# University of Sussex

## A University of Sussex DPhil thesis

Available online via Sussex Research Online:

http://eprints.sussex.ac.uk/

This thesis is protected by copyright which belongs to the author.

This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given

Please visit Sussex Research Online for more information and further details

# Identification of *in vivo* Protein Targets of Nitric Oxide in Drosophila melanogaster

A thesis submitted to the University of Sussex for the degree of Master of Philosophy Jully 2010 By Shreya Saha School of Life Sciences The University of Sussex

## **Declaration**

I hereby declare that this thesis has not been and will not be, submitted in whole or in part to this or any other University for the award of any other degree.

Shreya Saha

Jully 2010

## Acknowledgements

I can not begin with anyone other than my supervisor, Dr. Ian J.H Roberts. Apart from sparing his lab for me, it is his patience, all-round guidance, support and encouragement during my lab work and write up, that enabled me to work successfully.

I extend my gratitude to my co supervisor Dr. Roger Guy Phillips, who had equipped me with the rudimentary knowledge of confocal microscopy and would like to thank him for all his valuable suggestions during my lab work.

I would like to convey my thanks to Dr. Alexander Brehm and his group for sharing the anti-Mi-2 antibody with me. I would like to thank Dr. Fumiko Hirose and his group for sending me the ani-Dref antibody.

I am thankful to my lab mate and friend Miss Anna Scott, for her tremendous help and suggestions during this project.

I can not forget to thank some very supportive friends of mine, Mrs Vidisha Krishnan, Mr Awoyemi Awofala, Dr. Sharada Ramasubramanyan, Mr Pavel Roy, Mr. G.V.N. Srikanth and Miss Nithya Palaniappan for their continuous encouragements.

I would like to convey my heartfelt regards to my parents and love to my sister for supporting me constantly, in spite of several problems.

| <u>Contents</u> |     |
|-----------------|-----|
| Title Page      | i   |
| Declaration     | ii  |
| Acknowledgement | iii |
| Contents        | iv  |
| Abstract        | Х   |
| Abbreviations   | xi  |

|                                                                              | _        |
|------------------------------------------------------------------------------|----------|
| Chapter 1: General Introduction                                              | 1        |
| 1.1. Brief introduction to cell signalling: NO as signalling molecule        | 1        |
| 1.2. Synthesis and Mode of action of NO                                      | 2        |
| 1.3. Nitric Oxide Synthases                                                  | 4        |
| 1.4. Physiological Roles of NO                                               | 6        |
| 1.4.1. Nitric Oxide signalling in smooth muscle                              | 6        |
| 1.4.2. Nitric Oxide signalling in platelets                                  | 6        |
| 1.4.3. Nitric Oxide signalling in nervous system                             | 6        |
| 1.4.4. Nitric Oxide and cell proliferation                                   | 7        |
| 1.5. NO donor molecules                                                      | 8        |
| 1.6. Study of NO by using <i>Drosophila melanogaster</i> as a model organism | 9        |
| 1.7. Technologies For Gene Manipulation In <i>Drosophila melanogaster</i>    | 10       |
| 1.7.1. Transposon associated gene manipulation                               | 10       |
| 1.7.2. Enhancer Trapping                                                     | 11       |
| 1.8. Previous research in laboratory                                         | 11       |
| 1.9. Why use salivary gland?                                                 | 12       |
| 1.10. A Brief introduction about Mi-2 and associated proteins                | 12       |
| 1.10.1. Mi-2 - A brief description                                           | 12       |
| 1.10.2. Mi-2 is a component of NuRD complex                                  | 12       |
| 1.10.3. Functional roles of Mi-2/NuRD                                        | 12       |
| 1.10.4. P66 the regulatory component of NuRD                                 | 14       |
| 1.10.5. Dref - An associated protein of Mi-2                                 | 15       |
| 1.11. Aims of the project                                                    | 16       |
| Chapter 2: Materials and Methods                                             | 17       |
| 2.1. General                                                                 | 17       |
| 2.1.1. Fly Husbandry                                                         | 17       |
| 2.1.2. Over expression using the Gal4-UAS system                             | 17       |
| 2.1.3. Generating single cell clones                                         | 18       |
| 2.1.4. Visualisation of protein expression in YFP tagged CPTI                | - •      |
| transgenic Drosophila lines                                                  | 18       |
| 2.1.5. <i>Ex vivo</i> culture and NO donor treatment                         | 19       |
| 2.2. Immunohistochemistry                                                    | 20       |
| 2.2.1. Antibody staining                                                     | 20       |
| 2.2.2. Primary and Secondary antibodies with their respective anim           | nal      |
| sera                                                                         | 21       |
| 2.3. Nuclei staining and measurement                                         | 21       |
| 2.4. Image Analysis on Velocity                                              | 22       |
| 2.4.1.Ouantitative analysis of YFP tagged protein localization in th         | e        |
| nuclei                                                                       | 22       |
|                                                                              | <br>(iv) |
|                                                                              | ()       |

| 2.4.2. Quantitative analysis of the volume of nuclei                          | 22           |
|-------------------------------------------------------------------------------|--------------|
| 2.4.3. Estimation of protein accumulation in the nuclei of clone              |              |
| Images                                                                        | 22           |
| 2.5. Statistical Analysis on ANOVA                                            | 23           |
| Chapter 3: Annotation and Screening of CPTI lines                             | 24           |
| 3.1. Introduction                                                             | 24           |
| 3.1.1. Brief introduction about protein trapping in Drosophila                | 24           |
| 3.1.2. Use of yellow fluorescent protein as a reporter in protein trap        |              |
| strategy                                                                      | 24           |
| 3.1.3. A brief introduction about NO donors                                   | 27           |
| 3.1.4. SNAP (S-Nitroso-N-acetylpenicillamine)                                 | 28           |
| 3.2. Results                                                                  | 29           |
| 3.2.1. Visualization of protein expression                                    | 29           |
| 3.2.2. Ex vivo NO treatment                                                   | 36           |
| 3.2.3. Shorter SNAP exposure of CPTI-000232 larvae                            | 39           |
| 3.3. Discussion                                                               | 42           |
| 3.3.1. Visualization of YFP tagged protein expression in CPTI                 |              |
| lines                                                                         | 42           |
| 3.3.2. The protein trapped in CPTI-000232 is a probable target of N           | 0            |
| action                                                                        | 42           |
| Chapter 4: NOS action on Mi-2/NuRD and associated proteins                    | 43           |
| 4.1. Introduction                                                             | 43           |
| 4.1.1. Mi-2- A probable target of NO                                          | 43           |
| 4.1.2. NO action on Simi                                                      | 43           |
| 4.1.3. NO action on Dref                                                      | 44           |
| 4.1.4. Study of NO action on Mi-2. Simi and Dref                              | 44           |
| 4.1.5. Does NO signalling and its antiproliferative action require            |              |
| Mi-2?                                                                         | 47           |
| 4.1.5.1. RNAi Approach                                                        | 47           |
| 4.1.5.2. <i>Mi-2</i> transheterozygous mutants                                | 49           |
| 4.2. Results                                                                  | 50           |
| 4.2.1. Analysis of YFP tagged Mi-2 <sup>CPTI-000232</sup> expression in whole | 00           |
| salivary glands expressing NOS2                                               | 50           |
| 4.2.2. Analysis of the expression of YFP tagged Mi-2 in NOS2                  |              |
| expressing single cell clones                                                 | 52           |
| 4.2.3. Visualisation of Mi-2 protein in single cell clones expressing         |              |
| NOS                                                                           | 54           |
| 4.2.4. Analysis of effect of Simj expression on NOS induced                   | -            |
| phenotype                                                                     | 58           |
| 4.2.5. Visualisation of Dref protein in single cell clones expressing NOS     | 60           |
| 4.2.6. Simultaneous visualisation of both Mi-2 and Dref proteins in           |              |
| single cell clones expressing NOS                                             | 64           |
| 4.2.7. Down regulation of Mi-2 expression in YFP tagged                       | 01           |
| Mi-2 CPTI-000232 using RNAi approach                                          | 69           |
| 4.2.8 Down regulation of Mi-2 expression by using Mi-2                        | 07           |
| transheterozygous mutants                                                     | 71           |
|                                                                               | ( <b>v</b> ) |
|                                                                               | < · /        |

| 4.2.9. Study of the phenotype imparted by NOS in a Mi-2 down                                                          |            |
|-----------------------------------------------------------------------------------------------------------------------|------------|
| regulated background                                                                                                  | 73         |
| 4.3. Discussion                                                                                                       | 75         |
| 4.3.1. NO alters Mi-2 localisation                                                                                    | 75         |
| 4.3.2. Simj does not alter the NOS mediated growth control                                                            | 76         |
| 4.3.3. NOS does not noticeably affect the localisation of Dref                                                        | 77         |
| 4.3.4. Regulation of growth by NO does not act through Mi-2                                                           | 77         |
| 4.3.5. A novel function of NO in the disruption of the <i>in vivo</i> Mi-                                             |            |
| 2/Dref protein complex                                                                                                | 78         |
|                                                                                                                       |            |
| Chapter 5: Effect of FOXO on Mi-2/NuRD and associated proteins                                                        | 80         |
| 5.1. Introduction                                                                                                     | 80         |
| 5.1.1. FOXO: The forkhead family transcription regulators                                                             | 80         |
| 5.1.2. Developmental roles of FOXOs                                                                                   | 80         |
| 5.1.3. Previous research in the laboratory on FOXO                                                                    | 82         |
| 5.1.4. Perspective of the present chapter                                                                             | 82         |
| 5.2. Results                                                                                                          | 83         |
| 5.2.1. Analysis of the effect of FOXO expression in the whole saliv glands of YFP tagged Mi-2 <sup>CPTI-000232.</sup> | ary/<br>83 |
| 5.2.2. Visualisation of Mi-2 protein in single cell clones expressing                                                 | ŗ          |
| FOXO                                                                                                                  | 85         |
| 5.2.3. Analysis of the effect of co expression of UAS-FOXO and U                                                      | JAS-       |
| simj on salivary gland growth                                                                                         | 88         |
| 5.2.4. Visualization of Dref protein in a single cell clones expressir                                                | ıg         |
| FOXO                                                                                                                  | 90         |
| 5.2.5. Simultaneous visualization of Mi-2 and Dref proteins in sing                                                   | le         |
| cell clones expressing UAS-FOXO                                                                                       | 94         |
| 5.3. Discussion                                                                                                       | 102        |
| 5.3.1. FOXO does not noticeably alter Mi-2 localisation                                                               | 102        |
| 5.3.2. Simj does not alter FOXO mediated reduced sized salivary g                                                     | land       |
| phenotype                                                                                                             | 102        |
| 5.3.3. FOXO does not markedly alter the expression of Dref                                                            | 103        |
| 5.3.4. A novel pattern of localisation of Mi-2 and Dref protein was                                                   |            |
| observed in FOXO expressing clone cells                                                                               | 103        |
|                                                                                                                       | 105        |
| Chapter 6: Interaction between Simj, Mi-2 and Dref                                                                    | 106        |
| 6.1. Introduction                                                                                                     | 106        |
| 6.1.1. The functional link between Simj and Mi-2/NuRD                                                                 | 106        |
| 6.1.1.1. Use of Simj up regulated system                                                                              | 107        |
| 6.1.1.2. Use of Simj down regulated system                                                                            | 107        |
| 6.1.2. The functional link between Simj, Mi-2 and Dref                                                                | 107        |
| 6.1.3. How Simj affects either of the proteins when Mi-2/Dref com                                                     | plex       |
| is disrupted?                                                                                                         | 108        |
| 6.2. Results                                                                                                          | 109        |
| 6.2.1. Localisation of Dref protein in the whole salivary glands over                                                 | r          |
| expressing Mi-2                                                                                                       | 109        |
| 6.2.2. Expression of Dref protein in whole salivary glands of <i>Mi</i> -2                                            |            |
| transheterozygous mutants                                                                                             | 112        |
|                                                                                                                       | (vi)       |
|                                                                                                                       |            |

| 6.2.3. Analysis of the phenotypic effect of Simj expression on sali-<br>gland size | vary<br>114  |
|------------------------------------------------------------------------------------|--------------|
| 6.2.4. Analysis of the phenotypic effect of Simj over expression or whole organism | 1 the<br>116 |
| 6.2.5. Analysis of expression of Mi-2 protein in the salivary gland                | s            |
| of larvae with different levels of Simj expression                                 | 118          |
| 6.2.6. Effect of Simj expression on Mi-2 localisation in single cell               |              |
| clones                                                                             | 123          |
| 6.2.7. Effect of Simj expression on Dref localisation                              | 128          |
| 6.3. Discussion                                                                    | 131          |
| 6.3.1. Increased Mi-2 content does not consistently change the                     |              |
| localisation of Dref protein                                                       | 131          |
| 6.3.2. Reduction in Mi-2 content leads to the up regulation of the                 |              |
| nuclear accumulation of Dref                                                       | 131          |
| 6.3.3. Organ autonomous Simj over expression significantly affect                  | S            |
| growth and size of salivary glands                                                 | 131          |
| 6.3.4. Up regulation of Simj leads to a reduction in Mi-2 level                    | 132          |
| 6.3.5. Simj affects localisation of both proteins after disruption of              | the          |
| MI-2/Dref complex                                                                  | 133          |
| Chapter 7: General Discussion                                                      | 135          |
| 7.1. Introduction                                                                  | 135          |
| 7.2. NO alters localisation of Mi-2                                                | 135          |
| 7.3. Regulation of growth by NO does not act through Mi-2                          | 136          |
| 7.4. A novel function of NO in the reorganisation of the <i>in vivo</i> Mi-2/Dref  |              |
| complex                                                                            | 137          |
| 7.5. Increased FOXO expression does not markedly alter the expression o            | f            |
| Mi-2 or Dref in single cell clones                                                 | 138          |
| 7.6. FOXO mediated growth arrest disrupts the <i>in vivo</i> Mi-2/Dref             | 120          |
| complex                                                                            | 139          |
| /./. Simj does not after NO and FOXO mediated reduced sized salivary               | 140          |
| 7.8 Simi affects sub cellular distribution of both the proteins after disrupt      | 140<br>ion   |
| of the Mi-2/Dref complex                                                           | 1/10         |
| 7.9 Increased Simi content leads to a reduction in Mi-2 levels                     | 140          |
| 7.10 Organ autonomous Simi over expression significantly affects growth            | n and        |
| size of salivary glands                                                            | 142          |
| 7.11. Future work                                                                  | 142          |
|                                                                                    | 144          |
| Appendices                                                                         | 144          |
| A. Fly slock used<br>A. 1. Ploomington stocks                                      | 144          |
| A 2 Fly stocks from CPTI                                                           | 144<br>1/1/  |
| A 3 Fly stocks Vienna Drosonhila RNAi center (VDRC)                                | 144          |
| A 4 Fly stocks from other sources                                                  | 144          |
| B. DATA acquired on image analysis software Velocity                               | 145          |
| B.1. Analysis of YFP tagged Mi-2 <sup>CPTI-000232</sup> expression in the whole    | le i ro      |
| salivary glands expressing NOS2                                                    | 145          |
|                                                                                    |              |

| B.2. Visuali        | zation of Mi-2 protein in single cell clones expressing                                                               | 7      |
|---------------------|-----------------------------------------------------------------------------------------------------------------------|--------|
| B.2.                | (i) Visualization of Mi-2 protein in GFP marked                                                                       | '      |
| cont                | rol clone cells 14                                                                                                    | 7      |
| B.2.                | (ii) Visualization of Mi-2 protein in single cell                                                                     |        |
| clon                | es expressing NOS2 15                                                                                                 | 1      |
| B.3. Visuali        | zation of Dref protein in single cell clones                                                                          |        |
| expressing <i>l</i> | NOS2 15                                                                                                               | 4      |
| B.3.                | (1) Visualization of Dref protein in GFP marked                                                                       | 4      |
| cont                | rol clone cells 15                                                                                                    | 4      |
| D.3.                | (I) Visualization of Diel protein in single cen                                                                       | 6      |
| B A Study of        | 15 st the phenotype imparted by NOS in a Mi-2                                                                         | 0      |
| down regula         | ted background 15                                                                                                     | 9      |
| B.4.                | i). Measurements of nuclei volume of third instar salivary                                                            | ,      |
| glan                | ds from wild type larvae 15                                                                                           | 9      |
| B.4.                | (ii). Measurement of nuclei volume of third instars salivary                                                          | y      |
| glan                | ds from larvae where expression of NOS2 was driven by                                                                 |        |
| c147                | 7-GAL4 16                                                                                                             | 1      |
| B.4.                | (iii). Measurement of nuclei volume of third instars                                                                  |        |
| saliv               | ary glands from larvae where UAS-NOS2 and UAS-                                                                        |        |
| RNA                 | Ai-Mi-2 were co expressed 16                                                                                          | 3      |
| B.4.                | (iv). Measurement of nuclei volume of UAS-NOS2                                                                        |        |
| over                | expressed third instar salivary glands from Mi-2                                                                      |        |
| trans               | heterozygous mutants 16                                                                                               | 4      |
| B.4.                | (v). Measurement of nuclei volume of unita instar sanvary                                                             | 6      |
| B 5 Analys          | 10  m m $-2  transmeterozygous mutants$ 10<br>is of the effect of EOXO expression in the whole salivary               | 0      |
| glands of Y         | FP tagged $Mi_2$ <sup>CPTI-000232.</sup> 16                                                                           | 8      |
| B 6 Visuali         | zation of endogenous Mi-2 protein in single cell clones                                                               | 0      |
| expressing I        | FOXO 17                                                                                                               | 0      |
| B.6.                | (i) Visualization of Mi-2 protein in single cell clones                                                               | Ŭ      |
| expr                | essing FOXO 17                                                                                                        | 0      |
| B.7.Visualiz        | ation of Dref protein in a single cell clones expressing                                                              |        |
| FOXO                | 17                                                                                                                    | 3      |
| B.7                 | (i) Visualization of Dref protein in GFP marked control                                                               |        |
| clon                | e cells 17                                                                                                            | 3      |
| B.7.                | (ii) Visualization of Dref protein in single cell clones                                                              |        |
| expr                | essing FOXO 17                                                                                                        | 6      |
| B.8. Analys         | is of the phenotypic effect of Simj expression on salivary                                                            | 0      |
| gland size          | //<br>(i) Manager of DADI at its a large later of a second second second second second second second second second se | 9<br>1 |
| B.8.                | 1) Measurement of DAPI stained nuclei size from yw third                                                              | n<br>D |
|                     | 1 sativaty granus $17(ii) Measurement of DAPI stained nuclei size from$                                               | フ      |
| D.0.1<br>caliv      | ary glands of UAS-simi containing third instar larvae                                                                 |        |
| whe                 | re expression of UAS-simi was not driven by c147-GAL4                                                                 |        |
| drive               | r 18                                                                                                                  | 0      |
|                     | 10                                                                                                                    | -      |

(viii)

| B.8.(iii) Measurement of DAPI stained nuclei size from             |     |
|--------------------------------------------------------------------|-----|
| salivary glands of third instar larvae where expression of         |     |
| UAS-simj was driven by c147-GAL4 driver                            | 183 |
| B.8. (iv) One way ANOVA analysis of the data shown in              |     |
| appendix B.8 (i), B.8 (ii) and B.8 (iii)                           | 186 |
| B.9. Effect of Simj expression on Mi-2 localization in single cell |     |
| clones                                                             | 187 |
| B.9. (i) Visualization of Mi-2 protein in single cell clones       |     |
| expressing <i>simj</i>                                             | 187 |
| B.9. (ii) Visualization of Mi-2 protein in single cell clones      | co  |
| expressing <i>simj</i> and <i>NOS2</i>                             | 189 |
| C. List of CPTI lines Annotated and Screened                       | 192 |
| C.1. List of CPTI lines Annotated                                  | 192 |
| C.2. List of CPTI lines Screened                                   | 192 |
|                                                                    |     |

# Bibliography

#### Identification of in vivo Protein Targets of Nitric Oxide in Drosophila melanogaster

A thesis submitted to the University of Sussex for the degree of Master of Philosophy

#### By Shreya Saha

School of Life Sciences

## May 2010

Nitric Oxide (NO) is known to alter cell proliferation and growth. This project investigated the molecular targets of NO, using the salivary glands of *Drosophila melanogaster* third instar larvae.

A screen of 75 transgenic *Drosophila* lines expressing Yellow Fluorescent Protein tagged proteins, for those that showed a rapid alteration in sub-cellular localization after organ culture with an NO donor was undertaken. This screen revealed Mi-2 as a target of NO action. This was confirmed *in vivo* as localization of Mi-2-YFP was altered in whole salivary glands expressing Nitric Oxide Synthase (*NOS2*). The localization of the endogenous Mi-2 protein was similarly altered in *NOS2* expressing single cells. A quantitative analysis using the image analysis software "Velocity" demonstrated an increase in the nuclear concentration of Mi-2 protein in these cells. Targeted expression of RNAi-Mi-2 as well as analysis of *Mi-2* transheterozygous mutant larvae revealed that NO can impart its reduced growth phenotype independently of Mi-2.

Dref can associate with Mi-2 and can control cell proliferation and growth. Localisation of Dref did not show any noticeable change in single cells expressing NOS. However when these cells were double labelled both with anti-Dref and anti-Mi-2 antibodies, the anti-Dref staining was altered. This indicates that NO can alter the availability of the Dref antigen by reorganising the Mi-2/Dref complex.

Mi-2 is a component of the NuRD complex. The effect of NO in altering the Mi-2/Dref complex was exploited to investigate the effect of *simj* (a regulatory component of NuRD), on either of the proteins after potential disassociation of the complex. The data demonstrated an independent effect of *simj* on the localization of each protein.

NO and FOXO regulate the expression of a common set of genes and FOXO is required for the anti growth properties of NO. Thus the effect of FOXO expression on Mi-2 and Dref protein distribution was determined. Although no consistent alteration of Mi-2 localization was observed, a quantitative analysis showed a large increase of Dref protein concentration in FOXO expressing cells. Double antibody staining of these cells with both anti-Dref and anti-Mi-2 antibodies showed a novel nuclear localization of the proteins imparted by FOXO. Thus this study has identified the regulation of the Mi-2/Dref protein complex as a possible growth control mechanism by NO and FOXO. (x)

# **Abbreviations**

| ACh                       | Acetylcholine                                  |
|---------------------------|------------------------------------------------|
| ADP                       | Adenosine diphosphate                          |
| ADMA                      | Asymmetric dimethylarginine                    |
| ANOVA                     | Analysis of variance                           |
| ATP                       | Adenosine triphosphate                         |
| BrdU                      | 5-bromo-deoxyuridine                           |
| BSA                       | Bovine serum albumin                           |
| cGMP                      | cyclic GMP                                     |
| CO <sub>2</sub>           | Carbon dioxide                                 |
| CPTI                      | Cambridge Protein Trap Insertion project       |
| DAPI                      | 4',6-diamidino-2-phenylindole, dihydrochloride |
| DMSO                      | Dimethyl sulfoxide                             |
| DNA                       | Deoxyribonucleic Acid                          |
| EDRF                      | Endothelium Derived Relaxing Factor            |
| FAD                       | Flavin adenine dinucleotide                    |
| FLP                       | Flippase                                       |
| FRT                       | Flippase recognition target site               |
| FMN                       | Flavin mononucleotide                          |
| FOXO                      | Forkhead-related transcription factors         |
| GAL4                      | Yeast protein that binds DNA                   |
| GFP                       | Green fluorescent protein                      |
| GSNO                      | S-nitrosoglutathione                           |
| H <sub>4</sub> bioprotein | (6R)-5,6,7,8-tetrahydro-lbiopterin (xi)        |

| L-NAME  | N@-nitro-L-arginine methyl ester            |
|---------|---------------------------------------------|
| L-NMMA  | L-monomethylarginine                        |
| LTP     | Long term potentiation                      |
| MAC     | Macrophage                                  |
| NADPH   | Nicotinamide adenine dinucleotide phosphate |
| NGF     | Nerve growth factor                         |
| NO      | Nitric Oxide                                |
| NOH-ARG | N-hydroxy-L-arginine                        |
| NOS     | Nitric Oxide Synthase                       |
| NMMA    | N <sup>G</sup> -monomethyl-L-arginine       |
| PBS     | Phosphate buffered saline                   |
| PBT     | Phosphate Buffered plus Triton              |
| RNA     | Ribonucleic Acid                            |
| RNAi    | RNA interference                            |
| SD      | Standard Deviation                          |
| SDMA    | Symmetric dimethylarginine                  |
| SG      | Salivary gland                              |
| siRISC  | siRNA-induced silencing complex             |
| siRNA   | Small interfering RNAs                      |
| SNAP    | S-nitroso-N-acetyl-penicillamine            |
| SNP     | Sodium nitroprusside                        |
| UAS     | Upstream activator sequence                 |
| VSMC    | Vascular smooth muscle cells                |
| wt      | Wild type                                   |
| YFP     | Yellow fluorescent protein                  |

## **CHAPTER 1: General Introduction**

## **<u>1.1.</u>** Brief introduction to cell signalling: NO as signalling molecule

Cell signalling is essential for the physiological functions, growth and biochemistry of cells. Cell signalling can be achieved by molecules which are expressed on the surface or secreted from one cell and interact with the receptors on or in other cells. These signalling molecules mediate a series of intracellular reactions which can regulate cell proliferation, differentiation, survival and metabolism (Alberts et al., 2002). There are two different types of cell signalling, one is contact dependent signalling, which is also referred as direct cell to cell signalling and occurs by the direct interaction with the neighbouring cells. The other is through the action of secreted signalling molecules (Alberts et al., 2002). Signalling, mediated by secreted signalling molecules can be of three different types, endocrine signalling, paracrine signalling and autocrine signalling (Hancock, 1997). In case of endocrine signalling, cells secrete signalling molecules into the circulatory system, which can carry the signal to target cells, distributed throughout the body. The main class of molecules in endocrine signalling are hormones, which, after release, diffuse and travel a long distance to impart their effect on a distantly placed second cell. In the case of paracrine signalling, the signalling molecules act as local mediators and affect the neighbouring cells present in the immediate environment. Neurotransmitters released from neurons, imparting their effect on neighbouring neurons, are good examples of paracrine signalling molecules. Cells involved in autocrine signalling release molecules which can bind back to their own receptors. Production of growth hormones by tumour cells, stimulating their own growth, is an example of autocrine signalling (Hancock, 1997). Signalling molecules range from cell surface receptor proteins, intracellular signalling proteins to simple gases. Hydrogen peroxide and carbon monoxide are simple gases acting as signalling molecules. Nitric Oxide (NO) is a vital and highly studied example of a gas acting as a signalling molecule (Hancock, 1997). By acting as a paracrine signalling molecule NO can regulate guanylyl cyclase activity, control neurotransmitter release and itself acts as a neurotransmitter. NO performs several physiological roles on the nervous and cardiovascular systems. Moreover, it plays a major role in the variety of physiological processes such as immune defence, regulation of cell death (apoptosis), cell motility and as a physiological modulator of cell proliferation (Villalobo, 2006). Due to all these vital roles NO was declared to be the molecule of the year (Culotta and Jr., 1992).

## 1.2. Synthesis and Mode of action of NO

Acetylcholine, which is released from axons, when activated neurons send an electrical impulses along their axon, plays an important role in cell signalling as a neurotransmitter (Hancock, 1997). It has been observed that acetylcholine acts on the muscarinic receptors of the cells of rabbit thorasic aorta and other blood vessels in the presence of endothelial cells, to trigger the synthesis of a substance which causes relaxation of vascular smooth muscles (Furchgott and Zawadzki, 1980). By using "sandwich mount method" it has been shown that, when the endothelial cells of rabbit aortic strips are stimulated by acetylecholine, a relaxing factor is released, termed Endothelium Derived Relaxing Factor or EDRF (Furchgott, 1983). A detailed comparative study between the biological and chemical properties of EDRF and NO revealed that the EDRF is NO (Ignarro LJ et al., 1987). The preliminary step of Nitric Oxide synthesis is triggered by the release of neurotransmitters like acetylcholine from the activated nerve terminus to the walls of blood vessels during several physiological processes such as dilation of the blood vessels, regulation of the contraction of smooth muscles. Acetylecholine acts on the endothelial cells and activates NOS (Nitric Oxide Synthase), catalysing the formation of NO from L-arginine. The guanidine group of Larginine is oxidized by using five electrons resulting in the synthesis of citruline and NO along with two molecules of water passing through an intermediary step in which hydroxyarginine ( $N^{\omega}$ ~-hydroxy-L-arginine) is formed. Formation of the intermediate,  $N^{\omega}$ ~-hydroxy-L-arginine (NOH-ARG) from L-Arginine, catalysed by NOS requires 1 equivalent of NADPH. The primary role of NADPH in the reaction is to contribute two electrons required for the oxidation of guanidino nitrogen of L-arginine. NOH-ARG undergoes three-electron-oxidation, with the electrons contributed by 0.5 equivalents of NADPH leading to the formation of NO and citruline (Griffith OW and DJ., 1995).



**Figure 1.1. NO biosynthesis from L-arginine.** The intermediate in the formation of NO, the enzyme bound N-hydroxy-L-arginine is shown. The dotted line shows recycling of L-citrulline back to L-arginine. Figure adapted from (Bruckdorfer, 2005).

After synthesis, NO diffuses rapidly across the plasma membrane and can enter neighbouring cells. Within neighbouring cells NO can react with iron bound to the active site of the enzyme guanylyl cyclase resulting in the increase of its enzymatic activity and in the production of the second messenger molecule cyclic GMP. cGMP induces muscle cell relaxation and dilation of blood vessels. It has been reported that the accumulation of cGMP is elicited by nitric oxide (CA Gruetter et al., 1981). A study of the biochemical interaction between guanylyl cyclase and NO demonstrated that 1 mol of NO-heme complex is bound to 1 mol of holoenzyme (heme containing guanylate cyclase) followed by a 50 fold increases in the specific activity of the heme bound guanylate cyclase (Ignarro et al., 1986).

However, there are many other effector molecules that NO has been shown to activate and much of the signalling from NO has been shown to be guanylate cyclase independent. NO is reported to activate delayed rectifier potassium channel ( $I_{ks}$ ) independent of soluble guanylate cyclase (Asada et al., 2009). A Study of NOS2 (Section 1.3) knockout macrophages of mammalian cells revealed that NOS2 mediates regulation of several genes by interferon gamma and the process is cGMP independent as reviewed in (Stamler et al., 2001).

NO is a free radical denoted as NO<sup>•</sup>, which means that it contains an unpaired electron. Because of the presence of the unpaired electron, NO is always in an unfavoured electronic state which makes it highly reactive. Being a highly reactive molecule NO is extremely unstable and thus has a very short half life of 3-6 seconds in tissue and 1-2 seconds in blood (Malinski) and thus its mode of action is restricted within local regions.

## **1.3. Nitric Oxide Synthases**

The enzyme which catalyses the synthesis of NO is NOS (Nitric Oxide Synthase), is a family of protein isoforms in vertebrates. A soluble, native, monomeric enzyme was purified from rat cerebellum by utilizing 2', 5' – ADP affinity column eluted with NADPH and showed a single 150-kDa band on SDS/PAGE (Bredt and Snyder, 1990). Three different isoforms of NOS have been purified from mammalian system: bNOS (brain NOS, now known as NOS1) (Schmidt et al., 1991), eNOS (epithelial NOS, now known as NOS3) (Pollock et al., 1991) and macNOS (macrophage NOS now known as NOS2) (Yui et al., 1991). Unlike the Drosophila NOS (dNOS) gene, the NOS2 gene used in this study, is not regulated by calcium (Regulski and Tully, 1995). As this mouse NOS2 gene is not regulated by  $Ca^{2+}$ , it was decided to use this in the present study instead of using the *dNOS* gene. This mouse *NOS2* cDNA has been previously expressed in Drosophila under the control of a heat shock promoter (Kuzin et al., 1996). The same NOS2 cDNA was cloned into pUAST (Brand and Perrimon, 1993) and four transformants were generated. These transformants were mapped to the X chromosome, two on the second chromosome and one on the third chromosome (Kimber, 2005). The transformant which was used for this particular study was UAS-NOS2, located on the X chromosome, as it showed the highest levels of expression.

Although NOS isoforms differ from each other in their sensitivity to react with various agrinine analogue, (Bredt DS and SH., 1994) in size, in expression levels and in regulation, they show a 30-40% amino acid homology at their C-terminal end and function as homodimers (Griffith OW and DJ., 1995). A structural study of cytokine-inducible mouse NOS isoform (NOS2) revealed that, two N-terminal catalytic oxygenase domains of each subunit interact with each other and form a dimmer in a head to head manner whereas the C-terminal reductase domains are extended from the end of each subunit. The oxygenase domain contains heme (iron protoporphyrin IX) and (6R)-5,6,7,8-tetrahydro-Ibiopterin (H<sub>4</sub>bioprotein) whereas the reductase domain contains two flavin molecules (one FMN and one FAD) all of which function as bound prosthetic groups or cofactors (Stuehr and Ikeda-Saito, 1992).



**Figure 1.2. Biochemical structure of NOS2**: Figure showing the head to head alignment of 56kDa of NOS oxygenase subunits and the 74kDa reductase subunits as extensions (Stuehr, 1997).

In addition to the prosthetic groups, the oxygenase domain has a binding site for Larginine and the reductase domain has a binding site for NADPH (Essam A. Sheta et al., 1994). The transfer of reducing equivalents from NADPH to the heme group by the FAD and FMN molecules facilitates the binding of oxygen with the oxygenase domain resulting in the step-wise oxidation of L-arginine (Stuehr, 1997). By performing steady state and stopped flow kinetic studies on a nNOS, Miller *et al* reported that resembling the cytochrome P450 reductase (CPR) the oxygenase domain of NOS receives the electrons required for the L-arginine oxidation from the reductase domain (R. Timothy Miller et al., 1999).

There are several inhibitors of NOS present in blood which prevent the synthesis of NO by NOS. Arginine methyl-transferases are the enzymes which catalyse the formation of several arginine analogues such as L-monomethylarginine (L-NMMA), asymmetric dimethylarginine (ADMA), symmetric dimethylarginine (SDMA) by methylating the guanidino nitrogen group of arginine residues within proteins leading to their post translational modification (Leiper et al., 1999). Proteolysis of proteins containing these arginine analogues causes the release of the methylarginines. These methylarginines [L-NMMA and ADMA but not SDMA] (Leiper et al., 1999) compete with L-arginine binding with NOS and result in the loss of the catalytic activity of NOS and hence synthesis of NO is prevented (Bruckdorfer, 2005).

## **1.4.** Physiological Roles of NO

#### 1.4.1. Nitric Oxide signalling in smooth muscle

NO plays a vital role in the lowering of blood pressure by allowing relaxation and dilation of smooth muscle. NO opposes the effect of vasoconstrictors and increases the smooth flow of blood, limiting the chances of hypertension (Naseem, 2005). In case of several diseases such as atherosclerosis, the process of endothelium regulated vasorelaxation is prevented indicating the loss of NO activity (Naseem, 2005). It has been reported that coronary arteries, obtained from the hearts of cardiac transplantation patients having atherosclerosis, show impairment of cardiac muscle relaxation mediated by EDRF/NO (Forstermann et al., 1988) (Louis J. IGNARRO et al., 1987).

## 1.4.2. Nitric Oxide signalling in platelets

A simultaneous study of platelet aggregation and NO production by activated platelets was performed by using NO-selective microelectrode in a standard platelet aggregometer which revealed that a NOS inhibitor, N $\omega$ -nitro-L-arginine methyl ester (L-NAME), reduced NO production (92%) and cyclic GMP production (33%) along with an increase of platelet aggregation (35%) (Freedman et al., 1997). Another study reported that aggregating platelets from patients suffering from acute coronary syndrome produces less NO as compared to controls (Freedman et al., 1998).

## 1.4.3. Nitric Oxide signalling in nervous system

NO displays many of the properties of a neurotransmitter. Neurons, whose transmission function is brought about with the release of NO are termed as Nitrergic Nerves (Salvador Moncada et al., 1997). In the central nervous system, NO plays a vital role as a principal non-adrenergic, non-cholinergic (NANC) neurotransmitter by regulating relaxation of smooth muscles in the cerebral circulations and also regulates aspects of learning and memory (Bredt, 1999). It has been reported that the deletion of both endothelial and the neuronal NOS isoforms, expressed in neurons, reduced the rate of induction of long term potentiation (LTP) which is a form of synaptic plasticity associated with learning and memory (Duncan and Heales, 2005). A detailed study has shown that the inhibitors of NOS can cause the destruction of spatial learning (Holscher,

1997). Smith et al reported the involvement of the powerful oxidant, peroxynitrile, in Alzeimer's disease, by measuring the immunoreactivity index of nitrotyrosine produced during the nitration of tyrosine residue by peroxynitrile, which is formed as a result of the reactions between NO and superoxides (Mark A. Smith et al., 1997).

## 1.4.4. Nitric Oxide and cell proliferation

Endogenous NO synthesized by NOS acts as an antiproliferative agent to down-regulate the proliferation of a variety of cells (Villalobo, 2006). The inhibition of proliferation of lymphocytes is mediated by the presence of exogenous L-Arginine and increasing the number of macrophages and is suppressed by the presence of N<sup>G</sup>-monomethyl-Larginine (NMMA), a specific inhibitor of nitric oxide synthesis (Denham and Rowland, 1992). The soluble cytokine, interferon-gamma, shows anti-proliferative activity on rat vascular smooth muscle cells with an increase in the level of cyclic GMP (cGMP) concentration by Nitric Oxide generation and this anti-proliferative activity of NO is repressed by N<sup>G</sup>-nitro-L-arginine, a Nitric Oxide (NO) synthase inhibitor (Nunokawa and Tanaka, 1992). NO induces the cytostatic effect of nerve growth factor (NGF) followed by growth arrest and changes the program of cell proliferation towards cell differentiation. Inhibition of NOS causes interruption in the cytostatic effect of NGF thus preventing cell differentiation (Natalia and Grigori, 1995). Another study reveals that vascular endothelial growth factor (VEGF) induced proliferation of BeWo cells is up regulated by the NOS inhibitor, L-NAME, but is repressed by the NO donor, sodium nitroprusside (Cha et al., 2001). An important role of NO is in growth arrest and cell cycle regulation of cancer and tumour cells as there is a negative relationship between proliferation of tumour cells and NOS activity in them. A study reported that in the neuroblastoma cell line (SK-N-BE) and in primary cerebellar granule cells, NO represses cell proliferation leading to cell differentiation along with a simultaneous decrease in the expression level of the proto-oncogene, N-Myc (Ciani et al., 2004). Measurements of cell growth, as determined by the rates of protein and DNA synthesis, has revealed that a concentration of 1-30 µM of NOHA (the principle intermediate formed during NO production) and NO (in the form of DETA/NO) inhibit proliferation of human Caco-2 tumor cells by 30-85% (Buga et al., 1998). Partially purified ribonucleotide reductase (RR) from L1210 mouse lymphoma cells, which is a rate limiting enzyme of DNA synthesis, has been inhibited leading to the inhibition of DNA

synthesis by NO produced by activated macrophages (Kwon et al., 1991). Therefore NO can impart its antiproliferative action by negatively regulating DNA synthesis.

## 1.5. NO donor molecules

NO is poorly soluble in water (only 2-3mM) and being a free radical gas, having a lone unpaired electron, NO is unstable in the existence of numerous oxidants (Tingwei Bill Cai). This chemical nature makes the introduction of NO to a biological system complex. Consequently several chemical agents, which can act as NO donors and can release NO in biological systems have been utilised to study the biochemical effects of NO. Hence the practical aspect of study of the antiproliferative effect of NO on normal cells requires extensive use of chemical NO donors. With the advancement of chemistry, numerous NO donors have been developed which have made possible the spontaneous discharge of NO and thus the controlled donation of NO in biological systems. Diverse NO donors differ in their chemical reactivity and also in NO release mechanisms as they have variation in their chemical structures. There are three different types of mechanisms of release NO by NO donors. The first way is to liberate NO spontaneously through thermal or photochemical self-decomposition which is performed by S-nitrosothiols, diazenium diolates, oximes. The second way is liberating NO by reacting with acid, alkali, metal and thiols which is accomplished by several NO donors such as organic nitrates, nitrites and syndnonimines and the third mode is oxidation, catalyzed by some enzymes such as NO synthases or oxidases which metabolically activate NO release from N-hydroxyguanidines. Being capable to release NO under specific conditions, numerous NO donors are found to be of great importance to treat diseases like hypertension and atherosclerosis which are caused by scarcity of NO production in biological systems. The NO donor Glyceryl trinitrate has been used as a vasodialator drug since 1879 and is also used to relieve acute attacks of angina pectoris (Tingwei Bill Cai). Besides being used as medicines, several chemical NO donors have already proved to be efficient tools for research into the treatment of diseases resulting from extreme proliferation and uncontrolled cell growth. By incorporating [<sup>3</sup>H] thymidine, performing flow cytometry and calculating cell numbers it has been established that Sodium nitroprusside (SNP) represses epidermal growth factor regulated development of vascular smooth muscle cells (VSMC) at G1/S phase of cell cycle, and also restrains EGF induced DNA synthesis along with an up-regulation of the level of cGMP. The

mechanism of antiproliferative activity of SNP mimics that of endothelium released NO which also participates in the regulation of vascular smooth muscle cells (VSMC) proliferation via a cGMP regulated mechanism (Yu et al., 1997). Another investigation reported evidence of cell cycle arrest during  $G_0/G_1$  phase when p53 deficient SW620 colon cancer cells were exposed to the NO donor S-nitrosoglutathione (GSNO) (Jeon et al., 2005). A study examining the antiproliferative effect of another NO donor, Glyco-2 SNAP, on the development and proliferation of MDA-MB-231 breast cancer cell lines discovered that 100µM concentration of this NO donor inhibited DNA synthesis of these cells. (Laudanski et al., 2001). The antiproliferative action of NO in fibroblasts requires p53 signaling as it has been shown that p53 lacking cell lines do not exhibit growth arrest when given a 30mins exposure to the NO donor SNAP (Nakaya N et al., 2000).

## 1.6. Study of NO by using Drosophila melanogaster as a model organism

The role of NO in halting cell growth and directing the cell cycle towards cell differentiation has been extensively studied by in *Drosophila*. The *Drosophila* NOS gene (*dNOS*) synthesises a 152kDa protein which shows 43% amino acid sequence similarity with the NOS isolated from rat neuronal cells (Regulski and Tully, 1995). NO acts as an antiproliferative agent allowing cell differentiation to occur at late larval stages, in transgenic *Drosophila* carrying the mouse *NOS2* cDNA gene under the control of heat shock promoter (Kuzin et al., 1996). The action of NO on the suppression of DNA Synthesis was shown by analysing BrdU (5-bromo-deoxyuridine) incorporation during S phase of imaginal disc growth of third instar larvae (Kuzin et al., 1996). Kuzin et al reported that imaginal tissues from larvae of transgenic flies carrying nitric oxide synthase gene (dNOS1) induced by the heat shock promoter showed fewer BrdU-labeled cells as compared to flies in which NOS expression is inhibited (Kuzin et al., 2000).

## 1.7. Technologies For Gene Manipulation In Drosophila melanogaster

*Drosophila* has long been a favourite organism for genetics and developmental research, but it was primarily through the use of several ingenious gene transformation technologies that the powerful tools of molecular biology were fully exploited.

## 1.7.1. Transposon associated gene manipulation

Among the foremost genetic tools for introducing transgenic DNA into flies are transposons such as P elements (Spradling and Rubin, 1982). The P element is 2.9 kb long transposon and contains 31 bp terminal inverted repeat sequences. It generates direct repeats of target DNA of 8 bp at the site of insertion upon integration. The P element has 4 open reading frames and encodes a protein called transposase, an enzyme required for transposition of the P element. Because of the expressional specificity of transposase in germ line cells transposition, mobilization of P element occurs only in the germ line. P elements can be engineered to carry a marker gene to identify transformants. Both selectable and visible markers can be used but the transformation efficiency is often higher if a visible marker (eye colour gene) is used instead of a selectable marker (neomycin resistance gene) (Spradling and Rubin, 1982). P elements can carry an insert up to 40kb (Haenlin et al., 1985). The most important use of P element is generation of transgenic flies. The drawback of using P element is their insertional specificity (Venken and Bellen, 2005). P element insertion often occurs within 400bp of the transcriptional start site of genes. Approximately two thirds of all P-element insertions occur in disproportionately few genomic locations termed hot or medium hot spots. To overcome this problem, use of the Piggy Bac vector has been employed which has no obvious insertional preference as reviewed in (Venken and Bellen, 2005). Unlike the P-element, Piggy Bac inserts do not frequently produce mutant alleles of the tagged gene. As a result, Piggy Bac insertions are not useful in generating new mutant alleles of genes. As remedy of this drawback a hybrid transposable element has been constructed by carrying a Piggy Bac backbone with P element inserted inside. Use of this hybrid vector, has increased the probability of random insertion (due to the presence of Piggy Bac backbone) along with mutagenesis (through imprecise excisions of the P-element) (Venken and Bellen, 2005).

## **1.7.2. Enhancer Trapping**

In this technique a reporter *LacZ* is fused to a weak promoter and is controlled by the activity of a nearby enhancer. The reporter gene used in this enhancer trap constructs was originally the *LacZ* gene from *Escherichia coli*, which codes for  $\beta$ -galactosidase (O'Kane and Gehring, 1987). The *LacZ* promoter fusion is mobilised within a P element and inserted in *Drosophila* (O'Kane and Gehring, 1987). LacZ fusions act as an efficient cell marker, which facilitate genetic and developmental studies. This strategy of gene manipulation made possible the visualization of tissue and cell specific expression of Lac-Z (O'Kane and Gehring, 1987). Enhancer trap strategies allow a thorough study of expression patterns of trapped genes, but are not informative at the protein level, particularly the subcellular localisations of proteins (Xavier Morin et al., 2001). A technique which establishes a correspondence between gene and protein and also facilitates the study of the gene product was necessary (Jarvik et al., 1996). A more recent strategy of "Protein Trapping" has been developed (Discussed in Section 3.1.1).

#### **1.8.** Previous research in laboratory

As the present investigation is a continuation of the previous research which was on going in our laboratory, a brief description of the previous findings will be given. Microarray analysis of tissue culture cells treated with 200µM of the NO donor S-nitroso-N-acetyl-penicillamine (SNAP), identified *Thor* as one of seven transcripts upregulated after 4hrs of NO treatment which was also up-regulated at 8 and 12hrs post NO exposure (Kimber, 2005). Further analysis, and comparison to other data sets, showed that expression of a common set of genes are regulated both by NO and the transcription factor FOXO (Kimber, 2005). Subsequently *Drosophila* FOXO was confirmed to be a target of NO (Scott, 2009).

Previous work attempted to identify other targets of NO. For this purpose YFP tagged CPTI (transgenic *Drosophila*) lines were used. Previously, salivary glands from more than 35 YFP tagged CPTI lines were examined after exposure to the NO donor S-Nitroso-N-acetylpenicillamine (SNAP). Among these, the Mi-2 tagged line CPTI-000232, showed consistent changes after SNAP exposure for 24hrs, 20hrs, 16hrs, 12hrs, 8hrs and 4 hrs respectively (Lasala, 2007). It was observed that the expression of the YFP tagged Mi-2 protein was higher after NO treatment compared to untreated control salivary glands. Up regulation of the expression of YFP tagged Mi-2 in CPTI-000232

established Mi-2 as another probable target of NO. It is possible that the up-regulation of the expression of Mi-2 after SNAP treatment may be controlled by FOXO.

## **<u>1.9. Why use the salivary gland?</u>**

The growth of larval salivary glands is achieved by endoreplication where there no cytokinesis after DNA replication resulting in an increase in cell size instead of cell number (Demerec, 1950) (Andrew et al., 2000). After determination of the salivary gland primordia (8hrs AEL) there is an increase in polytenization until the end of the third larval instar (Demerec, 1950). Hence, the individual cells of the mature third instar larval salivary glands are large (Demerec, 1950). This large cell and nuclear size makes the study of subcellular localization of proteins easier. Previous work has demonstrated that the salivary glands cells respond to NO expressed from within those cells with reduced growth and increased expression of NO dependent genes (Scott, 2009, Kimber, 2005). Exogenously provided NO has also been demonstrated to alter the localisation of some tagged proteins in a small scale pilot study (Lasala, 2007). I therefore decided to use larval salivary glands to study the subcellular accumulation of proteins in response to NO.

## **1.10.** A Brief introduction about Mi-2 and associated proteins

## 1.10.1. Mi-2 - A brief description

Immunofluorescence study with anti-Mi-2 positive sera of dermatomyositis patients recognized the 218 kDa nuclear human Mi-2 protein, encoded on chromosome 12 (Hans Peter Seelig et al., 1995). *Drosophila* Mi-2 is reported to contain a HMG box, two PHD fingers, two chromodomains and a ATPase domain (Bouazoune et al., 2002).

## 1.10.2. Mi-2 is a component of NuRD complex

Immunoprecipitation experiments performed with human Hela cells have demonstrated that Mi-2 is a component of multiprotein Nucleosome Remodelling Deacetylating (NuRD) complex (Ahringer, 2000) (Tong et al., 1998). The 2MDa NuRD complex (Ahringer, 2000) consists of eight polypeptides: MTA1/2, HDAC1, HDAC2, RbAp46, RbAp48, MBD3, p66 and Mi-2 (Ng and Bird, 2000) (Ahringer, 2000). The nucleosome remodelling activity of NuRD is provided by its Mi-2/CHD protein complex which contains helicase/ATPase domains (Ahringer, 2000). The histone deacetylases (HDAC 1/2) present in NuRD provides the histone deacetylation activity (Yi Zhang et al., 1998).

Therefore, NuRD contributes to both ATP dependent nucleosome disruption and also histone deacetylase activity (Yi Zhang et al., 1998) (Xue et al., 1998, Tong JK et al., 1998).

#### 1.10.3. Functional roles of Mi-2/NuRD

Transcriptional activators are commonly associated with histone acetyltransferases (HATs), whereas transcriptional repressors have a functional connection with histone deacetylases (HDACs) (Ng and Bird, 2000, Struhl, 1998). The functional link between histone deacetylation and transcriptional suppression became evident when a mammalian histone deacetylase, HDAC1, purified via its affinity for the histone deacetylase inhibitor trapoxin, was shown to be related to the yeast transcriptional repressor, RPD3 (Taunton et al., 1996). The exact mechanism through which the SIN3-RPD3 associated transcriptional repressor Ume6 decaetylates histone H4, leading to a transcriptional suppression of Ume6 binding site containing genes, has been demonstrated in Saccharomyces cerevisiae (Stephen E. Rundlett et al., 1998). Therefore, this evidence suggests that HDACs in NuRD play a vital role in transcriptional repression. The structural similarity of NuRD with the Sin3 complex suggests that, like Sin3, NuRD also takes part in transcriptional repression (Ayer, 1999). Further data linking NuRD with transcriptional repression is that one subunit of NuRD is the metastasis associated protein MTA1 (Toh et al., 1994). MTA1 has a high degree of similarity with the nuclear receptor corepressor, N-CoR (Xue et al., 1998). N-CoR, is an associated factor of the transcriptional repressor complex Sin3 and facilitates Mxi1/Sin3 regulated transcription of Myc family transcriptional repressors leading to overall growth arrest and tumour suppression. (Alland et al., 1997)

Mi-2, a core component of the NuRD complex, facilitates chromatin and nucleosome remodelling through ATP hydrolysis leading to a transcriptional activation (Wade et al., 1998). Mi-2 is a member of SWI2/SNF2 family proteins which show a DNA stimulated ATPase activity required to destabilise histone-DNA interactions in nucleosomes leading to binding of transcription factors to histone associated DNA (Pazin and Kadonaga, 1997). The two chromodomains present in Mi-2 are essential for the binding of nucleosomes to Mi-2 through protein-DNA binding during the preliminary stage of nucleosome remodelling (Bouazoune et al., 2002). It has been revealed that, the nucleosome structure is destabilized to permit the binding to DNA of sequence specific transcription factors and other transcriptional machinery (Tsukiyama and Wu, 1997). In

*Drosophila*, *Mi-2* mutant germ cells do not develop to produce embryos and this can be rescued by expressing a *Mi-2* transgene. This indicates that the Mi-2 protein is essential for germline development in *Drosophila*. (Kehle et al., 1998).

A sequence specific DNA binding protein Hunchback (Hb) initiates Hox gene repression whereas Polycomb group, PcG, proteins, maintain the suppression activity in Drosophila (Pirrotta, 1997). Drosophila Mi-2 has been assumed to take part in HoX gene repression. Hb requires NuRD in this repression activity via interactions with Mi-2 which in turn modifies the chromatin structure, facilitating the binding of PcG and DNA resulting in HoX gene repression (Kehle et al., 1998). The methylation of DNA at the dinucletide CpG is performed by the methyl CpG binding protein MeCp2, which in turn brings about transcriptional regulation. It has been reported that MeCp2 protein recruits the transcriptional repressor and decaetylase complex Mi-2/NuRD for gene regulation by DNA methylation in mouse (Nan et al., 1998). Therefore, the process of gene regulation by transcriptional silencing is achieved by a relationship between DNA methylation and histone decaetylation established by MeCp2 and Mi-2/NuRD. This regulation has also been shown in Xenopus laevis (Wade et al., 1999). In addition, the Mi-2a associated proteins, Ikaros and Aiolos, are associated with the NuRD complex (Kim et al., 1999) These proteins act as sequence specific DNA binding factors required for the development of the mouse haemopoietic system (Cortes et al., 1999). Ikaros is reported to be necessary in the regulation of mouse B and T cell differentiation (Georgopoulos et al., 1997).

In summary ATP hydrolysis dependent changes in chromatin structure such as acetylation, deacetylation and methylation of core histones, which regulate the contact of several transcription factors with DNA, are achieved by three core components of NuRD: Mi-2, HDAC1/2, and MBD3, resulting in the regulation of gene expression.

#### 1.10.4. P66 the regulatory component of NuRD

In *Drosophila*, the p66 component of NuRD is localised in the nucleus and represses wingless target genes and performs vital roles in development through the regulation of ecdysone-responsive genes (Kon et al., 2005). Purified MeCP1 contains methyl-CpG-binding protein, MBD2 along with all the components of Mi-2/NuRD complex including p66 (Feng and Zhang, 2001). A confocal microscopic study revealed the direct association between p66 protein family members and the MBD2/3 proteins, which are the components of MeCP1 protein complex in DNA methylation mediated

transcriptional repression (Brackertz et al., 2002). Analysis and characterization of the MeCP1 complex revealed two p66 homologues p66 and p68. These homologues, isolated from different organisms showed two highly conserved regions, CR1 and CR2. CR1 is involved in the attachment of p66 with the other MeCP1 components whereas CR2 functions in localisation of p66 and MBD2/3 to specific loci during DNA methylation mediated transcriptional repression (Feng et al., 2002). Another report suggests that the DNA demethylase, MBD2, which is a component of MeCP1 complex, interacts with Mi-2/NuRD and directs it to methylated DNA (Zhang et al., 1999). p66 is reported to interact with MBD2 and MBD3 (Kon et al., 2005) and over expression of p66 alters the localisation of MBD3 (Feng and Zhang, 2001). All these reports support the hypothesis that p66 involves NuRD in methylation mediated gene silencing through MBD2, and hence functions as a regulatory component of Mi-2/NuRD (Kon et al., 2005).

Some parts of this study will focus to determine the effect of NO on p66 in *Drosophila*. According to the gene naming in Flybase, p66 will be referred to as Simj in the rest of this thesis.

## 1.10.5. Dref - An associated protein of Mi-2

Antibodies raised against Dref (DNA replication related element factor) can coimmunoprecipitate Mi-2 in Drosophila which confirms the in vivo presence of Dref/Mi-2 complex (Hirose et al., 2002). Mi-2 genetically interacts with Dref. Mi-2 and Dref are found to negatively regulate each other's function. Binding of Mi-2 and Dref to polytene chromosome is mutually exclusive (Hirose et al., 2002). Active Dref is a 86kDa homodimeric polypeptide. BLAST searches revealed that the human homologue of Dref has 22% sequence homology with *Drosophila* Dref (Ohshima et al., 2003). DNAase I foot-printing analysis indicates that Drosophila Dref binds with the DRE (DNA replication related element) (Fumiko Hirose et al., 1993). DRE is the transcription regulatory region which contains an 8 bp palindromic sequences (5'-TATCGATA) and stimulates the promoter activity of DNA replication related genes (Fumiko Hirose et al., 1993). Dref contains 701 amino acids (Hirose et al., 1996). Proliferating cell nuclear antigen (PCNA) interacts with DNA polymerase during DNA synthesis. The DNA binding region of PCNA probably functions to increase the processivity of DNA polymerase (Yamaguchi et al., 1990). The presence of the 8 base pair DRE sequence was identified in both the DNA polymerase  $\alpha$  and PCNA genes

(Hirose et al., 1991). The DRE sequence can effect within 1.4 kb from the transcription initiation site and its presence in the DNA polymerase  $\alpha$  and PCNA gene promoters suggests that expression of both the genes is regulated by Dref (Fumiko Hirose et al., 1993). More than 150 genes which are involved in several physiological reactions related to cell proliferation carry DRE sequences. This indicates that expression of these genes is likely to be controlled by Dref (Matsukage et al., 2008). A gradual decrease in the expression of Dref is mediated by several differentiation related transcription factors and suggests differentiation-coupled suppression of cell proliferation by DRE/Dref (Matsukage et al., 2008). Parts of this study will concentrate on the effect of NO on the Mi-2 associated protein Dref.

## **<u>1.11.</u>** Aims of the project

The primary aim of this study was to identify the *in vivo* protein targets of Nitric Oxide signalling in *Drosophila melanogaster* particularly from the perspective of cell proliferation, growth and development. As previous work in the laboratory had identified Mi-2 as a target of NO, the present study was focused on the confirmation and extension of these previous results. This study extended the understanding of the effects of NO on Mi-2 and its associated proteins.

Previous data in the laboratory also identified FOXO as a probable target of NO (Scott, 2009) and revealed that a common set of genes are regulated by both NO and FOXO signalling (Kimber, 2005).

Therefore, this research also focused on the analysis of whether the effect of NO on Mi-2 is regulated by FOXO. Moreover, the dependency of NO on Mi-2 for growth regulation was also determined.

Although the core area of the present research is focused on the study of the effect of NO on Mi-2 and associated proteins, another aspect of the project covers the annotation and analysis of several YFP tagged transgenic *Drosophila* lines generated by Cambridge Protein Trap Insertion project (CPTI). Records of this can be obtained from CPTI created *Drosophila* database "The Flannotator". In addition, a screen for other targets of NO was also performed by exploiting YFP tagged CPTI transgenic *Drosophila* lines.

## **Chapter 2: Material and Methods**

## 2.1. General

## 2.1.1. Fly Husbandry

*Drosophila* stocks and crosses were grown on D+ food, in 8cm x 2.5cm plastic vials, sealed with either cotton wool or rayon balls. Flies were raised at either  $25^{\circ}$ C or  $18^{\circ}$ C on a 12 hour light-dark cycle. Adult flies were observed using CO<sub>2</sub>. Dissection of third instar larvae was performed using microscope with a Microtec MFO-90 light source.

## **D+ Glucose Food Media**

Agar 40g D+ Glucose anhydrous 551g (Fisher Scientific) Yeast 143g Sucrose 185g Maize meal 236g Propionic acid 25mls Nipagen 10% w/v 82mls Water 5500mls

## Method

Yeast and anhydrous D+ Glucose were mixed to prepare a paste by using a small amount of water. The agar and maize were mixed with the rest of the water and were boiled together to dissolve. The paste was then added and the mixture was brought to the boil again. Lastly the mixture was allowed to cool before pouring into plastic vials or glass bottles.

## 2.1.2. Over expression using the Gal4-UAS system

The Gal4-UAS system as described in (Greenspan, 1997) and in (Ornitz et al., 1991) was utilized for over expression of specific genes. The gene to be over expressed was linked to an element containing multiple UAS (upstream activator sequence) sequences (Brand and Perrimon, 1993, Tuan Rocky. S and Lo W Cecillia, 2000). The transcription factor GAL4 binds to UAS and drives the transcription of the desired gene subcloned downstream of UAS. Flies carrying the gene to be expressed linked to UAS sequence,

were crossed to flies that carrying the Gal4 coding sequence fused to a tissue specific promoter or enhancer. Offspring carrying both the UAS and Gal4 inserts were observed.

