have read one paper that purports to show that the ISCCP cloud 
amount anomalies are artifacts (Evan et al, I think). There are two 
comments to be made. If this paper were true, then the WHOLE ISCCP 
record is invalidated which also invalidates M&S hypothesis.... note 
by the way that right now, ONLY ISCCP of all the long-term cloud 
records shows the variation that M&S are using (their might be a 
relevant plot in the last IPCC report) -- they HAVE to believe ONLY 
ISCCP and ONLY the first part of the record to preserve their 
hypothesis. We don't know why these datasets disagree, yet.. it is 
still be investigated... all that can be said at the moment is that 
the three datasets have very different space-time sampling and 
differing sensitivity to optically thin clouds. 
 
The second comment is that this paper is not true... it makes the 
classic mistake of confusing correlation with causation. They show a 
correlation between the global monthly mean cloud amount anomaly 
record and changes in satellite viewing geometry but never demonstrate 
that the effect is large enough to explain the WHOLE signal. I have 
done an analysis, which I will publish later this year, that shows 
that, when you remove all locations where viewing angle changes, and 
re-calculate the anomaly time record, the signal is still present. In 
other words, the viewing geometry effect distorts a signal already 
present but does NOT explain most of it. 
 
Hope this helps.... 
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Appendix 3 Note regarding the treatment of ISCCP data in Svensmark et al. (2009) 

The following two-page note (which appears in its original form including type and formatting 

errors) regarding the data handling methods employed by Svensmark et al (2009) was received 

following a personal correspondence with the papers second author, Torsten Bondo, on 

21/09/2009.  
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Appendix 4 MLD experiment annotated FORTRAN 77 modset 

 

Note: Code is designed to run in parallel on a 16 core machine, consequently array dimensions 

relate to portions of the array tasked to individual processors and not directly to 

latitude/longitude/vertical components of the array. All latitude and longitude dimensions 

referred to within the code are calculated as a sine of the latitude/longitude converted to radians.  

Any lines of text prefaced with “*/” or “c” are comments within the code. 

 

> Start of code 

*ID CLOUDCOV 

*/----------------------------------------------------------------- 

*/ Mod to decrease the cloud area fraction as seen be SW and LW. 

*/ This mod uses a latitude and height restriction specific to  

*/ observed anomalous cloud over the mid-latitudes. 

*/ Code written by Ben Laken (2010) based on code by  

*/                         Dominic Kniveton & David Hassell (2005) 

*/----------------------------------------------------------------- 

*/ *DECLARE = change code in this deck 

*DECLARE RAD_CTL1 

*/ *I = Insert some code after this line 

*I ADB1F400.88 

       REAL 

     &  AREA_CLOUD_FRACTION_CHANGE(P_FIELDDA,Q_LEVELSDA) 

       REAL 

     &  CLOUD_FRACTION_CHANGE(P_FIELDDA,Q_LEVELSDA) 

           REAL  

     &  Z_DAY_NUMBER,W_DAY_NUMBS,X_DAY_NUMBS,ZW_DAY_NUMBS 

       INTEGER IW_DAY_NUMBS,ITOP,IANT 

       INTEGER ITCLO,IBOUNTI 

!  Artificially changed SW+LW Radiation only cloud fraction 

*/ *B = Insert some code before this line 

*B RAD_CTL1.211 
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            CALL UV_TO_P(F3(FIRST_VALID_PT), 

     &                SIN_TRUE_LATITUDE(FIRST_VALID_PT+ROW_LENGTH), 

     &                U_FIELD-FIRST_VALID_PT+1, 

     &                P_FIELD-(FIRST_VALID_PT+ROW_LENGTH)+1, 

     &                ROW_LENGTH,upd_P_ROWS+1) 

             DO I=FIRST_POINT,LAST_POINT 

          SIN_TRUE_LATITUDE(I)=SIN_TRUE_LATITUDE(I)*0.5/OMEGA 

      END DO           

c            DO I=FIRST_POINT,LAST_POINT 

c      write(*,*)'Bens Lat(new): ',I,SIN_TRUE_LATITUDE(I) 

c     ENDDO    

           IF ( H_SECT(1) .EQ. '02B' ) THEN 

            Z_DAY_NUMBER=REAL(I_DAY_NUMBER) 

           ELSE 

            Z_DAY_NUMBER=REAL(PREVIOUS_TIME(7)) 

     write(*,*)'Ben Day num',PREVIOUS_TIME(7) 

           ENDIF 

           W_DAY_NUMBS=Z_DAY_NUMBER/24.0 

    IW_DAY_NUMBS=INT(W_DAY_NUMBS) 

    write(*,*)'Ben Wday/IWday',W_DAY_NUMBS,IW_DAY_NUMBS     

   ZW_DAY_NUMBS=REAL(IW_DAY_NUMBS) 

   X_DAY_NUMBS=ZW_DAY_NUMBS-W_DAY_NUMBS 

   X_DAY_NUMBS=(X_DAY_NUMBS)*(-1.0) 

   write(*,*)'Ben Xday-numbs:',X_DAY_NUMBS 

  ITCLO=NINT((REAL(Q_LEVELSDA))/3.0) 

  IBOUNTI=Q_LEVELSDA-ITCLO    

c cant get the x_day numbs exactly due to lack of precision, need to 

c use IF statements to isolate the days I want to change, due to 
precision of    c HECTOR, need to calculate days based on number 
ranges (as cant identify day num  c specifically...)      

c change (day -6) 

   IF(X_DAY_NUMBS.GT.0.57. AND.X_DAY_NUMBS.LT.0.59) THEN 

c If within a certain timeframe increase cloud... 

     write(*,*)'Changing day -6 cloud ',X_DAY_NUMBS 
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     DO I=1,P_FIELDDA 

       DO J=1, Q_LEVELSDA 

c...level and lat restriction 

            IF(SIN_TRUE_LATITUDE(I).LT.0.76.AND.SIN_TRUE_LATITUDE(I). 

     &        GT.0.5.AND.J.GE.1.AND.J.LE.7.OR.SIN_TRUE_LATITUDE(I). 

     &        GT.-0.76.AND.SIN_TRUE_LATITUDE(I).LT.-0.5.AND.J.GE.1. 

     &        AND.J.LE.7)THEN     

         AREA_CLOUD_FRACTION_CHANGE(I,J)=AREA_CLOUD_FRACTION(I,J)*1.04 

    CLOUD_FRACTION_CHANGE(I,J)=CLOUD_FRACTION(I,J)*1.04 

c  ..if cloud is inc. beyond max then set to 100%... 

