University of Sussex

A University of Sussex DPhil thesis
Available online via Sussex Research Online:

http://eprints.sussex.ac.uk/

This thesis is protected by copyright which belongs to the author.

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given

Please visit Sussex Research Online for more information and further details

A Reputation Framework for
Behavioural History

Developing and Sharing Reputations from Behavioural

History of Network Clients

Anirban Basu
Software Systems Group

School of Informatics
University of Sussex

A thesis submitted, on January 04, 2010, in partial fulfilment of the requirements
for the degree of Doctor of Philosophy (DPhil) in the School of Informatics of the
University of Sussex.

To my parents
and
my late grandparents

The water in a vessel is sparkling; the water in the sea is dark. The
small truth has words which are clear; the great truth has great silence.
Rabindranath Tagore
Indian poet, artist & philosopher (1861-1941)

Abstract

The open architecture of the Internet has enabled its massive growth and
success by facilitating easy connectivity between hosts. At the same time,
the Internet has also opened itself up to abuse, e.g. arising out of unsolicited
communication, both intentional and unintentional. It remains an open ques-
tion as to how best servers should protect themselves from malicious clients
whilst offering good service to innocent clients. There has been research on
behavioural profiling and reputation of clients, mostly at the network level
and also for email as an application, to detect malicious clients. However,
this area continues to pose open research challenges. This thesis is motivated
by the need for a generalised framework capable of aiding efficient detection
of malicious clients while being able to reward clients with behaviour profiles
conforming to the acceptable use and other relevant policies.

The main contribution of this thesis is a novel, generalised, context-aware,
policy independent, privacy preserving framework for developing and sharing
client reputation based on behavioural history. The framework, augmenting
existing protocols, allows fitting in of policies at various stages, thus keep-
ing itself open and flexible to implementation. Locally recorded behavioural
history of clients with known identities are translated to client reputations,
which are then shared globally. The reputations enable privacy for clients by
not exposing the details of their behaviour during interactions with the servers.
The local and globally shared reputations facilitate servers in selecting service
levels, including restricting access to malicious clients. We present results and
analyses of simulations, with synthetic data and some proposed example poli-
cies, of client-server interactions and of attacks on our model. Suggestions
presented for possible future extensions are drawn from our experiences with
simulation.

iii

Acknowledgments

Special thanks to my supervisors Dr. lan Wakeman and Dr. Dan Chalmers
for their invaluable guidance, constructive criticism and support over the past
four-plus years.

This work would have never been completed if it were not for the support of
my parents, family and my friends. In particular, I would like to thank my par-
ents for their outstanding support and unparalleled understanding throughout
the years.

I would also like to extend my thanks to other members of the Software
Systems Group, in particular: Dr. Des Watson, Dr. Jon Robinson, Jian Li,
Stephen Naicken, Ryan Worsley, Yasir Malkani, Roya Feizy, Lachhman Dhomeja.
Also thanks to members of the Theory Group, in particular: Dr. Berhard Reus
and Dr. [an Mackie. Special thanks to Simon Fleming and James Stanier from
the Software Systems group for proof-reading this thesis.

I would also like to thank Dr. Colin Brooks and Mrs. Vivien Brooks for
hosting me in their cosy home during the later period of my thesis write-up.

Many thanks to the (erstwhile Department and now) School of Informatics

computing service as well as my supervisors for all the computing facilities
that I have been provided with.

v

Table of Contents

Statement of Originality
Abstract
Acknowledgments

List of Figures

List of Tables

List of Algorithms

1 Introduction
1.1 Motivation
1.2 Contribution
1.3 Thesisroadmap
1.4 Published work

2 Background
2.1 Overview
2.2 Identity management
2.3 Specification of policies L.
2.4 Measures against unsolicited messages
2.4.1 Identity forgery protection
2.4.2 Message filtering
2.4.3 Message restrictiono
2.4.4 Use of trust and reputation networks
2.5 Intrusion detection systems
2.5.1 Detection techniques
2.5.2 Fundamental challenges of (network) intrusion detection
2.6 Related work on behavioural history and client reputation . . .
2.6.1 Allman’s work on behavioural history
2.6.2 Wei and Mirkovic’s work on client reputation

ii

iii

iv

ix

Table of Contents

vi

2.6.2.1 Wei and Mirkovic’s work on host profiling and

clusteringo

2.6.3 Natu and Mirkovic’s work on capabilities using client
reputationo oL

2.6.4 Other commercial work
2.6.4.1 Arbor Peakflow X

2.6.4.2 Riverbed Cascade

2.6.4.3 DShield 0.

2.6.5 Senderbase

2.7 Research question and objectives
2.8 Summary

Reputation from behaviour profile
3.1 Proposition of a reputation framework
3.1.1 Research contributions
3.2 Definition of frequently used terminology
3.3 A note on identity infrastructure
3.4 Overview
3.4.1 Representation of reputation and confidence
3.4.1.1 Local reputation
3.4.1.2 Confidence between servers
3.4.1.3 Globally shared reputation
3.4.1.4 Levelsof service
3.5 The framework with example policies
3.5.1 Analysis of behaviour
3.5.2 Building of local reputation
3.5.2.1 Time decay of local reptuation
3.5.3 Global client reputation reporting
3.5.4 Global reputation query and interpretation
3.5.4.1 Confidence between servers
3.5.4.2 Interpretation of global reputation
3.5.5 Decisions on levels of service
3.6 Adversarymodel
3.6.1 Identity threats
3.6.1.1 Whitewashing
3.6.1.2 Sybil
3.6.1.3 Impersonation and reputation theft
3.6.2 Vulnerabilities in and threats to reputation systems . . .
3.6.2.1 Reputation bootstrap issue

61

3.6.2.2 Extortion, denial of reputation and ballot stuffing 62
3.6.2.3 Repudiation of data or repudiation of transaction 62

3.6.3 Reputation infrastructure threats
3.6.3.1 Attacks on the underlying network
3.7 Summary

63

Table of Contents

vii

4 Experimental setup 65
4.1 Overview 65
4.2 Simulated application 66

4.2.1 Network entities 66
4211 Client 66

4.2.1.2 Server 66

4.2.1.3 Global Reputation Analyser 67

4.2.2 Implemented events 67
4.2.3 Event ordering and interaction cycle 69
4.2.4 Implemented policies 70
4.2.4.1 Behaviour analyser and behaviour quantisation 70

4.2.4.2 Local reputation response policy 70

4.2.4.3 Local reputation saturation policy 70

4.2.4.4 Global reputation interpretation policy 71
4.2.4.5 Age-based scavenging policy 71

4.2.4.6 Server confidence policy 71

4.2.5 DModeling attacks 0oL 71
4.3 A discrete event simulator 72
4.3.1 Event model L. 72
4.3.1.1 Eventparser 72

4.3.2 Event dispatcher and event handlers 73
4.3.3 Event generator.o 74
4.33.1 Eventmacro 74

4.3.4 Logging and statistics 75
4.4 SUMMArY oo 75

5 Evaluation 7
5.1 Simulation objectives Lo 7
5.2 Simulation scenario: email delivery 79

5.2.1 Actor (sender) classification 80
5.2.2 Impact of reputation on unimplemented service levels . 81
5.2.3 Interaction with clients pertaining to various actor classes 82
5.2.3.1 Type 1 client — usual email sender 83
5.2.3.2 Type 2 client — spammer 84
5.2.3.3 Type 3 client — cautious email sender 85
5.2.3.4 Type 4 client — malicious email sender 86
5.2.4 Attacks on the model 96
5.2.4.1 Reputation bootstrapping issue 96
5.2.4.2 Extortion, denial of reputation and ballot stuffing 97
5.2.4.3 Denial of Service affecting a server 101
5.2.4.4 Denial of Service affecting the GRA 103
5.2.4.5 Improvements against DoS 105
5.2.5 Effects of global reputation, improvements 112
526 Levelsofservice 112

Table of Contents

viii

5.3 Summary . . .

6 Conclusion and Future work
6.1 Summary of contributionso

6.2 Future work . .

6.2.1 Extensions to identity infrastructure

6.2.2 Policy-specific and implementation-specific extensions

6.2.3 Framework specific extensions
6.2.4 Further simulation

6.3 Closing remarks

References

113

114
115
115
115

. 116

116
117
117

119

List of Figures

3.1
3.2
3.3
3.4
3.5

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14

Conceptual overview of a system 40
Trust continuum 43
Graph of reputation versus behaviour 50
Graph of reputation decay with time 51
UML sequence diagram for reporting reputation. 54
Type 1 reputation records 89
Type 1 reputation records (faster time decay) 90
Type 2 reputation records L 91
Type 3 reputation records 92
More active Type 3 reputation records 93
Type 4 reputation records 94
Very active Type 4 reputation records 95
Type 2 (misinformed) reputation records 99
Type 3 (misinformed) reputation records 100
Type 2 reputation records with a server under DoS 107
Type 3 reputation records with a server under DoS 108
Type 2 reputation records with GRA under DoS 109
Type 3 reputation records with GRA under DoS 110
Type 3 reputation records without the effect of DoS 111

1X

List of Tables

4.1 Implemented events

List of Algorithms

3.1 Global reputation reporting

x1

1 Introduction

There’s only one corner of the universe you can be certain of improv-
ing, and that’s your own self.
Aldous Huxley
English critic & novelist (1894 - 1963)

1.1 Motivation

istorically the origins of the Internet (Leiner et al., 2001) can be traced
H back to the seminal proposal by Leonard Kleinrock (Kleinrock, 1961),
then at the Massachusetts Institute of Technology, in which he argued the the-
oretical feasibility of communication using packet switching instead of circuit
switching. Kleinrock’s theoretical packet switched network was followed by a
key proposal by Lawrence G. Roberts (Roberts, 1967), which led to the even-
tual development of the ARPANET — the predecessor of the modern Internet.
The Internet is built on the concept of open-architecture networking. It was
based on the idea that it would comprise multiple independently developed
networks of arbitrary design starting with the ARPANET. Robert Kahn first
introduced this notion of open-architecture networking, and decided to develop
a new version of the Network Control Protocol (Crocker, 1970), which was the
original ARPANET host-to-host communication protocol. Kahn’s work with
Vint Cerf (Cerf & Kahn 1974) was first distributed at the International Net-
work Working Group in 1973 at a conference at the University of Sussex. This
laid the foundations of the Transmission Control Protocol (Postel, 1981) and

1.1. Motivation

later the Transmission Control Protocol/Internet Protocol (TCP /IP) (Socolof-
sky & Kale, 1991).

Various protocols were eventually developed to support the concept of open-
architecture inter-networking, which enabled easy and large-scale sharing of
resources. This very large-scale open inter-network is what we call the modern
Internet. While the Internet makes it convenient for heterogenous hosts to
communicate with each other, share resources, provide and consume network
services, the open-ness in the design of the Internet created opportunities for
abuses and attacks, e.g. the proliferation of unsolicited network communica-

tion, both intentional and unintentional.

Back in the days of the ARPANET in 1972, the first “hot” application
that led to the massive growth of “people-to-people” network traffic over the
modern Internet, was introduced — electronic mail, now commonly known as
email. Now, as of November 2009, Senderbase Security network (Cisco Sys-
tems, 2009b) observes that email spam or unsolicited bulk email constitutes
over 80% of all emails sent out per day worldwide. Besides being a significant
cause of annoyance and inconvenience to email users and network administra-
tors, the financial implications of email spam are also very high. In 2001, a
study conducted by the European Commission estimated email spam to cost
€ 10 billion per year to Internet users, in connection costs, worldwide (Euro-
pean Union, 2001). Despite various legal and technical anti-spam measures
currently in place, email spam has grown steadily over the last decade to a to-
tal worldwide volume, according to Senderbase, of occasionally over 300 billion

messages per day.

Similar to spam targeting email communications, unsolicited bulk messages
affect other services provided over various networks, such as instant messag-
ing, newsgroup and web forums, online gaming, hypertext search engines, blogs
and wikis, video sharing, text messaging over cellular networks, amongst oth-
ers. Some of the research efforts in identifying and proposing solutions to the
problems of spam over such services include Cramer 2002; Enck et al. 2005;
Gyodngyi & Garcia-Molina 2005; Kolan & Dantu 2007; Singhal 2004; Wu &

Davison 2005 amongst others.

1.1. Motivation

With the growth of the Internet, especially the World Wide Web (Field-
ing et al., 1999), there is a growing need to establish trust mechanisms to
facilitate reliable communications between individuals and between organisa-
tional groups. Trust and reputation systems have been developed to assess
the reputations of service providers in order to assist clients in the selection of
trustworthy service providers for centralised (e.g. survey of trust: Grandison
& Sloman 2000; review of online reputation systems: Zheng & Jin 2009) and
de-centralised (e.g. Aberer & Despotovic 2001; Damiani et al. 2003; Mengshu
et al. 2005) network applications.

Above, we have mentioned attacks in the form of unsolicited messages that
are possible due to the open architecture of the Internet. A large number of

attacks on and abuses of Internet services fall under the following classes:

Abuse of service terms
In this attack, the attacker abuses the terms of a service, e.g. re-
questing more than an allowed number of TCP connections at a time
which could be a result of applications using peer-to-peer protocols in

a network where such protocols are disallowed.

Denial of Service (DoS)
In this type of attack, a network resource is exhausted or significantly
limited by malicious connections leaving insufficient resources for gen-
uine connections. For example, using a TCP SYN flood (Eddy, 2007)
an attacker can consume resources on a server by not sending the ACK
response and thus keeping half-open TCP connections. A sufficiently
large number of half-open connections may consume enough resources
to make the server deny connections to legitimate users. DoS can be
distributed (DDoS) when the attack originates from more than one
network entity, all operating with the same common malicious objec-
tive, i.e. to make the servers deny services to legitimate clients. The
set of network entities participating in the attack can be created by
the attacker through a number of techniques, for example, an attacker
may suborn (e.g. using operating system exploits) a number of unsus-

pecting network entities.

Unsolicited messages

The attacker sends (an usually large number of) unsolicited messages

1.1.

Motivation

(e.g. email spam), which can have financial or legal implications to
the victims. Similar to DDoS, the attacker could have multiple Sybil
(Douceur, 2002) identities working with the same malicious intent.
The intent of an unsolicited message could be to promote products or

services, extort sensitive information (e.g. phishing), and so on.

In this thesis, we are mainly concerned with the attacks that either constitute

abuse of service terms or unsolicited messages. There are a number of defences

to the aforementioned attacks, some of which we classify as follows:

Network intrusion detection

Audit trails of network packet traces over a network are analysed in
retrospect and in real-time to detect anomalies or patterns of known
attack signatures. Network intrusion detection can be a collaborative
effort aided by participants over an enterprise-wide network or across

the entire Internet.

Connection classification

By analysing activity at the end-to-end network layer, a particular
network interaction is classified as either malicious or genuine, e.g. an
email message, instead of network packets, sent to an SMTP server is
subject to content analysis to distinguish whether it is spam or not.
If necessary, connection classification may also be applied at lower

points in the protocol stack.

Use of behavioural history and reputation

Interactions with a network client identity are decided based on its
past local and/or global records of the behaviour and/or any repu-
tation. This leaves room for forgiveness of occasional bad behaviour
while identifying repeat offenders. We shall be investigating this type

of defence in this thesis.

There are various academic and commercial research efforts to reduce and

restrict spam, email spam in particular. Technologies currently in use against

email spam include statistical content filtering, blacklisting and whitelisting,

firewall port blocking, cost-based rate limiting, reverse DNS checks, SMTP

proxy, authentication and challenge-response systems, behaviour profiling and

1.2. Contribution

reputation systems, amongst others. Of particular interest to us is the use of
behaviour profiling and reputation (e.g. Golbeck & Hendler 2004; Hershkop &
Stolfo 2005; Stolfo et al. 2003).

Alongside the use of behaviour profiling as anti-spam measures, researchers
in network intrusion detection systems are also looking into the use of be-
haviour profiles to improve the accuracy of intrusion detections, e.g. Maier
et al. 2008. In his thesis (Sommer 2005) on network intrusion detection in
high-performance network environments, Robin Sommer cited Allman’s work
as a step in the direction of large-scale sharing of past behavioural patterns
of network hosts. Our work is primarily motivated by this key paper (Allman
et al. 2005b) from Allman, Blanton and Paxon, who presented an architecture
of large scale sharing over a Distributed Hash Table of behavioural history of
network actors, such as hosts or email addresses in an effort to inform policy
decisions about how to treat future interactions. Local observations on the
behaviour of actors are submitted to a behavioural history database by re-
porters while evidence of such observations rather than confirmations of the
actual observations are also submitted by witnesses. This behaviour history
database can be queried by service providers to lookup behaviour reports on
clients, which can be used to make policy decisions regarding interactions with

those clients.

Another key motivational paper behind this thesis, building on Allman’s
work, is Wei & Mirkovic 2007, which proposed a client reputation system that
service providers can use for deciding to accept or decline interactions with a
given client. According to the authors, such a system could significantly aid
defenses against major security threats (e.g. intrusions, distributed denial-of-
service attacks) with a prior knowledge of a client’s trustworthiness, provided
by reputations. It is also argued that client reputations could be used for

traffic prioritisation during periods of network congestion.

1.2 Contribution

Instead of devising independent solutions for the different problems arising

out of abuses of service and unsolicited communications, we investigate the

1.2. Contribution

feasibility of a framework-based solution for building and sharing reputations

with the following properties:

o Generalised: The framework is expected to be independent of the specific
implementation of any application or protocol.

e High-level: The framework is to allow use of reputations in the higher
end-to-end layers.

e Privacy-preserving: Reputation instead of behavioural history is to be
shared which allows hiding behavioural details behind a rating system.
In addition, the framework is to support anonymous sharing of reputa-
tion as a further step for privacy protection.

e Policy-independent: The framework is expected to be independent of
any policy, and it should be possible to fit in policies at various stages
of the framework.

e (ontext-aware: Behaviour analysis and reputations are relevant only
in particular application scenarios. The framework is expected to be
aware of such scenarios (i.e. contexts) while allowing the development

and sharing of reputations.

In this thesis, we propose a framework of client reputation based on be-
havioural history. The objective of our framework is to aid service providers
in building, and sharing anonymously, the reputations of their clients from
their behavioural profiles. We envisage that such reputations can be used not
only in deciding to accept or decline interactions but also to vary levels of
service within the bounds of the relevant service contracts. Our framework is
expected to augment existing detection systems, e.g. intrusion detection, sta-
tistical content filtering, and so on. Policies are applied to these observed client
behaviour profiles to develop quantised behaviour values at various points in
time. Such quantised behaviour data is then subject to further policies by the
service provider to build local reputations of clients. These reputations are
used by the service providers to determine levels of service. Locally developed
reputation data are also shared anonymously so that other service providers
can use global reputations at any time to adjust the local reputations about

their clients whenever necessary.

Through the process of behaviour profiling and developing client reputation,

service providers will have prior knowledge of each client’s trustworthiness.

1.3. Thesis roadmap

Clients without existing behaviour profiles may be required to prove their
worth by developing acceptable behaviour profiles before they are eligible for
higher levels of service. On the other hand, clients already catered for with
high levels of service are given the benefit of doubt (depending on implemented
policy) for occasional unacceptable behaviour, which lowers the probability of

false positives.

We demonstrate the suitability of our framework through some example
policies that we propose and justify in this thesis. We also evaluate the effects

of relevant attacks on the framework.

1.3 Thesis roadmap

Here, we present a brief summary of the thesis.

Chapter 2 — Background: In this chapter, we summarise background work
and research challenges in intrusion detection systems and anti-spam systems
as examples of measures against unsolicited messaging and systems that em-
ploy client behavioural history. We present a survey of approaches through
example systems. We also present brief discussions in identity management
and means of policy specification. The chapter ends with the discussion of the

research question that we plan to tackle in this thesis.

Chapter 3 — Reputation from behaviour profile: Building on our dis-
cussion of the related work and our research question, we summarise our re-
search contributions. The rest of this chapter describes the theoretical model
of the open-ended framework to develop, share and use reputations from client
behaviour data. We formalise the representations of reputation and server
confidence in the context of our work; presenting the functional representation
of our model. Thereafter, we describe the different functional stages of the
framework with some proposed example policies. We end the chapter with a
discussion of a number of adversaries to the model, some of which we later

simulate in chapter 5.

Chapter 4 — Experimental setup: In this chapter, we discuss the ex-

perimental implementation of our theoretical framework that we described in

1.4. Published work

chapter 3. We also present a simple discrete event simulator, which we have

built to perform high-level simulation of the framework.

Chapter 5 — Evaluation: In this chapter, we utilise the experimental setup
described in the previous chapter to simulate our proposed framework. Our
simulations illustrate the reputation responses to changing client behaviour.
We use synthetic data to create experimental scenarios, with client behaviour
pertaining to various actor classes. From our simulations, we observe the
effects of global reputation through various interpretation policies. We also

discuss and analyse the effects of relevant attacks on the framework.

Chapter 6 — Conclusion and Future work: In the final chapter, we
summarise this thesis by re-iterating a summary of our contributions. We

conclude with a discourse of future work.

1.4 Published work

Parts of this thesis are published in or are related to:
1. A. Basu, . Wakeman and D. Chalmers. A Framework for Developing
and Sharing Client Reputations: Submitted to IFIPTM 2010, Morioka,
Japan, 2010.

2. A. Basu, I. Wakeman, D. Chalmers, and J. Robinson. A Behavioural
Model for Client Reputation: Proceedings of Trust in Mobile Environ-
ments (workshop in IFIPTM), Trondheim, Norway, 2008.

3. J. Robinson, I. Wakeman, D. Chalmers and A. Basu. The North
Laine Shopping Guide: A Case Study in Modelling Trust in Applica-
tions: Proceedings of Joint iTrust and PST Conference on Privacy,
Trust Management and Security (IFIPTM), Trondheim, Norway. 2008.

4. A. Basu, I. Wakeman, and D. Chalmers. A Behavioural Model for
Consumer Reputation: Poster in the Proceedings of the International
Workshop on Self-Organizing Systems, The Lake District, UK, 2007.

1.4. Published work

5. S. Naicken, B. Livingston, A. Basu, S. Rodhetbhai, I. Wakeman, and
D. Chalmers. The State of Peer-to-Peer Simulators and Simulations:
ACM Computer Communications Review, vol. 37(2), pp. 95-98, 2007.

6. S. Naicken, A. Basu, B. Livingston, S. Rodhetbhai, and I. Wake-
man. Towards Yet Another Peer-to-Peer Simulator: Proceedings of
The Fourth International Working Conference on Performance Mod-
elling and Evaluation of Heterogeneous Networks (HET-NETs), Ilkley,
UK, 2006.

7. S. Naicken, A. Basu, B. Livingston, and S. Rodhetbhai. A Survey of
Peer-to-Peer Network Simulators: Proceedings of The Seventh Annual

Postgraduate Symposium, Liverpool, UK, 2006.

2 Background

If you shut the door to all errors, truth will be shut out.
Rabindranath Tagore
Indian poet, artist & philosopher (1861 - 1941)

2.1 Overview

he any-to-any best-effort service offered by the open architecture of the
T Internet has been the key behind its success. It has facilitated an enor-
mous growth in “people-to-people” traffic through services such as electronic
mail, instant messaging, voice-over-IP, web-based social networks and so on.
However, this very openness of the Internet has also invited trouble. The In-
ternet is vulnerable to various types of attacks from malicious users. Various
“people-to-people” services are susceptible to abuse, e.g. unsolicited messages,
of which email spam is an example. Another common attack on services pro-
vided through the Internet is the denial-of-service (DoS) through which an
attacker exhausts resources at the victim’s (i.e. service provider) end, thereby
leaving the service provider unable to respond to genuine service requests.
A distributed denial-of-service (DDoS) attack originates from a number of
nodes on a network with the same common malicious intent to make a service
provider unable to provide service. In many cases, distributed attacks are con-
ducted by an attacker hijacking the identities of otherwise harmless nodes on

the network.

10

2.1. Overview

11

In the previous chapter, we have introduced a broad classification of various
methods proposed and in use to forestall the attacks on network services. With
the evolution and growth of services over the Internet, a number of recent
research efforts are focused on the use of behavioural history and reputation of
clients to distinguish between genuine and malicious clients. In this chapter,
we present existing work in a number of different research areas, which lead
us to the vision of a generalised mechanism for precluding attacks on network

services.

In this chapter, we discuss the following concepts and present existing work

in the relevant areas:

Identity management
To prevent attacks on network services, it is necessary to know the
identity of the clients that use such services. We discuss key systems

which provide representative notions of identity.

Specification of policies
Agreements between service providers and their clients, such as the
Terms of Service (ToS), the Service Level Agreement (SLA), the Ac-
ceptable Use Policy (AUP) are legal offline agreements which do not
immediately translate into policies that can be interpreted by ma-
chines. As more parts of the interaction between the user and the
service provider become controllable, there will be increasing direct
representations of those agreements within the network. We discuss

some existing efforts in this direction.

Measures against unsolicited messages
Unsolicited messages are a type of abuse of the open-ness of the Inter-
net. Taking email spam as an example of unsolicited messaging, we

present key existing approaches in anti-spam systems.

Intrusion detection
Intrusion detection is a long-known method of distinguishing malicious
behaviour from acceptable behaviour through the analysis of audit
trails. We present the various detection techniques and open research

challenges in intrusion detection systems.

2.2. Identity management

12

Behavioural history and reputation
Finally, we present exemplary approaches in the existing research on
the use of behavioural history and client reputation. These are our

key motivational work and are closely related to this thesis.

Following our survey of the research challenges in the aforementioned areas
and a selection of existing research work, we close this chapter with a discussion

of our research question and research objectives.

2.2 Identity management

Services and resources made available over computer networks often need
to know who the users are, in order to control their access to those services
and resources. Identity management comprises the initial stage of allocating
identifiers and credentials to users, and the later stage of authenticating those
users and controlling their access based on their already known identities. The
representation of a user entity in a specific application domain is its identity.
Various types of identities include usernames, IP addresses, public keys and so

on.

According to Jgsang & Pope 2005, one of the common identity management
models is the isolated user identity model where the service provider provides
the user with its identity and it controls the entire identity namespace. Exam-
ples are: a username-password combination generated by and works specifically
for a single website; and a “private” class-C network IP address issued to a host
by a router with a Network Address Translator (NAT) (Egevang & Francis,
1994; Tsirtsis & Srisuresh, 2000). In this type of identity management, the
identifier namespace is isolated and usable only in the context of the specific
service provider. Thus, a class-C network IP address 192.168.1.2 behind a
NAT is a namespace owned by the NAT and may only be accessible within a
“private” network 192.168.1.0/24 (Classless Inter-Domain Routing or CIDR
notation, Fuller et al. 1993).

The other user identity management model is the federated user identity
model, in which the same user identifier is recognised by more than one service

provider, and belongs to a global namespace. Although the namespace could

2.3. Specification of policies

13

still not be universally unique, it can be unique across a number of organisa-
tions. The federated model results in a single virtual identity domain for the
user, whereby a set of standards and technologies enable a group of service
providers to recognise user identifiers within a federated domain. An open-
source implementation of this type of identity management model is Shibbo-
leth (Erdos & Cantor, 2002). Other federated identity management systems
are Open ID (Recordon & Reed, 2006), a pseudonymous identity proposal,

such as Wakeman et al. 2007, and so on.