## 2.1.3. Generating single cell clones

Single cell clones were generated by using a combination of UAS-GAL4 and FLP/FRT technique (Tuan Rocky. S and Lo W Cecillia, 2000). FLP is a site-specific recombinase encoded by the S. cerevisiae 2µm plasmid. The expression of FLP is regulated by a heat shock promoter, so the recombinase is also referred as hsFLP. FLP efficiently catalyzes recombination between two copies of its specific 34 bp recognition site (called the Flp recognition target (FRT). A heat shock FLP construct was used to remove a segment of DNA flanked by FRT sites, which lies in between the Actin5C promoter and the Gal4 driver, preventing the expression of the later. After the excision of the FRT cassette ubiquitous expression of the GAL4 driver occurs under the control of Actin 5C promoter followed by expression of the UAS tagged gene of interest (Duffy, 2002) (Tuan Rocky. S and Lo W Cecillia, 2000). Recombination was induced at a low level, 24-48 hours after egg laying (AEL), (Demerec, 1950) by heat shocking the larvae for between 4 to 5 and half minutes. This system produced single cells expressing UAS-GFP/UAS-mRFP as a marker or simultaneously expressing the marker and UAS-NOS (or any other gene of interest). The single cells expressing NOS2 produced by this experimental design could then be used to study the molecular and cellular consequences of high levels of NO production as compared to surrounding wild type cells which are not affected by Flp mediated recombination thus do not over express the gene of interest.

## **2.1.4.** Visualisation of protein expression in YFP tagged CPTI transgenic *Drosophila* lines

## **Materials:**

1xPBS (10xPBS: 1.37M NaCl, 0.1M Na<sub>2</sub>HPO<sub>4</sub>, 0.01M NaH<sub>2</sub>PO<sub>4</sub>; pH7.4).

## Method:

The coordinating team of Department of Genetics, University of Cambridge, have generated CPTI-YFP transgenic *Drosophila* lines. In each transgenic *Drosophila melanogaster* line a particular gene is tagged by utilizing a fluorescent tagging method,

where YFP is used as a reporter gene to study the expression of the tagged gene (Section 3.1.2). 150 CPTI transgenic *Drosophila* lines were examined to study the expression of YFP tagged genes in different tissues. Third instar larvae were used as sources of three sample tissues (the brain, the imaginal discs, and the salivary gland) to study the expression of the genes tagged with. Larvae were dissected in 1X PBS and sample tissues were mounted on clean glass slides. Images of the tissues were collected using a Zeiss LSM 510 Meta Laser scanning Confocal microscope at 488nm, and modifying the excitation to avoid fluorescence saturation.

## 2.1.5. Ex vivo culture and NO donor treatment

## Materials

1xPBS (10xPBS: 1.37M NaCl, 0.1M Na<sub>2</sub>HPO<sub>4</sub>, 0.01M NaH<sub>2</sub>PO<sub>4</sub>; pH7.4).
SNAP (S-Nitroso-N-acetylpenicillamine) (Sigma Aldrich, N 3398, original stock
20mM dissolved in DMSO)
DMSO (Sigma Aldrich).
Schneider's tissue culture medium (Gibco-BRL, USA).

## Method

Salivary glands from CPTI lines were treated with SNAP. 1µl 20mM SNAP was added into 95ul of Schneider's tissue culture medium to achieve an ultimate SNAP concentration of 200µM, which is optimum to stop cell proliferation and growth but not affect viability (Kimber, 2005). Salivary glands were incubated in this mixture for 16-17 hours or 4 hours. In all incubations one of a pair of salivary gland from a larva was treated with SNAP, whereas, the other of the same pair of gland, from the same larva was treated with DMSO (1µl DMSO in 95µl of Schneider's tissue culture medium) as control. Images of both the SNAP treated and DMSO treated) glands were collected by using a Zeiss LSM 510 Meta Laser scanning Confocal microscope at 488nm, modifying the excitation levels to avoid fluorescence saturation.

The CPTI lines which consistently showed changes in expression after SNAP exposure were chosen for shorter treatment with SNAP. Two pairs of salivary glands were taken from two different larvae of a particular CPTI line. One of a pair of salivary gland was incubated in a mixture of  $1\mu$ I SNAP + 95ul of Schneider's tissue culture medium for 0.5hrs minutes and subsequently for 3.5 hours in 1µl DMSO + 95ul of Schneider's tissue culture medium. The other of the same pair of salivary gland was incubated in the similar mixture of SNAP (1µl SNAP + 95ul of Schneider's tissue culture medium) for 4 hrs. One of the another pair of salivary gland from the same CPTI line was incubated in 1µl SNAP+ 95ul of Schneider's tissue culture medium for 0.5hrs and subsequently for 3.5 hours in 1µl DMSO + 95ul of Schneider's tissue culture medium. The other of the same pair was incubated in 1µl DMSO + 95ul of Schneider's tissue culture medium. The other of the same pair was incubated in 1µl DMSO + 95ul of Schneider's tissue culture medium for 4hrs. After incubation images of the four different salivary glands given different treatments images were collected as above.

## 2.2. Immunohistochemistry

## 2.2.1. Antibody staining

## Materials

1xPBS (10xPBS: 1.37M NaCl, 0.1M Na<sub>2</sub>HPO<sub>4</sub>, 0.01M NaH<sub>2</sub>PO<sub>4</sub>; pH7.4).
4% Paraformaldehyde in 1xPBS.
100% Methanol.
PBT (1xPBS, 0.1% Triton X-100, 0.2% BSA).
Appropriate primary and secondary antibodies (Section 2.2.2.).
Normal Goat and Horse sera (Sigma) (Section 2.2.2.)
DAPI 1:20,000 in 1x PBS with 0.1% Triton X-100.
Aquamount (Polyscience).

# Method

Wandering third instar larvae were dissected by inversion and fixed in 4% paraformaldehyde for 20 minutes at room temperature. Tissue was then washed 2x 5min in 1xPBS. If the tissue was to be stored it was washed twice in Methanol and stored at  $-20^{\circ}$ C in Methanol. The tissue was then washed in 1xPBS before making it permeable in PBT for 2 x 30 minutes. The tissue was then incubated in primary antibody overnight at 4°C. Primary antibody was removed and stored, and the tissue was washed 4 x 20 minutes in PBT at room temperature. The tissue was rinsed x 2 in PBT containing 2% animal sera compatible for the respective secondary antibody (Section 2.2.2) then

incubated with secondary antibody in PBT with 2% animal sera (suitable with the secondary antibody being used) at room temperature for 2 hours. The tissue was then washed 4 x 15 minutes in PBT at room tem

perature. DAPI staining of tissue was performed for 15 min. Tissue was then washed 2x 5minutes in 1xPBS before dissection. The required tissues were mounted on a glass slide in Aquamount and examined on a LSM Zeiss inverted-LSM 510 META COMBI Confocal Microscope with Coherent Enterprise UV laser using 40x water lens.

## 2.2.2. Primary and Secondary antibodies with their respective animal sera

## **Mi-2 antibody:**

Both N-terminus and C-terminus rabbit anti-dMi-2 (Brehm et al., 2000) were gifts from Alexander Brehm, used at 1:1000.

Secondary antibody: goat anti-rabbit Cy5 IgG (Jackson ImmunoResearch Laboratories, Inc.) used at 1:100 in 2% goat sera.

## Dref antibody:

Mouse anti-Dref (Hirose et al., 2002) was a gift from Fumiko Hirose, was used at 1:100. Secondary antibody: horse anti-mouse Cy5 IgG (Jackson ImmunoResearch Laboratories, Inc.) used at 1:100 in 2% horse sera.

Goat anti-mouse Alexa fluor 555 IgG (Invitrogen, Molecular Probe) used at 1: 200 in 2% goat sera.

## 2.3. Nuclei Staining and Measurement

## Materials

1xPBS (10xPBS: 1.37M NaCl, 0.1M Na<sub>2</sub>HPO<sub>4</sub>, 0.01M NaH<sub>2</sub>PO<sub>4</sub>; pH7.4)
4% Paraformaldehyde in 1xPBS
DAPI: 1:20,000 in 1x PBS with 0.1% Triton X-100
Aquamount (Polysciences)

# Method

Wandering third instar larvae were dissected by inversion and fixed in 4% paraformaldehyde for 20 minutes. Tissue was then washed 2x 5min in 1xPBS. The

tissue was then incubated in diluted DAPI solution of for 15 min. Tissue was then washed 2x 5 minutes in 1xPBS before dissection. Tissues were mounted on a slide in Aquamount and examined on a Zeiss AxioPhot Microscope at 40x.

## 2.4. Image Analysis on Velocity

Confocal images were analysed using quantitative software package from velocity (Improvision / Perkin Elmer) (http://www.cellularimaging.com/products/Volocity). which generates 3D image of the acquired stacks.

## Method

## 2.4.1. Quantitative analysis of YFP tagged protein localization in the nuclei

Nuclei from 5 pairs of salivary gland images (5 experimental and 5 control genotypes) were captured on velocity through the Z axis to cover the YFP fluorescence in whole section thickness. YFP fluorescence of those nuclei which were available up to 10  $\mu$ m depth of image Z stack were measured. Sensitivity settings of confocal microscope were kept constant between a control and experimental pair but not necessarily between different pair of comparators. Hence, the threshold point in velocity was kept constant for all the nuclei of a particular pair of control and experimental comparators. Additional analysis and data presentations were performed by exporting velocity acquired datasets into Microsoft Excel.

## 2.4.2. Quantitative analysis of the volume of nuclei

DAPI staining was performed following the same method mentioned in section 2.3. Using velocity, xy, xz and yz dimensions of nuclei were constructed from Z section series of stacks from salivary gland images of different genotypes to cover the entire volume of nuclei. The threshold point was kept constant for all the nuclei of a particular salivary gland image. Additional analysis and data presentations were performed by exporting velocity acquired datasets into Microsoft Excel.

## 2.4.3 Estimation of protein accumulation in the nuclei of clone images

Using velocity, xy, xz and yz dimensions of nuclei were constructed from Z stacked image planes of both the clone cell and the non adjacent wild type cells of a particular image to encompass the protein accumulation in the whole section. In this case,
intensity of protein localization in the nuclei of clone cell was compared with that of the non adjacent wild type cells of that particular salivary gland. Hence, sensitivity settings of confocal images differed for every image. Therefore, the threshold point in velocity was kept constant for all the nuclei of a particular salivary gland image. Additional analysis and data presentations were performed by exporting velocity acquired datasets into Microsoft Excel.

## 2.5. Statistical Analysis on ANOVA

## Method

Statistical comparison of nuclear size between genotypes was made using one way ANOVA on MINI tab statistical software package. During the analysis p < 0.05 was taken for indicating statistically significant difference across the comparative genotypes. A post hoc Tukey analysis was undertaken on MINI tab for further accurate analysis of nuclear size among the experimental and control genotypes.

# **Chapter 3: Annotation and Screening of CPTI lines**

## 3.1. Introduction

#### 3.1.1. Brief introduction about protein trapping in Drosophila

Protein traps were first used as "CD tagging" in *Chlamydomonas* and later in mammalian cells (Jarvik et al., 1996). In CD tagging the gene is tagged by sequence specific nucleotides and the protein is tagged by sequence specific peptide. As these tags are unique, use of sequence specific nucleotide or antibody probes facilitates the identification and analysis of the functional properties of the gene at the protein level (Jarvik et al., 1996).

CD tagging has been applied to develop a protein trap system which makes use of the P element transposon to carry green fluorescent protein (GFP) as a mobile exon. These GFP fusions facilitate the study of sub-cellular and cellular distribution of the fusion proteins in live tissues (Xavier Morin et al., 2001). GFP was originally cloned from the jellyfish *Aequorea Victoria* (Tsien, 1998). The biggest advantage of using GFP as a reporter is, it has made possible the study of subcellular localisation of proteins in living cells. Hence the investigation of the movement of proteins and their interaction with cellular components are possible by live cell imaging (Lippincott-Schwartz et al., 2001).

## 3.1.2. Use of yellow fluorescent protein as a reporter in protein trap strategy

Yellow fluorescent protein (YFP) is a variant of GFP and has found to be more useful in biological systems because of its intense fluorescence, brightness and reduced sensitivity to environmental factors such as pH and ionic strength (Rekas et al., 2002). Moreover, the use of YFP as a reporter has overcome the problem of the slow maturation shown by GFP (Nagai et al., 2002). Therefore, a protein trap strategy using YFP as a reporter gene was developed. A network of *Drosophila* researchers in the UK of thirty different universities, co-ordinated by the Department of Genetics, University of Cambridge, has established the Cambridge Protein Trap insertion (CPTI) Project. The scientists of CPTI project make use of hybrid vectors combining Piggy Bac and Pelements. These vectors contain the following features:

- The mini white gene to track the element in stocks.
- Affinity purification tags: StrepII and FLAG.
- YFP exon.
- Splice accepter and splice donor site.



#### Figure 3.1. PiggyBac construct Figure adapted from (E. Ryder et al.) PB = Piggybac ends P = P element ends



# Figure 3.2. Diagrammatic representation of mRNA and protein production from an endogenous gene.

After transcription of mRNA the introns are spliced out. The spliced mRNA product is translated to protein.

Figure adapted from (E. Ryder et al.)



# Figure 3.3. Diagrammatic representation of transcription and translation of a fluorescent tagged protein in YFP protein trap

The YFP construct contains splice acceptor (SA) and splice donor (SD) sites. Transcription results in incorporation of SA and SD sites into the YFP fused spliced mRNA. If the PiggyBac element transposes into the intron of a gene in the correct orientation and frame, a functional YFP fusion protein will be expressed (E. Ryder et al.).

In the Piggy Bac and P-element hybrid vector, YFP reporter, devoid of initiation and stop codons, flanked by SA (splice accepter) and SD (splice donor), is used as a mobile artificial exon. If the PiggyBac transposes into the intron in a correct orientation, then the splicing will take place at the SA and SD sites and the remaining YFP exon is inserted into the spliced mRNA product. If the YFP exon is inserted in the correct frame, the protein will be translated from the YFP fused mRNA resulting in a YFP expressing fusion protein (E. Ryder et al.). The researchers of CPTI project have created a new *Drosophila* database termed "The Flannotator" which allows annotation and characterization of the expression patterns of YFP tagged protein trap lines at all stages of development and all tissue types. "The Flannotaor" acts as a software package for the storage of annotated gene expression patterns in *Drosophila melanogaster* (E. Ryder et al., 2009).

Experiments of this chapter were designed for annotation of several YFP tagged protein trap transgenic *Drosophila* lines created and supplied by the coordinating team of Cambridge Protein Trap Insertion Project (CPTI). Another aspect of this chapter was to undertake a genetic screen to search for molecular targets of NO action by examining the effect of NO on YFP tagged proteins of the CPTI lines.

#### 3.1.3. A brief introduction about NO donors

NO is poorly soluble in water (only 2-3mM) and being a free radical gas, having a lone pair of electron NO is unstable in the existence of numerous oxidants Hence, the practical aspect of study of the antiproliferative effect of NO on normal cells of different tissue origin requires the use of chemical NO donors (Tingwei Bill Cai, 2005). A comparative study of the antiproliferative effect between five different NO donors (DEA /NO•, PAPA/NO•, SPER/NO•, DPTA/NO•, DETA/NO•) was performed after exposing rat aortic smooth muscle cells (RA-SMC) to the NO donors for different time periods. The most antiproliferative effect was shown by 500  $\mu$ m concentration of DETA/NO as cell growth was completely inhibited on 1<sup>st</sup>, 3<sup>rd</sup>, and 5<sup>th</sup> days as confirmed by a 7 days measurement study of the cell numbers (Daniel L. Mooradian et al., 1995). A concentration of 10<sup>-4</sup> M to 10<sup>-3</sup> M, of a chemical NO donor PAPA NONOate (pNO) was reported to impart cytostatic effects by inhibiting ribonucleotide reductase, within 24-48hrs, which is similar to the cytostatic effect of NO (Jarry et al., 2004).

#### 3.1.4. SNAP (S-Nitroso-N-acetylpenicillamine)

An advantage of SNAP (S-Nitroso-N-acetylpenicillamine) is, it can release NO within 30 minutes which is much shorter time period compared to that of the other NO donors. The antiproliferative action of NO in fibroblasts acts through the p53 signaling pathway. Cell lines lacking p53 are unable to accomplish growth arrest when given a 30mins exposure to SNAP. It has been shown that, a 30mins exposure of NIH3T3 cell lines to SNAP induces the phosphorylation of Ser18 and Ser373 residues in the active sites of p53, leading to increased cellular level of p53 (Nakaya et al., 2000).

Chemical structure of SNAP (S-Nitroso-N-acetylpenicillamine) (Butler and Rhodes, 1997)



SNAP and other S- nitrosothiol compounds are generated by a reaction between thiols and  $NO^+$  generating nitrous acid,  $N_2O_3$  or an alkyl nitrite (Butler and Rhodes, 1997).

 $RSH + NO^+ \longrightarrow RSNO + H^+$ 

 $RS^- + RONO \longrightarrow RSNO + RO^-$ 

S- nitrosothiol compounds decompose to produce corresponding disulphide and NO (Butler and Rhodes, 1997).

RSNO  $\longrightarrow$  NO +  $\frac{1}{2}$  RSSR

Three structurally and chemically dissimilar vasodilator drugs: sodium nitroprusside, Snitroso-N-acetylpenicillamine (SNAP) and isosorbide dinitrate along with 8-bromocGMP dose dependently inhibit the mitogenesis and proliferation of rat vascular smooth muscle cells. This inhibitory effect is repressed by the NO scavenger haemoglobin but is strengthened by superoxide dismutase, which implies that NO has been formed by theses drugs and acts as the eventual effector (Garg and Hassid, 1989). The experiments of this chapter principally focus on the annotations of CPTI lines and on the screening of CPTI lines which respond to *ex vivo* application of NO.

# 3.2. Results

# 3.2.1. Visualization of protein expression

The coordinating team of Department of Genetics, University of Cambridge, have generated CPTI-YFP transgenic *Drosophila* lines. As discussed above (Section 3.1.2), in each transgenic *Drosophila* line a particular gene is tagged with YFP to study the expression of the YFP tagged protein. 100 CPTI lines (listed in Appendix C.1) were examined to study the expression of YFP tagged proteins in different tissues. The expression patterns of the CPTI lines were annotated by using standard *Drosophila* anatomy ontology and corresponding controlled vocabulary (CV) terms mentioned in Flybase (http://flybase.org/).

Third instar larvae of the CPTI lines were used as sources of three sample tissues (brain, imaginal discs, and salivary glands) to examine the expression of the tagged gene. Images of the tissues were collected using a Zeiss LSM 510 Meta Laser scanning Confocal microscope at 488nm, by modifying the excitation levels to avoid fluorescence saturation (Fig 3.4, 3.5, 3.6 and 3.7). Images of the tissues of 75 CPTI lines were uploaded to the Flannotator database (http://www.flyprot.org).



Figure 3.4 Examples of protein trap insertions showing expression of YFP in cerebral hemisphere, ventral ganglion, leg discs and eye antennal discs of third instar larvae of CPTI-000944 transgenic *Drosophila*. CPTI-000944 image undertaken at 6% laser excitation (Zoom 1) Black arrow - Ventral ganglion. Red arrows - Cerebral hemisphere. Blue arrow - Antenna disc. Purple arrows - Leg discs. Scale bar = 100 um.



Figure 3.5 Protein trap insertion showing the expression of YFP tagged genes in wing discs, haltere discs, and in leg discs of third instar larvae of CPTI-000239 line.

Image undertaken at 3% laser excitation (zoom 1.4)

Black arrow - Wing disc. Red arrow - Haltere disc. Purple arrow - III Leg disc. Blue arrow - Trachea. Scale bar = 100 μm.

#### LOW POWER (10X)

#### HIGH POWER (63X)



# LOW POWER (10X)

#### E CPTI-001403



#### F CPTI-100038



## HIGH POWER (63X)





# G CPTI-002264





#### LOW POWER (10X)



# Figure 3.6 Examples of YFP expression in salivary glands of third instar larvae from 9 different CPTI lines.

A) Subcellular localisation of YFP was observed in the nucleus, but no expression was seen in the nucleolus of mature larval salivary gland cells of CPTI-000239.

B) Uniform expression of the YFP tagged protein was seen throughout the nucleus of salivary gland cells of CPTI-001488.

C) The nuclear expression of YFP in CPTI-002035 was not found to be uniform. The nucleolus was not expressing the YFP tagged protein.

D) Localisation of the YFP tagged protein was observed to be distinctly nuclear membrane associated in the larval salivary gland cells of CPTI-001735.

E) In CPTI-001403 the expression of YFP in salivary gland cells was predominantly cell membrane-associated and not nuclear.

F) Salivary gland of CPTI-100038 showed a cytoplasmic, cell membrane bound and perinuclear distribution of the YFP tagged protein.

G) Although some traces of cytoplasmic expression was found, the YFP tagged protein was predominantly cell membrane and nuclear membrane associated in CPTI-002264.

H) & I) subcellular localisation of the YFP tagged protein was exclusively cell membrane associated in case of the salivary gland cells of CPTI-001589 and CPTI-001718.

35



Figure 3.7 Examples of expression of YFP in the proventriculus of third instar larvae of 3 different CPTI lines.

i) Subcellular localisation of YFP tagged protein was observed in the nucleus, of mature proventricular cells of CPTI-000239.

ii) Uniform expression of YFP tagged protein was observed throughout the proventriculus, mid-intestine, esophagus and gastric caecum of CPTI-001137.

iii) Expression of YFP tagged protein was observed in the nucleus of mature proventricular cells of CPTI-001569.

**Red arrows - Proventriculus.** 

Yellow arrow - Mid-intestine.

**Blue arrow - Oesophagus.** 

Purple arrow - Gastric caeca.

Scale bars =  $50\mu m$ 

3.2.2. Ex vivo NO treatment

Ex vivo culture was employed to determine the effect of NO on the expression of a randomly selected subset of 75 YFP tagged proteins of the CPTI lines. Salivary glands from CPTI lines (listed in Appendix C.2) were treated with the NO donor, S-Nitroso-Nacetylpenicillamine (SNAP). One of the pair of salivary glands was added into a mixture of SNAP (dissolved in DMSO) and Schneider's tissue culture media. The other salivary gland of the pair was treated with the same quantity of DMSO and tissue culture media. After incubation images of both the SNAP treated (experimental) and DMSO treated (control) glands were collected on meta laser Confocal microscope.75 CPTI-YFP lines were treated with SNAP. All images were taken under 63X objective (high power) of the Confocal microscope for detailed visualization of any change in protein localisation or expression level as a result of SNAP treatment. The majority (71) of CPTI lines showed no alteration in the level or localisation of the tagged proteins after exposure to SNAP (data not shown). However, four lines exhibited differences in the sub cellular localisation of the YFP tagged protein following SNAP treatment. A decrease in the YFP tagged protein expression was observed in the salivary glands of CPTI-000106 after 16 hrs exposures in SNAP compared with the controls (Fig 3.8 A). A different localisation pattern of YFP tagged protein was observed in the salivary gland of CPTI-000847 after 16 hrs exposure in SNAP. Both the control and experimental salivary gland showed traces of membrane associated YFP tagged protein. The localisation of the protein was cytoplasmic and cell membrane associated but was non nuclear in the control salivary gland whereas, after treatment with SNAP the protein was mostly found uniformly distributed in the cytoplasm and in the nucleus as well (Fig 3.8 B). An increase in the nuclear and cytoplasmic localisation of the YFP tagged protein was observed in CPTI-000239 after 16 hrs exposure in SNAP (Fig 3.8 C). The nuclear accumulation of YFP tagged protein was found to be enhanced in CPTI-000232 after treating the salivary gland in SNAP for 16 hrs (Fig 3.8 D). Unfortunately the changes shown by CPTI-000106, CPTI-000847 and CPTI-000239 after giving SNAP exposure were not consistent. Only CPTI-000232 showed a consistent increase in YFP tagged protein localisation with SNAP exposure. It was therefore decided to use this particular CPTI stock for shorter SNAP exposure and further experiments.

# Figure 3.8 CPTI lines which showed modification in YFP tagged protein localisation after 16 hrs of SNAP treatment.

A) Salivary glands of CPTI-000106 showed weaker YFP expression compared to the control after 16hrs treatment of SNAP.

B) Traces of membrane associated YFP tagged protein was observed in both DMSO

# Figure 3.8 CPTI lines which showed modification in YFP tagged protein localisation after 16 hrs of SNAP treatment.

A) Salivary glands of CPTI-000106 showed weaker YFP expression compared to the control after 16hrs treatment of SNAP.

(B) Traces of membrane associated YFP tagged protein was observed in both DMSO

] treated and SNAP treated salivary glands of CPTI-000847 line. However the DMSO

treated salivary gland showed a cytoplasmic but non nuclear distribution of the YFP tagged protein whereas uniformly distributed YFP tagged protein was found

throughout the cytoplasm and in the nucleus of the SNAP treated salivary gland.

C) The salivary gland cells of CPTI-000239 showed higher YFP tagged protein expression both in the nucleus and cytoplasm after 16hrs treatment with SNAP.

D) The nuclear expression of YFP tagged protein in the salivary gland cells of CPTI-000232 was observed to be raised after 16 hrs incubation in SNAP.

Scale Bar =  $50 \mu m$ 

#### DMSO CONTROL

#### SNAP EXPERIMENTAL



# 3.2.3. Shorter SNAP exposure of CPTI-000232 larvae

Salivary glands of wandering third instar CPTI-000232 larvae were given a shorter SNAP exposure of 0.5 hours followed by a 3.5 hour incubation in tissue culture media, to determine whether a short exposure to SNAP caused any changes in the YFP tagged protein localisation. Two pairs of salivary glands were taken from two different larvae of CPTI-000232 line. One of a pair of salivary gland was incubated in a mixture of SNAP and tissue culture media for 0.5 hours. The other of the same pair of salivary gland was also incubated in the similar mixture of SNAP and tissue culture media but for 4 hrs. After 0.5 hours the first gland of this pair was taken from SNAP and was incubated in a mixture containing DMSO and tissue culture media for further 3.5hrs. Therefore, the first gland of the pair was incubated in two different mixtures: initially for 0.5 hours in SNAP and then for 3.5 hrs in DMSO (total 0.5 hours + 3.5hours = 4hours) whereas the other gland of the same pair was incubated in SNAP only continuously for 4hours. After 4 hrs of incubation confocal images were acquired and compared.

One of the second pair of salivary glands from another animal of the same line (CPTI-000232) was incubated in SNAP and tissue culture media for 0.5 hours and other of the same pair was incubated in a mixture of DMSO and tissue culture media for 4hours. After 0.5 hours the first gland of this pair was taken out from the SNAP mixture and was further incubated in DMSO and tissue culture media for another 3.5hrs. Therefore, in this case also the first gland of this pair was incubated two times in two different mixtures: 0.5 hours in SNAP and 3.5hrs in DMSO, thus total incubation of 4hrs was achieved. After 4 hours incubation, confocal images were acquired and compared. This experiment was designed to compare and analyse the effect of 0.5 hours exposure to SNAP with no exposure to SNAP (DMSO control) on the expression of the tagged protein in salivary glands.

The salivary gland which was given 0.5 hours exposure to SNAP and then further cultured in DMSO and tissue culture media for 3.5 hrs showed highest increase in YFP tagged protein expression (Fig 3.9, Ci and Cii). The expression of YFP in the salivary gland which was incubated in SNAP for 4hrs (Fig 3.9, Bi and Bii) was lower than one treated in SNAP for 0.5 hours (Fig 3.9, Ci and Cii). The control salivary gland which was incubated in DMSO for 4 hrs showed the weakest expression (Fig 3.9, Ai and Aii).



#### Figure 3.9. Shorter exposure to SNAP

Ai) Salivary gland of CPTI-000232 third instar larva incubated in a mixture of DMSO and tissue culture media for 4 hrs.

Aii) High magnification image of a nucleus shown in Fig (Ai).

Bi) Salivary gland of CPTI-000232 third instar larva incubated with a mixture of SNAP and tissue culture media for 4 hrs showed an increase in YFP tagged protein expression compared to Fig Ai.

Bii) High magnification image of a nucleus shown in Fig (Bi).

Ci) Salivary gland of CPTI-000232 third instar larva incubated with SNAP for 0.5 hours showed maximum accumulation of YFP tagged protein in the nucleus compared to Fig (Ai) and Fig (Bi).

Cii) High magnification image of a nucleus shown in Fig (Ci).

Images acquired and processed using identical settings. Scale bar =  $20 \ \mu m$ .

# 3.3. Discussion

# 3.3.1. Visualization of YFP tagged protein expression in CPTI lines

The localisation pattern of YFP tagged proteins was different in all CPTI lines (listed in appendix C.1). Images of the tissues of 75 CPTI lines were uploaded to the *Drosophila* genome database Flannotator (http://www.flyprot.org).

## 3.3.2. The protein trapped in CPTI-000232 is a probable target of NO action

The changes in the YFP tagged protein expression shown by CPTI-000106, CPTI-000847 and CPTI-000239 after 16 hrs of SNAP treatment (Fig 3.8 A, B, C) were not consistently repeated in subsequent SNAP exposures. This variation may be caused by small differences in developmental stages of the larvae or by other environmental factors. CPTI-000232 showed a consistent increase in the YFP fluorescence after 16hrs (Fig 3.8 D) and 0.5 hours exposure to SNAP (Fig 3.9 Ci and Cii). This shows even 0.5 hours exposure to SNAP is sufficient to cause changes in protein accumulation. The CPTI-000232 line traps the gene *Mi-2*, which spans from 19875145 to 19903309 on chromosome 3L. This YFP tagged allele of *Mi-2* will be referred to as *Mi-2*<sup>CPTI-000232</sup>. The localisation of Mi-2<sup>CPTI-000232</sup> protein was exclusively nuclear.

A previous researcher in our laboratory had independently shown an increase in the expression of YFP tagged Mi-2<sup>CPTI-000232</sup> in a time course exposure to SNAP (Lasala, 2007). Therefore the results of this chapter confirmed Mi-2<sup>CPTI-000232</sup> as a probable target of NO action. Experiments in the following chapters were designed on the basis of the data found in this chapter.

# Chapter 4: NO action on Mi-2/NuRD and associated proteins

#### 4.1. Introduction

#### 4.1.1. Mi-2 - A Probable Target of NO

Mi-2 is a component of the nucleosome remodelling and deacetylating (NuRD) complex (Tong et al., 1998). A link between cell proliferation and Mi-2 has also been demonstrated. Dermatomyositis patients producing antibodies against Mi-2 (Seelig HP et al., 1996) are susceptible to malignancy resulting from excessive cell proliferation (Airio et al., 1995).

Nitric Oxide has been reported to act as an antiproliferative agent to down regulate the proliferation of several diverse cell lines (Villalobo, 2006) such as neuronal precursor cells (Contestabile and Ciani, 2004), vascular smooth muscle cells (Nunokawa and Tanaka, 1992) human Caco-2 tumor cells (Buga et al., 1998) leading to cell differentiation.

All these data suggest that cell proliferation can be controlled by both Nitric Oxide and Mi-2. The biochemical pathway of NO action may intersect with that of Mi-2 at a specific point in the process of growth and proliferation arrest. A previous study in the laboratory involving SNAP exposure identified Mi-2 as a possible target of NO (Lasala, 2007). Results of the present study confirmed Mi-2 as a target of NO action (Sections 3.2.2 and 3.2.3). This chapter investigated and extended the *ex vivo* observations (Sections 3.2.2 and 3.2.3) through *in vivo* experiments.

It was hypothesised that the action of NO may be accomplished via Mi-2/NuRD complex. Hence, another important aspect of this chapter was to examine whether the impact of NO on growth regulation is dependent on Mi-2.

#### 4.1.2. NO action on Simj

Simj is reported to function in recruiting the NuRD complex in the induction of methylation mediated gene silencing and hence acts as a regulatory component of NuRD. Simj plays developmental roles through the regulation of ecdysone-responsive genes in *Drosophila* (Kon et al., 2005). Interestingly NO also activates the ecdysone induced protein 75 (E75) and failure in NO production and inactivation of E75 in the ring glands (glands which produce metamorphosis inducing hormone, ecdysone) results into the failure of proper metamorphosis (Aleksandar S. Necakov and (unpublished)). It was therefore hypothesised that some functional links may exist between NO and Simj.

The experiments of this chapter were designed to analyse a functional connection between NO and Simj.

## 4.1.3. NO action on Dref

Mi-2 genetically and physically interacts with Dref (Hirose et al., 2002). Dref binds with the 8 bp palindromic sequence called the DNA replication related element (DRE) (Fumiko Hirose et al., 1993). This element is present in the promoter region of several cell proliferation related genes and is assumed to be required for their transcription (Matsukage et al., 2008). A gradual decrease in human Dref (hDref) expression was observed in differentiating PC12 cells (Matsukage et al., 2008). In the presence of nerve growth factor (NGF), high levels of three NOS isoforms were identified in PC12 cells during the onset of growth arrest and differentiation (Natalia and Grigori, 1995). The switch of the cell cycle from proliferation to differentiation mediated by differentiation related transcription factors, is probably under the direct control of Dref (Matsukage et al., 2008). Interestingly NO is known to prevent proliferation of rat brown adipocytes during the onset of differentiation (Enzo Nisoli and Carruba, 1998). NO is also reported to mediate the cell cycle switch from proliferation to differentiation during neurogenesis of several nervous system related cells (Gibbs, 2003). As Dref and NO can both influence the switch from proliferation to differentiation, it was hypothesized that the effect of Dref on cell proliferation may be controlled by NO. Hence, the response of the Dref protein to NO expression was also analysed in this chapter.

#### 4.1.4. Study of NO action on Mi-2, Simj and Dref

In order to examine the effect of NO on Mi-2, Simj and Dref, two genetic approaches were used:

In the first approach, the GAL4/UAS binary system (Section 2.1.2) was used to induce *NOS2* expression in the whole salivary glands of YFP tagged *Mi-2* <sup>*CPTI000232*</sup> larvae, as the salivary glands of these larvae showed increased YFP tagged Mi-2 expression when cultured briefly with SNAP (Section 3.3.2).

However, when *NOS2* (Section 1.3) was driven in the whole salivary glands by c147-GAL4 of *Mi-2*<sup>*CPTI-000232*</sup> animals, the cells showed reduction in size, as high levels of NO slow down the progression of cell cycle during development (Kuzin et al., 1996). Hence, the approach of expressing NOS in the whole salivary glands did not take into account any physiological affects that the reduced growth of salivary gland may have. It

was not possible to infer if the change in YFP tagged Mi-2<sup>CPTI-000232</sup> expression was due to the effect of NO signalling or a consequence of the reduced size of the salivary gland resulting from NO expression. Therefore, it was important to monitor whether the expression of Mi-2 was altered when the growth of whole salivary gland was minimally effected in response of NO.

In a second approach, *NOS2* was expressed in single cells of the salivary glands to avoid any physiological changes resulting from reduced growth of the whole salivary gland. To achieve this, expression of NO was induced in single cells by using FLP/FRT technique or Flip out system. In this system random clones are generated via Flp recombinase catalysed recombination between two of it's target sites, FRTs. Flp is a site-specific recombinase encoded by the *S. cerevisiae* 2µm plasmid and efficiently catalyses the recombination between two copies of its 34 bp recognition site termed as Flp recognition target (FRT). A construct containing the Actin5C promoter separated from the Gal4 coding sequence by DNA flanked with FRT sites is used. Hence, there is no expression of Gal4 from this construct in the non clone cells. However in some cells, Flp, under the control of a heat shock promoter (hs-FLP) catalyses the excision of the FRT cassette allowing the expression of Gal4 (Duffy, 2002) (Tuan Rocky. S and Lo W Cecillia, 2000). This system produced single cell clones expressing UAS-GFP/UASmRFP as a marker or simultaneously expressing the marker and UAS-NOS (or any other gene of interest) (Fig 4.1).



#### Figure 4.1. The Flip-out system for clonal Gal4 expression:

Flip recombinase (FLP) target sites (FRTs) are arranged as direct repeats flanking the y+ FRT cassette. Flp under the control of a heat shock promoter induces the recombination between the FRT sites resulting into the excision of the y+ FRT cassette. Gal4 is thus juxtaposed next to the Actin5C promoter element leading to the expression of Gal4.

Figure adapted from (Tuan Rocky. S and Lo W Cecillia, 2000).

The single cells expressing *NOS2* produced by this experimental design, could then be used to study the molecular and cellular consequences of high levels of NO production in comparison to the wild type cells which are not affected by Flp mediated recombination.

# 4.1.5. Does NO signaling and its antiproliferative action require Mi-2?

Although the previous results of the present study have identified Mi-2 as a probable target of NO signaling, it was not known whether the antiproliferative action of NO is dependent on Mi-2. *NOS2* was expressed in Mi-2 down regulated animals to determine whether Mi-2 regulates NO dependent proliferation arrest.

# <u>4.1.5.1. RNAi Approach</u>

An efficient way of reducing the expression of proteins is the use of RNA interference (RNAi) which allows a targeted knockdown of proteins. RNAi is a process of genetic interference using dsRNA for physiological gene silencing in an organism (Fire et al., 1998). This particular technique of gene silencing was first exploited in the nematode *Caenorhabditis elegans* (Fire et al., 1991) and proved to be more efficient compared to single stranded RNAs (Fire et al., 1998). A RNase III-type enzyme, Dicer, initiates the process of RNA interference by converting linear, long double stranded RNA or hairpin RNA substrates in to 21-23nt base pair long siRNAs containing 2-nt overhangs at their 3' ends and phosphate groups at their 5' ends. The antisense strand of siRNAs, referred as guide strand, is then assembled with the RNA-induced silencing complex (RISC) leading to the formation of a RNA-protein complex known as siRISC. The guide strand containing RISC then cleaves the target mRNA between 10 and 11 nt upstream of the 5' ends exactly where the perfect complementary region exists resulting in the degradation of mRNA and thus achieving post transcriptional gene silencing (Fig 4.2) (Rana, 2007).



**Figure 4.2. An overview of RNAi interference:** Long double-stranded (ds)RNA or hairpin RNA substrates are cut by Dicer into smaller (21-nucleotide (nt)) small interfering (si)RNAs with 2-nt overhangs at the 3' ends and phosphate groups at the 5' ends. Alternatively, siRNA duplexes (19–23 nt) can be introduced into cells, where they are phosphorylated at the 5' ends by cellular kinases. These small dsRNAs assemble into the RNA-induced silencing complex (RISC), which contains AGO2, Dicer, and other cellular factors. siRNA then forms activated RISC (siRISC) that contains an antisense (guide) strand. Activated RISC finds its target mRNA and uses the antisense strand to guide the cleavage of the target mRNA. RISC is recycled and could carry out several cleavage events (Rana, 2007).

The first report using RNA interference in *Drosophila* demonstrated the functions of genes acting in the wingless pathway (Kennerdell and Carthew, 1998). The Vienna *Drosophila* RNAi Centre (VDRC) stock centre has generated 22,270 transgenic lines, capable of expressing RNAi corresponding to 88% of the predicted protein-coding genes in the *Drosophila* genome (Dietzl et al., 2007). These lines can be expressed by using tissue specific GAL4 drivers.

To examine whether NO dependent growth regulation requires Mi-2, the size of the salivary gland nuclei of UAS-RNAi-Mi-2 and UAS-NOS2 co-expressed animals would be compared with that of larvae only expressing *NOS2*.

## 4.1.5.2. Mi-2 transheterozygous mutants

Another approach to reduce levels of Mi-2 was the use of *Mi-2* alleles that showed reduced levels of Mi-2 expression. The effect of NOS on the salivary gland size of Mi-2 down regulated third instar larvae was determined. Thus *Mi-2* allelic combinations that were viable until the third larval stage were required. The two *Mi-2* alleles used in this study were supplied by Bloomington Stock Centre. One of the mutant lines, *Mi-2[j3D4]*, (Flybase id FB2009\_10, Genotype: y[1]w[\*];PMi-

2[j3D4]Su(Tpl)[j3D4]/TM3;Sb[1]Ser[1]) carries an insertion of P{lacW} at 19900352 location of chromosome 3L situated in the first intron of *Mi-2*. *Mi-2[j3D4]* 

homozygotes are reported to be post embryonic lethal (Kehle et al., 1998) and were found to survive till the  $2^{nd}$  larval stage (Khattak et al., 2002).

The other mutant allele used (Flybase id FB2009\_10, Genotype y[1]

w[67c23];P{w[+mC]y[+mDint2]=EPgy2}Mi-

2[EY08138]Su(Tpl)[EY08138]/TM3;Sb[1]Ser[1]) carries an insertion of <u>P{EPgy2}</u> transposable element at 19888742 location of chromosome 3L situated in the first intron of *Mi-2* (Bellen et al., 2004).

## 4.2. Results

# **4.2.1.** Analysis of YFP tagged Mi-2<sup>CPTI-000232</sup> expression in whole salivary glands expressing *NOS2*

In order to monitor the effects of long term NOS expression, *NOS2* was over expressed in the whole salivary glands of YFP tagged  $Mi-2^{CPTI-000232}$  larvae, under the control of the salivary gland specific c147-GAL4 driver. The localisation of Mi-2<sup>CPTI-000232</sup> in *NOS2* expressing larvae was compared with that of the control animals to monitor any change in YFP tagged Mi-2<sup>CPTI-000232</sup> expression. The nuclei of the salivary glands from the third instar larvae expressing UAS-NOS2 were smaller in size as compared to the controls (Fig 4.3).

Images of salivary glands from five wandering third instar larvae expressing *NOS2* were acquired on the confocal microscope and were compared with five salivary glands from the control animals (Fig 4.3). All salivary glands of the experimental third instar larvae expressing *NOS2* showed an increase in the nuclear expression of the YFP tagged Mi- $2^{\text{CPTI-000232}}$  as compared with that of the control larvae. The data from these larvae were analysed using imaging analysis software Velocity

(http://www.cellularimaging.com/products/Volocity). The data showed that the mean intensity of brightness of YFP-tagged Mi-2<sup>CPTI-000232</sup> per volume of the nucleus is higher in the salivary glands of *NOS2* expressing experimental larvae compared to that of the control larvae. Quantification analysis of YFP fluorescent intensities of individual nuclei of each genotype (40 nuclei from five control larvae and 59 nuclei from five UAS-NOS2 expressing larvae) demonstrated a 1.7 fold average increase of YFP tagged Mi-2<sup>CPTI-000232</sup> expression in UAS-NOS2 expressing animals.

A)

B)



# **Figure 4.3. Expression of YFP tagged Mi-2 in third instar salivary glands.** A: salivary gland of control larva of genotype c147-GAL4 / +; YFP-Mi-2<sup>CPTI-000232</sup> /

+

B: salivary gland of experimental larva of genotype UAS-NOS2 / +; c147-GAL4 / +; YFP-Mi-2<sup>CPTI-000232</sup> / + showing a higher expression of YFP tagged Mi-2

(Scale bar =  $20 \mu m$ ) Images acquired and processed using identical settings. Raw data is available in Appendix B.1

# **<u>4.2.2.</u>** Analysis of the expression of YFP tagged Mi-2<sup>CPTI-000232</sup> in *NOS2* expressing single cell clones

The result of previous experiment showed an increase in the nuclear localisation of YFP tagged Mi-2<sup>CPTI-000232</sup> when *NOS2* was expressed in the whole salivary gland. The increase in the Mi-2<sup>CPTI-000232</sup> expression could have been a consequence of reduction of salivary gland size caused by *NOS2* expression. Therefore a genetic system where growth of the salivary gland is minimally effected by NOS expression was used. This was achieved by generating Flp/FRT induced, UAS-NOS2 expressing single cell clones in the salivary glands of YFP tagged Mi-2<sup>CPTI-000232</sup> larvae by 4min heat shock at 38°C between 24- 48hr after egg laying..

NO is known to diffuse between cells (Haley, 1998). Hence, the expression of YFP tagged Mi-2<sup>CPTI-000232</sup> may be influenced by NO in the cells immediately adjacent to a *NOS2* expressing clone. Thus, the expression of Mi-2<sup>CPTI-000232</sup> in cells of the immediate neighbours to those expressing *NOS2*, was not considered for the comparison. The intensity of YFP tagged Mi-2<sup>CPTI-000232</sup> expression in *NOS2* expressing clone cell was compared to that of the wild type cells not adjacent to the clone cell. *NOS2* expressing clone cells showed an increase in the nuclear expression of YFP tagged Mi-2<sup>CPTI-000232</sup> compared to the non adjacent wild type cells (Fig 4.4).



# Figure 4.4. Nuclear localisation of YFP tagged Mi-2<sup>CPTI-000232</sup> in *NOS2* expressing clones.

Clones were generated using a 4min heat shock at 38°C between 24- 48hr AEL, of animals with genotype: UAS-NOS2 / hsFLP; UAS-mRFP / CyO; YFP-Mi-2<sup>CPTI-000232</sup> / Act5c>y<sup>+</sup>>Gal4.

Clone is marked with RFP expression.

NOS2 clone shows an increase of YFP tagged Mi-2 expression (red arrow).

An increase in YFP tagged Mi-2 expression was also observed in cells immediately adjacent to the *NOS2* expressing clone (blue arrow).

Blue: DAPI, Green: YFP + Mi-2, Red: RFP.

#### 4.2.3. Visualization of Mi-2 protein in single cell clones expressing NOS

To confirm that the endogenous Mi-2 protein responded in a similar fashion to the YFP tagged protein when NOS was expressed, the localisation of endogenous Mi-2 protein was determined using an anti-Mi-2 antibody. GFP marked clones expressing *NOS2* were generated in a similar way to section 4.2.2.

Rabbit anti-Mi-2 antibody (Brehm et al., 2000) was used in combination with goat antirabbit Cy5 secondary antibody to visualize the localisation of Mi-2 protein.

The intensity of nuclear localisation of Mi-2 protein in each NOS2 expressing clone was compared with that of 10 non adjacent wild type cells of that salivary gland. The NOS2 expressing clones showed increased nuclear expression of Mi-2 protein when compared with the surrounding wild type cells (Fig 4.5.i. A and B). High magnification of the anti-Mi-2 antibody stained wild type nuclei showed non-nucleolar distribution of Mi-2 protein. Although minor traces of anti-Mi-2 staining was found in the nucleolus of these wild type salivary glands (Fig 4.5.ii. A). In contrast, high magnification of NOS2 expressing clone cells showed a uniform distribution of Mi-2 protein throughout the nucleus (including the nucleolus) (Fig 4.5.ii. B). However nuclei of both wild type and NOS2 expressing clone cells also showed a perinuclear localisation of Mi-2 protein (Fig. 4.5.ii. A and B). An accurate quantitative analysis of the intensity of Mi-2 localisation in NOS2 expressing clone cells was performed using the image analysis software velocity. This demonstrated increased Mi-2 levels in the NOS2 expressing clone cells compared to that of non-adjacent surrounding cells. A 2.074 : 1 (+ 1.199 /- 1.199) ratio of Mi-2 expression in NOS2 expressing clones versus surrounding wild type cells was recorded (Fig 4.6). In contrast, control GFP marked clones showed no difference in Mi-2 expression compared to surrounding wild type cells; a 0.97:1 (+ 0.371 /- 0.371) ratio of Mi-2 expression in control GFP clones versus surrounding wild type cells was observed (Fig 4.6).



B)

Figure 4.5 (i). Antibody staining of Mi-2 protein expression in wild type and *NOS2* expressing clones of salivary gland cells.

Clones were generated using a 4min heat shock at 38°C between 24-48hr AEL.

A) GFP marked control clone (white arrow) showing no noticeable change in the intensity or localisation of Mi-2. **Genotype:** hsFLP/+; Act5c>y<sup>+</sup>>Gal4 ;UAS-GFP

B) *NOS2* expressing clone (white arrow) marked with GFP showing an increase in the intensity of nuclear localisation of Mi-2 in the salivary gland of larva. **Genotype:** hsFLP/UAS-NOS2; Act5c>y<sup>+</sup>>Gal4 ; UAS-GFP

Blue: DAPI, Green: GFP, Red: rabbit anti-Mi-2 antibody (Brehm et al, 2000) (Secondary antibody used: goat anti-rabbit Cy5). Scale Bar =  $50 \ \mu m$ 



Figure 4.5 (ii) High magnification image of Mi-2 protein expression in wild type and *NOS2* expressing clones in salivary gland cells.

A) Wild type salivary gland. Nucleolus is marked with white arrow.

B) *NOS2* expressing clone cell. Nucleolus is marked with white arrow. Blue: DAPI, Green: GFP, Red: rabbit anti-Mi-2 antibody (Brehm et al, 2000) (Secondary antibody used: goat anti-rabbit Cy5). Scale Bar =  $50 \mu m$ 



# Figure 4.6. Quantification of Mi-2 expression in wild type and *NOS2* expression single cell clones

**GFP** = Ratio of average intensity of Mi-2 expression in GFP marked control clone cells versus the average intensity of Mi-2 expression in 10 non adjacent wild type cells.

**Genotype:** hsFLP/+; Act5c>y<sup>+</sup>>Gal4 ;UAS-GFP

**NOS2** = Ratio of average intensity of Mi-2 in GFP marked clone cells (expressing *NOS2*) verses the same in 10 non adjacent wild type cells. **Genotype:** hsFLP/UAS-NOS2; Act5c>y<sup>+</sup>>Gal4;UAS-GFP

Data for both genotypes was obtained from 10 salivary glands from 10 animals. Error bars indicate standard deviation. Raw data available in Appendix: B.2 Analysis undertaken using Velocity Image Analysis Software.

#### 4.2.4. Analysis of effect of Simj expression on NOS induced phenotype

As Simj is a regulatory component of the NuRD complex (Discussed in Section 4.1.2), the effect of NOS on Simj expression was determined. Unfortunately immunohistochemistry with an anti-Simj antibody proved unsuccessful (data not shown). Thus a UAS-simj-GFP fusion was used in this purpose. To analyse the effects of Simj expression on the NOS induced growth phenotype, *NOS2* expression was induced in whole salivary glands of larvae containing GFP tagged UASsimj-GFP (Kim et al., 2004) under the control of salivary gland specific c147-GAL4 driver. As the simj-GFP was already fused with UAS sequence, using the c147-GAL4 driver would simultaneously up regulate the expression of UAS-NOS2 and UAS-simj-GFP. By co-expressing UAS-NOS2 and UAS-simj-GFP simultaneously in the same salivary gland, it could be determined whether expressing Simj alters the NOS induced phenotype on salivary gland size.

Animals co-expressing UAS-simj-GFP and UAS-NOS2 showed small sized salivary glands, reasonably similar to those expressing UAS-NOS2 only (Figure No 4.7 A and B).


## Figure 4.7. Salivary gland of UAS-simj-GFP and UAS-NOS2 co expressed third instar larvae showed small size.

A) DAPI stained Salivary gland of UAS-NOS2 expressed third instar larva.

Genotype: UAS-NOS2 / +; c147-GAL4 / +.

B) Salivary gland of third instar larva co-expressing GFP tagged UASsimj and UAS-NOS2.

**Genotype**: UAS-NOS2 / UAS-simj-GFP ; c147-GAL4 / +. Scale bar = 20µm

#### 4.2.5. Visualization of Dref protein in single cell clones expressing NOS

To analyse if NO could alter Dref localisation, *NOS2* expressing clones were generated. In this experiment the nuclear localisation of Dref protein was visualized by using a mouse anti-Dref antibody (Hirose et al., 2002) in combination with horse anti mouse Cy5 secondary antibodies. GFP marked clones expressing *NOS2* were generated in a similar way to section 4.2.2.

The intensity of nuclear localisation of Dref protein in the *NOS2* expressing clones was compared with that of non adjoining wild type cells present in the same salivary gland. Similarly the amount of nuclear expression of Dref protein in the GFP marked control clones cells was compared with that of the non adjoining non-clone cells of that particular salivary gland. The intensity of nuclear localisation of Dref protein in the *NOS2* expressing clones was compared to that of 10 non adjacent wild type cells of that salivary gland.

The *NOS2* expressing clones showed no obvious change in the intensity of nuclear accumulation of Dref protein when compared to the surrounding wild type cells (Fig 4.8.i A and B). Localisation pattern of Dref protein was not noticeably altered in *NOS2* expressing clone cells compared to the wild type cells as shown in the high magnification images (Fig 4.8.ii A and B). The perinuclear pattern of localisation of endogenous Mi-2 observed in wild type and *NOS2* expressing clone cells (Section 4.2.3, Fig 4.5.ii A and B) was not shown by Dref protein in anti-Dref antibody stained wild type and *NOS2* expressing clone cells (Fig 4.8.ii A and B).

For a quantitative analysis of the response of Dref protein to NOS expression in single cell clones the image analysis software velocity was used. This demonstrated Dref levels in the *NOS2* expressing clone cells compared to that of non-adjacent surrounding cells. A 0.944333: 1 (+ 0.22356 /- 0.22356) ratio of Dref expression in *NOS2* expressing clones versus surrounding wild type cells was recorded (Fig 4.9). Control GFP marked clones showed no significant difference in Dref expression compared to surrounding wild type cells. A 0.96333:1 (+ 0.48026 / - 0.48026) ratio of Dref expression in control GFP clones versus surrounding wild type cells was observed (Fig 4.9). The ratio of Dref expression in the clone cell verses the non adjacent wild type cells of both the experimental (NOS2) and control (GFP) genotypes was found to be very similar (Fig 4.9).



B)

A)

**Figure 4.8.(i). Dref protein in** *NOS2* **expressing clones in salivary glands.** Clones were generated using a 4min heat shock at 38°C between 24- 48hr AEL.

A) GFP marked control clone (white arrow) showing no noticeable change in the intensity of Dref protein expression. **Genotype**: hsFLP/+; Act5c>y<sup>+</sup>>Gal4 ;UAS-GFP

B) *NOS2* expressing clone marked with GFP (white arrow) showing no noticeable change in the intensity of Dref protein expression. Genotype: hsFLP / UAS-NOS2; Act5c>y<sup>+</sup>>Gal4;UAS-GFP

Blue: DAPI, Green: GFP, Red: mouse anti-Dref antibody (Hirose et al, 2002) (Secondary antibody used: Horse anti-mouse Cy5). Scale Bar =  $50 \ \mu m$ 



#### Figure 4.8.(ii). High magnification image of Dref protein expression in wild type and NOS2 expressing clones in salivary glands.

A) High magnification of anti-Dref stained nuclei from wild type salivary gland. Nucleolus is marked with white arrow.

B) High magnification of anti-Dref stained nuclei of NOS2 expressing clone cell. Nucleolus is marked with white arrow.

Blue: DAPI, Green: GFP, Red: mouse anti-Dref antibody (Hirose et al, 2002) (Secondary antibody used: Horse anti-mouse Cy5). Scale Bar = 50 um

B)



**Figure 4.9. Ratio of average Dref expression in GFP and** *NOS2* **expressing single cell clones compared non adjacent to wild type cells. GFP** = Ratio of average intensity of Dref expression in GFP marked control clone cells versus the average intensity of Dref expression in 10 non adjacent wild type cells.

**Genotype:** hsFLP/+; Act5c>y<sup>+</sup>>Gal4 ;UAS-GFP

**NOS2** = Ratio of average intensity of Dref in GFP marked clone cells expressing *NOS2* versus average intensity in 10 non adjacent wild type cells. **Genotype:** hsFLP/UAS-NOS2 ; Act5c>y<sup>+</sup>>Gal4;UAS-GFP

Data for both genotypes was obtained from 10 salivary glands from 10 animals. Error bars indicate standard deviation. Raw data available in Appendix B.3 Analysis performed using Velocity Image Analysis Software.

## **4.2.6.** Simultaneous visualization of both Mi-2 and Dref proteins in single cell clones expressing NOS

It has been reported that Mi-2 and Dref proteins negatively regulate each others functions and the binding of Mi-2 and Dref to the polytene chromosomes is mutually exclusive (Hirose et al., 2002). Therefore the effect of NOS on the localisation of both the proteins at the same time, in single cell clones was determined. GFP marked clones expressing *NOS2* were generated as in section 4.2.2.

The experimental salivary glands were stained with a combination of rabbit polyclonal anti-Mi-2 and mouse monoclonal anti-Dref antibodies mixed in an appropriate dilution (Described in Section 2.2.2).

Different control samples were used to compare the localisation of both the proteins. Salivary glands from wild type (y, w) third instar larvae not expressing *NOS2* were double stained with both the antibodies to use as control samples. The localisation pattern of both the proteins in *NOS2* expressing clones was compared with that of the single stained cells of wild type third instar salivary glands. Several salivary glands from wild type (y, w) third instar larvae were singly stained with Mi-2 and Dref antibodies separately and the protein localisation pattern of this individual antibody stained salivary glands was compared to that of the double stained *y*, *w* salivary glands.

Salivary glands of wild type third instar larva when singly stained with mouse anti-Dref antibody, showed nuclear, cytoplasmic and cell membrane associated Dref protein (Fig 4.10 A), whereas Mi-2 protein was observed to be localised exclusively in the nuclei of the wild type third instar salivary glands when stained with rabbit anti-Mi-2 antibody (Fig 4.10 B). However, no nuclear staining of Dref protein was observed in the wild type third instar larvae when double labelled with both anti-Dref and anti-Mi-2 antibodies simultaneously (Fig 4.11 A). When this double staining procedure was used, anti-Dref staining was observed in the cytoplasm and cell membranes and weakly in the nuclei (Fig 4.11 A). However the nuclei of fat body cells of these double labelled animals did show anti-Dref staining in the nuclei (Fig 4.11 A). The localisation of anti-Dref staining observed in double labelled wild type salivary glands (Fig 4.11 A), was different to that of wild type salivary gland cells singly labelled with anti-Dref antibody (Fig 4.10 A).

The double labelled wild type cells surrounding the *NOS2* expressing clone cells did show prominently cytoplasmic but weak nuclear staining of anti-Dref antibody whereas anti-Mi-2 staining was exclusively nuclear (Fig 4.11 B). This accumulation pattern of anti-Dref and anti-Mi-2 staining (Fig 4.11 B) was similar to the wild type double labelled salivary gland cells (Fig 4.11 A), whereas, *NOS2* expressing clones of the double stained larvae showed a markedly different pattern of anti-Dref and anti-Mi-2 staining from their surrounding wild type cells (Fig 4.11 B). GFP marked *NOS2* expressing clones, when double stained with anti-Dref and anti-Mi-2 antibodies, showed a novel pattern of Dref staining. The anti-Dref antibody recognized Dref protein in the nuclei of the *NOS2* expressing clone cells (Fig 4.11 B) which was not seen in *NOS2* clone surrounding wild type cells (Fig 4.11 B) and in wild type double stained salivary gland cells (Fig 4.11 A). The anti-Mi-2 staining was predominantly nuclear in *NOS2* expressing clones which was similar to that of the surrounding wild type cells (Fig 4.11 B). However the level of anti-Mi-2 staining was higher in *NOS2* expressing clones compared with the surrounding wild type cells (Fig 4.11 B).



B)

### Figure 4.10. Salivary glands of wild type third instar larvae stained with anti-Dref and anti-Mi-2 antibody

A) Dref protein was found in the nucleus, cytoplasm and cell membrane of wild type third instar salivary gland when stained with mouse anti-Dref antibody (Hirose et al, 2002). (Secondary antibody used: horse anti-mouse Cy5)

B) Localisation of Mi-2 protein in wild type third instar salivary gland was predominantly nuclear when stained with rabbit anti-Mi-2 antibody (Brehm et al, 2000). (Secondary antibody used: goat anti-rabbit Cy5).

Blue: DAPI, Red: horse anti-mouse Cy5 (A), goat anti-rabbit Cy5 (B). Scale Bar =  $50\mu m$ 

A)

## Figure 4.11. Double antibody staining of salivary glands with both rabbit anti-Mi-2 and mouse anti-Dref antibodies.

A) Wild type third instar salivary gland stained with anti-Dref and anti-Mi-2 antibodies. In the salivary gland cells anti-Dref staining is localised to the cytoplasm (indicated by yellow Alexa 555 secondary antibody). In the nuclei, the accumulation of anti-Mi-2 is clearly indicated by red Cy5. This nuclear exclusion of anti-Dref staining does not occur in the fat body cells (small white arrows). Genotype: y,w; +/+; +/+

B) Third instar salivary gland with GFP marked *NOS2* expressing clone cells (small white arrows). The nuclei of the clone cells show high levels of both anti-Mi-2 and anti-Dref staining whereas the nuclei of the surrounding wild type cells show predominantly anti-Mi-2 staining (Red block arrow). Very low level of anti-Dref staining is observed in the cytoplasm of the wild type cells (red block arrow). Genotype: hsFLP/UAS-NOS2 ; Act5c>y<sup>+</sup>>Gal4;UAS-GFP

Blue: DAPI, Green: GFP Yellow: mouse anti-Dref (Hirose et al, 2002), Red: rabbit anti-Mi-2 (Brehm et al, 2000). Secondary antibodies: For Mi-2: goat anti rabbit Cy5 For Dref: goat anti mouse Alexa 555 Scale Bar = 20 μm







# <u>4.2.7.</u> Down regulation of Mi-2 expression in YFP tagged Mi-2<sup>CPTI-000232</sup> using RNAi approach

To determine whether Mi-2 was required for NO signalling to inhibit growth, the levels of Mi-2 were reduced by targeted RNAi. A UAS-RNAi-Mi-2 construct containing stock from VDRC (Vienna drosophila RNAi Center) (Dietzl et al., 2007) was used for this purpose. The efficiency of RNAi dependent reduction of Mi-2 expression was examined by expressing UAS-RNAi-Mi-2 in animals heterozygous for the YFP tagged *Mi-2*<sup>CPTI-000232</sup> allele. RNAi expression was driven in salivary glands with the c147-Gal4 driver. The nuclear expression of the YFP tagged Mi-2<sup>CPTI-000232</sup> in UAS-RNAi-Mi-2 expressed flies was less than control YFP tagged Mi-2<sup>CPTI-000232</sup> salivary glands (Fig 4.12 A and B). The expression of RNAi-Mi-2 did not completely eliminate, but did down regulate, the expression of YFP tagged Mi-2<sup>CPTI-000232</sup> as shown in Figure 4.12.