    IF(AREA_CLOUD_FRACTION_CHANGE(I,J).GT.1.0)THEN 

       AREA_CLOUD_FRACTION_CHANGE(I,J)=1.0 

    ENDIF 

    IF(CLOUD_FRACTION_CHANGE(I,J).GT.1.0)THEN 

       CLOUD_FRACTION_CHANGE(I,J)=1.0 

    ENDIF 

c...below else-endif for lat/level restriction 

    ELSE 

    CLOUD_FRACTION_CHANGE(I,J)=CLOUD_FRACTION(I,J) 

    AREA_CLOUD_FRACTION_CHANGE(I,J)=AREA_CLOUD_FRACTION(I,J)     
        ENDIF     

       END DO 

     END DO 

c change (day -5) 

   Else IF(X_DAY_NUMBS.GT.0.60. AND.X_DAY_NUMBS.LT.0.64) THEN 

c If within a certain timeframe increase cloud... 

     write(*,*)'Changing day -5 cloud ',X_DAY_NUMBS 

     DO I=1,P_FIELDDA 

       DO J=1, Q_LEVELSDA 

c...level and lat restriction 

            IF(SIN_TRUE_LATITUDE(I).LT.0.76.AND.SIN_TRUE_LATITUDE(I). 

     &        GT.0.5.AND.J.GE.1.AND.J.LE.7.OR.SIN_TRUE_LATITUDE(I). 

     &        GT.-0.76.AND.SIN_TRUE_LATITUDE(I).LT.-0.5.AND.J.GE.1. 
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     &        AND.J.LE.7)THEN    

         AREA_CLOUD_FRACTION_CHANGE(I,J)=AREA_CLOUD_FRACTION(I,J)*1.06 

    CLOUD_FRACTION_CHANGE(I,J)=CLOUD_FRACTION(I,J)*1.06 

c  ..if cloud is dec. beyond min then set to 0... 

    IF(AREA_CLOUD_FRACTION_CHANGE(I,J).GT.1.0)THEN 

       AREA_CLOUD_FRACTION_CHANGE(I,J)=1.0 

    ENDIF 

    IF(CLOUD_FRACTION_CHANGE(I,J).GT.1.0)THEN 

       CLOUD_FRACTION_CHANGE(I,J)=1.0 

    ENDIF 

c...below else-endif for lat/level restriction 

    ELSE 

    CLOUD_FRACTION_CHANGE(I,J)=CLOUD_FRACTION(I,J) 

    AREA_CLOUD_FRACTION_CHANGE(I,J)=AREA_CLOUD_FRACTION(I,J)     
        ENDIF     

       END DO 

     END DO 

c change (day -4) 

   ELSE IF(X_DAY_NUMBS.GT.0.65. AND.X_DAY_NUMBS.LT.0.68) THEN 

c If within a certain timeframe increase cloud... 

     write(*,*)'Changing day -4 cloud ',X_DAY_NUMBS 

     DO I=1,P_FIELDDA 

       DO J=1, Q_LEVELSDA 

c...level and lat restriction 

            IF(SIN_TRUE_LATITUDE(I).LT.0.76.AND.SIN_TRUE_LATITUDE(I). 

     &        GT.0.5.AND.J.GE.1.AND.J.LE.7.OR.SIN_TRUE_LATITUDE(I). 

     &        GT.-0.76.AND.SIN_TRUE_LATITUDE(I).LT.-0.5.AND.J.GE.1. 

     &        AND.J.LE.7)THEN    

         AREA_CLOUD_FRACTION_CHANGE(I,J)=AREA_CLOUD_FRACTION(I,J)*1.04 

    CLOUD_FRACTION_CHANGE(I,J)=CLOUD_FRACTION(I,J)*1.04 

c  ..if cloud is inc. beyond max then set to 100%... 

    IF(AREA_CLOUD_FRACTION_CHANGE(I,J).GT.1.0)THEN 

       AREA_CLOUD_FRACTION_CHANGE(I,J)=1.0 



 313 Appendices 
 

 

    ENDIF 

    IF(CLOUD_FRACTION_CHANGE(I,J).GT.1.0)THEN 

       CLOUD_FRACTION_CHANGE(I,J)=1.0 

    ENDIF 

c...below else-endif for lat/level restriction 

     ELSE 

    CLOUD_FRACTION_CHANGE(I,J)=CLOUD_FRACTION(I,J) 

    AREA_CLOUD_FRACTION_CHANGE(I,J)=AREA_CLOUD_FRACTION(I,J)     
        ENDIF      

       END DO 

     END DO           

c change (day -2) 

   ELSE IF(X_DAY_NUMBS.GT.0.72. AND.X_DAY_NUMBS.LT.0.77) THEN 

c If within a certain timeframe increase cloud... 

     write(*,*)'Changing day -2 cloud ',X_DAY_NUMBS 

     DO I=1,P_FIELDDA 

       DO J=1, Q_LEVELSDA 

c...level and lat restriction 

            IF(SIN_TRUE_LATITUDE(I).LT.0.86.AND.SIN_TRUE_LATITUDE(I). 

     &        GT.0.34.AND.J.GE.1.AND.J.LE.8.OR.SIN_TRUE_LATITUDE(I). 

     &        GT.-0.86.AND.SIN_TRUE_LATITUDE(I).LT.-0.34.AND.J.GE.1. 

     &        AND.J.LE.8)THEN   

         AREA_CLOUD_FRACTION_CHANGE(I,J)=AREA_CLOUD_FRACTION(I,J)*0.97 

    CLOUD_FRACTION_CHANGE(I,J)=CLOUD_FRACTION(I,J)*0.97 

   IF(AREA_CLOUD_FRACTION_CHANGE(I,J).LT.0.0)THEN 

c     If cloud change is o.t.t. back it down 

       AREA_CLOUD_FRACTION_CHANGE(I,J)=0.0 

    ENDIF 

    IF(CLOUD_FRACTION_CHANGE(I,J).LT.0.0)THEN 

       CLOUD_FRACTION_CHANGE(I,J)=0.0 

    ENDIF 

c...below else-endif for lat/level restriction 

           ELSE 
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    CLOUD_FRACTION_CHANGE(I,J)=CLOUD_FRACTION(I,J) 

    AREA_CLOUD_FRACTION_CHANGE(I,J)=AREA_CLOUD_FRACTION(I,J)     
     

    ENDIF     

       END DO 

     END DO 

c change (day -1) 

   ELSE IF(X_DAY_NUMBS.GT.0.77.AND.X_DAY_NUMBS.LT.0.81) THEN 

c If within a certain timeframe increase cloud... 

     write(*,*)'Changing day -1 cloud ',X_DAY_NUMBS 

     DO I=1,P_FIELDDA 

       DO J=1, Q_LEVELSDA 

c...level and lat restriction 

            IF(SIN_TRUE_LATITUDE(I).LT.0.86.AND.SIN_TRUE_LATITUDE(I). 