A third set of user identity management types constitute the centralised
user identity models. There are various ways centralised models may be im-
plemented. A single authority may act as a user identifier provider for all
service providers. An example is a Certificate Authority issued X.509 public
key certificate (Housley et al., 1999). A single-sign-on identity domain is very
similar to federated identity management because the user identifier necessary
for one service provider is also used by other service providers. One example is
Kerberos (Kohl & Neuman, 1993) where the Kerberos Authentication Server

acts as a centralised identifier and credential provider.

Some identity management schemes use identifiers that are short-lived and
re-usable, e.g. dynamically allocated IP addresses, while some other identi-
fiers are long-lived, e.g. a X.509 certificate. In addition, some identifiers are
“weak” because of their allocation or verification processes. Those identifiers
can be spoofed with little effort, e.g. dynamically allocated IP addresses with-
out extended authentication checks such as 802.1x EAP (Congdon et al., 2003),
while some other identifiers are “strong” and cannot be masqueraded, e.g. a
Certificate Authority signed X.509 certificate.

2.3 Specification of policies

According to Sloman et al. 2001, the main driver behind the research and
development of security and management policy based services is to enable
dynamic adaptability of behaviour of the system through changes in policies
instead of having to change the system itself. The process of refining abstract
policies, expressed in business goals, service level agreements or acceptable

use policies within or between organisations, gives rise to various challenges.

2.3. Specification of policies

14

Furthermore, in large scale systems with a considerably large number of users,
it is impractical to specify policies for each user. Instead users are grouped
in various ways and policies are applied on these groups. Policies are applied
to the users depending on their group memberships. We briefly summarise
some exemplary approaches in policy specification, following from the survey
in Sloman & Lupu 2002.

In terms of security policies, Roles-Based Access Control (RBAC) (Sandhu
et al., 1996) allows specification of permissions on users through grouping them
into various roles. In essence, it is the “role” of the user rather than the user
itself to which a permission is granted. The original RBAC concept faces
challenges with modeling inheritance, the complexity of which can be reduced
through the use of a capability based system (Sloman & Lupu, 2002). Modi-
fications and enhancements (e.g. Tan 2002) have been suggested to overcome
challenges and further the research in the area of access control. Although not
a policy specification mechanism as such, RBAC gives the flexibility through
which policies for access control are not tied to the system implementation or
the owner of each resource; instead they can be derived from organisational
policies. IBM’s Trust Policy Language (Herzberg et al., 2000) extends RBAC.
It describes a public key infrastructure (PKI) certificate based policy language,
specified in Extensible Markup Language (XML) (World Wide Web Consor-
tium, 1996), to enable automatic assignment of roles. Logic based solutions for
authorisation policy specifications are illustrated in Jajodia et al. 1997; Ortalo
1998. There have been Java specifications of security policies from high-level
policy descriptions (e.g. Corradi et al. 2000; Hashii et al. 2000).

In terms of management policies, the Policy Definition Language (Lobo
et al., 1999) from Lucent Bell Labs is a set of simple event-condition-action
rules for network management. It can be used to specify complex work-
flow tasks but it does not support policy composition and re-use of policy
specifications. Without the event triggering part, Internet Engineering Task
Force (IETF) has defined the Policy Core Information Model (PCIM) (Moore
et al., 2001) and its extensions (Moore, 2003). PCIM policies are formed as
condition-event rules, which support nesting into policy groups. The rules
can also have conditions based on time periods and can be either sequential or

random in order. Some extensions to PCIM also exist for Quality of Service

2.4. Measures against unsolicited messages

15

(QoS) (Smir et al., 2003). The ISO/IEC reference model for open distributed
processing (RM-ODP) (ISO/IEC, 1995), designed to provide a framework for
distributed processing specifies five viewpoints. Out of these, the enterprise
viewpoint focuses on policies, scope and purpose of a system. There has been
work that uses the Unified Modeling Language (UML) (Object Management
Group, 1997) to describe the enterprise viewpoint of the RM-ODP, such as
Aagedal & Milosevic 1999; Blanc et al. 1999; Linington 1999. Ponder (Dami-
anou et al., 2001) is a declarative, object-oriented policy specification language
that can be used to specify security policies for access control mechanisms for
operating systems, firewalls, databases and so on. It can also be used to
specify event triggered condition-action rules for management policies of

distributed systems.

Apart from security and management policies, technologies such as Web ser-
vices (Booth et al., 2004) and GRID computing (Foster & Kesselman, 1998)
are being increasingly used to develop high-level business applications and ser-
vices for considerable levels of autonomic operations across organisations. For
those services to operate, the contracts between the service providers and their
clients must cater for various parameters, such as performance and reliability.
Those contracts — Service Level Agreements (SLAs) — need to be represented
in specialised languages, which enable autonomic negotiations, adaptation of
services and their compositions. SLang (Skene et al., 2004) defines a SLA vo-
cabulary for a number of Internet services, e.g. application service provision,
Internet service provision and storage service provision. UML is used to model
the language, which contains formal semantics of the behaviour of the services
and clients in service provision. Some other similar work on specification of
Quality of Service (QoS) and SLAs are Web Service Level Agreements (WSLA)
(Keller & Ludwig, 2003) and Frglund & Koistinen 1998; Tosic et al. 2002. An
example of a business process oriented approach for the choice of Service Level
Objectives (SLOs) of an SLA is seen in Sauvé et al. 2005.

2.4 Measures against unsolicited messages

In this section, we classify various academic and commercial measures taken
against the menace created throughout the Internet by unsolicited messages.

We focus on email spam, as an example. The existing literature on the subject

2.4. Measures against unsolicited messages

16

of preventing email spam is very large. We use study a small subset of the
existing work categorised according to their functionality under the following

taxonomy:

Identity forgery protection
These systems attempt to stop messages originating from forged iden-
tities, e.g. botnets through various sender identity verification mech-

anisms.

Message filtering
Such systems use Bayesian message content filtering, sender blacklist-

ing, amongst others.

Message restriction
These systems impose restrictions on sent messages by quota manage-

ment, introducing unit cost for sending a message, and so on.

Use of trust and reputation networks
In these systems, messages are collaboratively filtered by means of

trust and reputation networks between senders and recipients.

Before we study existing work, we intend to draw the reader’s attention
to the fact that false positives in email spam are worse than false negatives
because they can have a direct or indirect cost to business (Edwards, 2008;
Gaudin, 2003). False positives turn emails into unreliable communication
means. When behavioural history is not used, any message from a partic-
ular sender is considered separately from others. Hence, if the statistical spam
classifier generates a false positive, the message will be marked as spam even
if it may not be a spam message. Methods of tuning the spam classifiers (in
particular, the text-based Bayesian spam filters) are often suggested but tun-
ing takes a considerable amount of time and often needs to be updated when

new words appear in the text of messages sent.

2.4.1 Identity forgery protection

One of the early approaches to differentiate between legitimate and mali-
cious email senders is the use of whitelists, which are lists of legitimate sender

addresses. However, in the absence of any authentication mechanism most

2.4. Measures against unsolicited messages

17

whitelists are vulnerable as email addresses and some other user identities can
be forged. A long-known procedure of stopping identity forgery is using cryp-
tographic digital signatures, e.g. through PGP (Zimmermann, 1995). Lack of a
widely deployed public key infrastructure hinders the use of digital signatures
for all emails, which could have solved the forgery problem to a significant ex-
tent. Another prevention method uses the concept of trusted senders through
which a recipient can determine if an email originated from a mail server in the
domain of the sender’s address. Sender Policy Framework (Wong & Schlitt,
2006) and Sender ID (Lyon & Wong, 2004, 2006), Yahoo! Domain Keys and
its applications (Allman et al., 2005a; Libbie & Ludemann, 2006) are recent
proposals using the trusted sender approach. Sender Policy Framework (SPF)
can create false positives, e.g. when an email is sent from hosts that are either
roaming behind a network address translator or not directly connected to the
network under the domain that publishes a SPF record. Including roaming IP
addresses in the SPF record could give rise to false negatives when spammers
connected to the same roaming networks or re-using the same IP addresses
can send emails forging valid email addresses. On the other hand, if a domain
does not publish a SPF record then email addresses on that domain cannot be
verified. Large-scale use of SPF can be hindered by mistakes in or the absence
of the domain SPF records. DomainKeys Identified Mail (Allman et al., 2005a,
2007; Crocker, 2009; Delany, 2007; Hansen et al., 2009) uses a domain-based
digital signature and its verification to facilitate end-to-end message integrity,
but is however not a means for abuse prevention. SMTP authentication (Siem-
borski & Melnikov, 2007) is another recent extension to SMTP although it does
not guarantee the authenticity of the envelope sender. A malicious sender can
still masquerade as a legitimate user. When relaying email the recipient email
server ought to trust the relaying mail server, which indicates if the message
sender was authenticated. If the relaying mail server itself is malicious then

the recipient server cannot verify or trust the authenticity of the sender.

2.4.2 Message filtering

Techniques employing statistical filtering and machine learning to classify
text as spam content have been in use for quite a number of years (Graham,
2003; Sahami et al., 1998). A number of these use Bayesian spam filtering. In
this process, the spam filter calculates the probability that a message is spam

if it contains a word, given that the filter has learnt the probability of that

2.4. Measures against unsolicited messages

18

word occurring in messages that are manually classified as spam. A “naive”
Bayesian classifier combines such probabilities that the message is spam using
the hypothesis that the presence of each such word in the message is an event
independent of each other. However, for a natural language, this assump-
tion is often wrong. SpamAssassin (The Apache Software Foundation, 2009)
is one of the most widely used system that illustrates the machine learning
approach. Bayesian filters are attacked in various ways (e.g. Lowd & Meek
2005; Stern et al. 2004; Wittel & Wu 2004), such as increasing the number of
legitimate words in spam messages, and using images instead of text amongst
others. Classification through statistical filtering often generates false positives
and reduces the reliability of emails. There are, however, other discriminative
statistical content filters (Goodman & Yih, 2006), such as the CRM114 (Yer-
azunis, 2009).

Solving the problem of false positives requires human intervention at in-
creased costs. Systems such as Cloudmark (Cloudmark, 2009), Distributed
Checksum Clearinghouse (Vixie & Schryver, 2000) and Vipul’s Razor (Prakash,
2007) using collaborative human-directed classification based on a centralised
database of spam reports. Although fairly accurate, human-directed classifi-
cation systems could be susceptible to attacks from malicious users, especially
the Sybil attack (Douceur, 2002). Message filtering also includes the use of
blacklisting, such as Real-time Blackhole List (RBL) (Trend Micro, 2009) and
SpamCop (Cisco Systems, 2009¢c). However, blacklisting an SMTP server for

a domain may generate false positives for legitimate users of that domain.

2.4.3 Message restriction

Dwork and Naor (Dwork & Naor, 1995; Dwork et al., 2003) proposed using
a CPU time or memory consuming computation that the sender must perform
to send every message, which makes it computationally difficult to send unso-
licited messages at a very fast rate. Microsoft proposed Penny Black (Abadi
et al. 2003, website: Birrell et al. 2009) which is a centralised and trusted ticket
server through which clients are allocated tickets based on some kind of “proof
of work”. Valid tickets allow clients to use services. Two similar approaches are
Camram (Johansson & Dawson, 2003) and Hashcash (Back, 2002). However,
Laurie & Clayton 2004 have argued that a “proof-of-work” system is unlikely

to filter spam. Analysing “proof of work” systems from both an economic and

2.4. Measures against unsolicited messages

19

a security perspective the authors have proved that a significant number of
legitimate users will be unable to send emails, which will make email com-
munication unreliable. This argument, however, has been debated by Liu &
Camp 2006. Other research efforts, which suggest that email senders should
lose money if a recipient identifies a message as spam include Raymond 2004,
Bonded Sender (Return Path, 2009), and so on. Spam-I-Am (Balakrishnan
& Karger, 2004) discusses spam control using distributed quota management.
The distributed quota management (DQM) infrastructure in Spam-I-Am is
somewhat similar to digital payment systems — quota allocation, stamps and
quota enforcement correspond to digital cash withdrawal, expenditure of dig-
ital cash for each message sent; and forgery prevention and double spending

detection respectively.

2.4.4 Use of trust and reputation networks

A number of researchers are working on the use of social networks to either
reduce spam and to rank importance of emails. Ebel et al. 2002 discusses
that the study of a topology of an email social network exhibits small-world
behaviour. This result is used by Kong et al. 2005 to propose a collaborative
content-based email filtering system that rejects spam based on their previous
classification in social networks. It, however, presumes that people connected
in such a social network have the same definition for spam content. Mech-
anisms for exchanging whitelist information using Bloom filters and SHA-1
(NIST, 1995) hashes have been proposed, e.g. LOAF (Ceglowski & Schachter,
2004) and FOAF (Brickley & Miller, 2004). Although whitelist entries are not
exposed in cleartext, both are open to straightforward dictionary attacks. Also

it is assumed that the sender address is not forged.

Golbeck & Hendler 2004 present a trust scoring algorithm based on social
networks. Although PGP (Zimmermann, 1995) was not originally designed
against spam, it uses a web-of-trust model for key distribution which relies
on friend-of-friend trust relationships as does Reliable Email (Garriss et al.,
2006). In this work, the length of the friend-of-friend relation is an interesting
open topic of discussion — the longer it is, the lower the reliability. Other
collaborative spam detection approaches include Damiani et al. 2004 which

uses a peer-to-peer network to filter spam; Chung et al. 2002 which discusses a

2.5. Intrusion detection systems

20

Chord-based distributed spam detection tool, amongst others (Gray & Haahr
2004; Kong et al. 2006; Stolfo et al. 2003).

2.5 Intrusion detection systems

Historically, acts of intrusion detection started off as non-automated jobs
performed by network administrators monitoring user activities for unusual
behaviour, through administration consoles. Such non-scalable means for in-
trusion detection evolved to the use of printed audit logs, which administra-
tors reviewed for evidence of suspicious activities that could suggest intrusions.
This process, too, was not scalable as computer networks started to become
larger and faster. Audit logs were often too big to be reviewed manually at real
time to identify attackers during intrusions. These logs, therefore, served the
purpose of post-attack analysis. The concept of modern intrusion detection
system (IDS) is acknowledged to James P. Anderson who first documented the
need for automated audit trail reviews in his seminal work (Anderson, 1980).
However, due to the computational requirement in analysis of large audit trails,
most such automated analyses were performed at times when the user load on
the systems were low. This meant that most intrusions were detected after

their occurrences.

Since the late 1980s and early 1990s, research has been conducted (e.g.
Debar et al. 1992; Heberlein et al. 1990; Lunt et al. 1988; Sebring et al. 1988) on
the development of real time intrusion detection systems. More recent efforts
have concentrated on the deployment of network intrusion detection systems
(NIDS) in large and high-performance networks (e.g. Paxson 1999; Sommer
2005). Since the early 1990s, there has been research in the area of distributed
intrusion detection systems (DIDS) too, e.g. Gregory et al. 1996; Janakiraman
et al. 2003; Porras & Neumann 1997; Snapp et al. 1992. Researchers have also
proposed augmenting NIDS with analysis of logs gathered over time (Maier
et al., 2008).

2.5.1 Detection techniques

Based on detection techniques, intrusion detection systems can be cate-
gorised (Axelsson 2000a; Sommer 2005) into two main types: anomaly detec-

tion and signature or misuse detection.

2.5. Intrusion detection systems

21

Anomaly detection This class of IDS uses the assumption that the be-
haviour of attackers differs from normal behaviour. Such IDS use models of
intended behaviour as normal and treat deviations as potential problems. The
main advantage of this detection technique is that previously unknown at-
tacks can be detected as they violate what is known to the system as “normal”.
However, since this technique suspects any deviation from normal behaviour

irrespective of cases of actual intrusion, it generates high false positive rates.

Anomaly detection could either be self-learned or programmed (Axelsson,
2000a). Self-learning anomaly detection systems could be further classified
into non-time series detectors and time series ones. The former type builds
the model of normal behaviour through the collection of statistical information
or through the construction of a rule base; in both cases without considering
time series behaviour. The latter type, on the other hand, employs techniques
such as hidden Markov models (HMM) or artificial neural networks (ANN) on
time series behaviour data. Programmed anomaly detection systems require
explicit specification of what is considered as abnormal behaviour. This is done
through statistical modeling, rule base construction, state series modeling, and

SO on.

Signature or misuse detection This class of IDS works with the knowl-
edge of preset models — signatures — of intrusive/misuse behaviour. Those
signatures are programmed and continually updated so as to keep the knowl-
edge of the IDS up-to-date. No matter what constitutes normal behaviour for
a system, signature detection systems flag intrusions based on known patterns.
Good models of known intrusion patterns make such IDS more accurate than
anomaly detection systems by lowering the false alarm rate. However, this
also means that the signature detection systems are unable to detect previ-

ously unknown intrusions.

Two other detection techniques which are variations of the aforementioned

ones are: specification-based and combined (Axelsson, 2000b).

Specification-based detection This class of IDS works with explicit spec-
ification of allowed behaviour. This is essentially the inverse of signature based

detection. Theoretically, it is expected to be as powerful as signature based

2.5. Intrusion detection systems

22

detection but it is often less feasible (and not scalable) to explicitly specify the

entire range of allowed behaviour.

Combined detection This class of IDS combines the knowledge of intrusion
behaviour with the model for normal behaviour. Those systems automatically
learn the nature of intrusion alongside normal behaviour through examples
of flagged intrusive behaviour intermittently present with normal behaviour.
Compound detector systems theoretically have higher correctness in identify-
ing suspicious behaviour since they have knowledge of both normal and in-
trusive behaviour. This research area is still immature. One such intrusion

detection system developed is Lee et al. 1999.

2.5.2 Fundamental challenges of (network) intrusion

detection

Various literature (e.g. Axelsson 2000a; Kemmerer & Vigna 2002; Sommer
2005) outline the fundamental issues and challenges that intrusion detection

systems and network intrusion detection systems face.

Effectiveness and evaluation One of the most important open issues in
IDS and NIDS is effectiveness. Ideally, efficiency nearing 100% detection rate
with minimal false positives is desirable. However, the reality is far from that.
Often, the false positive rate (i.e. the ratio of the number of false positives to
the number of true positives) is very high. (Axelsson, 2000b) demonstrates
that the false alarm rate (i.e. the false positive rate) is a crucial factor in
limiting the performance of an intrusion detection system. The author shows
that this is due to the importance of the base-rate fallacy phenomenon that a
nearly unattainably low false alarm rate is required to achieve relatively high
values of Bayesian detection rate (i.e. that an alarm indicates an intrusion).
The paper computes the Bayesian detection rate using a realistic true positive
rate and an unusually low false negative rate, and shows that the Bayesian
detection rate could be as low as 58%, which means nearly half (i.e. 42%) of
the alarms are false! Sommer 2005 also discusses that the parameters required
for such calculations (e.g. false positive rate and false negative rate) cannot
be precisely measured in real world IDS. Further to efficiency itself, it is also
very difficult to objectively measure efficiency, quality of alerts, etc. Intrusion

detection systems present evaluation difficulties due to the choice of input data.

2.5. Intrusion detection systems

23

Performance With the increase in deployment of high-speed networks, the
audit logs generated for network intrusion detection systems are also on the
increase. Large streams of network traffic data become increasingly difficult
to analyse in real-time by any single intrusion detector. To reduce the compu-
tational overhead on one intrusion detector, the streams may be split across
multiple detectors (although splitting the streams itself poses semantic chal-
lenges). Alternatively, the intrusion detectors may be deployed close to the
hosts that they ought to protect. This helps leveraging the benefit of natu-
ral partitioning of traffic but such distributed deployment is often dependent
on type of attack and network topology amongst other factors (Kemmerer &
Vigna, 2002).

Another important challenge with stateful NIDS is the expiration of states.
In order to stop state data from accumulating and filling up available memory
over time, state data needs to be regularly purged. It is hard to decide exactly
when state data should be expired. As a result, NIDS tend to depend on a
number of heuristics for state expiration (Lee et al., 2002; Levchenko et al.,
2004; Paxson, 1999).

Security and user privacy IDS can be the obvious targets of attackers
since in the absence of a working detection system no intrusion alerts will be
raised. Sommer 2005 classifies attacks on network intrusion detection systems
into two categories. One is an evasion attack in which a NIDS is misled by
the attacker to interpret the semantics of a network stream differently from its
involved entities thus making itself unreliable in detecting any hidden intrusion
attacks. The other is a denial-of-service attack in which the attacker exploits
a vulnerability in the NIDS or exhausts the available computational resources

(amongst other methods) to take over or crash the detection system.

Intrusion detection systems, as a means of surveillance, record all possible
user activity. This raises ethical and legal concerns about user privacy. There
has been research to analyse and develop privacy-honouring data collection
mechanisms for intrusion detection systems (Pang & Paxson, 2003; Porras &
Shmatikov, 2006, 2004).

2.6. Related work on behavioural history and client reputation

24

We have, so far, discussed brief backgrounds on identity management, spec-
ification of policies, measures against email spam and intrusion detection. We

shall now focus on the research efforts related to our work.

2.6 Related work on behavioural history and client

reputation

In this section, we will investigate some of the academic and commercial
efforts that are closely related to our work presented in this thesis. The systems
that we review here are either independent of the applications (e.g. email,
web server, etc.) that benefit from the use of behavioural history and client

reputation, or they are catered for more than one application.

2.6.1 Allman’s work on behavioural history

Robin Sommer in his thesis (Sommer 2005) on network intrusion detection
in high-performance network environments describes (in §7.2) that coordinat-
ing a distributed detection setup presents challenges; both technical and non-
technical (e.g. political and social). He cites Allman’s work as a step in the

direction of large-scale sharing of past behavioural patterns of network hosts.

Allman, Blanton and Paxon (Allman et al. 2005b) state that the information
available to a service provider about a service requester are limited in scope
and often difficult to obtain for the purpose of stopping unwanted traffic in
real time. To overcome these limitations, the paper presents an architecture
of large scale sharing of behavioural history of network actors, such as hosts
or email addresses in an effort to inform policy decisions about how to treat

future interactions.

Cryptographically signed local observations on behaviour of actors are sub-
mitted to a behavioural history database by reporters. The behavioural history
database is maintained on a Distributed Hash Table. The evidence of reported
observations rather than confirmations of the actual observations are also sub-
mitted by witnesses. This behaviour history database can be queried by service
providers to lookup behaviour reports on clients, which can be used to make

policy decisions regarding interactions with those clients. Although left for

2.6. Related work on behavioural history and client reputation

25

future work, the paper introduces the concept of trust on behaviour informa-
tion available from the database. Locally developed reputation of a reporter is
used to determine if behaviour reports from that reporter will be trusted. Fur-
ther to the behaviour reports and the witness reports, the database also stores
annotations signifying whether the behaviour reports have been used or not.
The paper mentions that this annotation process, which they call the signatory

mechanism, plays a part in determining the reputation of the reporters.

The authors discuss a variety of issues associated with the collection, sharing
and use of behaviour reports, such as cheating, revocation of reports, etc. One
of the issues with linking loosely-bound cryptographic keys to identities of
reporters (see §5 in the paper) is that it poses a privacy challenge for the
client. The paper does not present any evaluation of the architecture. It is,
however, a very important step on the use of behavioural history of network
hosts. The paper, according to the authors, focusses “on the big picture, but
to bring such a system to fruition will require community efforts on a number
of fronts”, which include: developing local reputation computation algorithms;
obtaining acceptable performance and resilience in reputation lookup; and

devising witness message digests.

2.6.2 Wei and Mirkovic’s work on client reputation

Similar to Allman’s work on behavioural history, Wei and Mirkovic propose
a client reputation system (Wei & Mirkovic 2007) that can aid service providers
in deciding to accept or decline interaction with a given client. The authors
suggest that such a system could significantly aid defenses against major secu-
rity threats (e.g. intrusions, distributed denial-of-service attacks) with a prior
knowledge of a client’s trustworthiness, provided by reputations. Client rep-
utations could also be used for traffic prioritisation during congested events.
The work presented in this paper largely falls in the class of network intrusion

detection systems.

This work provides a thorough overview of the differences between provider
and client reputations. The challenges unique to client reputation systems are
surveyed. Two architectures for the collection of client behaviour are discussed:
a reporter model and a monitor model. Finally, it is shown how a combination

of both these models can help overcome major threats to reputation validity.

2.6. Related work on behavioural history and client reputation

26

The authors propose a pseudonym based anonymised reporting of bad be-
haviour of clients. Only bad behaviour is reported through something called a
bad info-item. Clients are deemed to be good clients if they have never been
the object of a bad info-item (see definitions in § 3 of the paper). Clients that
are not objects of any bad info-item within a certain recent time are known
as current good clients, while a client that is an object of at least one bad info

item within a certain recent time are current bad clients.

In the reporter model, a server submits a report after an interaction with a
client. Only bad reports are submitted if the interaction was malicious. Such
behaviour reports are submitted to reputation centres, which can be managed
as a centralised service or a distributed service. One of the advantages of
this approach is, as the authors claim, that the reputation system can be
designed in a fully decentralized manner using approaches from peer-to-peer
reputation systems. Thus, no participating server needs to be trusted by all
others. Another advantage is that a server has a very reliable knowledge of its

full interaction with a client.

In the monitor model, monitoring nodes are present on routers that collect
observations about the clients from the traffic they relay. Each monitor uses
the traffic it relays to summarise and build the client’s profile. Due to the dis-
tributed nature of monitor nodes, different client profiles may be built of the
same client by different monitors. These are periodically synchronised. Moni-
tors can report, a suspicious but not bad, info-item if anomalous behaviour is

detected for a particular client.

The paper shows that both the reporter and the monitor model suffer from
serious pitfalls arising from the reporter lying, false positives and spoofing.
The authors combine the two models to address such challenges. The problem
of lying reporters is handled by introducing a concept of a verifier, which can
be either be a monitor node that places a secret mark on each packet in the
stream, or be a trusted third-party, which knows the monitor’s secret. The
mark is bound to the packet to prevent it from stealing and re-use. Each report
is verified for accuracy using the knowledge of the secret mark. However, this
verification process only makes sure that the header values in a sample of

packets fits the context field of a report but it does not and cannot verify if

2.6. Related work on behavioural history and client reputation

27

the traffic was malicious. The problem of spoofing is handled by proposing
that monitors perform core-filtering approaches (e.g. Duan et al. 2006; Perrif
et al. 2003).

Finally, behaviour reports are aggregated into a reputation score either by
the reputation system or the reputation user. An aggregation method based
on the combined reporter-monitor model and assuming that only bad and sus-
picious reports are generated. The method, according to the authors, “yields
positive reputations for good clients, large negative reputations for bad clients
whose maliciousness and identity can be verified, and small negative reputa-

tions for bad clients whose bad reports contain no-spoofing flag reset”.

This work presents neither any analytical results nor any results from sim-
ulation, emulation or practical deployment. In the absence of such results,
it is difficult to assess how the system will perform in the real world. We
note that in this paper the nature of behaviour is observed as either good or
bad (with some levels of badness) thus leaving not enough room for variable
degrees of badness or goodness that can be a result of interpretation of ac-
ceptable use policies. In addition, reporters and monitors report behavioural
history to reputation centres which, as well as reputation users, can then form
reputations of particular clients. The calculation of reputation from a be-
havioural history is specified in the model, which essentially means that the
model specifies a reputation generation policy. However, such policies could
differ between reputation users and therefore a reputation is more likely to be

open to interpretation.