A)

B)





## Figure 4.12. RNAi-Mi-2 reduces the expression of YFP tagged Mi-2<sup>CPTI-000232</sup>.

A) Salivary gland of a third instar control larva showing expression of YFP tagged Mi-2<sup>CPTI-000232</sup>

Genotype: c147-GAL4 / + ; YFP-Mi-2^{CPTI-000232}/ +

B) Salivary gland of a third instar experimental larva expressing UAS-RNAi-Mi-2 shows reduced expression of YFP tagged Mi-2<sup>CPTI-000232</sup> as compared with the control animal (A).

Genotype: c147-GAL4 / + ; YFP-Mi-2<sup>CPTI-000232</sup>/ UAS-RNAi-Mi-2. (Scale bar = 20  $\mu$ m)

Images acquired and processed using identical settings.

# **4.2.8.** Down regulation of Mi-2 expression by using *Mi-2* transheterozygous <u>mutants</u>

As expression of RNAi-Mi-2 did not eliminate expression of YFP tagged Mi-2, *Mi-2* mutants were used to reduce Mi-2 expression. Stocks carrying two different *Mi-2* alleles (Described in section 4.1.5.2) were used. Each allele was balanced over TM6B to allow identification of non-balancer larvae. When kept as separate stocks no non-Tubby larvae were observed in either of the mutant stocks. However, non-Tubby third instars were recovered when the mutant stocks balanced with TM6B were crossed with each other. In order to test whether this allelic combination reduced the expression of Mi-2 protein in salivary glands of the third instar larvae, the transheterozygous *Mi-2* animals were subjected to immunohistochemistry with rabbit an anti-Mi-2 antibody (Brehm et al., 2000). The expression of Mi-2 protein in these salivary glands was found to be significantly less when compared with that of the wild type third instar larva (Fig 4.13 A and B).



B)

## Figure 4.13. Antibody staining of Mi-2 protein in third instar salivary glands.

A) Salivary gland of wild type third instar larva showing nuclear localisation of Mi-2 protein.

B) Salivary gland of third instar Mi-2 transheterozygote mutant larva showing less Mi-2 protein compared to A Genotype:  $P\{lacW\}Mi-2^{j3D4}/P\{EPgy2\}Mi-2^{EY08138}$  Su(Tpl)<sup>EY08138</sup>

Genotype:  $P\{lacW\}Mi-2^{J5D4}/P\{EPgy2\}Mi-2^{E108138}$  Su(Tpl)<sup>E108138</sup> Blue: DAPI, Red: rabbit anti-dMi-2 antibody (Brehm et al, 2000) (Secondary antibody used: goat anti-rabbit Cy5). Scale Bar = 50 µm. Images acquired and processed using identical settings.

A)

# **4.2.9.** Study of the phenotype imparted by NOS in a Mi-2 down regulated background

The results of this thesis indicate Mi-2 as a target of NO signalling (Sections 3.2.2, 3.2.3, 4.2.1, 4.2.2 and 4.2.3). NO is known to control organ size (Kuzin et al., 1996). To test whether Mi-2 is required for the NO induced reduced growth phenotype, NOS was expressed in salivary glands expressing reduced levels of Mi-2. As previously shown, Mi-2 levels can be reduced by targeted RNAi or by using transheterozygotes of two *Mi-2* alleles (Section 4.2.7 and 4.2.8). Hence, both RNAi-Mi-2 animals and transheterozygous *Mi-2* mutants were exploited as Mi-2 down regulated systems to examine the Mi-2 dependency of NO induced reduced growth phenotypes. A functional relationship between Mi-2 and cell proliferation has been discussed above (Section 4.1.1). Another aim of this experiment was to determine whether a decrease of Mi-2 content alters the growth of the salivary glands.

The average volume of DAPI stained nuclei from five different genotypes was calculated (Fig 4.14). Expression of UAS-NOS2 in the salivary glands using the c147-GAL4 driver showed the expected small sized nuclei (Fig 4.14, Genotype: NOS2). When UAS-RNAi-Mi-2 and UAS-NOS2 were co-expressed with c147-GAL4, the nuclei of salivary glands again showed a small size phenotype reasonably similar to that when UAS-NOS2 was driven alone (Fig No: 4.14, Genotype NOS2RNAi-Mi-2). Salivary glands of *Mi-2* transheterozygous mutants also exhibited a reduced growth phenotype when UAS-NOS2 was expressed (Fig 4.14, NOS2Mi-2 transheterozygous mutant). The average volume of the salivary gland nuclei of the *Mi-2* transheterozygous mutants (Fig 4.14, Mi-2transheterozygous mutant) was found to be within a close statistical range to that of the wild type salivary gland nuclei (Fig 4.14, WT). Tub-GAL4 driven expression of the UAS-RNAi-Mi-2 construct was undertaken to determine whether any growth phenotype or lethality would be caused by the reduction in Mi-2 levels in the whole animal. Expression of UAS-RNAi-Mi-2 via Tub-GAL4 neither induced any growth phenotype nor caused any lethality (data not shown). Adult flies carrying UAS-RNAi-Mi-2 driven by Tub-GAL4 showed normal fertility (data not shown).



Figure 4.14. Average volume of DAPI stained larval salivary gland nuclei.

**WT = Genotype:** *y*, *w* ; + / + ; + / +

**NOS2 = Genotype:** UAS-NOS2 / +; c147-GAL4 / +.

**NOS2RNAi-Mi-2 = Genotype:** UAS-NOS2 / + ; c147-GAL4 / + ; UAS-RNAi-Mi-2 / +.

**NOS2Mi-2 transheterozygous mutant = Genotype:** UAS-NOS2 / +; c147-GAL4 / +; P{lacW} $Mi-2^{i3D4}$ /P{EPgy2} $Mi-2^{EY08I38}$  Su(Tpl)<sup>EY08I38</sup>

**Mi-2transheterozygous mutant = Genotype:** +/+ ; +/+ ; P{lacW}*Mi-2*<sup>*j*3D4</sup>/ P{EPgy2}*Mi-2*<sup>*EY08138*</sup> <u>Su(*Tpl*)<sup>*EY08138*</sup></u>

**WT** = y, w; +/+; +/+

Data derived from 80 DAPI stained nuclei from 8 different salivary glands of 8 different female animals of each of the above genotypes. Data analysed and processed using Image analysis software Velocity. Raw data available in Appendix No: B.4. Error bars indicate standard deviation.

#### 4.3 Discussion

One primary aim of the experiments presented in this chapter was to determine the effects of NO on the Mi-2/NuRD complex and its associated proteins. As Mi-2 was suspected to be a possible target of the growth control activity of NO (Discussed in Sections 3.2.2 and 3.2.3) and Mi-2/NuRD was itself reported to play an essential role in transcriptional repression and growth control (Discussed in Section 4.1.1), the other important aspect of this chapter was to determine whether the antiproliferative action of NO is through Mi-2/NuRD.

#### 4.3.1. NO alters Mi-2 localisation

The previous *ex vivo* results of SNAP treatment found an increase in the YFP tagged  $Mi-2^{CPTI-000232}$  expression after SNAP exposure (Section 3.2.2 and Section 3.2.3). So by using *Mi-2<sup>CPTI-000232</sup>* fly stock, a detailed study was undertaken to confirm whether NO alters Mi-2 localisation *in vivo*.

In order to determine this, two different approaches were undertaken: One approach was to use c147-GAL4 to drive *NOS2* expression in whole salivary glands of YFP tagged Mi-2<sup>CPTI-000232</sup> larvae (Section 4.2.1). The size of the *NOS2* expressing experimental salivary gland nuclei were found to be much smaller than that of the control nuclei (Fig 4.3) which is consistent with previous reports (Kuzin et al., 1996), (Kimber, 2005) and (Scott, 2009). Confocal images acquired of five *NOS2* expressing third instar larvae showed a consistent increase in the nuclear localisation of YFP tagged Mi-2<sup>CPTI-000232</sup> when compared with the salivary glands of their corresponding control animals (Fig 4.3). Although the size of the salivary gland nuclei were small, the increase of the intensity of YFP tagged Mi-2<sup>CPTI-000232</sup> localisation observed in the *NOS2* expressing animals (Fig 4.3) demonstrated that NO modified Mi-2 localisation.

To further investigate the alteration of Mi-2 localisation in response to *NOS2*, the FRT/GAL4 expression system was used. In this approach *NOS2* was expressed in single cells of the salivary glands. mRFP marked single cell clones expressing *NOS2* in the salivary glands of  $Mi-2^{CPTI-000232}$  animals showed an increase in YFP tagged Mi-2 nuclear localisation when compared with that of the non adjacent wild type cells not expressing *NOS2* (Fig 4.4). The immediate adjoining wild type cells of the mRFP marked *NOS2* expressing clone cell also showed an increase in the YFP tagged Mi-2

(Fig 4.4). The increase in YFP tagged Mi-2<sup>CPTI-000232</sup> localisation in the immediate adjacent wild type cells is likely to be a result of NO diffusion (Haley, 1998).

Immunohistochemical analysis performed using an anti-Mi-2 antibody showed an increase in Mi-2 expression in *NOS2* expressing single cell clones compared with the non-adjacent wild type cells (Fig 4.5.i B). No increase in the nuclear accumulation of endogenous Mi-2 in cells immediately adjacent to *NOS2* expressing clones may be a result of the very short half life of NO (Haley, 1998) limiting its diffusion to those cells immediately neighboring the source of NO.

Unlike the anti-Mi-2 stained wild type cells (Fig 4.5.ii A), NOS2 expressing clone cells showed a uniform distribution of Mi-2 protein throughout the nucleus (including the nucleolus) (Fig 4.5.ii B). However, nuclei of both wild type and NOS2 expressing clone cells also showed perinuclear localisation of Mi-2 protein (Fig 4.5.ii A and B). The ratio of the average intensity of endogenous Mi-2 in the clone cells verses that of the non adjacent wild type cells was found to be higher in NOS2 expressing cells compared to that of control cells as calculated using image analysis software velocity (Fig 4.6). Although the average ratios were different, there was some overlap in the standard deviations. The range in data may have been minimized by analysing higher number of salivary glands. However, the recovery of NOS2 expressing clones in the salivary gland is not trivial. NOS2 expressing clones were only observed in approximately 10% of salivary glands dissected. The very brief heat shock (4-5mins) driving expression of FLP was used as longer heat shocks resulted in the death of the majority of the UAS-NOS2 containing larvae (data not shown). The low recovery of salivary gland clones expressing NOS2 is presumably due to larval death caused by the expression of NOS2 in other tissues, as NOS2 expression, when limited to the salivary gland, has no effect on viability (data not shown). The increase in Mi-2 expression observed by using anti-Mi-2 antibody in response to NOS2 expression (Fig 4.5) demonstrated that NOS acts to up regulate the nuclear concentration of Mi-2 protein.

#### 4.3.2. Simj does not alter the NOS mediated growth control

Expression of *NOS2* reduces cell proliferation and limb size of *Drosophila* (Kuzin et al., 1996). As Simj has been reported to act as the regulatory component of Mi-2/NuRD (Discussed in 4.1.2) and Mi-2/NuRD was confirmed as a probable target of NO (Sections 4.2.1, 4.2.2 and 4.2.3), it was determined whether animals expressing UAS-

NOS2 or co-expressing UAS-NOS2 and UAS-simj showed any alteration to the reduced growth phenotype that resulted from *NOS2* expression alone (Fig 4.7). Co-expression of UAS-NOS2 and UAS-simj did not noticeably alter the reduced growth observed when compared to *NOS2* expression alone (Fig 4.7). These data suggested that Simj does not alter the growth control activity of NO.

#### **4.3.3.** NOS does not noticeably affect the localisation of Dref

As NO had been shown to alter the nuclear localisation of Mi-2 (Sections 4.2.1, 4.2.2 and 4.2.3) and Mi-2 has previously been shown to genetically and physically interact with Dref (Hirose et al., 2002), the localisation of Dref protein in cells expressing high levels of NO was determined. The localisation of Dref in *NOS2* expressing single cell clones did not appear to be noticeably different when compared with the non-adjacent wild type cells (Fig 4.8 i). In addition, the quantitative analysis of the average ratio of Dref localisation in the *NOS2* expressing clone cells verses the corresponding non adjacent wild type cells was similar to that of the control clones (Figure 4.9). These data demonstrate that NOS does not modify Dref expression or localisation. No noticeable alteration in the localisation pattern of Dref protein was observed in *NOS2* expressing clone cells compared to the wild type cells as shown in the high magnification images (Fig 4.8.ii A and B). The perinuclear pattern of localisation of endogenous Mi-2 observed in wild type and *NOS2* expressing clone cells (Section 4.2.3, Fig 4.5.ii A and B) was not mimicked by Dref protein in anti-Dref antibody stained wild type and *NOS2* expressing clone cells (Fig 4.8.ii A and B).

#### 4.3.4. Regulation of growth by NO does not act through Mi-2

Previous data from this thesis showed that Mi-2 is a target of NO (Sections 3.2.2, 3.2.3, 4.2.1, 4.2.2 and 4.2.3). Therefore whether the growth regulating role of NO is dependent on Mi-2 was determined. In order to examine this, the effect of NO was investigated in UAS-NOS2 and UAS-RNAi-Mi-2 co-expressing flies. The salivary gland nuclei of the UAS-NOS2 and UAS-RNAi-Mi-2 co-expressing animals showed a reduced size similar to those expressing only UAS-NOS2 (Fig 4.14). Moreover *NOS2* expression in *Mi-2* transheterozygous mutant larvae also resulted in small salivary gland nuclei (Fig 4.14). These results indicate that NO mediated growth regulation does not act through Mi-2. Mi-2/NuRD plays important role in mediating malignancy caused by extreme cell proliferation as reviewed in (Zhang et al., 1999) and therefore Mi-2/NuRD may be

required for growth or proliferation. Thus it was expected that *Mi-2* transheterozygous mutants, where the amount of Mi-2 protein was very low (Fig 4.13), would show an alteration in the nuclear size compared to those of wild type salivary glands. The quantitative analysis did not show any difference in nuclear size of salivary gland nuclei in *Mi-2* transheterozygous mutants compared to wild types (Fig 4.14). This unpredicted observation coincides with the recent finding that the major portion of *Drosophila* Mi-2 is actually part of a complex termed dMec (dMEP-1 complex). This complex mediates transcriptional repression of proneural genes (Kunert et al., 2009, Kunert N, 2009) however there is no data demonstrating a role for dMec in the control of cell proliferation.

## <u>4.3.5. A novel function of NO in the disruption of the *in vivo* Mi-2/Dref protein <u>complex</u></u>

The localisation pattern of Mi-2 protein both in single stained (Fig 4.10 B) and double stained (with anti-Dref) wild type salivary glands was predominantly nuclear (Fig 4.11 A). In the single stained wild type salivary glands, along with the nuclear localisation some cytoplasmic and cell membrane bound traces of anti-Dref staining were also observed (Fig 4.10 A), whereas in the double stained wild type salivary glands the distribution of anti-Dref staining was found to be exclusively cytoplasmic but weakly nuclear nuclear (Fig 4.11 A).

Interestingly the anti-Dref mouse monoclonal antibody used in this study was raised against bacterially purified recombinant Dref protein consisting of amino acids 16-608 (Hirose et al., 1996). This region overlaps the Mi-2 interacting region of the Dref protein (amino acids 16-145) (Hirose et al., 2002). Therefore, when anti-Mi-2 antibodies interact with Mi-2/Dref to form a Dref /Mi-2/anti-Mi-2 antibody complex, they may mask the epitope sites of the anti-Dref antibody. In double stained wild type salivary glands, it can be suggested that epitope sites of the anti-Dref mouse monoclonal antibody are probably masked in the Dref /Mi-2/anti-Mi-2 antibody complex. Hence, the anti-Dref antibodies can not recognize the epitope sites present on the Dref protein of the nuclear Mi-2 / Dref / anti-Mi-2 antibody complex (Fig 4.11 A). As Mi-2 localisation is higher in the nucleus than the cytoplasm (Fig 4.10 A) it can be speculated that there is insufficient cytoplasmic Mi-2 protein for the formation of Dref /Mi-2 complex in the cytoplasm. Hence in the cytoplasm of the double stained wild type salivary glands the epitope sites of anti-Dref antibody are left unmasked. Consequently

anti-Dref antibody can bind to the epitope sites present on the cytoplasmic Dref protein leading to the visualization of the cytoplasmic Dref protein in the double antibody stained wild type salivary glands (Fig 4.11 A). As the localisation pattern of double labelled Mi-2 and Dref staining observed in wild type cells surrounding *NOS2* expressing clones (Fig 4.11 B) was found to be similar to that of the wild type salivary glands (Fig 4.11 A), it can be inferred that same phenomenon of Mi-2/Dref/anti-Mi-2 antibody interaction was repeated in the wild type cells surrounding the *NOS2* clone (Fig 4.11 B). However, in cells expressing *NOS2* and double labelled with anti-Mi-2 and anti-Dref antibodies, a unique staining pattern was revealed. In these cells nuclear Dref staining can be observed (Fig 4.11B). This indicates that the Mi-2 / Dref / anti-Mi-2-antibody complex has been disrupted allowing access of anti-Dref antibodies to their binding sites.

A search on *Drosophila* genome database revealed that more than 150 cell proliferation related, DRE sequence containing genes, may act as targets of the transcription regulatory activity of Dref (Matsukage et al., 2008). The DNA binding activity of Dref, which acts as the key for the transcriptional control of several DNA proliferation related genes, can be regulated by the intracellular redox state through the active participation of the redox sensitive Cys59 and /or Cys62 amino acids of Dref (Choi et al., 2004). High levels of NO induced by *NOS2*, interact with the thiol groups of proteins leading to the initiation of NO responsive gene expression (Eberhardt and Beck, 2001). NO, which plays fundamental role in cell proliferation (Villalobo, 2006) also functions in altering the transcription factors which are responsive to intracellular redox status to promote cell signalling (Eberhardt and Beck, 2001). All these results suggest that *NOS2* could be involved in the alteration of Dref protein leading to the potential reorganisation of Mi-2/Dref complex in *NOS2* expressing clone cells.

As a consequence of the probable disruption of the Mi-2/Dref complex by NO, Dref epitopes are not masked in Mi-2/Dref complex resulting in the visualization of nuclear Dref by anti-Dref staining in *NOS2* expressing clone cells (Fig 4.11 B). The entirely different pattern of Dref staining in the *NOS2* expressing clones from that of the surrounding wild type cells (Fig 4.11 B) supports the concept of the disruption of Mi-2/Dref complex by NOS. In summary the present study has proposed a novel function of NOS in the reorganisation of Mi-2/Dref protein complex.

#### Chapter 5: Effect of FOXO on Mi-2/NuRD and associated proteins

#### 5.1. Introduction

#### 5.1.1. FOXO: The forkhead family transcription regulators

FOXO is a member of the forkhead family of transcription factors. In humans this family consists of four orthologues: namely FOXO1 (previously known as FKHR), FOXO2, (previously known as AF6q21), FOXO3a (previously known as FKHRL1), and FOXO4 (previously known as AFX) (Jacobs et al., 2003). The only *FOXO* gene in *Drosophila* is a homologue of DAF-16/FOXO family of transcription factors and is closely related with *hFOXO3a* (human *FOXO* gene) and (Junger et al., 2003).

#### 5.1.2. Developmental roles of FOXOs

A sequence of five amino acids present in the DNA binding domain of FOXO (a helix 3) enables sequence specific interaction between FOXO and its DNA binding sites. FOXOs have numerous roles in development such as cell proliferation, apoptosis, metabolism, cell cycle progression and relief from oxidative stress (Andreas Barthel, 2005). FOXOs are targets of protein kinase B (PKB)/Akt, in the repression of cell proliferation leading to growth arrest (Medema, 2003). In cells of the hematopoietic system activation of FOXO factors induce the activation of several proapotopic genes to trigger apoptosis (Medema, 2003). It has been reported that mammalian FOXO4 and DAF-16 inhibit the cell cycle at the G<sub>1</sub> and G<sub>2</sub> phases. FOXO4 and FOXO3a trigger the transcription of GADD45 mRNAs resulting in suppression of cell cycle progression at G<sub>2</sub> phase in mouse (Yoko Furukawa-Hibi et al., 2002). Akt phosphorylates and retains FOXO3a in the cytoplasm, whereas the dephosphorylation of FOXO3a leads to the movement and activation of FOXO3a into the nucleus where it induces expression of several target genes (Fig 5.1). These include Fas ligand genes vital for cell death hence apoptosis or programmed cell death is promoted (Anne Brunet et al., 1999). Under stressful conditions, FOXO family members can induce apoptosis by activating the transcription of numerous pro-apoptopic genes (Dansen and Burgering, 2008). Lethal hyperplasia / germ line tumour in C. elegans which is caused by mutations in the tumour suppressor gld-1 (Francis et al., 1995) is suppressed by a gld-1 specific proliferation decrease controlled by DAF-16 (Julie M. Pinkston, 2006). Mice carrying null mutations for the FoxO family orthologues, FoxO1, FoxO3a, and FoxO4, show a

mild cancer predisposition indicating that FOXOs act as tumour suppressors (Paik et al., 2007).

**Figure 5.1. Insulin signaling pathway in** *Drosophila* (taken from (Neufeld, 2003)). The FOXO protein mediates a transcriptional response to insulin signaling. Under conditions of abundant nutrients, FOXO is phosphorylated by Akt and retained in an inactive state in the cytoplasm. When insulin levels fall, FOXO is dephosphorylated and translocates into the nucleus, where it stimulates transcription of *4E-BP* (*Thor*) and presumably other negative regulators of growth. In addition, active FOXO increases expression of the insulin receptor gene, which may result in increased insulin sensitivity under low insulin conditions (Neufeld, 2003).



#### 5.1.3. Previous research in the laboratory on FOXO

Previously in our laboratory Affymetrix gene arrays were used to identify transcriptional changes induced in *Drosophila* S2 cells following exposure to NO (Kimber, 2005). These data indicated that many genes which were up regulated by NO are also functional targets of the transcription factor dFOXO. The previous data of our laboratory also showed that *Thor* (*4E-BP*) which is a member of 4E binding protein (*4E-BP*) family (Bernal and Kimbrell, 2000) is up regulated by NO *in vivo* and is also a transcriptional target of FOXO (Kimber, 2005).When not phosphorylated by Akt, FOXO enters nucleus where it induces the transcription of *Thor* (*4E-BP*) (Puig et al., 2003). Data from our laboratory has indicated that *Thor* transcription is activated by NO in a FOXO dependent manner (Kimber, 2005) (Scott, 2009).

#### 5.1.4. Perspective of the present chapter

During the present study, a genetic screen for targets of NO, using the NO donor SNAP, revealed Mi-2 as a target of NO (Section 3.3.2). An increase in Mi-2 expression was also observed in whole salivary glands and in single cell clones expressing UAS-NOS2 (Section 4.3.1). Thus, as Mi-2 is a probable target of NO, the action of NO on Mi-2 may be regulated by FOXO. Therefore, several experiments were undertaken to determine whether expression of UAS-FOXO changes expression of Mi-2 protein.

Dref activity is known to be negatively regulated by Mi-2 (Hirose et al., 2002) and acts as a transcriptional regulatory factor of several cell proliferation and apoptosis related genes (Matsukage et al., 2008). These two functional properties of Dref indicated that the function of Dref protein may act under the direct control of FOXO signalling. It was therefore decided to study the effect of FOXO expression on the expression and localisation of Dref protein.

As Simj has been demonstrated to be a regulatory subunit for the Mi-2 containing NuRD complex (Kon et al., 2005), the effects of FOXO expression on Simj were also determined.

To achieve these aims, UAS-FOXO was expressed in the whole salivary glands of YFP tagged  $Mi-2^{CPTI-000232}$  larvae by using the c147-GAL4 driver. The effect of UAS-FOXO on the localisation of endogenous Mi-2 and Dref proteins was analysed in GFP marked single cell clones by using the FRT-GAL4 system (Described in 4.1.4).

#### 5.2. Results

#### 5.2.1. Analysis of the effect of FOXO expression in the whole salivary glands of <u>YFP tagged Mi-2</u><sup>CPTI-000232.</sup>

The results of SNAP treatments to salivary glands showed an increase of YFP tagged  $Mi-2^{CPTI-000232}$  expression (Section 3.3.2). YFP tagged  $Mi-2^{CPTI-000232}$  larvae also showed an increase in Mi-2 expression when NOS was expressed in the whole salivary glands and also in NOS expressing single cell clones (Section 4.3.1). Therefore it was decided to analyse YFP tagged  $Mi-2^{CPTI-000232}$  expression in whole salivary glands of animals expressing FOXO under the control of the c147-GAL4 driver.

Five pairs of salivary glands from wandering third instar larvae of experimental (UAS-FOXO expressing) and control animals were imaged on the confocal microscope. The nuclei of the salivary glands from the third instar larvae expressing UAS-FOXO were considerably smaller in size as compared to the control (Fig 5.2). The YFP tagged Mi-2 <sup>CPTI-000232</sup> expression in these 5 experimental larvae was compared with that of the corresponding control larvae. Two of the five different salivary glands expressing FOXO showed an increase in the nuclear expression of the YFP tagged Mi-2 <sup>CPTI-000232</sup> (Fig 5.2 Bi). The remaining three larvae did not show any noticeable change as compared to that of the control larvae (Fig 5.2 Bii). The YFP expression from all the larvae was analysed using imaging analysis software Velocity.

(http://www.cellularimaging.com/products/Volocity). Quantification analysis of YFP fluorescent intensity of five salivary glands of each genotype (32 control and 33 UAS-FOXO expressing nuclei) demonstrated a 1.3 fold average increase of YFP tagged Mi-2 expression in UAS-FOXO up regulated animals (see appendix B.5. for raw data).

Bi)













## Figure 5.2. Expression of YFP tagged Mi-2<sup>CPTI-000232</sup> in third instar salivary glands.

Āi and Aii) salivary glands of control larva of genotype c147-GAL4 / +; YFP-Mi-2  $^{\rm CPTI-}_{\rm 000232}$  / +

Bi) and Bii) salivary glands of larvae. Genotype c147-GAL4 / UAS-FOXO; YFP-Mi-2  $^{\rm CPTI-000232}$  / +

Bi) salivary gland over expressing FOXO showing higher expression of YFP tagged Mi-2 than the corresponding control Ai)

Bii) Salivary gland over expressing FOXO showing no noticeable change in the expression of YFP tagged Mi-2 compared to the corresponding control Aii).

Scale bars =  $20 \ \mu m$ .

Ai and Bi: Images acquired and processed using identical settings. Aii and Bii: Images acquired and processed using identical settings. Raw data is available in Appendix B.5.

#### 5.2.2. Visualization of endogenous Mi-2 protein in single cell clones expressing FOXO

Expression of UAS-FOXO in the whole salivary glands of YFP tagged *Mi-2* <sup>CPTI-000232</sup> larvae using the c147-GAL4 driver made the salivary glands smaller in size. However, the change in expression of Mi-2 may have been due to the reduced salivary gland size. Therefore the effect of FOXO signalling on endogenous Mi-2 expression, when the size of the salivary gland is minimally affected was determined. In order to undertake this, induction of UAS-FOXO expression was achieved in single cells of salivary glands using the FLP/FRT technique (Discussed in section 4.1.4). UAS-FOXO expressing GFP marked single cell clones were generated using the same hsFLP stock and in a similar protocol as described in section 4.2.3. The hsFLP carrying fly stock was crossed with animals containing UAS-FOXO and thus GFP marked, UAS-FOXO expressing clones could be recovered. Endogenous Mi-2 protein was visualised with a rabbit anti-Mi-2 antibody (Brehm et al., 2000). Control clones expressing only GFP were also generated. 20 salivary glands (10 of the experimental and 10 of control animals) were imaged on the confocal microscope.

The intensity of Mi-2 expression in the clone cells were compared to that of 10 nonadjacent wild type cells in each experimental (FOXO expressing) and control salivary glands. No obvious difference in Mi-2 expression was observed in the confocal images (Fig 5.3). The images were subsequently analysed using the image analysis software velocity. This demonstrated Mi-2 levels in the FOXO expressing clone cells compared to that of non-adjacent surrounding cells. A 0.91: 1 (+ 0.26 /- 0.26) ratio of Mi-2 expression in FOXO expressing clones versus surrounding wild type cells was recorded (Fig 5.4). Control GFP marked clones showed no difference in Mi-2 expression compared to surrounding wild type cells. A 0.97:1 (+ 0.37 /- 0.37) ratio of Mi-2 expression in control GFP clones versus surrounding wild type cells was deduced. This quantitative analysis did not reveal any noticeable change in the nuclear accumulation of Mi-2 in FOXO expressing clone cells (Figure 5.4).



### Figure 5.3. Antibody staining of Mi-2 protein expression in wild type and FOXO expressing clones of salivary gland cells.

Clones were generated using a 4min heat shock at 38°C between 24-48hr AEL.

A) GFP marked control clone (white arrow) showing no noticeable change in the intensity or localisation of Mi-2.

Genotype: hsFLP / + ; Act5c>y<sup>+</sup>>Gal4;UAS-GFP / +

B) FOXO expressing clone (white arrow) marked with GFP showing no noticeable change in the intensity or localisation of Mi-2.

Genotype: hsFLP / +; Act5c>y<sup>+</sup>>Gal4 / UAS-FOXO ;UAS-GFP / + Blue: DAPI, Green: GFP, Red: Rabbit anti-Mi-2 antibody (Brehm et al 2000) (Secondary antibody used: goat anti-rabbit Cy5). Scale Bars = 50 µm

86



## Figure 5.4. Quantification of Mi-2 expression in wild type and FOXO expressing single cell clones.

**GFP** = Ratio of average intensity of Mi-2 expression in GFP marked control clone cells Versus the average intensity of Mi-2 expression in 10 non adjacent wild type cells.

Genotype: hsFLP / + ; Act5c>y<sup>+</sup>>Gal4; UAS-GFP / +

**dFOXO** = Ratio of average intensity of Mi-2 localisation in GFP marked clone cells over expressing FOXO Versus average intensity of Mi-2 expression in 10 non adjacent wild type cells.

Genotype: hsFLP / + ; Act5c>y<sup>+</sup>>Gal4 / UAS-FOXO ;UAS- GFP / +

Data for both genotypes was obtained from 10 salivary glands from 10 animals. Error bars indicate standard deviation.

Raw data available in Appendix B.6. Analysis undertaken using Velocity Image Analysis Software.

# 5.2.3. Analysis of the effect of co expression of UAS-FOXO and UAS-simj on salivary gland growth

Whether over expressing Simj could suppress or enhance FOXO induced inhibition of growth of the salivary glands, could be studied by up regulating both UAS-FOXO and UAS-simj at the same time in the same animal.

To determine if over expression of Simj would influence the reduced growth phenotype induced by increased levels of FOXO, both genes were co-expressed in the whole salivary glands using the c147-GAL4 driver.

UAS-simj-GFP (Kim et al., 2004) and UAS-FOXO were driven simultaneously using the c147-GAL4 driver and the phenotypic effect on salivary gland size was determined. Salivary glands of UAS-simj-GFP and UAS-FOXO co-expressed third instar larvae, showed reasonably similar size to that of the flies where UAS-FOXO was driven alone (Fig 5.5).



B)





## Figure 5.5. Salivary gland of UAS-simj-GFP and UAS-FOXO co expressed third instar larvae showed small size.

A) DAPI stained Salivary gland of FOXO expressed third instar larva.
Genotype: + / +; c147-GAL4 / UAS-FOXO; + / +.
B) Salivary gland of GFP tagged UAS-simj and UAS-FOXO co expressed third instar larva.
Genotype: UAS-simj / +; c147-GAL4 / UAS-FOXO; + / +.
Scale Bar = 20µm

#### 5.2.4. Visualization of Dref protein in a single cell clones expressing FOXO

The FLP/FRT technique previously described (Section 4.1.4) was used to induce GFP marked FOXO over expressing clones. The control genotypes were generated similarly as in 5.2.2. The nuclear localisation of Dref protein was visualized by using a mouse anti-Dref antibody (Hirose et al., 2002) in combination with goat anti-mouse Alexa 555 secondary antibodies. The intensity of nuclear localisation of Dref protein in the GFP marked FOXO over expressing clones was compared to that of the non-adjacent wild type cells of that particular salivary gland. Similarly the amount of nuclear expression of Dref in the GFP marked control clones cells was compared to that of the non adjacent non-clone cells of that particular salivary gland. 20 confocal images (10 from each of the experimental and control genotypes) of salivary glands were analysed. No obvious change in the expression of Dref protein was found in the images of UAS-FOXO expressing clone cells when visually compared to that of the nonadjacent wild type cells (Fig 5.6 B). However, a minority showed an increase in the expression of Dref protein when compared to non adjacent wild type cells (Fig 5.6 C). To accurately analyse the response of Dref protein to FOXO over expression in single cell clones, the image analysis software velocity was used. This quantitative analysis did demonstrate an increase in Dref protein expression in some FOXO expressing clone cells compared to the non adjoining wild type cells. A 1.35: 1 (+1.10 / -1.10) ratio of Dref expression in FOXO expressing clones versus surrounding wild type cells was recorded (Fig 5.7). Control GFP marked clones showed no significant difference in Dref expression compared to surrounding wild type cells. A 0.38:1 (+1.19 / - 1.19) ratio of Dref expression in control GFP clones versus surrounding wild type cells was observed (Fig 5.7). Although there was a large variation in the levels of Dref expression between clones (Fig 5.7).

Figure 5.6. Antibody staining of Dref protein expression in wild type and FOXO expressing single cell clones in salivary gland cells.

Clones were generated using a 4min heat shock at 38°C between 24-48hr AEL.

A) GFP marked control clone (white arrow) showing no noticeable change in the intensity or localisation of Dref. Genotype: hsFLP / + ; Act5c>y<sup>+</sup>>Gal4;UAS-GFP

B) UAS-FOXO expressing clone (white arrow) marked with GFP showing no noticeable change in the intensity or localisation of Dref.

C) UAS-FOXO expressing clone (white arrow) marked with GFP showing a small increase in the intensity of Dref accumulation Genotype: hsFLP / +; Act5c>y<sup>+</sup>>Gal4 / UAS-FOXO; UAS- GFP

Scale Bar =  $50 \ \mu m$ 

Blue: DAPI, Green: GFP, Yellow: mouse anti-Dref antibody (Hirose et al 2002) (Secondary antibody used: goat anti-mouse Alexa 555).



B)



#### Figure 5.7. Quantification of Dref expression in wild type and UAS-FOXO expressing single cell clones.

**GFP** = Ratio of average intensity of Dref expression in GFP marked control clone cells Versus the average intensity in 10 non-adjacent wild type cells. **Genotype:** hsFLP / +; Act5c>y<sup>+</sup>>Gal4; UAS-GFP

**dFOXO** = Ratio of average intensity of Dref expression in GFP marked clone cells over expressing FOXO Versus the average intensity in 10 non-adjacent wild type cells.

Genotype: hsFLP / + ; Act5c>y<sup>+</sup>>Gal4 / UAS-FOXO ; UAS-GFP.

Data for both genotypes was obtained from 10 salivary glands from 10 animals. Error bars indicate standard deviation. Raw data available in Appendix: B.7 Analysis undertaken using Velocity Image Analysis Software.

#### 5.2.5. Simultaneous visualization of Mi-2 and Dref proteins in single cell clones expressing UAS-FOXO

It has been reported that the anti-Dref antibody can co-immunoprecipitate Mi-2 from *Drosophila* embryos which confirms the existence of an *in vivo* Mi-2/Dref complex (Hirose et al., 2002). The same report also showed that both proteins negatively regulate each others functions and the binding of Mi-2 and Dref to the polytene chromosomes is mutually exclusive (Hirose et al., 2002). Thus the effect of increased FOXO expression on both the proteins at the same time in single cells was determined. GFP marked FOXO expressing clones were generated in an identical way described in section 5.2.2, A mixture of rabbit polyclonal anti-Mi-2 (Brehm et al., 2000) and mouse monoclonal anti-Dref antibodies was prepared following the dilution described in section 2.2.2. The salivary glands of experimental and control animals were stained with this mix of antibodies.

Further control samples were used to compare the localisation of both the proteins. Salivary glands from *y*, *w* third instar larvae were double stained with both antibodies and with anti-Mi-2 and anti-Dref antibodies separately. The antibody localisation in these single stained *y*, *w* salivary glands was compared to that of the double stained *y*, *w* salivary glands.

Salivary gland of wild type third instar larva when stained with anti-Dref antibody alone showed not only nuclear staining but also staining in the cytoplasm and cell membranes (Fig 5.8 A). The accumulation of anti-Mi-2 staining in single stained animals was found to be exclusively in the nuclei of wild type third instar larvae (Fig 5.8 B). However anti-Dref staining was observed only in the cytoplasm and cell membranes of y, w larvae double labelled with both anti-Dref and anti-Mi-2 antibodies (Fig 5.9 A). In these double stained larvae, anti-Mi-2 staining was exclusively in the nucleus (Fig 5.9 A). Similar to the double stained wild type cells from y, w animals, anti-Dref staining was exclusively cytoplasmic and cell membrane associated and anti-Mi-2 staining was predominantly in the nuclei of the double stained wild type cells surrounding UAS-FOXO expressing clones (Fig 5.9 B and C). Although the non adjacent wild type cells of the double stained larva showed two entirely different localisation patterns of anti-Dref and anti-Mi-2 staining, both the proteins were observed to be simultaneously localised in the nuclei of UAS-FOXO expressing clone cells (Fig 5.9 B and C, Fig 5.10, 5.11, 5.12). An increase in the level of anti-Mi-2 staining was sometimes observed in UAS-FOXO expressing clone cells (Fig 5.9 B and C, 5.10, 5.12). However this increase
of anti-Mi-2 staining was not found in all UAS-FOXO expressing clone cells (Fig 5.11). In UAS-FOXO expressing clone cells, anti-Mi-2 staining showed a perinuclear pattern of distribution (Fig 5.10 vii, 5.11 vii and 5.12 vii), reasonably similar to wild type and *NOS2* expressing clone cells (Section 4.2.3, Fig 4.5. ii A and B). However, the perinuclear localisation of anti-Dref staining observed in UAS-FOXO expressing clone cells (Fig 5.10 v, 5.11 v and 5.12 v) did not mimic the anti-Dref staining in wild type and *NOS2* expressing clone cells (Section 4.2.5, Fig 4.8.ii.A and B).

Dref

DAPI

Mi-2

DAPI

MERGE

DaPi

Merge

Dapi

Dimension

## Figure 5.8. Images showing salivary glands of *y*, *w* wild type third instar larvae singly stained with anti-Dref and dMi-2 antibodies.

A) A noticeable amount of Dref protein was found in the nuclei, cytoplasm and cell membranes of the wild type third instar salivary gland when stained with mouse anti-Dref antibody (Hirose et al, 2002). (Secondary antibody used: horse anti-mouse Cy5).

B) Localisation of Mi-2 protein observed in wild type third instar salivary glands was predominantly nuclear when stained with rabbit anti-Mi-2 antibody (Brehm et al, 2000). (Secondary antibody used: goat anti-rabbit Cy5).

Compared to the Dref stained salivary gland (A) the traces of cytoplasmic and cell membrane bound Mi-2 protein (B) observed was cosiderably less. Blue: DAPI, Red: goat anti rabbit Cy5 and horse anti-mouse Cy5. Scale bar =  $20\mu m$ 

B)

A)

## Figure 5..9. Localisation of anti-Dref and anti-Mi-2 staining in double labelled third instar salivary glands.

A) Wild type (*y*, *w*) third instar salivary gland double stained with anti-Dref and anti-Mi-2 antibodies. Dref (yellow) is observed solely in the cytoplasm and cell membranes of the salivary gland cells but is observed in the nuclei of the associated fat body. Accumulation of anti-Mi-2 staining is exclusively nuclear (indicated by red Cy5).

B) Salivary gland with UAS-FOXO expressing clone cell (white arrow) along with non adjacent wild type cells. The nucleus of the UAS-FOXO expressing clone cell shows both anti-Mi-2 and anti-Dref staining. Surrounding wild type cells show anti-Mi-2 staining predominantly in the nuclei (red) with traces of cytoplasmic anti-Dref staining (yellow). A higher level of anti-Mi-2 staining was observed in the UAS-FOXO expressing clone cell compared to the surrounding wild type cells.

C) High magnification of (B). Nuclear accumulation of both anti-Mi-2 and anti-Dref staining is observed in the UAS-FOXO expressing clone cell (white arrow). Surrounding wild type cells show anti-Mi-2 staining predominantly in the nuclei (red) with cytoplasmic and cell membrane associated accumulation of anti-Dref staining (yellow). An increased level of anti-Mi-2 staining was observed in the UAS-FOXO expressing clone cell.

Scale Bar = 50µm Yellow: mouse anti-Dref (Hirose et al, 2002), Red: rabbit anti-Mi-2 (Brehm et al, 2000). Secondary antibodies: For Mi-2: goat anti rabbit Cy5, For Dref: goat anti mouse Alexa 555





## Figure 5.10. High magnification image of single cell clone in salivary gland over expressing FOXO.

marked with iii) GFP (green) and stained with: i) mouse anti-Dref antibody (yellow), ii) rabbit anti-Mi-2 antibody (red), iv) DAPI blue. Merged images for Dref and DAPI (v), Dref and Mi-2 (vi), and Mi-2 and DAPI

Merged images for Dref and DAPI (v), Dref and Mi-2 (vi), and Mi-2 and DAPI (vii).

Secondary antibodies: Alexa 555 goat anti-mouse, Cy5 goat anti-rabbit. Scale bar =  $10\mu m$ .



## Figure 5.11. High magnification image of single cell clone in salivary gland over expressing FOXO

marked with iii) GFP (green) and stained with: i) mouse anti-Dref antibody (yellow), ii) rabbit anti-Mi-2 antibody (red), iv) DAPI blue.

Merged images for Dref and DAPI (v), Dref and Mi-2 (vi), and Mi-2 and DAPI (vii).

Secondary antibodies: Alexa 555 goat anti-mouse, Cy5 goat anti-rabbit. Scale bar =  $10\mu m$ .



## Figure 5.12. High magnification image of single cell clone in salivary gland over expressing FOXO

marked with iii) GFP (green) and stained with: i) mouse anti-Dref antibody (yellow), ii) rabbit anti-Mi-2 antibody (red), iv) DAPI blue. Merged images for Dref and DAPI (v), Dref and Mi-2 (vi), and Mi-2 and DAPI (vii).

Secondary antibodies: Alexa 555 goat anti-mouse, Cy5 goat anti-rabbit. Scale bar =  $10\mu m$ .

### 5.3. Discussion

#### 5.3.1. FOXO does not noticeably alter Mi-2 localisation

Expression of UAS-FOXO driven by c147-GAL4 in the whole salivary glands of YFP tagged *Mi-2*<sup>*CPTI-000232*</sup> animals reduced the size of the salivary glands (Fig 5.2 Bi and Bii). This result coincides with the previous finding that ectopic expression of FOXO and the human FOXO3a results in a reduction of organ size (Junger et al., 2003). The decrease of salivary gland size also agrees with the previous report that FOXO reduces cell size by inhibiting cell proliferation (Kramer et al., 2003). Increased expression of FOXO in the whole salivary glands of YFP tagged Mi-2<sup>*CPTI-000232*</sup> does not consistently modify the localisation of the YFP tagged Mi-2 protein (Fig 5.2). However, quantification analysis of these data using the image analysis software velocity, demonstrated a 1.3 fold average increase of YFP tagged Mi-2 expression in UAS-FOXO expressing animals (Section 5.2.1).

No noticeable change in the localisation of Mi-2 protein was observed in the marked UAS-FOXO expressing single cell clones (Fig 5.3). The image analysis software Velocity was used to analyse and calculate the intensity of Mi-2 protein in UAS-FOXO expressing and wild type clone cells compared to Mi-2 levels in surrounding non-clone cells. These data were presented graphically showing the ratio of the average intensity of Mi-2 expression in the clone cell verses that of the non adjoining wild type cells for both the control and experimental genotypes (Fig 5.4). These data reveal that the ratio of the average level of Mi-2 protein in FOXO over expressing clone cells versus the non adjacent wild type does not significantly differ from that of the control genotype (Fig 5.4). Thus, it can be proposed that, the level of Mi-2 protein is not altered by increased levels of FOXO expression. The standard deviations of the data may have been reduced by obtaining data from higher number of salivary glands.

### 5.3.2. Simj does not alter FOXO mediated reduced sized salivary gland phenotype

It has been reported that expression of FOXO using a hsGAL4 driver results into reduction of body size which was thought to be a consequence of decrease in cell size and cell number (Kramer et al., 2003). Previous findings from the lab also showed that induction of FOXO expression causes a reduction in the size of the salivary gland (Kimber, 2005). Simj, the regulatory component of NuRD complex (Kon et al., 2005) when co-expressed with FOXO, the salivary gland showed a reduced growth phenotype reasonably similar with that of animals expressing only UAS-FOXO (Fig 5.5). These

data suggest that the over expression of Simj cannot enhance or suppress FOXO induced growth arrest.

### 5.3.3. FOXO does not markedly alter the expression of Dref

The localisation and concentration of Dref protein did not consistently change in FOXO expressing single cell clones as compared with the non adjacent wild type cells (Fig 5.6 B). The intensity of Dref protein these clone cells was analysed using the image analysis software velocity. The ratio of the average amount of Dref protein in clone cells verses that of the non-adjoining wild type cells of was analysed (Fig 5.7). Although the images did not show any consistent change of Dref localisation in FOXO expressing clone cells (Fig 5.6), the quantitative analysis revealed that the ratio of the average intensity of Dref protein in clone cells versus the non adjacent wild type cells of the experimental genotype varied greatly between animals (Fig 5.7). The standard deviation of the data may have been reduced by obtaining data from higher number of salivary glands.

## 5.3.4. A novel pattern of localisation of Mi-2 and Dref protein was observed in FOXO expressing clone cells

The localisation pattern of anti-Mi-2 staining in both single and double stained wild type salivary glands was observed to be nuclear (Fig 5.8 B and Fig 5.9 A). Along with the nuclear accumulation, some cytoplasmic and cell membrane associated anti-Dref staining was also observed in wild type salivary glands when singly labelled with anti-Dref antibody (Fig 5.8 A). However, wild type salivary glands double stained with anti-Dref and anti-Mi-2 antibodies showed exclusively cytoplasmic anti-Dref staining (without any nuclear labelling) (Fig 5.9 A). Interestingly the anti-Dref mouse monoclonal antibody used in this study was raised against bacterially purified recombinant Dref protein consisting of amino acids 16-608 (Hirose et al., 1996) which overlaps the Mi-2 interacting region of the Dref protein (amino acids 16-145) (Hirose et al., 2002). The existence of an in vivo Dref/Mi-2 complex has been reported (Hirose et al., 2002). Therefore, epitope sites of the anti-Dref mouse monoclonal antibody are probably masked in the Dref /Mi-2/anti-Mi-2 antibody complex formed in the double labelled cells. It can be speculated that anti-Dref antibodies can not recognize their own epitope sites on Dref in the Dref /Mi-2/anti-Mi-2 antibody complex formed in the nucleus and hence visualization of Dref protein is not possible in nucleus of the double stained wild type salivary glands (Fig 5.9 A). Unlike the anti-Dref monoclonal antibody, the anti-Mi-2 polyclonal antibody can recognize its epitope sites and label the nuclear Mi-2 protein. Hence visualization of Mi-2 protein is possible in the nuclei of the double stained wild type salivary glands (Fig 5.9 A). However, as anti-Dref staining was observed in the cytoplasm of the wild type double labelled cells (Fig 5.9 A), it is hypothesized that Mi-2 protein may not form complex with Dref in the cytoplasm or may have a different conformation. This hypothesis does not contradict the evidence showing that localisation of anti-Mi-2 staining is higher in the nucleus than the cytoplasm as shown in singly stained wild type salivary glands (Fig 5.8 B). Hence, in the cytoplasm of the double stained wild type salivary glands, the epitope binding sites of anti-Dref antibody are left unmasked leading to the recognition by anti-Dref antibody (Fig 5.9 A). This same interaction between Mi-2, Dref and anti-Mi-2 antibodies presumably has also occurred in the wild type cells surrounding the UAS-FOXO expressing clones, as the distribution pattern of Dref and Mi-2 staining shown by these cells (Fig 5.9 B and C) is reasonably similar with that of the double stained wild type salivary gland cells (Fig 5.9 A).

Interestingly high levels of both anti-Dref and anti-Mi-2 staining were observed in the nuclei of double stained UAS-FOXO expressing clone cells (Fig 5.9 B and C, Fig 5.10, Fig 5.11, Fig 5.12). The level of anti-Mi-2 staining was increased in some double stained UAS-FOXO expressing clones (Fig 5.9 B and C, Fig 5.10 ii, Fig 5.12 ii). However, this alteration in anti-Mi-2 staining was not consistently observed in all double stained UAS-FOXO expressing clones (Fig 5.11 ii), which supports the previous quantitative analysis data acquired from UAS-FOXO expressing clones singly stained with anti-Mi-2 antibody (Section 5.2.2, Fig 5.4). Anti-Mi-2 staining in double stained UAS-FOXO expressing single cell clones was sometimes, nucleoplasmic (Fig 5.10 vii) but mostly perinuclear (Fig 5.11 vii, 5.12 vii). Some cytoplasmic anti-Dref staining was observed in FOXO expressing clone cells (Fig 5.10 i, Fig 5.11 i, Fig 5.12 i). However, anti-Dref staining was also found to be nuclear membrane associated and perinuclear (Fig 5.10 vi, Fig 5.11 vi, Fig 5.12 vi). The fact that this perinuclear distribution of Dref staining (Fig 5.10 vi, Fig 5.11 vi, Fig 5.12 vi) was not seen in wild type cells and NOS2 expressing clone cells when singly stained with anti-Dref antibody (Section 4.2.5, Fig. 4.8.ii. A and B) suggests, this localisation pattern of Dref protein is uniquely mediated by FOXO. This distinct localisation of anti-Dref staining in UAS-FOXO expressing clone cells (Fig 5.10 vi, Fig 5.11 vi, Fig 5.12 vi) can be analysed from the perspective of the previously reported functional relationships between FOXO, myc and Dref.

The presence of a functional Myc binding site (5'-CACGTG canonical E-box) between -78 to -73 nucleotide sequences of the *Dref* promoter suggests that *Dref* is a target of Myc (Dang Thi Phuong Thao, 2007). Myc induces cell growth by promoting G1/S progression (Johnston et al., 1999). The absence of *myc* represses cellular growth and reduces the size of wing cells (Johnston et al., 1999). This growth arrest, coupled with a reduction of organ size, was also observed when a N-terminal Dref fragment (Dref <sub>1-125</sub>) was expressed in salivary glands. This fragment was shown to inhibit the transcriptional regulatory activity of wild type Dref in a dominant negative manner (Hirose et al., 1999). Dref is known to regulate the transcription of several cell proliferation related genes (Matsukage et al., 2008) and Myc functions in the regulation of normal growth (Johnston et al., 1999).

A decrease in the transcription of *Dref* was found in  $dm^4/y$  hemizygous mutants of *myc*, which suggests that Myc is essential for normal *Dref* gene expression (Dang Thi Phuong Thao, 2007). Therefore, Myc may regulate its target genes via the DRE/Dref pathway (Dang Thi Phuong Thao, 2007).

Myc has been identified as a target of FOXO, as *myc* mRNA levels are controlled by FOXO in a tissue specific manner and FOXO can inhibit or increase *myc* expression (Teleman et al., 2008).

All these reports suggest a direct or indirect functional link between FOXO and *myc* and a functional relationship between Myc and *Dref*. These links may explain the unique localisation of Dref protein observed in FOXO expressing clones in the present study (Fig 5.10 vi, Fig 5.11 vi, Fig 5.12 vi). The tendency of Dref protein to localize in the perinuclear space and in the cytoplasm observed in FOXO expressing clones (Fig 5.10 vi, Fig 5.11 vi, Fig 5.12 vi) may be a result of high levels synthesis of Dref protein, induced by FOXO via a Myc dependent pathway.

The perinuclear distribution of anti-Mi-2 staining observed in UAS-FOXO expressing clone cells (Fig 5.11 vii, Fig 5.12 vii) was also observed in wild type cells and *NOS2* expressing clone cells when those were stained with anti-Mi-2 antibody (Section 4.2.3, Fig 4.5.ii. A and B). Therefore, there is no evidence that FOXO induces any change in Mi-2 expression or localisation.

## Chapter 6: Interaction between Simj, Mi-2 and Dref

### **<u>6.1. Introduction</u>**

#### 6.1.1. The functional link between Simj and Mi-2/NuRD

Mi-2, a member of Snf2 family of ATPases, promotes chromatin remodelling by ATP hydrolysis (Brehm et al., 2000). The evolutionary conserved, SWI family ATP dependent chromatin remodelling complexes (SWI/SNF, ISWI, CHD and IN080) are reported to be required for the normal development of embryos and play several other developmental roles such as telomere regulation, chromosome segregation, DNA replication during cell division (Crabtree, 2010) and maintenance of higher order X chromosome structure in *Drosophila* (Renate Deuring et al., 2000). ATP dependent chromatin remodelling enzymes control chromatin structure and play several cell specific roles during development (Crabtree, 2010). The ATP hydrolysis driven chromatin regulating activity of Mi-2 is physically linked with the deacetylase enzyme complex in a multi subunit histone deacetylase complex, purified from *Xenopus laevis* (Wade et al., 1998). Therefore, Mi-2 is a part of NuRD (Yi Zhang et al., 1998), NURD (Xue et al., 1998) or NRD (Tong et al., 1998) complex which is known to couple histone decaetylase and chromatin remodelling ATPase activity (Wade, 2007).

A confocal microscopic study reported that the MBD2/3 associated mammalian Simj protein family members (66kDa) are involved in DNA methylation mediated transcriptional repression (Brackertz et al., 2002). Interestingly, Mi-2/NuRD achieves gene silencing through DNA methylation (Zhang et al., 1999). Simj which is a zinc-finger containing protein acts as a functional link between Mi-2/NuRD and methylated DNA binding proteins MBD2 and MBD3, for methylation mediated gene silencing and hence acts as a regulatory component of NuRD (Kon et al., 2005). Therefore, these data suggest that the two core NuRD components Simj and Mi-2 share a common functional sphere of DNA methylation. Considering this relationship between Simj and Mi-2, the experiments of this chapter were designed to determine the effect of Simj on Mi-2 expression. The response of Mi-2 in both Simj up regulated and down regulated third instar larvae would be determined.

### 6.1.1.1. Use of Simj up regulated system

To achieve high expression of Simj, GFP tagged UAS-simj cDNA containing flies (Kim et al., 2004) were used. These flies were generated by constructing *UAS-simj* vector, containing a 2.7-kb *simj* cDNA fused to the *GFP* coding sequence (Kim et al., 2004). Over expression of GFP tagged UAS-simj would be induced by exploiting the UAS/GAL4 technique (Section 2.1.2). The salivary gland specific c147-GAL4 driver would be used to over express the GFP tagged UAS-simj gene in the whole salivary glands of third instar larvae. UAS-simj-GFP would be over expressed in single cells of salivary glands using FRT/Flp technique (Described in Section 4.1.4) followed by anti-Mi-2 staining of these single cells to determine response of endogenous Mi-2 to the up regulation of Simj levels.

### 6.1.1.2. Use of Simj down regulated system

Reduction of Simj expression was achieved by generating *simj* transheterozygous mutants. Two different *simj* alleles used in this study, were supplied by Bloomington stock centre.

One of these mutant lines (Flybase id FB2010\_02, genotype:

 $P{ry[+t7.2]=PZ}simj[01814] ry[506]/TM3, ry[RK] Sb[1] Ser[1]) carries an insertion of$ *P{PZ}*(Bellen et al., 2004) in a plus orientation at 10667498 location of 3L chromosome in the first intron of*simj*.

The other mutant line (Flybase id FB2010\_02, genotype: w[1118]; P{w[+mGT]=GT1}simj[BG00403]/TM6B, P{w[+mC]=35UZ}DB1, Tb[1]) carries an insertion of <u>P{GT1}</u>(Lukacsovich et al., 2001) in a minus orientation at 10672162 position of 3L chromosome in the first intron of *simj*.

## 6.1.2. The functional link between Simj, Mi-2 and Dref

*Drosophila* Dref functions as a transcription regulatory factor (Hirose et al., 1996). A reduction in salivary gland size and endoreplication was observed with the expression of N-terminal Dref fragment (Dref  $_{1-125}$ ). This fragment was shown to inhibit transcriptional regulatory activity of wild type Dref in a dominant negative manner. This suggested the requirement of Dref for DNA replication, cell proliferation, and differentiation leading to proper development (Hirose et al., 1999). NuRD associated Simj is known to control development through the regulation of ecdysone-responsive genes in *Drosophila* (Kon et al., 2005). These reports suggest that

a common functional link (regulation of development) exists between Simj and Dref. Thus it was decided to determine the effect of Simj on the localisation of Dref. Mi-2 has been revealed to negatively regulate Dref activity by preventing Dref-DNA binding (Hirose et al., 2002). As Dref function is under the negative control of Mi-2 (Hirose et al., 2002), it would be interesting to find out how Dref would respond both in up and down regulated Mi-2 flies.

## 6.1.3. How Simj affects either of the proteins when Mi-2/Dref complex is disrupted?

The *in vivo* existence of a Mi-2/Dref complex has been reported (Hirose et al., 2002). The present study has revealed a novel function of NOS in the probable disruption of the *in vivo* Mi-2/Dref complex (discussed in Section 4.3.5). The experiments of this chapter would also focus on the investigation of the effect of Simj on both of the proteins after the potential disruption of the Mi-2/Dref complex by NOS.

## 6.2. Results

## 6.2.1. Localisation of Dref protein in the whole salivary glands over expressing Mi-2

The aim of this experiment was to visualize the localisation of Dref protein in larvae expressing high levels of Mi-2. Induction of Mi-2 expression was achieved by crossing UAS-Mi-2 carrying flies (Hirose et al., 2002) with c147-GAL4 containing flies. The salivary glands of these third instar larvae were then stained with mouse monoclonal anti-Dref antibody (Hirose et al., 2002). Control flies were generated by crossing wild type flies with c147-GAL4.

Confocal images of anti-Dref antibody stained salivary glands dissected from 10 different experimental and control animals, were analysed. However, no consistent change in the Dref protein distribution was observed in the experimental salivary glands when compared with their corresponding control samples. Some UAS-Mi-2 expressing flies showed more intense localisation of Dref protein in the nucleus (Fig 6.1 Bi and Bii) whereas others did not show any noticeable changes in Dref localisation (Fig 6.1 Biii) when compared with the corresponding control flies (Fig 6.1 Aiii).

## Figure 6.1. Dref localisation in the nuclei of salivary glands from wild type and UAS-Mi-2 expressing larvae

Salivary glands from A) wild type B) UAS-Mi-2 expressing third instar larvae.

Ai) Dref protein associated with the nuclei of salivary glands of a third instar wild type larva.

Bi) Dref protein associated with the nuclei of salivary glands of a third instar larva over expressing Mi-2.

Scale Bar =  $20 \mu m$ , Images acquired and processed using identical settings.

Aii) High magnification image of the nucleus of control (wild type) salivary gland showing anti-Dref staining within the nucleus.

Bii) High magnification image of the nucleus of Mi-2 expressing salivary gland showing more intense staining of Dref protein in the nucleus and possibly in the polytene chromosomes, as compared to that of control larva.

Scale Bar= 10 µm, Images acquired and processed using identical settings.

Aiii) Dref protein associated with the nuclei of salivary glands from a third instar wild type larva.

Biii) Dref protein associated with the nuclei of salivary glands from a third instar larva over expressing Mi-2. This larva did not show any obvious change in Dref expression as compared with the control sample (Aiii).

Scale Bar= 20 µm.

All images acquired and processed using identical settings. Red: mouse anti-Dref antibody (Hirose et al, 2002). Secondary antibody used: Horse anti-mouse Cy5.