     &        GT.0.34.AND.J.GE.1.AND.J.LE.8.OR.SIN_TRUE_LATITUDE(I). 

     &        GT.-0.86.AND.SIN_TRUE_LATITUDE(I).LT.-0.34.AND.J.GE.1. 

     &        AND.J.LE.8)THEN     

         AREA_CLOUD_FRACTION_CHANGE(I,J)=AREA_CLOUD_FRACTION(I,J)*0.94 

    CLOUD_FRACTION_CHANGE(I,J)=CLOUD_FRACTION(I,J)*0.94 

c  ..if cloud is inc. beyond max then amp it down... 

    IF(AREA_CLOUD_FRACTION_CHANGE(I,J).LT.0.0)THEN 

       AREA_CLOUD_FRACTION_CHANGE(I,J)=0.0 

    ENDIF 

    IF(CLOUD_FRACTION_CHANGE(I,J).LT.0.0)THEN 

       CLOUD_FRACTION_CHANGE(I,J)=0.0 

    ENDIF     

c...below else-endif for lat/level restriction 

           ELSE 

    CLOUD_FRACTION_CHANGE(I,J)=CLOUD_FRACTION(I,J) 

    AREA_CLOUD_FRACTION_CHANGE(I,J)=AREA_CLOUD_FRACTION(I,J)     
     

    ENDIF     

       END DO 

     END DO 
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c change (day 0) 

   ELSE IF(X_DAY_NUMBS.GT.0.81.AND.X_DAY_NUMBS.LT.0.85) THEN 

c If within a certain timeframe increase cloud... 

     write(*,*)'Changing day 0 cloud ',X_DAY_NUMBS 

     DO I=1,P_FIELDDA 

       DO J=1, Q_LEVELSDA 

c...level and lat restriction 

            IF(SIN_TRUE_LATITUDE(I).LT.0.86.AND.SIN_TRUE_LATITUDE(I). 

     &        GT.0.34.AND.J.GE.1.AND.J.LE.8.OR.SIN_TRUE_LATITUDE(I). 

     &        GT.-0.86.AND.SIN_TRUE_LATITUDE(I).LT.-0.34.AND.J.GE.1. 

     &        AND.J.LE.8)THEN  

         AREA_CLOUD_FRACTION_CHANGE(I,J)=AREA_CLOUD_FRACTION(I,J)*0.90 

    CLOUD_FRACTION_CHANGE(I,J)=CLOUD_FRACTION(I,J)*0.90 

c  ..if cloud is inc. beyond max then amp it down... 

    IF(AREA_CLOUD_FRACTION_CHANGE(I,J).LT.0.0)THEN 

       AREA_CLOUD_FRACTION_CHANGE(I,J)=0.0 

    ENDIF 

    IF(CLOUD_FRACTION_CHANGE(I,J).LT.0.0)THEN 

       CLOUD_FRACTION_CHANGE(I,J)=0.0 

    ENDIF     

c...below else-endif for lat/level restriction 

           ELSE 

    CLOUD_FRACTION_CHANGE(I,J)=CLOUD_FRACTION(I,J) 

    AREA_CLOUD_FRACTION_CHANGE(I,J)=AREA_CLOUD_FRACTION(I,J)     
     

    ENDIF     

       END DO 

     END DO 

c change (day +1) 

   ELSE IF(X_DAY_NUMBS.GT.0.86.AND.X_DAY_NUMBS.LT.0.89) THEN 

c If within a certain timeframe increase cloud... 

     write(*,*)'Changing day +1 cloud ',X_DAY_NUMBS 

     DO I=1,P_FIELDDA 
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       DO J=1, Q_LEVELSDA 

c...level and lat restriction 

            IF(SIN_TRUE_LATITUDE(I).LT.0.86.AND.SIN_TRUE_LATITUDE(I). 

     &        GT.0.34.AND.J.GE.1.AND.J.LE.8.OR.SIN_TRUE_LATITUDE(I). 

     &        GT.-0.86.AND.SIN_TRUE_LATITUDE(I).LT.-0.34.AND.J.GE.1. 

     &        AND.J.LE.8)THEN  

         AREA_CLOUD_FRACTION_CHANGE(I,J)=AREA_CLOUD_FRACTION(I,J)*0.94 

    CLOUD_FRACTION_CHANGE(I,J)=CLOUD_FRACTION(I,J)*0.94 

c  ..if cloud is inc. beyond max then amp it down... 

    IF(AREA_CLOUD_FRACTION_CHANGE(I,J).LT.0.0)THEN 

       AREA_CLOUD_FRACTION_CHANGE(I,J)=0.0 

    ENDIF 

    IF(CLOUD_FRACTION_CHANGE(I,J).LT.0.0)THEN 

       CLOUD_FRACTION_CHANGE(I,J)=0.0 

    ENDIF     

c...below else-endif for lat/level restriction 

           ELSE 

    CLOUD_FRACTION_CHANGE(I,J)=CLOUD_FRACTION(I,J) 

    AREA_CLOUD_FRACTION_CHANGE(I,J)=AREA_CLOUD_FRACTION(I,J)     
     

    ENDIF     

       END DO 

     END DO 

c change (day +2) 

   ELSE IF(X_DAY_NUMBS.GT.0.90.AND.X_DAY_NUMBS.LT.0.93) THEN 

c If within a certain timeframe increase cloud... 

     write(*,*)'Changing day +2 cloud ',X_DAY_NUMBS 

     DO I=1,P_FIELDDA 

       DO J=1, Q_LEVELSDA 

c...level and lat restriction 

            IF(SIN_TRUE_LATITUDE(I).LT.0.86.AND.SIN_TRUE_LATITUDE(I). 

     &        GT.0.34.AND.J.GE.1.AND.J.LE.8.OR.SIN_TRUE_LATITUDE(I). 

     &        GT.-0.86.AND.SIN_TRUE_LATITUDE(I).LT.-0.34.AND.J.GE.1. 
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     &        AND.J.LE.8)THEN  

         AREA_CLOUD_FRACTION_CHANGE(I,J)=AREA_CLOUD_FRACTION(I,J)*0.97 

    CLOUD_FRACTION_CHANGE(I,J)=CLOUD_FRACTION(I,J)*0.97 

c  ..if cloud is inc. beyond max then amp it down... 