2.6.2.1 Wei and Mirkovic’s work on host profiling and clustering

Related to the paper on the client reputation system, another research paper
from the same authors is Wei et al. 2006. It describes means of profiling
the behaviour of Internet hosts and then applying clustering techniques to
categorize those hosts. This work is meant to be the first step in the research
on developing an Internet-wide host reputation system, which the authors call
the Internet Credit Report.

The paper is motivated by the hypothesis that users (representing hosts)

over the Internet exhibit slow-changing patterns of their behaviours over long

2.6. Related work on behavioural history and client reputation

28

periods of time. Authors argue that if this hypothesis holds then it could
be utilised to detect Internet-wide behaviour anomalies. To achieve this, the
authors set out to identify behaviour profiles of hosts. The paper described
extraction of a number of features of a host, as observed from network traffic
sent and received by the host, to characterise the host’s behaviour and to keep
it up-to-date when the host’s behaviour patterns show small variations over
time. From such characterisations of host behaviour, the paper presents a

scheme to generate clusters which represent hosts with similar behaviour.

The paper presents experiments on a number of datasets. It claims that
the results of those experiments validate their hypothesis and that a large ma-
jority of the sampled Internet hosts can be categorised into large behaviour
clusters, which represent the routine usage of most Internet hosts. The paper
also presents the application of clustering in anomaly detection from observing
traces under a worm attack. Even though the paper cites reasons, the experi-
ment on anomaly detection demonstrates a relatively noticeable false positive
count. However, real time analysis of Internet-scale backbone traces is very
difficult. The authors leave their investigations to use sampled backbone traces

for future work.

2.6.3 Natu and Mirkovic’s work on capabilities using client

reputation

The use of tokens representing single-use capabilities as a solution to Denial-
of-Service attacks on the Internet was first proposed by Anderson et al. 2004.
There are a number of research papers related to the subject of capabilities
(e.g. Yaar et al. 2004; Yang et al. 2005). We observe that Natu & Mirkovic
2007 extend the concepts of capabilities by adding reputation-based granting
of capabilities tickets. The authors identify and provide solutions to three key

deficiencies in prior capabilities research.

First, they tackle the issue of distinguishing between legitimate and mali-
cious clients to which capabilities are granted. Means of using the long-term
knowledge of clients’ behaviour profiles in the capabilities (or tickets) grant-
ing mechanism is proposed. Degrees of trust are associated with the clients

through assignment of credits and penalties based on their behaviour profiles.

2.6. Related work on behavioural history and client reputation

29

The second identified deficiency is the use of binary capabilities. The pos-
session of valid capability tickets grants full access to the DoS victim, which
enables malicious clients to first obtain tickets and then co-ordinate attacks.
The authors propose to solve this issue through fine-grained capabilities that
imply priorities depending on clients’ long-term behaviour profiles. This al-
lows suspicious clients to be penalised while providing high quality service to

clients that consistently behave well.

Finally, the authors argue the difficulty posed by route-dependent capa-
bilities generation. If routers in a path are allowed to participate in ticket
generation then such route-dependent capability tickets will make legitimate
clients suffer in case of change of route or multi-path routing. The proposed
ticket generation system takes out upstream routers, unless specifically autho-
rised by the DoS attack victim, from the process of ticket generation. Thus,
the tickets are generated only by the traffic destinations. It is argued that the

operational cost of DoS defense is also reduced through this process.

As solutions to the first two of the aforementioned deficiencies, the paper
postulates mathematical schemes for the calculation of credits, penalities and
client class from behavioural profiles where each client class is assigned a share
of the resource. We note that such schemes for calculation of credits, penalties
and client class essentially specify policies through which servers should relate
behavioural profiles to notions of credits and penalties. IP addresses are used
as a means of identity while considerations for IP network address translation
(Egevang & Francis, 1994) are left for future work. The paper presents results
of experiments on the Emulab testbed (Flux Group, 2000) of a relatively small
network topology and synthetically generated traffic data. The paper claims
that the results demonstrate that their proposed defense handles sophisticated
attacks, in which legitimate traffic is guaranteed consistent access to resources

while malicious attack traffic is penalised.

2.6.4 Other commercial work

There are various commercial works which take into account the behavioural
history of Internet hosts and users. Although detailed technical information
about their models are not available, we present information on some of the

well-known commercial products and services related to behavioural history.

2.6. Related work on behavioural history and client reputation

30

2.6.4.1 Arbor Peakflow X

Arbor Peakflow X (Arbor Networks, 2009) is a solution built for deployment
in enterprise networks. It provides a visualisation and management of the en-
tire enterprise-wide network allowing the administrators to gain a clear un-
derstanding of multi-protocol label switching (MPLS) virtual private network
(VPN) traffic. This visibility enables the administrator to respond to attacks
as they happen when any endangered routers can be quarantined. Peakflow
X also uses IP flow statistics from network devices and raw packet data to
create the baseline definition of quantified normal network behaviour. There-
after, network behaviour analysis is done in real-time by comparing traffic with
baseline behaviour information to detect anomalies. This enables detection of
attacks for which signatures do not yet exist. The solution also provides what
they call Application Intelligence through which behaviour analysis is done
on network and application traffic. The administrator is presented with an
integrated solution to optimise network and application performance. The
network behaviour analysis in Peakflow X is complemented by Active Threat
Feed, which provides contextualised information on attacks from a global and
local perspective. Peakflow X also allows real-time risk assessment of poten-
tial threats in the network. IP based identities are flexibly tracked so that
information on both their current use and historic use is visible to the net-
work administrators. Network analysis data is stored in storage area networks
(SAN), which can be used for forensic analysis and compliance monitoring.
The Peakflow X solution provides extensive reporting features, which provide

administrators with graphical views of complex statistical data.

2.6.4.2 Riverbed Cascade

Riverbed Cascade (Riverbed, 2009) provides means of application perfor-
mance management through the analysis of interactions of users, applications,
systems, and network interfaces. It is essentially a network analysis and report-
ing system. Similar to Arbor Peakflow X, Riverbed Cascade uses network flow
statistics along with higher level application and user identification to create
a baseline, which is then compared with behavioural analysis to signal perfor-
mance or security issues. Cascade also claims to present the administrators

with easy-to-read reports and views of network analysis.

2.7. Research question and objectives

31

2.6.4.3 DShield

DShield (DShield, 2009) is a free distributed intrusion detection system, spon-
sored by the SANS Institute (The SANS Institute, 2009) and supported by
the community. DShield collects and processes outputs of simple packet filters
about malicious activity across the Internet. Any user can report to DShield.
The database of such collected reports can be used to discover and confirm

widespread attacks on the Internet, and also to prepare better firewall rules.

2.6.5 Senderbase

Senderbase (Cisco Systems, 2009b) is the world’s largest Web and email
traffic monitoring service. It collects data from more than 25% of the world’s
Web and email traffic from a diverse group of more than 100,000 contributor
organisations. It provides real-time view of email and Web security threats
around the world. Such large volume of data provides a statistically significant
sample size. Senderbase examines more than 90 different parameters for email
and 20 different parameters for Web traffic. Senderbase Reputation Score ranks
IP addresses or domains in a numeric range but is often grouped together as
either “good”, “neutral” or “poor”. Senderbase Reputation Score is used by

Cisco’s IronPort Reputation Filter (Cisco Systems, 2009a) technology.

2.7 Research question and objectives

The related academic work on behavioural history and client reputation
suggests that there is as increasing rationale for using and sharing client be-
havioural information in order to protect network services from attacks. We
have also seen that this is a relatively new research area and there are several

open research issues.

We set out to explore the research question: can a generalised, high-level,
privacy-preserving, policy-independent, context-aware framework for building
local and sharing global reputations based on behavioural history of network
client identities be useful to servers in determining levels of service to those

clients in current and future service offerings?

2.7. Research question and objectives

32

Let us now break down our research question and analyse the various ob-

jectives we are aiming to achieve.

Policy-independent and high-level framework: One of the fundamen-
tal objectives is to develop an open framework that will integrate with existing
network protocols and applications. It is essential that policies can be applied
at various stages of the framework without having the framework to undergo
design changes. Even though we propose example policies in this thesis to
evaluate our framework, the purpose of this work is not to specify policies.
The framework is expected to enable behaviour profiling of clients not just at
the packet level. Unlike related work of behaviour profiling in network intru-
sion detection through the inspection of packets, our framework is expected
to “observe” client behaviour from a variety of sources. It is often easier to
interpret application level semantics to determine the nature of a certain client

behaviour than to deduce similar conclusions by observing packet traces.

Fine-grained, context-aware reputation corresponding to behaviour:
Existing research in the area of behaviour profiling of clients tend to develop
binary and rather discrete levels of client reputation. This restricts the flexi-
bility of associating service levels with reputations. Our framework is intended
to offer a continuous range between —1 and 41 for client reputation values.
Service levels can then be associated with (and varied within) certain bands
in this range. This allows fine-grained control of service levels with respect
to reputation. The level of detail in recording reputation is also increased by
the use of application contexts. This means that the reputations developed for
clients for a certain type of application do not impact on reputations developed

for a different type of application.

Levels and quality of service: In our framework, service levels are associ-
ated with reputation values. It is important to note that the association does
need to take other factors into consideration, e.g. client class or identity. For
example, a client belonging to a “premium” class of clients will have a different
set of service levels than a client belonging to a “standard” class. However,
given the relation between service levels and reputation, we argue that our

reputation framework could also act as means of assuring quality of service.

2.8. Summary

33

In situations of service or resource overload, servers may choose to prioritise

service to clients with higher reputations.

Privacy-preserving global sharing of reputation: Having formed lo-
cal reputations of clients, it is useful to share this information globally such
that other servers who have not interacted with certain clients can form ini-
tial opinions. Global reputations can also be used to form on-going opinions
in recurring service consumptions. The framework is expected to provide a
privacy-preserving way of sharing global reputations, such that a server query-
ing the global reputation of a client cannot find out which other servers it has
interacted with. Global sharing of reputation instead of sharing behavioural

history aids preserving the privacy of client’s local behaviour.

Similarity of opinions: As local reputations are shared globally, some poli-
cies for interpreting global reputations depend on a kind of “trust” between the
user (i.e. querying server) and the reporters (i.e. other servers) of the shared
data. We investigate how automated statistical measures of similarity provide

useful measurements of trust (or the lack of it).

Combining the aforementioned research objectives, we introduce (in chap-
ter 3) a formal description of our framework. We describe our framework in
terms of the various components that it is comprised of, and the policy func-
tions, examples of some of which we propose. The policy functions keep the
design of our framework flexible and open-ended, allowing any relevant policy
to be implemented depending on the needs of the application and the policy

requirements.

2.8 Summary

The open architecture of the Internet has been the key driver behind its
success and growth. However, this open-ness has also made services on the
Internet vulnerable to various forms of abuse. In the previous chapter, we
have categorised a number of attacks and also their defences. In this chapter,

we organise the existing literature in a number of areas.

First, as background to this thesis, we have introduced some existing ap-

proaches in identity management infrastructures, which is a necessity to record

2.8. Summary

34

any behavioural history or to develop reputation. Organisational policies,
which can help in behaviour analysis, are often abstract and offline. These poli-
cies cannot be understood by machines and automatically negotiated. There-
fore, following our introduction to identity infrastructures, we have discussed

a subset of the various approaches in policy specification.

Having classified (in the previous chapter) unsolicited messages as one of
the types of abuse of services on the Internet, we have presented a selection
of existing approaches to measures against unsolicited messages, taking email
spam as our example. Since the existing work, both academic and commercial,
in the area of anti-spam systems is very large, we have presented a selection

of those approaches under the following taxonomy:

Identity forgery protection

Message filtering

e Message restriction

Use of trust and reputation networks

Following our discussions on anti-spam, we have introduced a long-known
area of research against (network) attacks: intrusion detection. We have dis-
cussed the various approaches in intrusion detection and present some of the
open research challenges. We have, then, surveyed some of the key motiva-
tional work on behavioural history and client reputation. In this survey, we
have also presented some existing commercial approaches. The related aca-
demic work on behavioural history and client reputation suggests that there
is as increasing rationale for using and sharing client behavioural information
in order to protect network services from attacks. We have seen that this is a

relatively new research area and there are several open research issues.

We have explored the research question: can a generalised, high-level, privacy-
preserving, policy-independent, context-aware framework for building local and
sharing global reputations based on behavioural history of network client iden-
tities be useful to servers in determining levels of service to those clients in
current and future service offerings? Given this research question, we have
discussed the various research objectives and areas we are aiming to tackle in

the remainder of the thesis:

e Policy-independent and high-level framework

2.8. Summary

35

e Fine-grained, context-aware reputation corresponding to behaviour

Levels and quality of service

Privacy-preserving global sharing of reputation

Similarity of opinions of client reputations between servers

Taking these objectives into account, we propose a framework for developing

and sharing client reputations in the following chapter.

3 Reputation from be-
haviour profile

A life spent making mistakes is not only more honorable, but more
useful than a life spent doing nothing.
George Bernard Shaw
Irish dramatist & socialist (1856 - 1950)

3.1 Proposition of a reputation framework

n the previous chapter, we have seen that Allman et al. 2005b laid out
I the architectural overview of a system for storing and retrieving activity
reports of network “actors”, which are clients requesting services. We have also
seen that Wei & Mirkovic 2007 built on that idea to discuss an Internet-scale

client reputation system to thwart malicious clients.

Instead of devising a new mechanism of defence against attacks on each type
of network service, we ask in § 2.7 if a generalised framework, with configurable
policies, can be useful to reduce abuse and unsolicited communication origi-
nating from malicious clients. In this chapter, we propose this generalised

framework and describe it in detail along with some example policies.

3.1.1 Research contributions

The main contribution of this thesis is a novel high-level, privacy-preserving,

policy-independent, context-aware framework to which policies can be fitted at

36

3.2. Definition of frequently used terminology

37

various functional stages. The framework is intended to augment existing
network protocols and applications. Servers are expected to utilise this frame-
work to develop and share reputations of the clients they provide service to.
The reputations developed and shared globally are sensitive to the context of
specific applications or services, thus allowing flexibility to form application-
specific (i.e. context-aware) opinions about the clients. Another contribution
of this thesis is a notion of “trust” between servers, which forms the basis of

trustworthiness of globally shared client reputations.

3.2 Definition of frequently used terminology

Before we set out to describing our framework, we present a list of termi-

nology that we shall be using for the remainder of this thesis.

Client A software program, possibly controlled by a human actor, that con-

sumes services provided by servers over a network.

Server
A software program, which may or may not be managed by a human
actor, that provides services to clients over a network.

Alternative terms: service provider, provider

Global Reputation Analyser (GRA)
A distributed software system hosted on trusted nodes over a network
that is responsible for storing client reputations reported by servers

and for responding to client reputation queries performed by servers.

Identity infrastructure
The mechanism that dictates the identification of “actors” over a net-
work. For example, clients can be identified by IP addresses within
a specific address space; they could also be identified by their cryp-
tographic public keys. In these cases, the IP address and the public
key, respectively, form the basis of the identity infrastructure.

Alternative terms: Identity management system, identity mechanism

Context
The type of application or service that is the circumstantial basis for

forming client reputations. Different reputations can be developed for

3.2. Definition of frequently used terminology

the same client under different contexts.

Alternative terms: application context

Behavioural history (of a client)

A history of quantised behaviour of a client as recorded by a server.
Client behaviour is observed through a variety of monitoring mecha-
nisms, and quantised in relation to application policies (e.g. terms of
use). Observations of behaviour from multiple monitoring sources can
be grouped into one context through behaviour analysis. For example,
the number of simultaneously opened TCP connections to an SMTP
server and the Bayesian spam score of an email message could both
be used in the context “email”.

Alternative terms: Behaviour profile

“Good” and “bad” behaviour
The types of behaviour associated with a client which can either be
the result of behaviour analysis derived from observations from various
monitoring mechanisms, or it can be the result of the accumulation
of the results of multiple behaviour analyses. “Good” or “bad” does
not indicate a binary decision. Instead, there can be different degrees
of “goodness” and of “badness” corresponding to various quantised
values of behaviour. However, “good” behaviour will signify positive
quantised behaviour values while “bad” behaviour will signify negative

values.

Reputation (of a client)
A context-aware quantitative perception that a server forms of a client,
expressed in the continuous range [—1 1] (see § 3.4.1), based on the
cumulative behaviour of that client which is recorded by the server
over time. This perception could relate to the risk of providing a

service.

Reputation-response policy
A policy specifying how reputation is developed given a particular

behaviour.

Confidence (between two servers)
A context-aware quantitative measure of belief between two servers,

expressed in the continuous range [—1 1] (see § 3.4.1), which is used

3.3. A note on identity infrastructure

39

to evaluate the extent by which one server may believe another re-
garding an opinion of a particular client for a particular application

context.

Authorisation token
A certificate of permission to query and report reputations issued to
a server by a client that requests service from it. This token is the

supportive evidence of interaction between the client and the server.

3.3 A note on identity infrastructure

In order to record a sustainable behavioural history of network clients, the
notion of identities is necessary. A brief study of identities is mentioned in
§ 2.2. Unless otherwise stated, we assume the use of Public Key Infrastructure
(PKI) as the identity framework throughout the rest of this thesis. Using PKI,
all network entities are identifiable by their public keys.

It is, however, worth noting that our framework is not dependent on a
strong long-lived client identity such as PKI. Our framework can cater for a
short-lived re-usable semi-static client identity, e.g. IPv4 address, so long as
reputations associated with such short-lived identities are re-calculated when
the identities are re-used. IPv4 addresses are semi-static, attached to Media
Access Control (MAC) addresses (IEEEProject802, 1986), or are bound by
Dynamic Host Configuration Protocol (DHCP) (Droms, 1997) leases. We shall
see how DHCP lease periods can be useful to reputation calculation during IP
address re-use. Another way of catering for IP-based short-lived identities
is using a sub-net of IPs instead of one single IP as a client identity. The

identities of the servers are expected to be long-lived.

We discuss, as an extension, the possible use of pseudonymous long-lived

identities in the future work section (§ 6.2).

3.4 Overview

In the model of our framework, we identify three types of network entities

— clients, servers, and the Global Reputation Analyser (GRA). Servers provide

3.4. Overview

40

services, which clients consume. Servers maintain local observations of be-
havioural histories of clients that they provide service to and form reputations
of those clients. Servers also report the local reputations of their clients to
the GRA. The GRA, in turn, can be queried by servers to obtain records of
reputations of clients reported by other servers. Global and local reputations
are useful to servers for determining levels of service that can be provided to
clients. Variations in service levels help control the proliferation of unsolicited
network transactions. In addition, variations in service levels can also be used

as measures for quality of service.

While the GRA appears to be a single entity to servers it is likely to be
implemented, in a real world scenario, as a cluster or a peer-to-peer overlay of
closely administered and trusted inter-institutional or intra-institutional nodes.
For example, an overlay could be formed out of geographically dispersed servers
colocated with core routers of the Internet. Alternatively, an overlay could be
formed of certain dedicated nodes in each department of a University. A
conceptual diagram of a system with four servers, some common clients and a
distributed GRA is illustrated in figure 3.1.

Legend:
S Server

C Client

G Global Reputation Analyser node

Figure 3.1: Conceptual overview of a system of four servers with some common
clients and a Global Network Analyser cloud.

3.4. Overview

41

The framework discussed in this chapter is different from similar research
(see Allman et al. 2005b; Wei & Mirkovic 2007) in that our framework does not
share observations of behavioural history of network clients. Instead, it shares
reputations of clients. This adds privacy protection to the details of client
behaviour as observed by servers. In addition, observations of behavioural
history are not limited only to packet traces. Our framework enables the col-
lection of behavioural history from a variety of monitoring systems, including
those at the application layer. For example, observations from stateful packet
inspection can be taken into account along with those from an application layer
monitor such as an email content filter, which could flag potentially malicious
behaviour. The framework helps aggregate such observations to enable a server
to generate quantised behaviour changes for any given client. Those quantised
behaviour changes are then used by the server to develop a local reputation for
a given client as service is being provided. This locally developed reputation is
also reported by the server to the Global Reputation Analyser. The server can
use the locally developed reputation to alter service levels as deemed appro-
priate within the bounds of the service contract that applies to the class of the
client. This means, for example, that given the same reputation, a “premium”
client may be eligible for a different service level than a “standard” client. The
globally shared reputations can be obtained anonymously by other servers if
the same client asks for services from them. The globally shared reputations
assist servers that have no prior knowledge of a particular client to form an
initial knowledge (i.e. reputation) for that client; or to re-adjust their previous
knowledge to a more up-to-date global view of the same client. This can help
servers provide high levels of service to known well-behaving clients and to be

cautious with clients that have questionable reputations.

The framework consists of a number of functional parts, which are described
in § 3.5:

o Analysis of behaviour: Client behaviour is observed through various
monitoring systems, analysed and quantised through the application of
policies.

e Building of local reputation: Quantised behaviour obtained through anal-
ysis of client behaviour is further developed into context-aware reputa-
tion values through application of reputation-response policies.

e Global reputation reporting: At the end of provision of services or during

3.4. Overview

42

ongoing services, servers report their local reputations of clients to the
GRA.

o Global reputation query: At the start of service provisions with new
clients or during on-going services, servers can query the GRA for repu-
tations of clients to initialise their local reputation values. Alternatively,
servers can adjust their local reputation values if necessary with more
up-to-date global values. This step also involves the selection of globally
available reputation values through variety of policies. One such policy
involves the use of confidence between servers.

e Decision making for service level: During ongoing services, servers can
quickly respond to changes in client reputations by adjusting relevant
service levels to prioritise or restrict services depending on client repu-

tations.

Before describing the aforementioned functional parts in greater detail in
§ 3.5, we introduce the representations of reputation and confidence in our
model in § 3.4.1.

3.4.1 Representation of reputation and confidence

Our framework develops a reputation of a client in the local perspective of
a server as well as in a global perspective, which is shared by many servers.
Servers have confidence in each other depending on the similarity of their
opinions. For both reputation and confidence, we use a continuum symmetric
around zero from —1 to 41, similar to the trust continuum expressed in Marsh
& Briggs 2008 as shown in figure 3.2. In case of reputation, a value of —1
signifies maximum risk to the server for service provision while a value of +1
signifies minimum risk. In case of confidence (between servers), a value of
—1 signifies maximum disagreement in opinions of clients while a value of +1

signifies maximum agreement in opinions.

In the case of reputation, a value of 0 could signify either ignorance or indif-
ference on the part of the server. Ignorance follows from a server interacting
with a client for the first time while the server exhibits indifference about a
zero reputation value despite the fact that this value may have been the result
of a series of good and bad client behaviour from the past. However, a zero

reputation resulting from previous activity may deserve to be treated differ-

3.4. Overview

43

ently than a zero reputation with no activity. The server can maintain a list of
the clients it interacts with in order to determine if a client is new, hence start-
ing at zero reputation or a zero reputation is a result of earlier activities of a
known client. In the case of confidence, a value of 0 signifies neither similarity

nor dissimilarity in opinion.

Ignorance

Distrust | Trust
-1 0 1

Figure 3.2: Trust continuum: distrust, ignorance and trust

3.4.1.1 Local reputation

We begin our formalism of reputation and confidence by denoting reputation
by r. Similar to the concept of situational trust in Marsh & Briggs 2008,
reputation in our model depends on the application context for which the
reputation is being calculated. The application context could be “email” or
“Web service”, for example. We will re-visit application contexts again later in
this chapter. The locally developed reputation for client y observed by server

x in the application context «, can be expressed as:

Tx(yva) = -Fl'r(b:(:(y)a)pt) (31)

and

ra(y, &) = Fu(t) (3.2)

where b, (y,) is a quantised cumulative behaviour obtained from behaviour
analysis by server x corresponding to the recorded changes in behaviour of
client y for the application context «; t signifies time; Fj,. is a function, defined
through policies that govern the server’s response to time series data of client
behaviour; Fj; is the function that governs the server’s response with respect
to time (e.g. time decay with no activity). Fj,. and Fy functions constitute the

reputation-response terminology described in § 3.2.

Although the policies that represent the implementations of function Fj,

could vary widely between different servers, all servers should be in agreement

3.4. Overview

44

regarding the meaning of any particular value of r,(y, @) even if the policies

resulting in that value may be different.

3.4.1.2 Confidence between servers

The global reputation of a client is obtained through a reputation lookup
query as an anonymised vector of local reputation values for the particular
client reported by various servers for a specific application context. Each such
global reputation record in the vector contains a reputation value associated
with a quantitative measure of how much a (querying) server can be expected
to agree with that particular reputation value. This measure is referred to as
the confidence the querying server has in the server which reported that rep-
utation. Note that the confidence measure does not enforce that the querying
server must agree with a particular global reputation value. We denote this
confidence by c. We express the confidence a server ¢ has on another server j

in the application context « as:
¢i(j,) = Fe(rj, ri) (3.3)

where rj = (rj(y,a)) with y = [0...n] is the vector of global reputation
records (derived locally according to equation 3.1) that server j has shared,
in the application context «, of clients y = [0...n], which are common clients
of server i for the same application context. Similarly, r; = (r;(y, «)) where
y = [0...n]. The function F. is a policy-driven function for determining
similarity between the vectors rj and r;. Depending on the similarity function,

¢i(j,) could be the same as ¢;(4,) in which case F; is symmetric.

Confidence between servers is further discussed in the context of our example

policies in § 3.5.4.1.

3.4.1.3 Globally shared reputation

Over time as a client interacts with many servers, the servers share their local
reputation values for the client. The global reputation of a particular client y

as interpreted by a server x for the application context o can be expressed as:

72 (y, a) = Fy(rey) (3.4)

where F; is a policy driven interpretation function applied on the vector (rcy)

of reputation-confidence tuples (i.e. rcy, = ({ri(y,®), co(k,)}) where k =

3.4. Overview

45

[0...m]) in which the client y is expected to have interacted with servers
k =0...m] that also have other common clients which have interacted with

the querying server x. Server confidence is defined in equation 3.3.

It is important to note that the Global Reputation Analyser receives more
than just the client reputation from the server when the reputation is reported.
The information for the application context a reported by server x about client

y to the GRA can be represented by a tuple v, (y,), given as:

Vm(yva) = {avrﬂﬂ(yaa)v¢x(yva)7tT€P0Tt} (3'5)

where 1, (y,) is a set of reputation-response policy parameters used by the
server x for client y in the application context a, and treport is the times-
tamp specifying the time when this reputation report tuple has been sent to
the GRA. The reputation value in each global reputation record tuple (i.e.
r5(y,) is subject to a time-based decay function Fy; in the GRA, expressed

as:

Tx(ya Oé) = th(t) (36)

3.4.1.4 Levels of service

If the service provided by a server to a client can be segmented into different
levels, denoted by the vector SL = (SL;) where i = [0...n] with SL, >
SLy_10>...>SLg then we also denote reputations that are required for such
levels as the vector of reputation levels (or bands) rl = (rl;) where i = [0...n]
and rl, > rl,_1 > ... > rly. The notation SL, > SL,_1 implies that SL,, is a
more privileged service level than SL,,_1. Thus, we can express the condition

for a service level k of a server x for client y in the application context « as:

rly < ry(y,a) <rlgry = SLg (3.7)

The reputation r,(y,«) in equation 3.7 is either the locally observed rep-
utation or the interpreted global reputation. If the vector SL = (SL;) and
i € {0,1} then it implies a binary state for service provision, i.e. SLy =

no service and SL; = full service.