**Genotype of Ai) Aii) Aiii):** *y*,*w* / + ; c147-GAL4 / + ; + / + **Genotype of Bi) Bii) Biii):** UAS-Mi-2 ; c147-GAL4



## 6.2.2. Expression of Dref protein in whole salivary glands of Mi-2

## transheterozygous mutants

Expression of Dref protein in Mi-2 down regulated flies was examined in this experiment.

Salivary glands of *Mi-2* transheterozygous third instar larvae (Discussed in section 4.1.5.2) were stained with anti-Dref antibodies and were used as the experimental samples for this experiment. These larvae showed very low levels of Mi-2 protein (Fig 4.1.3). Control flies were generated as in section 6.2.1, processed and imaged in parallel under identical conditions.

Confocal images of anti-Dref antibody stained salivary glands dissected from 10 different experimental and control animals were analysed. Salivary glands of *Mi-2* transheterozygous third instar larvae showed higher accumulation of nuclear Dref protein (Fig 6.2 B) compared with that of the control larvae (Fig 6.2 A).

A)







## Figure 6.2. Expression of Dref protein in the salivary gland nuclei of wild type and *Mi-2* transheterozygous mutants.

A) Control third instar larvae stained with anti-Dref antibody. **Genotype:** y, w / +; c147-GAL4 / +; + / +

B) Salivary gland of third instar larvae from *Mi-2* transheterozygous mutants showed higher accumulation of Dref in the nucleus compared to that of wild type larvae.

Genotype: <u>Mi-2<sup>j3D4</sup>/ Mi-2<sup>EY08138</sup></u> <u>Su(Tpl)<sup>EY08138</sup></u>

Images acquired and processed using identical settings Red: mouse anti-Dref antibody (Hirose et al, 2002). Secondary antibody used: Horse anti-mouse Cy5.

### 6.2.3. Analysis of the phenotypic effect of Simj expression on salivary gland size

*simj* has been reported to play several developmental roles (discussed in section 6.1.1). Therefore, the phenotypic effect of *simj* over expression on salivary gland size was determined. To achieve this, GFP tagged UAS-simj containing flies (Kim et al., 2004) (described in 6.1.1.1) were used. Induction of GFP tagged UAS-simj expression was accomplished in the whole salivary glands by the c147-GAL4 driver. Two different control samples were used:

Third instar larvae of UAS-simj-GFP animals in which *simj* expression was not induced by GAL4 and third instar larvae of wild type (y, w) animals. Surprisingly larvae carrying UAS-simj-GFP showed low levels of GFP (and thus presumably low levels of ectopic Simj expression) in the absence of GAL4 (Fig 6.5 Aii). The experimental and control third instar salivary glands were stained with DAPI and were imaged on Zeiss AxioPhot Microscope at 40x.

The average size of DAPI stained nuclei of c147 driven UAS-*simj* larvae was found to be smaller than that of the larvae where expression of UAS-*simj* was not driven (Fig 6.3, genotype: *simj*). The salivary gland nuclei of wild type larvae were shown to be the largest in size (Fig 6.3, genotype: *WT*). The analysis shows a substantial change in the average nuclei size among these three genotypes. A one-way ANOVA analysis of the three genotypes revealed statistical significant differences among all three genotypes (Fig. 6.3). A post hoc Tukey analysis shows the difference in nuclear size between Simj and wild type, c147 driven Simj and wild type, and Simj and c147 driven Simj animals.



#### Figure 6.3. Average size of DAPI stained larval salivary gland nuclei

*WT* Genotype: *y*,*w* ; +/+; +/+.

*Simj*: Genotype: UAS-simj-GFP / + ; +/+ ; +/+

#### c147 + *simj*: Genotype: UAS-simj-GFP / + ; c147/+ ; +/+

Data was derived approximately from 120 DAPI stained nuclei from 30 different salivary glands of 30 different female animals of each of the above genotypes. Data from images acquired and processed using Zeiss AxioPhot Microscope with 40x objective. \* indicates P<0.05, n=90 -144, error bars indicate standard deviation. n represents number of nuclei.

Raw data available in Appendix No: B.8

# 6.2.4. Analysis of the phenotypic effect of Simj over expression on the whole organism

This experiment was designed to study the effect of inducing *simj* over expression in the whole animal. UAS-simj-GFP expression was induced ubiquitously by the Tub-GAL4 driver. Simultaneously wild type flies were also crossed with Tub-GAL4 driver as controls.

Third instar salivary glands of both the experimental and control progeny were stained with DAPI and were imaged on the confocal microscope. The third instar larvae of Tub-GAL4 driven UAS-simj flies appeared to be sick (data not shown). No adults from these larvae were recovered. The salivary glands of these third instar larvae were radically reduced in size to control larvae (Fig 6.4).

A)

B)





## Figure 6.4. DAPI stained nuclei of salivary glands from Tub-GAL4 driven UAS-simj and wild type third instar.

A) DAPI stained salivary gland of wild type third instar larvae.

**Genotype:** *y*, *w* / +; +/+; Tub-GAL4/+

B) DAPI stained salivary gland nuclei of Tub-GAL4 driven UAS-simj larvae showed a drastic reduction in size.

**Genotype:** UAS-simj / +; Tub-GAL4/+

Images acquired and processed using identical settings

Blue: DAPI.

Scale bar =  $20 \ \mu m$ .

## 6.2.5. <u>Analysis of expression of Mi-2 protein in the salivary glands of larvae with</u> <u>different levels of Simj expression</u>

The aim of this experiment was to study the response of Mi-2 in third instar salivary glands to different levels of Simj expression. To achieve this, localisation of endogenous Mi-2 protein was examined both in Simj up regulated and Simj down regulated animals.

Up regulation of Simj in whole salivary glands was achieved by inducing GFP tagged UAS-simj expression with the c147-GAL4 driver as described in section 6.2.3. A reduction in the amount of endogenous Simj was achieved using the allelic combination of *simj* described in 6.1.1.2. It was important to identify the transheterozygous *simj* animals at their larval stage. Each allele was balanced over TM6B to allow identification of non-balancer larvae. Both the mutants carrying TM6B balancer were maintained as two separate stocks. When kept as separate stocks no non-Tubby larvae were observed in either of the mutant stocks. Non-Tubby third instars were recovered when the mutant stocks balanced with TM6B, were crossed with each other. The heteroallelic combination of *simj* alleles used, allowed the recovery of third instar larvae. However third instar larvae containing this allelic combination of *simj* were extremely unhealthy (data not shown).

Third instar larvae of wild type flies were used as one control genotype. Third instar larvae of animals containing UAS-simj but no GAL4 driver were used as another control sample. Surprisingly, these flies carrying UAS-simj-GFP showed some non GAL4 dependent expression of simj-GFP (as judged by GFP expression) (Fig 6.5Aii) and thus presumably have higher levels of Simj than wild type animals. c147-GAL4 driven expression of UAS-simj-GFP produced larvae expressing high levels of Simj in their salivary glands (Fig 6.5Aiii). Therefore, four different genotypes each expressing different levels of Simj were used.

These were:  $\underline{simj}^{01814}$  /  $\underline{simj}^{BG00403}$ , wild type, UAS-simj-GFP and UAS-simj-GFP; c147GAL4. Although, immunohistochemistry with an anti-simj antibody in third instar salivary glands of *simj* transheterozygous mutants was unsuccessful (data not shown), it was assumed that this *simj* allelic combination would contain the lowest level of endogenous Simj among these four genotypes.

Salivary glands of all these four genotypes were stained with rabbit anti-Mi-2 antibody (Brehm et al., 2000).

Salivary gland of wild type larvae showed maximal levels of Mi-2 protein (Fig 6.5 Bi). Salivary glands of UAS-simj-GFP containing flies but not driven by GAL4 showed lower levels of GFP tagged *simj* (Fig 6.5 Aii, image taken at 24% laser excitation) compared to c147-GAL4 driven UAS-simj-GFP larva (Fig 6.5 Aiii, image taken at 0.1% laser excitation). The level of Mi-2 expression of UAS-simj-GFP containing larvae (Fig 6.5 Bii) was similar to that of the wild type salivary glands (Fig 6.5 Bi). The amount of Mi-2 protein was noticeably reduced in the salivary glands of c147 driven UAS-simj-GFP larvae (Fig 6.5 Biii) which showed high content of Simj expression (Fig 6.5 Aiii). It was assumed that the transheterozygous simj animals (described above) and the c147 driven UAS-simj-GFP expressing larvae would contain the least and highest amount of Simj protein respectively. As the content of Mi-2 protein was observed to decrease with increased levels of Simj (Fig 6.5 Biii), it was expected that the simj mutants would show an increase in the level of Mi-2 compared to the c147 driven UAS-simj-GFP larvae. Unexpectedly most simj mutants showed lower levels of Mi-2 (Fig, 6.6 Ai and Bi). In some *simj* transheterozygous mutants, the level of Mi-2 was not noticeably different to wild type (Fig 6.6 Aii and Bii).

## Figure 6.5. Mi-2 expression in salivary glands of wild type and larvae expressing different levels of simj.

Ai) Salivary gland of wild type third instar larva, did not show any GFP expression (image acquired at 24% laser excitation). (Bi) wild type salivary gland stained with anti-Mi-2 antibody. **Genotype:** *y*, *w*; +/+; +/+

Aii) Salivary gland of UAS-simj-GFP containing third instar larva (expression not driven by GAL4) showed low levels of GFP tagged simj expression (image acquired at 24% laser excitation).

(Bii) Staining with anti-Mi-2 of this genotype showed no noticeable difference compared to the wild type (compare to Bi). **Genotype:** UAS-simj-GFP / +; + / +; + / +

Aiii) Elevated levels of GFP tagged Simj protein was found when UAS-simj-GFP expression was driven by c147-GAL4 (image acquired at 0.1% laser excitation).
(Biii) anti-Mi-2 staining showed lower levels of Mi-2 compared to the other two genotypes (Compare with Bi and Bii).
Genotype: UAS-simj-GFP / +; c147-GAL4 / +; + / +

Red: rabbit anti-Mi-2 antibody (Brehm et al 2000), Blue: DAPI, Green: GFP Scale bar =  $50 \mu m$ . Images (Bi), (Bii) and (Biii) were acquired and processed using identical settings.

120



(**Bi**)









Aiii)





(Biii)





## Figure 6.6. Expression of Mi-2 protein in animals expressing high levels of exogenous simj and *simj* transheterozygous mutants

Ai) Mi-2 expression in c147 driven UAS-simj-GFP salivary gland.Bi) Mi-2 expression in *simj* transheterozygous mutant (showing lower levels of

Mi-2 protein compared to Ai).

Images undertaken and processed using identical settings.

Aii) Mi-2 expression in c147 driven UAS-simj-GFP salivary gland.
Bii) Mi-2 expression in *simj* transheterozygous mutant (showing approximately similar levels of Mi-2 protein compared to Aii).
Images undertaken and processed using identical settings.

**Genotype of Ai and Aii:** UAS-simj-GFP / +; c147-GAL4 / +; + / +. **Genotype of Bi and Bii:** + / +; + / +;  $\underline{P(PZ)simf^{01814}}$   $\underline{ry^{506}}$  /  $\underline{P(GT1)simf^{BG00403}}$ Red: rabbit anti-Mi-2 antibody (Brehm et al 2000), Blue: DAPI, Green: GFP Scale bar = 50 µm.

#### 6.2.6. Effect of Simj expression on Mi-2 localisation in single cell clones

The existence of a Mi-2/Dref complex (Hirose et al., 2002) has been confirmed *in vivo* by the results of this study (Section 4.3.5). The aim of this experiment was to determine the effect of Simj expression on Mi-2/Dref complex. Using the Flp/FRT technique, expression of UAS-simj-GFP was induced in the single cell clones in a similar way as described in Section 4.2.2. These clones were stained with anti-Mi-2 antibody to study the response of Mi- in the Mi-2/Dref complex to Simj expression.

A novel function of NOS in the disruption of Mi-2/Dref complex has been revealed by the present investigation (Section 4.3.5). Therefore it was decided to study the effect of Simj expression on both of the proteins after the disruption of the Mi-2/Dref complex by NOS. Simultaneous expression of UAS-NOS2 and UAS-simj-GFP in single cell clones was achieved using the Flp/FRT technique similar to section 4.2.2, to induce disruption of Mi-2/Dref complex. These clones were stained with anti-Mi-2 antibodies to examine the response of Mi-2 to simj over expression, when the *in vivo* Mi-2/Dref complex is disrupted by NOS.

Cells from salivary glands from four different genotypes were stained with the rabbit anti-Mi-2 antibody: wild type (Fig 6.7 A), UAS-simj-GFP expressing clones (Fig 6.7 C), clones simultaneously expressing UAS-NOS2 and UAS-simj-GFP (Fig 6.7 D) and UAS-NOS2 expressing clones (as in Section 4.2.3) (Fig 6.7 B). Confocal images were acquired of salivary glands from 10 different animals of each genotype. As described previously (Section 4.2.3) the distribution of Mi-2 in wild type salivary gland cells was found to be mainly nucleoplasmic however low levels of Mi-2 were also found in the nucleolus (Fig 6.7 A). Cells expressing NOS2 showed a uniform distribution of Mi-2 in the nucleoplasm as well as in the nucleolus (Fig 6.7 B and section 4.2.3). However clone cells expressing either *simj* alone or *simj* and *NOS2* simultaneously showed a markedly non-nucleolar distribution of Mi-2 (Fig 6.7 C and D). A quantitative examination of the levels of Mi-2 in single cells of all four genotypes was performed using the image analysis software velocity. For the quantitative analysis, wild type GFP marked clone cells, (neither expressing UAS-NOS2 nor UAS-simj-GFP) as described in section 4.2.3 were used as controls. For each genotype the intensity of nuclear staining of Mi-2 protein in the clone cells was compared to that of 10 non adjacent wild type cells of that particular salivary gland (Fig 6.8).

The average ratio of Mi-2 levels in clone cells verses the non adjacent wild type cells was found to be similar in wild type controls, in those expressing *simj* only and in those co expressing *simj* and *NOS2* (Fig 6.8). However the average ratio of Mi-2 expression in *NOS2* only expressing clone cells verses the non adjoining wild type cells was found to be higher (Fig 6.8).

Figure 6.7: Distinctly non-nucleolar localisation of Mi-2 protein in clone cells over expressing *simj* alone or co-expressing *simj* and *NOS2*.

Clones were generated using a 4min heat shock at 38°C between 24-48hr AEL

A) Salivary gland of wild type third instar larva stained with anti-Mi-2 antibody. Image shows nucleoplasmic distribution of Mi-2 protein. Low levels of Mi-2 protein can be seen in the nucleolus (marked with white arrow). **Genotype:** y,w; +/+; +/+

B) *NOS2* only expressing clone cell stained with anti-Mi-2 antibody shows uniform distribution of Mi-2 protein both in nucleoplasm and in nucleolus (nucleolus is marked with white arrow) Genotype: hsFLP / UAS-NOS2; Act5c>y<sup>+</sup>>Gal4; UAS-GFP.

C) Mi-2 is absent from the nucleolus in UAS-simj-GFP expressing clone cell (nucleolus is marked with white arrow). **Genotype:** UAS-simj / +; UAS-mRFP / + ; MKRS, hsFLP / Act5c>y<sup>+</sup>>Gal4

D) Mi-2 protein in a UAS-simj-GFP and UAS-NOS2 co-expressing clone cell is absent from the nucleolus (white arrow). **Genotype:** UAS-simj-GFP / UAS-NOS2; UAS-mRFP / + ; MKRS, hsFLP / Act5c>y<sup>+</sup>>Gal4

Blue: DAPI, Green: GFP, Red: rabbit anti-Mi-2 antibody (Brehm et al, 2000) (Secondary antibody used: goat anti-rabbit Cy5). Scale Bar =  $50 \ \mu m$ .





C)









#### Figure 6.8. Quantification of Mi-2 expression

**GFP** = Ratio of average intensity of Mi-2 expression in GFP marked control clone cells Versus the average intensity of Mi-2 expression in 10 non adjacent wild type cells.

**Genotype:** hsFLP / +; Act5c>y<sup>+</sup>>Gal4 ; UAS-GFP

**NOS2** = Ratio of average intensity of Mi-2 localisation in GFP marked clone cells (expressing *NOS2*) V that in 10 non adjacent wild type cells. **Genotype:** hsFLP/ UAS-NOS2; Act5c>y<sup>+</sup>>Gal4; UAS- GFP

**Simj** = Ratio of average intensity of Mi-2 localisation in GFP marked clone cells (expressing *simj*) V that in 10 non adjacent wild type cells. **Genotype:** UAS-simj / + ; UAS-mRFP / + ; MKRS, hsFLP / Act5c>y<sup>+</sup>>Gal4

Simj + NOS2 = Ratio of average intensity of Mi-2 localisation in GFP marked clone cells (expressing *simj* and *NOS2*) V that in 10 non adjacent wild type cells. Data for both genotypes was obtained from 10 salivary glands from 10 animals. Genotype: UAS-simj / UAS-NOS2; UAS-mRFP / +; MKRS, hsFLP / Act5c>y<sup>+</sup>>Gal4

Error bars indicate standard deviation. Raw data available in Appendix: B.9 Analysis undertaken using Velocity Image Analysis Software.

## 6.2.7. Effect of Simj expression on Dref localisation

As described in section 4.3.5, *NOS2* expression disrupts the Mi-2 / Dref complex. To determine if over expression of Simj could alter the localisation of Dref in either cells containing the Mi-2 / Dref complex or after this complex had been disrupted, clones of Simj expressing cells were generated in an otherwise wild type background or in cells co-expressing *NOS2* similar to section 6.2.6. To control for the effects of *simj* over expression alone, the localisation of Dref was compared to *NOS2* expressing cells. Salivary glands from animals of genotypes: wild type (Fig 6.9 A), GFP marked UAS-Simj (Fig 6.9 C), clones simultaneously expressing UAS-NOS2 and UAS-simj-GFP (Fig 6.9 D) and clones expressing *NOS2* alone (Fig 6.9 B) were stained with an anti-Dref antibody (Hirose et al., 2002).

Nucleoplasmic but not nucleolar distribution of Dref protein was found both in control (Fig 6.9 A) and in only *NOS2* expressing (Fig 6.9 B) single cell clones. Nuclear membrane associated Dref was observed in *simj* only expressing clone cells (Fig 6.9 C) whereas accumulation of Dref protein was distinctly peri-nuclear in case of clones simultaneously expressing *simj* and *NOS2* (Fig 6.9 D).

I did not attempt to quantify this data as Dref localisation was not confined to a discrete area of cell.

### Figure 6.9. Dref localisation in clones expressing *simj* and or *NOS2*

Clones were generated using a 4min heat shock at 38°C between 24-48hr AEL.

A) Wild type salivary glands. Dref was observed in the nucleoplasm but not in the nucleolus (white arrow). **Genotype:** y, w; +/+; +/+

B) NOS2 expressing clone cell. Dref was observed in the nucleoplasm but not in the nucleolus (white arrow).
 Genotype: hsFLP/UAS-NOS2; Act5c>y<sup>+</sup>>Gal4; UAS- GFP.

C) *simj* expressing clone cell. Dref is associated with the nuclear membrane (white arrow).

Genotype: UAS-simj-GFP / + ; UAS-mRFP / +; MKRS, hsFLP / Act5c>y<sup>+</sup>>Gal4

D) *simj* and *NOS2* co-expressing clone. Dref localisation is perinuclear (white arrow). Genotype: UAS-simj-GFP / UAS-NOS2; UAS-mRFP / +; MKRS, hsFLP / Act5c>y<sup>+</sup>>Gal4

Blue: DAPI, Green: GFP, Red: mouse anti-Dref antibody (Hirose et al, 2002) (Secondary antibody used: horse anti-mouse Cy5). Scale Bar =  $50 \mu m$ 




#### 6.3. Discussion

# 6.3.1. Increased Mi-2 content does not consistently change the localisation of Dref protein

Expression of UAS-Mi-2 in salivary glands did not result in any consistent change in the nuclear localisation of Dref (Fig 6.1). In some cases the nuclear localisation of Dref increased in the Mi-2 over expressing larvae (Fig 6.1 Bi and Bii). However, in some salivary glands, expression of high levels of Mi-2 did not cause any noticeable difference in the nuclear content of Dref (Fig 6.1 Biii). It was expected that an increase in Mi-2 content would increase the probability of Dref / Mi-2 binding and therefore may increase Dref levels in the nucleus. However, as Dref has been reported to bind either with Mi-2 or with DNA (Hirose et al., 2002), it is surprising to occasionally observe higher levels of Dref apparently bound to the polytene chromosomes in Mi-2 over expressing animals(Fig 6.1 Bi and Bii). The apparent difference may be due to small variations in the developmental stages of different animals.

### <u>6.3.2. Reduction in Mi-2 content leads to the up regulation of the nuclear</u> <u>accumulation of Dref</u>

Animals transheterozygous for *Mi-2* alleles showed a reduction in the amount of Mi-2 protein (Chapter 4, Fig 4.13). When these larvae were stained with anti-Dref antibodies they showed increased nuclear accumulation of Dref protein (Fig 6.2). This data is consistent with the report that Mi-2 negatively regulates the function of Dref by preventing its binding with DNA (Hirose et al., 2002). It can be speculated that the reduced amount of Mi-2 protein in the mutants was insufficient to inhibit Dref / DNA binding. Consequently, Dref bound to DNA leading to an increase in the nuclear accumulation of Dref (Fig 6.2).

# 6.3.3. Organ autonomous Simj over expression significantly affects growth and size of salivary glands

The salivary gland size of c147 driven UAS-simj third instar larvae did not appear to be noticeably altered compared to the two control genotypes (Section 6.2.3, Data not shown). However, a one way ANOVA analysis revealed that the average nuclei size of c147 driven UAS-simj larvae is significantly reduced when compared to both the control genotypes used for this experiment (Fig 6.3). Simj has been reported to play developmental roles by regulating expression of ecdysone related genes (Kon et al.,

2005) however there are no reports of proliferation and growth defects in *simj* mutants. Therefore, a novel function of Simj in growth regulation has been demonstrated in this thesis (Section 6.2.3).

Unlike c147 driven UAS-simj animals, the salivary glands of larvae where Tub-GAL4 was driving UAS-simj expression, appeared to be noticeably reduced in size (Fig 6.4 B). However, these animals were sluggish and did not go on to produce pupae (data not shown). This indicates that *simj* expression affects the autonomous growth of salivary glands and ubiquitous expression of Simj affects the viability of the animals.

#### 6.3.4. Up regulation of Simj leads to a reduction in Mi-2 level

Larvae which expressed high levels of Simj protein (c147 driven UAS-simj-GFP) (Fig 6.5 Aiii) showed decreased levels of Mi-2 (Fig 6.5 Biii) compared to the corresponding controls (Fig 6.5 Bi and Bii). These data suggest that an increase in Simj results in the reduction of Mi-2 expression or accumulation. It was therefore expected that UAS-simj-GFP containing larvae, which were not driven by c147 (but do have some ectopic simj-GFP expression) (Fig 6.5 Aii) would show a higher nuclear accumulation of Mi-2 than wild type larvae. Surprisingly the amount of Mi-2 protein found in these (Fig 6.5 Bii) did not differ noticeably from that of wild type larvae (Fig 6.5 Bi). However, the amount of simj-GFP expressed by the UAS-simj-GFP containing larvae which were not driven by c147-GAL4 (Fig 6.5 Aii, image taken at 24% laser excitation) was considerably less than that of the c147-GAL4 driven UAS-simj-GFP larvae (Fig 6.5 Aiii, image taken at 0.1% laser excitation). Therefore, perhaps insufficient extra Simj protein was produced in UAS-simj-GFP containing larvae, when not driven by GAL4 to reach a threshold level sufficient to down regulate Mi-2.

Although immunohistochemistry with an anti-simj antibody was unsuccessful (data not shown), *simj* mutants (Described in 6.1.1.2) were believed to contain less Simj. Considering the difference of Mi-2 levels shown by wild type (6.5 Bi) and c147-GAL4 driven UAS-simj larvae (6.5 Bii) it was assumed that third instar larvae of these *simj* mutants would show high accumulation of nuclear Mi-2. Surprisingly these *simj* mutants did not show any consistent results (Fig 6.6). The third instar larvae of the mutants appeared to be weak (data not shown). Similarly the salivary glands of the mutants were small in size (Fig 6.6). In *simj* null mutant embryos, a subset of pericardial cells are missing (Kim et al., 2004). This evidence suggest that reduction of Simj in the mutants used in the present study may affect their developmental progress.

Therefore translation of Mi-2 protein in these improperly developed and unhealthy third instar larvae may be effected. Thus, these *simj* mutant larvae were not used further to investigate the role of Mi-2 regulation.

# 6.3.5. Simj affects localisation of both proteins after disruption of the Mi-2/Dref complex

Images of anti-Mi-2 stained wild type cells show that the distribution of Mi-2 is mostly nucleoplasmic, although low levels of nucleolar Mi-2 were also observed (Fig 6.7 A and section 4.2.3). Similarly, the distribution of Dref protein in wild type cells was nucleoplasmic but distinctly non nucleolar (Fig 6.9 A). This suggests that a large proportion of nuclear Mi-2 stays attached in an *in vivo* complex with Dref. This is in agreement with the previous report of a Mi-2/Dref complex (Hirose et al., 2002). Clone cells expressing *NOS2* showed a uniform distribution of Mi-2 both in nucleoplasm and in nucleolus (Fig 6.7 B and section 4.2.3). However Dref was homogeneously distributed in the nucleoplasm but absent from the nucleolus in *NOS2* expressing clone cells (Fig 6.9 B). These data suggest a reorganisation of the *in vivo* Mi-2/Dref complex by NOS and is further supported by the data of double antibody staining (Section 4.3.5).

Interestingly clone cells over expressing *simj* showed a distinctly non nucleolar distribution of Mi-2 (Fig 6.7 C) unlike the wild type cells (Fig 6.7 A) and the *NOS2* expressing clone cells (Fig 6.7 B). To be more specific, in *simj* expressing clone cells, Mi-2 was found to be distributed in the nuclear area spanning from nucleoplasm to the nuclear membrane, but excluded from the nucleolar space (Fig 6.7 C). Similarly a major change in Dref protein distribution was observed in *simj* expressing clone cells (Fig 6.9 C) compared to that of wild type (Fig 6.9 A) and to *NOS2* expressing clone cells (Fig 6.9 B). The accumulation of Dref protein was exclusively nuclear membrane associated in *simj* expressing clone cells (Fig 6.9 C). The novel localisation of Mi-2 and Dref in *simj* expressing clone cells suggests that when the Mi-2/Dref complex exists, *simj* possibly mediates movement of the complex towards nuclear membrane. In Simj only over expressing clone cells, Mi-2 remained evenly distributed from nucleoplasm to nuclear membrane (Fig 6.7 C) whereas Dref was associated with the nuclear membrane (Fig 6.9 C). This suggests that, compared to Mi-2, Dref is probably more susceptible to the effect of *simj* expression.

The perinuclear distribution of Dref was observed only in *simj* and *NOS2* co-expressing clone cells (Fig 6.9 D). In addition, Mi-2 was observed to be distributed in a distinctly non-nucleolar pattern in these clones simultaneously co-expressing *simj* and *NOS2* (Fig 6.7 D). Considering all these data it can be hypothesized that within *simj* and *NOS2* co-expressing clones, *simj* triggers the movement of Mi-2 and Dref when the Mi-2/Dref complex is disrupted by NOS. The data are consistent with the proposition that the disruption to the Dref / Mi-2 complex results in a perinuclear localisation of Dref in *simj* and *NOS2* co-expressing clones (Fig 6.9 D). However, in clone cells only expressing UAS-simj, the Dref / Mi-2 complex, favours the nuclear membrane associated localisation of Dref (Fig 6.9 C).

The decrease in Mi-2 levels associated with an up regulation of Simj protein content in whole salivary glands (Fig 6.5 Biii) was not observed in the quantitative analysis of Simj over expressing clone cells (Fig 6.8). It was observed that the ratio of Mi-2 concentration in the clone cell verses the non clone cells is similar to that of the control clones (Fig 6.8). The concentration of nuclear Mi-2 in the GAL4 driven UAS-simj and UAS-NOS2 co-expressing clone cells was similar to the non GAL4 expressing cells (Fig 6.8). This may be due to the fact that UAS-simj-GFP is expressed even in the absence of GAL4 as shown in Figure 6.5Aii. Therefore, the surrounding cells of GAL4 driven UAS-simj clones as well as UAS-simj and UAS-NOS2 co-expressing clones also have increased levels of Simj protein. Thus in this experiment, the clone cells and the non-adjacent comparators both express above endogenous levels of Simj, potentially masking any changes to Mi-2.

### **Chapter 7: General Discussion**

#### 7.1. Introduction

The work presented in this thesis has investigated some *in vivo* protein targets of NO. The present study has confirmed Mi-2 as a target of NO. Moreover, the present study has examined NO action on several of its associated proteins.

#### 7.2. NO alters localisation of Mi-2

Previously in our laboratory *ex vivo* experiments, involving treatment with the NO donor SNAP, identified Mi-2 as a probable target of NO (Lasala, 2007). During the present study, SNAP treatment, performed for a shorter time, confirmed an increase in the nuclear localisation of YFP tagged Mi-2<sup>CPTI-000232</sup> (Section 3.2.3). Nuclear accumulation of YFP tagged Mi-2<sup>CPTI-000232</sup> was consistently increased when Nitric Oxide levels were up regulated in whole salivary glands via expression of *NOS2* under the control of c147-GAL4 driver (Section 4.2.1). The *NOS2* gene, which was used to control Nitric Oxide levels during the present study, encodes a constitutively active mouse macrophage nitric oxide synthase protein (Section 1.3). The size of the *NOS2* expressing salivary gland nuclei were smaller than that of the control nuclei (Section 4.2.1) which supports previous reports (Kuzin et al., 1996), (Kimber, 2005) and (Scott, 2009).

To avoid any physiological changes resulting from reduced growth of the whole salivary gland, expression of *NOS2* was induced in single cells of salivary glands by exploiting a Flp/FRT technique (Section 4.1.4). Up regulation of NO levels in these single cells resulted in an increase in the nuclear accumulation of YFP tagged Mi-2 <sup>CPTI-000232</sup> compared to the non adjoining wild type cells (Section 4.2.2). Increase in the nuclear localisation of Mi-2 <sup>CPTI-000232</sup> in the wild type cells immediately adjacent to the *NOS2* expressing clone as shown in figure 4.4 is probably a result of NO diffusion (Haley, 1998).

The wild type Mi-2 protein was shown to behave similarly using a rabbit anti-Mi-2 antibody (Brehm et al., 2000). These data revealed an increase in the endogenous Mi-2 level in *NOS2* expressing single cell clones compared to the non adjacent wild type cells (Section 4.2.3). This finding was confirmed by performing quantitative analysis of nuclear protein levels using image analysis software velocity (Section 4.2.3). However,

in contrast to the wild type cells of the YFP tagged *Mi-2*<sup>*CPTI-000232*</sup> larvae (Section 4.2.2), there was no noticeable alteration in the endogenous Mi-2 level of the wild type cells immediately adjacent to *NOS2* expressing clone (Section 4.2.3). Taken together, all these data strongly suggest that nuclear accumulation of Mi-2 is altered by NO, hence Mi-2 is a target of NO.

#### 7.3. Regulation of growth by NO does not act through Mi-2

To examine whether the growth regulatory activity of NO is controlled by Mi-2, the phenotypic effects of NOS expression on animals with reduced levels of Mi-2 was determined. Two different approaches were used to down regulate Mi-2. Levels of Mi-2 were reduced by targeted RNAi (Dietzl et al., 2007) and by using animals transheterozygous for *Mi-2* alleles. The efficiency of RNAi dependent reduction of Mi-2 levels was examined by expressing UAS-RNAi-Mi-2 in the salivary glands of animals heterozygous for the YFP tagged *Mi-2*<sup>CPTI-000232</sup> allele (Section 4.2.7). The expression of RNAi-Mi-2 under the control of c147-GAL4 driver did not completely eliminate, but did reduce, the expression of YFP tagged Mi-2<sup>CPTI-000232</sup> (Figure 4.12). As targeted RNAi did not completely remove the expression of YFP tagged Mi-2<sup>CPTI-000232</sup>, another approach using *Mi-2* transheterozygous mutants was exploited to down regulate the levels of Mi-2. A *Mi-2* allelic combination (Section 4.1.5.2) which showed a reduction in Mi-2 content, as judged by immunohistochemistry with an anti-Mi-2 antibody (Section 4.2.8), was used as a Mi-2 down regulated system. Hence both RNAi-

Mi-2 and transheterozygous *Mi-2* mutant animals were used to examine the Mi-2 dependency of NO induced growth phenotypes.

The purpose of these experiments was to examine whether a decrease in Mi-2 content prevented the NOS dependent inhibition of growth and whether it leads to an alteration in salivary gland size.

c147-GAL4 induced expression of UAS-NOS2 was achieved in the salivary glands of UAS-RNAi-Mi-2 and *Mi*-2 transheterozygous mutants. The average volume of DAPI stained nuclei of (A) y,w; +/+; +/+, (B) UAS-NOS2 / +; c147-GAL4 / +, (C) UAS-NOS2 / +; c147-GAL4 / +; UAS-RNAi-Mi-2 / +, (D)  $Mi-2^{j3D4}/Mi-2^{EY08138}$  and (E) UAS-NOS2 / +; c147-GAL4 / +;  $Mi-2^{j3D4}/Mi-2^{EY08138}$  animals were calculated using image analysis software velocity (Section 4.2.9). All these NOS expressing genotypes showed a small nuclear size (Section 4.2.9). This evidence suggests that, the NO induced growth phenotype is not controlled by Mi-2. As a functional connection

between Mi-2/NuRD and cell proliferation was reviewed in (Xue et al., 1998), an alteration in the nuclear size in *Mi-2* transheterozygous mutants may have been predicted. However the nuclear size of *Mi-2* transheterozygous mutants did not show any significant difference compared to that of wild type salivary glands (Section 4.2.9). These data are consistent with the recent finding that only a minor portion of *Drosophila* Mi-2 is associated with the NuRD complex, whereas the major fraction is a part of a novel ATP dependent chromatin remodelling complex called *Drosophila* dMec. This complex mediates transcriptional repression of proneural genes however there is no reported data indicating a role for dMec in the control of cell proliferation (Kunert et al., 2009, Kunert N, 2009).

#### 7.4. A novel function of NO in the reorganisation of the *in vivo* Mi-2/Dref complex

Dref and Mi-2 genetically and physically interact with each other. In *Drosophila*, binding of Mi-2 and Dref to polytene chromosomes is mutually exclusive (Hirose et al., 2002). Anti-Dref antibodies coimmunoprecipitate Mi-2 from *Drosophila* embryo, which suggests the existence of an *in vivo* Dref/Mi-2 complex (Hirose et al., 2002). These data indicate that Dref associates with Mi-2 in *Drosophila*.

The cell cycle switch from cell proliferation to differentiation is probably regulated by Dref (Matsukage et al., 2008). NO is also known to control this switch during neurogenesis (Gibbs, 2003). These data suggest that Dref protein localisation may be controlled by NO during the switch of cell cycle from proliferation to differentiation. To determine an interaction between NO and Dref, visualization of Dref protein was achieved using a mouse anti-Dref antibody (Hirose et al., 2002) in NOS2 expressing single cell clones. The quantitative analysis of Dref nuclear levels did not reveal any noticeable alteration in NOS2 expressing clone cells compared to the non adjacent wild type cells (Section 4.2.5). However, NOS2 expressing clones when double stained with both anti-Dref and anti-Mi-2 antibodies showed an unique nuclear localisation of anti-Dref staining, which was entirely different from that of the surrounding wild type cells (Section 4.2.6). A cytoplasmic and cell membrane bound distribution of anti-Dref staining was found in wild type cells surrounding NOS2 expressing clones, whereas anti-Mi-2 localisation was distinctly nuclear within them (Fig 4.11 B). As a possible explanation of this, it is hypothesized that the epitope sites for anti-Dref antibody were masked in an *in vivo* Mi-2/Dref/anti-Mi-2 antibody complex (Section 4.3.5). As a consequence of this, anti-Dref antibodies were unable to recognize nuclear Dref protein (Section 4.3.5). Therefore, formation of an *in vivo* Mi-2/Dref complex was confirmed by the data of double antibody staining shown by wild type cells surrounding *NOS2* expressing clone (Section 4.3.5).

The entirely different pattern of Dref localisation observed in double stained *NOS2* expressing clone cells, compared to surrounding wild type cells, suggests a functional role of NO in the reorganisation of the Mi-2/Dref complex (Section 4.3.5). As the function of Dref is known to be regulated by the intracellular redox state (Choi et al., 2004) and NO is reported to alter transcription factors which are responsive to intracellular redox state (Eberhardt and Beck, 2001), it can be suggested that NO acts in the alteration of Dref by regulating the intracellular redox state, followed by the reorganisation of *in vivo* Mi-2/Dref complex (Section 4.3.5). This disruption of Mi-2/Dref complex ultimately results in growth arrest (section 4.3.5). Therefore, the present study has provided evidence in support of NO mediated reorganisation of Mi-2/Dref complex as a possible growth control mechanism of NO.

# 7.5. Increased FOXO expression does not markedly alter the expression of Mi-2 or Dref in single cell clones

Previously in our laboratory an Affymetrix gene array analysis on *Drosophila* S2 cells revealed that a common set of genes are targeted both by NO and the transcription factor FOXO (Kimber, 2005). As this present study has confirmed Mi-2 as a probable target of NO (Sections 3.3.2 and 4.3.1), it was hypothesized that the action of NO on Mi-2 may be under the direct control of FOXO transcriptional activity. To determine this, expression of UAS-FOXO was induced under the control of c147-GAL4 driver in the whole salivary gland of YFP tagged *Mi*-2<sup>*CPTI-000232*</sup> animals (Section 5.2.1). The size of the salivary glands expressing UAS-FOXO was reduced compared to the corresponding control salivary glands (Section 5.2.1). This result coincides with the previous finding that ectopic expression of FOXO and human FOXO3a bring about reduction in organ size (Junger et al., 2003). The quantification analysis of this data using the image analysis software velocity, demonstrated a 1.3 fold average increase of YFP tagged Mi-2 <sup>CPTI-000232</sup> expression in UAS-FOXO up regulated animals (Section 5.2.1).

To avoid any physiological changes resulting from the reduced growth of the whole salivary gland, nuclear accumulation of endogenous Mi-2 was examined in FOXO expressing single cell clones in salivary glands. An accurate quantitative analysis of these data showed no noticeable change in nuclear concentration of Mi-2 in response to FOXO expression (Section 5.2.2). Nuclear localisation of Dref was also not noticeably altered in response to FOXO expression in most of the single cell clones (Section 5.2.4). Although some FOXO expressing clone cells showed an increase in nuclear Dref accumulation (Section 5.2.4).

#### 7.6. FOXO mediated growth arrest disrupts the in vivo Mi-2/Dref complex

Formation of an *in vivo* Mi-2/Dref complex (Hirose et al., 2002) was confirmed by data acquired from the double anti-Mi2 and anti-Dref antibody staining of *NOS2* over expressing clones (Section 4.3.5). FOXO has been demonstrated to be a probable target of NO (Scott, 2009). Therefore, the response of both Mi-2 and Dref proteins to FOXO was determined by staining FOXO expressing single cell clones simultaneously with anti-Dref and anti-Mi-2 antibodies (Section 5.2.5). The surrounding wild type cells of these FOXO expressing clones showed similar localisation pattern for both the antibodies (Section 5.2.5) as observed in those, surrounding *NOS2* expressing clone cells (Section 4.3.5). As previously observed (Section 4.3.5), the masking of anti-Dref epitope sites in Mi-2/ Dref / anti-Mi-2 antibodies in the double labelled wild type cells surrounding FOXO expressing clone cell (Section 5.3.4).

However clones over expressing FOXO, when double labelled with both anti-Dref and anti-Mi-2 antibodies, showed a perinuclear distribution of both anti-Mi-2 and anti-Dref staining (Section 5.2.5). This perinuclear localisation of anti-Mi-2 staining was also observed in wild type and *NOS2* expressing clone cells when singly stained with anti-Mi-2 antibody (Section 4.2.3). These data suggest that the perinuclear distribution of Mi-2 is not an effect of FOXO up regulation (Section 5.3.4). However, the perinuclear distribution of anti-Dref staining is a result of FOXO signalling (Section 5.2.5), as this was not mimicked either by *NOS2* expressing cells or by wild type cells when singly stained with anti-Dref antibodies (Section 4.2.5). These data support the hypothesis that, the perinuclear distribution pattern of anti-Dref staining is mediated uniquely by FOXO (Section 5.3.4). As well as the perinuclear localisation, a cytoplasmic accumulation of anti-Dref staining was also observed in double labelled FOXO expressing clones (Section 5.2.5). The cytoplasmic anti-Dref staining may be a result of high levels of Dref expression induced by FOXO. As the expression of Dref has been shown to be regulated by *myc* (Dang Thi Phuong Thao et al., 2007) and FOXO has been

demonstrated to control *myc* expression (Teleman et al., 2008), this FOXO induced Dref expression may be through a *myc* dependent pathway (Section 5.3.4). Therefore, the alteration of Dref may be a possible growth control mechanism imparted by FOXO.

# 7.7. Simj does not alter NO and FOXO mediated reduced sized salivary gland phenotype

Simj is the regulatory component of Mi-2/NuRD (Kon et al., 2005). In *Drosophila*, Simj functions in the regulation of ecdysone responsive genes (Kon et al., 2005). NO affects the ecdysone induced protein 75 (E75) (Section 4.1.2). Therefore, it was hypothesized that a functional link may exist between NO and Simj. Hence, the effect of Simj over expression on NO induced growth arrest was determined by co-expressing UAS-simj (Kim et al., 2004) and UAS-NOS2 in whole salivary glands under the control of c147-GAL4 driver. The salivary glands simultaneously over expressing UAS-simj and UAS-NOS2 showed a reduced size reasonably similar to that of those only expressing UAS-NOS2 (Section 4.2.4).

As FOXO is a probable target of NO (Scott, 2009), the effect of UAS-simj expression on the FOXO induced reduced salivary gland size phenotype was determined (Section 5.2.3). Simultaneous expression of UAS-FOXO and UAS-simj in the whole salivary gland did not result in any noticeable alteration in salivary gland size compared to that of those expressing only UAS-FOXO (section 5.2.3). These data suggest that, Simj does not modify NO or FOXO inhibited growth in salivary glands.

# **7.8.** Simj affects sub cellular distribution of both the proteins after disruption of the Mi-2/Dref complex

The effect of Simj expression on the Mi-2/Dref complex was determined by generating UAS-simj expressing single cell clones and staining them separately with anti-Dref and anti-Mi-2 antibodies (Section 6.2.6 and 6.2.7). This study has provided further evidence in support of a function of NO in the reorganisation of Mi-2/Dref complex (Section 6.3.5). When UAS-NOS2 was co-expressed with UAS-simj, the expression of NOS would cause disruption to the Mi-2/Dref complex and the response of both the proteins to Simj over expression could be examined. To achieve this, UAS-NOS2 and UAS-simj co-expressing clones were stained with anti-Dref and anti-Mi-2 antibodies separately (Section 6.2.6 and 6.2.7).

Clones expressing only UAS-simj showed a distinctly non-nucleolar distribution of anti-Mi-2 staining which was not observed in wild type cells or in those expressing only *NOS2* (Section 6.2.6). UAS-simj expressing clones stained with anti-Dref antibodies also showed a distinctly nuclear membrane associated localisation of Dref. This pattern of Dref expression was not seen in either wild type cells or in clones only expressing *NOS2* (Section 6.2.7). These data demonstrate that, both the non-nucleolar distribution of Mi-2 and nuclear membrane associated localisation of Dref are the unique effects of Simj over expression (Section 6.3.5). UAS-simj and UAS-NOS2 co-expressing clones again showed a non-nucleolar distribution of Mi-2 and a distinctly perinuclear distribution of Dref proteins. Again, this pattern was not observed in wild type cells or clones only expressing *NOS2* (Section 6.2.6 and 6.2.7). This supports the hypothesis that Simj imparts its effect on both the proteins when they exist as a Mi-2/Dref complex as well as after the NO induced disruption of the complex (Section 6.3.5).

#### 7.9. Increased Simj content leads to a reduction in Mi-2 levels

The two core components of NuRD, Simj and Mi-2, function in DNA methylation (Section 6.1.1). Salivary glands expressing high levels of UAS-simj (Kim et al., 2004) under the control of c147-GAL4 driver showed a decrease in Mi-2 content compared to the corresponding control genotypes (section 6.2.5). A transheterozygous allelic combination of simj alleles was used as Simj down regulated system to study the response of Mi-2 protein in the salivary glands (Section 6.1.1.2). Unfortunately immunohistochemistry with an anti-Simj antibody was unsuccessful (data not shown). This prevented the study of Simj content in these transheterozygous mutants. However, it was assumed that the mutants would contain less Simj protein. Although up regulation of Simj expression resulted in a reduction in Mi-2 levels (section 6.2.5), anti-Mi-2 staining of *simj* transheterozygous mutants did not result in a consistent alteration of endogenous Mi-2 levels (Section 6.2.5). This may be a result of the apparent weakness observed in the third instar larvae of the mutants (data not shown). The salivary glands of the simj mutants were also small (Fig 6.6). In simj null mutant embryos, a subset of pericardial cells are missing (Kim et al., 2004). This suggests that the reduction of Simj levels in the transheterozygous mutants may affect their developmental progress followed by a reduction in the expression of Mi-2 (Section 6.3.4). The decrease in Mi-2 levels associated with an up regulation of Simj protein content in whole salivary glands (Section 6.2.5) was not repeated in the quantitative

analysis of UAS-simj expressing clone cells (Section 6.2.6). This may be due to the fact that the UAS-simj is expressed even in the absence of GAL4 (Fig 6.5Aii). Therefore, the non GAL4 expressing cells surrounding either Gal4, UAS-simj or Gal4, UAS-NOS2, and GAL4, UAS-simj co expressing clone cells also have increased levels of Simj protein. Thus in this experiment, the clone cells and the non-adjacent comparators both express above endogenous levels of Simj potentially masking any changes to Mi-2 (Section 6.3.5).

One caveat to these data (discussed in 7.1-7.9) is that some of the variation in the levels of proteins observed in salivary gland cells could be due to differences in the amount of endoreplication in different cells. The process of polytenization in salivary gland cells is achieved by an endo cell cycle in which there is only a synthesis phase (S Phase), a Gap phase (G pahse). Cytokinesis, nuclear division and segregation of chromosomes do not occur (Smith and Orr-Weaver, 1991). Polytene DNA replication or endoreplication in larval salivary gland cells is a discontinuous process and works in a cyclic manner (Pearson, 1974). Differences in the amount of polytenization may cause a variation in the amounts and nuclear accumulation of Mi-2 or other proteins in different salivary gland cells. This may lead to a variation in the quantity of observed proteins found in different salivary glands dissected from different third instar larvae or between cells of different genotypes from the same animal. These differences may explain the relatively large standard deviations observed when the expression data is quantified. Overexpression of a target gene (NOS2 / FOXO/ simj) (discussed in 7.1-7.9) can enhance the normal function of that gene. Another way of studying the function of a particular gene is to generate loss of function cell clones which would be homozygous mutant for the gene of interest. The homozygous mutant cells can be marked by expression of a fluorescent marker (GFP/YFP). For salivary glands, this method requires the recovery of the mutant clones prior to the end of cell division of the salivary gland primordia which occurs at 8 hours AEL before the beginning of polytenization.

# 7.10. Organ autonomous Simj over expression significantly affects growth and size of salivary glands

A one-way ANOVA analysis revealed that the nuclear size of cells expressing UASsimj under the control of c147-GAL4 is significantly reduced compared to both the control genotypes. A post hoc Tukey analysis showed a significant difference between the nuclear size of UAS-simj and wildype, c147 driven UAS-simj and wild type, as well as UAS-simj and c147 driven UAS-simj animals (Section 6.2.3). Although functional roles for Simj in development have been reported (Kon et al., 2005), no reports of proliferation or growth defects of *simj* mutants have been published. From the evidence of this present study (Section 6.2.3), it can be proposed that Simj does function in growth regulation. Tub-GAL4 driven UAS-simj larvae were noticeably reduced in size (Section 6.2.4). However, these animals were sluggish and did not go on to produce pupae (data not shown). Hence, from the results of this study it can be suggested that Simj expression affects the autonomous growth of salivary glands and ubiquitous expression of Simj affects the viability of the animals.

#### 7.11. Future work

Several other aspects that may be worth investigating are noted below.

The present study has identified a function of NO on the disruption of the Mi-2/Dref complex *in vivo*, possibly through alteration of the transcription factor Dref (Section 4.3.5). Hence, it would be interesting to investigate whether the antiproliferative action of NOS is Dref dependent. To determine this, NOS induced growth inhibition could be studied in *Dref* mutants or in animals expressing RNAi-Dref. This could also be achieved by the simultaneous expression of the dominant negative Dref protein (Dref <sub>1-125</sub>) (Hirose et al., 1999) and NOS in the same animals.

The present study has also provided evidence in support of alteration of Mi-2 expression by NOS by both *ex vivo* and *in vivo* experiments (Section 4.3.1). It would be revealing to study whether the effect of NOS on Mi-2 is controlled by Dref. To achieve this, animals expressing NOS and RNAi-Dref or dominant negative Dref could be subjected to immunohistochemistry with an anti-Mi-2 antibody.

To further investigate the Mi-2/Dref complex and its disruption by NO, Fluorescence Resonance Energy Transfer (FRET) could be exploited to measure the real time dynamics of the formation and disruption of this complex.

### **Appendices**

#### A. Fly stock used

#### A.1. Bloomington stocks, http://flystocks.bio.indiana.edu/

| Genotype                                                                                      | Comments                                                                        |
|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| y[1] w[*]; P{w[+mC]=GAL4-Act5C(FRT.CD2).P}S                                                   | Ubiquitous expression of GAL4 in FLP-<br>generated clones                       |
| w[1118]; P{w[+mW.hs]=GawB}C147                                                                | GAL4 expressed in larval brain and salivary glands                              |
| w[1118]; P{w[+mC]=UAS-myr-mRFP}1                                                              | P{UAS-myr-mRFP} expresses membrane –<br>targeted monomeric RFP                  |
| y[1] w[*]; P{w[+mC]=UAS-foxo.P}2                                                              | Expresses wild type foxo under UAS control.                                     |
| P{ry[+t7.2]=PZ}simj[01814] ry[506]/TM3, ry[RK] Sb[1]<br>Ser[1]                                | Insertional mutant simj[01814], created by<br>Berkeley Drosophila Genome Proj   |
| y[1] w[*]; P{w[+mC]=lacW}Mi-2[j3D4]<br>Su(Tpl)[j3D4]/TM3, Sb[1] Ser[1]                        | Insertional mutant Mi-2[j3D4] created by<br>Berkeley Drosophila Genome Proj     |
| w[1118]; P{w[+mGT]=GT1}simj[BG00403]/TM6B,<br>P{w[+mC]=35UZ}DB1, Tb[1]                        | Insertional mutant simj[BG00403], created by<br>Berkeley Drosophila Genome Proj |
| y[1] w[67c23]; P{w[+mC] y[+mDint2]=EPgy2}Mi-<br>2[EY08138] Su(Tpl)[EY08138]/TM3, Sb[1] Ser[1] | Insertional mutant Mi-2[EY08138] created by<br>Berkeley Drosophila Genome Proj  |

#### A.2. Fly stocks from CPTI (Cambridge protein trap insertion project)

| Stock       | Genotype                 | Comments                                       |
|-------------|--------------------------|------------------------------------------------|
| CPTI-000232 | +/+;+/+;YFP-Mi-2/TM3, Sb | Expresses YFP tagged nuclear Mi-2. (Homozygous |
|             |                          | survives)                                      |

#### A.3. Fly stocks Vienna Drosophila RNAi center (VDRC), http://stockcenter.vdrc.at/control/main

| Trans-<br>formant<br>ID | Construct<br>ID | Genotype                                 | Inserted<br>Chromo-<br>some | <u>Comments</u>                                          |
|-------------------------|-----------------|------------------------------------------|-----------------------------|----------------------------------------------------------|
| 10766                   | 4511            | +/+;+/+; UAS-RNAi-Mi-2/<br>UAS-RNAi-Mi-2 | 3                           | Expresses RNAi-Mi-2 under the control of UAS/GAL4 system |

#### A.4. Fly stocks from other sources

| Genotype                          | Chromosome | Comments and Reference                       |
|-----------------------------------|------------|----------------------------------------------|
| UAS-Mi-2                          | -          | Expresses Mi-2 under the control of UAS/GAL4 |
|                                   |            | system. A kind gift from Prof Fumiko Hirose  |
|                                   |            | (Hirose, Ohshima et al. 2002)                |
| UAS-simj-GFP / UAS-simj-GFP; +/+; | 1          | Expresses simj under the control of UAS/GAL4 |
| +/+                               |            | system. A kind gift from Prof Yongsok Kim    |
|                                   |            | (Kim, Park et al. 2004).                     |
|                                   |            |                                              |

#### **<u>B.</u>** DATA acquired on image analysis software Velocity

### **B.1.** Analysis of YFP tagged Mi-2<sup>CPTI-000232</sup> expression in the whole salivary glands expressing *NOS2*

UAS-NOS2 over expression in whole salivary gland of YFP tagged Mi-2 (CPTI-000232)

| Cont A    |             |                 |              |               |              |
|-----------|-------------|-----------------|--------------|---------------|--------------|
| Name      | Voxel Count | Centroid Z (µm) | Volume (µm³) | Mean (Ch3-T1) | Sum (Ch3-T1) |
| Object 24 | 25286       | 72.7202         | 4126.2       | 58.1848       | 1.47E+06     |
| Object 23 | 33842       | 70.52           | 5522.38      | 47.2505       | 1.60E+06     |
| Object 26 | 33326       | 69.127          | 5438.18      | 54.5769       | 1.82E+06     |
| Object 25 | 34088       | 68.8204         | 5562.53      | 47.8206       | 1.63E+06     |

Expt A

| Name      | Voxel Count | Centroid Z (µm) | Volume (µm <sup>3</sup> ) | Mean (Ch3-T1) | Sum (Ch3-T1) |
|-----------|-------------|-----------------|---------------------------|---------------|--------------|
| Object 38 | 5592        | 67.5515         | 912.51                    | 88.4158       | 494421       |
| Object 39 | 4356        | 67.1038         | 710.818                   | 83.469        | 363591       |
| Object 35 | 4732        | 65.2918         | 772.174                   | 62.0448       | 293596       |
| Object 34 | 4029        | 62.4629         | 657.458                   | 87.5791       | 352856       |
| Object 23 | 5244        | 61.398          | 855.723                   | 65.8837       | 345494       |

#### Cont B

| Name      | Voxel Count | Centroid Z (才 m) | Volume (オ m ウ) | Mean (Ch3-T1) | Sum (Ch3-T1) |
|-----------|-------------|------------------|----------------|---------------|--------------|
| Object 14 | 48009       | 23.6452          | 7834.17        | 27.4566       | 1.32E+06     |
| Object 13 | 40161       | 22.212           | 6553.53        | 35.6303       | 1.43E+06     |
| Object 11 | 34222       | 20.062           | 5584.39        | 30.4014       | 1.04E+06     |
| Object 8  | 40384       | 19.6048          | 6589.92        | 33.9002       | 1.37E+06     |
| Object 12 | 40755       | 19.2837          | 6650.46        | 32.3408       | 1.32E+06     |
| Object 6  | 38822       | 17.1346          | 6335.03        | 32.122        | 1.25E+06     |
| Object 5  | 38930       | 16.7788          | 6352.65        | 36.2336       | 1.41E+06     |
| Object 3  | 36595       | 16.5754          | 5971.62        | 39.7923       | 1.46E+06     |
| Object 2  | 40844       | 15.1677          | 6664.98        | 35.2538       | 1.44E+06     |