    IF(AREA_CLOUD_FRACTION_CHANGE(I,J).LT.0.0)THEN 

       AREA_CLOUD_FRACTION_CHANGE(I,J)=0.0 

    ENDIF 

    IF(CLOUD_FRACTION_CHANGE(I,J).LT.0.0)THEN 

       CLOUD_FRACTION_CHANGE(I,J)=0.0 

    ENDIF     

c...below else-endif for lat/level restriction 

           ELSE 

    CLOUD_FRACTION_CHANGE(I,J)=CLOUD_FRACTION(I,J) 

    AREA_CLOUD_FRACTION_CHANGE(I,J)=AREA_CLOUD_FRACTION(I,J)     
     

    ENDIF     

       END DO 

     END DO                               

     ELSE 

c...if outside either timeframe make cloud equal to norm cloud.      

     write(*,*)'A non C.change day',X_DAY_NUMBS 

     DO I=1,P_FIELDDA 

       DO J=1, Q_LEVELSDA        

          AREA_CLOUD_FRACTION_CHANGE(I,J)=AREA_CLOUD_FRACTION(I,J) 

    CLOUD_FRACTION_CHANGE(I,J)=CLOUD_FRACTION(I,J) 

       END DO 

     END DO      

     ENDIF      

*/ *D = Replace code with this line to remove original call Sin_t.. 

*D APBBF401.9 

*D APBBF401.10 

*D APBBF401.11 

*D APBBF401.12 
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*D APBBF401.13 

*D APBBF401.14 

*D RAD_CTL1.258 

*D RAD_CTL1.259 

*D RAD_CTL1.260 

*/ *D = Replace the following lines (or range of lines) with some code 

*D RAD_CTL1.416 

*/ Change call to SWRAD 

     &     D1(JPSTAR+JS),AKH,BKH,CLOUD_FRACTION_CHANGE(FIRST_POINT,1), 

*D AWI1F403.322 

*/ Change call to SWRAD 

     &    D1(JPSTAR+JS),AKH,BKH,CLOUD_FRACTION_CHANGE(FIRST_POINT,1), 

*D ASK1F405.269 

*/ Change call to R2_SWRAD 

     &        AREA_CLOUD_FRACTION_CHANGE(FIRST_POINT,1), 

*D ADB1F400.174 

*/ Change call to R2_SWRAD 

     &        CLOUD_FRACTION_CHANGE(FIRST_POINT,1), 

*D ASK1F405.270 

*/ change call to CALL SWDKDI 

     &    AREA_CLOUD_FRACTION_CHANGE(START_POINT_NO_HALO,1), 

*D ADB1F400.258 

*/ Change call to LWRAD 

     &        CLOUD_FRACTION_CHANGE(FP_LOCAL(I),1), 

*D ASK1F405.272 

*/ Change call to R2_LWRAD 

     &        AREA_CLOUD_FRACTION_CHANGE(FP_LOCAL(I),1), 

*D ADB1F400.316 

*/ Change call to R2_LWRAD 

     &        CLOUD_FRACTION_CHANGE(FP_LOCAL(I),1), 

*/ -- End of Mod – 
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Appendix 5 Polar increase experiment annotated Fortran 77 modset 

Note: Code is designed to run in parallel on a 16 core machine, consequently array dimensions 

relate to portions of the array tasked to individual processors and not directly to 

latitude/longitude/vertical components of the array. All latitude and longitude dimensions 

referred to within the code are calculated as a sine of the latitude/longitude converted to radians.  

Any lines of text prefaced with “*/” or “c” are comments within the code. 

 

 > START OF CODE  

*ID CLOUDCOV 

*/--------------------------------------------------------------------
----------------------------------------------------------------------
--------- 

*/ Mod to decrease the cloud area fraction as seen be SW and LW.  This 
mod uses a latitude and height restriction */specific to   observed 
anomalous cloud over Arctic/Antarctic. This is the final version 
modified on 10/01/2010. 

*/ This decreases cloud on day -6 to -4 (by around -15%) over poles 
and increases cloud on day -2 to +2  

*/(by around +30%) over poles. changes cloud between 60-90 N/S, 
between 759-557mb (Npole) and 

*/ 228-10mb (Spole).Different scale change (higher 75-90) 

*/--------------------------------------------------------------------
----------------------------------------------------------------------
---------- 

*/ *DECLARE = change code in this deck 

*DECLARE RAD_CTL1 

*/ *I = Insert some code after this line 

*I ADB1F400.88 

       REAL 

     &  AREA_CLOUD_FRACTION_CHANGE(P_FIELDDA,Q_LEVELSDA) 

       REAL 

     &  CLOUD_FRACTION_CHANGE(P_FIELDDA,Q_LEVELSDA) 

           REAL  

     &  Z_DAY_NUMBER,W_DAY_NUMBS,X_DAY_NUMBS,ZW_DAY_NUMBS 

       INTEGER IW_DAY_NUMBS,ITOP,IANT 

       INTEGER ITCLO,IBOUNTI 



 320 Appendices 
 

 

!  Artificially changed SW+LW Radiation only cloud fraction 

*/ *B = Insert some code before this line 

*B RAD_CTL1.211 

            CALL UV_TO_P(F3(FIRST_VALID_PT), 

     &                SIN_TRUE_LATITUDE(FIRST_VALID_PT+ROW_LENGTH), 

     &                U_FIELD-FIRST_VALID_PT+1, 

     &                P_FIELD-(FIRST_VALID_PT+ROW_LENGTH)+1, 

     &                ROW_LENGTH,upd_P_ROWS+1) 

      

             DO I=FIRST_POINT,LAST_POINT 

          SIN_TRUE_LATITUDE(I)=SIN_TRUE_LATITUDE(I)*0.5/OMEGA 

      END DO             

           IF ( H_SECT(1) .EQ. '02B' ) THEN 

            Z_DAY_NUMBER=REAL(I_DAY_NUMBER) 

           ELSE 

            Z_DAY_NUMBER=REAL(PREVIOUS_TIME(7)) 

     write(*,*)'Ben Day num',PREVIOUS_TIME(7) 

           ENDIF 

           W_DAY_NUMBS=Z_DAY_NUMBER/24.0 

    IW_DAY_NUMBS=INT(W_DAY_NUMBS) 

    write(*,*)'Ben Wday/IWday',W_DAY_NUMBS,IW_DAY_NUMBS     

   ZW_DAY_NUMBS=REAL(IW_DAY_NUMBS) 

   X_DAY_NUMBS=ZW_DAY_NUMBS-W_DAY_NUMBS 

   X_DAY_NUMBS=(X_DAY_NUMBS)*(-1.0) 

   write(*,*)'Ben Xday-numbs:',X_DAY_NUMBS 

  ITCLO=NINT((REAL(Q_LEVELSDA))/3.0) 

  IBOUNTI=Q_LEVELSDA-ITCLO    

c cant get the x-day numbs exactly due to lack of precision, need to 
use IF statements to isolate the days I want to     

c change (day -6) 

   IF(X_DAY_NUMBS.GT.0.57. AND.X_DAY_NUMBS.LT.0.59) THEN 

c If within a certain timeframe increase cloud... 

     write(*,*)'Changing day -6 cloud ',X_DAY_NUMBS 
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     DO I=1,P_FIELDDA 

       DO J=1, Q_LEVELSDA 

c...level and lat restriction 

            IF(SIN_TRUE_LATITUDE(I).GT.0.86.AND.J.GE.4.AND.J.LE.9. 