3.5. The framework with example policies

46

This formalism of levels of service only shows the relation between a level of
service and corresponding reputation value. It is very important to note that
in addition, there can be other external factors affecting levels of service which
are beyond the scope of consideration in our model. One such factor could be
the consideration of the class of the client. Two different clients having the
same reputation but belonging to different classes may not be entitled to the

same service level.

3.5 The framework with example policies

Continuing from the functional parts of our framework described in § 3.4, we
now present our proposed framework in detail. We also propose some example

policies to work with our framework.

3.5.1 Analysis of behaviour

A server develops the reputation of a client by recording and analysing the
history of its behaviour. However, the interpretation of “good” or “bad” be-
haviour is often relative; hence dependent on specific policies implemented by
servers. Behaviour observation can be achieved through a variety of monitoring
mechanisms, e.g. a Bayesian spam filter could scan text in an email message to
determine its rank as spam. On the other hand, a router traffic monitor could
detect how many simultaneous connections are opened by a particular client
at any particular period in time. More than one such monitoring system may
be used at a time to gather information about a client. Data obtained from
each of these monitoring systems can be generalised and expressed as a tuple,

given in equation 3.8.

7 = {client _id, observed_values, observed_type, timestamp} (3.8)

We define client id as the long-lived identity of the client; observed wvalues
as the set of output values of the monitor (e.g. {0.9} on a scale of 0 to 1 from a
spam filter); observed type identifies the type of behaviour observation, which
could be, for example, email spam analysis, or low-level TCP packet analysis
and timestamp as the time at which the monitor observed a client behaviour.

This timestamp is used to detect multiple occurrences of similar observations,

3.5. The framework with example policies

47

i.e. repeated behaviour patterns. It is to be noted that observed type and the
application context « are not the same thing. In fact, same observations from
various behaviour monitoring systems can be useful for behaviour quantisation
for multiple application contexts. The behaviour analyser maintains a history
of previously observed behaviour as a vector of 7 observations =, where = =
(1:) where ¢ = [0...n]. The implementation and policies determine how large

this recorded history can be.

Using this input vector E, a policy-specific behaviour analyser can be imple-
mented. Such an analyser evaluates all or part of 2 to output the interpreta-
tion of behaviour in quantised form (both positive and negative), which is fed
into the reputation building stage. Such a policy-specific behaviour analyser is
mathematically generalised in equation 3.9, where Ab,(y, @) is the quantised
behaviour recorded by server x for the client y in the application context «,

Fy is the policy-dependent function applied on =.

This formalism keeps the behaviour analyser open-ended and it can augment
existing network activity monitoring systems. The description of the function
Fp and the specifics of implementation of the behaviour analyser fall outside
the scope of this thesis because these are strongly tied with offline policy
descriptions. We expect that organisational policies can be represented using
any existing means of policy specification (see § 2.3), and thereby define the
function Fy. However, we further discuss policy specification for the behaviour

analyser in future work.

Note that Ab,(y, @) and not b, (y, «) is used to denote the output of the be-
haviour analyser. This is because behaviour is represented by b, (y,), which is
accumulated over time and each output from the behaviour analyser signifies a
new instance of behaviour, hence Ab,(y,). Although b, (y,a) = > Ab,(y, @)
in general, the cumulative behaviour b, (y, @) needs to be calculated with re-
spect to the reputation when the reputation is re-adjusted due to a time decay
or adjustment from global reputation. We shall examine this in the following

sections.

3.5. The framework with example policies

48

3.5.2 Building of local reputation

While providing service, a server should evaluate the reputation of a partic-
ular client for every (behaviour) input fed in by the behaviour analyser. This
process of evaluation of behaviour data is called the local reputation response
to client behaviour. The exact nature of the reputation response is governed

by policies applied by the server.

To describe our model further, we propose a logarithmic reputation response
policy as an illustrative example. In essence, we define the function Fj, from
equation 3.1. Note that in the representation of a policy (e.g. the reputation
response policy), the references to the client, the server and the application
context are implicit. Thus, cumulative behaviour b, (y, «) is represented as b as
we are implicitly working with one particular client, server and an application

context.

We chose a reputation response which enables fast reaction to bad behaviour
and relatively slow response to good behaviour, with the following character-
istics:

e Good reputation gets better with good behaviour until it reaches a pos-
itive saturation. The gradient of improvement slows as reputation rises.

e Good reputation will decrease more rapidly with bad behaviour than it
will improve with good behaviour.

e Bad reputation gets worse with bad behaviour until it reaches a negative
saturation. The gradient of worsening reputation becomes less steep as
the reputation falls.

e Bad reputation increases with good behaviour at a slower rate than
it worsens with bad behaviour (for the same magnitude of change in

behaviour).

Any alternative reputation response with different characteristics could be
used depending on the policy requirements. We use the reputation response

described above for our simulation (see Chapter 5).

The following mathematical model has been found to fit the aforementioned
reputation response. Let us assume that client reputation is denoted with

r (see equation 3.1); cumulative behaviour variable with b (i.e. Ab denotes

3.5. The framework with example policies

49

behaviour outputs fed in by the behaviour analyser, see equation 3.9); positive
reputation saturation level with R,s.; negative reputation saturation level
with R,sq; and two adjustable response parameters A and p. Note that the
constants Rt = 1 and R0t = —1 according to our continuum range shown
in figure 3.2. For an event at any point in time, ¢, for which a change of
behaviour is recorded, the corresponding cumulative behaviour is b[t] and the
corresponding reputation is r[t]; while b[t'] and r[t'] correspond to the previous

event.
The equations are presented below.

The equation for good reputation that improves with good behaviour is:
rlt] = (1 - e_’\b[t]> for Ab>0,b[t] >0, 7[] >0 (3.10)
and the equation for bad reputation that worsens with bad behaviour is:
r[t] = (e’\b[t] - 1) for Ab<0,b[t] <0, r[t'] <0 (3.11)

and the equation for arbitrary good reputation (r[t']) that worsens with bad

behaviour is:

r[t] = b[t] for Ab<O0,b[t] >0, r[t']| >r[t]>0
i (3.12)

and 7] = <1 — e_/\b[tl]>

and the equation for arbitrary bad reputation (r[t']) that improves with good

behaviour is:

o] = —1] y (1 - e“b[ﬂ> for Ab>0,b[t] <0, r[t'] <r[] <0

(1 — ertl (3.13)

and r[t'] = (eAb[t/] - 1)

Figure 3.3 combines equations 3.10, 3.11, 3.12 and 3.13 to illustrate the na-
ture of reputation response to behaviour. Calculation of reputation is stopped
when the reputation value is close enough to either the positive or the negative
saturation (e.g. within 0.1%) and the change in behaviour tends to saturate
the reputation further. By stopping this saturation, it is possible for the re-

ponse to be fast when the change in behaviour is of a different sign from the

3.5. The framework with example policies

50

Theoretical positive saturation

Arbitrary positive reputation

1250 1000 750 500 250 o 250 500 750 1000 1250
i Cumulative behaviour

Arbitrary negative reputation 05

Theoretical negative saturation

Figure 3.3: Graph of reputation versus behaviour

cumulative behaviour. It is evident from the graph that an identity with a high
reputation (i.e. near positive saturation) will not be able to exploit it because
poor behaviour will result in its reputation being reduced along the linear curve
in the aforementioned figure (first quadrant). Similarly, if an identity has a
bad reputation, it would require a demonstrable amount of good behaviour to

improve its standing (third quadrant).

3.5.2.1 Time decay of local reptuation

A positively or negatively saturated reputation is considered “too good” or
“too bad” respectively. Over time, reputation often needs to decay when there
is no client-server activity. This helps a saturated bad reputation to recover
slowly with time. It also questions a saturated good reputation if there has
been no activity over time. Such time decays can be implemented through
various policies. As an example, we choose a reasonable time decay policy in
conjunction with the reputation response policy described above. This policy

defines function Fj; from equation 3.2.

A neutral zone (between default values) [Rpges Rpdes] such that Ryeq <
Rpger < 0 and 0 < Rpger < Rpsat Where Rpgp = 1 and Rysqr = —1 is
defined for this purpose. Positive reputation higher than R,4.; decays to
the positive default, while negative reputation lower than R,4.; ‘decays’ (in
essence, increases) to the negative default. An adjustable decay rate parameter

€ is introduced for this purpose. The equation for reputation decaying over

3.5. The framework with example policies

51

time from an arbitrary reputation value r[t'] in the past is denoted as r[t] (i.e.

reputation after time ¢ — ¢') and is given as:

r[t'] (1 —e(t —t')?)
rlt] = Rpdes for 0 < r[t] < Rpges (3.14)
Rydes for 0 > r[t] > Ryges

Theoretical positive saturation

Arbitrary positive reputation

Reputation

Positive default

Time
0 100 200 300 400 500 600 700 800 900 1000 1100 12

Negative default

\

Arbitrary negative reputation

Theoretical negative saturation

Figure 3.4: Graph of reputation decay with time

Figure 3.4 illustrates equation 3.14. Once the decayed reputation reaches
the boundaries of the neutral zone, the decay stops. When time decay happens
to reputation, it is necessary to adjust the cumulative behaviour value before
calculating reputation response to behaviour. Through this adjustment, the
cumulative behaviour assumes such a value that would have generated the time
decayed reputation through either equation 3.10 or 3.11 depending on whether
the reputation is positive or negative. Thus, this adjustment to cumulative
behaviour is achieved by the inverse functions of those defined in equations 3.10
and 3.11:

_loge(1 —rlt])

blt] = :

for r[t] >0, r[t] #1 (3.15)

and

_ loge(1 + r[t])

blt] N

for r[t] <0, r[t] #—1 (3.16)

3.5. The framework with example policies

52

If using weak identities, note that the time decay policy can be used to
accommodate IP-based identities. When IP addresses are frequently re-used
(thus making them weak and short-lived identities), the time decay policy can
be made to ensure that the the reputations are decayed to default values within

the DHCP minimum lease period.

3.5.3 Global client reputation reporting

Observed local reputations are submitted by servers to the GRA. The pro-
cess of submission can either happen at the end of a sporadic service or during
an ongoing service. Submissions can be made several times as long as the
evidence of service interaction between a server and a client is valid. This ev-
idence is an authorisation token, which the client provides to the server. This
token may contain information relevant to the implementation. However, it
will at least contain a timestamp signifying the expiry of the token, the iden-
tity of the server and the application context for which the token is intended.
At any point in time, a server cannot hold more than one authorisation token
(not even expired) from the same client for the same application context. The
application context identifies the type of application for which the reputation
is developed. This is different from the observed type parameter in the be-
haviour analyser because observed type offers more granularity in behaviour
analysis whereas the application context describes the type of application for
which reputation is developed. For example, the observed type parameter
could represent analysis of the number of concurrent connections open by a
client to a router or the spam score of a particular email message, whereas
this information could be useful for developing reputation for an application
context such as “email”. We leave the semantics of the application context pa-
rameter for future work. It is essential that prior to this reporting mechanism,
the identities of the client and the server are known to the GRA. We assume
that any communication between a client and the GRA or between a server
and the GRA is safe against a man-in-the-middle attack. This can be ensured
through the use of encryption or digital signatures. The algorithm showing
the steps from reputation query to global reputation reporting is illustrated
in algorithm 3.1. Prior to the steps mentioned in this algorithm, both the
client and the server are expected to have notified the GRA of their identi-
ties. Note that the following steps in reporting global reputation are based on

the assumption that a public-key identity infrastructure is in place. For other

3.5.

The framework with example policies

53

identity infrastructures, the algorithm will need some adaptation, which we

leave to future work.

Algorithm 3.1 Global reputation reporting

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Step 8:

Step 9:

Step 10:

The client provides the GRA with a signed authorisation token, in an application
context, for a server that it will request service from.

If the GRA accepts the token, the client also sends the same signed authorisation token
to the target server. The GRA may not accept the token if it already has another
(possibly unused) token for the same application context and the same server.

The server signs the authorisation token again to query the global reputation of the
client from the GRA.

The GRA performs a token authenticity check confirming that: the two copies of
token are equal; the copy from the server comes from the server identified in the
token by the client; and that the timestamp is valid.

On a successful authenticity check, the GRA scavenges out-of-date reputation reports
(see equation 3.6), and returns the list of global reputations of the client with respect
to server’s confidence in other servers that have reported the reputations of the client.

The server makes inferences from the global reputations of the client obtained from
the GRA.

The server provides service to the client and uses a reputation-response policy to form
its local reputation of the client which, if required, is used to change service levels
accordingly.

Either at the end of a sporadic service or during an ongoing service, the server signs
the authentication token, and sends it with its local reputation of the client and other
necessary parameters (see equation 3.5) to the GRA.

The GRA performs a token authenticity check. Unlike the reputation query, the
request to report reputation is granted even if the authorisation token has expired as
long as the token was once valid. This caters for network delays and failed connections
between the server and the GRA. On a successful token authenticity check, the GRA
records the reported reputation and other associated parameters and invalidates the
authorisation token. If the server had reported a reputation for the client in the
past then the former is overwritten with the latter if both reports are in the same
application context.

If the server wants to report more than once during an on-going service, it has to
request a new authorisation token from the client every time. For an ongoing service,
a client could be required to re-issue another authorisation token as soon as the server
reports its reputation to the GRA.

Figure 3.5 expresses algorithm 3.1 as a UML sequence diagram. Note that

the step numbering in the algorithm should not be confused with that in the

UML sequence diagram.

3.5. The framework with example policies

54

sd ﬂ%ﬂ%ﬁaﬂ!}&ﬁﬁ?@'ﬁmgumﬁ@ﬁmﬁ’le for commercial use]

Request or renew 1: Client signed Authorisation Token |
service:

2: Client signed Authorisation Token ! }

- 3: Reputation lookup with server re-s\gned‘Authorisation Token

4: [valid Authorigation Token?] Generate global reputation

5: Global reputation response

6: Client-server interaction

|
Provide service: . . . 7: Build-up local reputation
8: Client-server interaction
|

|
| 9: Submit local reputation with server re-signed Authorisation Token

!
|
!
End service: } D
!
!
|
!
!
!
|
|
!
i

!

|

} 10: Record submined} reputation and remove Authorisation Token
! !

| |

| |

! !

i i

Figure 3.5: UML sequence diagram for reporting reputation

3.5.4 Global reputation query and interpretation

Global reputations of clients act as opinions shared between servers. The
precise interpretation of the global reputation depends on the perspective of a
querying server. Through the process of reputation reporting, a set of reported
reputations for a particular client are stored by the GRA. The size of this set
may grow in proportion (e.g. logarithmically, linearly) to the total number of
servers the client has interacted with and is interacting with. There is an age-
based method of scavenging which prunes off older reputation values ensuring
that the reputations stored by the GRA are not out-of-date, as formalised in

equation 3.6.

Using the example policy for local reputation response described above, for
a particular client, server and application context, the tuple of reputation
and associated parameters submitted by the server is v from equation 3.5

represented with the appropriate parameters substituted for 1, (y, o) as:

Y= {a7 T, {)\7 ,u}, treport} (317)

where 1p = {\, u}; A and p are reputation response parameters defined in
equations, in § 3.5.2, for the local reputation response policy for a specific

client y, server x and application context «. It follows from equation 3.6 that

3.5. The framework with example policies

55

over time when several servers submit such reputations for the client, a set of

recorded reputations is defined as:

I' = {~ : where r component in 7 is not too old} (3.18)

To determine whether r in v is too old or not, we use the following age-based
scavenging policy (i.e. function Fy from equation 3.6). In essence, any other
scavenging policy can be specified. We use the following example policy that

is consistent with our chosen local reputation response described earlier.

In a particular y-tuple at any time ¢:
e if0<r<1and A(t — t,,eport)2 > 1 then the tuple is scavenged;
o if -1 <r<0and pu(t— trepomg)2 > 1 then the tuple is discarded;

e if however, r = 0 the tuple is discarded when both conditions are met.

This scavenging method ensures that reputations that have been generated
by servers with tougher reputation response conditions (i.e. lower A and u) are
decayed slower than the ones with more lenient conditions. The characteristic
of the decay is similar to that defined in equation 3.14 for time decay of local
reputations. In general, it is better to have a slower decay of global reputation
than local. Therefore, the time values can be scaled down by a factor such

that the decay is slower than the local reputation time decay.

When a server z queries the global score of the client y for a particular
context «, the query returns a set of client reputations for y formed from each
ri(y, @) from the i*" not age-scavenged y-tuple with its egress confidence Wy i
for the context cv. The result of the query also contains each 7;(y, o) for which

wg,; cannot be calculated.

3.5.4.1 Confidence between servers

When the reputations of clients are shared globally between servers, it is
necessary that there is a notion of trust in the shared information. In an earlier
version of our model (Basu et al. 2007), there was a concept of developing a
ranking of servers by clients in order to infuse some kind of feedback on the
reputation of clients reported by servers. However, this opened up the model

to possibilities of attacks where clients could give enough negative feedback on

3.5. The framework with example policies

56

a particular server to render its opinion (i.e. reported reputation) of any other

client useless.

To facilitate interpretation of globally reported client reputations based on
similarity of opinions, we introduce a concept of confidence between servers.
It is denoted by w with range [-1 1]. Values above zero (i.e. positive confi-
dence) indicate agreement of opinion whereas values below zero (i.e. negative
confidence) indicate disagreement in opinion. If the value is zero (i.e. non-
existent confidence) then it signifies indifference between the opinions of the

servers.

The model evolved into a matrix of confidence ratings formed between
servers from their social network asymmetric weighted digraph (Basu et al.
2008). Intially, the allowed degree of separation was more than one but it soon
posed problems of fast recalculation of the matrix (depending on how large
the allowed degree of separation was), and also the strategy of edge traversal
(i.e. min-flow, max-flow, etc.) taken in recalculating the confidence matrix.
Therefore, a single degree of separation was adopted and transitivity of con-
fidence was dropped. An asymmetric confidence could be explicitly specified
(wg,y) by one server (e.g. x) on another (e.g. y) but this confidence value is

not aware of the application context.

As the model evolved further, the confidence ratings were made context-
aware, and the calculation of confidence derived automatically from statistical
similarity functions. This confidence rating can be used to interpret results
of a global reputation query. It is context-aware, which means the confidence
between two servers is dependent on the application context specified in the
global reputation query. The confidence is calculated at the time of the global
reputation query and depending on the similarity function (see equation 3.3),

it can be symmetric (i.e. if server x has a confidence w,, on server y then

wy71’. = wl:ay)'

Researchers have analysed several methods of estimating such trust based
on similarity of opinion (e.g. Herlocker et al. 1999, Breese et al. 1998), while
others have argued the efficacy of statistical correlation coefficients (e.g. Lathia

et al. 2008). We use, as an example policy, a statistical correlation coefficient

3.5. The framework with example policies

57

to determine similarity of opinion and thus define F, from equation 3.3. Any
other similarity measure including any correlation coefficient other than what
we have chosen can be used. To calculate the confidence, the set of reputations
submitted by a particular server for an application context for clients that are
in common with another server is analysed. If this reputation data fits a Nor-
mal distribution then we use the parametric Pearson’s correlation coefficient
(Rodgers & Nicewander, 1988; Stigler, 1989). If the data does not fit a Normal
distribution then the non-parametric Spearman’s rank correlation coefficient

(Spearman, 1987) is applied by converting those reputation values to ranks.

Using the local reputation response described above, the reputation data
submitted by servers is put through a test of Normality. We prefer an extended
Shapiro-Wilk W statistic (Royston 1982) over Lilliefors tests (Lilliefors 1967)
because of the possible presence of ties in the data. The extended Shapiro-
Wilk W test is seen as one of the most accurate tests for Normality. If the
null hypothesis that the data is Normal cannot be rejected then we apply
the Pearson’s product-moment correlation coefficient to the reputation data
vectors. If, on the other hand, the null hypothesis that the data is Normal can
be rejected, we apply the Spearman’s rank correlation coefficient. Therefore,
if we denote any " element of the reputations reported by server z as T,
and similarly any i*" element of the reputations reported by server y as Ty
(or if 75, and 7, denote the equivalent ranks if the reputation vectors are
not Normal) then we can define the Pearson’s product-moment correlation

coefficient w, , = wy , as:

N g, Ty, — 2Tz, 2Ty,

\/an%i - (eri)2\/n2r§i — (Zry,)?

(3.19)

Wgy = Wy,z =

A positive correlation between reputations submitted by servers of clients
that they have in common defines a measure for similarity of opinion. Similarly,

a negative correlation defines a measure for dissimilarity of opinion.

It is to be noted that even if we use, as an example, Pearson’s correlation
coefficient and Spearman’s rank correlation coefficient as the similarity mea-

sure for Normal and not Normal distributions respectively, it is possible to use

3.5. The framework with example policies

58

a non-parametric similarity measure (e.g. Kendall 1938; Siegel & Castellan
1956) throughout.

3.5.4.2 Interpretation of global reputation

What the querying server does with the reputations and the confidences is
implementation and policy specific. Also, the interpretation can happen at

either of the following two stages:

e when the querying server has not interacted with the client for which it
is querying a global reputation; and
e when the querying server has previous history of the client but is using

the client’s global reputation to re-adjust its local interpretation.

For example, the querying server may do any of the following with a global

reputation result:

e Alter parameters in the reputation response such that the response is
either made more strict or more lenient. In the example logarithmic re-
sponse policy, this will mean altering the reputation response parameters
(i.e. A and p).

e Initialise the local reputation for the client from a statistical measure of
the data obtained from the global reputation query. This can effectively
serve as using the global reputation as a recommendation. Such an
initialisation could mean that the querying server may re-initialise its
local reputation observation of a client with the one with least deviation
that it obtains from the global reputation query (i.e. deviation test).
Alternatively, the querying server could initialise the local reputation of
a client (for which it has no past observation) to the global reputation

value that has the highest positive confidence.

Note that if re-initialisation happens to reputation, it is necessary to adjust
the cumulative behaviour value before calculating the reputation response to
behaviour. Through this adjustment, the cumulative behaviour assumes such
a value that would have generated the global reputation through the local
reputation response function, i.e. either equation 3.10 or 3.11 depending on
whether the reputation is positive or negative. Thus, this adjustment to cu-
mulative behaviour is achieved by the equations 3.15 and 3.16 for our example

reputation response.

3.5. The framework with example policies

59

In our simulations, we compare the following interpretation policies (i.e.
function F, from equation 3.4) as examples. Many other interpretation policies
could be used, which may constitute using the highest positive reputation; or
the lowest negative reputation; or the the positive reputation with the highest
confidence, etc.

e Least deviation: use the global reputation component that is the least
deviated from the last local reputation observation (before applying time
decay, if relevant).

e Highest confidence: use the reputation component that has originated
from the server with the highest confidence; or use the geometric mean
of the reputations that have the same highest confidence.

e Highest: use the highest available reputation component, which signifies
a highly optimistic interpretation.

e Lowest: use the lowest available reputation component, which signifies

a highly pessimistic interpretation.

3.5.5 Decisions on levels of service

The server may wish to divide the entire range of reputation [—1 1] into
various bands; each band signifying a service level. Once reputation data
about a client is formed either locally or obtained from the GRA, the server
can choose to allocate a service level corresponding to the reputation. This
allocation is policy specific and it is to be kept in mind that there are other
factors, beyond the scope of this thesis, that could affect service level allocation.
For example, two clients having the same reputation with the same server for
the same application context may still be allocated different levels of service
because the two clients belong to two different classes of service according to
their service level agreements. The allocation of service levels also imply that
the client could be allocated a service level which denies service to it altogether.
On the other hand, generally well-behaving clients could be given the benefit
of doubt for occasional bad behaviour by relegating them a few service levels

but still providing them some service, which is a step to reduce false positives.

As an extension, the server can also use the allocation of service levels to
manage quality of service to the clients. For example, in times of server over-
load, the clients eligible for higher service levels can be prioritised with higher

levels of quality of service.

3.6. Adversary model

60

3.6 Adversary model

The European Network and Information Security Agency (ENISA) position
paper 2 (Carrara & Hogben, 2007) presents a number of threats and attacks
(and recommendations against them) on reputation systems, derived from four
main use cases: online markets, peer-to-peer networks, anti-spam techniques
and public key authentication (web-of-trust). We develop from their taxon-
omy to study the threats that are relevant to our model and discuss possible
measures against such attacks. For each attack, we define the target of the
attack, describe the attack and discuss how, if at all, our framework can cope
with it.

3.6.1 Identity threats
3.6.1.1 Whitewashing

Attack target: Server

Attack: A malicious client (the attacker) rids itself of its bad reputation by

rejoining the system as a new identity.

Defence: Thisis primarily an attack on the identity infrastructure and hence
outside of the scope of this thesis. The stronger the identity infrastructure and
the less often it allows effortless change of identity, the less likely the threats
from this attack. In addition, depending on the policy of initialising reputation
for new clients, this attack may not be able to cause substantial harm to the
server. For example, if any new client identity is assigned a minimal service
level and the new client is required to prove itself through good behaviour
then the attacker is unlikely to be able to perform malicious activities without
earning a bad reputation quickly. Also if the attacker behaves well for a while,
thus earning good reputation, and misbehaves after that then the penalty,
depending on policy, could mean a fast fall of reputation and hence denial of

higher service levels.

If a weak identity scheme, such as IP addresses is used then whitewashing is
obvious to accommodate for real identities reusing IP addresses. As we have
seen in § 3.5.2.1, adjusting the time-decay parameter to make the reputation of

a particular IP (identity) fall to a default level after the DHCP minimum lease

3.6. Adversary model

61

period (of inactivity) is essentially a server-induced whitewashing technique to

cater for re-use of the IP address.

3.6.1.2 Sybil

Attack target: Server

Attack: A client can have multiple Sybil identities, e.g. see the Sybil attack
described by Douceur 2002. The same malicious client with multiple identities
can disguise itself to a server, thus developing separate behaviour profiles with

the same malicious intent.

Defence: Due to the centralised nature of the GRA, the one-to-one corre-
spondence between a real entity and an identity may be ensured through a
strong identity infrastructure. However, there is no built-in defence against
the Sybil attack. This attack is similar to the use of botnets to generate email
spam. Even if a different behaviour profile is developed for each Sybil identity,
instances of bad behaviour will be penalised likewise. It would be interesting
to group identities using behaviour profiling to eliminate the threats of a Sybil

attack (e.g. Wei et al. 2006). However, we will leave this for future work.
3.6.1.3 Impersonation and reputation theft
Attack target: Client

Attack: A malicious client (the attacker) acquires the identity of another

client to use its good reputation.

Defence: This is an attack on the identity infrastructure. There is no built-
in defence against this attack in our reputation model. It is up to the identity

infrastructure to ensure that identities cannot be masqueraded.