#### Expt B

| Name      | Voxel Count | Centroid Z (µm) | Volume (µm <sup>3</sup> ) | Mean (Ch3-T1) | Sum (Ch3-T1) |
|-----------|-------------|-----------------|---------------------------|---------------|--------------|
| Object 75 | 8682        | 78.1031         | 1416.74                   | 99.3401       | 862471       |
| Object 73 | 6854        | 76.7321         | 1118.45                   | 94.7342       | 649308       |
| Object 74 | 10636       | 75.8938         | 1735.6                    | 110.449       | 1.17E+06     |
| Object 70 | 4972        | 74.8226         | 811.338                   | 99.9          | 496703       |
| Object 71 | 10885       | 74.1077         | 1776.23                   | 108.081       | 1.18E+06     |
| Object 72 | 8385        | 73.2964         | 1368.28                   | 87.9336       | 737323       |
| Object 66 | 4393        | 72.2864         | 716.856                   | 77.8318       | 341915       |
| Object 69 | 13606       | 71.9327         | 2220.25                   | 107.846       | 1.47E+06     |
| Object 65 | 6262        | 71.8764         | 1021.84                   | 95.0584       | 595256       |
| Object 68 | 8828        | 70.8916         | 1440.57                   | 95.5185       | 843237       |
| Object 67 | 10428       | 68.8899         | 1701.66                   | 90.0054       | 938576       |

| Name      | Voxel Count | Centroid Z (µm) | Volume (µm <sup>3</sup> ) | Mean (Ch3-T1) | Sum (Ch3-T1) |
|-----------|-------------|-----------------|---------------------------|---------------|--------------|
| Object 12 | 12095       | 18.4377         | 1973.68                   | 26.1866       | 316727       |
| Object 14 | 16249       | 17.2592         | 2651.53                   | 27.0101       | 438887       |
| Object 18 | 19626       | 15.6824         | 3202.6                    | 28.636        | 562011       |
| Object 8  | 29564       | 13.9267         | 4824.29                   | 34.3688       | 1.02E+06     |
| Object 16 | 24332       | 13.4331         | 3970.53                   | 24.7734       | 602786       |

| Object 9  | 35545       | 12.3959          | 5800.28        | 34.1995       | 1.22E+06     |
|-----------|-------------|------------------|----------------|---------------|--------------|
| Object 6  | 28760       | 10.5038          | 4693.1         | 29.3227       | 843322       |
|           |             |                  |                |               |              |
| Exp D     |             |                  |                |               |              |
| Name      | Voxel Count | Centroid Z (才 m) | Volume (オ m ウ) | Mean (Ch3-T1) | Sum (Ch3-T1) |
| Object 87 | 7111        | 23.072           | 1160.38        | 52.1519       | 370852       |
| Object 73 | 6432        | 21.9123          | 1049.58        | 53.6171       | 344865       |
| Object 84 | 9515        | 21.8581          | 1552.67        | 54.4465       | 518058       |
| Object 40 | 9602        | 21.8521          | 1566.87        | 55.5796       | 533675       |
| Object 68 | 10281       | 21.0288          | 1677.67        | 46.7469       | 480605       |
| Object 49 | 4421        | 20.71            | 721.425        | 50.4734       | 223143       |
| Object 81 | 11427       | 20.5185          | 1864.67        | 61.5428       | 703250       |
| Object 75 | 8232        | 19.9922          | 1343.31        | 59.1067       | 486566       |
| Object 82 | 9380        | 19.8525          | 1530.64        | 57.6813       | 541051       |
| Object 56 | 10172       | 19.2706          | 1659.88        | 41.1826       | 418909       |
| Object 69 | 10844       | 18.375           | 1769.54        | 56.9453       | 617515       |
| Object 25 | 9173        | 16.9642          | 1496.86        | 50.8822       | 466742       |
| Object 70 | 15079       | 16.8109          | 2460.61        | 53.8735       | 812358       |
| Object 47 | 10503       | 16.3195          | 1713.89        | 46.0021       | 483160       |
| Object 31 | 3905        | 15.4146          | 637.223        | 46.9478       | 183331       |
| Object 72 | 23872       | 15.2709          | 3895.47        | 52.5885       | 1.26E+06     |
| Object 57 | 18353       | 15.0972          | 2994.87        | 48.5359       | 890780       |
| Object 83 | 14298       | 14.9             | 2333.17        | 47.5562       | 679958       |
| Object 34 | 12415       | 14.5551          | 2025.9         | 51.4091       | 638244       |
|           |             |                  |                |               |              |
| Cont C    |             |                  |                |               |              |
| Name      | Voxel Count | Centroid Z (才 m) | Volume (オ m ウ) | Mean (Ch3-T1) | Sum (Ch3-T1) |
| Object 38 | 24052       | 69.1717          | 3924.84        | 100.58        | 2.42E+06     |
| Object 37 | 37702       | 65.6699          | 6152.26        | 72.8587       | 2.75E+06     |
| Object 33 | 41509       | 65.281           | 6773.5         | 46.3347       | 1.92E+06     |
| Object 31 | 28792       | 64.1171          | 4698.32        | 84.035        | 2.42E+06     |
| Object 34 | 46799       | 63.9385          | 7636.72        | 68.5846       | 3.21E+06     |
| Object 36 | 37007       | 63.355           | 6038.85        | 82.3135       | 3.05E+06     |
| Object 32 | 35243       | 62.9906          | 5751           | 62.3102       | 2.20E+06     |
| Object 35 | 38485       | 62.3911          | 6280.03        | 89.4056       | 3.44E+06     |
| Object 24 | 44339       | 61.8734          | 7235.3         | 84.0482       | 3.73E+06     |
| Object 30 | 37449       | 61.6228          | 6110.98        | 57.2681       | 2.14E+06     |
| Object 25 | 38850       | 60.9841          | 6339.6         | 48.0253       | 1.87E+06     |
| Object 28 | 34456       | 60.7114          | 5622.58        | 54.4179       | 1.88E+06     |

| Expt C    |             |                 |                           |               |              |
|-----------|-------------|-----------------|---------------------------|---------------|--------------|
| Name      | Voxel Count | Centroid Z (µm) | Volume (µm <sup>3</sup> ) | Mean (Ch3-T1) | Sum (Ch3-T1) |
| Object 31 | 7021        | 66.6341         | 1145.7                    | 102.134       | 717085       |
| Object 25 | 8763        | 61.1262         | 1429.96                   | 108.968       | 954887       |
| Object 24 | 8646        | 56.336          | 1410.87                   | 77.7735       | 672430       |

| Cont E    |             |                  |                |               |              |
|-----------|-------------|------------------|----------------|---------------|--------------|
| Name      | Voxel Count | Centroid Z (才 m) | Volume (オ m ウ) | Mean (Ch3-T1) | Sum (Ch3-T1) |
| Object 17 | 12077       | 17.9459          | 1970.74        | 40.7311       | 491910       |
| Object 19 | 18715       | 16.7601          | 3053.94        | 34.0026       | 636359       |
| Object 24 | 37402       | 12.1436          | 6103.31        | 56.443        | 2.11E+06     |
| Object 23 | 20998       | 12.0024          | 3426.48        | 38.1291       | 800635       |
| Object 25 | 39482       | 11.0084          | 6442.73        | 54.4412       | 2.15E+06     |
| Object 21 | 25581       | 10.7952          | 4174.34        | 38.7038       | 990083       |

| Object 11 | 27351       | 10.7             | 4463.17        | 51.5613       | 1.41E+06     |
|-----------|-------------|------------------|----------------|---------------|--------------|
| Object 18 | 40722       | 10.6698          | 6645.07        | 48.1523       | 1.96E+06     |
|           |             |                  |                |               |              |
| ExPt E    |             |                  |                |               |              |
| Name      | Voxel Count | Centroid Z (才 m) | Volume (オ m ウ) | Mean (Ch3-T1) | Sum (Ch3-T1) |
| Object 66 | 2010        | 23.1527          | 327.995        | 42.6473       | 85721        |
| Object 99 | 3154        | 23.0964          | 514.674        | 56.2067       | 177276       |
| Object 52 | 2271        | 23.0828          | 370.585        | 44.6579       | 101418       |
| Object 72 | 2457        | 22.9426          | 400.937        | 44.5124       | 109367       |
| Object 67 | 2004        | 22.8443          | 327.015        | 51.2705       | 102746       |
| Object 68 | 1628        | 22.7942          | 265.659        | 41.1886       | 67055        |
| Object 89 | 3781        | 22.6432          | 616.989        | 52.5483       | 198685       |
| Object 95 | 1797        | 22.4752          | 293.237        | 43.9944       | 79058        |
| Object 62 | 2387        | 22.3498          | 389.514        | 52.3293       | 124910       |
| Object 61 | 2630        | 22.1924          | 429.167        | 62.7631       | 165067       |
| Object 39 | 2966        | 21.3958          | 483.996        | 49.9326       | 148100       |
| Object 82 | 2216        | 21.3542          | 361.61         | 54.3466       | 120432       |
| Object 56 | 4700        | 21.0109          | 766.952        | 43.4587       | 204256       |
| Object 87 | 2376        | 20.9621          | 387.719        | 51.6768       | 122784       |
| Object 88 | 2170        | 20.9567          | 354.104        | 52.0802       | 113014       |
| Object 58 | 1520        | 20.6697          | 248.036        | 36.2434       | 55090        |
| Object 78 | 2864        | 20.3097          | 467.351        | 55.0115       | 157553       |
| Object 98 | 6531        | 19.8352          | 1065.74        | 55.2773       | 361016       |
| Object 37 | 1989        | 17.3846          | 324.568        | 37.1257       | 73843        |
| Object 44 | 4871        | 16.4584          | 794.856        | 45.761        | 222902       |
| Object 54 | 4177        | 16.1415          | 681.609        | 33.5154       | 139994       |
|           |             |                  |                |               |              |

| Ratio of average intensity of YFP tagged Mi-2 in Experimental A/ Control A  | 1.49 |
|-----------------------------------------------------------------------------|------|
| Ratio of average intensity of YFP tagged Mi-2 in Experimental B/ Control B  | 2.8  |
| Ratio of average intensity of YFP tagged Mi-2 in Experimental C / Control C | 1.36 |
| Ratio of average intensity of YFP tagged Mi-2 in Experimental D / Control D | 1.78 |
| Ratio of average intensity of YFP tagged Mi-2 in Experimental E / Control E | 1.06 |
|                                                                             |      |

Average value of the ratio of 5 experimental / 5 control salivary glands

1.698

#### **B.2.** Visualization of Mi-2 protein in single cell clones expressing NOS

#### B.2. (i) Visualization of Mi-2 protein in GFP marked control clone cells

| Img<br>No 1 | Name             | Voxel<br>Count | Volume<br>(µm³) | Mean<br>(Ch3-T1) | Min<br>(Ch2-<br>T2) | Mean<br>(ChS1-<br>T3) | Sum<br>(ChS1-T3) | Centroid<br>X | Centroid<br>Y | Centroid<br>Z |
|-------------|------------------|----------------|-----------------|------------------|---------------------|-----------------------|------------------|---------------|---------------|---------------|
| Clone       | Object           | 4092           | 1656.41         | 34.772           | 28                  | 72.7454               | 297674           | 378.674       | 314.201       | 16.6041       |
| Wt 1        | Object           | 5458           | 2209.35         | 2.60993          | 28                  | 65.0321               | 354945           | 68.382        | 110.547       | 12.229        |
| Wt 2        | 1<br>Object      | 8552           | 3461.78         | 2.58022          | 28                  | 72.4279               | 619403           | 124.685       | 256.809       | 12.7595       |
| Wt 3        | I<br>Object      | 4474           | 1811.04         | 2.57957          | 28                  | 124.283               | 556043           | 154.652       | 145.929       | 11.0637       |
| Wt 4        | I<br>Object<br>1 | 6170           | 2497.57         | 2.14765          | 28                  | 69.1929               | 426920           | 467.617       | 183.999       | 8.26629       |
| Wt 5        | Object           | 8758           | 3545.17         | 2.58518          | 28                  | 71.726                | 628176           | 124.667       | 256.836       | 12.5776       |
| Wt 6        | Object           | 1579           | 639.166         | 2.51235          | 28                  | 145.775               | 230178           | 58.7809       | 219.764       | 9.9658        |
| Wt 7        | 1<br>Object      | 8071           | 3267.07         | 1.45979          | 28                  | 73.6724               | 594610           | 401.164       | 79.4567       | 21.4443       |
| Wt 8        | I<br>Object      | 10317          | 4176.24         | 1.81749          | 28                  | 89.5717               | 924111           | 220.697       | 69.515        | 16.2537       |
| Wt 9        | I<br>Object      | 7587           | 3071.16         | 2.93752          | 28                  | 135.307               | 1.03E+06         | 457.254       | 305.664       | 6.50534       |
| Wt 10       | Object           | 8820           | 3570.26         | 2.56814          | 28                  | 71.3404               | 629222           | 124.665       | 256.807       | 12.5022       |

| Img<br>No 2   | Name             | Voxel<br>Count | Volume<br>(µm³) | Mean<br>(Ch3-T1) | Min<br>(Ch2-<br>T2) | Mean<br>(ChS1-<br>T3) | Sum<br>(ChS1-T3) | Centroid<br>X | Centroid<br>Y | Centroid<br>Z |
|---------------|------------------|----------------|-----------------|------------------|---------------------|-----------------------|------------------|---------------|---------------|---------------|
| Clone         | Object           | 4044           | 1636.98         | 13.3133          | 24                  | 64.9577               | 262689           | 240.738       | 414.567       | 15.6681       |
| Wt 1          | Object           | 5676           | 2297.6          | 0.690803         | 24                  | 125.473               | 712182           | 297.18        | 108.212       | 4.34056       |
| Wt 2          | Object           | 9346           | 3783.18         | 0.598866         | 24                  | 95.6898               | 894317           | 368.616       | 309.44        | 10.4607       |
| Wt 3          | I<br>Object      | 8157           | 3301.89         | 0.585142         | 24                  | 59.862                | 488294           | 418.809       | 396.729       | 7.59605       |
| Wt 4          | I<br>Object      | 9095           | 3681.58         | 0.540077         | 24                  | 75.9956               | 691180           | 301.144       | 251.594       | 11.3282       |
| Wt 5          | I<br>Object      | 5865           | 2374.1          | 0.537084         | 24                  | 144.682               | 848558           | 257.609       | 54.8382       | 5.21091       |
| Wt 6          | I<br>Object      | 9101           | 3684.01         | 0.763433         | 24                  | 79.7734               | 726018           | 304.95        | 364.678       | 6.56291       |
| Wt 7          | I<br>Object      | 9808           | 3970.2          | 0.743679         | 24                  | 86.0366               | 843847           | 322.587       | 439.163       | 7.3023        |
| Wt 8          | I<br>Object      | 8323           | 3369.08         | 0.756218         | 24                  | 94.7053               | 788232           | 360.92        | 490.65        | 7.38604       |
| Wt 9          | I<br>Object      | 2051           | 830.228         | 0.592882         | 24                  | 40.5685               | 83206            | 459.175       | 323.476       | 23.1853       |
| Wt 10         | 1<br>Object<br>1 | 1418           | 573.995         | 0.311707         | 24                  | 68.3709               | 96950            | 216.028       | 118.757       | 21.1128       |
| Img<br>No 3   | Name             | Voxel<br>Count | Volume<br>(µm³) | Mean<br>(Ch3-T1) | Min<br>(Ch2-<br>T2) | Mean<br>(ChS1-<br>T3) | Sum<br>(ChS1-T3) | Centroid<br>X | Centroid<br>Y | Centroid<br>Z |
| Clone         | Object           | 10284          | 4162.88         | 43.2556          | 24                  | 74.4185               | 765320           | 314.22        | 383.824       | 9.33411       |
| Wt 1          | Object           | 9714           | 3932.15         | 0.328907         | 24                  | 56.1457               | 545399           | 322.867       | 80.3292       | 12.8418       |
| Wt 2          | Object           | 6234           | 2523.47         | 0.281842         | 24                  | 57.0202               | 355464           | 185.006       | 91.2129       | 18.5265       |
| Wt 3          | Object           | 1360           | 550.517         | 0.159559         | 24                  | 40.5632               | 55166            | 220.242       | 13.1868       | 20.189        |
| Wt 4          | Object           | 9137           | 3698.58         | 0.460873         | 24                  | 90.5354               | 827222           | 268.247       | 126.321       | 6.98544       |
| Wt 5          | Object           | 4018           | 1626.45         | 0.486809         | 24                  | 31.6936               | 127345           | 249.026       | 461.306       | 11.4278       |
| Wt 6          | Object           | 8697           | 3520.47         | 0.544441         | 24                  | 58.912                | 512358           | 202.235       | 376.907       | 10.9339       |
| Wt 7          | Object           | 4685           | 1896.45         | 0.528922         | 24                  | 65.2525               | 305708           | 259.702       | 306.286       | 9.41067       |
| Wt 8          | Object           | 9143           | 3701.01         | 0.515476         | 24                  | 69.233                | 632997           | 300.051       | 233.476       | 7.43793       |
| Wt 9          | Object           | 4271           | 1728.87         | 0.46125          | 24                  | 31.2067               | 133284           | 248.817       | 461.18        | 11.3409       |
| Wt 10         | Object<br>1      | 9534           | 3859.28         | 0.331026         | 24                  | 56.676                | 540349           | 322.796       | 80.308        | 12.9776       |
| Img<br>No 4   | Name             | Voxel<br>Count | Volume<br>(µm³) | Mean<br>(Ch3-T1) | Min<br>(Ch2-<br>T2) | Mean<br>(ChS1-<br>T3) | Sum<br>(ChS1-T3) | Centroid<br>X | Centroid<br>Y | Centroid<br>Z |
| Clone<br>Cell | Object           | 2095           | 848.039         | 11.3041          | 28                  | 57.7804               | 121050           | 234.395       | 374.538       | 22.8449       |
| Wt 1          | Object           | 7249           | 2934.34         | 0.67361          | 28                  | 78.8822               | 571817           | 355.462       | 448.744       | 11.8291       |
| Wt 2          | Object           | 5848           | 2367.22         | 0.58567          | 28                  | 129.605               | 757932           | 253.172       | 12.1636       | 9.83635       |
| Wt 3          | Object           | 7362           | 2980.08         | 0.559223         | 28                  | 52.2816               | 384897           | 413.646       | 356.065       | 12.1254       |
| Wt 4          | Object           | 5829           | 2359.53         | 0.757934         | 28                  | 107.897               | 628934           | 292.208       | 66.7854       | 7.77715       |
| Wt 5          | Object           | 10181          | 4121.18         | 0.6464           | 28                  | 70.0202               | 712876           | 238.563       | 142.908       | 13.1806       |
| Wt 6          | Object           | 8124           | 3288.53         | 0.50517          | 28                  | 67.9354               | 551907           | 296.176       | 211.783       | 15.4978       |
| Wt 7          | Object           | 9011           | 3647.58         | 0.679836         | 28                  | 70.9859               | 639654           | 299.606       | 324.61        | 9.7715        |
| Wt 8          | Object           | 8075           | 3268.69         | 0.601981         | 28                  | 79.0031               | 637950           | 317.11        | 397.716       | 11.3391       |
| Wt 9          | Object           | 5043           | 2041.36         | 0.543526         | 28                  | 46.7103               | 235560           | 402.853       | 210.307       | 22.8057       |
| Wt 10         | Object<br>1      | 3843           | 1555.61         | 0.456154         | 28                  | 70.7442               | 271870           | 322.129       | 143.14        | 13.2763       |
| Img<br>No 5   | Name             | Voxel<br>Count | Volume<br>(µm³) | Mean<br>(Ch3-T1) | Min<br>(Ch2-        | Mean<br>(ChS1-        | Sum<br>(ChS1-T3) | Centroid<br>X | Centroid<br>Y | Centroid<br>Z |

| Img<br>No 8   | Name        | Voxel<br>Count | Volume<br>(µm³) | Mean<br>(Ch3-T1) | Min<br>(Ch2-<br>T2) | Mean<br>(ChS1-<br>T3) | Sum<br>(ChS1-T3) | Centroid<br>X | Centroid<br>Y | Centroid<br>Z |
|---------------|-------------|----------------|-----------------|------------------|---------------------|-----------------------|------------------|---------------|---------------|---------------|
| Wt 10         | Object<br>1 | 4873           | 1972.55         | 3.78617          | 27                  | 26.7338               | 130274           | 454.938       | 308.635       | 22.589        |
| Wt 9          | Object<br>1 | 9577           | 3876.69         | 1.30866          | 27                  | 89.9552               | 861501           | 400.565       | 410.282       | 10.543        |
| Wt 8          | Object<br>1 | 6296           | 2548.57         | 1.03161          | 27                  | 96.4423               | 607201           | 464.275       | 487.661       | 16.5723       |
| Wt 7          | Object<br>1 | 10848          | 4391.18         | 1.28844          | 27                  | 122.905               | 1.33E+06         | 122.731       | 94.0536       | 10.8046       |
| Wt 6          | Object<br>1 | 10965          | 4438.54         | 1.38523          | 27                  | 106.398               | 1.17E+06         | 126.074       | 229.861       | 9.49375       |
| Wt 5          | Object<br>1 | 6151           | 2489.87         | 1.22257          | 27                  | 124.104               | 763364           | 30.9379       | 226.955       | 11.6547       |
| Wt 4          | Object<br>1 | 11217          | 4540.55         | 1.2917           | 27                  | 121.664               | 1.36E+06         | 122.728       | 94.1002       | 10.5354       |
| Wt 3          | Object<br>1 | 4615           | 1868.11         | 0.612351         | 27                  | 59.7582               | 275784           | 312.854       | 399.133       | 13.6498       |
| Wt 2          | Object<br>1 | 11453          | 4636.08         | 1.27984          | 27                  | 63.761                | 730255           | 370.229       | 303.538       | 13.2058       |
| Wt 1          | Object<br>1 | 10296          | 4167.74         | 0.730963         | 27                  | 63.4495               | 653276           | 268.236       | 256.218       | 14.8137       |
| Clone<br>Cell | Object<br>1 | 10653          | 4312.25         | 26.2662          | 27                  | 64.8706               | 691067           | 165.19        | 323.095       | 14.9699       |
| Img<br>No 7   | Name        | Voxel<br>Count | Volume<br>(µm³) | Mean<br>(Ch3-T1) | Min<br>(Ch2-<br>T2) | Mean<br>(ChS1-<br>T3) | Sum<br>(ChS1-T3) | Centroid<br>X | Centroid<br>Y | Centroid<br>Z |
| Wt 10         | Object<br>1 | 2052           | 830.633         | 1.13304          | 20                  | 2.26657               | 4651             | 174.636       | 329.541       | 19.2446       |
| Wt 9          | Object<br>1 | 7981           | 3230.64         | 1.75053          | 20                  | 51.5195               | 411177           | 229.924       | 270.499       | 11.0107       |
| Wt 8          | Object<br>1 | 1122           | 454.176         | 2.72014          | 20                  | 89.0624               | 99928            | 259.054       | 204.25        | 2.92959       |
| Wt 7          | Object<br>2 | 2703           | 1094.15         | 1.15982          | 20                  | 52.2445               | 141217           | 314.991       | 270.971       | 11.2105       |
| Wt 6          | Object<br>1 | 4450           | 1801.32         | 2.38517          | 20                  | 143.404               | 638148           | 144.678       | 227.928       | 5.59753       |
| Wt 5          | Object<br>1 | 3418           | 1383.58         | 1.14716          | 20                  | 67.1916               | 229661           | 56.1987       | 120.935       | 10.0506       |
| Wt 4          | Object<br>1 | 8189           | 3314.84         | 1.74918          | 20                  | 51.2258               | 419488           | 229.999       | 270.608       | 11.1508       |
| Wt 3          | Object<br>1 | 5259           | 2128.8          | 2.26868          | 20                  | 163.816               | 861508           | 397.006       | 314.516       | 7.95722       |
| Wt 2          | Object<br>1 | 9208           | 3727.32         | 1.8889           | 20                  | 87.6718               | 807282           | 377.286       | 357.744       | 16.2217       |
| Wt 1          | Object<br>1 | 5845           | 2366.01         | 1.76185          | 20                  | 133.855               | 782384           | 260.566       | 329.001       | 10.3938       |
| Clone<br>Cell | Object<br>1 | 1196           | 484.131         | 25.3286          | 20                  | 46.5351               | 55656            | 137.286       | 168.003       | 12.3428       |
| Img<br>No 6   | Name        | Voxel<br>Count | Volume<br>(µm³) | Mean<br>(Ch3-T1) | Min<br>(Ch2-<br>T2) | Mean<br>(ChS1-<br>T3) | Sum<br>(ChS1-T3) | Centroid<br>X | Centroid<br>Y | Centroid<br>Z |
| Wt 10         | Object<br>1 | 8710           | 3525.74         | 1.28634          | 22                  | 97.9255               | 852931           | 223.001       | 434.709       | 13.397        |
| Wt 9          | I<br>Object | 1532           | 620.141         | 1.04373          | 22                  | 46.8584               | 71787            | 157.152       | 10.7748       | 23.3923       |
| Wt 8          | I<br>Object | 4490           | 1817.51         | 0.924722         | 22                  | 72.3784               | 324979           | 133.123       | 379.306       | 18.3421       |
| Wt 7          | 1<br>Object | 1562           | 632.285         | 0.652369         | 22                  | 87.4257               | 136559           | 217.456       | 71.765        | 23.8566       |
| Wt 6          | I<br>Object | 10328          | 4180.69         | 1.20149          | 22                  | 93.1072               | 961611           | 247.761       | 154.328       | 15.8171       |
| Wt 5          | I<br>Object | 1602           | 648.476         | 1.68851          | 22                  | 137.604               | 220442           | 80.8533       | 129.657       | 8.60924       |
| Wt 4          | I<br>Object | 4404           | 1782.7          | 1.32879          | 22                  | 45.9832               | 202510           | 422.568       | 383.997       | 19.168        |
| Wt 3          | I<br>Object | 8793           | 3559.33         | 1.60696          | 22                  | 107.226               | 942834           | 202.673       | 276.163       | 12.0254       |
| Wt 2          | I<br>Object | 10312          | 4174.21         | 1.43735          | 22                  | 101.333               | 1.04E+06         | 317.113       | 296.548       | 13.0702       |
| Cell<br>Wt 1  | 1<br>Object | 9466           | 3831.76         | 1.45817          | 22                  | 80.0567               | 757817           | 317.876       | 436.112       | 12.9452       |
| Clone         | Object      | 4448           | 1800.51         | 70.8921          | T2)<br>22           | <b>T3)</b><br>128.343 | 570871           | 116.379       | 237.168       | 10.0899       |
|               |             |                |                 |                  | T7)                 | T2)                   |                  |               |               |               |

| Clone<br>Cell | Object<br>1 | 5038           | 2039.34         | 38.6935          | 30                  | 66.5286               | 335171           | 211.32        | 415.574       | 23.319        |
|---------------|-------------|----------------|-----------------|------------------|---------------------|-----------------------|------------------|---------------|---------------|---------------|
| Wt 1          | Object<br>1 | 9566           | 3872.24         | 4.74127          | 30                  | 92.3503               | 883423           | 316.835       | 360.309       | 7.07903       |
| Wt 2          | Object      | 9895           | 4005.41         | 5.01193          | 30                  | 104.992               | 1.04E+06         | 268.334       | 437.284       | 9.66741       |
| Wt 3          | Object      | 9820           | 3975.06         | 3.93697          | 30                  | 79.2488               | 778223           | 230.51        | 325.717       | 13.2418       |
| Wt 4          | Object      | 8054           | 3260.19         | 4.18674          | 30                  | 74.2208               | 597774           | 375.627       | 319.645       | 10.0538       |
| Wt 5          | Object      | 8553           | 3462.18         | 5.11049          | 30                  | 72.0569               | 616303           | 348.917       | 473.304       | 7.63627       |
| Wt 6          | Object      | 5226           | 2115.44         | 2.73421          | 30                  | 41.3781               | 216242           | 415.178       | 427.291       | 19.4432       |
| Wt 7          | Object      | 8230           | 3331.44         | 4.14909          | 30                  | 99.0128               | 814875           | 374.973       | 147.877       | 8.8164        |
| Wt 8          | Object      | 9337           | 3779.54         | 2.93917          | 30                  | 68.2329               | 637091           | 202.764       | 115.858       | 16.367        |
| Wt 9          | Object      | 8801           | 3562.57         | 3.77196          | 30                  | 69.7973               | 614286           | 296.746       | 99.2607       | 15.3018       |
| Wt 10         | Object<br>1 | 8425           | 3410.37         | 2.85923          | 30                  | 52.7828               | 444695           | 231.646       | 182.532       | 23.1774       |
| Img<br>No 9   | Name        | Voxel<br>Count | Volume<br>(µm³) | Mean<br>(Ch3-T1) | Min<br>(Ch2-<br>T2) | Mean<br>(ChS1-<br>T3) | Sum<br>(ChS1-T3) | Centroid<br>X | Centroid<br>Y | Centroid<br>Z |
| Clone         | Object      | 10729          | 4343.01         | 47.4342          | 24                  | 93.4281               | 1.00E+06         | 273.679       | 194.85        | 8.24355       |
| Wt 1          | Object      | 5033           | 2037.32         | 4.52533          | 24                  | 85.5015               | 430329           | 216.591       | 114.988       | 9.90145       |
| Wt 2          | Object      | 9386           | 3799.38         | 3.32506          | 24                  | 79.4683               | 745889           | 258.677       | 37.2264       | 8.38547       |
| Wt 3          | Object      | 8725           | 3531.81         | 4.43381          | 24                  | 80.6878               | 704001           | 155.643       | 188.08        | 9.27473       |
| Wt 4          | Object      | 9582           | 3878.71         | 2.32624          | 24                  | 59.9517               | 574457           | 296.667       | 277.456       | 21.971        |
| Wt 5          | Object      | 7348           | 2974.41         | 2.3997           | 24                  | 46.5048               | 341717           | 137.498       | 75.7805       | 18.5558       |
| Wt 6          | Object      | 9415           | 3811.11         | 2.34041          | 24                  | 56.0797               | 527990           | 332.705       | 111.069       | 15.6049       |
| Wt 7          | Object      | 4735           | 1916.69         | 4.73178          | 24                  | 51.6644               | 244631           | 205.574       | 274.954       | 9.50433       |
| Wt 8          | Object      | 6823           | 2761.89         | 1.55152          | 24                  | 33.8534               | 230982           | 338.473       | 195.441       | 32.9963       |
| Wt 9          | Object      | 6931           | 2805.61         | 1.97288          | 24                  | 41.7125               | 289109           | 146.972       | 304.105       | 28.7097       |
| Wt 10         | Object<br>4 | 1094           | 442.842         | 1.64077          | 24                  | 31.3391               | 34285            | 122.561       | 215.083       | 32.4378       |
| Img<br>No 10  | Name        | Voxel<br>Count | Volume<br>(µm³) | Mean<br>(Ch3-T1) | Min<br>(Ch2-<br>T2) | Mean<br>(ChS1-<br>T3) | Sum<br>(ChS1-T3) | Centroid<br>X | Centroid<br>Y | Centroid<br>Z |
| Clone         | Object      | 5621           | 2275.33         | 13.9448          | 24                  | 74.8605               | 420791           | 114.139       | 379.704       | 33.1875       |
| Wt 1          | Object      | 8690           | 3517.64         | 4.47169          | 24                  | 82.4487               | 716479           | 44.8358       | 206.962       | 11.5329       |

| img<br>No 10  | Name        | Count | ν olume<br>(μm <sup>3</sup> ) | (Ch3-T1) | (Ch2-<br>T2) | (ChS1-<br>T3) | (ChS1-T3) | X       | Y       | Centrold<br>Z |
|---------------|-------------|-------|-------------------------------|----------|--------------|---------------|-----------|---------|---------|---------------|
| Clone<br>Cell | Object<br>1 | 5621  | 2275.33                       | 13.9448  | 24           | 74.8605       | 420791    | 114.139 | 379.704 | 33.1875       |
| Wt 1          | Object<br>1 | 8690  | 3517.64                       | 4.47169  | 24           | 82.4487       | 716479    | 44.8358 | 206.962 | 11.5329       |
| Wt 2          | Object<br>1 | 9977  | 4038.61                       | 4.20487  | 24           | 101.475       | 1.01E+06  | 65.3157 | 266.602 | 10.8927       |
| Wt 3          | Object<br>1 | 9658  | 3909.48                       | 3.25802  | 24           | 110.841       | 1.07E+06  | 402.467 | 380.829 | 9.74622       |
| Wt 4          | Object<br>3 | 1708  | 691.384                       | 1.48888  | 24           | 71.6885       | 122444    | 88.5082 | 272.907 | 38.3226       |
| Wt 5          | Object<br>1 | 11673 | 4725.13                       | 3.02467  | 24           | 88.0451       | 1.03E+06  | 327.923 | 382.979 | 13.7417       |
| Wt 6          | Object<br>1 | 9931  | 4019.99                       | 1.99325  | 24           | 78.6832       | 781403    | 214.195 | 388.646 | 32.0811       |
| Wt 7          | Object<br>1 | 6326  | 2560.71                       | 3.81473  | 24           | 110.328       | 697936    | 372.008 | 289.82  | 8.184         |
| Wt 8          | Object<br>1 | 7243  | 2931.91                       | 4.21317  | 24           | 119.088       | 862554    | 337.183 | 336.153 | 8.41419       |
| Wt 9          | Object<br>1 | 12235 | 4952.63                       | 4.73813  | 24           | 96.6506       | 1.18E+06  | 213.501 | 353.161 | 8.94508       |
| Wt 10         | Object<br>1 | 10936 | 4426.8                        | 4.61924  | 24           | 95.2054       | 1.04E+06  | 108.008 | 334.046 | 9.80907       |

Average intensity of Mi-2 localization in 10 non adjacent wild

| 91.832 |
|--------|
|        |
| 87.115 |
|        |

| 55.723 |
|--------|
|        |
| 77.4   |
|        |
| 86.98  |
|        |
| 84.225 |
|        |
| 87.51  |
|        |
| 75.4   |
|        |
| 56.67  |
|        |
| 95.44  |
|        |
|        |

Intensity of Mi-2 localization in clone cell V average intensity of Mi-2 localization in 10 non adjacent wild type cells

| Img   | 0.79 |
|-------|------|
| No 1  |      |
| Img   | 0.75 |
| No 2  |      |
| Img   | 1.33 |
| No 3  |      |
| Img   | 0.75 |
| No 4  |      |
| Img   | 1.47 |
| No 5  |      |
| Img   | 0.55 |
| No 6  |      |
| Img   | 0.74 |
| No 7  |      |
| Img   | 0.88 |
| No 8  |      |
| Img   | 1.65 |
| No 9  |      |
| Img   | 0.79 |
| No 10 |      |

| Average value of the ratio Clone cells V wild type cells acquired from Img No | 0.97  |
|-------------------------------------------------------------------------------|-------|
| 1 to Img No 10                                                                |       |
| Standared deviation of the average value                                      | 0.371 |

#### **B.2.** (ii) Visualization of Mi-2 protein in single cell clones expressing NOS2

| Img<br>No 1<br>Clon                        | Voxel<br>Count                          | Volume<br>(µm³)                                                | Mean (Ch3-<br>T1)                                                  | Min<br>(Ch2-<br>T2)              | Mean<br>(ChS1-T3)                                              | Sum (ChS1-<br>T3)                                       | Centroi<br>d X                                                | Centroid<br>Y                                                | Centroi<br>d Z                                      |
|--------------------------------------------|-----------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------|----------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------|
| e cell                                     | 14604                                   | 5911 58                                                        | 15 0083                                                            | 35                               | 109 514                                                        | 1.60E+06                                                | 388 622                                                       | 331 901                                                      | 10 571                                              |
| Wt 1                                       | 13013                                   | 5267.56                                                        | 0 277876                                                           | 35                               | 81 7953                                                        | 1.06E+06                                                | 91 5113                                                       | 326.69                                                       | 10.577                                              |
| Wt 2                                       | 11808                                   | 4779 78                                                        | 0.200119                                                           | 35                               | 61 8786                                                        | 730663                                                  | 126 049                                                       | 275 419                                                      | 13 9563                                             |
| Wt 3                                       | 14353                                   | 5809.98                                                        | 0.242179                                                           | 35                               | 73.2347                                                        | 1.05E+06                                                | 200.526                                                       | 322.928                                                      | 12.6651                                             |
| Wt 4                                       | 10953                                   | 4433.68                                                        | 0.219483                                                           | 35                               | 71.7126                                                        | 785468                                                  | 259.34                                                        | 365.517                                                      | 29.3118                                             |
| Wt 5                                       | 6531                                    | 2643.69                                                        | 0.261522                                                           | 35                               | 74.9677                                                        | 489614                                                  | 54.0167                                                       | 373.733                                                      | 25.46                                               |
| Wt 6                                       | 10606                                   | 4293.22                                                        | 0.142749                                                           | 35                               | 56.929                                                         | 603789                                                  | 255.974                                                       | 252.923                                                      | 25.2065                                             |
| Wt 7                                       | 9152                                    | 3704.65                                                        | 0.217767                                                           | 35                               | 61.8911                                                        | 566427                                                  | 76.5605                                                       | 230.75                                                       | 21.8563                                             |
| Wt 8                                       | 11809                                   | 4780.19                                                        | 0.405453                                                           | 35                               | 85.9881                                                        | 1.02E+06                                                | 453.31                                                        | 282.159                                                      | 14.2975                                             |
| Wt 9                                       | 4304                                    | 1742.22                                                        | 0.152649                                                           | 35                               | 42.8483                                                        | 184419                                                  | 190.482                                                       | 232.072                                                      | 39.6578                                             |
|                                            |                                         |                                                                |                                                                    | Min                              |                                                                |                                                         |                                                               |                                                              |                                                     |
| Img<br>No 2                                | Voxel<br>Count                          | Volume<br>(µm³)                                                | Mean (Ch3-<br>T1)                                                  | (Ch2-<br>T2)                     | Mean<br>(ChS1-T3)                                              | Sum (ChS1-<br>T3)                                       | Centroi<br>d X                                                | Centroid<br>Y                                                | Centroi<br>d Z                                      |
| Clon                                       |                                         |                                                                |                                                                    |                                  |                                                                |                                                         |                                                               |                                                              |                                                     |
| e cell                                     | 12749                                   | 5160.69                                                        | 13.0549                                                            | 35                               | 87.2923                                                        | 1.11E+06                                                | 384.352                                                       | 337.584                                                      | 27.9031                                             |
| Wt 1                                       | 15440                                   | 6249.98                                                        | 0.433873                                                           | 35                               | 23.0842                                                        | 356420                                                  | 63.1302                                                       | 177.32                                                       | 15.5132                                             |
| Wt 2                                       | 8334                                    | 3373.53                                                        | 0.314015                                                           | 35                               | 16.2544                                                        | 135464                                                  | 30.2049                                                       | 224.841                                                      | 26.2513                                             |
| Wt 3                                       | 12831                                   | 5193.88                                                        | 0.253682                                                           | 35                               | 17.02                                                          | 218383                                                  | 107.526                                                       | 276.548                                                      | 25.4352                                             |
| Wt 4                                       | 15877                                   | 6176 00                                                        | 0 200215                                                           |                                  | 00 700 F                                                       | 0.00000                                                 | 164767                                                        | 262.00                                                       | 17 4217                                             |
| XX/4 E                                     | 100//                                   | 0420.88                                                        | 0.309315                                                           | 35                               | 22.7095                                                        | 360559                                                  | 164.767                                                       | 202.98                                                       | 17.7217                                             |
| WL 5                                       | 13597                                   | 5503.95                                                        | 0.309315<br>0.26675                                                | 35<br>35                         | 22.7095<br>16.7141                                             | 360559<br>227261                                        | 164.767<br>216.497                                            | 330.375                                                      | 27.2523                                             |
| Wt 5                                       | 13597<br>8550                           | 5503.95<br>3460.97                                             | 0.309315<br>0.26675<br>0.477427                                    | 35<br>35<br>35                   | 22.7095<br>16.7141<br>14.6854                                  | 360559<br>227261<br>125560                              | 216.497<br>318.703                                            | 330.375<br>228.068                                           | 27.2523<br>34.3013                                  |
| Wt 6<br>Wt 7                               | 13597<br>8550<br>12344                  | 5503.95<br>3460.97<br>4996.75                                  | 0.309313<br>0.26675<br>0.477427<br>0.260774                        | 35<br>35<br>35<br>35             | 22.7095<br>16.7141<br>14.6854<br>19.5429                       | 227261<br>125560<br>241237                              | 216.497<br>318.703<br>286.56                                  | 262.98<br>330.375<br>228.068<br>363.89                       | 27.2523<br>34.3013<br>38.8339                       |
| Wt 6<br>Wt 7<br>Wt 8                       | 13597<br>8550<br>12344<br>3497          | 6426.88<br>5503.95<br>3460.97<br>4996.75<br>1415.56            | 0.309315<br>0.26675<br>0.477427<br>0.260774<br>0.373463            | 35<br>35<br>35<br>35<br>35       | 22.7095<br>16.7141<br>14.6854<br>19.5429<br>19.5997            | 360559<br>227261<br>125560<br>241237<br>68540           | 164.767<br>216.497<br>318.703<br>286.56<br>47.3151            | 202.98<br>330.375<br>228.068<br>363.89<br>108.661            | 27.2523<br>34.3013<br>38.8339<br>33.9317            |
| Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Wt 9<br>Wt | 13597<br>8550<br>12344<br>3497<br>10450 | 6426.88<br>5503.95<br>3460.97<br>4996.75<br>1415.56<br>4230.07 | 0.309315<br>0.26675<br>0.477427<br>0.260774<br>0.373463<br>0.33311 | 35<br>35<br>35<br>35<br>35<br>35 | 22.7095<br>16.7141<br>14.6854<br>19.5429<br>19.5997<br>17.1344 | 360559<br>227261<br>125560<br>241237<br>68540<br>179054 | 164.767<br>216.497<br>318.703<br>286.56<br>47.3151<br>135.489 | 262.98<br>330.375<br>228.068<br>363.89<br>108.661<br>143.198 | 27.2523<br>34.3013<br>38.8339<br>33.9317<br>38.2557 |

| Ima                 | Vovel          | Volume             | Mean (Ch3-        | Min<br>(ChS1-       | Mean               | Sum (ChS1-        | Centroi        | Centroid      | Centroi        |
|---------------------|----------------|--------------------|-------------------|---------------------|--------------------|-------------------|----------------|---------------|----------------|
| No 3<br>Clon        | Count          | (μm <sup>3</sup> ) | T1)               | (Ch51-<br>T3)       | (ChS1-T3)          | T3)               | d X            | Y             | d Z            |
| e cell              | 9713           | 3931.74            | 43.957            | 26                  | 82.8864            | 805076            | 74.0667        | 362.499       | 9.42335        |
| Wt 1                | 14577          | 5900.65            | 0.684709          | 26                  | 86.6768            | 1.26E+06          | 476.324        | 77.7023       | 11.8076        |
| Wt 2                | 15524          | 6283.99            | 0.505153          | 26                  | 91.1451            | 1.41E+06          | 348.618        | 150.611       | 11.4173        |
| Wt 3                | 15461          | 6258.49            | 0.555591          | 26                  | 94.9919            | 1.47E+06          | 213.919        | 235.506       | 10.5077        |
| Wt 4                | 17659          | 7148.22            | 0.511977          | 26                  | 97.138             | 1.72E+06          | 96.4015        | 201.057       | 10.0208        |
| Wt 5                | 9231           | 3736.63            | 0.479363          | 26                  | 69.6121            | 642589            | 155.105        | 447.927       | 30.5911        |
| Wt 6                | 13415          | 5430.28            | 0.549981          | 26                  | 76.5278            | 1.03E+06          | 315.171        | 265.271       | 19.3022        |
| Wt 7                | 15663          | 6340.25            | 0.580859          | 26                  | 92.0846            | 1.44E+06          | 15.0774        | 252.234       | 10.7504        |
| Wt 8                | 14949          | 6051.23            | 0.557161          | 26                  | 96.4496            | 1.44E+06          | 214.071        | 235.305       | 9.98368        |
| Wt 9                | 15644          | 6332.56            | 0.448031          | 26                  | 85.5269            | 1.34E+06          | 179.728        | 354.157       | 13.0488        |
| Wt                  |                |                    |                   |                     |                    |                   |                |               |                |
| 10                  | 11272          | 4562.81            | 0.387243          | 26                  | 67.912             | 765504            | 120.142        | 474.708       | 28.3434        |
| Ima                 | Vovel          | Volume             | Mean (Ch3-        | Min<br>(Ch2-        | Mean               | Sum (ChS1-        | Centroi        | Centroid      | Centroi        |
| No 4                | Count          | (um <sup>3</sup> ) | T1)               | (Ch2-<br>T2)        | (ChS1-T3)          | T3)               | dX             | V             | d Z            |
| Clon                | count          | (µm)               | 11)               | 12)                 | (CH51-15)          | 13)               | u 2            |               | u Z            |
| e cell              | 727            | 294.284            | 10,7909           | 21                  | 122,993            | 89416             | 67.0248        | 154,905       | 38.63          |
| Wt 1                | 11295          | 4572.12            | 3 04294           | 21                  | 58 1656            | 656981            | 241 914        | 214 363       | 13 255         |
| Wt 2                | 11062          | 4477 81            | 2,93256           | 21                  | 53 076             | 587127            | 373 285        | 432,568       | 11 4071        |
| Wt 3                | 4995           | 2021.93            | 1 99339           | 21                  | 54 1461            | 270460            | 337 868        | 280.066       | 16 8771        |
| Wt 4                | 2795           | 1131 39            | 2 11521           | 21                  | 33,9692            | 94944             | 487 1          | 401 273       | 19 917         |
| Wt 5                | 3148           | 1274.28            | 0.991741          | 21                  | 26 1185            | 82221             | 416.013        | 485.062       | 28 2004        |
| Wt 6                | 6126           | 2479.75            | 2 13892           | 21                  | 61 9993            | 379808            | 189.625        | 165.182       | 13 0215        |
| Wt 7                | 10947          | 4431.26            | 2.13092           | 21                  | 46 8976            | 513388            | 293 593        | 412 935       | 19 3351        |
| Wt 8                | 3960           | 1602.98            | 2.37992           | 21                  | 51 6929            | 204704            | 477 209        | 482 578       | 8 53359        |
| Wt 9                | 10808          | 4374.99            | 1.97326           | 21                  | 40.413             | 436784            | 236.15         | 350.271       | 22.2197        |
| WL<br>10            | 4469           | 1809.01            | 2.23831           | 21                  | 56.3439            | 251801            | 139.318        | 38.4133       | 17.2806        |
|                     |                |                    |                   | Min                 |                    |                   |                |               |                |
| Img<br>No 5<br>Clon | Voxel<br>Count | Volume<br>(µm³)    | Mean (Ch3-<br>T1) | (Ch2-<br>T2)        | Mean<br>(ChS1-T3)  | Sum (ChS1-<br>T3) | Centroi<br>d X | Centroid<br>Y | Centroi<br>d Z |
| e cell              | 2305           | 933 045            | 9 51 584          | 34                  | 150.09             | 345957            | 418 873        | 383 629       | 14 308         |
| Wt 1                | 2365<br>7164   | 2899.93            | 3 07733           | 34                  | 107 409            | 769478            | 119 171        | 144 13        | 15 5197        |
| Wt 2                | /104           | 1868 52            | 2 21500           | 34                  | 86 3/10            | 308554            | 104 826        | 207 596       | 26 / 802       |
| Wt 2                | 11121          | 4501.60            | 2.21577           | 34                  | 102 178            | 1 14E+06          | 186 737        | 207.570       | 18 8666        |
| Wt A                | 10000          | 4047.02            | 2.40702           | 34                  | 96 56/3            | 965643            | 248 032        | 188 / 18      | 17 5805        |
| Wt 4                | 8123           | 3202.17            | 1 5507            | 34                  | 75 3111            | 612505            | 240.752        | 103.320       | 25 0203        |
| Wt 5                | 4515           | 1827.63            | 1.3377            | 34                  | 130 238            | 588025            | 350.048        | 195.559       | 15 0151        |
| WL U                | 4313           | 1627.03            | 1.75576           | 24                  | 130.238            | 222710            | 420.02         | 232.332       | 10.5401        |
|                     | 2591           | 907.037            | 4.32240           | 24                  | 139.131<br>56.6270 | 209271            | 430.95         | 295.207       | 25 0106        |
| WLO<br>W40          | 30/9           | 1489.23            | 0.913400          | 54                  | 30.03/9            | 208571            | 231.790        | 270.044       | 35.0100        |
| Wt                  | 8343           | 3377.99            | 1.54544           | 34                  | /4.558/            | 620525            | 303.499        | 195.25        | 25.7584        |
| 10                  | 4590           | 1857.99            | 1.72636           | 34                  | 129.429            | 594079            | 359.933        | 232.923       | 14.8725        |
| Img<br>No 6         | Voxel<br>Count | Volume<br>(µm³)    | Mean (Ch3-<br>T1) | Min<br>(Ch2-<br>T2) | Mean<br>(ChS1-T3)  | Sum (ChS1-<br>T3) | Centroi<br>d X | Centroid<br>Y | Centroi<br>d Z |
| Clon                |                |                    |                   |                     |                    |                   |                |               |                |
| e cell              | 3891           | 1575.04            | 7.50938           | 27                  | 108.935            | 423868            | 362.315        | 327.984       | 27.2005        |
| Wt 1                | 7615           | 3082.49            | 0.405384          | 27                  | 109.478            | 833678            | 267.77         | 423.111       | 29.9326        |
| Wt 2                | 15103          | 6113.57            | 0.537046          | 27                  | 104.657            | 1.58E+06          | 191.953        | 165.423       | 16.5025        |
| Wt 3                | 14416          | 5835.48            | 0.616121          | 27                  | 137.093            | 1.98E+06          | 252.638        | 222.69        | 12.7725        |
| Wt 4                | 13189          | 5338.8             | 0.342407          | 27                  | 107.917            | 1.42E+06          | 283.423        | 161.627       | 28.6243        |
| Wt 5                | 6312           | 2555.05            | 0.125158          | 27                  | 74.1838            | 468248            | 218.26         | 139.211       | 52.9053        |
| Wt 6                | 6406           | 2593.1             | 0.823915          | 27                  | 88.3445            | 565935            | 225.078        | 354.378       | 37.4243        |
| Wt 7                | 10209          | 4132.52            | 1.2012            | 27                  | 128.725            | 1.31E+06          | 331.765        | 460.056       | 13.1615        |
| Wt 8                | 14221          | 5756.54            | 0.519795          | 27                  | 120.86             | 1.72E+06          | 201.248        | 281.138       | 16.9596        |
| Wt 9                | 2955           | 1196.16            | 0.111675          | 27                  | 68.3675            | 202026            | 189.482        | 227.658       | 50.9411        |
| Wt<br>10            | 13769          | 5573.58            | 0.631346          | 27                  | 140.253            | 1.93E+06          | 252.778        | 222.504       | 12.2768        |
|                     |                |                    |                   | Min                 |                    |                   |                |               |                |
| Img                 | Voxel          | Volume             | Mean (Ch3-        | (Ch2-               | Mean               | Sum (ChS1-        | Centroi        | Centroid      | Centroi        |
| No 7                | Count          | (µm³)              | <b>T1</b> )       | T2)                 | (ChS1-T3)          | T3)               | d X            | Y             | d Z            |
| Clon                |                |                    |                   |                     |                    |                   |                |               |                |
| e cell              | 6978           | 2824.64            | 9.682             | 27                  | 108.015            | 753732            | 126.706        | 71.2154       | 12.3951        |
| Wt 1                | 3127           | 1265.78            | 1.02047           | 27                  | 70.2926            | 219805            | 441.243        | 464.01        | 16.3307        |
| Wt 2                | 10745          | 4349.49            | 1.2966            | 27                  | 53.1686            | 571297            | 259.473        | 311.824       | 17.5252        |
| Wt 3                | 8662           | 3506.31            | 1.18737           | 27                  | 49.6199            | 429808            | 358.503        | 423.675       | 19.1952        |
| Wt 4                | 10235          | 4143.04            | 1.32702           | 27                  | 57.4064            | 587555            | 327.06         | 351.838       | 17.288         |
| Wt 5                | 12214          | 4944.13            | 1.14745           | 27                  | 44.283             | 540872            | 284.17         | 418.687       | 19.4485        |