     &        OR.SIN_TRUE_LATITUDE(I).LT.-0.86.AND.J.GE.6.AND.J. 

     &        LE.19)THEN    

         AREA_CLOUD_FRACTION_CHANGE(I,J)=AREA_CLOUD_FRACTION(I,J)*0.85 

    CLOUD_FRACTION_CHANGE(I,J)=CLOUD_FRACTION(I,J)*0.85 

c  ..if cloud is dec. beyond min then set to 0... 

    IF(AREA_CLOUD_FRACTION_CHANGE(I,J).LT.0.0)THEN 

       AREA_CLOUD_FRACTION_CHANGE(I,J)=0.0 

    ENDIF 

    IF(CLOUD_FRACTION_CHANGE(I,J).LT.0.0)THEN 

       CLOUD_FRACTION_CHANGE(I,J)=0.0 

    ENDIF 

c Below is a second lat/level restriction nested within the first     

            IF(SIN_TRUE_LATITUDE(I).GT.0.96.AND.J.GE.6.AND.J.LE.8. 

     &        OR.SIN_TRUE_LATITUDE(I).LT.-0.96.AND.J.GE.9.AND.J. 

     &        LE.19)THEN    

         AREA_CLOUD_FRACTION_CHANGE(I,J)=AREA_CLOUD_FRACTION(I,J)*0.80 

    CLOUD_FRACTION_CHANGE(I,J)=CLOUD_FRACTION(I,J)*0.80 

c  ..if cloud is dec. beyond min then set to 0... 

    IF(AREA_CLOUD_FRACTION_CHANGE(I,J).LT.0.0)THEN 

       AREA_CLOUD_FRACTION_CHANGE(I,J)=0.0 

    ENDIF 

    IF(CLOUD_FRACTION_CHANGE(I,J).LT.0.0)THEN 

       CLOUD_FRACTION_CHANGE(I,J)=0.0 

    ENDIF 

    ENDIF     

c...below else-endif for lat/level restriction 

    ELSE 

    CLOUD_FRACTION_CHANGE(I,J)=CLOUD_FRACTION(I,J) 
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    AREA_CLOUD_FRACTION_CHANGE(I,J)=AREA_CLOUD_FRACTION(I,J)     
     

    ENDIF     

       END DO 

     END DO 

c 

c change (day -5) 

   ELSE IF(X_DAY_NUMBS.GT.0.61. AND.X_DAY_NUMBS.LT.0.64) THEN 

c If within a certain timeframe increase cloud... 

     write(*,*)'Changing day -5 cloud ',X_DAY_NUMBS 

     DO I=1,P_FIELDDA 

       DO J=1, Q_LEVELSDA 

c...level and lat restriction 

            IF(SIN_TRUE_LATITUDE(I).GT.0.86.AND.J.GE.4.AND.J.LE.9. 

     &        OR.SIN_TRUE_LATITUDE(I).LT.-0.86.AND.J.GE.6.AND.J. 

     &        LE.19)THEN    

         AREA_CLOUD_FRACTION_CHANGE(I,J)=AREA_CLOUD_FRACTION(I,J)*0.80 

    CLOUD_FRACTION_CHANGE(I,J)=CLOUD_FRACTION(I,J)*0.80 

c  ..if cloud is dec. beyond min then set to 0... 

    IF(AREA_CLOUD_FRACTION_CHANGE(I,J).LT.0.0)THEN 

       AREA_CLOUD_FRACTION_CHANGE(I,J)=0.0 

    ENDIF 

    IF(CLOUD_FRACTION_CHANGE(I,J).LT.0.0)THEN 

       CLOUD_FRACTION_CHANGE(I,J)=0.0 

    ENDIF 

c a second nested latitude/level restriction 

            IF(SIN_TRUE_LATITUDE(I).GT.0.96.AND.J.GE.6.AND.J.LE.8. 

     &        OR.SIN_TRUE_LATITUDE(I).LT.-0.96.AND.J.GE.9.AND.J. 

     &        LE.19)THEN    

         AREA_CLOUD_FRACTION_CHANGE(I,J)=AREA_CLOUD_FRACTION(I,J)*0.75 

    CLOUD_FRACTION_CHANGE(I,J)=CLOUD_FRACTION(I,J)*0.75 

c  ..if cloud is dec. beyond min then set to 0... 

    IF(AREA_CLOUD_FRACTION_CHANGE(I,J).LT.0.0)THEN 
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       AREA_CLOUD_FRACTION_CHANGE(I,J)=0.0 

    ENDIF 

    IF(CLOUD_FRACTION_CHANGE(I,J).LT.0.0)THEN 

       CLOUD_FRACTION_CHANGE(I,J)=0.0 

    ENDIF 

    ENDIF     

c...below else-endif for lat/level restriction 

     ELSE 

    CLOUD_FRACTION_CHANGE(I,J)=CLOUD_FRACTION(I,J) 

    AREA_CLOUD_FRACTION_CHANGE(I,J)=AREA_CLOUD_FRACTION(I,J)     
     

    ENDIF      

       END DO 

     END DO           

c 

c change (day -4) 

   ELSE IF(X_DAY_NUMBS.GT.0.64. AND.X_DAY_NUMBS.LT.0.68) THEN 

c If within a certain timeframe increase cloud... 

     write(*,*)'Changing day -4 cloud ',X_DAY_NUMBS 

     DO I=1,P_FIELDDA 

       DO J=1, Q_LEVELSDA 

c...level and lat restriction 

            IF(SIN_TRUE_LATITUDE(I).GT.0.86.AND.J.GE.4.AND.J.LE.9. 

     &        OR.SIN_TRUE_LATITUDE(I).LT.-0.86.AND.J.GE.6.AND.J. 

     &        LE.19)THEN   

         AREA_CLOUD_FRACTION_CHANGE(I,J)=AREA_CLOUD_FRACTION(I,J)*0.85 

    CLOUD_FRACTION_CHANGE(I,J)=CLOUD_FRACTION(I,J)*0.85 

c  ..if cloud is dec. beyond min then set to 0... 