3.6.2 Vulnerabilities in and threats to reputation systems
3.6.2.1 Reputation bootstrap issue

Attack target: Server

3.6. Adversary model

62

Attack: The choice of the initial reputation value for a new client could

potentially pave the way for Sybil or whitewashing attacks.

Defence: The choice of the initial reputation (i.e. “bootstrap” value) is not
trivial. Although it is policy dependent, the initial reputation value can be set
at zero unless there is enough confidence on a particular global reputation to
set it to a different value. In addition, the option of varying the reputation
response parameters offers some defence mechanism to the servers to take
action quickly if a client misbehaves after its initial reputation has been set to

a relatively high value.

3.6.2.2 Extortion, denial of reputation and ballot stuffing

Attack target: Client and server

Attack: Some “bad” servers can collaboratively damage the global reputa-
tion of a “good” client by reporting false bad reputation. Alternatively, some
“bad” servers can collaboratively improve the global reputation of a “bad” client
by reporting false good reputation. Alternatively, an otherwise “good” client
can behave badly with one or few target servers so that the global reputation

of the client is good enough to misguide the target servers.

Defence: The presence of a correlation between reputations reported by
servers acts as a defence against this attack. While a group of “bad” servers
can still report false reputation of a client, a “good” server will not receive
positive confidence or will receive no confidence on such reports due to the
inherent likeliness of dissimilarity of opinions between the “good” server and
the “bad” servers. However, further enhancements to the defence against this

attack falls in the remit of future work.

3.6.2.3 Repudiation of data or repudiation of transaction
Attack target: Server
Attack: In this attack, a malicious server can deny that a network transac-

tion (i.e. an interaction between a server and a client) has happened or it can

choose to not report its local observations to the GRA.

3.6. Adversary model

63

Defence: Every look-up of reputation by a server requires an authorisation
token from the client. At any point in time, a server cannot hold more than
one authorisation token (not even expired) from the same client for the same
application context. Therefore, if the server has not submitted its local obser-
vation of reputation, the GRA will still maintain an authorisation token (even
after it expires). Therefore, the server will be unable to query the reputation
of a particular client for the same application context as long as such an un-
used authorisation token exists. This means that, for any particular client for
a particular application context, if the server does not contribute to reporting
reputations then it will not be able to query the global reputations either.
This is a discouragement against repudiation of reputation data of transac-
tion. Further encouragement to report such reputation data could be enforced

through offline policies, which are beyond the scope of this thesis.

3.6.3 Reputation infrastructure threats
3.6.3.1 Attacks on the underlying network

Attack target: Client, server and GRA

Attack: This could be a denial of service (DoS) or distributed DoS attack
on the client, the server or the GRA. It could also be a man-in-the-middle

attack on any of the three entities.

Defence: There is partial defence against a DoS attack on the client, the
server or the GRA. However, a DoS attack does not affect the reputation
system to a large extent. If the network entity is completely inaccessible from
the network due to a DoS then there is no defence against it in our framework.
If the service is still provided and behaviour recorded, then the server can
still maintain its local observation of reputation. The attacker will, in that
way, develop bad reputation due to the attack and service (or connection) to
the attacker will be eventually cut off. In the event of a DoS attack on the
GRA which is capable of making the GRA completely unreachable on the
network, it becomes impossible to make global reputation queries and reports
but servers can still cope with the temporary absence of the GRA by using
their local observation of reputation. If the design of the GRA is distributed,

3.7. Summary

64

it is unlikely to have a single point of failure even under a distributed DoS
attack.

The defence against man-in-the-middle attack is achieved through encrypted
or digitally signed communications between the client and the server, the client
and the GRA and the server and the GRA.

3.7 Summary

Following from our research question described in § 2.7, in this chapter
our main research contribution is a high-level, policy-independent, privacy-
preserving, context-aware framework to develop and share client reputation
based on behavioural history. The reader has been introduced to definition
of frequently used terminology in § 3.2. We have, then, described the math-
ematical representations for reputation and confidence in the context of our

framework, with notations similar to Marsh & Briggs 2008.

This has been followed by the description of the framework in the following

functional stages.

e Analysis of behaviour

e Building of local reputation
e Global reputation reporting
e Global reputation query

e Decision making for service level

Alongside the description of the framework, we have also proposed examples
of some policies for developing and sharing client reputation. Having described
the functional stages of the framework, we have listed the various possible
attacks on our framework based on the taxonomy from Carrara & Hogben 2007.
We have described the defences against those attacks wherever appropriate. In
the following chapters, we illustrate the simulation strategies of our framework

and examine simulation results.

4 Experimental setup

Do not worry about your difficulties in Mathematics. I can assure
you mine are still greater.
Albert Einstein
German-born US physicist (1879 - 1955)

4.1 Overview

n this chapter, we describe the experimental setup required to evaluate the
I framework described in chapter 3. We briefly discuss some implementa-
tion aspects required for simulation and also describe our home-grown discrete
event simulator that is used in chapter 5 to simulate the model. The simu-
lator will be released as open source, so that our simulation results can be
verified later. The simulator is written entirely in Java (Arnold et al., 2005;
Gosling et al., 2005), while graphs are generated by MATLAB (Mathworks,
1984) scripts parsing the simulator log files.

The complexity of the design of network applications on and the learning
curve associated with certain simulators (e.g. such as ns-2 and ns-3 USC In-
formation Sciences Institute 2009a.b) have led us to design our own simple
discrete event simulator sufficient to simulate our framework at a high level

without the unnecessary protocol specific and network level details.

65

4.2. Simulated application

66

4.2 Simulated application

The simulated application is an application built atop our discrete event
simulator. The application is an implementation on the simulator of the rel-
evant stages in our framework proposed in chapter 3. Before we discuss our
discrete event simulator, we describe how various entities, events and policies
are implemented in this application. The simulator simulates the simultaneous
interaction between a number of clients and servers. Some of these servers have
common clients between them. The purpose of the simulation is to illustrate
graphically the reputation response corresponding to changes in behaviour.
We also show the effect of initialisation and re-adjustment of local reputation

using various policies for global reputation interpretation.

4.2.1 Network entities

Similar to the theoretical model of our framework, the simulated application
consists of three types of network entities — the client, the server and the Global
Reputation Analyser. Each of them has an incoming and an outgoing network

link, which can be used to simulate network failures.

4.2.1.1 Client

A client is a network entity associated with its public and private key pair,
which are generated prior to a simulation run. A client is able to generate (and

sign) authorisation tokens and maintain a list of authorisation tokens in-use.

4.2.1.2 Server

A server is a network entity associated with its public and private key pair,
which are generated prior to a simulation run. A client can request a service
and consume a service from a server. A server can query global reputation of
a client and report the locally observed reputation of a client to the Global
Reputation Analyser. Servers maintain persistent data, such as local reputa-
tions and associated parameters, about the clients they interact with. In the
implemented application, such persistent data is maintained in an embedded
database (Oracle Berkeley DB Olson et al. 1999; Oracle 2006) shared by all
servers. The database is transactional for consistency reasons of semantic or-

dering of events (which we will discuss later in this chapter), but the Durability

4.2. Simulated application

67

criterion of Atomicity Consistency Isolation and Durability (ACID) criteria of

transaction processing (Haerder & Reuter, 1983) is dropped in favour of per-

formance by reducing disk writes. Thus, completed transactions are held in

memory and written to disk only at the end of simulation run.

4.2.1.3 Global Reputation Analyser

A Global Reputation Analyser is a network entity, which has only one in-

stance available to the entire application. It maintains a range of persistent

data, such as client profiles, server profiles, authorisation tokens, client repu-

tations as reported by servers, and so on. Similar to the implementation of

servers, such persistent data is maintained in a single embedded transactional

database with no disk writing per transaction.

4.2.2 Implemented events

The simulated application implements the events presented in table 4.1.

Table 4.1: Implemented events

] Event name

|

Event specification®

RegisterClientEvent <event-time> regcli <client-id>

RegisterServerEvent <event-time> regsrv <server-id>

CreateAuthorisationTokenEvent | <event-time> mkatok <application-context>
<client-id> <server-id> <token-expiry-time>

RequestServiceEBvent <event-time> reqsvc <application-context>
<client-id> <server-id>

ConsumeServiceBvent <event-time> eatsvc <application-context>
<client-id> <server-id> <quantised-behaviour>

ReportGlobalEvent <event-time> putglo <application-context>
<client-id> <server-id>

NetworkDownEvent <event-time> netdn <target-type> [<target-id>]
<direction>

NetworkUpEvent <event-time> netup <target-type> [<target-id>]
<direction>

“Each event specification is a single line. Line breaks in this table are due to text

wrapping.

RegisterClientEvent This event represents the registration of a client iden-
tifier with the Global Reputation Analyser.

4.2. Simulated application

68

RegisterServerFEvent This event represents the registration of a server
identifier with the Global Reputation Analyser.

CreateAuthorisationTokenFEvent This event represents creation of an au-
thorisation token by a particular client for a particular server for a specific

application context.

RequestServiceEvent This event represents the request of service by a par-
ticular client from a particular server for a specific application context for which
an authorisation token has already been created. This request makes the server

query the Global Reputation Analyser for the client’s global reputation.

ConsumeServiceFvent This event represents the consumption of service
by a particular client from a particular server for a specific application context
for which a service request has been made. Even if the result of a global
reputation query may indicate that the server should not provide service to
the client, our simulator does not stop the client from getting service. In this
way, we can generate behaviour and reputation graphs with respect to time,
which we further analyse to point out how a particular client may not have
received any service if the server was using a particular entry-level policy for

access to service.

ReportGlobalEvent This event represents the reporting of global reputa-
tion by a particular server of a particular client for a specific application con-
text. This event also invalidates the authorisation token generated for the
particular client, server and application context. If the client is supposed to
continue with service consumption, the client is required to generate another
authorisation token and the server is required to make a global reputation
query. This means that a server providing service to a client for a long period
of time can keep reporting its local reputation of the client to the Global Rep-
utation Analyser from time to time and also make global reputation queries

so as to make decisions in continuing service provision.

NetworkDownFEvent This event represents the failure of either the incom-
ing or the outgoing network link or both for a particular entity — a client, a
server or the GRA.

4.2. Simulated application

NetworkUpEvent This event represents resumption (after a failure) of ei-
ther the incoming or the outgoing network link or both for a particular entity

— a client, a server or the GRA.

For both NetworkDownFEvent and NetworkUpFEvent, <target-id> is optional
if <target-type> is the GRA. Otherwise, it is either the client identifier or
the server identifier depending on whether the <target-type> is either client

or server respectively.

4.2.3 Event ordering and interaction cycle

In our simulation as well as in the real-world implementation of our frame-
work, certain events must occur before certain others. For example, we have
seen in the previous chapter that the identities of clients and of servers must be
known to the GRA before the servers can provide services to the clients. Sim-
ilarly, the first event of consumption of service (between any particular server
and a client for a particular application context) must be preceded by an event
in which the client requests service from the server, triggering a global repu-
tation look-up. The following list illustrates the semantic order of precedence
(with lower number signifying higher position in the order) of the implemented

events.

1. RegisterClientEvent and RegisterServerEvent (only once for each client
identifier or server identifier)

Create Authorisation TokenEvent

RequestService Bvent

ConsumeServiceEvent

ReportGlobalEvent

AN el

A CreateAuthorisationTokenEvent can follow a ReportGlobalEvent for the
same client and server pair for the same application context. Events such as
NetworkDownFEvent and NetworkDownFEvent do not need any order of pref-
erence in relation to the aforementioned events. However, a NetworkUpFEvent
must be preceded by a NetworkDownEvent for the same network entity (i.e. a

client or a server or the Global Reputation Analyser).

For a particular client, a server and an application context, a set of events

starting with CreateAuthorisationTokenFEvent, followed by a RequestService Bvent

4.2. Simulated application

70

and a number of ConsumeServiceEvents, and ending with ReportGlobalEvent
constitutes what we call an interaction cycle. We shall re-visit this concept in
section 4.3.3.

4.2.4 Implemented policies

In chapter 3, we emphasized that many aspects of our theoretical model are
governed by policies. Here we describe our choices for implementing examples

of such policies for the purpose of simulation.

4.2.4.1 Behaviour analyser and behaviour quantisation

The behaviour analysis stage in our framework is not simulated. This is be-
cause the behaviour analyser involves application of security and management
policies on network actors, thus forming quantised behaviour. However, the
specification of such policies is outside the scope of this thesis. Instead, we
use population statistics of real world behaviour data (e.g. email spam statis-
tics from Senderbase, Cisco Systems 2009b) to generate synthetic quantised
behaviour values pertaining to certain actor classes (e.g. “very good client”,
“spammer”, “client that inadvertently causes bad behaviour from time-to-time”
for email clients), which we define for the particular application context that

is simulated.

4.2.4.2 Local reputation response policy

In our simulator, we implement two local reputation response policies —
the logarithmic response described in the previous chapter and a scaled linear
no-history response. With the latter reputation is linearly proportional to
behaviour: the characteristics of the reputation versus time graph will be
the same as that of the graph of cumulative behaviour versus time. Thus,
the cumulative behaviour itself is used as a base reference to show how the
logarithmic response is useful in comparison with a response that does not
preserve history. The no-history base reference response is in direct linear

relationship with cumulative behaviour.

4.2.4.3 Local reputation saturation policy

In the previous chapter we described that the calculation of reputation is

stopped when reputation is close enough to a saturation level and a behaviour

4.2. Simulated application

71

change leads the reputation closer to the saturation. For most of our simula-
tions, we use an example policy with an arbitrary allowed closeness of satura-
tion at 99%. This means the calculation of reputation will be stopped when the
reputation reaches 99% of a saturation level, and only if any further change in
behaviour will make the reputation value reach closer to the already approach-
ing saturation level. If the age-scavenging policy is enabled, note that the age
scavenging policy is applied first. Therefore, a change in reputation due to age

scavenging may mean that the reputation is no longer close to saturation.

4.2.4.4 Global reputation interpretation policy

We implement a number of example global reputation interpretation policies
as mentioned in § 3.5.4.2. In our simulation results, we compare those policies

alongside one another.

4.2.4.5 Age-based scavenging policy

Both the local and the global reputations are subject to age-based scavenging
policies described in the earlier chapter. The scale-down factor for time in

global reputation age-based scavenging is set to 1000.

4.2.4.6 Server confidence policy

Described in § 3.5.4.1, we use Pearson’s product-moment correlation coeffi-
cient or Spearman’s rank correlation coefficient depending on the results from
Shapiro-Wilk W test for Normality. Implementation and interpretation of the
extended Shapiro-Wilk W test is derived from Limewire (Limewire, 2008) and
R94 (Royal Statistical Society, 1995).

4.2.5 Modeling attacks

While most of the attacks described in § 3.6 are modeled through varying the
behaviour of clients, the Denial of Service attack is not. In our simulation, we
simulate the extreme, and most unlikely, cases where a Denial of Service attack

is able to completely cut off either a server or the GRA from the network.

4.3. A discrete event simulator

72

4.3 A discrete event simulator

Having described certain aspects of the simulated application, we now de-
scribe some features of our discrete event simulator. Our simulator is built
on the basic concepts of discrete event simulation, described in Law & Kelton
1997.

4.3.1 Event model

In our discrete event simulator, events are generated by an event generator
before the simulation is started. During simulation, no further causal events
may be generated and added to the event queue. All pre-generated events
are parsed from an events specification file and loaded onto a priority queue
where the priority is given to time. Each event has an associated time, which
is the simulation timeslot it belongs to. This is the time at which the event
is handled. There may be more than one event in one timeslot. Although the
ordering of events in one timeslot is the order in which they are parsed from
the events specification file, there is no guarantee in which order they will be
executed if the simulator is running in multi-threaded mode. However, there
is a guarantee that all events in a particular timeslot will always be executed
before any other event in a subsequent timeslot. This execution order is used
by the event generator to generate events in an order that is semantically

correct (see § 4.2.3) for simulation.

4.3.1.1 Event parser

The event parser is obtained from a parser generator and a grammar spec-
ification. The grammar specification describes the acceptable event formats.
The parser checks the syntax of each line in the events specification file. If
correct, the event specified in that line is loaded into the event queue. If any
line in the file is incorrect according to the grammar, the parser aborts parsing
the entire file. Each line is treated separately and the parser does not check
semantic ordering of events. In addition, the parser does no integrity check
on the event specifications. For example, if there have been some consume
service events between a client and a server, the parser does not check if there
is also an event to report global reputation at some point after the consume
service events. Such integrity is maintained by the event generator along with

the events macro file, described later on in this chapter.

4.3. A discrete event simulator

73

4.3.2 Event dispatcher and event handlers

When the simulation clock reaches a particular timeslot, all events in the
timeslot are dispatched by a event dispatcher to separate event handlers. How-
ever, the simulation clock is not advanced further until all events in that times-
lot have been simulated. The event dispatcher may run in a single-threaded
or a multi-threaded mode. In the multi-threaded mode, the dispatcher uses a
fixed thread pool with a number of worker threads in proportion to the log-
ical CPU cores available to the Java Virtual Machine. Whether handled by
a single thread (i.e. single-threaded mode) or any thread from a thread pool
(i.e. multi-threaded mode), each event handler notifies the event queue when it
finishes execution. Thus when all events from a particular timeslot have been

simulated, the event queue can proceed to the next timeslot.

The multi-threaded execution of event handlers means that any event in a
particular timeslot may execute before any other event in the same timeslot.
This is an essential consideration that the event generator makes to ensure that
there is no dependency between such events in one timeslot. In other words,
the event generator does not generate any event that may depend on another
in the same timeslot; e.g. an event to request service from a server depends on
an event to create an authorisation token for the same client and server pair
for the same application context. If such dependent events are present in one
timeslot and the execution order by the thread executor is different from their
intended semantic order then the simulator will generate semantic errors. In
this example, the semantic order states that a client cannot request a service
from a server before it has provided the server with an authorisation token. To
be on the safe side, our event generator does not generate any two events for
any particular client and server pair in the same timeslot. It is important to
note, however, that certain other subtle dependencies will not pose a problem.
For example, an event to report global reputation involving one client and a
server can implicitly affect the event for requesting service involving the same
client and another server. This is because of the impact on global reputation
and confidences. However, this does not lead the simulator to a execution state
that is semantically wrong. Those dependencies will only introduce certain
acceptable degrees of unpredictability of results due to execution order, which

is similar to real world scenarios.

4.3. A discrete event simulator

74

4.3.3 Event generator

The event generator runs either in an user-interactive mode or in macro-
mode. When in user-interactive mode, the event generator asks the user a
number of questions to generate a list of interaction cycles as well as other
associated events. After a user-guided event generation is finished, the user
inputs are written to a macro file. The event generator can be run in macro-
mode using such a macro file. In macro-mode, the event generator does not
ask the user for any answers but retrieves those answers from the macro file.
The macro mode is useful to generate events with large numbers of interaction
cycles without having to prompt the user for the specification of each interac-
tion cycle. It is worthwhile to note at this point that the input provided by

the user must conform to the semantic ordering of events.

4.3.3.1 Event macro

The event macro, in particular, maintains the specification for each interac-
tion cycle (and its repeat occurrences) as follows:
- client identifier
- server identifier
- application context
- simulation clock time when the first occurrence of this interaction starts
- the length of the interaction, in simulation clock ticks
- number of repeats of such interaction cycles
- the minimum length of any repeated interaction; the maximum is the
length of the first occurrence
- the minimum gap, in simulation clock ticks, between repeats
- the maximum gap between repeats
- a probability of interaction (between 0 and 1), which determines how
frequently (over the length of an interaction) will consume service events
be present
- a behaviour specification for these interaction cycles, which points to a

class of behaviour generated by a behaviour generator

It is evident that the behaviour class of the client associated with one in-
teraction cycle specification and its repeated occurrences remains the same.

However, there can be situations where the client changes from one behaviour

4.4. Summary

75

class to another for one or more interaction cycles. Such a change cannot be
specified in one interaction cycle specification. It is, however, achievable by
specifying more than one interaction cycles between the same client and the
same server for the same application context but for different simulation times

keeping in mind the semantic ordering of events.

Note that the event macro does not support generation of network failure

events. We generate such events manually, prior to a simulation run.

4.3.4 Logging and statistics

Throughout the simulation run, all outputs from the simulator and the sim-
ulated application are written to one single log file. The level of detail in the
log can be controlled, so that debug messages can be turned off. At the end
of simulation run, a log analyser reads the log file and extracts relevant lines
that are useful to generate statistical data about the simulation run. These
extracted lines are written to another file, which is again parsed to generate
a number of statistics files. These files are used by MATLAB scripts to draw
graphs, which help visually present and conclude results about the simulation

scenarios.

During simulation, there is also a miminal output on the console containing
messages from the simulator, the event dispatcher and any exception from
the simulated application along with a progress indicator. This output is not

written to a file and is purely included for monitoring a simulation run.

4.4 Summary

In this chapter, we have discussed our own multi-threaded discrete event
simulator written in Java, which is used to simulate the framework that we
have proposed in chapter 3. The simulator generates various log files after
a simulation run, some of which are directly readable by MATLAB. We use
MATLARB scripts to visualise the simulation output data in the form of graphs.
However, before describing our simulator in this chapter, we have discussed
the relevant details of implementation of the entities, events and policies that

constitute the framework.

4.4. Summary

76

We shall now investigate the simulation results in the following chapter.

5 Evaluation

Reason has always existed, but not always in a reasonable form.
Karl Marx
German economist & political philosopher (1818 - 1883)

5.1 Simulation objectives

he purpose of our simulations is to test the impact of changing client be-
T haviour on client reputation within the proposed framework. We aim to
illustrate, through our simulations, that across a range of client behaviours, the
measured reputation tracks the values expected from the reputation-response

policy proposed in chapter 3.

Due to the open-ended nature of our framework it is very difficult, if not im-
possible, to present simulation results without relying on the effects of example
policies. This is evident from chapter 3 in which our framework specifies func-
tional components, but the functions themselves are defined through policies.
In our experiments, we choose not to simulate a behaviour analyser because
behaviour analysis largely depends on an identity management infrastructure,
which is beyond the scope of this thesis. It also depends on offline policies, such
as the Acceptable Use Policy or the Terms of Service that are interpreted by a
variety of detectors, such as email spam content filters, intrusion detection sys-
tems, amongst others. The evaluation of our framework does not necessitate
simulating such detection systems, which act only as providers of behaviour

input data to the rest of the framework.

7

5.1. Simulation objectives

78

Several offline privacy and security reasons have prevented us from obtain-
ing exhaustive email server logs. Therefore, we simulate the framework with
quantised behaviour values representing various classes of behaviour, which is
the expected output from the behaviour analysis stage of our framework. In
the absence of a behaviour analyser, the simulations can be exhaustive with
synthetic data alone. This is because we are concerned with the quantised be-
haviour inputs, or with how those inputs are generated through policies applied
to actors. Real data, such as email spam traces (if available), is not helpful with
the generation of our simulation scenarios because without a pre-determined
identity management infrastructure, we cannot translate real server logs to
quantised behaviour. In addition, we also observe that in the absence of a
known long-lived identity management infrastructure, it is impossible to infer

per-actor behaviour.

Therefore, we choose to carry out our experiments using synthetic data
generated to match population statistics of real data (e.g. total number of
spam messages versus total number of messages containing virus). Use of
synthetic data easily allows setting up scenarios that are possible in reality
but rare to find.

The results that we present in this chapter follow from simulations conducted
with 50 clients and 10 servers, where a number of (but not all) clients interact
with the various servers. There are some common clients between the different
servers. The simulation results graphically illustrate the reputation response to
change of behaviour. Each such graph is the result of interaction between one
server and one client. We also show the effect of the various global reputation
interpretation policies, which are used as the starting points as well as re-
adjustment points in the generation of global reputation. To clarify this, for
example, when the policy to use the global reputation with highest confidence
is used, the simulation shows the formation of local reputation with the highest
confidence global reputation used for the starting values and re-adjustment

values.

5.2. Simulation scenario: email delivery

79

5.2 Simulation scenario: email delivery

Using various synthetic input data, a number of simulations have been per-
formed on our model. With different variations of statistical parameters of
the input data in the different simulations, we have reached statistically sim-
ilar conclusions. Therefore, in this chapter, we choose to present only one
simulation scenario which is closest to real world data in terms of available
population statistics. In these sets of experiments, we will simulate the effect
of our model in email delivery. For those experiments, we assume identities to

be strong and long-lived.

There are two ways of identifying the “client” — a sender in email delivery.
One is to use the sender’s identity and the other is to use the sending email
server’s identity. In the latter procedure, it is possible to use the hop immedi-
ately before the receiving email server as a “client” identity, which means either
the actual sending server or the last (in a chain, if present) store-forward mail
server will be identified as a sender. For example, any store-forward message
transmission agent (MTA) that would let emails pass through it will want
to make sure that forwarding such emails will not damage its reputation and
consistency of behaviour. In this way, the sending server or the store-forward
MTA will act as a group identity for any sender that sends emails through
it. The sending server’s identity could be a single static IP address, a subnet
or some other means that will ensure that it is long-lived. There are various
other existing MTA identity checks ranging from reverse DNS verifications
(e.g. see Barr 1996; Eidnes et al. 1998; Lottor 1987) to SMTP authentication
(Siemborski & Melnikov, 2007).

On the other hand, a strong identity can be used to identify a sender, such
as the public key or a sender (user) authentication on the network or the
email server. It is important to note that depending on the choice of “client”
identification, the “server” recording reputation will differ. With “client” being
the sender (i.e. the user) itself, the “server” could either be the sending server
or the receiving server. If the sending server’s identification (or that of the
last store-forward MTA) is used as the “client” then the “server” refers to the
receiving server only. In the simulations presented in this chapter, we identify
the “client” as the sender (i.e. user) instead of the sending server, and the

“server” refers to the recipient server.

5.2. Simulation scenario: email delivery

80

5.2.1 Actor (sender) classification

The plethora of available email server logs do not offer much in the way of
developing per-actor (i.e. per-sender) behaviour statistics because of absence
of a strong identity system in most SMTP servers. The same actor (i.e. actual
person) could have multiple email addresses and could send emails from mul-
tiple hosts. A strong identity mechanism, similar to Verisign PIP (Verisign
Labs, 2009) or 802.1x EAP (Congdon et al., 2003) on a particular network
could help identify an actor irrespective of the email addresses or hosts they
are using. In the absence of such facilities, we will run our simulations based on
per-class behaviour statistics instead of per-actor equivalent. We believe that
the real users (i.e. senders) can be represented by a number of specific actor
classes. We choose to define the following classes of actors for our experiments.

e Type 1: Generally good behaviour, occasionally bad (i.e. usual email
sender profile)

e Type 2: Generally malicious (i.e. spammer)

e Type 3: Very good behaviour, this is essentially Type 1 with a very low
proportion of bad behaviour (i.e. cautious email sender)

e Type 4: An equal mix of good and bad behaviour (i.e. malicious email

sender, including spammers)

Having defined the actor classes, we define quantised values associated with
behaviour to be able to generate synthetic input data. These values represent
typical outputs from behaviour analysis, which serve as input behaviour data
to build reputations on. There is no set scale for such quantised values, and
are completely dependent on the policy-specific implementation of behaviour
analysis. At this point it is worth noting that good behaviour is “produced”
when, for a particular observed event (e.g. sending an email), a client is in
agreement with the acceptable use policy. Depending on the type of agreement,
good behaviour could be graded. Similarly, bad behaviour is produced when
for such an observation, the client violates the policy. Depending on the type
of violation, bad behaviour could be graded. We grade bad behaviour, in terms
of degree of badness, in the range between neutral and worst behaviour. In
this simulation scenario, we do not grade good behaviour in terms of varying
degrees of goodness for simplicity, although we have observed that graded
good behaviour would not have produced statistically dissimilar results for the

purpose of evaluating our framework. We choose a set of values based on the

5.2. Simulation scenario: email delivery

81

general bias that the worst behaviour is higher in its absolute value than the
best behaviour. We set good behaviour to generate a value of 4.0, virus or
malicious content to generate a value of —10.0, spam from anywhere between
0 and —5 with —5 being equivalent to a spam score of 1 in a scale of 0 to 1.
In accordance with Senderbase (Cisco Systems, 2009b) classification, we also
grade bad behaviour that is suspected to forge identities (e.g. spoofed sender
IP address) at —2.