| Wt 6                                                                                                                                                                     | 0760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3050 77                                                                                                                                          | 1 1201                                                                                                                                           | 27                                                                                                                         | 10 7862                                                                                                             | 485013                                                                                                     | 203 725                                                                                         | 366 206                                                                                                    | 10 0442                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| WL U<br>XX4 7                                                                                                                                                            | 9700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3930.77                                                                                                                                          | 0.766442                                                                                                                                         | 27                                                                                                                         | 49.7602                                                                                                             | 403913                                                                                                     | 205.723                                                                                         | 488.002                                                                                                    | 19.9442                                                        |
|                                                                                                                                                                          | 3030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2289.3                                                                                                                                           | 0.766443                                                                                                                                         | 27                                                                                                                         | 40.4363                                                                                                             | 228822                                                                                                     | 310.768                                                                                         | 488.902                                                                                                    | 20.0485                                                        |
| wt 8                                                                                                                                                                     | 11559                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4678.99                                                                                                                                          | 3.07942                                                                                                                                          | 27                                                                                                                         | 77.2421                                                                                                             | 892841                                                                                                     | 177.364                                                                                         | 1/3.684                                                                                                    | 13.4064                                                        |
| Wt 9                                                                                                                                                                     | 7461                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3020.15                                                                                                                                          | 1.12009                                                                                                                                          | 27                                                                                                                         | 37.9983                                                                                                             | 283505                                                                                                     | 250.085                                                                                         | 185.736                                                                                                    | 27.3605                                                        |
| Wt                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                  |                                                                                                                                                  |                                                                                                                            |                                                                                                                     |                                                                                                            |                                                                                                 |                                                                                                            |                                                                |
| 10                                                                                                                                                                       | 4237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1715.1                                                                                                                                           | 0.707576                                                                                                                                         | 27                                                                                                                         | 39.5138                                                                                                             | 167420                                                                                                     | 312.635                                                                                         | 264.51                                                                                                     | 34.4397                                                        |
|                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                  |                                                                                                                                                  |                                                                                                                            |                                                                                                                     |                                                                                                            |                                                                                                 |                                                                                                            |                                                                |
|                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                  |                                                                                                                                                  | Min                                                                                                                        |                                                                                                                     |                                                                                                            |                                                                                                 |                                                                                                            |                                                                |
| Img                                                                                                                                                                      | Voxel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Volume                                                                                                                                           | Mean (Ch3-                                                                                                                                       | (Ch2-                                                                                                                      | Mean                                                                                                                | Sum (ChS1-                                                                                                 | Centroi                                                                                         | Centroid                                                                                                   | Centroi                                                        |
| No 8                                                                                                                                                                     | Count                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (um <sup>3</sup> )                                                                                                                               | T1)                                                                                                                                              | T2)                                                                                                                        | (ChS1-T3)                                                                                                           | T3)                                                                                                        | d X                                                                                             | Y                                                                                                          | d Z                                                            |
| Clon                                                                                                                                                                     | count                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (                                                                                                                                                |                                                                                                                                                  | )                                                                                                                          | (0101 10)                                                                                                           | 10)                                                                                                        | <b>u</b> 11                                                                                     | -                                                                                                          | 42                                                             |
|                                                                                                                                                                          | 6584                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2665.15                                                                                                                                          | 21 / 598                                                                                                                                         | 27                                                                                                                         | 151 11                                                                                                              | 99/909                                                                                                     | 208.28                                                                                          | 409 585                                                                                                    | 11 1315                                                        |
| UCH 1                                                                                                                                                                    | 12091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4800.20                                                                                                                                          | 21.4570                                                                                                                                          | 27                                                                                                                         | 02 2600                                                                                                             | 1.01E+06                                                                                                   | 204.17                                                                                          | 214 177                                                                                                    | 14.2757                                                        |
|                                                                                                                                                                          | 12081                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4690.29                                                                                                                                          | 2.00021                                                                                                                                          | 27                                                                                                                         | 85.5089<br>75.0069                                                                                                  | 722050                                                                                                     | 204.17                                                                                          | 514.177                                                                                                    | 14.5757                                                        |
| wt 2                                                                                                                                                                     | 9646                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3904.62                                                                                                                                          | 3.00021                                                                                                                                          | 27                                                                                                                         | /5.9962                                                                                                             | /33059                                                                                                     | 287.268                                                                                         | 1/8./30                                                                                                    | 22.5122                                                        |
| Wt 3                                                                                                                                                                     | 2769                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1120.87                                                                                                                                          | 2.64175                                                                                                                                          | 27                                                                                                                         | 65.4485                                                                                                             | 181227                                                                                                     | 319.649                                                                                         | 61.2929                                                                                                    | 19.333                                                         |
| Wt 4                                                                                                                                                                     | 7302                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2955.79                                                                                                                                          | 2.13106                                                                                                                                          | 27                                                                                                                         | 61.6913                                                                                                             | 450470                                                                                                     | 223.472                                                                                         | 119.868                                                                                                    | 32.9984                                                        |
| Wt 5                                                                                                                                                                     | 8749                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3541.52                                                                                                                                          | 2.99577                                                                                                                                          | 27                                                                                                                         | 73.0786                                                                                                             | 639365                                                                                                     | 307.337                                                                                         | 265.496                                                                                                    | 24.6226                                                        |
| Wt 6                                                                                                                                                                     | 2641                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1069.06                                                                                                                                          | 2.11208                                                                                                                                          | 27                                                                                                                         | 44.248                                                                                                              | 116859                                                                                                     | 338.086                                                                                         | 151.421                                                                                                    | 33.3453                                                        |
| Wt 7                                                                                                                                                                     | 4833                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1956.36                                                                                                                                          | 1.63915                                                                                                                                          | 27                                                                                                                         | 42.66                                                                                                               | 206176                                                                                                     | 254.585                                                                                         | 16.1235                                                                                                    | 30.6313                                                        |
| Wt 8                                                                                                                                                                     | 5695                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2305 29                                                                                                                                          | 2 84039                                                                                                                                          | 27                                                                                                                         | 62 7845                                                                                                             | 357558                                                                                                     | 179 637                                                                                         | 406 727                                                                                                    | 28 4 291                                                       |
| W/+ 0                                                                                                                                                                    | 2750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1116.82                                                                                                                                          | 2.01039                                                                                                                                          | 27                                                                                                                         | 56 0230                                                                                                             | 157053                                                                                                     | 326.845                                                                                         | 336 300                                                                                                    | 33 8663                                                        |
| WL 9                                                                                                                                                                     | 2139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1110.82                                                                                                                                          | 2.33774                                                                                                                                          | 27                                                                                                                         | 50.9259                                                                                                             | 157055                                                                                                     | 520.845                                                                                         | 550.577                                                                                                    | 55.8005                                                        |
| 10                                                                                                                                                                       | 2064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1100.9                                                                                                                                           | 1 04972                                                                                                                                          | 27                                                                                                                         | 12 0000                                                                                                             | 120116                                                                                                     | 192 040                                                                                         | 202 800                                                                                                    | 27.0551                                                        |
| 10                                                                                                                                                                       | 2964                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1199.8                                                                                                                                           | 1.94872                                                                                                                                          | 27                                                                                                                         | 43.8988                                                                                                             | 130116                                                                                                     | 185.949                                                                                         | 302.899                                                                                                    | 37.9551                                                        |
|                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                  |                                                                                                                                                  |                                                                                                                            |                                                                                                                     |                                                                                                            |                                                                                                 |                                                                                                            |                                                                |
|                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                  |                                                                                                                                                  | Min                                                                                                                        |                                                                                                                     |                                                                                                            |                                                                                                 |                                                                                                            |                                                                |
| Img                                                                                                                                                                      | Voxel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Volume                                                                                                                                           | Mean (Ch3-                                                                                                                                       | (ChS1-                                                                                                                     | Mean                                                                                                                | Sum (ChS1-                                                                                                 | Centroi                                                                                         | Centroid                                                                                                   | Centroi                                                        |
| No 9                                                                                                                                                                     | Count                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (µm³)                                                                                                                                            | T1)                                                                                                                                              | T3)                                                                                                                        | (ChS1-T3)                                                                                                           | T3)                                                                                                        | d X                                                                                             | Y                                                                                                          | d Z                                                            |
| Clon                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                  |                                                                                                                                                  |                                                                                                                            |                                                                                                                     |                                                                                                            |                                                                                                 |                                                                                                            |                                                                |
| e cell                                                                                                                                                                   | 6723                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2721.41                                                                                                                                          | 13.6903                                                                                                                                          | 70                                                                                                                         | 118.427                                                                                                             | 796185                                                                                                     | 399.693                                                                                         | 306.836                                                                                                    | 32.221                                                         |
| Wt 1                                                                                                                                                                     | 11361                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4598.84                                                                                                                                          | 6.18484                                                                                                                                          | 70                                                                                                                         | 135.942                                                                                                             | 1.54E+06                                                                                                   | 304.203                                                                                         | 157.528                                                                                                    | 15.1175                                                        |
| Wt 2                                                                                                                                                                     | 11241                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4550.26                                                                                                                                          | 5,45877                                                                                                                                          | 70                                                                                                                         | 136.744                                                                                                             | 1.54E+06                                                                                                   | 404.655                                                                                         | 130,763                                                                                                    | 12.9722                                                        |
| Wt 3                                                                                                                                                                     | 10068                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4075 44                                                                                                                                          | 5 4122                                                                                                                                           | 70                                                                                                                         | 133 857                                                                                                             | 1 35E+06                                                                                                   | 372 911                                                                                         | 63 6268                                                                                                    | 16 8599                                                        |
| W+ A                                                                                                                                                                     | 10606                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4203.22                                                                                                                                          | 6 67108                                                                                                                                          | 70                                                                                                                         | 134.476                                                                                                             | 1.35E+06                                                                                                   | 245 338                                                                                         | 378 501                                                                                                    | 6 56058                                                        |
| WU -                                                                                                                                                                     | 10525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4275.22                                                                                                                                          | 6.05957                                                                                                                                          | 70                                                                                                                         | 109.240                                                                                                             | 1.45E+06                                                                                                   | 401.966                                                                                         | 07 5595                                                                                                    | 0.50756                                                        |
| WL5                                                                                                                                                                      | 10555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4204.40                                                                                                                                          | 0.03837                                                                                                                                          | 70                                                                                                                         | 120.342                                                                                                             | 1.55E+00                                                                                                   | 491.800                                                                                         | 97.5585                                                                                                    | 21.9100                                                        |
| Wto                                                                                                                                                                      | 8438                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3415.63                                                                                                                                          | 6.82259                                                                                                                                          | 70                                                                                                                         | 130.373                                                                                                             | 1.10E+06                                                                                                   | 30.3668                                                                                         | 434.829                                                                                                    | 7.31785                                                        |
| Wt 7                                                                                                                                                                     | 9630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3898.14                                                                                                                                          | 4.95794                                                                                                                                          | 70                                                                                                                         | 122.78                                                                                                              | 1.18E+06                                                                                                   | 255.281                                                                                         | 437.855                                                                                                    | 20.0157                                                        |
| Wt 8                                                                                                                                                                     | 9978                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4039.01                                                                                                                                          | 5.3625                                                                                                                                           | 70                                                                                                                         | 127.947                                                                                                             | 1.28E+06                                                                                                   | 442.811                                                                                         | 20.4209                                                                                                    | 13.4531                                                        |
| Wt 9                                                                                                                                                                     | 9465                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3831.35                                                                                                                                          | 5.69593                                                                                                                                          | 70                                                                                                                         | 130.392                                                                                                             | 1.23E+06                                                                                                   | 161.446                                                                                         | 409.706                                                                                                    | 10.0875                                                        |
| Wt                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                  |                                                                                                                                                  |                                                                                                                            |                                                                                                                     |                                                                                                            |                                                                                                 |                                                                                                            |                                                                |
| 10                                                                                                                                                                       | 9491                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3841.88                                                                                                                                          | 5.82699                                                                                                                                          | 70                                                                                                                         | 139.631                                                                                                             | 1.33E+06                                                                                                   | 188.005                                                                                         | 481.672                                                                                                    | 15.6344                                                        |
|                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                  |                                                                                                                                                  |                                                                                                                            |                                                                                                                     |                                                                                                            |                                                                                                 |                                                                                                            |                                                                |
| Img                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                  |                                                                                                                                                  |                                                                                                                            |                                                                                                                     |                                                                                                            | Sum                                                                                             |                                                                                                            | Min                                                            |
| No                                                                                                                                                                       | Voxel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Volume                                                                                                                                           |                                                                                                                                                  | Centroid                                                                                                                   |                                                                                                                     | Mean                                                                                                       | (ChS2-                                                                                          | Mean                                                                                                       | (Ch2-                                                          |
| 10                                                                                                                                                                       | Count                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (um <sup>3</sup> )                                                                                                                               | Centroid X                                                                                                                                       | Y                                                                                                                          | Centroid Z                                                                                                          | (ChS2-T2)                                                                                                  | T2)                                                                                             | (Ch3-T3)                                                                                                   | Ť4)                                                            |
| Clon                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                  |                                                                                                                                                  |                                                                                                                            |                                                                                                                     | ` <i>´</i>                                                                                                 | 1.37E+                                                                                          | ì í                                                                                                        | <i>,</i>                                                       |
| e cell                                                                                                                                                                   | 12208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                  | 227 164                                                                                                                                          | 65.372                                                                                                                     | 18.3965                                                                                                             | 112.579                                                                                                    | 06                                                                                              | 27.9812                                                                                                    | 30                                                             |
|                                                                                                                                                                          | 12200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4941.7                                                                                                                                           | 227.104                                                                                                                                          |                                                                                                                            |                                                                                                                     |                                                                                                            | 010074                                                                                          | 4 05 65 1                                                                                                  | 30                                                             |
| Wt 1                                                                                                                                                                     | 7614                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4941.7<br>3082.08                                                                                                                                | 242.085                                                                                                                                          | 350 458                                                                                                                    | 18 2434                                                                                                             | 28 1027                                                                                                    | 213974                                                                                          | 4 85671                                                                                                    | 20                                                             |
| Wt 1<br>Wt 2                                                                                                                                                             | 7614                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4941.7<br>3082.08<br>4521.93                                                                                                                     | 242.085                                                                                                                                          | 350.458<br>448 677                                                                                                         | 18.2434<br>7 20526                                                                                                  | 28.1027<br>30.6185                                                                                         | 213974                                                                                          | 4.85671 7.14027                                                                                            | 30                                                             |
| Wt 1<br>Wt 2<br>Wt 3                                                                                                                                                     | 7614<br>7611                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4941.7<br>3082.08<br>4521.93<br>3080.87                                                                                                          | 242.085<br>350.813                                                                                                                               | 350.458<br>448.677<br>417.774                                                                                              | 18.2434<br>7.20526                                                                                                  | 28.1027<br>30.6185<br>27.1084                                                                              | 213974<br>342039<br>206322                                                                      | 4.85671<br>7.14027<br>5.53804                                                                              | 30                                                             |
| Wt 1<br>Wt 2<br>Wt 3                                                                                                                                                     | 7614<br>11171<br>7611                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4941.7<br>3082.08<br>4521.93<br>3080.87                                                                                                          | 242.085<br>350.813<br>437.641                                                                                                                    | 350.458<br>448.677<br>417.774                                                                                              | 18.2434<br>7.20526<br>11.0122                                                                                       | 28.1027<br>30.6185<br>27.1084                                                                              | 213974<br>342039<br>206322                                                                      | 4.85671<br>7.14027<br>5.53804                                                                              | 30<br>30<br>20                                                 |
| Wt 1<br>Wt 2<br>Wt 3<br>Wt 4                                                                                                                                             | 7614<br>11171<br>7611<br>14011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4941.7<br>3082.08<br>4521.93<br>3080.87<br>5671.54                                                                                               | 242.085<br>350.813<br>437.641<br>312.357                                                                                                         | 350.458<br>448.677<br>417.774<br>343.563                                                                                   | 18.2434<br>7.20526<br>11.0122<br>10.2438                                                                            | 28.1027<br>30.6185<br>27.1084<br>33.4028                                                                   | 213974<br>342039<br>206322<br>468007                                                            | 4.85671<br>7.14027<br>5.53804<br>6.14481                                                                   | 30<br>30<br>30                                                 |
| Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5                                                                                                                                     | 7614<br>11171<br>7611<br>14011<br>13142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4941.7<br>3082.08<br>4521.93<br>3080.87<br>5671.54<br>5319.77                                                                                    | 242.085<br>350.813<br>437.641<br>312.357<br>380.114                                                                                              | 350.458<br>448.677<br>417.774<br>343.563<br>270.696                                                                        | 18.2434<br>7.20526<br>11.0122<br>10.2438<br>16.9997                                                                 | 28.1027<br>30.6185<br>27.1084<br>33.4028<br>41.2019                                                        | 213974<br>342039<br>206322<br>468007<br>541476                                                  | 4.85671<br>7.14027<br>5.53804<br>6.14481<br>6.84485                                                        | 30<br>30<br>30<br>30                                           |
| Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6                                                                                                                             | 7614<br>11171<br>7611<br>14011<br>13142<br>5034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4941.7<br>3082.08<br>4521.93<br>3080.87<br>5671.54<br>5319.77<br>2037.72                                                                         | 242.085<br>350.813<br>437.641<br>312.357<br>380.114<br>68.3619                                                                                   | 350.458<br>448.677<br>417.774<br>343.563<br>270.696<br>11.1134                                                             | 18.2434<br>7.20526<br>11.0122<br>10.2438<br>16.9997<br>8.68733                                                      | 28.1027<br>30.6185<br>27.1084<br>33.4028<br>41.2019<br>27.9062                                             | 213974<br>342039<br>206322<br>468007<br>541476<br>140480                                        | 4.85671<br>7.14027<br>5.53804<br>6.14481<br>6.84485<br>8.47815                                             | 30<br>30<br>30<br>30<br>30                                     |
| Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7                                                                                                                     | 7614<br>11171<br>7611<br>14011<br>13142<br>5034<br>11361                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4941.7<br>3082.08<br>4521.93<br>3080.87<br>5671.54<br>5319.77<br>2037.72<br>4598.84                                                              | 242.085<br>350.813<br>437.641<br>312.357<br>380.114<br>68.3619<br>302.521                                                                        | 350.458<br>448.677<br>417.774<br>343.563<br>270.696<br>11.1134<br>74.1784                                                  | 18.2434<br>7.20526<br>11.0122<br>10.2438<br>16.9997<br>8.68733<br>27.9856                                           | 28.1027<br>30.6185<br>27.1084<br>33.4028<br>41.2019<br>27.9062<br>69.6052                                  | 213974<br>342039<br>206322<br>468007<br>541476<br>140480<br>790785                              | 4.85671<br>7.14027<br>5.53804<br>6.14481<br>6.84485<br>8.47815<br>8.87131                                  | 30<br>30<br>30<br>30<br>30<br>30<br>30                         |
| Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8                                                                                                             | 7614<br>11171<br>7611<br>14011<br>13142<br>5034<br>11361<br>12102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4941.7<br>3082.08<br>4521.93<br>3080.87<br>5671.54<br>5319.77<br>2037.72<br>4598.84<br>4898.79                                                   | 242.085<br>350.813<br>437.641<br>312.357<br>380.114<br>68.3619<br>302.521<br>291.566                                                             | 350.458<br>448.677<br>417.774<br>343.563<br>270.696<br>11.1134<br>74.1784<br>176.595                                       | 18.2434<br>7.20526<br>11.0122<br>10.2438<br>16.9997<br>8.68733<br>27.9856<br>23.9484                                | 28.1027<br>30.6185<br>27.1084<br>33.4028<br>41.2019<br>27.9062<br>69.6052<br>50.8028                       | 213974<br>342039<br>206322<br>468007<br>541476<br>140480<br>790785<br>614815                    | 4.856/1<br>7.14027<br>5.53804<br>6.14481<br>6.84485<br>8.47815<br>8.87131<br>7.23732                       | 30<br>30<br>30<br>30<br>30<br>30<br>30<br>30                   |
| Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Wt 9                                                                                                     | 7614<br>11171<br>7611<br>14011<br>13142<br>5034<br>11361<br>12102<br>11151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4941.7<br>3082.08<br>4521.93<br>3080.87<br>5671.54<br>5319.77<br>2037.72<br>4598.84<br>4898.79<br>4513.83                                        | 242.085<br>350.813<br>437.641<br>312.357<br>380.114<br>68.3619<br>302.521<br>291.566<br>205.787                                                  | 350.458<br>448.677<br>417.774<br>343.563<br>270.696<br>11.1134<br>74.1784<br>176.595<br>239.251                            | 18.2434<br>7.20526<br>11.0122<br>10.2438<br>16.9997<br>8.68733<br>27.9856<br>23.9484<br>20.9495                     | 28.1027<br>30.6185<br>27.1084<br>33.4028<br>41.2019<br>27.9062<br>69.6052<br>50.8028<br>30.9032            | 213974<br>342039<br>206322<br>468007<br>541476<br>140480<br>790785<br>614815<br>344602          | 4.856/1<br>7.14027<br>5.53804<br>6.14481<br>6.84485<br>8.47815<br>8.87131<br>7.23732<br>6.26616            | 30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30             |
| Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Wt 9<br>Wt                                                                                               | 7614<br>11171<br>7611<br>14011<br>13142<br>5034<br>11361<br>12102<br>11151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4941.7<br>3082.08<br>4521.93<br>3080.87<br>5671.54<br>5319.77<br>2037.72<br>4598.84<br>4898.79<br>4513.83                                        | 242.085<br>350.813<br>437.641<br>312.357<br>380.114<br>68.3619<br>302.521<br>291.566<br>205.787                                                  | 350.458<br>448.677<br>417.774<br>343.563<br>270.696<br>11.1134<br>74.1784<br>176.595<br>239.251                            | 18.2434<br>7.20526<br>11.0122<br>10.2438<br>16.9997<br>8.68733<br>27.9856<br>23.9484<br>20.9495                     | 28.1027<br>30.6185<br>27.1084<br>33.4028<br>41.2019<br>27.9062<br>69.6052<br>50.8028<br>30.9032            | 213974<br>342039<br>206322<br>468007<br>541476<br>140480<br>790785<br>614815<br>344602          | 4.856/1<br>7.14027<br>5.53804<br>6.14481<br>6.84485<br>8.47815<br>8.87131<br>7.23732<br>6.26616            | 30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30             |
| Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Wt 9<br>Wt 10                                                                                            | 7614<br>11171<br>7611<br>14011<br>13142<br>5034<br>11361<br>12102<br>11151<br>1840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4941.7<br>3082.08<br>4521.93<br>3080.87<br>5671.54<br>5319.77<br>2037.72<br>4598.84<br>4898.79<br>4513.83<br>744.817                             | 247.104<br>242.085<br>350.813<br>437.641<br>312.357<br>380.114<br>68.3619<br>302.521<br>291.566<br>205.787<br>145.205                            | 350.458<br>448.677<br>417.774<br>343.563<br>270.696<br>11.1134<br>74.1784<br>176.595<br>239.251<br>179.559                 | 18.2434<br>7.20526<br>11.0122<br>10.2438<br>16.9997<br>8.68733<br>27.9856<br>23.9484<br>20.9495<br>26.0353          | 28.1027<br>30.6185<br>27.1084<br>33.4028<br>41.2019<br>27.9062<br>69.6052<br>50.8028<br>30.9032<br>30.7864 | 213974<br>342039<br>206322<br>468007<br>541476<br>140480<br>790785<br>614815<br>344602<br>56647 | 4.856/1<br>7.14027<br>5.53804<br>6.14481<br>6.84485<br>8.47815<br>8.87131<br>7.23732<br>6.26616<br>5.93804 | 30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30       |
| Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Wt 9<br>Wt 10                                                                                            | 7614<br>11171<br>7611<br>14011<br>13142<br>5034<br>11361<br>12102<br>11151<br>1840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4941.7<br>3082.08<br>4521.93<br>3080.87<br>5671.54<br>5319.77<br>2037.72<br>4598.84<br>4898.79<br>4513.83<br>744.817                             | 242.085<br>350.813<br>437.641<br>312.357<br>380.114<br>68.3619<br>302.521<br>291.566<br>205.787<br>145.205                                       | 350.458<br>448.677<br>417.774<br>343.563<br>270.696<br>11.1134<br>74.1784<br>176.595<br>239.251<br>179.559                 | 18.2434<br>7.20526<br>11.0122<br>10.2438<br>16.9997<br>8.68733<br>27.9856<br>23.9484<br>20.9495<br>26.0353          | 28.1027<br>30.6185<br>27.1084<br>33.4028<br>41.2019<br>27.9062<br>69.6052<br>50.8028<br>30.9032<br>30.7864 | 213974<br>342039<br>206322<br>468007<br>541476<br>140480<br>790785<br>614815<br>344602<br>56647 | 4.856/1<br>7.14027<br>5.53804<br>6.14481<br>6.84485<br>8.47815<br>8.87131<br>7.23732<br>6.26616<br>5.93804 | 30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30       |
| Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Wt 9<br>Wt 10                                                                                            | 7614<br>11171<br>7611<br>14011<br>13142<br>5034<br>11361<br>12102<br>11151<br>1840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4941.7<br>3082.08<br>4521.93<br>3080.87<br>5671.54<br>5319.77<br>2037.72<br>4598.84<br>4898.79<br>4513.83<br>744.817                             | 242.085<br>350.813<br>437.641<br>312.357<br>380.114<br>68.3619<br>302.521<br>291.566<br>205.787<br>145.205<br>in 10 non adjace                   | 350.458<br>448.677<br>417.774<br>343.563<br>270.696<br>11.1134<br>74.1784<br>176.595<br>239.251<br>179.559                 | 18.2434<br>7.20526<br>11.0122<br>10.2438<br>16.9997<br>8.68733<br>27.9856<br>23.9484<br>20.9495<br>26.0353          | 28.1027<br>30.6185<br>27.1084<br>33.4028<br>41.2019<br>27.9062<br>69.6052<br>50.8028<br>30.9032<br>30.7864 | 213974<br>342039<br>206322<br>468007<br>541476<br>140480<br>790785<br>614815<br>344602<br>56647 | 4.856/1<br>7.14027<br>5.53804<br>6.14481<br>6.84485<br>8.47815<br>8.87131<br>7.23732<br>6.26616<br>5.93804 | 30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30       |
| Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Wt 9<br>Wt 10<br>Average                                                                                 | 7614<br>7611<br>11171<br>7611<br>14011<br>13142<br>5034<br>11361<br>12102<br>11151<br>1840<br>e intensity of 1<br>67 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4941.7<br>3082.08<br>4521.93<br>3080.87<br>5671.54<br>5319.77<br>2037.72<br>4598.84<br>4898.79<br>4513.83<br>744.817<br><b>Mi-2 localization</b> | 227.104<br>242.085<br>350.813<br>437.641<br>312.357<br>380.114<br>68.3619<br>302.521<br>291.566<br>205.787<br>145.205<br><b>in 10 non adjace</b> | 350.458<br>448.677<br>417.774<br>343.563<br>270.696<br>11.1134<br>74.1784<br>176.595<br>239.251<br>179.559<br>nt wild type | 18.2434<br>7.20526<br>11.0122<br>10.2438<br>16.9997<br>8.68733<br>27.9856<br>23.9484<br>20.9495<br>26.0353<br>cells | 28.1027<br>30.6185<br>27.1084<br>33.4028<br>41.2019<br>27.9062<br>69.6052<br>50.8028<br>30.9032<br>30.7864 | 213974<br>342039<br>206322<br>468007<br>541476<br>140480<br>790785<br>614815<br>344602<br>56647 | 4.856/1<br>7.14027<br>5.53804<br>6.14481<br>6.84485<br>8.47815<br>8.87131<br>7.23732<br>6.26616<br>5.93804 | 30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30 |
| Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Wt 9<br>Wt 10<br>Average                                                                                 | 7614<br>11171<br>7611<br>14011<br>13142<br>5034<br>11361<br>12102<br>11151<br>1840<br>e intensity of J<br>67.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4941.7<br>3082.08<br>4521.93<br>3080.87<br>5671.54<br>5319.77<br>2037.72<br>4598.84<br>4898.79<br>4513.83<br>744.817<br><b>Mi-2 localization</b> | 227.104<br>242.085<br>350.813<br>437.641<br>312.357<br>380.114<br>68.3619<br>302.521<br>291.566<br>205.787<br>145.205<br><b>in 10 non adjace</b> | 350.458<br>448.677<br>417.774<br>343.563<br>270.696<br>11.1134<br>74.1784<br>176.595<br>239.251<br>179.559<br>nt wild type | 18.2434<br>7.20526<br>11.0122<br>10.2438<br>16.9997<br>8.68733<br>27.9856<br>23.9484<br>20.9495<br>26.0353<br>cells | 28.1027<br>30.6185<br>27.1084<br>33.4028<br>41.2019<br>27.9062<br>69.6052<br>50.8028<br>30.9032<br>30.7864 | 213974<br>342039<br>206322<br>468007<br>541476<br>140480<br>790785<br>614815<br>344602<br>56647 | 4.856/1<br>7.14027<br>5.53804<br>6.14481<br>6.84485<br>8.47815<br>8.87131<br>7.23732<br>6.26616<br>5.93804 | 30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30       |
| Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Wt 7<br>Wt 9<br>Wt 10<br>Average<br>Img No                                                               | 7614<br>11171<br>7611<br>14011<br>13142<br>5034<br>11361<br>12102<br>11151<br>1840<br>e intensity of 1<br>67.9<br>1 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4941.7<br>3082.08<br>4521.93<br>3080.87<br>5671.54<br>5319.77<br>2037.72<br>4598.84<br>4898.79<br>4513.83<br>744.817<br><b>Mi-2 localization</b> | 227.104<br>242.085<br>350.813<br>437.641<br>312.357<br>380.114<br>68.3619<br>302.521<br>291.566<br>205.787<br>145.205<br><b>in 10 non adjace</b> | 350.458<br>448.677<br>417.774<br>343.563<br>270.696<br>11.1134<br>74.1784<br>176.595<br>239.251<br>179.559<br>nt wild type | 18.2434<br>7.20526<br>11.0122<br>10.2438<br>16.9997<br>8.68733<br>27.9856<br>23.9484<br>20.9495<br>26.0353<br>cells | 28.1027<br>30.6185<br>27.1084<br>33.4028<br>41.2019<br>27.9062<br>69.6052<br>50.8028<br>30.9032<br>30.7864 | 213974<br>342039<br>206322<br>468007<br>541476<br>140480<br>790785<br>614815<br>344602<br>56647 | 4.856/1<br>7.14027<br>5.53804<br>6.14481<br>6.84485<br>8.47815<br>8.87131<br>7.23732<br>6.26616<br>5.93804 | 30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30       |
| Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Wt 9<br>Wt 10<br>Average<br>Img No                                                                       | 7614<br>11171<br>7611<br>14011<br>13142<br>5034<br>11361<br>12102<br>11151<br>1840<br>e intensity of 1<br>67.9<br>0 1 16<br>18.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4941.7<br>3082.08<br>4521.93<br>3080.87<br>5671.54<br>5319.77<br>2037.72<br>4598.84<br>4898.79<br>4513.83<br>744.817<br><b>Mi-2 localization</b> | 227.104<br>242.085<br>350.813<br>437.641<br>312.357<br>380.114<br>68.3619<br>302.521<br>291.566<br>205.787<br>145.205<br><b>in 10 non adjace</b> | 350.458<br>448.677<br>417.774<br>343.563<br>270.696<br>11.1134<br>74.1784<br>176.595<br>239.251<br>179.559<br>nt wild type | 18.2434<br>7.20526<br>11.0122<br>10.2438<br>16.9997<br>8.68733<br>27.9856<br>23.9484<br>20.9495<br>26.0353<br>cells | 28.1027<br>30.6185<br>27.1084<br>33.4028<br>41.2019<br>27.9062<br>69.6052<br>50.8028<br>30.9032<br>30.7864 | 213974<br>342039<br>206322<br>468007<br>541476<br>140480<br>790785<br>614815<br>344602<br>56647 | 4.856/1<br>7.14027<br>5.53804<br>6.14481<br>6.84485<br>8.47815<br>8.87131<br>7.23732<br>6.26616<br>5.93804 | 30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30             |
| Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Wt 9<br>Wt 10<br>Average<br>Img No                                                                       | $\begin{array}{c} 12203 \\ 7614 \\ 11171 \\ 7611 \\ 14011 \\ 13142 \\ 5034 \\ 11361 \\ 12102 \\ 11151 \\ 1840 \\ e \text{ intensity of } 1 \\ 67.9 \\ 01 \\ 16 \\ 18.3 \\ 02 \\ 41 \\ 85.9 \\ 241 \\ 85.9 \\ 26.9 \\ 100 \\ 18.3 \\ 02 \\ 41 \\ 18.3 \\ 02 \\ 41 \\ 18.5 \\ 02 \\ 41 \\ 18.5 \\ 02 \\ 41 \\ 18.5 \\ 02 \\ 41 \\ 18.5 \\ 02 \\ 41 \\ 18.5 \\ 02 \\ 41 \\ 18.5 \\ 02 \\ 41 \\ 18.5 \\ 02 \\ 41 \\ 18.5 \\ 02 \\ 41 \\ 18.5 \\ 02 \\ 41 \\ 18.5 \\ 02 \\ 41 \\ 18.5 \\ 02 \\ 41 \\ 18.5 \\ 02 \\ 41 \\ 18.5 \\ 02 \\ 41 \\ 18.5 \\ 02 \\ 41 \\ 18.5 \\ 02 \\ 41 \\ 18.5 \\ 02 \\ 41 \\ 18.5 \\ 02 \\ 41 \\ 18.5 \\ 02 \\ 41 \\ 18.5 \\ 02 \\ 41 \\ 18.5 \\ 02 \\ 41 \\ 18.5 \\ 02 \\ 41 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02 \\ 18.5 \\ 02$ | 4941.7<br>3082.08<br>4521.93<br>3080.87<br>5671.54<br>5319.77<br>2037.72<br>4598.84<br>4898.79<br>4513.83<br>744.817<br><b>Mi-2 localization</b> | 242.085<br>350.813<br>437.641<br>312.357<br>380.114<br>68.3619<br>302.521<br>291.566<br>205.787<br>145.205<br><b>in 10 non adjace</b>            | 350.458<br>448.677<br>417.774<br>343.563<br>270.696<br>11.1134<br>74.1784<br>176.595<br>239.251<br>179.559<br>nt wild type | 18.2434<br>7.20526<br>11.0122<br>10.2438<br>16.9997<br>8.68733<br>27.9856<br>23.9484<br>20.9495<br>26.0353<br>cells | 28.1027<br>30.6185<br>27.1084<br>33.4028<br>41.2019<br>27.9062<br>69.6052<br>50.8028<br>30.9032<br>30.7864 | 213974<br>342039<br>206322<br>468007<br>541476<br>140480<br>790785<br>614815<br>344602<br>56647 | 4.856/1<br>7.14027<br>5.53804<br>6.14481<br>6.84485<br>8.47815<br>8.87131<br>7.23732<br>6.26616<br>5.93804 | 30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30             |
| Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Wt 9<br>Wt 10<br>Average<br>Img No                                                                       | 7614<br>7611<br>14011<br>13142<br>5034<br>11361<br>12102<br>11151<br>1840<br>e intensity of 1<br>67.9<br>0 1 16<br>18.3<br>0 2 41<br>85.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4941.7<br>3082.08<br>4521.93<br>3080.87<br>5671.54<br>5319.77<br>2037.72<br>4598.84<br>4898.79<br>4513.83<br>744.817<br><b>Mi-2 localization</b> | 247.104<br>242.085<br>350.813<br>437.641<br>312.357<br>380.114<br>68.3619<br>302.521<br>291.566<br>205.787<br>145.205<br><b>in 10 non adjace</b> | 350.458<br>448.677<br>417.774<br>343.563<br>270.696<br>11.1134<br>74.1784<br>176.595<br>239.251<br>179.559<br>nt wild type | 18.2434<br>7.20526<br>11.0122<br>10.2438<br>16.9997<br>8.68733<br>27.9856<br>23.9484<br>20.9495<br>26.0353<br>cells | 28.1027<br>30.6185<br>27.1084<br>33.4028<br>41.2019<br>27.9062<br>69.6052<br>50.8028<br>30.9032<br>30.7864 | 213974<br>342039<br>206322<br>468007<br>541476<br>140480<br>790785<br>614815<br>344602<br>56647 | 4.856/1<br>7.14027<br>5.53804<br>6.14481<br>6.84485<br>8.47815<br>8.87131<br>7.23732<br>6.26616<br>5.93804 | 30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30       |
| Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Wt 7<br>Wt 8<br>Wt 9<br>Wt 10<br>Average<br>Img No<br>Img No                                             | 7614<br>7611<br>14011<br>13142<br>5034<br>11361<br>12102<br>11151<br>1840<br>e intensity of I<br>67.9<br>9 1 16<br>18.3<br>9 2 41<br>85.8<br>9 3 06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4941.7<br>3082.08<br>4521.93<br>3080.87<br>5671.54<br>5319.77<br>2037.72<br>4598.84<br>4898.79<br>4513.83<br>744.817<br><b>Mi-2 localization</b> | 227.104<br>242.085<br>350.813<br>437.641<br>312.357<br>380.114<br>68.3619<br>302.521<br>291.566<br>205.787<br>145.205<br><b>in 10 non adjace</b> | 350.458<br>448.677<br>417.774<br>343.563<br>270.696<br>11.1134<br>74.1784<br>176.595<br>239.251<br>179.559<br>nt wild type | 18.2434<br>7.20526<br>11.0122<br>10.2438<br>16.9997<br>8.68733<br>27.9856<br>23.9484<br>20.9495<br>26.0353<br>cells | 28.1027<br>30.6185<br>27.1084<br>33.4028<br>41.2019<br>27.9062<br>69.6052<br>50.8028<br>30.9032<br>30.7864 | 213974<br>342039<br>206322<br>468007<br>541476<br>140480<br>790785<br>614815<br>344602<br>56647 | 4.856/1<br>7.14027<br>5.53804<br>6.14481<br>6.84485<br>8.47815<br>8.87131<br>7.23732<br>6.26616<br>5.93804 | 30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30       |
| Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Wt 9<br>Wt 10<br>Average<br>Img No<br>Img No                                                             | 7614<br>11171<br>7611<br>14011<br>13142<br>5034<br>11361<br>12102<br>11151<br>1840<br>e intensity of 1<br>67.9<br>01 16<br>18.3<br>02 41<br>85.8<br>03 06<br>99.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4941.7<br>3082.08<br>4521.93<br>3080.87<br>5671.54<br>5319.77<br>2037.72<br>4598.84<br>4898.79<br>4513.83<br>744.817<br><b>Mi-2 localization</b> | 227.104<br>242.085<br>350.813<br>437.641<br>312.357<br>380.114<br>68.3619<br>302.521<br>291.566<br>205.787<br>145.205<br><b>in 10 non adjace</b> | 350.458<br>448.677<br>417.774<br>343.563<br>270.696<br>11.1134<br>74.1784<br>176.595<br>239.251<br>179.559<br>nt wild type | 18.2434<br>7.20526<br>11.0122<br>10.2438<br>16.9997<br>8.68733<br>27.9856<br>23.9484<br>20.9495<br>26.0353<br>cells | 28.1027<br>30.6185<br>27.1084<br>33.4028<br>41.2019<br>27.9062<br>69.6052<br>50.8028<br>30.9032<br>30.7864 | 213974<br>342039<br>206322<br>468007<br>541476<br>140480<br>790785<br>614815<br>344602<br>56647 | 4.856/1<br>7.14027<br>5.53804<br>6.14481<br>6.84485<br>8.47815<br>8.87131<br>7.23732<br>6.26616<br>5.93804 | 30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30             |
| Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Wt 7<br>Wt 9<br>Wt 10<br>Img No<br>Img No<br>Img No                                                      | $\begin{array}{c} 12203\\ 7614\\ 11171\\ 7611\\ 14011\\ 13142\\ 5034\\ 11361\\ 12102\\ 11151\\ 1840\\ e \text{ intensity of } 1\\ 67.9\\ 1 \\ 16\\ 18.3\\ 2 \\ 41\\ 85.8\\ 0 \\ 99.7\\ 0 \\ 4 \\ 62\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4941.7<br>3082.08<br>4521.93<br>3080.87<br>5671.54<br>5319.77<br>2037.72<br>4598.84<br>4898.79<br>4513.83<br>744.817<br><b>Mi-2 localization</b> | 227.104<br>242.085<br>350.813<br>437.641<br>312.357<br>380.114<br>68.3619<br>302.521<br>291.566<br>205.787<br>145.205<br><b>in 10 non adjace</b> | 350.458<br>448.677<br>417.774<br>343.563<br>270.696<br>11.1134<br>74.1784<br>176.595<br>239.251<br>179.559<br>nt wild type | 18.2434<br>7.20526<br>11.0122<br>10.2438<br>16.9997<br>8.68733<br>27.9856<br>23.9484<br>20.9495<br>26.0353<br>cells | 28.1027<br>30.6185<br>27.1084<br>33.4028<br>41.2019<br>27.9062<br>69.6052<br>50.8028<br>30.9032<br>30.7864 | 213974<br>342039<br>206322<br>468007<br>541476<br>140480<br>790785<br>614815<br>344602<br>56647 | 4.856/1<br>7.14027<br>5.53804<br>6.14481<br>6.84485<br>8.47815<br>8.87131<br>7.23732<br>6.26616<br>5.93804 | 30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30             |
| Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Wt 9<br>Wt 10<br>Average<br>Img No<br>Img No<br>Img No                                                   | 7614<br>7611<br>11171<br>7611<br>14011<br>13142<br>5034<br>11361<br>12102<br>11151<br>1840<br>e intensity of 1<br>67.9<br>1 16<br>18.3<br>2 41<br>85.8<br>3 06<br>99.7<br>4 62<br>48.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4941.7<br>3082.08<br>4521.93<br>3080.87<br>5671.54<br>5319.77<br>2037.72<br>4598.84<br>4898.79<br>4513.83<br>744.817<br><b>Mi-2 localization</b> | 227.104<br>242.085<br>350.813<br>437.641<br>312.357<br>380.114<br>68.3619<br>302.521<br>291.566<br>205.787<br>145.205<br><b>in 10 non adjace</b> | 350.458<br>448.677<br>417.774<br>343.563<br>270.696<br>11.1134<br>74.1784<br>176.595<br>239.251<br>179.559<br>nt wild type | 18.2434<br>7.20526<br>11.0122<br>10.2438<br>16.9997<br>8.68733<br>27.9856<br>23.9484<br>20.9495<br>26.0353<br>cells | 28.1027<br>30.6185<br>27.1084<br>33.4028<br>41.2019<br>27.9062<br>69.6052<br>50.8028<br>30.9032<br>30.7864 | 213974<br>342039<br>206322<br>468007<br>541476<br>140480<br>790785<br>614815<br>344602<br>56647 | 4.856/1<br>7.14027<br>5.53804<br>6.14481<br>6.84485<br>8.47815<br>8.87131<br>7.23732<br>6.26616<br>5.93804 | 30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30             |
| Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Wt 9<br>Wt 10<br>Average<br>Img No<br>Img No<br>Img No                                                   | 7614<br>7611<br>14011<br>13142<br>5034<br>11361<br>12102<br>11151<br>1840<br>e intensity of 1<br>67.9<br>0 1 16<br>18.3<br>0 2 41<br>85.8<br>0 3 06<br>99.7<br>0 4 62<br>48.2<br>0 5 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4941.7<br>3082.08<br>4521.93<br>3080.87<br>5671.54<br>5319.77<br>2037.72<br>4598.84<br>4898.79<br>4513.83<br>744.817<br><b>Mi-2 localization</b> | 227.104<br>242.085<br>350.813<br>437.641<br>312.357<br>380.114<br>68.3619<br>302.521<br>291.566<br>205.787<br>145.205<br><b>in 10 non adjace</b> | 350.458<br>448.677<br>417.774<br>343.563<br>270.696<br>11.1134<br>74.1784<br>176.595<br>239.251<br>179.559<br>nt wild type | 18.2434<br>7.20526<br>11.0122<br>10.2438<br>16.9997<br>8.68733<br>27.9856<br>23.9484<br>20.9495<br>26.0353<br>cells | 28.1027<br>30.6185<br>27.1084<br>33.4028<br>41.2019<br>27.9062<br>69.6052<br>50.8028<br>30.9032<br>30.7864 | 213974<br>342039<br>206322<br>468007<br>541476<br>140480<br>790785<br>614815<br>344602<br>56647 | 4.856/1<br>7.14027<br>5.53804<br>6.14481<br>6.84485<br>8.47815<br>8.87131<br>7.23732<br>6.26616<br>5.93804 | 30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30             |
| Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Wt 9<br>Wt 10<br>Average<br>Img No<br>Img No<br>Img No<br>Img No                                         | 7614<br>7611<br>14011<br>13142<br>5034<br>11361<br>12102<br>11151<br>1840<br>e intensity of I<br>67.9<br>91 16<br>18.3<br>92 41<br>85.8<br>9 3 06<br>99.7<br>94 62<br>48.2<br>95 82<br>107.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4941.7<br>3082.08<br>4521.93<br>3080.87<br>5671.54<br>5319.77<br>2037.72<br>4598.84<br>4898.79<br>4513.83<br>744.817<br><b>Mi-2 localization</b> | 242.085<br>350.813<br>437.641<br>312.357<br>380.114<br>68.3619<br>302.521<br>291.566<br>205.787<br>145.205<br><b>in 10 non adjace</b>            | 350.458<br>448.677<br>417.774<br>343.563<br>270.696<br>11.1134<br>74.1784<br>176.595<br>239.251<br>179.559<br>nt wild type | 18.2434<br>7.20526<br>11.0122<br>10.2438<br>16.9997<br>8.68733<br>27.9856<br>23.9484<br>20.9495<br>26.0353<br>cells | 28.1027<br>30.6185<br>27.1084<br>33.4028<br>41.2019<br>27.9062<br>69.6052<br>50.8028<br>30.9032<br>30.7864 | 213974<br>342039<br>206322<br>468007<br>541476<br>140480<br>790785<br>614815<br>344602<br>56647 | 4.856/1<br>7.14027<br>5.53804<br>6.14481<br>6.84485<br>8.47815<br>8.87131<br>7.23732<br>6.26616<br>5.93804 | 30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30             |
| Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Wt 9<br>Wt 10<br>Average<br>Img No<br>Img No<br>Img No<br>Img No                                         | 7614<br>7611<br>14011<br>13142<br>5034<br>11361<br>12102<br>11151<br>1840<br>e intensity of 1<br>67.9<br>91 16<br>18.3<br>92 41<br>85.8<br>93 06<br>99.7<br>94 62<br>48.2<br>95 82<br>107.<br>96 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4941.7<br>3082.08<br>4521.93<br>3080.87<br>5671.54<br>5319.77<br>2037.72<br>4598.84<br>4898.79<br>4513.83<br>744.817<br><b>Mi-2 localization</b> | 227.104<br>242.085<br>350.813<br>437.641<br>312.357<br>380.114<br>68.3619<br>302.521<br>291.566<br>205.787<br>145.205<br><b>in 10 non adjace</b> | 350.458<br>448.677<br>417.774<br>343.563<br>270.696<br>11.1134<br>74.1784<br>176.595<br>239.251<br>179.559<br>nt wild type | 18.2434<br>7.20526<br>11.0122<br>10.2438<br>16.9997<br>8.68733<br>27.9856<br>23.9484<br>20.9495<br>26.0353<br>cells | 28.1027<br>30.6185<br>27.1084<br>33.4028<br>41.2019<br>27.9062<br>69.6052<br>50.8028<br>30.9032<br>30.7864 | 213974<br>342039<br>206322<br>468007<br>541476<br>140480<br>790785<br>614815<br>344602<br>56647 | 4.856/1<br>7.14027<br>5.53804<br>6.14481<br>6.84485<br>8.47815<br>8.87131<br>7.23732<br>6.26616<br>5.93804 | 30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30             |
| Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Wt 9<br>Wt 10<br>Average<br>Img No<br>Img No<br>Img No<br>Img No<br>Img No                               | 7614<br>7611<br>11171<br>7611<br>14011<br>13142<br>5034<br>11361<br>12102<br>11151<br>1840<br>e intensity of 1<br>67.9<br>1 16<br>18.3<br>2 41<br>85.8<br>3 06<br>99.7<br>4 62<br>48.2<br>5 82<br>107.<br>6 99<br>51.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4941.7<br>3082.08<br>4521.93<br>3080.87<br>5671.54<br>5319.77<br>2037.72<br>4598.84<br>4898.79<br>4513.83<br>744.817<br><b>Mi-2 localization</b> | 227.104<br>242.085<br>350.813<br>437.641<br>312.357<br>380.114<br>68.3619<br>302.521<br>291.566<br>205.787<br>145.205<br><b>in 10 non adjace</b> | 350.458<br>448.677<br>417.774<br>343.563<br>270.696<br>11.1134<br>74.1784<br>176.595<br>239.251<br>179.559<br>nt wild type | 18.2434<br>7.20526<br>11.0122<br>10.2438<br>16.9997<br>8.68733<br>27.9856<br>23.9484<br>20.9495<br>26.0353<br>cells | 28.1027<br>30.6185<br>27.1084<br>33.4028<br>41.2019<br>27.9062<br>69.6052<br>50.8028<br>30.9032<br>30.7864 | 213974<br>342039<br>206322<br>468007<br>541476<br>140480<br>790785<br>614815<br>344602<br>56647 | 4.856/1<br>7.14027<br>5.53804<br>6.14481<br>6.84485<br>8.47815<br>8.87131<br>7.23732<br>6.26616<br>5.93804 | 30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30             |
| Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Wt 9<br>Wt 10<br>Average<br>Img No<br>Img No<br>Img No<br>Img No<br>Img No<br>Img No                     | 7614<br>7611<br>14011<br>13142<br>5034<br>11361<br>12102<br>11151<br>1840<br>e intensity of 1<br>67.9<br>1 16<br>18.3<br>2 41<br>85.8<br>3 06<br>99.7<br>4 62<br>48.2<br>5 82<br>107.<br>9 5 82<br>107.<br>9 6 99<br>51.9<br>9 7 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4941.7<br>3082.08<br>4521.93<br>3080.87<br>5671.54<br>5319.77<br>2037.72<br>4598.84<br>4898.79<br>4513.83<br>744.817<br><b>Mi-2 localization</b> | 227.104<br>242.085<br>350.813<br>437.641<br>312.357<br>380.114<br>68.3619<br>302.521<br>291.566<br>205.787<br>145.205<br><b>in 10 non adjace</b> | 350.458<br>448.677<br>417.774<br>343.563<br>270.696<br>11.1134<br>74.1784<br>176.595<br>239.251<br>179.559<br>nt wild type | 18.2434<br>7.20526<br>11.0122<br>10.2438<br>16.9997<br>8.68733<br>27.9856<br>23.9484<br>20.9495<br>26.0353<br>cells | 28.1027<br>30.6185<br>27.1084<br>33.4028<br>41.2019<br>27.9062<br>69.6052<br>50.8028<br>30.9032<br>30.7864 | 213974<br>342039<br>206322<br>468007<br>541476<br>140480<br>790785<br>614815<br>344602<br>56647 | 4.856/1<br>7.14027<br>5.53804<br>6.14481<br>6.84485<br>8.47815<br>8.87131<br>7.23732<br>6.26616<br>5.93804 | 30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30             |
| Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Wt 9<br>Wt 10<br>Average<br>Img No<br>Img No<br>Img No<br>Img No<br>Img No<br>Img No                     | 7614<br>7611<br>14011<br>13142<br>5034<br>11361<br>12102<br>11151<br>1840<br>e intensity of I<br>67.9<br>91 16<br>18.3<br>92 41<br>85.8<br>9 3 06<br>99.7<br>7 4 62<br>48.2<br>95 82<br>107.<br>96 99<br>97 77<br>61.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4941.7<br>3082.08<br>4521.93<br>3080.87<br>5671.54<br>5319.77<br>2037.72<br>4598.84<br>4898.79<br>4513.83<br>744.817<br><b>Mi-2 localization</b> | 242.085<br>350.813<br>437.641<br>312.357<br>380.114<br>68.3619<br>302.521<br>291.566<br>205.787<br>145.205<br><b>in 10 non adjace</b>            | 350.458<br>448.677<br>417.774<br>343.563<br>270.696<br>11.1134<br>74.1784<br>176.595<br>239.251<br>179.559<br>nt wild type | 18.2434<br>7.20526<br>11.0122<br>10.2438<br>16.9997<br>8.68733<br>27.9856<br>23.9484<br>20.9495<br>26.0353<br>cells | 28.1027<br>30.6185<br>27.1084<br>33.4028<br>41.2019<br>27.9062<br>69.6052<br>50.8028<br>30.9032<br>30.7864 | 213974<br>342039<br>206322<br>468007<br>541476<br>140480<br>790785<br>614815<br>344602<br>56647 | 4.856/1<br>7.14027<br>5.53804<br>6.14481<br>6.84485<br>8.47815<br>8.87131<br>7.23732<br>6.26616<br>5.93804 | 30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30             |
| Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Wt 9<br>Wt 10<br>Average<br>Img No<br>Img No<br>Img No<br>Img No<br>Img No<br>Img No                     | 7614<br>7611<br>14011<br>13142<br>5034<br>11361<br>12102<br>11151<br>1840<br>e intensity of I<br>67.9<br>91 16<br>18.3<br>92 41<br>85.8<br>93 06<br>99.7<br>17,<br>6 99<br>51.9<br>97 77<br>61.0<br>8 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4941.7<br>3082.08<br>4521.93<br>3080.87<br>5671.54<br>5319.77<br>2037.72<br>4598.84<br>4898.79<br>4513.83<br>744.817<br><b>Mi-2 localization</b> | 227.104<br>242.085<br>350.813<br>437.641<br>312.357<br>380.114<br>68.3619<br>302.521<br>291.566<br>205.787<br>145.205<br><b>in 10 non adjace</b> | 350.458<br>448.677<br>417.774<br>343.563<br>270.696<br>11.1134<br>74.1784<br>176.595<br>239.251<br>179.559<br>nt wild type | 18.2434<br>7.20526<br>11.0122<br>10.2438<br>16.9997<br>8.68733<br>27.9856<br>23.9484<br>20.9495<br>26.0353<br>cells | 28.1027<br>30.6185<br>27.1084<br>33.4028<br>41.2019<br>27.9062<br>69.6052<br>50.8028<br>30.9032<br>30.7864 | 213974<br>342039<br>206322<br>468007<br>541476<br>140480<br>790785<br>614815<br>344602<br>56647 | 4.856/1<br>7.14027<br>5.53804<br>6.14481<br>6.84485<br>8.47815<br>8.87131<br>7.23732<br>6.26616<br>5.93804 | 30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30             |
| Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Wt 9<br>Wt 10<br>Average<br>Img No<br>Img No<br>Img No<br>Img No<br>Img No<br>Img No                     | 7614<br>7611<br>14011<br>13142<br>5034<br>11361<br>12102<br>11151<br>1840<br>e intensity of 1<br>67.9<br>91 16<br>18.3<br>92 41<br>85.8<br>93 06<br>99.7<br>94 62<br>48.2<br>95 82<br>107.<br>96 99<br>51.9<br>97 77<br>61.0<br>98 1<br>132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4941.7<br>3082.08<br>4521.93<br>3080.87<br>5671.54<br>5319.77<br>2037.72<br>4598.84<br>4898.79<br>4513.83<br>744.817<br><b>Mi-2 localization</b> | 227.104<br>242.085<br>350.813<br>437.641<br>312.357<br>380.114<br>68.3619<br>302.521<br>291.566<br>205.787<br>145.205<br><b>in 10 non adjace</b> | 350.458<br>448.677<br>417.774<br>343.563<br>270.696<br>11.1134<br>74.1784<br>176.595<br>239.251<br>179.559<br>nt wild type | 18.2434<br>7.20526<br>11.0122<br>10.2438<br>16.9997<br>8.68733<br>27.9856<br>23.9484<br>20.9495<br>26.0353<br>cells | 28.1027<br>30.6185<br>27.1084<br>33.4028<br>41.2019<br>27.9062<br>69.6052<br>50.8028<br>30.9032<br>30.7864 | 213974<br>342039<br>206322<br>468007<br>541476<br>140480<br>790785<br>614815<br>344602<br>56647 | 4.856/1<br>7.14027<br>5.53804<br>6.14481<br>6.84485<br>8.47815<br>8.87131<br>7.23732<br>6.26616<br>5.93804 | 30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30             |
| Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Wt 9<br>Wt 10<br>Average<br>Img No<br>Img No<br>Img No<br>Img No<br>Img No<br>Img No<br>Img No           | 7614<br>7614<br>11171<br>7611<br>14011<br>13142<br>5034<br>11361<br>12102<br>11151<br>1840<br>e intensity of 1<br>85.8<br>0 3 06<br>99.7<br>04 62<br>48.2<br>05 82<br>107.<br>06 99<br>51.9<br>07 77<br>61.0<br>08 1<br>132.<br>05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4941.7<br>3082.08<br>4521.93<br>3080.87<br>5671.54<br>5319.77<br>2037.72<br>4598.84<br>4898.79<br>4513.83<br>744.817<br><b>Mi-2 localization</b> | 227.104<br>242.085<br>350.813<br>437.641<br>312.357<br>380.114<br>68.3619<br>302.521<br>291.566<br>205.787<br>145.205<br><b>in 10 non adjace</b> | 350.458<br>448.677<br>417.774<br>343.563<br>270.696<br>11.1134<br>74.1784<br>176.595<br>239.251<br>179.559<br>nt wild type | 18.2434<br>7.20526<br>11.0122<br>10.2438<br>16.9997<br>8.68733<br>27.9856<br>23.9484<br>20.9495<br>26.0353<br>cells | 28.1027<br>30.6185<br>27.1084<br>33.4028<br>41.2019<br>27.9062<br>69.6052<br>50.8028<br>30.9032<br>30.7864 | 213974<br>342039<br>206322<br>468007<br>541476<br>140480<br>790785<br>614815<br>344602<br>56647 | 4.856/1<br>7.14027<br>5.53804<br>6.14481<br>6.84485<br>8.47815<br>8.87131<br>7.23732<br>6.26616<br>5.93804 | 30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30             |
| Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Wt 9<br>Wt 10<br>Average<br>Img No<br>Img No<br>Img No<br>Img No<br>Img No<br>Img No<br>Img No           | 7614<br>7611<br>14011<br>13142<br>5034<br>11361<br>12102<br>11151<br>1840<br>e intensity of 1<br>88,3<br>90<br>1 16<br>18,3<br>92 41<br>85,8<br>93 06<br>99,7<br>94 62<br>48,2<br>95 82<br>107,<br>96 99<br>51,9<br>97 77<br>61,0<br>98 1<br>132,<br>99 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4941.7<br>3082.08<br>4521.93<br>3080.87<br>5671.54<br>5319.77<br>2037.72<br>4598.84<br>4898.79<br>4513.83<br>744.817<br><b>Mi-2 localization</b> | 227.104<br>242.085<br>350.813<br>437.641<br>312.357<br>380.114<br>68.3619<br>302.521<br>291.566<br>205.787<br>145.205<br><b>in 10 non adjace</b> | 350.458<br>448.677<br>417.774<br>343.563<br>270.696<br>11.1134<br>74.1784<br>176.595<br>239.251<br>179.559<br>nt wild type | 18.2434<br>7.20526<br>11.0122<br>10.2438<br>16.9997<br>8.68733<br>27.9856<br>23.9484<br>20.9495<br>26.0353<br>cells | 28.1027<br>30.6185<br>27.1084<br>33.4028<br>41.2019<br>27.9062<br>69.6052<br>50.8028<br>30.9032<br>30.7864 | 213974<br>342039<br>206322<br>468007<br>541476<br>140480<br>790785<br>614815<br>344602<br>56647 | 4.856/1<br>7.14027<br>5.53804<br>6.14481<br>6.84485<br>8.47815<br>8.87131<br>7.23732<br>6.26616<br>5.93804 | 30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30             |
| Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Wt 9<br>Wt 10<br>Average<br>Img No<br>Img No<br>Img No<br>Img No<br>Img No<br>Img No<br>Img No<br>Img No | 7614<br>7611<br>14011<br>13142<br>5034<br>11361<br>12102<br>11151<br>1840<br>e intensity of I<br>67.9<br>91 16<br>18.3<br>92 41<br>85.8<br>93 06<br>99.7<br>7 77<br>61.0<br>98 1<br>132.<br>9 05<br>37.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4941.7<br>3082.08<br>4521.93<br>3080.87<br>5671.54<br>5319.77<br>2037.72<br>4598.84<br>4898.79<br>4513.83<br>744.817<br><b>Mi-2 localization</b> | 227.104<br>242.085<br>350.813<br>437.641<br>312.357<br>380.114<br>68.3619<br>302.521<br>291.566<br>205.787<br>145.205<br><b>in 10 non adjace</b> | 350.458<br>448.677<br>417.774<br>343.563<br>270.696<br>11.1134<br>74.1784<br>176.595<br>239.251<br>179.559<br>nt wild type | 18.2434<br>7.20526<br>11.0122<br>10.2438<br>16.9997<br>8.68733<br>27.9856<br>23.9484<br>20.9495<br>26.0353<br>cells | 28.1027<br>30.6185<br>27.1084<br>33.4028<br>41.2019<br>27.9062<br>69.6052<br>50.8028<br>30.9032<br>30.7864 | 213974<br>342039<br>206322<br>468007<br>541476<br>140480<br>790785<br>614815<br>344602<br>56647 | 4.856/1<br>7.14027<br>5.53804<br>6.14481<br>6.84485<br>8.47815<br>8.87131<br>7.23732<br>6.26616<br>5.93804 | 30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30             |

Intensity of Mi-2 localization in clone cell V average intensity of Mi-2 localization in 10 non adjacent wild type cells

| Img No 1  | 1.61 |
|-----------|------|
| Img No 2  | 4.8  |
| Img No 3  | 0.97 |
| Img No 4  | 1.5  |
| Img No 5  | 2.5  |
| Img No 6  | 1    |
| Img No 7  | 2    |
| Img No 8  | 2.47 |
| Img No 9  | 0.89 |
| Img No 10 | 3    |
|           |      |

Average value of the ratio of the clone cell V wild type cells acquired from Img No 1 to Img No 10

Standard deviation of the average value

2.074 1.199594 376

| <b>B.3.</b> Visualization of Dref protein in single cell clones expressing NOS2 |
|---------------------------------------------------------------------------------|
| <b>B.3.</b> (i) Visualization of Dref protein in GFP marked control clone cells |

| Img No      | Voxel          | Volume             | Mean (Ch3-        | Min (Ch2-        | Mean (ChS1-        | Sum              | Centroid<br>V      | Centroid        | Centroid      |
|-------------|----------------|--------------------|-------------------|------------------|--------------------|------------------|--------------------|-----------------|---------------|
| 1<br>Clone  | Count          | (µm <sup>3</sup> ) | 11)               | 12)              | 13)                | (CnS1-13)        | А                  | x               | L             |
| cell        | 10100          | 4088.4             | 24 5897           | 21               | 29 3016            | 295946           | 371 281            | 252.13          | 18 9531       |
| Wt 1        | 12595          | 5098.35            | 2.07868           | 21               | 46.786             | 589270           | 214.03             | 177.03          | 17.5405       |
| Wt 2        | 5066           | 2050.68            | 1.76905           | 21               | 85.5517            | 433405           | 222.544            | 338.52          | 15.5914       |
| Wt 3        | 7061           | 2858.23            | 2.61663           | 21               | 84.1685            | 594314           | 288.309            | 416.21          | 9.03711       |
| Wt 4        | 7295           | 2952.96            | 2.27567           | 21               | 74.4814            | 543342           | 343.797            | 476.33          | 8.87361       |
| Wt 5        | 14946          | 6050.02            | 2.35809           | 21               | 163.747            | 2.45E+06         | 269.889            | 70.472          | 13.943        |
| Wt 6        | 11170          | 4521.52            | 1.6701            | 21               | 91.5438            | 1.02E+06         | 192.808            | 93.23           | 22.4355       |
| Wt 7        | 9654           | 3907.86            | 1.93806           | 21               | 95.1569            | 918645           | 390.351            | 64.592          | 20.1717       |
| Wt 8        | 8349           | 3379.61            | 1.64032           | 21               | 22.0971            | 184489           | 386.266            | 420.17          | 21.3259       |
| Wt 9        | 12396          | 5017.8             | 1.99734           | 21               | 60.2462            | 746812           | 308.241            | 152.54          | 18.1158       |
| Wt 10       | 7093           | 2871.19            | 2.47328           | 21               | 80.8893            | 573748           | 340.135            | 369.27          | 10.0925       |
| Img No<br>2 | Voxel<br>Count | Volume<br>(µm³)    | Mean (Ch3-<br>T1) | Min (Ch2-<br>T2) | Mean (ChS1-<br>T3) | Sum<br>(ChS1-T3) | Centroid<br>X      | Centroid<br>Y   | Centroid<br>Z |
| coll        | 8583           | 3474 33            | 28 0068           | 21               | 102 769            | 882067           | 226 969            | 304 36          | 11 //0        |
| Wt 1        | 13876          | 5616.89            | 3 88642           | 21               | 40 2023            | 557847           | 220.505            | 365 44          | 20 4447       |
| Wt 2        | 8287           | 3354 51            | 4 17184           | 21               | 72.0115            | 596759           | 287.077            | 54 621          | 14 8924       |
| Wt 3        | 12570          | 5088.23            | 4.04503           | 21               | 42.9156            | 539449           | 280.893            | 365.33          | 19.3656       |
| Wt 4        | 2389           | 967.048            | 2.23273           | 21               | 40.9029            | 97717            | 333.625            | 308.61          | 34.1168       |
| Wt 5        | 9228           | 3735.42            | 4.42393           | 21               | 32.4777            | 299704           | 251.97             | 473.89          | 13.8808       |
| Wt 6        | 4587           | 1856.78            | 4.34772           | 21               | 93.0961            | 427032           | 225.109            | 282.67          | 21.3056       |
| Wt 7        | 12401          | 5019.82            | 3.41626           | 21               | 70.9943            | 880400           | 223.214            | 34.749          | 28.2733       |
| Wt 8        | 6597           | 2670.41            | 4.05063           | 21               | 39.0361            | 257521           | 195.338            | 446.19          | 18.6382       |
| Wt 9        | 7394           | 2993.03            | 4.40371           | 21               | 74.8171            | 553198           | 264.299            | 138.57          | 13.9145       |
| Wt 10       | 4317           | 1747.49            | 2.91267           | 21               | 20.9134            | 90283            | 321.005            | 431.59          | 27.9657       |
| Img No      | Voxel          | Volume             | Mean (Ch3-        | Min (Ch2-        | Mean (ChS1-        | Sum              | Centroid           | Centroid        | Centroid      |
| 3           | Count          | (µm³)              | <b>T1</b> )       | T2)              | T3)                | (ChS1-T3)        | X                  | Y               | Z             |
| Clone       | 14075          | 6061 76            | 0 62028           | 21               | 16 2049            | 244165           | 226 497            | 170.09          | 20 2275       |
| Wt 1        | 14975          | 4015 70            | 9.02938           | 21               | 10.3048            | 244103           | 230.487            | 179.98          | 28.5275       |
| Wt 2        | 9671           | 3914 74            | 1.78004           | 21               | 13 3727            | 129327           | 174 523            | 295             | 34.1840       |
| Wt 3        | 24228          | 9807.29            | 1 94473           | 21               | 45 8214            | 1 11E+06         | 116 571            | 311 43          | 13 7265       |
| Wt 4        | 21231          | 8594.13            | 2.88705           | 21               | 48.7589            | 1.04E+06         | 188.523            | 378.97          | 12.2754       |
| Wt 5        | 10525          | 4260.43            | 2.35211           | 21               | 14.6205            | 153881           | 108.672            | 125.97          | 38.9587       |
| Wt 6        | 8275           | 3349.65            | 1.29583           | 21               | 2.39384            | 19809            | 395.4              | 435.52          | 34.3932       |
| Wt 7        | 18812          | 7614.94            | 3.34287           | 21               | 16.4358            | 309190           | 327.715            | 247.09          | 11.7219       |
| Wt 8        | 24906          | 10081.7            | 8.53541           | 21               | 61.5791            | 1.53E+06         | 192.68             | 114.57          | 15.2904       |
| Wt 9        | 9982           | 4040.63            | 1.93588           | 21               | 11.0224            | 110026           | 125.625            | 219.58          | 35.1589       |
| Wt 10       | 8748           | 3541.12            | 1.6158            | 21               | 5.97062            | 52231            | 376.333            | 319.92          | 26.6973       |
| Img No<br>4 | Voxel<br>Count | Volume<br>(µm³)    | Mean (Ch3-<br>T1) | Min (Ch2-<br>T2) | Mean (ChS1-<br>T3) | Sum<br>(ChS1-T3) | Centroid<br>X      | Centroid<br>Y   | Centroid<br>Z |
| Clone       | 10500          | 1050.05            | 24.0014           | ~ .              | 41.024             | 120,622          | 000.010            | 250.62          | 10 600 6      |
| cell        | 10509          | 4253.96            | 24.0914           | 21               | 41.834             | 439633           | 283.312            | 358.62          | 10.6986       |
|             | 5095           | 2062.41            | 4./51/2           | 21               | 30.1095            | 153408           | 329.4              | 352.5<br>15 125 | 25.44/1       |
| VVI 2       | 1558           | 030.000            | 2.84403           | 21               | 50.2529            | /8294            | 210.202            | 15.135          | 27.3026       |
| Wf 1        | 2/31<br>15/26  | 6244 22            | 2.8/090           | 21               | 1/.380/            | 40301            | 249.003            | 386 74          | 20.8937       |
| Wt 5        | 13420          | 0244.52            | 4.00/33           | 21               | 40.3041            | 426801           | 213.428<br>72 5614 | 300.14          | 15.0044       |
| Wt 6        | 5536           | 2240.02            | 3.54423           | 21               | 30 5307            | 420801           | 158 256            | 420 22          | 25 7607       |
| Wt 7        | 4736           | 1017 00            | 4 78273           | 21               | 28 8562            | 136663           | 328 663            | 333.16          | 25.7007       |
| Wt 8        | 8686           | 3516.02            | 3.43587           | 21               | 64.784             | 562714           | 236.458            | 125.97          | 19.9026       |
|             |                |                    |                   |                  |                    |                  |                    | /               |               |

| Wt 9<br>Wt 10        | 9440<br>16918  | 3821.23<br>6848.27           | 4.86578<br>5.29885 | 21<br>21         | 40.3535<br>61.767  | 380937<br>1.04E+06 | 329.424<br>188.863 | 437.93<br>66.022 | 8.18994<br>8.65132 |
|----------------------|----------------|------------------------------|--------------------|------------------|--------------------|--------------------|--------------------|------------------|--------------------|
| Img No<br>5<br>Clone | Voxel<br>Count | Volume<br>(µm³)              | Mean (Ch3-<br>T1)  | Min (Ch2-<br>T2) | Mean (ChS1-<br>T3) | Sum<br>(ChS1-T3)   | Centroid<br>X      | Centroid<br>Y    | Centroid<br>Z      |
| cione                | 17461          | 7068 07                      | 17 1204            | 21               | 22 0257            | 576026             | 222 270            | 201.80           | 15 0226            |
| W4 1                 | 17401          | 6247.04                      | 17.1294            | 21               | 53.0557            | S70650<br>852645   | 129 224            | 71 042           | 15.9230            |
| Wt I                 | 15682          | 6347.94                      | 4.48992            | 21               | 54.3709            | 852645             | 138.334            | /1.042           | 16.3758            |
| wt 2                 | 11022          | 4461.61                      | 4.28171            | 21               | 66.2457            | /30160             | 226.068            | 65.968           | 11.2556            |
| Wt 3                 | 15751          | 6375.87                      | 5.44372            | 21               | 96.1859            | 1.52E+06           | 207.588            | 124.53           | 8.3709             |
| Wt 4                 | 9513           | 3850.78                      | 4.13844            | 21               | 72.7508            | 692078             | 285.647            | 143.27           | 11.324             |
| Wt 5                 | 16394          | 6636.16                      | 4.35434            | 21               | 56.6882            | 929346             | 240.875            | 204.4            | 12.4241            |
| Wt 6                 | 15894          | 6433.76                      | 3.93545            | 21               | 46.4575            | 738395             | 286.018            | 271.53           | 15.9278            |
| Wt 7                 | 14339          | 5804.31                      | 3.93821            | 21               | 33.1852            | 475842             | 423.636            | 352.68           | 14.3792            |
| Wt 8                 | 15038          | 6087.26                      | 4.40371            | 21               | 37.0817            | 557634             | 354.699            | 318.67           | 12.5285            |
| Wt 9                 | 8802           | 3562.98                      | 3.7354             | 21               | 44.6003            | 392572             | 379.971            | 250.66           | 12.8348            |
| Wt 10                | 8973           | 3632.2                       | 2.60493            | 21               | 41.5951            | 373233             | 301.171            | 84.714           | 26.0578            |
| Img No<br>6          | Voxel<br>Count | Volume<br>(µm³)              | Mean (Ch3-<br>T1)  | Min (Ch2-<br>T2) | Mean (ChS1-<br>T3) | Sum<br>(ChS1-T3)   | Centroid<br>X      | Centroid<br>Y    | Centroid<br>Z      |
| Clone                |                |                              |                    |                  |                    |                    |                    |                  |                    |
| cell                 | 16299          | 6597.7                       | 20.4275            | 21               | 94.7001            | 1.54E+06           | 297.438            | 231.8            | 19.4014            |
| Wt 1                 | 15456          | 6256.46                      | 6.44979            | 21               | 73.0057            | 1.13E+06           | 200.76             | 421.06           | 8.60287            |
| Wt 2                 | 7333           | 2968.34                      | 5.90113            | 21               | 69.6506            | 510748             | 114.159            | 403.42           | 7.12628            |
| Wt 3                 | 9003           | 3644.34                      | 6.37343            | 21               | 62.9328            | 566584             | 172.578            | 336.5            | 10.1002            |
| Wt 4                 | 16888          | 6836.12                      | 5.37056            | 21               | 54.5131            | 920617             | 331.239            | 123.98           | 15.3115            |
| Wt 5                 | 14781          | 5983.23                      | 5.51512            | 21               | 88.3513            | 1.31E+06           | 240.84             | 351.68           | 11.4536            |
| Wt 6                 | 16706          | 6762.45                      | 6 32617            | 21               | 76 3911            | 1 28E+06           | 248 406            | 81 013           | 12 1808            |
| Wt 7                 | 6682           | 2704.82                      | 6 23451            | 21               | 76.0492            | 508161             | 105 635            | 482 73           | 5 81562            |
| Wt 8                 | 8575           | 3471.09                      | 5 / 3953           | 21               | 60.3621            | 517605             | 150 585            | 271 72           | 12 4609            |
| W10                  | 8242           | 3336.20                      | 4 21 276           | 21               | 52 850             | 135664             | 01 6744            | 2/1.72           | 24 5001            |
| Wt 10                | 1549           | 627.022                      | 3.85539            | 21               | 51.5642            | 79873              | 190.343            | 166.88           | 27.9032            |
| Img No               | Voxel          | Volume                       | Mean (Ch3-         | Min (Ch2-        | Mean (ChS1-        | Sum                | Centroid           | Centroid         | Centroid           |
| 7<br>Clone           | Count          | (µm³)                        | T1)                | T2)              | <b>T3</b> )        | (ChS1-T3)          | Х                  | Y                | Z                  |
| cell                 | 3793           | 1535 38                      | 24 3201            | 26               | 95 4205            | 361930             | 228 221            | 146 73           | 39 8587            |
| Wt 1                 | 14204          | 5749.66                      | 8 38658            | 26               | 75 9005            | 1.08E+06           | 205 605            | 421.8            | 18 5348            |
| Wt 2                 | 9065           | 3669.44                      | 8 20375            | 20               | 43 6707            | 395875             | 203.005            | 301.96           | 29 8202            |
| Wt 2                 | 6481           | 2623.46                      | 6 18017            | 20               | 43.0707            | 576712             | 203.432            | 345.37           | 27.0202            |
|                      | 0481<br>8100   | 2023.40                      | 6 27960            | 20               | 79 6261            | 644740             | 261 779            | 192.15           | 21 9572            |
| VVL 4<br>XX/4 5      | 8177           | 2257.76                      | 6 2450             | 20               | 78.0304            | 454726             | 242 611            | 165.15           | 21 1149            |
| WI 5                 | 8048           | 5257.70                      | 0.2439             | 20               | 30.3017            | 454720             | 343.011            | 450.09           | 31.1148            |
| wto                  | 13049          | 6091.71                      | 10.0706            | 20               | 100.521            | 1.51E+06           | 201.238            | 439.13           | 8.75008            |
| Wt7                  | 14520          | 58/7.58                      | 9.28/33            | 26               | 97.8848            | 1.42E+06           | 282.646            | 90.114           | 16.2149            |
| Wt 8                 | 14549          | 5889.32                      | 10.0059            | 26               | 99.152             | 1.44E+06           | 315.805            | 165.81           | 11.6897            |
| Wt 9                 | 3462           | 1401.39                      | 8.5959             | 26               | 117.754            | 407663             | 375.4              | 43.009           | 15.2386            |
| Wt 10                | 3117           | 1261.74                      | 6.15656            | 26               | 91.6567            | 285694             | 347.735            | 264.66           | 26.872             |
| Img No<br>8<br>Clana | Voxel<br>Count | Volume<br>(µm <sup>3</sup> ) | Mean (Ch3-<br>T1)  | Min (Ch2-<br>T2) | Mean (ChS1-<br>T3) | Sum<br>(ChS1-T3)   | Centroid<br>X      | Centroid<br>Y    | Centroid<br>Z      |
| coll                 | 0151           | 2420.0                       | 27 0212            | 24               | 51 5000            | 125005             | 81 5251            | 1161             | 10 2560            |
| W/t 1                | 12240          | 3420.9<br>4000 77            | 2 50021            | 24               | 102 202            | 1 52E+04           | 250 020            | 200.52           | 10.2009            |
| Wt 1                 | 12349          | 4998.77                      | 3.32231            | 24               | 208 041            | 2.21E+06           | 148 500            | 209.53           | 10.4983            |
| WL 2                 | 10042          | 4307.79                      | 2 42962            | 24               | 200.041            | 2.211400           | 146.309            | 200.46           | 12.1506            |
| WLS                  | 12559          | 30/3.08                      | 5.45805            | 24               | /5.120             | 910927             | 196.495            | 25.450           | 12.1390            |
| wt 4                 | 8306           | 3362.2                       | 4.24115            | 24               | 36.0211            | 299191             | 91.6183            | 16.678           | 8.27751            |
| Wt 5                 | 11520          | 4663.2                       | 3.1/543            | 24               | 54.8467            | 631834             | 249.576            | 390.37           | 16.3724            |
| Wt 6                 | 6166           | 2495.95                      | 3.3495             | 24               | 96.8793            | 597358             | 102.012            | 207.21           | 19.0062            |
| Wt 7                 | 11100          | 4493.19                      | 2.70865            | 24               | 45.3246            | 503103             | 311.154            | 106.51           | 15.4815            |
| Wt 8                 | 7015           | 2839.61                      | 3.00613            | 24               | 25.9706            | 182184             | 419.088            | 391.36           | 10.0744            |
| Wt 9<br>Wt 10        | 3524<br>3026   | 1426.49<br>1224.9            | 2.51703<br>2.36682 | 24<br>24         | 29.6348<br>11.0231 | 104433<br>33356    | 368.052<br>444.518 | 206.22<br>292.61 | 14.3383<br>18.0145 |
| Ima No               | Veral          | Volume                       | Mean (Ch2          | Min (Ch2         | Meen (ChS1         | S                  | Controld           | Controld         | Controld           |
| img No<br>9          | Count          | volume<br>(µm <sup>3</sup> ) | T1)                | Min (Cn2-<br>T2) | T3)                | Sum<br>(ChS1-T3)   | X                  | Y<br>Y           | Centrola<br>Z      |
| Clone                |                |                              | <b>-</b>           | _ ·              |                    |                    | 005 0              | 100 10           |                    |
| cell                 | 11034          | 4466.47                      | 56.0247            | 24               | 65.4313            | 721969             | 397.064            | 189.49           | 11.5333            |
| Wt 1                 | 6803           | 2753.8                       | 2.19756            | 24               | 58.8455            | 400326             | 157.571            | 255.41           | 20.9337            |
| Wt 2                 | 12136          | 4912.55                      | 3.61149            | 24               | 102.993            | 1.25E+06           | 130.207            | 208.92           | 10.2523            |
| Wt 3                 | 10534          | 4264.08                      | 4.03332            | 24               | 56.8899            | 599278             | 301.353            | 271.16           | 14.301             |
| Wt 4                 | 8787           | 3556.91                      | 3.37316            | 24               | 61.3249            | 538862             | 228.947            | 254.14           | 14.8284            |
| Wt 5                 | 7436           | 3010.03                      | 3.34817            | 24               | 78.0258            | 580200             | 446.381            | 332.39           | 12.0344            |
| Wt 6                 | 3121           | 1263.36                      | 7.8917             | 24               | 47.0119            | 146724             | 241.539            | 87.713           | 23.71              |
|                      |                |                              |                    |                  |                    |                    |                    |                  |                    |

| Average intensity of | Mi-2 localization in 10 non adjacent wild type cells |
|----------------------|------------------------------------------------------|
| Img No 1             | 82.942                                               |
| Img No 2             | 53.955                                               |
| Img No 3             | 25.559                                               |
|                      |                                                      |

| Img No 4 | 38.366 |
|----------|--------|
| Img No 5 | 57.87  |
| Img No 6 | 70.156 |
| Img No 7 | 80.156 |
| Img No 8 | 82.991 |
| Img No 9 | 67.515 |