    IF(AREA_CLOUD_FRACTION_CHANGE(I,J).LT.0.0)THEN 

       AREA_CLOUD_FRACTION_CHANGE(I,J)=0.0 

    ENDIF 

    IF(CLOUD_FRACTION_CHANGE(I,J).LT.0.0)THEN 

       CLOUD_FRACTION_CHANGE(I,J)=0.0 
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    ENDIF 

c second nested latitude/height restriction     

       IF(SIN_TRUE_LATITUDE(I).GT.0.96.AND.J.GE.6.AND.J.LE.8. 

     &        OR.SIN_TRUE_LATITUDE(I).LT.-0.96.AND.J.GE.9.AND.J. 

     &        LE.19)THEN   

         AREA_CLOUD_FRACTION_CHANGE(I,J)=AREA_CLOUD_FRACTION(I,J)*0.80 

    CLOUD_FRACTION_CHANGE(I,J)=CLOUD_FRACTION(I,J)*0.80 

c  ..if cloud is dec. beyond min then set to 0... 

    IF(AREA_CLOUD_FRACTION_CHANGE(I,J).LT.0.0)THEN 

       AREA_CLOUD_FRACTION_CHANGE(I,J)=0.0 

    ENDIF 

    IF(CLOUD_FRACTION_CHANGE(I,J).LT.0.0)THEN 

       CLOUD_FRACTION_CHANGE(I,J)=0.0 

    ENDIF 

    ENDIF     

c...below else-endif for lat/level restriction 

           ELSE 

    CLOUD_FRACTION_CHANGE(I,J)=CLOUD_FRACTION(I,J) 

    AREA_CLOUD_FRACTION_CHANGE(I,J)=AREA_CLOUD_FRACTION(I,J)     
     

    ENDIF     

       END DO 

     END DO 

c  Now cloud changes become positive (from day -6 to -4 negative)      

c change (day -2) 

   ELSE IF(X_DAY_NUMBS.GT.0.74.AND.X_DAY_NUMBS.LT.0.77) THEN 

c If within a certain timeframe increase cloud... 

     write(*,*)'Changing day -2 cloud ',X_DAY_NUMBS 

     DO I=1,P_FIELDDA 

       DO J=1, Q_LEVELSDA 

c...level and lat restriction 

            IF(SIN_TRUE_LATITUDE(I).GT.0.86.AND.J.GE.4.AND.J.LE.9. 

     &        OR.SIN_TRUE_LATITUDE(I).LT.-0.86.AND.J.GE.6.AND.J. 
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     &        LE.19)THEN    

         AREA_CLOUD_FRACTION_CHANGE(I,J)=AREA_CLOUD_FRACTION(I,J)*1.35 

    CLOUD_FRACTION_CHANGE(I,J)=CLOUD_FRACTION(I,J)*1.35 

c  ..if cloud is inc. beyond max then amp it down... 

    IF(AREA_CLOUD_FRACTION_CHANGE(I,J).GT.1.0)THEN 

c     write(*,*)'BENS CLOUD IS O.T.T!',I,J 

       AREA_CLOUD_FRACTION_CHANGE(I,J)=1.0 

    ENDIF 

    IF(CLOUD_FRACTION_CHANGE(I,J).GT.1.0)THEN 

       CLOUD_FRACTION_CHANGE(I,J)=1.0 

    ENDIF 

c second lat/height restriction nested below 

            IF(SIN_TRUE_LATITUDE(I).GT.0.96.AND.J.GE.6.AND.J.LE.8. 

     &        OR.SIN_TRUE_LATITUDE(I).LT.-0.96.AND.J.GE.9.AND.J. 

     &        LE.19)THEN    

         AREA_CLOUD_FRACTION_CHANGE(I,J)=AREA_CLOUD_FRACTION(I,J)*1.45 

    CLOUD_FRACTION_CHANGE(I,J)=CLOUD_FRACTION(I,J)*1.45 

c  ..if cloud is inc. beyond max then amp it down... 

    IF(AREA_CLOUD_FRACTION_CHANGE(I,J).GT.1.0)THEN 

c     write(*,*)'BENS CLOUD IS O.T.T!',I,J 

       AREA_CLOUD_FRACTION_CHANGE(I,J)=1.0 

    ENDIF 

    IF(CLOUD_FRACTION_CHANGE(I,J).GT.1.0)THEN 

       CLOUD_FRACTION_CHANGE(I,J)=1.0 

    ENDIF 

    ENDIF             

c...below else-endif for lat/level restriction 

           ELSE 

    CLOUD_FRACTION_CHANGE(I,J)=CLOUD_FRACTION(I,J) 

    AREA_CLOUD_FRACTION_CHANGE(I,J)=AREA_CLOUD_FRACTION(I,J)     
     

    ENDIF     

       END DO 
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     END DO 

c change (day -1) 

   ELSE IF(X_DAY_NUMBS.GT.0.78.AND.X_DAY_NUMBS.LT.0.80) THEN 

c If within a certain timeframe increase cloud... 

     write(*,*)'Changing day -1 cloud ',X_DAY_NUMBS 

     DO I=1,P_FIELDDA 

       DO J=1, Q_LEVELSDA 

c...level and lat restriction 

            IF(SIN_TRUE_LATITUDE(I).GT.0.86.AND.J.GE.4.AND.J.LE.9. 

     &        OR.SIN_TRUE_LATITUDE(I).LT.-0.86.AND.J.GE.6.AND.J. 

     &        LE.19)THEN  

         AREA_CLOUD_FRACTION_CHANGE(I,J)=AREA_CLOUD_FRACTION(I,J)*1.60 

    CLOUD_FRACTION_CHANGE(I,J)=CLOUD_FRACTION(I,J)*1.60 

c  ..if cloud is inc. beyond max then amp it down... 

    IF(AREA_CLOUD_FRACTION_CHANGE(I,J).GT.1.0)THEN 

       AREA_CLOUD_FRACTION_CHANGE(I,J)=1.0 

    ENDIF 

    IF(CLOUD_FRACTION_CHANGE(I,J).GT.1.0)THEN 

       CLOUD_FRACTION_CHANGE(I,J)=1.0 

    ENDIF 

c second nested latitude/height restriction below 

            IF(SIN_TRUE_LATITUDE(I).GT.0.96.AND.J.GE.6.AND.J.LE.8. 

     &        OR.SIN_TRUE_LATITUDE(I).LT.-0.96.AND.J.GE.9.AND.J. 