The actor classes are not quantised in terms of quantities of different types
of behaviour but as we generate synthetic behaviour data, we ensure that
the population statistics conform with global email behaviour spam statistics.
We generate synthetic behaviour data, conforming with Senderbase (Cisco
Systems, 2009b) statistics, and setup the experiments by selecting interaction
cycles (see 4.2.3) between a list of clients and a list of servers. Per-actor
behaviour is generated using a uniform distribution which conforms with the
population statistics. To enable the effect of global reputation, the interaction
cycles are generated in ways such that there are common sets of clients between
any two participating servers. Apart from quantisation of typical behaviours,
the actor classes also reflect their frequency of activity, i.e. Type 1 and Type
& email senders, for example, have less activity per unit time while spammers

(e.g. Type 2) have substantially more activity per unit time.

5.2.2 Impact of reputation on unimplemented service levels

In our experiments, we record the reputations developed per actor with var-
ious global reputation interpretation policies. We, however, do not implement
service level cut-offs based on varying reputation. It is straightforward to in-
terpret the reputations to understand how service levels could be impacted
by varying reputation values. In a real world situation, if a client is denied
a particular service level or denied service altogether, behaviour may still be
recorded (although this depends on policy) as attempts so that local repu-
tation can be formed. For example, a spam message may not be sent (i.e.
service denied) but the fact that the sender attempted to send spam can be
recorded. Additionally, in our simulations we do not simulate dynamically
varying reputation response parameters. When repeating cycles of behaviour
(e.g. from good to bad and to good again) are observed, which can be de-

tected in behaviour analysis by comparing with an a short history of earlier

5.2. Simulation scenario: email delivery

82

behaviour, it may be appropriate (depending on offline policies) to change
reputation response parameters to somewhat neutralise the effects of the cy-
cles. This can be done with the anticipation that repeating cycles of similar
behaviour may actually have malicious intent. Instead of varying the reputa-
tion response parameters in our simulations, we analyse with fixed reputation
response parameters and discuss at which point in (discrete) time a change of

the parameters could yield optimal results.

From our experiment runs, we develop reputation-time graphs for the global
reputation interpretation policies discussed in section 3.5.4. The results of
ignoring global reputation are also compared. In addition, we demonstrate
the effect of varying the time decay parameter. As the time decay parameter
depends on the time scale chosen, we are not so concerned about its absolute
numerical values. Further to that, we simulate various attacks against our
model. Based on those results, we evaluate our model critically and make

some recommendations.

5.2.3 Interaction with clients pertaining to various actor

classes

To start with, we shall analyse the effects of using various global reputation
interpretation policies for a number of interactions between various pairs of
clients and servers. Each MATLAB-generated graph that we present for this
purpose contains a sub-graph of behaviour versus discrete time; and a sub-
graph of the recorded local reputations versus the same discrete time scale. In
the reputation-versus-time sub-graphs, when ignoring global reputation alto-
gether, reputation is plotted in red. Similarly, when selecting only the highest
possible global reputation, the plot is in pink. The reputation value that cor-
responds to the reporting server in which the querying server has the highest
confidence is plotted in green. When selecting the lowest possible reputation,
the plot is in yellow. Finally, the plot is in blue for the selected reputation
value that has the least deviation from the local value before re-adjustment.
Depending on various parameters and event characteristics, many of these
global reputation interpretation policies will result in almost the same repu-
tation. By observing more plots presented later on, we will be able to draw

some general characteristics of those reputation interpretation policies.

5.2. Simulation scenario: email delivery

83

5.2.3.1 Type 1 client — usual email sender

In figure 5.1, we present a reputation comparison graph for a Type I client
interacting with a server. The parameters set for this experiment are: \ =
0.01, u=0.004, €=0.00001. Saturation closeness is 99%. Age scavenging

(i.e. time decay) has been turned on.

It is seen from the upper sub-plot (behaviour versus time) that the client
exhibited generally good behaviour with intermittent slips into bad behaviour.
The lower sub-plot illustrates the change of reputation over the same discrete
time recorded for the upper sub-plot. The reputation-versus-time plot dis-
plays the change of reputation under the effect of various global reputation
interpretation policies. These policies control how the local reputation value is
re-adjusted after a global reputation query. The effect of time decay is partic-
ularly visible in the policy where the global reputation is ignored (i.e. the red
plot). It is evident that despite having consistent good behaviour over certain
periods of time, the reputation seems to dip over times of inactivity. Although
some other policies exhibit such behaviour but with a relatively small time
decay parameter, the decay is often eclipsed by the re-adjustment of the local

reputation value to an usually higher value.

With faster time decay: A faster time decay can be observed for the same
client under the same conditions by increasing the time decay parameter ten-
fold: ¢ = 0.0001. This is illustrated in figure 5.2. Depending on the input
behaviour, certain global reputation interpretation policies will look more con-
servative than others. After we present a number of further comparisons across
clients of different classes, it will be clear that a combination of a number of
interpretation policies, when varied dynamically at runtime, can yield optimal
reputation responses to behaviour. With a faster time decay, we observe that
the effect of the time decay is most felt when the global reputation is ignored

(i.e. red plot).

Reputation-response parameters: In both cases, we observe that the
client exhibits repeating cycles of generally good behaviour separated by peri-
ods of inactivity. Accordingly, figure 5.2 reveals that the time decay of reputa-
tion being rather high produces corresponding cycles in the reputation if the

global reputation is ignored. Observing this trend that the client’s inactivity

5.2. Simulation scenario: email delivery

84

leads to substantial decay in reputation followed by an almost equal increase
when the client interacts again, the server can reduce the time decay parameter
so that the client is not deprived of any service level when it keeps repeating

cycles of inactivity with no malicious intent.

Global reputation interpretation policies: The client in the above two
experiments is consistent in its type of behaviour with all the servers that it
interacts with. This is the reason why all the global reputation interpretation
policies yield similar results, although those differences between the interpre-
tation policies become amplified with faster time decay. In addition, global
reputations, especially the ones with highest confidence and with least devia-

tion, suggest fairly accurate picture for the client’s behaviour.

5.2.3.2 Type 2 client — spammer

Let us now examine the reputation response for a Type 2 client as presented
in figure 5.3. The parameters set for this experiment are: A = 0.01, pu =
0.004, € = 0.00001 (i.e. slower time decay). Saturation closeness is 99%.
Age scavenging (i.e. time decay) has been turned on. It is evident from the
upper sub-plot (behaviour versus time) that the client exhibited generally bad
behaviour with intermittent slips into good behaviour. The reputation re-
sponse takes account of this behavioural history and the reputation steadily
deteriorates inspite of intermittent good behaviour. However, it is clear that
the local reputation response with the global reputation ignored (i.e. red plot)
is more forgiving towards bad behaviour by periodically recovering during pe-
riods of no activity. A slower time decay would have made the reputation
response less forgiving during periods of inactivity. The client, in this exam-
ple, is consistently identified as malicious by other servers it interacts with.
Hence, the global reputations interpreted with various policies are very close

to each other.

Reputation-response parameters: In this experiment, we observe that
the client exhibits repeating cycles of behaviour consisting of varying bad be-
haviour followed by short periods of inactivity and occasional slips of good
behaviour. This could be driven by malicious intent, in order to regain repu-
tation after exhibiting bad behaviour. Figure 5.3 reveals that the time decay

of reputation and the varying bad behaviour produce cycles in the reputa-

5.2. Simulation scenario: email delivery

85

tion when the global reputation is ignored. Observing the trend in which the
client’s inactivity leads to substantial decay (i.e. improvement, in this case) in
reputation followed by reputation decrease when the client interacts again, the
server can reduce the time decay parameter so that the client is not given the
benefit of doubt every time there is a period of inactivity. If such a measure
is taken by adjusting the time decay parameter then as the client continues to
repeat this cycle, it will require even longer periods of inactivity for the client
in order to gain any reputation. This will thwart the client from its malicious

activity.

Global reputation interpretation policies: The client in the above ex-
periment is consistent in its type of behaviour with all the servers that it
interacts with. This is the reason why all the global reputation interpretation
policies yield very similar results, which are fairly accurate representations (of

reputation) corresponding to the client’s behaviour profile.

5.2.3.3 Type 3 client — cautious email sender

Let us now examine the reputation response for a Type 3 client as presented
in figure 5.4. The parameters set for this experiment are: A = 0.01, p =
0.004, € = 0.00001. Saturation closeness is 99%. Age scavenging (i.e. time
decay) has been turned on. It is observed from the upper sub-plot (behaviour
versus time) that the client exhibited no bad behaviour. The reputation re-
sponse takes account of this behavioural history and the reputation stays posi-
tive all the time. However, due to bursts of activities mixed with longer periods
of no activity, the local reputation tends to fall towards the positive default
when the global reputation is ignored (i.e. red plot). On the other hand, the
client proves to be quite consistent in the reputations it develops with other
servers, which is why the various interpretations of global reputation tend to

be in agreement.

More active client: In contrast, we now examine the reputation response
for a more busy Type 3 client as presented in figure 5.5. The parameters set
for this experiment are: A = 0.01, pu = 0.004, ¢ = 0.00001. Saturation
closeness is 99%. Age scavenging (i.e. time decay) has been turned on. It
is evident from the upper sub-plot (behaviour versus time) that the client

exhibited very frequent good behaviour with very occasional slip into bad

5.2. Simulation scenario: email delivery

86

behaviour. The reputation response takes account of this behavioural history
and the reputation stays positive all the time, ignoring the very occasional bad
behaviour. Due to the more frequent nature of good behaviour, time decay
is less prominent compared to figure 5.4. However, time decay is still visible

when the global reputation is ignored (i.e. red plot).

Reputation-response parameters: In these two experiments, we observe
that the clients exhibit repeating cycles of very good behaviour with intermit-
tent periods of inactivity. Figure 5.4 and figure 5.5 reveal that the time decay
of reputation produces cycles in the reputation when the global reputation is
ignored. This is particularly visible in figure 5.4 where the client is less active
allowing the reputation to decay considerably during periods of inactivity. The
server can compensate for such cycles by reducing the time decay parameter,
particularly in the first case such that the client continues to enjoy similar ser-
vice levels even after periods of inactivity followed by good behaviour, similar

to that before the periods of inactivity.

Global reputation interpretation policies: The clients in the above ex-
periments is consistent in their types of behaviour with all the servers that
they interact with. This is the reason why all the global reputation interpreta-
tion policies yield similar results, although some differences are visible with a
less active client in figure 5.4. The global reputations interpreted through the
policy of highest confidence value selection and with the least deviation value

selection act as reasonable suggestions for the client’s behaviour profile.

5.2.3.4 Type 4 client — malicious email sender

Now, we shall examine the reputation response for a Type 4 client as pre-
sented in figure 5.6. The parameters set for this experiment are: A = 0.01, pu=
0.004, € = 0.00001. Saturation closeness is 99%. Age scavenging (i.e. time
decay) has been turned on. The upper sub-plot (behaviour versus time) illus-
trates that the client exhibited almost equal good and bad behaviour. The
reputation response takes account of this behavioural history and the repu-
tation fluctuates around values close to zero (neutral). The red plot and the
blue plot (i.e. least deviation interpretation of global reputation) present the

optimum reputation responses to the fluctuating behaviour.

5.2. Simulation scenario: email delivery

87

Very active client: Here, we present the reputation response for a more
busy Type 4 client as presented in figure 5.7. The parameters set for this
experiment are: A = 0.01, p = 0.004, €= 0.00001. Saturation closeness is
99%. Age scavenging (i.e. time decay) has been turned on. It is observed from
the upper sub-plot (behaviour versus time) that the client exhibited very fre-
quent fluctuations between good and bad behaviour. The reputation response
takes account of this behavioural history and the reputation fluctuates around
values close to zero (neutral) although it is generally positive. The red plot
provides the most optimum response to the fluctuating behaviour, similar to
figure 5.6.

Reputation-response parameters: In these two experiments, the clients
exhibit alternating good and bad behaviour. Figure 5.6 and figure 5.7 reveal
that when the global reputations are ignored, the clients do not gain much from
this cyclic behaviour alternating between good and bad in figure 5.4 where the
client is less active allowing the reputation to decay during periods of inac-
tivity. However, in the second case, the reputation response is not optimal
given the frequent changes in behaviour from good to bad. Having detected
the alternating behaviour, the server can adjust the reputation response pa-
rameters such that the build up of reputation due to good behaviour is slower
than the fall of reputation due to bad behaviour. This means the parame-
ter A should be different in the two equations 3.10 and 3.11, say A, and A,
respectively with A, < \,. This may call for averaging, e.g. a non-weighted
mean: A = (A, + \,;)/2 or some other adjustments (e.g. different policies in
global reputation age scavenging) when it comes to reporting reputations to
the GRA with such parameters. In addition, the parameter p in equation 3.13
should also be reduced to ensure that the client with negative reputation finds
it harder to gain its reputation by attempting good behaviour. Alternatively, a
different reputation response policy can be used to achieve similar objectives.
If the client continues to alternate in its behaviour and the server continues
to adjust the reputation response accordingly, the effect of the alternating

behaviour will be eventually ironed out.

Global reputation interpretation policies: The clients in the above ex-
periments are not entirely consistent in their type of behaviour with all the

servers that it interacts with, especially in the first case. For this reason, the

5.2. Simulation scenario: email delivery

88

global reputation interpretation policies yield disagreeing results, particularly
in figure 5.6. While the global reputations with least deviation suggest fairly
similar results as the one generated by ignoring global reputation, the highest
confidence values could be rather misleading. This highlights the difficulties

with the policy used in calculating confidence between servers.

behaviour

reputation

-1

-2

-3

-4

-5

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

0.1

RO D m
| | | |
500 1000 1500 2000 2500
time
—— Ignore |
—&— Highest
#— HighestConfidence | —
Lowest
—&— LeastDeviation
| | | |
500 1000 1500 2000 2500
time

Figure 5.1: Reputation records for a Type 1 actor

behaviour

reputation

4 P -G e
3 |
2l |
1= |
ol |

- |

o |

3 |

4l |

-5 | | | |

0 500 1000 1500 2000 2500
time —— Ignore
—&— Highest
—#— HighestConfidence
Lowest
—+&— LeastDeviation
0 500 1000 1500 2000 2500
time

Figure 5.2: Reputation records for the same Type 1 actor as figure 5.1 with faster time decay

behaviour

reputation

500

1000

Figure 5.3: Reputation records for a Type 2 actor

2500

3000
—<— Ignore
—&— Highest M
—# — HighestConfidence | |
Lowest
—&— LeastDeviation
3000

behaviour

reputation

4.8
4.6
4.4

4.2

3.8

3.6

3.4

3.2

0.9
0.8
0.7
0.6

0.5

Figure 5.4: Reputation records for

a Type 3 actor

| | | | |
500 1000 1500 2000 2500 3000
time
—— Ignore
—=&— Highest —
—+— HighestConfidence
Lowest n
—+&— LeastDeviation —
! ! ! ! !
500 1000 1500 2000 2500 3000
time

behaviour

reputation

-1

-2

0.5

0.4

0.3

0.2

0.1

Figure 5.5: Reputation records for a more active Type 3 actor

| | | | | |
500 1000 1500 2000 2500 3000 3500
time
- —— Ignore .
—&— Highest
3 —#— HighestConfidence ||
Lowest
—8— LeastDeviation
Lg |
¢ \ \ \ \ \ \
0 500 1000 1500 2000 2500 3000 3500
time

reputation

behaviour

-

3 |
2 |
1 |
0 |
-1 |
o]
2) |
- [—
3)
—4 |
-5 | | o] | | | |
0 200 400 600 800 1000 1200 1400
time
—— Ignore
—&— Highest
—#— HighestConfidence
Lowest
1 T T T —=&— LeastDeviation M
-0.2 —
0.4 | | | | | |
200 400 600 800 1000 1200 1400
time

Figure 5.6: Reputation records for a Type 4 actor

reputation

behaviour

4
3 |
2 |
1 |
0 |
-1 |
2 |
3 |
—4 |
-5 | | | | |
0 500 1000 1500 2000 2500 3000 3500 4000
time
1
—— Ignore
—&— Highest]
#— HighestConfidence
-0.2 Lowest —|
—&— LeastDeviation
04 \ \ \ \ \ \ \
0 500 1000 1500 2000 2500 3000 3500 4000
time

Figure 5.7: Reputation records for a more active Type 4 actor

5.2. Simulation scenario: email delivery

96

5.2.4 Attacks on the model

In this section, we discuss and evaluate the system under a collection of at-
tacks relevant to our model, following from our earlier discussion in section 3.6.
We do not consider attacks on the identity infrastructure because it is beyond

the scope of this thesis.

5.2.4.1 Reputation bootstrapping issue

When a particular server has not interacted with a certain client, the choice
of initial reputation (i.e. “bootstrap” value) can have significant effects on the
initial service level available to the client as well as its subsequent reputations,
which can pave the way to attacks if the malicious client is unduly provided
a high service level. In all the simulation results presented in the previous

sections, we have used zero (i.e. neutral) as the initial reputation.

Amongst the policies simulated for interpretation of global reputation, the
least deviation is irrelevant as at the bootstrapping stage there is no previous
reputation to compare with in order to select a global reputation that deviates
the least from the previously recorded local reputation. Selecting the highest
or the lowest value of global reputation risks high positive or negative bias
in the bootstrapping value. While the negative bias may make it unneces-
sarily difficult for an otherwise harmless client to get any good service level,
a positive bias can open up the high reputation for misuse by a potentially
malicious client. If the global reputation with highest confidence is selected, it
is possible to initialise the reputation at a reasonable starting value depending
on the level of confidence. However, in the potential absence of sufficient data
to calculate confidence (e.g. if the server does not have comparable “common
clients” list with other servers), the global reputation with highest confidence
may not be usable. Therefore, given our example policies it is safest to ini-
tialise the bootstrapping value at zero because from that point, the simulated
reputation response policy is fast enough to respond to any good or bad be-
haviour. However, this does mean that at least some level of service should be
available for a zero reputation client so that the client can prove itself worthy

of (or not) higher service levels with its behaviour.

5.2. Simulation scenario: email delivery

97

5.2.4.2 Extortion, denial of reputation and ballot stuffing

In this attack, some “bad” servers can collaborate to damage the global
reputation of a “good” client by reporting false bad reputation. Alternatively,
some “bad” servers can collaborate to improve the reputation of a “bad” client
by reporting false good reputation values. When a “good” server has built
up a reasonably large “common clients” list with other servers, this attack
is unlikely to affect the global reputation because of the confidence values
between the “good” server and other servers with which it has similarity of
opinion. However, in the extreme case, the “good” server could be faced with a
situation where the majority of other servers with which it has a list of common
clients collaborate to report false reputation. Another form of this attack is
that an otherwise “good” client decides to misbehave with a particular server,

thus making it unpredictable from its global reputation records.

In the afore-mentioned cases, this attack will be the same as only the “good”
server experiencing behaviour from a client, which is completely different from
the corresponding reputations reported by other servers. We simulate the
worst case scenario: all servers with common clients list with the particular

server differ in opinion about a particular client.

Let us analyse the reputation response for a Type 2 client as presented
in figure 5.8. The parameters set for this experiment are: A = 0.01, pu =
0.004, € = 0.00001. Saturation closeness is 99%. Age scavenging (i.e. time
decay) has been turned on. This particular client is reported by most other
servers as being good but it is evident from the upper sub-plot (behaviour
versus time) that the client exhibited generally bad behaviour with intermit-
tent slips into good behaviour. While the local reputation response is correct
if the global reputation is ignored (i.e. red plot), it is evident that the server
is misinformed if it takes into account the global reputation using any of the
least deviation, the highest and the highest confidence global reputation values.
We explained earlier that this is a highly unlikely case where either all servers
have collaborated to report false reputation; or an otherwise “good” client has
decided to act as a “bad” client with only one server. In most usual cases,
there will be some other servers reporting similar reputation, which will lead

to better uses of the confidence values for global reputations.

5.2. Simulation scenario: email delivery

98

However, in this particularly unusual case, we observe a specific pattern in
the reputation response when the server is misinformed by the global reputa-
tion it chooses to use. The pattern shows that every time the global reputation
value is used to re-adjust the previously known local value by a substantial
amount. This, we propose, could be used as an indicator of an attack. One
of the ways (particularly applicable to our example policies) the server could
avoid this attack is by choosing not to re-adjust its previously known local
reputation value if the adjustment is relatively large (determined by policies
on the server), and if such large re-adjustment pattern repeats itself every time

the global reputation is looked up.

Let us analyse the reputation response for a Type 3 client as presented
in figure 5.9. The parameters set for this experiment are: A = 0.01, pu =
0.004, € = 0.00001. Saturation closeness is 99%. Age scavenging (i.e. time
decay) has been turned on. This particular client is reported by all other
servers as being bad but it is evident from the upper sub-plot (behaviour
versus time) that the client exhibited very good behaviour with no slips into
bad behaviour. It is also important to note that the frequency of interaction
with a Type 3 client is much lower than a Type 2 client, which makes the effect

of global reputation more felt than that observed in the previous example.

Although it is not so visible in the yellow plot, a distinct pattern in this
example is that every time after the global reputation is used to re-adjust
the local reputation to a negative value, the client behaviour is such that the
newly re-adjusted reputation decreases towards less negative values. This is
particularly visible in the blue and the green plots in the reputation-time graph.
Although this pattern in itself is not conclusive enough (since it depends on
the fact that the behaviour does not slip to negative at all), it still indicates
that the trend indicated by global reputation is in sharp disagreement with the
locally observed phenomena. As with the previous example, such a pattern
could be used by the server to stop using the global reputation and in that case,
the client will soon follow the trend set by the red plot in the reputation-time

graph.

o=

noineyaq

3500

3000

2500

2000

1500

1000

—— Ignore

—o— Highest

—— HighestConfidence

Lowest
—&— LeastDeviation

time

|
N o
=]

08—
0.6—
04—

uopeindal

~0.6—
-0.8—
-1

|
<
T

~
?

1000 1500 2000 2500 3000 3500
time

Figure 5.8: Reputation records for a misinformed Type 2 actor

500

behaviour

reputation

4.6 —
44—

42—

38—

36—

34—

32—

0 200 400

600 800
time

1000

1200

—— Ignore
—&— Highest
#— HighestConfidence
Lowest
—+&— LeastDeviation

0 200 400

Figure 5.9: Reputation

records for a misinformed Type 3 actor

5.2. Simulation scenario: email delivery

101

5.2.4.3 Denial of Service affecting a server

Although, as mentioned earlier in chapter 3 that low-level Denial of Service
(DoS) attacks are outside the remit of our model, we still present the side-
effects on the reputation system caused by such DoS attacks. It is important to
note that the application-level DoS attacks will be dealt with by our framework
as if these were any other malicious client behaviour. The result of a DoS (or
Distributed DoS) can either leave the server resources severely over utilised or
completely exhausted. In the former case, it is possible for genuine clients to
still continue to consume service although the quality of service is expected to
suffer due to an on-going DoS attack. In the latter case, the server is unable to
provide services to any legitimate (or even malicious) client and appears to be
unavailable on the network. If the server’s resources are severely over utilised
and the DoS attack is at the application level, the server can promptly respond
to the attack by developing local reputations based on behavioural history of
the attacker (or multiple identities of the attacker in case of a DDoS). Once
the client is identified as malicious, the server can deny service to it which will

eventually put an end to the DoS attack.

We examine simulation results of a DoS attack on a server during service
provision. In this simulation, the DoS attack results in complete failure of
incoming and outgoing communication of the target server. The purpose of
our simulation is to observe how the server copes with clients (both legitimate

and malicious) after the DoS attack has ended.

First, we examine the same Type 2 client and the server (presented in fig-
ure 5.3) while the server is under a DoS attack between times ¢ = 1944 and
t = 2537 as presented in figure 5.10. During this period, the server is un-
reachable and it cannot reach any external network resources either, including
the GRA. The parameters set for this experiment are: A = 0.01, pu =
0.004, € = 0.00001. Saturation closeness is 99%. Age scavenging (i.e. time
decay) has been turned on. It is evident from the upper sub-plot (behaviour
versus time) that the client exhibited generally bad behaviour with intermit-
tent slips into good behaviour. Furthermore, there is no behaviour recorded

during the time when the server is under a DoS attack.

5.2. Simulation scenario: email delivery

102

One of the main differences with the same client-server pair presented in
figure 5.3 is the sharp rise of reputation at the end of the DoS attack. The
second, rather implicit, observation is that since the end of the DoS attack,
the result of the various global reputation interpretation policies are nearly
the same. Examining the simulation logs, we observe that this is caused by
a different problem: the server has not been able to query global reputations
after the DoS attack. It has not been able to report global reputations either.
Therefore, the reputation response graphs for various policies match closely
as those policies were never applied because the reputation lookup from the
GRA failed. Effectively, the server has relied on its local reputation responses
without using the global reputation altogether. The reason why the graphs
for the various interpretation policies are not exactly the same after the DoS
is because of the slightly different reputation values that they have recorded
before the DoS.

Now we examine a Type 3 client with the same server under a denial of
service attack between times ¢ = 1944 and ¢t = 2537 as presented in figure 5.11.
The parameters set for this experiment are: A = 0.01, p = 0.004, € =
0.00001. Saturation closeness is 99%. Age scavenging (i.e. time decay) has
been turned on. It is observed from the upper sub-plot (behaviour versus
time) that the client exhibited very good behaviour with very rare slips into
bad behaviour. In addition, there is no behaviour recorded during the time
when the server is under a DoS attack. The effect of the DoS attack is similar
to that with the Type 2 client.

Investigation into why, in both cases, the server was unable to request and
report global reputation from and to the GRA concludes that this is because
of the presence of:

1. an expired authorisation token which was not used due to the DoS
attack to report global reputation; and
2. arequest for global reputation without acknowledging a pending report

of global reputation because of the DoS attack.

We also note that unusual decay of reputation during the DoS period, which
can be used by a client with bad reputation to gain better levels of service after

the DoS period. It is worthwhile to note that the DoS attack on one server

5.2. Simulation scenario: email delivery

103

affects other servers only to the extent that the queried global reputation may

not contain successful reports by the server under attack.