Intensity of Mi-2 localization in clone cell V average intensity of Mi-2 localization in 10 non adjacent wild type cells

| Img No 1 | 0.35 |
|----------|------|
| Img No 2 | 1.9  |
| Img No 3 | 0.64 |
| Img No 4 | 1.08 |
| Img No 5 | 0.57 |
| Img No 6 | 1.35 |
| Img No 7 | 1.19 |
| Img No 8 | 0.62 |
| Img No 9 | 0.97 |
|          |      |

Average value of the ratio of the clone cell V wild type cells acquired from Img No 1 to Img No 10 Std Dev of the avg ratio of clone cell / wild type cell 0.48026

0.96333

| D 2 /  | ( <b>::</b> ) | Vigualization of Drof | nrotain in single cell clones expressing <b>A</b> | JAGO |
|--------|---------------|-----------------------|---------------------------------------------------|------|
| D.J. ( | ш)            | visualization of Drei | protein in single cen ciones expressing h         | 1052 |

| Img No<br>1<br>Clone | Voxel<br>Count | Volume<br>(µm³) | Mean (Ch3-<br>T1) | Min (Ch2-<br>T2) | Mean<br>(ChS1-T3) | Sum<br>(ChS1-T3) | Centroid<br>X | Centroid<br>Y | Centroid<br>Z |
|----------------------|----------------|-----------------|-------------------|------------------|-------------------|------------------|---------------|---------------|---------------|
| cell                 | 3626           | 1467.77         | 52.7733           | 27               | 88.7921           | 321960           | 211.278       | 406.154       | 37.4702       |
| Wt 1                 | 9799           | 3966.55         | 0.221349          | 27               | 100.989           | 989594           | 280.865       | 145.563       | 14.9135       |
| Wt 2                 | 11017          | 4459.59         | 0.248797          | 27               | 83.9361           | 924724           | 224.906       | 131.776       | 15.083        |
| Wt 3                 | 11920          | 4825.12         | 1.82508           | 27               | 88.6872           | 1.06E+06         | 290.347       | 52.5028       | 16.4854       |
| Wt 4                 | 9315           | 3770.64         | 0.271605          | 27               | 97.0998           | 904485           | 341.577       | 110.028       | 16.748        |
| Wt 5                 | 10358          | 4192.83         | 0.234987          | 27               | 99.7947           | 1.03E+06         | 266.654       | 239.678       | 16.2033       |
| Wt 6                 | 11610          | 4699.63         | 0.215245          | 27               | 80.7769           | 937820           | 203.227       | 254.361       | 13.7073       |
| Wt 7                 | 9348           | 3783.99         | 0.238126          | 27               | 80.2221           | 749916           | 115.219       | 295.267       | 18.0088       |
| Wt 8                 | 10233          | 4142.23         | 0.311346          | 27               | 76.4842           | 782663           | 92.9304       | 435.065       | 15.1652       |
| Wt 9                 | 3141           | 1271.45         | 0.370901          | 27               | 68.9908           | 216700           | 21.0729       | 492.247       | 13.8695       |
| Wt 10                | 10489          | 4245.86         | 0.260559          | 27               | 91.8657           | 963579           | 341.066       | 109.913       | 17.0923       |

| Img No<br>2<br>Clone | Voxel<br>Count | Volume<br>(µm³) | Mean (Ch3-<br>T1) | Min (Ch2-<br>T2) | Mean<br>(ChS1-T3) | Sum<br>(ChS1-T3) | Centroid<br>X | Centroid<br>Y | Centroid<br>Z |
|----------------------|----------------|-----------------|-------------------|------------------|-------------------|------------------|---------------|---------------|---------------|
| cell                 | 7079           | 2865.52         | 38.2705           | 27               | 134.448           | 951759           | 162.137       | 217.752       | 14.5158       |
| Wt 1                 | 8590           | 3477.16         | 0.701746          | 27               | 132.28            | 1.14E+06         | 364.034       | 124.077       | 16.2549       |
| Wt 2                 | 11504          | 4656.72         | 1.22827           | 27               | 109.556           | 1.26E+06         | 294.905       | 186.818       | 12.2437       |
| Wt 3                 | 11697          | 4734.85         | 0.637599          | 27               | 106.184           | 1.24E+06         | 282.354       | 90.1641       | 14.496        |
| Wt 4                 | 9533           | 3858.88         | 1.08161           | 27               | 101.002           | 962855           | 284.921       | 246.106       | 28.8481       |
| Wt 5                 | 11784          | 4770.07         | 0.657841          | 27               | 93.5411           | 1.10E+06         | 222.041       | 103.322       | 23.3759       |
| Wt 6                 | 5520           | 2234.45         | 6.67355           | 27               | 68.8748           | 380189           | 79.4187       | 327.19        | 15.1049       |
| Wt 7                 | 6372           | 2579.33         | 0.77511           | 27               | 101.116           | 644309           | 181.127       | 133.68        | 41.8183       |
| Wt 8                 | 3684           | 1491.25         | 0.411509          | 27               | 99.813            | 367711           | 372.173       | 182.286       | 34.8149       |
| Wt 9                 | 5383           | 2178.99         | 0.316366          | 27               | 73.8148           | 397345           | 227.502       | 21.3974       | 38.7044       |
| Wt 10                | 3393           | 1373.46         | 0.57707           | 27               | 71.7645           | 243497           | 248.473       | 234.055       | 48.0631       |

| Img No<br>3 | Voxel<br>Count | Volume<br>(µm³) | Mean (Ch3-<br>T1) | Min (Ch2-<br>T2) | Mean<br>(ChS1-T3) | Sum<br>(ChS1-T3) | Centroid<br>X | Centroid<br>Y | Centroid<br>Z |
|-------------|----------------|-----------------|-------------------|------------------|-------------------|------------------|---------------|---------------|---------------|
| Clone       |                |                 |                   |                  |                   |                  |               |               |               |
| cell        | 5951           | 2408.92         | 33.2437           | 24               | 49.5656           | 294965           | 407.968       | 243.998       | 22.7158       |
| Wt 1        | 10988          | 4447.85         | 1.53722           | 24               | 101.557           | 1.12E+06         | 106.594       | 36.709        | 20.9018       |
| Wt 2        | 15072          | 6101.02         | 1.93305           | 24               | 91.7006           | 1.38E+06         | 183.121       | 47.0123       | 15.4599       |
| Wt 3        | 13800          | 5586.13         | 2.2208            | 24               | 107.252           | 1.48E+06         | 70.0538       | 93.0271       | 6.18065       |
| Wt 4        | 14703          | 5951.65         | 2.44011           | 24               | 60.4169           | 888309           | 153.869       | 222.235       | 6.9949        |
| Wt 5        | 10909          | 4415.87         | 2.32414           | 24               | 59.172            | 645507           | 243.545       | 275.975       | 10.1966       |
| Wt 6        | 15746          | 6373.85         | 2.18068           | 24               | 63.2905           | 996572           | 250.651       | 106.739       | 14.3565       |
| Wt 7        | 9274           | 3754.04         | 1.68191           | 24               | 72.4582           | 671977           | 133.677       | 140.967       | 18.3428       |

| Wt 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12176                                                                                                                                                                                             | 4928.74                                                                                                                                                                                                                                                      | 1.7909                                                                                                                                                                                                                                                            | 24                                                                                 | 64.9811                                                                                                                                                                                                                                                    | 791210                                                                                                                                                                                                                                           | 203.258                                                                                                                                                                                                                                                                                | 189.859                                                                                                                                                                                                   | 19.656                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Wt 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2662                                                                                                                                                                                              | 1077.56                                                                                                                                                                                                                                                      | 2.26108                                                                                                                                                                                                                                                           | 24                                                                                 | 12,7926                                                                                                                                                                                                                                                    | 34054                                                                                                                                                                                                                                            | 281.814                                                                                                                                                                                                                                                                                | 121.879                                                                                                                                                                                                   | 1.32494                                                                                                                                                                                                                                                                |
| Wt 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16022                                                                                                                                                                                             | 6485.57                                                                                                                                                                                                                                                      | 2.19966                                                                                                                                                                                                                                                           | 24                                                                                 | 63.0753                                                                                                                                                                                                                                                    | 1.01E+06                                                                                                                                                                                                                                         | 250.775                                                                                                                                                                                                                                                                                | 106.477                                                                                                                                                                                                   | 14.5888                                                                                                                                                                                                                                                                |
| Img No<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Voxel<br>Count                                                                                                                                                                                    | Volume<br>(µm³)                                                                                                                                                                                                                                              | Mean (Ch3-<br>T1)                                                                                                                                                                                                                                                 | Min (Ch2-<br>T2)                                                                   | Mean<br>(ChS1-T3)                                                                                                                                                                                                                                          | Sum<br>(ChS1-T3)                                                                                                                                                                                                                                 | Centroid<br>X                                                                                                                                                                                                                                                                          | Centroid<br>Y                                                                                                                                                                                             | Centroid<br>Z                                                                                                                                                                                                                                                          |
| clone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12736                                                                                                                                                                                             | 5155.43                                                                                                                                                                                                                                                      | 20.3642                                                                                                                                                                                                                                                           | 24                                                                                 | 93.3568                                                                                                                                                                                                                                                    | 1.19E+06                                                                                                                                                                                                                                         | 387.162                                                                                                                                                                                                                                                                                | 366.016                                                                                                                                                                                                   | 16.1611                                                                                                                                                                                                                                                                |
| Wt 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11992                                                                                                                                                                                             | 4854.26                                                                                                                                                                                                                                                      | 2.99867                                                                                                                                                                                                                                                           | 24                                                                                 | 86.4139                                                                                                                                                                                                                                                    | 1.04E+06                                                                                                                                                                                                                                         | 84.0986                                                                                                                                                                                                                                                                                | 210.525                                                                                                                                                                                                   | 18.9256                                                                                                                                                                                                                                                                |
| Wt 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13833                                                                                                                                                                                             | 5599.48                                                                                                                                                                                                                                                      | 3.66464                                                                                                                                                                                                                                                           | 24                                                                                 | 93.05                                                                                                                                                                                                                                                      | 1.29E+06                                                                                                                                                                                                                                         | 71.8269                                                                                                                                                                                                                                                                                | 269.347                                                                                                                                                                                                   | 14.7801                                                                                                                                                                                                                                                                |
| Wt 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13624                                                                                                                                                                                             | 5514.88                                                                                                                                                                                                                                                      | 2.86472                                                                                                                                                                                                                                                           | 24                                                                                 | 71.2801                                                                                                                                                                                                                                                    | 971120                                                                                                                                                                                                                                           | 230.258                                                                                                                                                                                                                                                                                | 250.543                                                                                                                                                                                                   | 20.6847                                                                                                                                                                                                                                                                |
| Wt 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14197                                                                                                                                                                                             | 5746.83                                                                                                                                                                                                                                                      | 3.02895                                                                                                                                                                                                                                                           | 24                                                                                 | 72.8785                                                                                                                                                                                                                                                    | 1.03E+06                                                                                                                                                                                                                                         | 215.315                                                                                                                                                                                                                                                                                | 310.294                                                                                                                                                                                                   | 20.2059                                                                                                                                                                                                                                                                |
| Wt 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9355                                                                                                                                                                                              | 3786.83                                                                                                                                                                                                                                                      | 4.1054                                                                                                                                                                                                                                                            | 24                                                                                 | 105.957                                                                                                                                                                                                                                                    | 991227                                                                                                                                                                                                                                           | 289.179                                                                                                                                                                                                                                                                                | 287.547                                                                                                                                                                                                   | 10.3844                                                                                                                                                                                                                                                                |
| Wt 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10057                                                                                                                                                                                             | 4070.99                                                                                                                                                                                                                                                      | 2.36383                                                                                                                                                                                                                                                           | 24                                                                                 | 53.4162                                                                                                                                                                                                                                                    | 537207                                                                                                                                                                                                                                           | 189.602                                                                                                                                                                                                                                                                                | 198.404                                                                                                                                                                                                   | 30.7734                                                                                                                                                                                                                                                                |
| Wt 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5860                                                                                                                                                                                              | 2372.08                                                                                                                                                                                                                                                      | 2.33925                                                                                                                                                                                                                                                           | 24                                                                                 | 77.9171                                                                                                                                                                                                                                                    | 456594                                                                                                                                                                                                                                           | 92,7949                                                                                                                                                                                                                                                                                | 167.5                                                                                                                                                                                                     | 33.3911                                                                                                                                                                                                                                                                |
| Wt 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8815                                                                                                                                                                                              | 3568.24                                                                                                                                                                                                                                                      | 4 2186                                                                                                                                                                                                                                                            | 24                                                                                 | 70 5612                                                                                                                                                                                                                                                    | 621997                                                                                                                                                                                                                                           | 459.062                                                                                                                                                                                                                                                                                | 307 781                                                                                                                                                                                                   | 27 6853                                                                                                                                                                                                                                                                |
| Wt 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6909                                                                                                                                                                                              | 2796 71                                                                                                                                                                                                                                                      | 3 07555                                                                                                                                                                                                                                                           | 24                                                                                 | 81 8987                                                                                                                                                                                                                                                    | 565838                                                                                                                                                                                                                                           | 337 13                                                                                                                                                                                                                                                                                 | 264 154                                                                                                                                                                                                   | 21.0055                                                                                                                                                                                                                                                                |
| Wt 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6129                                                                                                                                                                                              | 2480.97                                                                                                                                                                                                                                                      | 2.40888                                                                                                                                                                                                                                                           | 24                                                                                 | 78.2211                                                                                                                                                                                                                                                    | 479417                                                                                                                                                                                                                                           | 152.181                                                                                                                                                                                                                                                                                | 244.605                                                                                                                                                                                                   | 18.5401                                                                                                                                                                                                                                                                |
| Img No<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Voxel<br>Count                                                                                                                                                                                    | Volume<br>(µm³)                                                                                                                                                                                                                                              | Mean (Ch3-<br>T1)                                                                                                                                                                                                                                                 | Min (Ch2-<br>T2)                                                                   | Mean<br>(ChS1-T3)                                                                                                                                                                                                                                          | Sum<br>(ChS1-T3)                                                                                                                                                                                                                                 | Centroid<br>X                                                                                                                                                                                                                                                                          | Centroid<br>Y                                                                                                                                                                                             | Centroid<br>Z                                                                                                                                                                                                                                                          |
| cell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7777                                                                                                                                                                                              | 3148.07                                                                                                                                                                                                                                                      | 94.5059                                                                                                                                                                                                                                                           | 24                                                                                 | 88.2321                                                                                                                                                                                                                                                    | 686181                                                                                                                                                                                                                                           | 349.104                                                                                                                                                                                                                                                                                | 56.5303                                                                                                                                                                                                   | 9.88016                                                                                                                                                                                                                                                                |
| Wt 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5956                                                                                                                                                                                              | 2410.94                                                                                                                                                                                                                                                      | 0.260745                                                                                                                                                                                                                                                          | 24                                                                                 | 80.8573                                                                                                                                                                                                                                                    | 481586                                                                                                                                                                                                                                           | 143.693                                                                                                                                                                                                                                                                                | 347.979                                                                                                                                                                                                   | 7.7824                                                                                                                                                                                                                                                                 |
| Wt 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9036                                                                                                                                                                                              | 3657.7                                                                                                                                                                                                                                                       | 0.336653                                                                                                                                                                                                                                                          | 24                                                                                 | 80.3962                                                                                                                                                                                                                                                    | 726460                                                                                                                                                                                                                                           | 260.197                                                                                                                                                                                                                                                                                | 310.275                                                                                                                                                                                                   | 9.63103                                                                                                                                                                                                                                                                |
| Wt 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6693                                                                                                                                                                                              | 2709.27                                                                                                                                                                                                                                                      | 0.443747                                                                                                                                                                                                                                                          | 24                                                                                 | 78.0883                                                                                                                                                                                                                                                    | 522645                                                                                                                                                                                                                                           | 174.675                                                                                                                                                                                                                                                                                | 490.083                                                                                                                                                                                                   | 7.84432                                                                                                                                                                                                                                                                |
| Wt 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7507                                                                                                                                                                                              | 3038.77                                                                                                                                                                                                                                                      | 0.299454                                                                                                                                                                                                                                                          | 24                                                                                 | 73.2836                                                                                                                                                                                                                                                    | 550140                                                                                                                                                                                                                                           | 285.603                                                                                                                                                                                                                                                                                | 474.779                                                                                                                                                                                                   | 13.3077                                                                                                                                                                                                                                                                |
| Wt 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2532                                                                                                                                                                                              | 1024.93                                                                                                                                                                                                                                                      | 0.382306                                                                                                                                                                                                                                                          | 24                                                                                 | 83.7536                                                                                                                                                                                                                                                    | 212064                                                                                                                                                                                                                                           | 442.077                                                                                                                                                                                                                                                                                | 258.901                                                                                                                                                                                                   | 9.85624                                                                                                                                                                                                                                                                |
| Wt 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8787                                                                                                                                                                                              | 3556.91                                                                                                                                                                                                                                                      | 0.337544                                                                                                                                                                                                                                                          | 24                                                                                 | 94.5047                                                                                                                                                                                                                                                    | 830413                                                                                                                                                                                                                                           | 164.273                                                                                                                                                                                                                                                                                | 209.366                                                                                                                                                                                                   | 9.62217                                                                                                                                                                                                                                                                |
| Wt 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7197                                                                                                                                                                                              | 2913.29                                                                                                                                                                                                                                                      | 0.451855                                                                                                                                                                                                                                                          | 24                                                                                 | 76.1791                                                                                                                                                                                                                                                    | 548261                                                                                                                                                                                                                                           | 174.426                                                                                                                                                                                                                                                                                | 490.026                                                                                                                                                                                                   | 8.26539                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                   |                                                                                    |                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                        |
| Wt 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5826                                                                                                                                                                                              | 2358.32                                                                                                                                                                                                                                                      | 0.263646                                                                                                                                                                                                                                                          | 24                                                                                 | 81.7317                                                                                                                                                                                                                                                    | 476169                                                                                                                                                                                                                                           | 143.736                                                                                                                                                                                                                                                                                | 347.937                                                                                                                                                                                                   | 7.77326                                                                                                                                                                                                                                                                |
| Wt 8<br>Img No<br>6<br>Clone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5826<br>Voxel<br>Count                                                                                                                                                                            | 2358.32<br>Volume<br>(µm³)                                                                                                                                                                                                                                   | 0.263646<br>Mean (Ch3-<br>T1)                                                                                                                                                                                                                                     | 24<br>Min (Ch2-<br>T2)                                                             | 81.7317<br>Mean<br>(ChS1-T3)                                                                                                                                                                                                                               | 476169<br>Sum<br>(ChS1-T3)                                                                                                                                                                                                                       | 143.736<br>Centroid<br>X                                                                                                                                                                                                                                                               | 347.937<br>Centroid<br>Y                                                                                                                                                                                  | 7.77326<br>Centroid<br>Z                                                                                                                                                                                                                                               |
| Wt 8<br>Img No<br>6<br>Clone<br>cell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5826<br><b>Voxel</b><br>Count<br>11357                                                                                                                                                            | 2358.32<br>Volume<br>(μm <sup>3</sup> )<br>4597.22                                                                                                                                                                                                           | 0.263646<br>Mean (Ch3-<br>T1)<br>32.6142                                                                                                                                                                                                                          | 24<br>Min (Ch2-<br>T2)<br>21                                                       | 81.7317<br>Mean<br>(ChS1-T3)<br>100.826                                                                                                                                                                                                                    | 476169<br>Sum<br>(ChS1-T3)<br>1.15E+06                                                                                                                                                                                                           | 143.736<br>Centroid<br>X<br>345.561                                                                                                                                                                                                                                                    | 347.937<br>Centroid<br>Y<br>157.249                                                                                                                                                                       | 7.77326<br>Centroid<br>Z<br>11.3082                                                                                                                                                                                                                                    |
| Wt 8<br>Img No<br>6<br>Clone<br>cell<br>Wt 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5826<br>Voxel<br>Count<br>11357<br>8683                                                                                                                                                           | 2358.32<br><b>Volume</b><br>(μm <sup>3</sup> )<br>4597.22<br>3514.81                                                                                                                                                                                         | 0.263646<br>Mean (Ch3-<br>T1)<br>32.6142<br>1.22101                                                                                                                                                                                                               | 24<br>Min (Ch2-<br>T2)<br>21<br>21                                                 | 81.7317<br>Mean<br>(ChS1-T3)<br>100.826<br>103.873                                                                                                                                                                                                         | 476169<br>Sum<br>(ChS1-T3)<br>1.15E+06<br>901929                                                                                                                                                                                                 | 143.736<br>Centroid<br>X<br>345.561<br>165.205                                                                                                                                                                                                                                         | 347.937<br>Centroid<br>Y<br>157.249<br>377.412                                                                                                                                                            | 7.77326<br>Centroid<br>Z<br>11.3082<br>12.0988                                                                                                                                                                                                                         |
| Wt 8<br>Img No<br>6<br>Clone<br>cell<br>Wt 1<br>Wt 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5826<br>Voxel<br>Count<br>11357<br>8683<br>3506                                                                                                                                                   | 2358.32<br><b>Volume</b><br>(μm <sup>3</sup> )<br>4597.22<br>3514.81<br>1419.2                                                                                                                                                                               | 0.263646<br>Mean (Ch3-<br>T1)<br>32.6142<br>1.22101<br>1.14404                                                                                                                                                                                                    | 24<br>Min (Ch2-<br>T2)<br>21<br>21<br>21                                           | 81.7317<br>Mean<br>(ChS1-T3)<br>100.826<br>103.873<br>123.233                                                                                                                                                                                              | 476169<br><b>Sum</b><br>( <b>ChS1-T3</b> )<br>1.15E+06<br>901929<br>432055                                                                                                                                                                       | 143.736<br>Centroid<br>X<br>345.561<br>165.205<br>67.6098                                                                                                                                                                                                                              | 347.937<br>Centroid<br>Y<br>157.249<br>377.412<br>318.207                                                                                                                                                 | 7.77326<br>Centroid<br>Z<br>11.3082<br>12.0988<br>10.8274                                                                                                                                                                                                              |
| Wt 8<br>Img No<br>6<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5826<br>Voxel<br>Count<br>11357<br>8683<br>3506<br>5201                                                                                                                                           | 2358.32<br>Volume<br>(µm³)<br>4597.22<br>3514.81<br>1419.2<br>2105.32                                                                                                                                                                                        | 0.263646<br>Mean (Ch3-<br>T1)<br>32.6142<br>1.22101<br>1.14404<br>1.64757                                                                                                                                                                                         | 24<br>Min (Ch2-<br>T2)<br>21<br>21<br>21<br>21<br>21                               | 81.7317<br>Mean<br>(ChS1-T3)<br>100.826<br>103.873<br>123.233<br>99.7641                                                                                                                                                                                   | 476169<br><b>Sum</b><br>(ChS1-T3)<br>1.15E+06<br>901929<br>432055<br>518873                                                                                                                                                                      | 143.736<br>Centroid<br>X<br>345.561<br>165.205<br>67.6098<br>173.053                                                                                                                                                                                                                   | 347.937<br>Centroid<br>Y<br>157.249<br>377.412<br>318.207<br>43.5485                                                                                                                                      | 7.77326<br>Centroid<br>Z<br>11.3082<br>12.0988<br>10.8274<br>10.4586                                                                                                                                                                                                   |
| Wt 8<br>Img No<br>6<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5826<br>Voxel<br>Count<br>11357<br>8683<br>3506<br>5201<br>2303                                                                                                                                   | 2358.32<br>Volume<br>(µm³)<br>4597.22<br>3514.81<br>1419.2<br>2105.32<br>932.235                                                                                                                                                                             | 0.263646<br>Mean (Ch3-<br>T1)<br>32.6142<br>1.22101<br>1.14404<br>1.64757<br>1.52149                                                                                                                                                                              | 24<br>Min (Ch2-<br>T2)<br>21<br>21<br>21<br>21<br>21<br>21                         | 81.7317<br>Mean<br>(ChS1-T3)<br>100.826<br>103.873<br>123.233<br>99.7641<br>128.276                                                                                                                                                                        | 476169<br><b>Sum</b><br>(ChS1-T3)<br>1.15E+06<br>901929<br>432055<br>518873<br>295420                                                                                                                                                            | 143.736<br>Centroid<br>X<br>345.561<br>165.205<br>67.6098<br>173.053<br>61.2979                                                                                                                                                                                                        | 347.937<br>Centroid<br>Y<br>157.249<br>377.412<br>318.207<br>43.5485<br>174.663                                                                                                                           | 7.77326<br>Centroid<br>Z<br>11.3082<br>12.0988<br>10.8274<br>10.4586<br>10.7082                                                                                                                                                                                        |
| Wt 8<br>Img No<br>6<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5826<br>Voxel<br>Count<br>11357<br>8683<br>3506<br>5201<br>2303<br>5245                                                                                                                           | 2358.32<br>Volume<br>(µm³)<br>4597.22<br>3514.81<br>1419.2<br>2105.32<br>932.235<br>2123.13                                                                                                                                                                  | 0.263646<br>Mean (Ch3-<br>T1)<br>32.6142<br>1.22101<br>1.14404<br>1.64757<br>1.52149<br>1.67207                                                                                                                                                                   | 24<br>Min (Ch2-<br>T2)<br>21<br>21<br>21<br>21<br>21<br>21<br>21                   | 81.7317<br>Mean<br>(ChS1-T3)<br>100.826<br>103.873<br>123.233<br>99.7641<br>128.276<br>99.0766                                                                                                                                                             | 476169<br><b>Sum</b><br>(ChS1-T3)<br>1.15E+06<br>901929<br>432055<br>518873<br>295420<br>519657                                                                                                                                                  | 143.736<br>Centroid<br>X<br>345.561<br>165.205<br>67.6098<br>173.053<br>61.2979<br>173.068                                                                                                                                                                                             | 347.937<br>Centroid<br>Y<br>157.249<br>377.412<br>318.207<br>43.5485<br>174.663<br>43.4463                                                                                                                | 7.77326<br><b>Centroid</b><br>2<br>11.3082<br>12.0988<br>10.8274<br>10.4586<br>10.7082<br>10.5701                                                                                                                                                                      |
| Wt 8<br>Img No<br>6<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5826<br>Voxel<br>Count<br>11357<br>8683<br>3506<br>5201<br>2303<br>5245<br>7868                                                                                                                   | 2358.32<br>Volume<br>(μm <sup>3</sup> )<br>4597.22<br>3514.81<br>1419.2<br>2105.32<br>932.235<br>2123.13<br>3184.9                                                                                                                                           | 0.263646<br>Mean (Ch3-<br>T1)<br>32.6142<br>1.22101<br>1.14404<br>1.64757<br>1.52149<br>1.67207<br>1.24428                                                                                                                                                        | 24<br>Min (Ch2-<br>T2)<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21       | 81.7317<br>Mean<br>(ChS1-T3)<br>100.826<br>103.873<br>123.233<br>99.7641<br>128.276<br>99.0766<br>115.677                                                                                                                                                  | 476169<br><b>Sum</b><br>(ChS1-T3)<br>1.15E+06<br>901929<br>432055<br>518873<br>295420<br>519657<br>910149                                                                                                                                        | 143.736<br>Centroid<br>X<br>345.561<br>165.205<br>67.6098<br>173.053<br>61.2979<br>173.068<br>392.012                                                                                                                                                                                  | 347.937<br>Centroid<br>Y<br>157.249<br>377.412<br>318.207<br>43.5485<br>174.663<br>43.4463<br>43.7262                                                                                                     | 7.77326<br>Centroid<br>Z<br>11.3082<br>12.0988<br>10.8274<br>10.4586<br>10.7082<br>10.5701<br>12.6459                                                                                                                                                                  |
| Wt 8<br>Img No<br>6<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5826<br>Voxel<br>Count<br>11357<br>8683<br>3506<br>5201<br>2303<br>5245<br>7868<br>7023                                                                                                           | 2358.32<br>Volume<br>(µm³)<br>4597.22<br>3514.81<br>1419.2<br>2105.32<br>932.235<br>2123.13<br>3184.9<br>2842.85                                                                                                                                             | 0.263646<br>Mean (Ch3-<br>T1)<br>32.6142<br>1.22101<br>1.14404<br>1.64757<br>1.52149<br>1.67207<br>1.24428<br>1.35441                                                                                                                                             | 24<br>Min (Ch2-<br>T2)<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21 | 81.7317<br>Mean<br>(ChS1-T3)<br>100.826<br>103.873<br>123.233<br>99.7641<br>128.276<br>99.0766<br>115.677<br>100.501                                                                                                                                       | 476169<br><b>Sum</b><br>(ChS1-T3)<br>1.15E+06<br>901929<br>432055<br>518873<br>295420<br>519657<br>910149<br>705819                                                                                                                              | 143.736<br><b>Centroid</b><br>345.561<br>165.205<br>67.6098<br>173.053<br>61.2979<br>173.068<br>392.012<br>269.834                                                                                                                                                                     | 347.937<br><b>Centroid</b><br><b>Y</b><br>157.249<br>377.412<br>318.207<br>43.5485<br>174.663<br>43.4463<br>43.7262<br>21.6046                                                                            | 7.77326<br><b>Centroid</b><br>11.3082<br>12.0988<br>10.8274<br>10.4586<br>10.7082<br>10.5701<br>12.6459<br>9.96768                                                                                                                                                     |
| Wt 8<br>Img No<br>6<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5826<br>Voxel<br>Count<br>11357<br>8683<br>3506<br>5201<br>2303<br>5245<br>7868<br>7023<br>1526                                                                                                   | 2358.32<br>Volume<br>(µm³)<br>4597.22<br>3514.81<br>1419.2<br>2105.32<br>932.235<br>2123.13<br>3184.9<br>2842.85<br>617.712                                                                                                                                  | 0.263646<br>Mean (Ch3-<br>T1)<br>32.6142<br>1.22101<br>1.14404<br>1.64757<br>1.52149<br>1.67207<br>1.24428<br>1.35441<br>0.694626                                                                                                                                 | 24<br>Min (Ch2-<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21        | 81.7317<br>Mean<br>(ChS1-T3)<br>100.826<br>103.873<br>123.233<br>99.7641<br>128.276<br>99.0766<br>115.677<br>100.501<br>92.5714                                                                                                                            | 476169<br>Sum<br>(ChS1-T3)<br>1.15E+06<br>901929<br>432055<br>518873<br>295420<br>519657<br>910149<br>705819<br>141264                                                                                                                           | 143.736<br><b>Centroid</b><br>345.561<br>165.205<br>67.6098<br>173.053<br>61.2979<br>173.068<br>392.012<br>269.834<br>274.197                                                                                                                                                          | 347.937<br>Centroid<br>Y<br>157.249<br>377.412<br>318.207<br>43.5485<br>174.663<br>43.4463<br>43.7262<br>21.6046<br>371.68                                                                                | 7.77326<br><b>Centroid</b><br>11.3082<br>12.0988<br>10.8274<br>10.4586<br>10.7082<br>10.5701<br>12.6459<br>9.96768<br>20.5917                                                                                                                                          |
| Wt 8<br>Img No<br>6<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Img No<br>7<br>Clone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5826<br>Voxel<br>Count<br>11357<br>8683<br>3506<br>5201<br>2303<br>5245<br>7868<br>7023<br>1526<br>Voxel<br>Count                                                                                 | 2358.32<br>Volume<br>(μm³)<br>4597.22<br>3514.81<br>1419.2<br>2105.32<br>932.235<br>2123.13<br>3184.9<br>2842.85<br>617.712<br>Volume<br>(μm³)                                                                                                               | 0.263646<br>Mean (Ch3-<br>T1)<br>32.6142<br>1.22101<br>1.14404<br>1.64757<br>1.52149<br>1.67207<br>1.24428<br>1.35441<br>0.694626<br>Mean<br>(Ch31-T3)                                                                                                            | 24<br>Min (Ch2-<br>T2)<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21 | 81.7317<br>Mean<br>(ChS1-T3)<br>100.826<br>103.873<br>123.233<br>99.7641<br>128.276<br>99.0766<br>115.677<br>100.501<br>92.5714<br>Centroid X                                                                                                              | 476169<br>Sum<br>(ChS1-T3)<br>1.15E+06<br>901929<br>432055<br>518873<br>295420<br>519657<br>910149<br>705819<br>141264<br>Centroid Y                                                                                                             | 143.736<br><b>Centroid</b><br><b>X</b><br>345.561<br>165.205<br>67.6098<br>173.053<br>61.2979<br>173.068<br>392.012<br>269.834<br>274.197<br><b>Centroid</b><br><b>Z</b>                                                                                                               | 347.937<br>Centroid<br>Y<br>157.249<br>377.412<br>318.207<br>43.5485<br>174.663<br>43.4463<br>43.7262<br>21.6046<br>371.68<br>Min<br>(Ch2-T1)                                                             | 7.77326<br>Centroid<br>2<br>11.3082<br>12.0988<br>10.8274<br>10.4586<br>10.7082<br>10.5701<br>12.6459<br>9.96768<br>20.5917<br>Mean<br>(Ch3-T2)                                                                                                                        |
| Wt 8<br>Img No<br>6<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Img No<br>7<br>Clone<br>cell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5826<br>Voxel<br>Count<br>11357<br>8683<br>3506<br>5201<br>2303<br>5245<br>7868<br>7023<br>1526<br>Voxel<br>Count<br>3529                                                                         | 2358.32<br>Volume<br>(μm <sup>3</sup> )<br>4597.22<br>3514.81<br>1419.2<br>2105.32<br>932.235<br>2123.13<br>3184.9<br>2842.85<br>617.712<br>Volume<br>(μm <sup>3</sup> )<br>1428.51                                                                          | 0.263646<br>Mean (Ch3-<br>T1)<br>32.6142<br>1.22101<br>1.14404<br>1.64757<br>1.52149<br>1.67207<br>1.24428<br>1.35441<br>0.694626<br>Mean<br>(ChS1-T3)<br>57.9544                                                                                                 | 24<br>Min (Ch2-<br>T2)<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21 | 81.7317<br>Mean<br>(ChS1-T3)<br>100.826<br>103.873<br>123.233<br>99.7641<br>128.276<br>99.0766<br>115.677<br>100.501<br>92.5714<br>Centroid X<br>240.852                                                                                                   | 476169<br>Sum<br>(ChS1-T3)<br>1.15E+06<br>901929<br>432055<br>518873<br>295420<br>519657<br>910149<br>705819<br>141264<br>Centroid Y<br>415.278                                                                                                  | 143.736<br><b>Centroid</b><br><b>X</b><br>345.561<br>165.205<br>67.6098<br>173.053<br>61.2979<br>173.068<br>392.012<br>269.834<br>274.197<br><b>Centroid</b><br><b>Z</b><br>20.3961                                                                                                    | 347.937<br>Centroid<br>Y<br>157.249<br>377.412<br>318.207<br>43.5485<br>174.663<br>43.4463<br>43.7262<br>21.6046<br>371.68<br>Min<br>(Ch2-T1)<br>24                                                       | 7.77326<br><b>Centroid</b><br>11.3082<br>12.0988<br>10.8274<br>10.4586<br>10.7082<br>10.5701<br>12.6459<br>9.96768<br>20.5917<br><b>Mean</b><br>(Ch3-T2)<br>66.5384                                                                                                    |
| Wt 8<br>Img No<br>6<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Img No<br>7<br>Clone<br>cell<br>Wt 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5826<br>Voxel<br>Count<br>11357<br>8683<br>3506<br>5201<br>2303<br>5245<br>7868<br>7023<br>1526<br>Voxel<br>Count<br>3529<br>8899                                                                 | 2358.32<br>Volume<br>(µm³)<br>4597.22<br>3514.81<br>1419.2<br>2105.32<br>932.235<br>2123.13<br>3184.9<br>2842.85<br>617.712<br>Volume<br>(µm³)<br>1428.51<br>3602.24                                                                                         | 0.263646<br>Mean (Ch3-<br>T1)<br>32.6142<br>1.22101<br>1.14404<br>1.64757<br>1.52149<br>1.67207<br>1.24428<br>1.35441<br>0.694626<br>Mean<br>(ChS1-T3)<br>57.9544<br>83.301                                                                                       | 24<br>Min (Ch2-<br>T2)<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21 | 81.7317<br>Mean<br>(ChS1-T3)<br>100.826<br>103.873<br>123.233<br>99.7641<br>128.276<br>99.0766<br>115.677<br>100.501<br>92.5714<br>Centroid X<br>240.852<br>301.43                                                                                         | 476169<br>Sum<br>(ChS1-T3)<br>1.15E+06<br>901929<br>432055<br>518873<br>295420<br>519657<br>910149<br>705819<br>141264<br>Centroid Y<br>415.278<br>201.784                                                                                       | 143.736<br><b>Centroid</b><br>345.561<br>165.205<br>67.6098<br>173.053<br>61.2979<br>173.068<br>392.012<br>269.834<br>274.197<br><b>Centroid</b><br><b>Z</b><br>20.3961<br>20.6468                                                                                                     | 347.937<br>Centroid<br>Y<br>157.249<br>377.412<br>318.207<br>43.5485<br>174.663<br>43.4463<br>43.7262<br>21.6046<br>371.68<br>Min<br>(Ch2-T1)<br>24<br>24<br>24                                           | 7.77326<br>Centroid<br>2<br>11.3082<br>12.0988<br>10.8274<br>10.4586<br>10.7082<br>10.5701<br>12.6459<br>9.96768<br>20.5917<br>Mean<br>(Ch3-T2)<br>66.5384<br>1.62187                                                                                                  |
| Wt 8<br>Img No<br>6<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Img No<br>7<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 2<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Img No<br>7<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 2<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Img No<br>7<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 2<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Img No<br>7<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 2<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Img No<br>7<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 2<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Wt 1<br>Wt 1<br>Wt 1<br>Wt 1<br>Wt 2<br>Wt 2<br>Wt 2<br>Wt 2<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Img No<br>7<br>Clone<br>cell<br>Wt 1<br>Wt 1<br>Wt 1<br>Wt 2<br>Wt 2<br>Wt 8<br>Wt 1<br>Wt 1<br>Wt 2<br>Wt 1<br>Wt 2<br>Wt 8<br>Wt 1<br>Wt 1<br>Wt 1<br>Wt 1<br>Wt 2<br>Wt 8<br>Wt 1<br>Wt 1<br>Wt 1<br>Wt 1<br>Wt 1<br>Wt 2<br>Wt 1<br>Wt 2<br>Wt 1<br>Wt 2<br>Wt 1<br>Wt 1<br>Wt 2<br>Wt 1<br>Wt 2<br>Wt 2      | 5826<br>Voxel<br>Count<br>11357<br>8683<br>3506<br>5201<br>2303<br>5245<br>7868<br>7023<br>1526<br>Voxel<br>Count<br>3529<br>8899<br>6672                                                         | 2358.32<br>Volume<br>(μm³)<br>4597.22<br>3514.81<br>1419.2<br>2105.32<br>932.235<br>2123.13<br>3184.9<br>2842.85<br>617.712<br>Volume<br>(μm³)<br>1428.51<br>3602.24<br>2700.77                                                                              | 0.263646<br>Mean (Ch3-<br>T1)<br>32.6142<br>1.22101<br>1.14404<br>1.64757<br>1.52149<br>1.67207<br>1.24428<br>1.35441<br>0.694626<br>Mean<br>(ChS1-T3)<br>57.9544<br>83.301<br>74.4571                                                                            | 24<br>Min (Ch2-<br>T2)<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21 | 81.7317<br>Mean<br>(ChS1-T3)<br>100.826<br>103.873<br>123.233<br>99.7641<br>128.276<br>99.0766<br>115.677<br>100.501<br>92.5714<br>Centroid X<br>240.852<br>301.43<br>193.729                                                                              | 476169<br>Sum<br>(ChS1-T3)<br>1.15E+06<br>901929<br>432055<br>518873<br>295420<br>519657<br>910149<br>705819<br>141264<br>Centroid Y<br>415.278<br>201.784<br>159.2                                                                              | 143.736<br><b>Centroid</b><br>345.561<br>165.205<br>67.6098<br>173.053<br>61.2979<br>173.068<br>392.012<br>269.834<br>274.197<br><b>Centroid</b><br><b>Z</b><br>20.3961<br>20.6468<br>19.7235                                                                                          | 347.937<br>Centroid<br>Y<br>157.249<br>377.412<br>318.207<br>43.5485<br>174.663<br>43.4463<br>43.7262<br>21.6046<br>371.68<br>Min<br>(Ch2-T1)<br>24<br>24<br>24<br>24                                     | 7.77326<br>Centroid<br>2<br>11.3082<br>12.0988<br>10.8274<br>10.4586<br>10.7082<br>10.5701<br>12.6459<br>9.96768<br>20.5917<br>Mean<br>(Ch3-T2)<br>66.5384<br>1.62187<br>0.84967                                                                                       |
| Wt 8<br>Img No<br>6<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Img No<br>7<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Img No<br>7<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Img No<br>7<br>Clone<br>cell<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Img No<br>7<br>Clone<br>cell<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Img No<br>7<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>C                                                                                | 5826<br>Voxel<br>Count<br>11357<br>8683<br>3506<br>5201<br>2303<br>5245<br>7868<br>7023<br>1526<br>Voxel<br>Count<br>3529<br>8899<br>6672<br>4949                                                 | 2358.32<br>Volume<br>(μm³)<br>4597.22<br>3514.81<br>1419.2<br>2105.32<br>932.235<br>2123.13<br>3184.9<br>2842.85<br>617.712<br>Volume<br>(μm³)<br>1428.51<br>3602.24<br>2700.77<br>2003.31                                                                   | 0.263646<br>Mean (Ch3-<br>T1)<br>32.6142<br>1.22101<br>1.14404<br>1.64757<br>1.52149<br>1.67207<br>1.24428<br>1.35441<br>0.694626<br>Mean<br>(ChS1-T3)<br>57.9544<br>83.301<br>74.4571<br>94.5557                                                                 | 24<br>Min (Ch2-<br>T2)<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21 | 81.7317<br>Mean<br>(ChS1-T3)<br>100.826<br>103.873<br>123.233<br>99.7641<br>128.276<br>99.0766<br>115.677<br>100.501<br>92.5714<br>Centroid X<br>240.852<br>301.43<br>193.729<br>128.728                                                                   | 476169<br>Sum<br>(ChS1-T3)<br>1.15E+06<br>901929<br>432055<br>518873<br>295420<br>519657<br>910149<br>705819<br>141264<br>Centroid Y<br>415.278<br>201.784<br>159.2<br>304.521                                                                   | 143.736<br><b>Centroid</b><br>345.561<br>165.205<br>67.6098<br>173.053<br>61.2979<br>173.068<br>392.012<br>269.834<br>274.197<br><b>Centroid</b><br><b>Z</b><br>20.3961<br>20.6468<br>19.7235<br>20.6789                                                                               | 347.937<br>Centroid<br>Y<br>157.249<br>377.412<br>318.207<br>43.5485<br>174.663<br>43.4463<br>43.7262<br>21.6046<br>371.68<br>Min<br>(Ch2-T1)<br>24<br>24<br>24<br>24<br>24<br>24                         | 7.77326<br>Centroid<br>2<br>11.3082<br>12.0988<br>10.8274<br>10.4586<br>10.7082<br>10.5701<br>12.6459<br>9.96768<br>20.5917<br>Mean<br>(Ch3-T2)<br>66.5384<br>1.62187<br>0.84967<br>1.55789                                                                            |
| Wt 8<br>Img No<br>6<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Img No<br>7<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Img No<br>7<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Img No<br>7<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Img No<br>7<br>Clone<br>cell<br>Wt 1<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Img No<br>7<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Wt 7<br>Wt 1<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Clone<br>cell<br>Wt 1<br>Wt 1<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 1<br>Wt 1<br>Wt 4<br>Wt 5<br>Wt 6<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Clone<br>Wt 3<br>Wt 4<br>Wt 3<br>Wt 4<br>Wt 2<br>Wt 4<br>Wt 4<br>Wt 4<br>Wt 4<br>Wt 2<br>Wt 4<br>Wt 4              | 5826<br>Voxel<br>Count<br>11357<br>8683<br>3506<br>5201<br>2303<br>5245<br>7868<br>7023<br>1526<br>Voxel<br>Count<br>3529<br>8899<br>6672<br>4949<br>3838                                         | 2358.32<br>Volume<br>(μm <sup>3</sup> )<br>4597.22<br>3514.81<br>1419.2<br>2105.32<br>932.235<br>2123.13<br>3184.9<br>2842.85<br>617.712<br>Volume<br>(μm <sup>3</sup> )<br>1428.51<br>3602.24<br>2700.77<br>2003.31<br>1553.59                              | 0.263646<br>Mean (Ch3-<br>T1)<br>32.6142<br>1.22101<br>1.14404<br>1.64757<br>1.52149<br>1.67207<br>1.24428<br>1.35441<br>0.694626<br>Mean<br>(ChS1-T3)<br>57.9544<br>83.301<br>74.4571<br>94.5557<br>62.3609                                                      | 24<br>Min (Ch2-<br>T2)<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21 | 81.7317<br>Mean<br>(ChS1-T3)<br>100.826<br>103.873<br>123.233<br>99.7641<br>128.276<br>99.0766<br>115.677<br>100.501<br>92.5714<br>Centroid X<br>240.852<br>301.43<br>193.729<br>128.728<br>387.838                                                        | 476169<br>Sum<br>(ChS1-T3)<br>1.15E+06<br>901929<br>432055<br>518873<br>295420<br>519657<br>910149<br>705819<br>141264<br>Centroid Y<br>415.278<br>201.784<br>159.2<br>304.521<br>49.4192                                                        | 143.736<br><b>Centroid</b><br><b>X</b><br>345.561<br>165.205<br>67.6098<br>173.053<br>61.2979<br>173.068<br>392.012<br>269.834<br>274.197<br><b>Centroid</b><br><b>Z</b><br>20.3961<br>20.6468<br>19.7235<br>20.6789<br>21.7939                                                        | 347.937<br>Centroid<br>Y<br>157.249<br>377.412<br>318.207<br>43.5485<br>174.663<br>43.4463<br>43.7262<br>21.6046<br>371.68<br>Min<br>(Ch2-T1)<br>24<br>24<br>24<br>24<br>24<br>24                         | 7.77326<br><b>Centroid</b><br>11.3082<br>12.0988<br>10.8274<br>10.4586<br>10.7082<br>10.5701<br>12.6459<br>9.96768<br>20.5917<br><b>Mean</b><br>(Ch3-T2)<br>66.5384<br>1.62187<br>0.84967<br>1.55789<br>1.1334                                                         |
| Wt 8<br>Img No<br>6<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Img No<br>7<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Img No<br>7<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Img No<br>7<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Img No<br>7<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Img No<br>7<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 1<br>Wt 2<br>Wt 8<br>Vt 6<br>Wt 1<br>Wt 5<br>Wt 1<br>Wt 5<br>Wt 7<br>Wt 8<br>Wt 1<br>Wt 2<br>Wt 1<br>Wt 2<br>Wt 8<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 5<br>Wt 6<br>Wt 1<br>Wt 2<br>Wt 8<br>Wt 1<br>Wt 2<br>Wt 4<br>Vt 7<br>Wt 2<br>Wt 4<br>Wt 5<br>Wt 4<br>Vt 7<br>Wt 4<br>Wt 5<br>Wt 5     | 5826<br>Voxel<br>Count<br>11357<br>8683<br>3506<br>5201<br>2303<br>5245<br>7868<br>7023<br>1526<br>Voxel<br>Count<br>3529<br>8899<br>6672<br>4949<br>3838<br>3790                                 | 2358.32<br>Volume<br>(µm³)<br>4597.22<br>3514.81<br>1419.2<br>2105.32<br>932.235<br>2123.13<br>3184.9<br>2842.85<br>617.712<br>Volume<br>(µm³)<br>1428.51<br>3602.24<br>2700.77<br>2003.31<br>1553.59<br>1534.16                                             | 0.263646<br>Mean (Ch3-<br>T1)<br>32.6142<br>1.22101<br>1.14404<br>1.64757<br>1.52149<br>1.67207<br>1.24428<br>1.35441<br>0.694626<br>Mean<br>(ChS1-T3)<br>57.9544<br>83.301<br>74.4571<br>94.5557<br>62.3609<br>71.2443                                           | 24<br>Min (Ch2-<br>T2)<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21 | 81.7317<br>Mean<br>(ChS1-T3)<br>100.826<br>103.873<br>123.233<br>99.7641<br>128.276<br>99.0766<br>115.677<br>100.501<br>92.5714<br>Centroid X<br>240.852<br>301.43<br>193.729<br>128.728<br>387.838<br>402.341                                             | 476169<br>Sum<br>(ChS1-T3)<br>1.15E+06<br>901929<br>432055<br>518873<br>295420<br>519657<br>910149<br>705819<br>141264<br>Centroid Y<br>415.278<br>201.784<br>159.2<br>304.521<br>49.4192<br>203.139                                             | 143.736<br><b>Centroid</b><br><b>X</b><br>345.561<br>165.205<br>67.6098<br>173.053<br>61.2979<br>173.068<br>392.012<br>269.834<br>274.197<br><b>Centroid</b><br><b>Z</b><br>20.3961<br>20.6468<br>19.7235<br>20.6789<br>21.7939<br>21.3541                                             | 347.937<br>Centroid<br>Y<br>157.249<br>377.412<br>318.207<br>43.5485<br>174.663<br>43.4463<br>43.7262<br>21.6046<br>371.68<br>Min<br>(Ch2-T1)<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24             | 7.77326<br><b>Centroid</b><br>11.3082<br>12.0988<br>10.8274<br>10.4586<br>10.7082<br>10.5701<br>12.6459<br>9.96768<br>20.5917<br><b>Mean</b><br>(Ch3-T2)<br>66.5384<br>1.62187<br>0.84967<br>1.55789<br>1.1334<br>1.22507                                              |
| Wt 8<br>Img No<br>6<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Img No<br>7<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Img No<br>7<br>Clone<br>cell<br>Wt 1<br>Wt 5<br>Wt 6<br>Wt 1<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Img No<br>7<br>Clone<br>cell<br>Wt 1<br>Wt 5<br>Wt 6<br>Wt 1<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Img No<br>7<br>Clone<br>cell<br>Wt 1<br>Wt 5<br>Wt 6<br>Wt 1<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Img No<br>7<br>Clone<br>cell<br>Wt 1<br>Wt 5<br>Wt 1<br>Wt 5<br>Wt 6<br>Wt 1<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Wt 1<br>Wt 5<br>Wt 1<br>Wt 5<br>Wt 1<br>Wt 5<br>Wt 6<br>Wt 1<br>Wt 5<br>Wt 1<br>Wt 5<br>Wt 6<br>Wt 1<br>Wt 5<br>Wt 6<br>Wt 1<br>Wt 5<br>Wt 6<br>Wt 1<br>Wt 5<br>Wt 7<br>Wt 8<br>Wt 1<br>Wt 5<br>Wt 1<br>Wt 5<br>Wt 6<br>Wt 1<br>Wt 5<br>Wt 1<br>Wt 5<br>Wt 1<br>Wt 5<br>Wt 1<br>Wt 5<br>Wt 1<br>Wt 5<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 1<br>Wt 5<br>Wt 4<br>Wt 5<br>Wt 4<br>Wt 5<br>Wt 1<br>Wt 5<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 6<br>Wt 6<br>Wt 6<br>Wt 6<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 7<br>W | 5826<br>Voxel<br>Count<br>11357<br>8683<br>3506<br>5201<br>2303<br>5245<br>7868<br>7023<br>1526<br>Voxel<br>Count<br>3529<br>8899<br>6672<br>4949<br>3838<br>3790<br>3835                         | 2358.32<br>Volume<br>(μm³)<br>4597.22<br>3514.81<br>1419.2<br>2105.32<br>932.235<br>2123.13<br>3184.9<br>2842.85<br>617.712<br>Volume<br>(μm³)<br>1428.51<br>3602.24<br>2700.77<br>2003.31<br>1553.59<br>1534.16<br>1552.38                                  | 0.263646<br>Mean (Ch3-<br>T1)<br>32.6142<br>1.22101<br>1.14404<br>1.64757<br>1.52149<br>1.67207<br>1.24428<br>1.35441<br>0.694626<br>Mean<br>(ChS1-T3)<br>57.9544<br>83.301<br>74.4571<br>94.5557<br>62.3609<br>71.2443<br>62.442                                 | 24<br>Min (Ch2-<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21        | 81.7317<br>Mean<br>(ChS1-T3)<br>100.826<br>103.873<br>123.233<br>99.7641<br>128.276<br>99.0766<br>115.677<br>100.501<br>92.5714<br>Centroid X<br>240.852<br>301.43<br>193.729<br>128.728<br>387.838<br>402.341<br>387.913                                  | 476169<br>Sum<br>(ChS1-T3)<br>1.15E+06<br>901929<br>432055<br>518873<br>295420<br>519657<br>910149<br>705819<br>141264<br>Centroid Y<br>415.278<br>201.784<br>159.2<br>304.521<br>49.4192<br>203.139<br>49.4149                                  | 143.736<br><b>Centroid</b><br><b>X</b><br>345.561<br>165.205<br>67.6098<br>173.053<br>61.2979<br>173.068<br>392.012<br>269.834<br>274.197<br><b>Centroid</b><br><b>Z</b><br>20.3961<br>20.6468<br>19.7235<br>20.6789<br>21.7939<br>21.3541<br>21.7718                                  | 347.937<br>Centroid<br>Y<br>157.249<br>377.412<br>318.207<br>43.5485<br>174.663<br>43.4463<br>43.4262<br>21.6046<br>371.68<br>Min<br>(Ch2-T1)<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24       | 7.77326<br>Centroid<br>2<br>11.3082<br>12.0988<br>10.8274<br>10.4586<br>10.7082<br>10.5701<br>12.6459<br>9.96768<br>20.5917<br>Mean<br>(Ch3-T2)<br>66.5384<br>1.62187<br>0.84967<br>1.55789<br>1.1334<br>1.22507<br>1.13325                                            |
| Wt 8<br>Img No<br>6<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Img No<br>7<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Img No<br>7<br>Clone<br>cell<br>Wt 1<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Img No<br>7<br>Clone<br>cell<br>Wt 1<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 1<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Img No<br>7<br>Clone<br>cell<br>Wt 1<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 1<br>Wt 1<br>Wt 2<br>Wt 8<br>Img No<br>7<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Wt 1<br>Wt 1<br>Wt 2<br>Wt 1<br>Wt 1<br>Wt 2<br>Wt 1<br>Wt 5<br>Wt 6<br>Wt 1<br>Wt 1<br>Wt 2<br>Wt 1<br>Wt 5<br>Wt 6<br>Wt 1<br>Wt 1<br>Wt 2<br>Wt 1<br>Wt 2<br>Wt 1<br>Wt 2<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 4<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 1<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 4<br>Wt 7<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 6<br>Wt 7<br>Wt 7<br>Wt 6<br>Wt 7<br>Wt 7      | 5826<br>Voxel<br>Count<br>11357<br>8683<br>3506<br>5201<br>2303<br>5245<br>7868<br>7023<br>1526<br>Voxel<br>Count<br>3529<br>8899<br>6672<br>4949<br>3838<br>3790<br>3835<br>8527                 | 2358.32<br>Volume<br>(μm³)<br>4597.22<br>3514.81<br>1419.2<br>2105.32<br>932.235<br>2123.13<br>3184.9<br>2842.85<br>617.712<br>Volume<br>(μm³)<br>1428.51<br>3602.24<br>2700.77<br>2003.31<br>1553.59<br>1534.16<br>1552.38<br>3451.66                       | 0.263646<br>Mean (Ch3-<br>T1)<br>32.6142<br>1.22101<br>1.14404<br>1.64757<br>1.52149<br>1.67207<br>1.24428<br>1.35441<br>0.694626<br>Mean<br>(ChS1-T3)<br>57.9544<br>83.301<br>74.4571<br>94.5557<br>62.3609<br>71.2443<br>62.442<br>53.1391                      | 24<br>Min (Ch2-<br>T2)<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21 | 81.7317<br>Mean<br>(ChS1-T3)<br>100.826<br>103.873<br>123.233<br>99.7641<br>128.276<br>99.0766<br>115.677<br>100.501<br>92.5714<br>Centroid X<br>240.852<br>301.43<br>193.729<br>128.728<br>387.838<br>402.341<br>387.913<br>340.801                       | 476169<br>Sum<br>(ChS1-T3)<br>1.15E+06<br>901929<br>432055<br>518873<br>295420<br>519657<br>910149<br>705819<br>141264<br>Centroid Y<br>415.278<br>201.784<br>159.2<br>304.521<br>49.4192<br>203.139<br>49.4149<br>385.277                       | 143.736<br><b>Centroid</b><br><b>X</b><br>345.561<br>165.205<br>67.6098<br>173.053<br>61.2979<br>173.068<br>392.012<br>269.834<br>274.197<br><b>Centroid</b><br><b>Z</b><br>20.3961<br>20.6468<br>19.7235<br>20.6789<br>21.7939<br>21.3541<br>21.7718<br>12.6475                       | 347.937<br>Centroid<br>Y<br>157.249<br>377.412<br>318.207<br>43.5485<br>174.663<br>43.4463<br>43.7262<br>21.6046<br>371.68<br>Min<br>(Ch2-T1)<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24 | 7.77326<br>Centroid<br>Z<br>11.3082<br>12.0988<br>10.8274<br>10.4586<br>10.7082<br>10.5701<br>12.6459<br>9.96768<br>20.5917<br>Mean<br>(Ch3-T2)<br>66.5384<br>1.62187<br>0.84967<br>1.55789<br>1.1334<br>1.22507<br>1.13325<br>0.40319                                 |
| Wt 8<br>Img No<br>6<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Img No<br>7<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Img No<br>7<br>Clone<br>cell<br>Wt 1<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Img No<br>7<br>Clone<br>cell<br>Wt 1<br>Wt 7<br>Wt 8<br>Img No<br>7<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 8<br>Img No<br>7<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 7<br>Wt 8<br>Img No<br>7<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 7<br>Wt 1<br>Wt 2<br>Wt 7<br>Wt 8<br>Img No<br>7<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 1<br>Wt 2<br>Wt 1<br>Wt 2<br>Wt 1<br>Wt 2<br>Wt 1<br>Wt 2<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 4<br>Wt 7<br>Wt 8<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 4<br>Wt 5<br>Wt 4<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Wt 8<br>Wt 7<br>Wt 8<br>Wt 8<br>Wt 8<br>Wt 8<br>Wt 8<br>Wt 7<br>Wt 8<br>Wt 8<br>Wt 7<br>Wt 8<br>Wt 8<br>W | 5826<br>Voxel<br>Count<br>11357<br>8683<br>3506<br>5201<br>2303<br>5245<br>7868<br>7023<br>1526<br>Voxel<br>Count<br>3529<br>8899<br>6672<br>4949<br>3838<br>3790<br>3835<br>8527<br>8172         | 2358.32<br>Volume<br>(μm³)<br>4597.22<br>3514.81<br>1419.2<br>2105.32<br>932.235<br>2123.13<br>3184.9<br>2842.85<br>617.712<br>Volume<br>(μm³)<br>1428.51<br>3602.24<br>2700.77<br>2003.31<br>1553.59<br>1534.16<br>1552.38<br>3451.66<br>3307.96            | 0.263646<br>Mean (Ch3-<br>T1)<br>32.6142<br>1.22101<br>1.14404<br>1.64757<br>1.52149<br>1.67207<br>1.24428<br>1.35441<br>0.694626<br>Mean<br>(ChS1-T3)<br>57.9544<br>83.301<br>74.4571<br>94.5557<br>62.3609<br>71.2443<br>62.442<br>53.1391<br>67.635            | 24<br>Min (Ch2-<br>T2)<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21 | 81.7317<br>Mean<br>(ChS1-T3)<br>100.826<br>103.873<br>123.233<br>99.7641<br>128.276<br>99.0766<br>115.677<br>100.501<br>92.5714<br>Centroid X<br>240.852<br>301.43<br>193.729<br>128.728<br>387.838<br>402.341<br>387.913<br>340.801<br>326.275            | 476169<br>Sum<br>(ChS1-T3)<br>1.15E+06<br>901929<br>432055<br>518873<br>295420<br>519657<br>910149<br>705819<br>141264<br>Centroid Y<br>415.278<br>201.784<br>159.2<br>304.521<br>49.4192<br>203.139<br>49.4149<br>385.277<br>291.646            | 143.736<br><b>Centroid</b><br><b>X</b><br>345.561<br>165.205<br>67.6098<br>173.053<br>61.2979<br>173.068<br>392.012<br>269.834<br>274.197<br><b>Centroid</b><br><b>Z</b><br>20.3961<br>20.6468<br>19.7235<br>20.6789<br>21.7939<br>21.3541<br>21.7718<br>12.6475<br>21.3922            | 347.937<br>Centroid<br>Y<br>157.249<br>377.412<br>318.207<br>43.5485<br>174.663<br>43.4463<br>43.7262<br>21.6046<br>371.68<br>Min<br>(ch2-T1)<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24 | 7.77326<br><b>Centroid</b><br>11.3082<br>12.0988<br>10.8274<br>10.4586<br>10.7082<br>10.5701<br>12.6459<br>9.96768<br>20.5917<br><b>Mean</b><br>(Ch3-T2)<br>66.5384<br>1.62187<br>0.84967<br>1.55789<br>1.1334<br>1.22507<br>1.13325<br>0.40319<br>1.01199             |
| Wt 8<br>Img No<br>6<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Img No<br>7<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Img No<br>7<br>Clone<br>cell<br>Wt 1<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Wt 1<br>Wt 2<br>Wt 8<br>Img No<br>7<br>Clone<br>cell<br>Wt 1<br>Wt 8<br>Img No<br>7<br>Clone<br>cell<br>Wt 1<br>Wt 8<br>Img No<br>7<br>Clone<br>cell<br>Wt 1<br>Wt 8<br>Img No<br>7<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 8<br>Img No<br>7<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 8<br>Img No<br>7<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 4<br>Wt 5<br>Wt 8<br>Wt 1<br>Wt 5<br>Wt 4<br>Wt 5<br>Wt 4<br>Wt 1<br>Wt 5<br>Wt 6<br>Wt 4<br>Wt 5<br>Wt 4<br>Wt 2<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Wt 7<br>Wt 8<br>Wt 7<br>Wt 8<br>Wt 7<br>Wt 8<br>Wt 7<br>Wt 8<br>Wt 7<br>Wt 8<br>Wt 8<br>Wt 7<br>Wt 8<br>Wt 8<br>Wt 8<br>Wt 7<br>Wt 8<br>Wt 8<br>Wt 8<br>Wt 8<br>Wt 8<br>Wt 9<br>Wt 9<br>Wt 9<br>Wt 8<br>Wt 8<br>Wt 9<br>Wt 8<br>Wt 8<br>Wt 9<br>Wt 8<br>Wt 8<br>Wt 8<br>Wt 8<br>Wt 9<br>Wt 8<br>Wt 8<br>Wt 8<br>Wt 8<br>Wt 9<br>Wt 8<br>Wt 9<br>Wt 8<br>Wt 9<br>Wt 8<br>Wt 8<br>Wt 9<br>Wt 8<br>Wt 9<br>Wt 8<br>Wt 9<br>Wt 8<br>Wt 9<br>Wt 8<br>Wt 9<br>Wt 8<br>Wt 8<br>Wt 9<br>Wt 8<br>Wt 9<br>Wt 8<br>Wt 8      | 5826<br>Voxel<br>Count<br>11357<br>8683<br>3506<br>5201<br>2303<br>5245<br>7868<br>7023<br>1526<br>Voxel<br>Count<br>3529<br>8899<br>6672<br>4949<br>3838<br>3790<br>3835<br>8527<br>8172<br>3241 | 2358.32<br>Volume<br>(μm³)<br>4597.22<br>3514.81<br>1419.2<br>2105.32<br>932.235<br>2123.13<br>3184.9<br>2842.85<br>617.712<br>Volume<br>(μm³)<br>1428.51<br>3602.24<br>2700.77<br>2003.31<br>1553.59<br>1534.16<br>1552.38<br>3451.66<br>3307.96<br>1311.93 | 0.263646<br>Mean (Ch3-<br>T1)<br>32.6142<br>1.22101<br>1.14404<br>1.64757<br>1.52149<br>1.67207<br>1.24428<br>1.35441<br>0.694626<br>Mean<br>(Ch31-T3)<br>57.9544<br>83.301<br>74.4571<br>94.5557<br>62.3609<br>71.2443<br>62.442<br>53.1391<br>67.635<br>62.8747 | 24<br>Min (Ch2-<br>T2)<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21 | 81.7317<br>Mean<br>(ChS1-T3)<br>100.826<br>103.873<br>123.233<br>99.7641<br>128.276<br>99.0766<br>115.677<br>100.501<br>92.5714<br>Centroid X<br>240.852<br>301.43<br>193.729<br>128.728<br>387.838<br>402.341<br>387.913<br>340.801<br>326.275<br>255.277 | 476169<br>Sum<br>(ChS1-T3)<br>1.15E+06<br>901929<br>432055<br>518873<br>295420<br>519657<br>910149<br>705819<br>141264<br>Centroid Y<br>415.278<br>201.784<br>159.2<br>304.521<br>49.4192<br>203.139<br>49.4149<br>385.277<br>291.646<br>487.528 | 143.736<br><b>Centroid</b><br><b>X</b><br>345.561<br>165.205<br>67.6098<br>173.053<br>61.2979<br>173.068<br>392.012<br>269.834<br>274.197<br><b>Centroid</b><br><b>Z</b><br>20.3961<br>20.6468<br>19.7235<br>20.6789<br>21.7939<br>21.3541<br>21.7718<br>12.6475<br>21.3922<br>5.22092 | 347.937<br>Centroid<br>Y<br>157.249<br>377.412<br>318.207<br>43.5485<br>174.663<br>43.4463<br>43.7262<br>21.6046<br>371.68<br>Min<br>(ch2-T1)<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24 | 7.77326<br><b>Centroid</b><br>11.3082<br>12.0988<br>10.8274<br>10.4586<br>10.7082<br>10.5701<br>12.6459<br>9.96768<br>20.5917<br><b>Mean</b><br>(Ch3-T2)<br>66.5384<br>1.62187<br>0.84967<br>1.55789<br>1.1334<br>1.22507<br>1.13325<br>0.40319<br>1.01199<br>0.523604 |