     &        LE.19)THEN  

         AREA_CLOUD_FRACTION_CHANGE(I,J)=AREA_CLOUD_FRACTION(I,J)*1.75 

    CLOUD_FRACTION_CHANGE(I,J)=CLOUD_FRACTION(I,J)*1.75 

c  ..if cloud is inc. beyond max then amp it down... 

    IF(AREA_CLOUD_FRACTION_CHANGE(I,J).GT.1.0)THEN 

       AREA_CLOUD_FRACTION_CHANGE(I,J)=1.0 

    ENDIF 

    IF(CLOUD_FRACTION_CHANGE(I,J).GT.1.0)THEN 

       CLOUD_FRACTION_CHANGE(I,J)=1.0 

    ENDIF     
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    ENDIF     

c...below else-endif for lat/level restriction 

           ELSE 

    CLOUD_FRACTION_CHANGE(I,J)=CLOUD_FRACTION(I,J) 

    AREA_CLOUD_FRACTION_CHANGE(I,J)=AREA_CLOUD_FRACTION(I,J)     
     

    ENDIF     

       END DO 

     END DO 

c      

c change (day 0) 

   ELSE IF(X_DAY_NUMBS.GT.0.81.AND.X_DAY_NUMBS.LT.0.84) THEN 

c If within a certain timeframe increase cloud... 

     write(*,*)'Changing day 0 cloud ',X_DAY_NUMBS 

     DO I=1,P_FIELDDA 

       DO J=1, Q_LEVELSDA 

c...level and lat restriction 

            IF(SIN_TRUE_LATITUDE(I).GT.0.86.AND.J.GE.4.AND.J.LE.9. 

     &        OR.SIN_TRUE_LATITUDE(I).LT.-0.86.AND.J.GE.6.AND.J. 

     &        LE.19)THEN  

         AREA_CLOUD_FRACTION_CHANGE(I,J)=AREA_CLOUD_FRACTION(I,J)*1.90 

    CLOUD_FRACTION_CHANGE(I,J)=CLOUD_FRACTION(I,J)*1.90 

c  ..if cloud is inc. beyond max then amp it down... 

    IF(AREA_CLOUD_FRACTION_CHANGE(I,J).GT.1.0)THEN 

       AREA_CLOUD_FRACTION_CHANGE(I,J)=1.0 

    ENDIF 

    IF(CLOUD_FRACTION_CHANGE(I,J).GT.1.0)THEN 

       CLOUD_FRACTION_CHANGE(I,J)=1.0 

    ENDIF 

c second nested lat/height restriction below 

            IF(SIN_TRUE_LATITUDE(I).GT.0.96.AND.J.GE.6.AND.J.LE.8. 

     &        OR.SIN_TRUE_LATITUDE(I).LT.-0.96.AND.J.GE.9.AND.J. 

     &        LE.19)THEN  
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         AREA_CLOUD_FRACTION_CHANGE(I,J)=AREA_CLOUD_FRACTION(I,J)*1.99 

    CLOUD_FRACTION_CHANGE(I,J)=CLOUD_FRACTION(I,J)*1.99 

c  ..if cloud is inc. beyond max then amp it down... 

    IF(AREA_CLOUD_FRACTION_CHANGE(I,J).GT.1.0)THEN 

       AREA_CLOUD_FRACTION_CHANGE(I,J)=1.0 

    ENDIF 

    IF(CLOUD_FRACTION_CHANGE(I,J).GT.1.0)THEN 

       CLOUD_FRACTION_CHANGE(I,J)=1.0 

    ENDIF     

    ENDIF     

c...below else-endif for lat/level restriction 

           ELSE 

    CLOUD_FRACTION_CHANGE(I,J)=CLOUD_FRACTION(I,J) 

    AREA_CLOUD_FRACTION_CHANGE(I,J)=AREA_CLOUD_FRACTION(I,J)     
     

    ENDIF     

       END DO 

     END DO 

c change (day +1) 

   ELSE IF(X_DAY_NUMBS.GT.0.86.AND.X_DAY_NUMBS.LT.0.89) THEN 

c If within a certain timeframe increase cloud... 

     write(*,*)'Changing day +1 cloud ',X_DAY_NUMBS 

     DO I=1,P_FIELDDA 

       DO J=1, Q_LEVELSDA 

c...level and lat restriction 

            IF(SIN_TRUE_LATITUDE(I).GT.0.86.AND.J.GE.4.AND.J.LE.9. 

     &        OR.SIN_TRUE_LATITUDE(I).LT.-0.86.AND.J.GE.13.AND.J. 

     &        LE.19)THEN  

         AREA_CLOUD_FRACTION_CHANGE(I,J)=AREA_CLOUD_FRACTION(I,J)*1.60 

    CLOUD_FRACTION_CHANGE(I,J)=CLOUD_FRACTION(I,J)*1.60 

c  ..if cloud is inc. beyond max then amp it down... 

    IF(AREA_CLOUD_FRACTION_CHANGE(I,J).GT.1.0)THEN 

       AREA_CLOUD_FRACTION_CHANGE(I,J)=1.0 
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    ENDIF 

    IF(CLOUD_FRACTION_CHANGE(I,J).GT.1.0)THEN 

       CLOUD_FRACTION_CHANGE(I,J)=1.0 

    ENDIF 

c second nested lat/height restriction below     

            IF(SIN_TRUE_LATITUDE(I).GT.0.96.AND.J.GE.6.AND.J.LE.8. 

     &        OR.SIN_TRUE_LATITUDE(I).LT.-0.96.AND.J.GE.9.AND.J. 

     &        LE.19)THEN  

         AREA_CLOUD_FRACTION_CHANGE(I,J)=AREA_CLOUD_FRACTION(I,J)*1.75 

    CLOUD_FRACTION_CHANGE(I,J)=CLOUD_FRACTION(I,J)*1.75 

c  ..if cloud is inc. beyond max then amp it down... 

    IF(AREA_CLOUD_FRACTION_CHANGE(I,J).GT.1.0)THEN 

       AREA_CLOUD_FRACTION_CHANGE(I,J)=1.0 

    ENDIF 

    IF(CLOUD_FRACTION_CHANGE(I,J).GT.1.0)THEN 

       CLOUD_FRACTION_CHANGE(I,J)=1.0 

    ENDIF         

    ENDIF     

c...below else-endif for lat/level restriction 

           ELSE 

    CLOUD_FRACTION_CHANGE(I,J)=CLOUD_FRACTION(I,J) 

    AREA_CLOUD_FRACTION_CHANGE(I,J)=AREA_CLOUD_FRACTION(I,J)     
     

    ENDIF     

       END DO 

     END DO      

c 

c change (day +2) 

   ELSE IF(X_DAY_NUMBS.GT.0.90.AND.X_DAY_NUMBS.LT.0.94) THEN 

c If within a certain timeframe increase cloud... 

     write(*,*)'Changing day +2 cloud ',X_DAY_NUMBS 

     DO I=1,P_FIELDDA 

       DO J=1, Q_LEVELSDA 
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c...level and lat restriction 

            IF(SIN_TRUE_LATITUDE(I).GT.0.86.AND.J.GE.4.AND.J.LE.9. 