5.2.4.4 Denial of Service affecting the GRA

Now, we present the side-effects of a simulated DoS attack on the GRA.
In this simulation, the DoS attack results in complete failure of incoming and
outgoing communication of the GRA, which means all servers and all clients
trying to reach the GRA will be affected. Unlike the server, which monitors
client behaviour, the GRA does not have any built-in defense for any DoS
attack, even if it is at the application-level. However, note that for a large-
scale distributed implementation of the GRA (e.g. a Distributed Hash Table
based lookup of global reputation), a complete knock-out of the GRA through
DoS or Distributed DoS (DDoS) is highly unlikely. With an optimised level of
redundancy in the global reputation data over a distributed implementation of
the GRA, it is also very unlikely that an application level DoS (e.g. excessive

queries or reports) will be able to render the GRA unusable.

We set up the DoS attack simulation for the GRA between the same times
as we did in the DoS on the server example, i.e. between times ¢t = 1944 and
t = 2537. The DoS attack on the GRA affects all clients and servers. We
choose the client-server pairs we have used in the simulation of the DoS attack

on the server.

Let us first examine the reputation response to a Type 2 client as presented
in figure 5.12. The parameters set for this experiment are: A = 0.01, p =
0.004, € = 0.00001. Saturation closeness is 99%. Age scavenging (i.e. time
decay) has been turned on. It is clear from the upper sub-plot (behaviour ver-
sus time) that the client exhibited generally bad behaviour with intermittent
slips into good behaviour. The reputation response graphs look fine until the
time the DoS attack begins. After that, all the global reputation interpretation

policies seem to yield similar results.

We notice a difference in this pattern by examining the case for the Type &
client as presented in figure 5.13. The parameters set for this experiment are:
A=0.01, p=0.004, €=0.00001. Saturation closeness is 99%. Age scav-

enging (i.e. time decay) has been turned on. It can be observed from the upper

5.2. Simulation scenario: email delivery

104

sub-plot (behaviour versus time) that the client exhibited generally very good
behaviour with very rare slips into bad behaviour. The reputation response
graphs look fine until the time the DoS attack begins. During the DoS attack,
all the global reputation interpretation policies seem to yield similar results.
However, after the DoS attack the results of various global reputation inter-
pretations are not the same although their correctness could be questionable.

This is different from what we see in the case of the Type 2 client.

A closer inspection reveals that the reason why all the global reputation
interpretation policies seemed to yield similar results in the case of the Type
2 client is because the server failed to query global reputations after the DoS
attack. This is because of unused authorisation tokens as we have seen in the
case of DoS attack on a server. However, for the Type 3 client, this is not
the case. This is explained by investigating the events close to and during the
DoS attack. The events corresponding to creating new authorisation tokens
for this client and server pair arel!:

1678 mkatok email CLI-29 SRV-4 1852
2021 mkatok email CLI-29 SRV-4 2196
2320 mkatok email CLI-29 SRV-4 2504
2637 mkatok email CLI-29 ©SRV-4 2813

The events corresponding to the global reputation lookup queries for the

same client-server pair are:

1679 reqsvc email CLI-29 SRV-4
2022 regqsvc email CLI-29 SRV-4
2321 reqsvc email CLI-29 SRV-4
2638 reqsvc email CLI-29 SRV-4

Finally, the events corresponding to reporting global reputation for the same

client-server pair are:

1852 putglo email CLI-29 SRV-4
2196 putglo email CLI-29 ©SRV-4

!See section 4.2.2 and table 4.1 for event specifications

5.2. Simulation scenario: email delivery 105

2504 putglo email CLI-29 SRV-4
2813 putglo email CLI-29 ©SRV-4

It can be seen that during the DoS attack (i.e. t = 1944 to ¢ = 2537),
two authorisation token creation requests were made (i.e. at t = 2021 and
t = 2320) which were followed by two global reputation lookup queries at
t = 2022 and t = 2321. These were followed by the end of each interaction cycle
and a corresponding global reputation report (i.e. at t = 2196 and t = 2504).
Simulation log files reveal that all these requests were not honoured by the
GRA, which was under a DoS attack. However, due to the spacing of events
with relation to the DoS on the GRA, it is clear that the consecutive reputation
lookup and reputation reports were not affected after the DoS attack has ended.

This is because there were no unused authorisation tokens left.

For comparison, we present the reputation response graph in figure 5.14 for
the aforementioned Type 3 client and the same target server with the same
experiment parameters with neither the server nor the GRA under any DoS at-
tack. A close inspection will reveal that there are differences in the global rep-
utation interpretation between the case without DoS and that (see figure 5.13)
after the DoS on the GRA. This is due to global reputation values unreported
by other servers, which caused a synchronisation problem although in this

particular case, the synchronisation problems are not particularly prominent.

5.2.4.5 Improvements against DoS

Although various policy changes can be made to overcome the side-effects
of a DoS attack on the server and on the GRA, we suggest the following

framework level improvements and leave them for future work.

1. Servers should turn on time-decay (applicable according to policy) only
after a service contract has ended cleanly, i.e. with a successful report-
ing of global reputation. Until such a clean end of service contract,
servers can interpret inactivity from the client as temporary failure of
communication including a DoS affecting the server itself. This means
if a client wishes to improve (i.e. decay from negative) its bad reputa-
tion with no activity, it will have to tell the server that it is willing to

end its service contract, which will trigger a global reputation report.

5.2. Simulation scenario: email delivery 106

2. If the GRA receives a request from the client to create a new authori-
sation token for a particular server and a particular application context
while one such token is already in possession with the server from an
earlier request then the GRA should queue the creation of the new
token. Following that, when the GRA receives a global reputation
lookup request from the server using the new token, the GRA should
ask the server to report its previously observed reputation about the
client using the previous token before the reputation lookup request is
honoured. This will ensure synchronisation of previously unreported

global reputations.

The first recommendation applies only to the side-effect of a server under
DoS while the second recommendation applies to either the server or the GRA
or both under DoS.

reputation

behaviour

3000

—=— Ignore

—&— Highest

——— HighestConfidence
Lowest

—&— LeastDeviation

500 1000 1500 2000
time

2500

Figure 5.10: Reputation records for a Type 2 client with server under DoS

3000

behaviour

reputation

-6

-8

-10
0

-0.2

-0.4

-0.6

-0.8

500 1000 1500 2000 2500
time

3000

—— Ignore
—=— Highest
#— HighestConfidence
Lowest
—+&— LeastDeviation

3500

500 1000 1500 2000 2500
time

Figure 5.11: Reputation records for a Type 3 client with server under DoS

3000

3500

3000

noineyaq

time

HighestConfidence

—<— Ignore
Lowest
—HB— LeastDeviation

—&— Highest

|
]
o
]
uoendal

[
© ~
e 9

-0.8—

-09—

3000

2500

2000

1500

time

1000

500

Figure 5.12: Reputation records for a Type 2 client with GRA under DoS

behaviour

reputation

-6

-8

-10
0

-0.2

-0.4

-0.6

-0.8

500

1000 1500 2000 2500
time

—<— Ignore
—&— Highest
#— HighestConfidence
Lowest

—&— LeastDeviation

3000

3500

500

Figure 5.13

1000 1500 2000 2500
time

: Reputation records for a Type 3 client with GRA under DoS

3000

3500

behaviour

reputation

-6

-8

-10
0

-0.2

-0.4

-0.6

-0.8

500

1000 1500 2000 2500
time

—— Ignore
—&— Highest

Lowest

—#— HighestConfidence

—+&— LeastDeviation

[¢] 500

Figure 5.14:

1000 1500 2000 2500
time

Reputation records for a Type 3 client without the effect of DoS

3000

3500

5.2. Simulation scenario: email delivery

112

5.2.5 Effects of global reputation, improvements

By analysing the results of various global reputation interpretation policies
presented in the earlier sections, we observe that the HighestConfidenceRep-
utation policy can, in certain situations, reflect the ineffectiveness of using a
statistical similarity measure (i.e. correlation coefficient, as a policy) to cal-
culate the confidence between servers. The nature of the similarity measures
ensure that slight differences in opinion from servers will be disregarded. This
can be misleading however if the server depends only on global reputation to

re-adjust its local reputation values.

One of the ways to counter-balance the adverse effects of using global rep-
utation is to not use it when the difference between local observation and the
suggested global reputation value is significantly large, e.g. figure 5.8. Another
possible improvement is that the server calculates two local reputation values
for the same client, i.e. with and without the use of global reputation. When
the vectors representing these two values become significantly dissimilar, it acts

as an alert to the server that the global reputation is likely to be misleading.

5.2.6 Levels of service

From the experiments in the previous sections, we have observed the varying
reputations of clients corresponding to their behaviour profiles. Following from
§ 3.4.1.4 (where we presented the representation of service levels), a server
can associate a particular level of service with a certain band of observed
reputation. When the client achieves a reputation that falls in the specified
band, it will be provided with the particular service level. Depending on
security measures, policies and other requirements, such bands could be quite
narrow to ensure finer control over any change of reputation of the client.
Beyond the scope of the reputation responses, levels of service may also be
dictated by specific service contracts that the client is bound by, such as the
class of the client whereby a “premium” client is entitled to a higher level of
service than a “standard” client. If the highest level of service that a client A is
entitled to is higher than that of a client B, reputations will need to be capped
accordingly such that no matter how well client B behaves, its corresponding
reputation will not imply a level of service higher than that of client A when

client A exhibits equally good behaviour. Such provisions can be made by

5.3. Summary

113

modifying reputation response policies without having to make any changes to

the framework itself.

In the context of our example scenario (i.e. email delivery), such levels of
service could correspond to various limits on the number of emails a sender is
allowed to send per unit time, the size of the email, the number of recipients,
etc. Senders with higher (and positive) reputations will be subject to fewer
restrictions. Senders with negative reputations may be able to send emails
only if such actions constitute good behaviour; and if their reputations are
lower than required for service levels then they will have to wait for periods of

no activity to regain their reputations.

5.3 Summary

Using the discrete event simulator and policy implementations described in
chapter 4, in this chapter we have evaluated our framework. Email delivery
is chosen as our simulation scenario. We have generated synthetic input be-
haviour data conforming with the population statistics available from Cisco
Systems 2009b. We have defined a number of actor classes representing the

different email sender profiles, such as:

e Type 1: Generally good behaviour, occasionally bad (i.e. usual email
sender profile)

e Type 2: Generally malicious (i.e. spammer)

e Type 3: Very good behaviour, this is essentially Type 1 with a very low
proportion of bad behaviour (i.e. cautious email sender)

e Type 4: An equal mix of good and bad behaviour (i.e. malicious email

sender, including spammers)

Comparing the effect of the various global reputation interpretation poli-
cies, we have simulated the reputation response of the framework to changing
behaviour from actors with the profiles listed above. We have also presented
simulation results illustrating the effect of time decay of reputation. Further to
that, we have simulated the effects and the side-effects of the relevant attacks
described in § 3.6. Finally, through analysis of the simulation results, we have

also proposed some improvements to the framework and policies.

6 Conclusion and Future
work

The only good is knowledge and the only evil is ignorance.
Socrates
Greek philosopher in Athens (469 BC - 399 BC)

The main aim of this work has been to build a generalised privacy-
preserving framework for developing and sharing the reputation of net-

work clients based on their behaviour profiles.

In this thesis, our study started with looking at how the open architecture
of the Internet which has been the key factor behind its success also made it
vulnerable to abuses of services provided on the Internet. We have categorised
some of the types of attacks on services offered over a network, and their
defences. Then we started focusing on the use of behavioural history of clients,

as one of the possible defences against various types of attacks.

We then surveyed a number of different approaches to defences against abuse
of network services, followed by a detailed analysis of the motivational and
related work (e.g. Allman et al. 2005b; Wei & Mirkovic 2007) in the use of
behavioural history and client reputation. We observed that instead of building
defences against every type of attack, a generalised framework augmenting
existing defences and using behavioural history and client reputation can be

useful to protect Internet services.

114

6.1.

Summary of contributions

115

6.1 Summary of contributions

The main contributions of this thesis are:

6.2

e A generalised privacy-preserving policy-independent framework is pre-

sented for developing and sharing client reputation based on behavioural
history.

Although the general theme in this thesis has been in favour of long-
lived strong identities, we have also discussed how weak and re-usable
identities such as IP addresses can also be used with our framework.
The framework allows collecting behaviour data from various monitoring
mechanisms, and thus is not restricted only to packet-level analysis.
The framework empowers servers with the means that enable them to
vary levels of service depending on the reputation of clients, thus re-
stricting service to malicious clients while prioritising service to clients
with higher reputations.

In addition to the locally developed reputations of clients, servers are
able to obtain global “views” about the reputations of their clients.
The global client reputations can be interpreted in various ways by the
servers; in particular through means of their confidence between servers,
which can be a measure of similarity of their opinions of the clients.
Various policies can be fit into the framework, thus keeping the frame-
work open-ended and flexible.

Sharing of reputations, instead of behavioural history (e.g. Allman et al.

2005b), enables privacy for clients.

Future work

Further to the improvements discussed following our evaluation in chapter 5,

we propose the following directions of future work.

6.2.1 Extensions to identity infrastructure

Identity clustering: We have seen in (Wei et al., 2006) that methods of

clustering are used based on behaviour profiling of hosts. We envisage that

such clustering could be used in the behaviour analysis stage to group iden-

tities with similar behaviour patterns. Those groups could be used as virtual

identities. The servers develop and share reputations of such virtual groups of

6.2. Future work 116

identities instead of individual ones. The algorithm 3.1 for reporting of global
reputation will need to be adapted to cater for virtual identities. The use of
identity clustering is useful in restricting email botnets or similar malicious
Sybil identities.

Pseudonymous identities: The heterogeneity of identity schemes (e.g. IPv4,
IPv6, PKI) leads to the problem that the implementation of certain policies in
our framework will need to be adjusted based on the identity scheme in use.
Also, the extremely short-lived nature of identities in some applications (e.g.
mobile ad-hoc networking) or high rates of churn (e.g. peer-to-peer networks)
also necessitate a unified, re-usable but long-lived identity mechanism. The
development of a pseudonymous generalised identity infrastructure that will
work with the framework is a possible future step. A proposal for a pseudony-

mous identity infrastructure exists in (Wakeman et al., 2007).

6.2.2 Policy-specific and implementation-specific extensions

Capping of reputations: Very often, clients belong to classes of users which
are bound by different service contracts and hence are eligible for different
service levels even if the reputations developed from their behaviour profiles
may be the same. Our example policy described in § 3.5 does not cater for
such a requirement. It needs to be factored into policy specifications for local

reputation response.

Policy specification language: If the existing policy specification lan-
guages prove to be inadequate in specification of policies in the behaviour
analysis stage, it will be the avenue of future work for us to produce exten-
sions to a existing policy specification language, e.g. Ponder (Damianou et al.,

2001) to work with the requirements of our framework.

6.2.3 Framework specific extensions

Application context: In chapter 3, we have specified that our framework
is context-aware. Future work may be done on the use of the application
context. For example, if there will be a globally available list of integer values
specifying various application contexts; or if servers are allowed to use free

text to specify application contexts while global reputation queries may use

6.3. Closing remarks

117

natural language techniques to identify similarities between the meanings of
the application context. Although in this thesis, we show that application
contexts are independent of each other, an interesting question to explore is
whether there can be any dependence between certain application contexts

and how can this be addressed.

Reputation feedback mechanism: We have seen in chapter 3 that a
policy-specific behaviour analyser may be designed to detect repetitions of
behaviour, which may be indications of malicious activity. A feedback mecha-
nism of the locally developed reputation or interpreted global reputation may
also provide sufficient information to the behaviour analysis stage, which can
further quantify accurately a particular behaviour observation. In addition,
such a feedback could also be useful to notify the various behaviour monitor-
ing sources to use means in their capacity to thwart malicious activities. For
example, upstream routers may restrict certain clients if bad reputation feed-
back is received for them. This is particularly useful for stopping malicious

clients that intend to mount DoS attacks.

Size of global reputation query response: The size of the result of the
global reputation query in the current framework is relatively large, and is
related to the number of active clients and servers in the network. To help
scaling up the framework to cater for very large networks and to optimise the
network footprint of the reputation query response, it is necessary to select a
subset of the set of available global reputation responses. The means of this

subset selection can be added to the framework as a policy.

6.2.4 Further simulation

Simulation of policies for service levels: We have simulated the repu-
tation response to changing behaviour in chapter 5, and described the impact
on service levels. In future work, it would be interesting to evaluate the effect

of policies for applying various service levels to the reputation responses.

6.3 Closing remarks

The objective of this research was to investigate the use of behavioural his-

tory and client reputation in a generalised framework, which could be used to

6.3. Closing remarks

118

restrict malicious clients from abusing network services. Our simulation results
prove the feasibility of this generalised framework, which is not necessarily tied
to low-level packet analysis. In the time taken to complete this thesis, there
have been a growing number of systems that have started to use application-
level behaviour analysis along with packet analysis to form behavioural history
of clients, and hence aid better network intrusion detections, e.g. (Arbor Net-
works, 2009; Cisco Systems, 2009b; Riverbed, 2009). In particular, (Cisco
Systems, 2009b) attempts to develop reputations of Internet hosts from a very
large sample of Web and email traffic that is analysed everyday. This trend of
commercial work using behavioural history and client reputation in this way
justifies our original research view that a generalised framework for developing
and sharing client reputation is a bona fide way to tackle problems of abuse of

network services.

References

Aagedal, J. @., & Milosevic, Z. 1999. ODP enterprise language: UML per-
spective. Pages 60-71 of: Third International Enterprise Distributed Object

Computing Conference.

Abadi, M., Birrell, A., Burrows, M., Dabek, F., & Wobber, T. 2003. Bank-
able Postage for Network Services. Proceedings of the 8th Asian Computing

Science Conference, Mumbai, India, December.

Aberer, K., & Despotovic, Z. 2001. Managing Trust in a Peer-2-Peer Infor-
mation System. Pages 310-317 of: Proceedings of the 10th International

Conference on Information and Knowledge Management. ACM Press.

Allman, E., Callas, J., Delany, M., Libbey, M., Fenton, J., & Thomas, M.
2005a. Domainkeys identified mail (DKIM). Internet Engineering Task
Force (IETF) Draft, July.

Allman, E., Callas, J., Delany, M., Libbey, M., Fenton, J., & Thomas, M.
2007 (May). DomainKeys Identified Mail (DKIM) Signatures. RFC 4871
(Proposed Standard). Updated by RFC 5672.

Allman, M., Blanton, E., & Paxson, V. 2005b. An Architecture for Developing
Behavioral History. In: Proceedings of the Workshop on Steps to Reducing
Unwanted Traffic on the Internet.

Anderson, J. P. 1980. Computer Security Threat Monitoring and Surveillance.

Tech. rept. James P. Anderson Company, Fort Washington, Pennsylvania.

Anderson, T., Roscoe, T., & Wetherall, D. 2004. Preventing Internet denial-
of-service with capabilities. ACM SIGCOMM Computer Communication
Review, 34(1), 44.

119

References

120

Arbor Networks. 2009. Arbor Peakflow — X: Enter-
prise Network Monitoring, Protection and Visibility.

http://www.arbornetworks.com/en/peakflow-x.html.

Arnold, K., Gosling, J., & Holmes, D. 2005. The Java (TM) Programming
Language. Addison-Wesley Professional.

Axelsson, S. 2000a. Intrusion detection systems: A survey and taxonomy.
Chalmers University of Technology, Dept. of Computer Engineering, Géte-
borg, Sweden, Technical Report, 99-15.

Axelsson, S. 2000b. The base-rate fallacy and the difficulty of intrusion detec-
tion. ACM Transactions on Information and System Security, 3(3), 186—-205.

Back, A. 2002. Hashcash. http://www.hashcash.org/.

Balakrishnan, H., & Karger, D. R. 2004. Spam-I-am: A Proposal for Spam
Control using Distributed Quota Management. 3rd ACM SIGCOMM Work-
shop on Hot Topics in Networks (HotNets), San Diego, CA, November.

Barr, D. 1996 (Feb.). Common DNS Operational and Configuration Errors.
RFC 1912 (Informational).

Basu, A., Wakeman, 1., & Chalmers, D. 2007. A Behavioural Model for Con-
sumer Reputation. (Poster) Proceedings of the 2nd Intl. Workshop on Self-
Organising Systems, The Lake District, UK.

Basu, A., Wakeman, I., Chalmers, D., & Robinson, J. 2008. A Behavioural
Model for Client Reputation. Proceedings of Trust in Mobile Environments
(workshop in IFIPTM 2008), Trondheim, Norway.

Birrell, A., Goldberg, A., Manasse, M., Mironov, I, &
Wobber, T. 2009. Penny Black - Microsoft Research.

http://research.microsoft.com/en-us/projects/PennyBlack/.

Blanc, X., Gervais, M. P., & Le-Delliou, R. 1999. Using the UML language to
express the ODP enterprise concepts. Pages 50-59 of: Third International
Enterprise Distributed Object Computing Conference.

Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M.,
Ferris, C., & Orchard, D. 2004. Web Services Architecture.
http://www.w3.org/TR/ws-arch/.

http://www.arbornetworks.com/en/peakflow-x.html
http://www.hashcash.org/
http://research.microsoft.com/en-us/projects/PennyBlack/
http://www.w3.org/TR/ws-arch/

References

121

Breese, J. S., Heckerman, D., & Kadie, C. 1998. Empirical Analysis of Predic-
tive Algorithms for Collaborative Filtering. Learning, 9, 309-347.

Brickley, D., & Miller, L. 2004. FOAF Vocabulary Specification.
http://xmlns.com/foaf/spec/.

Carrara, E., & Hogben, G. 2007. Reputation-based Systems: a security analy-

sis. Position paper 2 in European Network and Information Security Agency.

Ceglowski, J. S. M., & Schachter, J. 2004. List-of-all-Friends (LOAF).
http://loaf.cantbedone.org.

Cerf, V. G., & Kahn, R. E. 1974. A Protocol for Packet Network Interconnec-
tion. IEEE Transactions on Communications, 22(5), 637-648.

Chung, A., Tarashansky, 1., Vajapeyam, M., & Wagner, R. 2002. SpamStran-
gler: A Chord-Based Distributed Spam Detection Tool. MIT 6.824 Fall
2002 Project Reports.

Cisco Systems. 2009a. Cisco IronPort Reputation Filters.
http://www.ironport.com/technology/reputation_filters.html.

Cisco Systems. 2009b. Cisco IronPort Senderbase Security Network.
http://www.senderbase.org/.

Cisco Systems. 2009c. SpamCop.net. http://www.spamcop.net/.
Cloudmark. 2009. Cloudmark Message Security. http://www.cloudmark.com.

Congdon, P., Aboba, B., Smith, A., Zorn, G., & Roese, J. 2003 (Sept.).
IEEE 802.1X Remote Authentication Dial In User Service (RADIUS) Usage
Guidelines. RFC 3580 (Informational).

Corradi, A., Montanari, R., Lupu, E., Sloman, M., & Stefanelli, C. 2000. A
flexible access control service for Java mobile code. Pages 356-365 of: The

16th Annual Conference on Computer Security Applications.

Cramer, E. 2002. The Future of Wireless Spam. Duke L. & Tech. Rev., 2002,
21-28.

Crocker, D. 2009 (Aug.). RFC 4871 DomainKeys Identified Mail (DKIM)
Signatures — Update. RFC 5672 (Proposed Standard).

http://xmlns.com/foaf/spec/
http://loaf.cantbedone.org
http://www.ironport.com/technology/reputation_filters.html
http://www.senderbase.org/
http://www.spamcop.net/
http://www.cloudmark.com

References

122

Crocker, S. D. 1970 (Mar.). Protocol Notes. RFC 36. Updated by RFCs 39,
44.

Damiani, E., De Capitani Di Vimercati, S., Paraboschi, S., & Samarati, P.
2003. Managing and Sharing Servants’ Reputations in P2P systems. [FEFE
Transactions on Knowledge and Data Engineering, 15(4), 840-854.

Damiani, E., De Capitani di Vimercati, S., Paraboschi, S., Samarati, P., di Tec-
nologie dell’Informazione, D., & Crema, I. 2004. P2P-based collaborative
spam detection and filtering. Pages 176-183 of: Proceedings of Fourth Intl.
Conference on Peer-to-Peer Computing, 200.

Damianou, N., Dulay, N., Lupu, E., & Sloman, M. 2001. The ponder policy

specification language. Lecture Notes in Computer Science, 18-38.

Debar, H., Becker, M., & Siboni, D. 1992. A neural network component for an
intrusion detection system. Pages 240-250 of: 1992 IEEE Computer Society

Symposium on Research in Security and Privacy, 1992. Proceedings.

Delany, M. 2007 (May). Domain-Based Email Authentication Using Public
Keys Advertised in the DNS (DomainKeys). RFC 4870 (Historic). Obsoleted
by RFC 4871.

Douceur, J. R. 2002. The Sybil Attack. In: Proceedings for the 1st Intl.
Workshop on Peer-to-Peer Systems (IPTPS.02). Springer.

Droms, R. 1997 (Mar.). Dynamic Host Configuration Protocol. RFC 2131
(Draft Standard). Updated by RFCs 3396, 4361, 5494.

DShield. 2009. DShield — Cooperative Network Security Community.
http://www.dshield.org/.

Duan, Z., Yuan, X., & Chandrashekar, J. 2006. Constructing Inter-Domain
Packet Filters to Control IP Spoofing Based on BGP Updates. In: IEEE

Infocom.

Dwork, C., & Naor, M. 1995. Pricing Via Processing Or Combatting Junk
Mail. Weizmann Institute of Science, Dept. of Applied Mathematics and

Computer Science.

http://www.dshield.org/

References

123

Dwork, C., Goldberg, A., & Naor, M. 2003. On Memory-Bound Functions
for Fighting Spam. In: Proceedings of Advances on Cryptology (CRYPTO
2003), Santa Barbara, CA, USA, August. Springer.

Ebel, H., Mielsch, L. I., & Bornholdt, S. 2002. Scale-free topology of e-mail
networks. Physical Review E, 66(3), 35103.

Eddy, W. 2007 (Aug.). TCP SYN Flooding Attacks and Common Mitigations.
RFC 4987 (Informational).

Edwards, J. 2008. False Positives FEqual Lost Business.
http://www.itsecurity.com/features/false-positives-022808/.

Egevang, K., & Francis, P. 1994 (May). The IP Network Address Translator
(NAT). RFC 1631 (Informational). Obsoleted by RFC 3022.

Eidnes, H., de Groot, G., & Vixie, P. 1998 (Mar.). Classless IN-ADDR.ARPA
delegation. RFC 2317 (Best Current Practice).

Enck, W., Traynor, P., McDaniel, P., & La Porta, T. 2005. Exploiting open
functionality in SMS-capable cellular networks. Page 404 of: Proceedings

of the 12th ACM Conference on Computer and Communications Security.
ACM.

Erdos, M., & Cantor, S. 2002. Shibboleth Architecture Draft v05. Inter-
net2/MACE, 2.

European Union. 2001. Data protection: “Junk” e-mail Costs Inter-

net Users FEUR 10 billion o year worldwide — Commission study.

http://europa.eu/rapid/pressReleasesAction.do?reference=IP/01/154.

Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., &
Berners-Lee, T. 1999 (June). Hypertext Transfer Protocol — HTTP/1.1.
RFC 2616 (Draft Standard). Updated by RFC 2817.

Flux Group. 2000. Emulab — total network testbed. http://www.emulab.net/.

Foster, 1., & Kesselman, C. 1998. The grid: blueprint for a new computing

infrastructure. Morgan Kaufmann Publishers Inc. San Francisco, CA, USA.

Frolund, S., & Koistinen, J. 1998. Qmli: A language for quality of service
specification. Tech. rept. HPL-98-10. Hewlett-Packard Laboratories.

http://www.itsecurity.com/features/false-positives-022808/
http://europa.eu/rapid/pressReleasesAction.do?reference=IP/01/154
http://www.emulab.net/

References

124

Fuller, V., Li, T\, Yu, J., & Varadhan, K. 1993 (Sept.). Classless Inter-Domain
Routing (CIDR): an Address Assignment and Aggregation Strategy. RFC
1519 (Proposed Standard). Obsoleted by RFC 4632.

Garriss, S., Kaminsky, M., Freedman, M. J., Karp, B., Maziéres, D., & Yu,
H. 2006. Re: Reliable Email. In: Proceedings of the 3rd Symposium of
Networked Systems Design and Implementation (NSDI 06).

Gaudin, S. 2003. False Positives: Spam’s Casualty of War Costing Billions.
http://itmanagement.earthweb.com/secu/article.php/2245991.

Golbeck, J., & Hendler, J. 2004. Reputation Network Analysis for Email
Filtering. In: Proceedings of Conference on Email and Anti-Spam (CEAS).

Goodman, J., & Yih, W. T. 2006. Online Discriminative Spam Filter Training.
In: Proceedings of the 3rd Conference on Email and Anti-Spam.

Gosling, J., Joy, B., Steele, G., & Bracha, G. 2005. The Java (TM) Language
Specification. Addison-Wesley Professional.

Graham, P. 2003. Better bayesian filtering. In: Proceedings of the 2003 Spam

Conference.

Grandison, T., & Sloman, M. 2000. A survey of trust in internet applications.
IEEE Communications Surveys and Tutorials, 3(4), 2-16.

Gray, A., & Haahr, M. 2004. Personalised, collaborative spam filtering. In:

Proceedings of 1st Conference on Email and Anti-Spam. Citeseer.

Gregory, M., White, B., Fisch, EA, & Pooch, UW. 1996. Cooperating security
managers: A peer based intrusion detection system. [EEE Network, 14(4).

Gyodngyi, Z., & Garcia-Molina, H. 2005. Web spam taxonomy. Adversarial

Information Retrieval on the Web.

Haerder, T., & Reuter, A. 1983. Principles of Transaction-Oriented Database
Recovery. ACM Computing Surveys (CSUR), 15(4), 317.

Hansen, T., Crocker, D., & Hallam-Baker, P. 2009 (July). DomainKeys Iden-
tified Mail (DKIM) Service Overview. RFC 5585 (Informational).

http://itmanagement.earthweb.com/secu/article.php/2245991

References

125

Hashii, B., Malabarba, S., Pandey, R., & Bishop, M. 2000. Supporting recon-
figurable security policies for mobile programs. Computer Networks, 33(1-6),
77-93.

Heberlein, L. T., Dias, G. V., Levitt, K. N., Mukherjee, B., Wood, J., &
Wolber, D. 1990. A network security monitor. Pages 296-304 of: 1990
IEEE Computer Society Symposium on Research in Security and Privacy,
1990. Proceedings.

Herlocker, J. L., Konstan, J. A., & Riedl, J. 1999. An Algorithmic Frame-
work for Performing Collaborative Filtering. Proceedings of the 22nd An-
nual International ACM SIGIR Conference on Research and Development
in Information Retrieval, 230-237.

Hershkop, S., & Stolfo, S. J. 2005. Combining email models for false positive
reduction. Pages 98-107 of: Proceedings of the Eleventh ACM SIGKDD

International Conference on Knowledge Discovery in Data Mining. New

York, NY, USA: ACM.

Herzberg, A., Mass, Y., Mihaeli, J., Naor, D., & Ravid, Y. 2000. Access control
meets public key infrastructure, or: Assigning roles to strangers. Pages 2-1/

of: IEEE Symposium on Security and Privacy. IEEE Computer Society.

Housley, R., Ford, W., Polk, W., & Solo, D. 1999 (Jan.). Internet X.509
Public Key Infrastructure Certificate and CRL Profile. RFC 2459 (Proposed
Standard). Obsoleted by RFC 3280.

IEEEProject802. 1986. Local and Metropolitan Area Network Standard:
Overview, Interworking and Systems Management. IEEE 802.1, Draft D,
August.

ISO/IEC. 1995. Open Distributed Processing — Reference Model. Tech. rept.
ISO/IEC-10746. International Standards Organization, Geneva, Switzer-
land.

Jajodia, S., Samarati, P., & Subrahmanian, V. S. 1997. A logical language for
expressing authorizations. Pages 31-43 of: IEEE Symposium on Security
and Privacy. IEEE Computer Society.

References

126

Janakiraman, R., Waldvogel, M., & Zhang, Q. 2003. Indra: A peer-to-peer
approach to network intrusion detection and prevention. Twelfth IEEE In-
ternational Workshops on Enabling Technologies: Infrastructure for Collab-
orative Enterprises, 2003. WET ICE 2003. Proceedings, 226-231.

Johansson, E. S.; & Dawson, K. 2003. Camram. http://www.camram.org/.

Web resource no longer available as of December 2009.

Josang, A., & Pope, S. 2005. User centric identity management. In: AusCERT

Asia Pacific Information Technology Security Conference.

Keller, A., & Ludwig, H. 2003. The WSLA framework: Specifying and mon-
itoring service level agreements for web services. Journal of Network and
Systems Management, 11(1), 57-81.

Kemmerer, R. A., & Vigna, G. 2002. Intrusion detection: a brief history and
overview. Computer, 35(4), 27-30.

Kendall, M. G. 1938. A new measure of rank correlation. Biometrika, 30(1-2),
81-93.

Kleinrock, L. 1961. Information Flow in Large Communication Nets. RLE
Quarterly Progress Report, 1.

Kohl, J., & Neuman, C. 1993 (Sept.). The Kerberos Network Authentication
Service (V5). RFC 1510 (Proposed Standard). Obsoleted by RFC 4120.

Kolan, P., & Dantu, R. 2007. Socio-technical Defense against Voice Spamming.
ACM Transactions on Autonomous and Adaptative Systems, 2(1), 2.

Kong, J. S., Boykin, P. O., Rezaei, B. A., Sarshar, N., & Roychowdhury, V. P.
2005. Let Your CyberAlter Ego Share Information and Manage Spam. Arziv
preprint physics/0504026.

Kong, J. S., Rezaei, B. A., Sarshar, N., Roychowdhury, V. P., & Boykin, P. O.
2006. Collaborative Spam Filtering Using E-Mail Networks. Computer,
39(8), 67-73.

Lathia, N., Hailes, S., & Capra, L. 2008. The effect of correlation coefficients
on communities of recommenders. Pages 2000-2005 of: Proceedings of the

ACM Symposium on Applied Computing. ACM New York, NY, USA.

http://www.camram.org/

References

127

Laurie, B., & Clayton, R. 2004. proof-of-work proves not to work. In: Pro-

ceedings of the The Workshop on Economics and Information Security.

Law, A. M., & Kelton, W. D. 1997. Simulation Modeling and Analysis.
McGraw-Hill Higher Education.

Lee, W., Stolfo, SJ, & Mok, KW. 1999. A data mining framework for building
intrusion detection models. Pages 120-132 of: Security and Privacy, 1999.
Proceedings of the 1999 IEEE Symposium on.

Lee, W., Cabrera, J. B. D., Thomas, A., Balwalli, N., Saluja, S., & Zhang,
Y. 2002. Performance adaptation in real-time intrusion detection systems.

Lecture notes in Computer Science, 252-273.

Leiner, B. M., Cerf, V. G., Clark, D. D., Kahn, R. E., Kleinrock, L., Lynch,
D. C., Postel, J., Roberts, L. G., & Wolff, S. 2001. A Brief History of the

Internet. Contributions In Librarianship and Information Science, 96, 3-24.

Levchenko, K., Paturi, R., & Varghese, G. 2004. On the difficulty of scalably
detecting network attacks. Pages 12-20 of: Proceedings of the 11th ACM

conference on Computer and Communications Security. ACM New York,

NY, USA.

Libbie, M., & Ludemann, P. 2006. Algorithmically determining Store-and-
forward MTA Relays using DomainKeys. Proceedings of Third Conference
on Email and Anti-Spam (CEAS), July 27-28, 2006.

Lilliefors, H. W. 1967. On the Kolmogorov-Smirnov test for Normality with
Mean and Variance unknown. Journal of the American Statistical Associa-
tion, 62(318), 399-402.

Limewire. 2008. org.limewire.statistic.StatsUtils class. Limewire source code.

Linington, P. F. 1999. Options for Expressing ODP Enterprise Communities
and Their Policies by Using UML. Pages 72-82 of: Third International
Enterprise Distributed Object Computing Conference.

Liu, D., & Camp, L. J. 2006. Proof of work can work. In: Fifth Workshop on

the Economics of Information Security.

References

128

Lobo, J., Bhatia, R., & Naqvi, S. 1999. A policy description language. Pages
291-298 of: Proceedings of the 16th National Conference on Artificial Intel-
ligence and the 11th Innovative Applications of Artificial Intelligence Con-

ference. American Association for Artificial Intelligence.
Lottor, M. 1987 (Nov.). Domain administrators operations guide. RFC 1033.

Lowd, D., & Meek, C. 2005. Good Word Attacks on Statistical Spam Filters.

In: Proceedings of the 2nd Conference on Email and Anti-Spam. Citeseer.

Lunt, T. F., Jagannathan, R., Lee, R., Listgarten, S., Edwards, D. L., Neu-
mann, P. G., Javitz, H. S., & Valdes, A. 1988. IDES: The enhanced proto-

type, A real-time intrusion detection system. SRI International, Computer
Science Laboratory, Menlo Park, Calif, USA.

Lyon, J., & Wong, M. 2004. Sender ID: Authenticating E-Mail. Internet
Engineering Task Force Draft IETF, Oct.

Lyon, J., & Wong, M. 2006 (Apr.). Sender ID: Authenticating E-Mail. RFC
4406 (Experimental).

Maier, G., Sommer, R., Dreger, H., Feldmann, A., Paxson, V., & Schneider,
F. 2008. Enriching Network Security Analysis with Time Travel. In: Pro-
ceedings of the ACM SIGCOMM.

Marsh, S., & Briggs, P. 2008. Examining Trust, Forgiveness and Regret as

Computational Concepts. Computing with Social Trust.

Mathworks. 1984. MATLAB - The Language of Technical Computing.
http://www.mathworks.com/products/matlab/.

Mengshu, H., Xianliang, L., Xu, Z., & Chuan, Z. 2005. A Trust model of P2P
System based on Confirmation Theory. ACM SIGOPS Operating Systems
Review, 39(1), 62.

Moore, B. 2003 (Jan.). Policy Core Information Model (PCIM) Extensions.
RFC 3460 (Proposed Standard).

Moore, B., Ellesson, E., Strassner, J., & Westerinen, A. 2001 (Feb.). Policy
Core Information Model — Version 1 Specification. RFC 3060 (Proposed
Standard). Updated by RFC 3460.

http://www.mathworks.com/products/matlab/

References 129

Natu, M., & Mirkovic, J. 2007. Fine-grained Capabilities for Flooding DDoS
Defense using Client Reputations. Pages 105-112 of: Proceedings of the
2007 Workshop on Large Scale Attack Defense. ACM New York, NY, USA.

NIST. 1995. FIPS-180-1 - Secure Hash Standard.
http://www.itl.nist.gov/fipspubs/fip180-1.htm.

Object Management Group. 1997. Unified Modeling Language.
http://www.w3.org/XML/.

Olson, M. A., Bostic, K., & Seltzer, M. 1999. Berkeley DB. Pages 183-192
of: Proceedings of the FREENIX Track: 1999 USENIX Annual Technical

Conference.

Oracle. 2006. Oracle Berkeley DB Java Edition.
http://www.oracle.com/database/berkeley-db/je/index.html.

Ortalo, R. 1998. A flexible method for information system security policy
specification. Lecture Notes in Computer Science, 1485, 67-84.

Pang, R., & Paxson, V. 2003. A high-level programming environment for
packet trace anonymization and transformation. Pages 339-351 of: Pro-
ceedings of the 2003 conference on Applications, technologies, architectures,

and protocols for computer communications. ACM New York, NY, USA.

Paxson, V. 1999. Bro: A system for detecting network intruders in real-time.
Comput. Networks, 31(23), 2435-2463.

Perrif, A., Song, D., & Yaar, A. 2003. StackPi: A New Defense Mechanism
Against IP Spoofing and DDoS Attacks. Tech. rept. Tech Report CMU-CS-
02-208, Carnegie Mellon University, School of Computer Science.

Porras, P., & Shmatikov, V. 2006. Large-scale collection and sanitization of
network security data: risks and challenges. Page 64 of: Proceedings of the
2006 workshop on New security paradigms. ACM.

Porras, P. A.; & Neumann, P. G. 1997. EMERALD: Event monitoring enabling
responses to anomalous live disturbances. Pages 353-365 of: Proceedings of

the 20th National Information Systems Security Conference. Citeseer.

http://www.itl.nist.gov/fipspubs/fip180-1.htm
http://www.w3.org/XML/
http://www.oracle.com/database/berkeley-db/je/index.html

References

130

Porras, P. L. P., & Shmatikov, V. 2004. Privacy-Preserving Sharing and Corre-
lation of Security Alerts. Pages 239-25/ of: Proceedings of the 13th Usenix

Security Symposium, Useniz Association.

Postel, J. 1981 (Sept.). Transmission Control Protocol. RFC 793 (Standard).
Updated by RFCs 1122, 3168.

Prakash, V. V. 2007. Vipul’s Razor. http://razor.sourceforge.net/.

Raymond, P. R. 2004. System and method for discouraging communications

considered undesirable by recipients. US Patent, 6.

Recordon, D.; & Reed, D. 2006. OpenID 2.0: A Platform for User-centric
Identity Management. Page 16 of: Proceedings of the Second ACM workshop
on Digital Identity Management. ACM.

Return Path. 2009. Email Delivery Optimiza-
tion (previously known as Bonded Sender).

http://www.returnpath.net/commercialsender/certification/.

Riverbed. 2009. Riverbed Cascade: Advanced net-
work — and application performance analysis and reporting.

http://www.riverbed.com/products/cascade/.

Roberts, L. G. 1967. Multiple Computer Networks and Intercomputer Commu-
nication. Pages 3—1 of: Proceedings of the 1st ACM symposium on Operating
System Principles. ACM New York, NY, USA.

Rodgers, J. L., & Nicewander, W. A. 1988. Thirteen ways to look at the
correlation coefficient. The American Statistician, 42(1), 59-66.

Royal Statistical Society. 1995. Shapiro-Wilk W test implementation (R94).
http://1lib.stat.cmu.edu/apstat/R94.

Royston, J. P. 1982. An extension of Shapiro and Wilk’s W test for normality
to large samples. Applied Statistics, 115-124.

Sahami, M., Dumais, S., Heckerman, D., & Horvitz, E. 1998. A Bayesian
approach to filtering junk e-mail. In: Learning for Text Categorization: Pa-
pers from the 1998 Workshop, vol. 62. Madison, Wisconsin: AAAI Technical
Report WS-98-05.

http://razor.sourceforge.net/
http://www.returnpath.net/commercialsender/certification/
http://www.riverbed.com/products/cascade/
http://lib.stat.cmu.edu/apstat/R94

References

131

Sandhu, R. S., Coyne, E. J., Feinstein, H. L., & Youman, C. E. 1996. Role-
Based Access Control Models. IEEE Computer, 29(2), 38-47.

Sauvé, J., Marques, F., Moura, A., Sampaio, M., Jornada, J., & Radziuk, E.
2005. SLA Design From a Business Perspective. Lecture Notes in Computer
Science, 3775, 72.

Sebring, M., Shellhouse, E., Hanna, M., & Whitehurst, R. 1988. Expert sys-
tems in intrusion detection: A case study. Pages 74-81 of: Proceedings of

the 11th National Computer Security Conference.

Siegel, S., & Castellan, N. J. 1956. Nonparametric statistics for the behavioral
sciences. McGraw-Hill New York.

Siemborski, R., & Melnikov, A. 2007 (July). SMTP Service Extension for
Authentication. RFC 4954 (Proposed Standard). Updated by RFC 5248.

Singhal, A. 2004. Challenges in running a commercial web search engine. In:
IBM’s Second Search and Collaboration Seminar.

Skene, J., Lamanna, D. D.; & Emmerich, W. 2004. Precise service level agree-
ments. Pages 179-188 of: Proceedings of the 26th International Conference
on Software Engineering. IEEE Computer Society.

Sloman, M., & Lupu, E. 2002. Security and management policy specification.
IEEE Network, 16(2), 10-19.

Sloman, M., Lobo, J., & Lupu, E. C. 2001. Policies for distributed systems

and networks: International Workshop. Springer-Verlag.

Snapp, S. R., Smaha, S. E., Teal, D. M., & Grance, T. 1992. The DIDS
(distributed intrusion detection system) prototype. Pages 227-234 of: Pro-
ceedings of the Summer 1992 USENIX Conference: June 8-12, 1992, San
Antonio, Texas, USA.

Snir, Y., Ramberg, Y., Strassner, J., Cohen, R., & Moore, B. 2003 (Nov.).
Policy Quality of Service (QoS) Information Model. RFC 3644 (Proposed
Standard).

Socolofsky, T.J., & Kale, C.J. 1991 (Jan.). TCP/IP tutorial. RFC 1180 (In-

formational).

References

132

Sommer, R. 2005. Viable Network Intrusion Detection in High-Performance

FEnvironments. Ph.D. thesis, Technische Universitdt Miinchen.

Spearman, C. 1987. The proof and measurement of association between two

things. The American journal of Psychology, 441-471.

Stern, H., Mason, J., & Shepherd, M. 2004. A Linguistics-Based Attack on
Personalised Statistical E-mail Classifiers. Tech. rept. CS-2004-06. Faculty

of Computer Science, Dalhousie University.

Stigler, S. M. 1989. Francis Galton’s account of the invention of correlation.
Statistical Science, 73-79.

Stolfo, S. J., Hershkop, S., Wang, K., Nimeskern, O., & Hu, C. W. 2003.
A Behavior-Based Approach to Securing Email Systems. Lecture Notes in
Computer Science, 57-81.

Tan, W. Y. 2002. Constraints-based access control. Pages 31-44 of: Proceed-
ings of the Fifteenth Annual Working Conference on Database and Applica-
tion Security. Norwell, MA, USA: Kluwer Academic Publishers.

The Apache Software Foundation. 2009. The Apache SpamAssassin Project.
http://spamassassin.apache.org/.

The SANS Institute. 2009. Computer Security Training, Network Research &
Resources. http://www.dshield.org/.

Tosic, V., Esfandiari, B., Pagurek, B., & Patel, K. 2002. On requirements
for ontologies in management of web services. Lecture Notes in Computer
Science, 237-247.

Trend Micro. 2009. Email Reputation Seruvices.

http://www.trendmicro.com/services/rbl/.

Tsirtsis, G., & Srisuresh, P. 2000 (Feb.). Network Address Translation - Proto-
col Translation (NAT-PT). RFC 2766 (Historic). Obsoleted by RFC 4966,
updated by RFC 3152.

USC Information Sciences Institute. 2009a. The Network Simulator — ns-2.

http://www.isi.edu/nsnam/ns/.

http://spamassassin.apache.org/
http://www.dshield.org/
http://www.trendmicro.com/services/rbl/
http://www.isi.edu/nsnam/ns/

References

133

USC Information Sciences Institute. 2009b. The ns-3 network simulator.

http://www.nsnam.org/.

Verisign Labs. 2009. Personal Identity Portal.
https://pip.verisignlabs.com/.

Vixie, P., & Schryver, V. 2000. Distributed Checksum Clearinghouses.
http://www.rhyolite.com/dcc/.

Wakeman, I., Chalmers, D., & Fry, M. 2007 (November). Reconciling Privacy
and Security in Pervasive Computing: The Case for Pseudonymous Group
Membership. In: 5th International Workshop on Middleware for Pervasive
and Ad-Hoc Computing.

Wei, S., & Mirkovic, J. 2007. Building Reputations for Internet Clients. Elec-
tronic Notes Theoretical Computer Science, 179, 17-30.

Wei, S., Mirkovic, J., & Kissel, E. 2006. Profiling and clustering Internet
Hosts. In: Proceedings of the 2006 International Conference on Data Mining.

Citeseer.

Wittel, G. L., & Wu, S. F. 2004. On attacking statistical spam filters. In:

Proceedings of the 1st Conference on Email and Anti-Spam. Citeseer.

Wong, M., & Schlitt, W. 2006 (Apr.). Sender Policy Framework (SPF) for
Authorizing Use of Domains in E-Mail, Version 1. RFC 4408 (Experimen-
tal).

World Wide Web Consortium. 1996. Ezxtensible Markup Language.
http://www.w3.org/XML/.

Wu, B., & Davison, B. D. 2005. Identifying link farm spam pages. Pages
820-829 of: International World Wide Web Conference. ACM New York,
NY, USA.

Yaar, A., Perrig, A., & Song, D. 2004. Siff: A Stateless Internet Flow Filter
to Mitigate DDoS flooding attacks. Pages 130-143 of: Proceedings of the
IEEE Symposium on Security and Privacy.

Yang, X., Wetherall, D., & Anderson, T. 2005. A DoS-limiting network archi-
tecture. ACM SIGCOMM Computer Communication Review, 35(4), 252.

http://www.nsnam.org/
https://pip.verisignlabs.com/
http://www.rhyolite.com/dcc/
http://www.w3.org/XML/

References

134

Yerazunis, Bill. 2009. The CRM11/4 Discriminator — the Controllable Regex
Mutilator. http://crm114.sourceforge.net/.

Zheng, W., & Jin, L. 2009. Online Reputation Systems in Web 2.0 Era. Page
296 of: Value Creation in E-business Management: 15th Americas Confer-
ence on Information Systems, Amcis 2009, Sigebiz Track, San Francisco,
Ca, USA, August 6-9, 2009, Selected Papers. Springer.

Zimmermann, P. R. 1995. The official PGP user’s guide. MIT Press Cam-
bridge, MA, USA.

http://crm114.sourceforge.net/

	2010 coversheet v2
	Basu, Anirban
	Statement of Originality
	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	List of Algorithms
	1 Introduction
	1.1 Motivation
	1.2 Contribution
	1.3 Thesis roadmap
	1.4 Published work

	2 Background
	2.1 Overview
	2.2 Identity management
	2.3 Specification of policies
	2.4 Measures against unsolicited messages
	2.4.1 Identity forgery protection
	2.4.2 Message filtering
	2.4.3 Message restriction
	2.4.4 Use of trust and reputation networks

	2.5 Intrusion detection systems
	2.5.1 Detection techniques
	2.5.2 Fundamental challenges of (network) intrusion detection

	2.6 Related work on behavioural history and client reputation
	2.6.1 Allman's work on behavioural history
	2.6.2 Wei and Mirkovic's work on client reputation
	2.6.2.1 Wei and Mirkovic's work on host profiling and clustering

	2.6.3 Natu and Mirkovic's work on capabilities using client reputation
	2.6.4 Other commercial work
	2.6.4.1 Arbor Peakflow X
	2.6.4.2 Riverbed Cascade
	2.6.4.3 DShield

	2.6.5 Senderbase

	2.7 Research question and objectives
	2.8 Summary

	3 Reputation from behaviour profile
	3.1 Proposition of a reputation framework
	3.1.1 Research contributions

	3.2 Definition of frequently used terminology
	3.3 A note on identity infrastructure
	3.4 Overview
	3.4.1 Representation of reputation and confidence
	3.4.1.1 Local reputation
	3.4.1.2 Confidence between servers
	3.4.1.3 Globally shared reputation
	3.4.1.4 Levels of service

	3.5 The framework with example policies
	3.5.1 Analysis of behaviour
	3.5.2 Building of local reputation
	3.5.2.1 Time decay of local reptuation

	3.5.3 Global client reputation reporting
	3.5.4 Global reputation query and interpretation
	3.5.4.1 Confidence between servers
	3.5.4.2 Interpretation of global reputation

	3.5.5 Decisions on levels of service

	3.6 Adversary model
	3.6.1 Identity threats
	3.6.1.1 Whitewashing
	3.6.1.2 Sybil
	3.6.1.3 Impersonation and reputation theft

	3.6.2 Vulnerabilities in and threats to reputation systems
	3.6.2.1 Reputation bootstrap issue
	3.6.2.2 Extortion, denial of reputation and ballot stuffing
	3.6.2.3 Repudiation of data or repudiation of transaction

	3.6.3 Reputation infrastructure threats
	3.6.3.1 Attacks on the underlying network

	3.7 Summary

	4 Experimental setup
	4.1 Overview
	4.2 Simulated application
	4.2.1 Network entities
	4.2.1.1 Client
	4.2.1.2 Server
	4.2.1.3 Global Reputation Analyser

	4.2.2 Implemented events
	4.2.3 Event ordering and interaction cycle
	4.2.4 Implemented policies
	4.2.4.1 Behaviour analyser and behaviour quantisation
	4.2.4.2 Local reputation response policy
	4.2.4.3 Local reputation saturation policy
	4.2.4.4 Global reputation interpretation policy
	4.2.4.5 Age-based scavenging policy
	4.2.4.6 Server confidence policy

	4.2.5 Modeling attacks

	4.3 A discrete event simulator
	4.3.1 Event model
	4.3.1.1 Event parser

	4.3.2 Event dispatcher and event handlers
	4.3.3 Event generator
	4.3.3.1 Event macro

	4.3.4 Logging and statistics

	4.4 Summary

	5 Evaluation
	5.1 Simulation objectives
	5.2 Simulation scenario: email delivery
	5.2.1 Actor (sender) classification
	5.2.2 Impact of reputation on unimplemented service levels
	5.2.3 Interaction with clients pertaining to various actor classes
	5.2.3.1 Type 1 client – usual email sender
	5.2.3.2 Type 2 client – spammer
	5.2.3.3 Type 3 client – cautious email sender
	5.2.3.4 Type 4 client – malicious email sender

	5.2.4 Attacks on the model
	5.2.4.1 Reputation bootstrapping issue
	5.2.4.2 Extortion, denial of reputation and ballot stuffing
	5.2.4.3 Denial of Service affecting a server
	5.2.4.4 Denial of Service affecting the GRA
	5.2.4.5 Improvements against DoS

	5.2.5 Effects of global reputation, improvements
	5.2.6 Levels of service

	5.3 Summary

	6 Conclusion and Future work
	6.1 Summary of contributions
	6.2 Future work
	6.2.1 Extensions to identity infrastructure
	6.2.2 Policy-specific and implementation-specific extensions
	6.2.3 Framework specific extensions
	6.2.4 Further simulation

	6.3 Closing remarks

	References