     &        OR.SIN_TRUE_LATITUDE(I).LT.-0.86.AND.J.GE.6.AND.J. 

     &        LE.19)THEN  

         AREA_CLOUD_FRACTION_CHANGE(I,J)=AREA_CLOUD_FRACTION(I,J)*1.30 

    CLOUD_FRACTION_CHANGE(I,J)=CLOUD_FRACTION(I,J)*1.30 

c  ..if cloud is inc. beyond max then amp it down... 

    IF(AREA_CLOUD_FRACTION_CHANGE(I,J).GT.1.0)THEN 

       AREA_CLOUD_FRACTION_CHANGE(I,J)=1.0 

    ENDIF 

    IF(CLOUD_FRACTION_CHANGE(I,J).GT.1.0)THEN 

       CLOUD_FRACTION_CHANGE(I,J)=1.0 

    ENDIF 

c second nested lat/height restriction 

            IF(SIN_TRUE_LATITUDE(I).GT.0.96.AND.J.GE.6.AND.J.LE.8. 

     &        OR.SIN_TRUE_LATITUDE(I).LT.-0.96.AND.J.GE.9.AND.J. 

     &        LE.19)THEN  

         AREA_CLOUD_FRACTION_CHANGE(I,J)=AREA_CLOUD_FRACTION(I,J)*1.45 

    CLOUD_FRACTION_CHANGE(I,J)=CLOUD_FRACTION(I,J)*1.45 

c  ..if cloud is inc. beyond max then amp it down... 

    IF(AREA_CLOUD_FRACTION_CHANGE(I,J).GT.1.0)THEN 

       AREA_CLOUD_FRACTION_CHANGE(I,J)=1.0 

    ENDIF 

    IF(CLOUD_FRACTION_CHANGE(I,J).GT.1.0)THEN 

       CLOUD_FRACTION_CHANGE(I,J)=1.0 

    ENDIF     

    ENDIF     

c...below else-endif for lat/level restriction 

           ELSE 

    CLOUD_FRACTION_CHANGE(I,J)=CLOUD_FRACTION(I,J) 

    AREA_CLOUD_FRACTION_CHANGE(I,J)=AREA_CLOUD_FRACTION(I,J)     
     

    ENDIF     
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       END DO 

     END DO                          

     ELSE 

c...if outside either timeframe make cloud equal to norm cloud.      

     write(*,*)'A non C.change day',X_DAY_NUMBS 

     DO I=1,P_FIELDDA 

       DO J=1, Q_LEVELSDA        

          AREA_CLOUD_FRACTION_CHANGE(I,J)=AREA_CLOUD_FRACTION(I,J) 

    CLOUD_FRACTION_CHANGE(I,J)=CLOUD_FRACTION(I,J) 

       END DO 

     END DO      

     ENDIF      

*/ *D = Replace code with this line to remove original call Sin_t.. 

*D APBBF401.9 

*D APBBF401.10 

*D APBBF401.11 

*D APBBF401.12 

*D APBBF401.13 

*D APBBF401.14 

*D RAD_CTL1.258 

*D RAD_CTL1.259 

*D RAD_CTL1.260 

*/ *D = Replace the following lines (or range of lines) with some code 

*D RAD_CTL1.416 

*/ Change call to SWRAD 

     &     D1(JPSTAR+JS),AKH,BKH,CLOUD_FRACTION_CHANGE(FIRST_POINT,1), 

*D AWI1F403.322 

*/ Change call to SWRAD 

     &    D1(JPSTAR+JS),AKH,BKH,CLOUD_FRACTION_CHANGE(FIRST_POINT,1), 

*D ASK1F405.269 

*/ Change call to R2_SWRAD 

     &        AREA_CLOUD_FRACTION_CHANGE(FIRST_POINT,1), 

*D ADB1F400.174 
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*/ Change call to R2_SWRAD 

     &        CLOUD_FRACTION_CHANGE(FIRST_POINT,1), 

*D ASK1F405.270 

*/ change call to CALL SWDKDI 

     &    AREA_CLOUD_FRACTION_CHANGE(START_POINT_NO_HALO,1), 

*D ADB1F400.258 

*/ Change call to LWRAD 

     &        CLOUD_FRACTION_CHANGE(FP_LOCAL(I),1), 

*D ASK1F405.272 

*/ Change call to R2_LWRAD 

     &        AREA_CLOUD_FRACTION_CHANGE(FP_LOCAL(I),1), 

*D ADB1F400.316 

*/ Change call to R2_LWRAD 

     &        CLOUD_FRACTION_CHANGE(FP_LOCAL(I),1), 

*/ -- End of Mod -- 
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Appendix 6 Personal communiqué from Professor Brian Tinsley 

Personal communiqué referenced in thesis as (Tinsley, 2010). The message is presented below 

in its original and unedited form (reproduced with permission from Professor Brian Tinsley 

(Department of Physics, University of Texas, Dallas)). 

 

 
Concerning the CMAS mechanism (Charge Modulation of Aerosol 

Scavenging)which has also been called the 'near cloud mechanism', the 

reduced ionization during a Forbush decrease reduces Jz, but if the 

shape of the vertical profile of potential remains the same with a 

constant ionospheric potential, then the electric field gradients at 

the gradients of conductivity will not change, and the equilibrium 

space charge will not change. But the aerosol particles and the 

droplets take tens of minutes to hours to charge, and this is 

comparable with the dynamic timescale of cloud development. Because 

the rate of charging increases with increasing ion concentration, this 

will affect the amount of CMAS. However, the ionospheric potential 

will change somewhat as the Forbush decrease affects the thunderstorm 

generators, and the shape of the vertical profile changes somewhat. So 

my summary is that we don't have good enough analytical theory or 

models to say what should happen according to theory in a rapid onset 

Forbush decrease, let alone the difference between a rapid onset and a 

slow onset one. 

 
 
Brian A Tinsley, Professor 
MS WT15, Center for Space Sciences 
University of Texas at Dallas 
800 W Campbell Rd., 
Richardson, TX, 75080-3021, USA 
Ph.:  972 883 2838 
e-mail:  Tinsley@UTDallas.edu 
http://www.utdallas.edu/physics/faculty/tinsley.html 
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