| 8                                                                                                    | Count                                                                                          | (µm³)                                                                                                                                             | (ChS1-T3)                                                                                                                                                                                           | (ChS1-T3)                                                                                                    |                                                                                                                         |                                                                                                                         | Z                                                                                                                        | (Ch2-T1)                                                                          | (Ch3-T2)                                                                                                                      |
|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Clone                                                                                                |                                                                                                |                                                                                                                                                   |                                                                                                                                                                                                     |                                                                                                              |                                                                                                                         |                                                                                                                         |                                                                                                                          |                                                                                   |                                                                                                                               |
| cell                                                                                                 | 8035                                                                                           | 3252.5                                                                                                                                            | 84.1187                                                                                                                                                                                             | 675894                                                                                                       | 98.1469                                                                                                                 | 200.325                                                                                                                 | 11.7135                                                                                                                  | 21                                                                                | 17.69                                                                                                                         |
| Wt 1                                                                                                 | 12912                                                                                          | 5226.67                                                                                                                                           | 90.096                                                                                                                                                                                              | 1.16E+06                                                                                                     | 312.575                                                                                                                 | 81.7982                                                                                                                 | 15.0163                                                                                                                  | 21                                                                                | 2.70074                                                                                                                       |
| Wt 2                                                                                                 | 11038                                                                                          | 4468.09                                                                                                                                           | 91.6124                                                                                                                                                                                             | 1.01E+06                                                                                                     | 376.477                                                                                                                 | 181.518                                                                                                                 | 10.3351                                                                                                                  | 21                                                                                | 3.67992                                                                                                                       |
| Wt 3                                                                                                 | 6196                                                                                           | 2508.09                                                                                                                                           | 103.359                                                                                                                                                                                             | 640414                                                                                                       | 463.473                                                                                                                 | 230.712                                                                                                                 | 12.4921                                                                                                                  | 21                                                                                | 3.01436                                                                                                                       |
| Wt 4                                                                                                 | 9976                                                                                           | 4038.2                                                                                                                                            | 109.533                                                                                                                                                                                             | 1.09E+06                                                                                                     | 185.327                                                                                                                 | 76.2812                                                                                                                 | 19.7971                                                                                                                  | 21                                                                                | 3.67622                                                                                                                       |
| Wt 5                                                                                                 | 11955                                                                                          | 4839.29                                                                                                                                           | 87.5757                                                                                                                                                                                             | 1.05E+06                                                                                                     | 357.072                                                                                                                 | 250.722                                                                                                                 | 10.2494                                                                                                                  | 21                                                                                | 3.35274                                                                                                                       |
| Wt 6                                                                                                 | 1771                                                                                           | 716.886                                                                                                                                           | 131.58                                                                                                                                                                                              | 233029                                                                                                       | 458.623                                                                                                                 | 101.809                                                                                                                 | 14.5184                                                                                                                  | 21                                                                                | 2.65556                                                                                                                       |
| Wt 7                                                                                                 | 3285                                                                                           | 1329.74                                                                                                                                           | 100.128                                                                                                                                                                                             | 328922                                                                                                       | 444.549                                                                                                                 | 353.646                                                                                                                 | 19.0061                                                                                                                  | 21                                                                                | 1.70837                                                                                                                       |
| Wt 8                                                                                                 | 12159                                                                                          | 4921.86                                                                                                                                           | 98.2656                                                                                                                                                                                             | 1.19E+06                                                                                                     | 254.704                                                                                                                 | 311.163                                                                                                                 | 10.7201                                                                                                                  | 21                                                                                | 4.09351                                                                                                                       |
| Wt 9                                                                                                 | 7287                                                                                           | 2949.72                                                                                                                                           | 111.578                                                                                                                                                                                             | 813072                                                                                                       | 105.476                                                                                                                 | 353.682                                                                                                                 | 10.4304                                                                                                                  | 21                                                                                | 4.39495                                                                                                                       |
| Wt 10                                                                                                | 10792                                                                                          | 4368.51                                                                                                                                           | 103.222                                                                                                                                                                                             | 1.11E+06                                                                                                     | 151.934                                                                                                                 | 380.232                                                                                                                 | 14.1374                                                                                                                  | 21                                                                                | 3.2702                                                                                                                        |
|                                                                                                      |                                                                                                |                                                                                                                                                   |                                                                                                                                                                                                     |                                                                                                              |                                                                                                                         |                                                                                                                         |                                                                                                                          |                                                                                   |                                                                                                                               |
| Img No<br>9<br>Clana                                                                                 | Voxel<br>Count                                                                                 | Volume<br>(µm³)                                                                                                                                   | Mean<br>(ChS1-T3)                                                                                                                                                                                   | Sum<br>(ChS1-T3)                                                                                             | Centroid X                                                                                                              | Centroid Y                                                                                                              | Centroid<br>Z                                                                                                            | Min<br>(Ch2-T1)                                                                   | Mean<br>(Ch3-T2)                                                                                                              |
| Img No<br>9<br>Clone<br>cell                                                                         | Voxel<br>Count<br>2959                                                                         | <b>Volume</b><br>(μm <sup>3</sup> )<br>1197.78                                                                                                    | Mean<br>(ChS1-T3)<br>63.8516                                                                                                                                                                        | Sum<br>(ChS1-T3)<br>188937                                                                                   | <b>Centroid X</b><br>119.635                                                                                            | Centroid Y<br>395.084                                                                                                   | <b>Centroid</b><br><b>Z</b><br>19.2068                                                                                   | <b>Min</b><br>( <b>Ch2-T1</b> )<br>21                                             | Mean<br>(Ch3-T2)<br>44.2143                                                                                                   |
| Img No<br>9<br>Clone<br>cell<br>Wt 1                                                                 | <b>Voxel</b><br><b>Count</b><br>2959<br>8979                                                   | Volume<br>(μm <sup>3</sup> )<br>1197.78<br>3634.63                                                                                                | Mean<br>(ChS1-T3)<br>63.8516<br>82.0533                                                                                                                                                             | Sum<br>(ChS1-T3)<br>188937<br>736757                                                                         | <b>Centroid X</b><br>119.635<br>330.342                                                                                 | <b>Centroid Y</b><br>395.084<br>88.6629                                                                                 | Centroid<br>Z<br>19.2068<br>18.2284                                                                                      | Min<br>(Ch2-T1)<br>21<br>21                                                       | Mean<br>(Ch3-T2)<br>44.2143<br>1.20314                                                                                        |
| Img No<br>9<br>Clone<br>cell<br>Wt 1<br>Wt 2                                                         | <b>Voxel</b><br><b>Count</b><br>2959<br>8979<br>4541                                           | <b>Volume</b><br>(µm <sup>3</sup> )<br>1197.78<br>3634.63<br>1838.16                                                                              | Mean<br>(ChS1-T3)<br>63.8516<br>82.0533<br>63.9176                                                                                                                                                  | Sum<br>(ChS1-T3)<br>188937<br>736757<br>290250                                                               | <b>Centroid X</b><br>119.635<br>330.342<br>395.763                                                                      | <b>Centroid Y</b><br>395.084<br>88.6629<br>278.13                                                                       | Centroid<br>Z<br>19.2068<br>18.2284<br>19.1956                                                                           | Min<br>(Ch2-T1)<br>21<br>21<br>21                                                 | Mean<br>(Ch3-T2)<br>44.2143<br>1.20314<br>1.39242                                                                             |
| Img No<br>9<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 3                                                 | Voxel<br>Count<br>2959<br>8979<br>4541<br>9714                                                 | <b>Volume</b><br>(µm <sup>3</sup> )<br>1197.78<br>3634.63<br>1838.16<br>3932.15                                                                   | Mean<br>(ChS1-T3)<br>63.8516<br>82.0533<br>63.9176<br>113.691                                                                                                                                       | Sum<br>(ChS1-T3)<br>188937<br>736757<br>290250<br>1.10E+06                                                   | Centroid X<br>119.635<br>330.342<br>395.763<br>269.71                                                                   | Centroid Y<br>395.084<br>88.6629<br>278.13<br>200.867                                                                   | Centroid<br>19.2068<br>18.2284<br>19.1956<br>19.4888                                                                     | Min<br>(Ch2-T1)<br>21<br>21<br>21<br>21<br>21                                     | Mean<br>(Ch3-T2)<br>44.2143<br>1.20314<br>1.39242<br>1.31141                                                                  |
| Img No<br>9<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4                                         | Voxel<br>Count<br>2959<br>8979<br>4541<br>9714<br>7641                                         | <b>Volume</b><br>(μm <sup>3</sup> )<br>1197.78<br>3634.63<br>1838.16<br>3932.15<br>3093.01                                                        | Mean<br>(ChS1-T3)<br>63.8516<br>82.0533<br>63.9176<br>113.691<br>77.3464                                                                                                                            | Sum<br>(ChS1-T3)<br>188937<br>736757<br>290250<br>1.10E+06<br>591004                                         | Centroid X<br>119.635<br>330.342<br>395.763<br>269.71<br>340.994                                                        | Centroid Y<br>395.084<br>88.6629<br>278.13<br>200.867<br>344.606                                                        | <b>Centroid</b><br><b>1</b> 9.2068<br>18.2284<br>19.1956<br>19.4888<br>23.8799                                           | Min<br>(Ch2-T1)<br>21<br>21<br>21<br>21<br>21                                     | Mean<br>(Ch3-T2)<br>44.2143<br>1.20314<br>1.39242<br>1.31141<br>1.28452                                                       |
| Img No<br>9<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5                                 | <b>Voxel</b><br>Count<br>2959<br>8979<br>4541<br>9714<br>7641<br>4596                          | <b>Volume</b><br>(μm <sup>3</sup> )<br>1197.78<br>3634.63<br>1838.16<br>3932.15<br>3093.01<br>1860.42                                             | Mean<br>(ChS1-T3)           63.8516           82.0533           63.9176           113.691           77.3464           93.01                                                                         | Sum<br>(ChS1-T3)<br>188937<br>736757<br>290250<br>1.10E+06<br>591004<br>427474                               | Centroid X<br>119.635<br>330.342<br>395.763<br>269.71<br>340.994<br>356.205                                             | Centroid Y<br>395.084<br>88.6629<br>278.13<br>200.867<br>344.606<br>253.341                                             | Centroid<br>Z<br>19.2068<br>18.2284<br>19.1956<br>19.4888<br>23.8799<br>30.3734                                          | Min<br>(Ch2-T1)<br>21<br>21<br>21<br>21<br>21<br>21<br>21                         | Mean<br>(Ch3-T2)<br>44.2143<br>1.20314<br>1.39242<br>1.31141<br>1.28452<br>1.16819                                            |
| Img No<br>9<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6                         | Voxel<br>Count<br>2959<br>8979<br>4541<br>9714<br>7641<br>4596<br>6544                         | <b>Volume</b><br>(μm <sup>3</sup> )<br>1197.78<br>3634.63<br>1838.16<br>3932.15<br>3093.01<br>1860.42<br>2648.96                                  | Mean<br>(ChS1-T3)<br>63.8516<br>82.0533<br>63.9176<br>113.691<br>77.3464<br>93.01<br>97.3046                                                                                                        | Sum<br>(ChS1-T3)<br>188937<br>736757<br>290250<br>1.10E+06<br>591004<br>427474<br>636761                     | Centroid X<br>119.635<br>330.342<br>395.763<br>269.71<br>340.994<br>356.205<br>243.536                                  | Centroid Y<br>395.084<br>88.6629<br>278.13<br>200.867<br>344.606<br>253.341<br>485.942                                  | Centroid<br>Z<br>19.2068<br>18.2284<br>19.1956<br>19.4888<br>23.8799<br>30.3734<br>28.0254                               | Min<br>(Ch2-T1)<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21                   | Mean<br>(Ch3-T2)<br>44.2143<br>1.20314<br>1.39242<br>1.31141<br>1.28452<br>1.16819<br>1.24801                                 |
| Img No<br>9<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7                 | Voxel<br>Count<br>2959<br>8979<br>4541<br>9714<br>7641<br>4596<br>6544<br>7018                 | <b>Volume</b><br>(µm <sup>3</sup> )<br>1197.78<br>3634.63<br>1838.16<br>3932.15<br>3093.01<br>1860.42<br>2648.96<br>2840.83                       | Mean<br>(ChS1-T3)<br>63.8516<br>82.0533<br>63.9176<br>113.691<br>77.3464<br>93.01<br>97.3046<br>113.345                                                                                             | Sum<br>(ChS1-T3)<br>188937<br>736757<br>290250<br>1.10E+06<br>591004<br>427474<br>636761<br>795454           | Centroid X<br>119.635<br>330.342<br>395.763<br>269.71<br>340.994<br>356.205<br>243.536<br>322.159                       | Centroid Y<br>395.084<br>88.6629<br>278.13<br>200.867<br>344.606<br>253.341<br>485.942<br>155.405                       | Centroid<br>Z<br>19.2068<br>18.2284<br>19.1956<br>19.4888<br>23.8799<br>30.3734<br>28.0254<br>28.1386                    | Min<br>(Ch2-T1)<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21             | Mean<br>(Ch3-T2)<br>44.2143<br>1.20314<br>1.39242<br>1.31141<br>1.28452<br>1.16819<br>1.24801<br>1.2666                       |
| Img No<br>9<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8         | Voxel<br>Count<br>2959<br>8979<br>4541<br>9714<br>7641<br>4596<br>6544<br>7018<br>1278         | <b>Volume</b><br>(μm <sup>3</sup> )<br>1197.78<br>3634.63<br>1838.16<br>3932.15<br>3093.01<br>1860.42<br>2648.96<br>2840.83<br>517.324            | Mean<br>(ChS1-T3)           63.8516           82.0533           63.9176           113.691           77.3464           93.01           97.3046           113.345           81.9116                   | Sum<br>(ChS1-T3)<br>188937<br>290250<br>1.10E+06<br>591004<br>427474<br>636761<br>795454<br>104683           | Centroid X<br>119.635<br>330.342<br>395.763<br>269.71<br>340.994<br>356.205<br>243.536<br>322.159<br>421.169            | Centroid Y<br>395.084<br>88.6629<br>278.13<br>200.867<br>344.606<br>253.341<br>485.942<br>155.405<br>39.2199            | Centroid Z<br>19.2068<br>18.2284<br>19.1956<br>19.4888<br>23.8799<br>30.3734<br>28.0254<br>28.1386<br>9.53052            | Min<br>(Ch2-T1)<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21       | Mean<br>(Ch3-T2)<br>44.2143<br>1.20314<br>1.39242<br>1.31141<br>1.28452<br>1.16819<br>1.24801<br>1.2666<br>1.55634            |
| Img No<br>9<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Wt 9 | Voxel<br>Count<br>2959<br>8979<br>4541<br>9714<br>7641<br>4596<br>6544<br>7018<br>1278<br>8085 | <b>Volume</b><br>(μm <sup>3</sup> )<br>1197.78<br>3634.63<br>1838.16<br>3932.15<br>3093.01<br>1860.42<br>2648.96<br>2840.83<br>517.324<br>3272.74 | Mean<br>(ChS1-T3)           63.8516           82.0533           63.9176           113.691           77.3464           93.01           97.3046           113.345           81.9116           99.3396 | Sum<br>(ChS1-T3)<br>188937<br>290250<br>1.10E+06<br>591004<br>427474<br>636761<br>795454<br>104683<br>803161 | Centroid X<br>119.635<br>330.342<br>395.763<br>269.71<br>340.994<br>356.205<br>243.536<br>322.159<br>421.169<br>384.368 | Centroid Y<br>395.084<br>88.6629<br>278.13<br>200.867<br>344.606<br>253.341<br>485.942<br>155.405<br>39.2199<br>121.232 | Centroid Z<br>19.2068<br>18.2284<br>19.1956<br>19.4888<br>23.8799<br>30.3734<br>28.0254<br>28.1386<br>9.53052<br>8.57069 | Min<br>(Ch2-T1)<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21 | Mean<br>(Ch3-T2)<br>44.2143<br>1.20314<br>1.39242<br>1.31141<br>1.28452<br>1.16819<br>1.24801<br>1.2666<br>1.55634<br>2.02474 |

| Average inter | sity of Mi-2 localization in 10 non adjacent wild type cel | ls |
|---------------|------------------------------------------------------------|----|
| Img           |                                                            |    |
|               |                                                            |    |

| Ing  |         |
|------|---------|
| No 1 | 88.4987 |
| Img  |         |
| No 2 | 101.546 |
| Img  |         |
| No 3 | 77.6035 |
| Img  |         |
| No 4 | 78.9342 |
| Img  |         |
| No 5 | 81.099  |
| Img  |         |
| No 6 | 107.872 |
| Img  |         |
| No 7 | 71.141  |
| Img  |         |
| No 8 | 101.518 |
| Img  |         |
| No 9 | 90.3224 |
|      |         |

Intensity of Mi-2 localization in clone cell V average intensity of Mi-2 localization in 10 non adjacent wild type cells

| ing  |       |
|------|-------|
| No 1 | 1     |
| Img  |       |
| No 2 | 1.32  |
| Img  |       |
| No 3 | 0.639 |
| Img  |       |
| No 4 | 1.18  |
| Img  |       |
| No 5 | 1.08  |
| Img  |       |
| No 6 | 0.93  |
| Img  |       |
| No 7 | 0.82  |
| Img  |       |
| No 8 | 0.83  |
| Img  |       |
| No 9 | 0.7   |
|      |       |

| Average value of the ratio of the clone cell V wild type cells acquired from Img No 1 to Img No |          |
|-------------------------------------------------------------------------------------------------|----------|
| 10                                                                                              | 0.944333 |
| Std Dev of the average ratio of clone cell / wild type cell                                     | 0.22356  |

| B.4.(i). Measurements of nuclei volume of third instar salivary glands from wild type larvae |                           |              |            |         |            |              |  |
|----------------------------------------------------------------------------------------------|---------------------------|--------------|------------|---------|------------|--------------|--|
| Img No 1                                                                                     | Volume (µm <sup>3</sup> ) | Centroid X   | Centroid Y |         | Centroid Z | Min (Ch2-T2) |  |
| N 1                                                                                          | 7392.91                   | 184.623      |            | 62.4133 | 13.2324    | 21           |  |
| N 2                                                                                          | 6476.06                   | 163.611      |            | 266.174 | 14.2848    | 21           |  |
| N 3                                                                                          | 5903.28                   | 239.937      |            | 177.215 | 13.3151    | 21           |  |
| N 4                                                                                          | 5236.18                   | 324.832      |            | 376.693 | 10.6902    | 21           |  |
| N 5                                                                                          | 5079.12                   | 342.004      |            | 245.054 | 15.707     | 21           |  |
| N 6                                                                                          | 3192.39                   | 292.652      |            | 25.3614 | 19.7381    | 21           |  |
| N 7                                                                                          | 3516.63                   | 405.742      |            | 441.422 | 10.1335    | 21           |  |
| N 8                                                                                          | 5390.81                   | 112.81       |            | 201.254 | 21.928     | 21           |  |
| N 9                                                                                          | 2401.83                   | 307.634      |            | 119.887 | 21.0839    | 21           |  |
| N 10                                                                                         | 3188.95                   | 174.177      |            | 402.736 | 22.3257    | 21           |  |
| Img No 2                                                                                     | Volume (µm <sup>3</sup> ) | Centroid X   | Centroid Y |         | Centroid Z | Min (Ch2-T2) |  |
| N 1                                                                                          | 5315.32                   | 173.843      |            | 97.7574 | 9.35172    | 21           |  |
| N 2                                                                                          | 10406.4                   | 141.609      |            | 187.206 | 18.0304    | 21           |  |
| N 3                                                                                          | 5090.05                   | 272.01       |            | 250.705 | 9.0499     | 21           |  |
| N 4                                                                                          | 8198.45                   | 195.354      |            | 292.501 | 20.8716    | 21           |  |
| N 5                                                                                          | 8026.62                   | 307.656      |            | 400.657 | 15.0082    | 21           |  |
| N 6                                                                                          | 6941.37                   | 361.455      |            | 300.488 | 19.2854    | 21           |  |
| N 7                                                                                          | 7185.66                   | 279.054      |            | 162.921 | 18.6745    | 21           |  |
| N 8                                                                                          | 8201.89                   | 420.55       |            | 388.435 | 13.3555    | 21           |  |
| N 9                                                                                          | 7349.8                    | 426.915      |            | 489.146 | 15.3673    | 21           |  |
| N 10                                                                                         | 4896.16                   | 278.384      |            | 70.0888 | 26.1336    | 21           |  |
| Img No 3                                                                                     | Volume (µm³)              | Centroid X   | Centroid Y |         | Centroid Z | Min (Ch2-T2) |  |
| N 1                                                                                          | 5680.65                   | 348.15       |            | 315.296 | 24.0569    | 21           |  |
| N 2                                                                                          | 6327.5                    | 51.4387      |            | 279.789 | 21.3139    | 21           |  |
| N 3                                                                                          | 5811.19                   | 406.219      |            | 97.0093 | 30.7798    | 21           |  |
| N 4                                                                                          | 6141.91                   | 168.527      |            | 387.378 | 24.6353    | 21           |  |
| N 5                                                                                          | 5950.44                   | 101.468      |            | 476.957 | 39.4082    | 21           |  |
| N 6                                                                                          | 5189.63                   | 123.095      |            | 169.505 | 35.8173    | 21           |  |
| N 7                                                                                          | 3561.97                   | 491.827      |            | 311.984 | 48.9158    | 21           |  |
| N 8                                                                                          | 6347.54                   | 371.677      |            | 203.275 | 18.1129    | 21           |  |
| Img No 4                                                                                     | Volume (µm³)              | Centroid X   | Centroid Y |         | Centroid Z | Min (Ch2-T2) |  |
| N 1                                                                                          | 5466.92                   | 192.708      |            | 57.3339 | 16.0009    | 21           |  |
| N 2                                                                                          | 4704.09                   | 111.849      |            | 157.832 | 22.7933    | 21           |  |
| N 3                                                                                          | 5440.2                    | 204.311      |            | 193.536 | 12.411     | 21           |  |
| N 4                                                                                          | 6172.87                   | 154.848      |            | 295.398 | 14.6124    | 21           |  |
| N 5                                                                                          | 6384.17                   | 242.095      |            | 407.061 | 11.6266    | 21           |  |
| N 6                                                                                          | 5367.13                   | 298.77       |            | 297.066 | 13.7222    | 21           |  |
| N 7                                                                                          | 6701.93                   | 294.665      |            | 36.7634 | 13.0157    | 21           |  |
| N 8                                                                                          | 5646.64                   | 338.983      |            | 135.82  | 21.5394    | 21           |  |
| N 9                                                                                          | 4821.07                   | 353.759      |            | 220.725 | 20.8775    | 21           |  |
| N 10                                                                                         | 1935.11                   | 137.172      |            | 400.752 | 24.9955    | 21           |  |
| Img No 5                                                                                     | Volume (µm <sup>3</sup> ) | Min (Ch2-T2) | Centroid X |         | Centroid Y | Centroid Z   |  |
| N 1                                                                                          | 6934.89                   | 21           |            | 253.128 | 111.448    | 14.7375      |  |

#### B.4. Study of the phenotype imparted by NOS in a Mi-2 down regulated background

| N 2      | 6394.09                   | 21           |            | 362.816 | 99.4427    | 14.6919    |
|----------|---------------------------|--------------|------------|---------|------------|------------|
| N 3      | 7140.12                   | 21           |            | 198.271 | 215.018    | 16.9155    |
| N 4      | 3754.65                   | 21           |            | 188.006 | 421.383    | 12.774     |
| N 5      | 4260.43                   | 21           |            | 251.233 | 296.355    | 10.9383    |
| N 6      | 4223.39                   | 21           |            | 133.607 | 346.366    | 14.0396    |
| N 7      | 4740.92                   | 21           |            | 437.791 | 157.504    | 21.9969    |
| N 8      | 2815.12                   | 21           |            | 48.8673 | 382.974    | 21.0347    |
| N 9      | 4601.27                   | 21           |            | 219.32  | 75.9959    | 33.7449    |
| N 10     | 1784.32                   | 21           |            | 141.027 | 178.63     | 31.9435    |
| Img No 6 | Volume (µm <sup>3</sup> ) | Min (Ch2-T2) | Centroid X |         | Centroid Y | Centroid Z |
| N 1      | 4310.02                   | 21           |            | 133.526 | 335.599    | 10.8968    |
| N 2      | 4395.63                   | 21           |            | 156.845 | 145.17     | 7.59955    |
| N 3      | 3669.03                   | 21           |            | 27.9704 | 99.8825    | 9.16119    |
| N 4      | 3828.52                   | 21           |            | 381.691 | 242.988    | 7.59817    |
| N 5      | 4054.6                    | 21           |            | 243.573 | 386.428    | 12.3903    |
| N 6      | 4311.44                   | 21           |            | 133.202 | 335.269    | 10.9962    |
| N 7      | 3995.5                    | 21           |            | 148.984 | 53.1881    | 14.3316    |
| N 8      | 2774.44                   | 21           |            | 472.479 | 213.41     | 11.9706    |
| N 9      | 2205.31                   | 21           |            | 271.298 | 161.912    | 10.8811    |
| N 10     | 2566.58                   | 21           |            | 193.089 | 257.614    | 7.62077    |
| Img No 7 | Volume (µm³)              | Min (Ch2-T2) | Centroid X |         | Centroid Y | Centroid Z |
| N 1      | 7384.62                   | 21           |            | 143.994 | 395.659    | 12.1537    |
| N 2      | 7216.63                   | 21           |            | 155.85  | 247.465    | 13.3592    |
| N 3      | 6974.76                   | 21           |            | 331.468 | 313.02     | 10.6789    |
| N 4      | 7016.26                   | 21           |            | 281.637 | 462.83     | 14.2638    |
| N 5      | 7164.81                   | 21           |            | 234.994 | 107.399    | 13.4492    |
| N 6      | 7754.6                    | 21           |            | 338.839 | 187.201    | 17.9582    |
| N 7      | 5792.37                   | 21           |            | 477.918 | 289.286    | 15.0953    |
| N 8      | 5652.51                   | 21           |            | 174.451 | 458.012    | 35.3182    |
| N 9      | 5324.63                   | 21           |            | 211.633 | 206.052    | 35.0866    |
| N 10     | 5206.03                   | 21           |            | 59.2358 | 68.0933    | 34.1458    |
| Img No 8 | Volume (µm <sup>3</sup> ) | Min (Ch2-T2) | Centroid X |         | Centroid Y | Centroid Z |
| N 1      | 6789.17                   | 21           |            | 227.709 | 429.976    | 27.9552    |
| N 2      | 4931.78                   | 21           |            | 88.9654 | 345.386    | 16.1111    |
| N 3      | 6709.42                   | 21           |            | 300.888 | 156.261    | 14.2303    |
| N 4      | 3670.65                   | 21           |            | 131.348 | 169.486    | 31.2569    |
| N 5      | 5533.1                    | 21           |            | 460.275 | 236.129    | 15.2697    |
| N 6      | 6973.75                   | 21           |            | 348.75  | 351.129    | 15.5739    |
| N 7      | 4457.97                   | 21           |            | 218.888 | 266.487    | 14.2436    |
| N 8      | 3713.76                   | 21           |            | 131.442 | 169.522    | 31.3414    |
| N 9      | 5701.49                   | 21           |            | 460.436 | 236.172    | 15.2821    |
| N 10     | 5126.69                   | 21           |            | 89.1217 | 345.293    | 15.7753    |
| Img No 9 | Volume (µm³)              | Min (Ch2-T2) | Centroid X |         | Centroid Y | Centroid Z |
| N 1      | 4568.07                   | 21           |            | 382.479 | 343.711    | 9.46074    |
| N 2      | 4191.01                   | 21           |            | 220.526 | 241.191    | 9.95398    |
| N 3      | 3746.75                   | 21           |            | 292.332 | 100.682    | 18.6231    |
| N 4      | 4443.6                    | 21           |            | 286.104 | 329.871    | 13.1107    |
| N 5      | 3856.86                   | 21           |            | 412.016 | 480.994    | 13.0535    |
| N 6      | 3920.41                   | 21           |            | 338.195 | 438.299    | 14.2308    |
| N 7      | 3085.73                   | 21           |            | 132.521 | 218.755    | 15.9349    |

| N 8  | 4081.31 | 21 | 130.616 | 55.4287 | 7.79494 |
|------|---------|----|---------|---------|---------|
| N 9  | 4252.94 | 21 | 196.13  | 141.436 | 8.15095 |
| N 10 | 2705.02 | 21 | 475.44  | 378.325 | 18.3009 |
|      |         |    |         |         |         |

| Average value of the volume of the nuclei                       | 5159.21225 |
|-----------------------------------------------------------------|------------|
| Standard deviation of the average value of the volume of nuclei | 1697.29525 |

### **B.4.** (ii). Measurement of nuclei volume of third instars salivary glands from larvae where expression of *NOS2* was driven by c147-GAL4.

| Img No 1 | Volume (µm³) | Min (Ch2-T1) | Centroid X | Centroid | Y Ce    | ntroid Z |
|----------|--------------|--------------|------------|----------|---------|----------|
| N 1      | 1522.55      |              | 41         | 244.779  | 213.433 | 43.6247  |
| N 2      | 1329.46      |              | 41         | 185.191  | 152.753 | 40.1936  |
| N 3      | 1711.61      |              | 41         | 137.567  | 173.921 | 43.6768  |
| N 4      | 1984.92      |              | 41         | 213.299  | 267.936 | 45.2282  |
| N 5      | 1834.97      |              | 41         | 137.659  | 174.177 | 44.1538  |
| N 6      | 2031.18      |              | 41         | 263.421  | 167.165 | 42.8309  |
| N 7      | 1560.76      |              | 41         | 143.657  | 239.146 | 45.0119  |
| N 8      | 1800.33      |              | 41         | 36.1984  | 324.419 | 48.094   |
| N 9      | 3553.72      |              | 41         | 46.8244  | 203.563 | 42.4571  |
| N 10     | 3336.5       |              | 41         | 63.3762  | 163.446 | 37.3709  |

| Img No 2 | Volume (µm <sup>3</sup> ) | Min (Ch2-T1) | Centroid X | Centroid | Y       | Centroid Z |
|----------|---------------------------|--------------|------------|----------|---------|------------|
| N 1      | 1067.99                   |              | 59         | 192.075  | 298.823 | 14.6717    |
| N 2      | 2325.94                   |              | 59         | 23.3662  | 409.054 | 14.5086    |
| N 3      | 2222.92                   |              | 59         | 52.8034  | 341.861 | 15.305     |
| N 4      | 2009.95                   |              | 59         | 326.998  | 220.52  | 22.4067    |
| N 5      | 2378.24                   |              | 59         | 111.542  | 294.466 | 14.5671    |
| N 6      | 1765.46                   |              | 59         | 295.851  | 180.512 | 35.9847    |
| N 7      | 2014.86                   |              | 59         | 144.031  | 247.78  | 23.286     |
| N 8      | 1468.46                   |              | 59         | 275.005  | 319.513 | 15.7987    |
| N 9      | 1384.66                   |              | 59         | 82.9254  | 389.643 | 17.7272    |
| N 10     | 2225.6                    |              | 59         | 239.174  | 346.413 | 31.4921    |

| Img No 3 | Volume (µm³) | Min (Ch2-T1) | Centroid X | Centroid Y | Centroid Z |
|----------|--------------|--------------|------------|------------|------------|
| N 1      | 2326.17      | 54           | 168.53     | 317.908    | 21.0677    |
| N 2      | 2410.86      | 54           | 231.58     | 277.534    | 25.0113    |
| N 3      | 1749.37      | 54           | 366.311    | 62.1473    | 19.4075    |
| N 4      | 2615.57      | 54           | 241.401    | 187.072    | 25.3392    |
| N 5      | 1981.79      | 54           | 365.282    | 107.636    | 26.5575    |
| N 6      | 2400.36      | 54           | 192.328    | 252.292    | 30.8737    |
| N 7      | 2082.35      | 54           | 398.653    | 30.6933    | 32.0005    |
| N 8      | 1817.76      | 54           | 310.039    | 127.23     | 21.1892    |
| N 9      | 2365.28      | 54           | 291.94     | 95.8109    | 21.0841    |

316.614

54

N 10

2779.82

| Img No 4 | Volume (µm³) | Centroid X | Centroid Y | Centroid Z | Min (Ch2-T2) |
|----------|--------------|------------|------------|------------|--------------|
| N 1      | 2141.55      | 221.835    | 231.965    | 10.3341    | 24           |
| N 2      | 1504.41      | 265.608    | 288.811    | 9.46522    | 24           |
| N 3      | 1510.48      | 310.009    | 398.346    | 10.8223    | 24           |
| N 4      | 848.444      | 281.599    | 355.814    | 10.1109    | 24           |
| N 5      | 1510.68      | 309.934    | 398.341    | 10.8624    | 24           |
| N 6      | 1223.48      | 333.68     | 336.51     | 11.736     | 24           |
| N 7      | 1778.86      | 341.873    | 426.232    | 24.8752    | 24           |
| N 8      | 1632.93      | 281.773    | 398.592    | 24.5212    | 24           |

25.435

170.353

| N 9                                                                                                                                                                                                                                                                                                     | 987.287                                                                                                                                                                                                                                                                                                                                                       | 281.881                                                                                                                                                                                                                                           | 3                                             | 356.435                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.12567                                                                                                                                                                                                                                      | 24                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| N 10                                                                                                                                                                                                                                                                                                    | 1068.65                                                                                                                                                                                                                                                                                                                                                       | 211.889                                                                                                                                                                                                                                           | 3                                             | 805.849                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.23731                                                                                                                                                                                                                                      | 24                                                                                         |
|                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                   |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                              |                                                                                            |
| Img No 5                                                                                                                                                                                                                                                                                                | Volume (µm <sup>3</sup> )                                                                                                                                                                                                                                                                                                                                     | Centroid X                                                                                                                                                                                                                                        | Centroid Y                                    | Centroid Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                              | Min (Ch2-T2)                                                                               |
| N 1                                                                                                                                                                                                                                                                                                     | 2071.32                                                                                                                                                                                                                                                                                                                                                       | 167.77                                                                                                                                                                                                                                            | 1                                             | 16.476                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13.792                                                                                                                                                                                                                                       | 21                                                                                         |
| N 2                                                                                                                                                                                                                                                                                                     | 1778.25                                                                                                                                                                                                                                                                                                                                                       | 106.728                                                                                                                                                                                                                                           |                                               | 191.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15.4284                                                                                                                                                                                                                                      | 21                                                                                         |
| N 3                                                                                                                                                                                                                                                                                                     | 1846.26                                                                                                                                                                                                                                                                                                                                                       | 148.98                                                                                                                                                                                                                                            | 1                                             | 99.722                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20.0926                                                                                                                                                                                                                                      | 21                                                                                         |
| N 4                                                                                                                                                                                                                                                                                                     | 1640.01                                                                                                                                                                                                                                                                                                                                                       | 300.54                                                                                                                                                                                                                                            | 2                                             | 252.859                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14.25                                                                                                                                                                                                                                        | 21                                                                                         |
| N 5                                                                                                                                                                                                                                                                                                     | 1686.97                                                                                                                                                                                                                                                                                                                                                       | 370.935                                                                                                                                                                                                                                           |                                               | 343.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.81188                                                                                                                                                                                                                                      | 21                                                                                         |
| N 6                                                                                                                                                                                                                                                                                                     | 1596.9                                                                                                                                                                                                                                                                                                                                                        | 377.391                                                                                                                                                                                                                                           | 2                                             | 241.794                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.949                                                                                                                                                                                                                                       | 21                                                                                         |
| N 7                                                                                                                                                                                                                                                                                                     | 1352                                                                                                                                                                                                                                                                                                                                                          | 132.154                                                                                                                                                                                                                                           | 1                                             | 45.402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.45404                                                                                                                                                                                                                                      | 21                                                                                         |
| N 8                                                                                                                                                                                                                                                                                                     | 1081.2                                                                                                                                                                                                                                                                                                                                                        | 87.977                                                                                                                                                                                                                                            | 1                                             | 59.319                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.66323                                                                                                                                                                                                                                      | 21                                                                                         |
| N 9                                                                                                                                                                                                                                                                                                     | 711.826                                                                                                                                                                                                                                                                                                                                                       | 129.487                                                                                                                                                                                                                                           | 1                                             | 73.868                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 33.9949                                                                                                                                                                                                                                      | 21                                                                                         |
| N 10                                                                                                                                                                                                                                                                                                    | 1702.35                                                                                                                                                                                                                                                                                                                                                       | 370.822                                                                                                                                                                                                                                           |                                               | 343.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.66817                                                                                                                                                                                                                                      | 21                                                                                         |
|                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                   |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                              |                                                                                            |
| Img No 6                                                                                                                                                                                                                                                                                                | Volume (µm <sup>3</sup> )                                                                                                                                                                                                                                                                                                                                     | Centroid X                                                                                                                                                                                                                                        | Centroid Y                                    | Centroid Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                              | Min (Ch2-T2)                                                                               |
| N 1                                                                                                                                                                                                                                                                                                     | 1797.68                                                                                                                                                                                                                                                                                                                                                       | 251.962                                                                                                                                                                                                                                           | 2                                             | 286.808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11.8194                                                                                                                                                                                                                                      | 27                                                                                         |
| N 2                                                                                                                                                                                                                                                                                                     | 1331.56                                                                                                                                                                                                                                                                                                                                                       | 297.985                                                                                                                                                                                                                                           | 2                                             | 296.409                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14.3535                                                                                                                                                                                                                                      | 27                                                                                         |
| N 3                                                                                                                                                                                                                                                                                                     | 1258.7                                                                                                                                                                                                                                                                                                                                                        | 244.564                                                                                                                                                                                                                                           | 2                                             | 223.723                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.72053                                                                                                                                                                                                                                      | 27                                                                                         |
| N 4                                                                                                                                                                                                                                                                                                     | 1337.63                                                                                                                                                                                                                                                                                                                                                       | 289.835                                                                                                                                                                                                                                           | 2                                             | 251.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.45877                                                                                                                                                                                                                                      | 27                                                                                         |
| N 5                                                                                                                                                                                                                                                                                                     | 1469.19                                                                                                                                                                                                                                                                                                                                                       | 298.176                                                                                                                                                                                                                                           | 2                                             | 295.931                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14.7169                                                                                                                                                                                                                                      | 27                                                                                         |
| N 6                                                                                                                                                                                                                                                                                                     | 1540.64                                                                                                                                                                                                                                                                                                                                                       | 379.404                                                                                                                                                                                                                                           | 3                                             | 353.367                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.16014                                                                                                                                                                                                                                      | 27                                                                                         |
| N 7                                                                                                                                                                                                                                                                                                     | 1120.26                                                                                                                                                                                                                                                                                                                                                       | 85.6596                                                                                                                                                                                                                                           | 8                                             | 37.1705                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24.0573                                                                                                                                                                                                                                      | 27                                                                                         |
| N 8                                                                                                                                                                                                                                                                                                     | 1407.26                                                                                                                                                                                                                                                                                                                                                       | 209.729                                                                                                                                                                                                                                           |                                               | 244.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.97929                                                                                                                                                                                                                                      | 27                                                                                         |
| N 9                                                                                                                                                                                                                                                                                                     | 1165.6                                                                                                                                                                                                                                                                                                                                                        | 244.468                                                                                                                                                                                                                                           | 2                                             | 223.828                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.3768                                                                                                                                                                                                                                       | 27                                                                                         |
| N 10                                                                                                                                                                                                                                                                                                    | 931.426                                                                                                                                                                                                                                                                                                                                                       | 333.076                                                                                                                                                                                                                                           | 2                                             | 261.478                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.60083                                                                                                                                                                                                                                      | 27                                                                                         |
|                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                   |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                              |                                                                                            |
|                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                   |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                              |                                                                                            |
| Img No 8                                                                                                                                                                                                                                                                                                | Volume (µm³)                                                                                                                                                                                                                                                                                                                                                  | Centroid X                                                                                                                                                                                                                                        | Centroid Y                                    | Centroid Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                              | Min (Ch2-T2)                                                                               |
| Img No 8<br>N 1                                                                                                                                                                                                                                                                                         | <b>Volume (μm³)</b><br>1586.58                                                                                                                                                                                                                                                                                                                                | Centroid X<br>180.663                                                                                                                                                                                                                             | Centroid Y                                    | Centroid Z<br>263.931                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 29.8227                                                                                                                                                                                                                                      | <b>Min (Ch2-T2)</b><br>27                                                                  |
| Img No 8<br>N 1<br>N 2                                                                                                                                                                                                                                                                                  | <b>Volume (μm<sup>3</sup>)</b><br>1586.58<br>1047.4                                                                                                                                                                                                                                                                                                           | <b>Centroid X</b><br>180.663<br>298.323                                                                                                                                                                                                           | Centroid Y                                    | Centroid Z<br>263.931<br>440.281                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 29.8227<br>24.8696                                                                                                                                                                                                                           | <b>Min (Ch2-T2)</b><br>27<br>27                                                            |
| Img No 8<br>N 1<br>N 2<br>N 3                                                                                                                                                                                                                                                                           | Volume (μm <sup>3</sup> )<br>1586.58<br>1047.4<br>1309.3                                                                                                                                                                                                                                                                                                      | Centroid X<br>180.663<br>298.323<br>251.569                                                                                                                                                                                                       | Centroid Y                                    | Centroid Z<br>263.931<br>40.281<br>27.378                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 29.8227<br>24.8696<br>27.5137                                                                                                                                                                                                                | Min (Ch2-T2) 27 27 27 27                                                                   |
| Img No 8<br>N 1<br>N 2<br>N 3<br>N 4                                                                                                                                                                                                                                                                    | Volume (µm³)<br>1586.58<br>1047.4<br>1309.3<br>1672.19                                                                                                                                                                                                                                                                                                        | Centroid X<br>180.663<br>298.323<br>251.569<br>308.502                                                                                                                                                                                            | Centroid Y<br>2<br>1<br>1<br>2                | Centroid Z<br>263.931<br>40.281<br>227.378<br>19.2699                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 29.8227<br>24.8696<br>27.5137<br>21.6245                                                                                                                                                                                                     | Min (Ch2-T2)<br>27<br>27<br>27<br>27<br>27                                                 |
| Img No 8<br>N 1<br>N 2<br>N 3<br>N 4<br>N 5                                                                                                                                                                                                                                                             | Volume (μm <sup>3</sup> )<br>1586.58<br>1047.4<br>1309.3<br>1672.19<br>1109.74                                                                                                                                                                                                                                                                                | Centroid X<br>180.663<br>298.323<br>251.569<br>308.502<br>345.775                                                                                                                                                                                 | Centroid Y                                    | Centroid Z<br>263.931<br>440.281<br>127.378<br>19.2699<br>20.7137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 29.8227<br>24.8696<br>27.5137<br>21.6245<br>9.09684                                                                                                                                                                                          | Min (Ch2-T2) 27 27 27 27 27 27 27 27 27                                                    |
| Img No 8<br>N 1<br>N 2<br>N 3<br>N 4<br>N 5<br>N 6                                                                                                                                                                                                                                                      | Volume (μm <sup>3</sup> )<br>1586.58<br>1047.4<br>1309.3<br>1672.19<br>1109.74<br>1214.58                                                                                                                                                                                                                                                                     | Centroid X<br>180.663<br>298.323<br>251.569<br>308.502<br>345.775<br>390.733                                                                                                                                                                      | Centroid Y<br>2<br>1<br>2<br>2<br>2<br>2<br>2 | Centroid Z<br>263.931<br>440.281<br>227.378<br>49.2699<br>20.7137<br>26.1601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 29.8227<br>24.8696<br>27.5137<br>21.6245<br>9.09684<br>22.3088                                                                                                                                                                               | Min (Ch2-T2) 27 27 27 27 27 27 27 27 27 27 27 27 27                                        |
| Img No 8<br>N 1<br>N 2<br>N 3<br>N 4<br>N 5<br>N 6<br>N 7                                                                                                                                                                                                                                               | Volume (µm³)<br>1586.58<br>1047.4<br>1309.3<br>1672.19<br>1109.74<br>1214.58<br>1568.37                                                                                                                                                                                                                                                                       | Centroid X<br>180.663<br>298.323<br>251.569<br>308.502<br>345.775<br>390.733<br>180.853                                                                                                                                                           | Centroid Y                                    | Centroid Z<br>263.931<br>440.281<br>427.378<br>49.2699<br>20.7137<br>26.1601<br>263.929                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 29.8227<br>24.8696<br>27.5137<br>21.6245<br>9.09684<br>22.3088<br>29.8022                                                                                                                                                                    | Min (Ch2-T2) 27 27 27 27 27 27 27 27 27 27 27 27 27                                        |
| Img No 8<br>N 1<br>N 2<br>N 3<br>N 4<br>N 5<br>N 6<br>N 7<br>N 8                                                                                                                                                                                                                                        | Volume (µm³)<br>1586.58<br>1047.4<br>1309.3<br>1672.19<br>1109.74<br>1214.58<br>1568.37<br>1009.55                                                                                                                                                                                                                                                            | Centroid X<br>180.663<br>298.323<br>251.569<br>308.502<br>345.775<br>390.733<br>180.853<br>133.978                                                                                                                                                | Centroid Y                                    | Centroid Z<br>263.931<br>440.281<br>9.2699<br>20.7137<br>26.1601<br>263.929<br>556.476                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 29.8227<br>24.8696<br>27.5137<br>21.6245<br>9.09684<br>22.3088<br>29.8022<br>17.8998                                                                                                                                                         | Min (Ch2-T2)<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27                   |
| Img No 8<br>N 1<br>N 2<br>N 3<br>N 4<br>N 5<br>N 6<br>N 7<br>N 8<br>N 9                                                                                                                                                                                                                                 | Volume (µm³)<br>1586.58<br>1047.4<br>1309.3<br>1672.19<br>1109.74<br>1214.58<br>1568.37<br>1009.55<br>1095.57                                                                                                                                                                                                                                                 | Centroid X<br>180.663<br>298.323<br>251.569<br>308.502<br>345.775<br>390.733<br>180.853<br>133.978<br>347.992                                                                                                                                     | Centroid Y                                    | Centroid Z<br>263.931<br>440.281<br>227.378<br>49.2699<br>20.7137<br>26.1601<br>263.929<br>156.476<br>99.0028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 29.8227<br>24.8696<br>27.5137<br>21.6245<br>9.09684<br>22.3088<br>29.8022<br>17.8998<br>13.9516                                                                                                                                              | Min (Ch2-T2) 27 27 27 27 27 27 27 27 27 27 27 27 27                                        |
| Img No 8<br>N 1<br>N 2<br>N 3<br>N 4<br>N 5<br>N 6<br>N 7<br>N 8<br>N 9<br>N 10                                                                                                                                                                                                                         | Volume (µm³)<br>1586.58<br>1047.4<br>1309.3<br>1672.19<br>1109.74<br>1214.58<br>1568.37<br>1009.55<br>1095.57<br>749.472                                                                                                                                                                                                                                      | Centroid X<br>180.663<br>298.323<br>251.569<br>308.502<br>345.775<br>390.733<br>180.853<br>133.978<br>347.992<br>253.244                                                                                                                          | Centroid Y                                    | Centroid Z<br>263.931<br>40.281<br>40.281<br>49.2699<br>20.7137<br>26.1601<br>263.929<br>456.476<br>99.0028<br>241.904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 29.8227<br>24.8696<br>27.5137<br>21.6245<br>9.09684<br>22.3088<br>29.8022<br>17.8998<br>13.9516<br>18.2039                                                                                                                                   | Min (Ch2-T2) 27 27 27 27 27 27 27 27 27 27 27 27 27                                        |
| Img No 8<br>N 1<br>N 2<br>N 3<br>N 4<br>N 5<br>N 6<br>N 7<br>N 8<br>N 9<br>N 10                                                                                                                                                                                                                         | Volume (µm³)<br>1586.58<br>1047.4<br>1309.3<br>1672.19<br>1109.74<br>1214.58<br>1568.37<br>1009.55<br>1095.57<br>749.472                                                                                                                                                                                                                                      | Centroid X<br>180.663<br>298.323<br>251.569<br>308.502<br>345.775<br>390.733<br>180.853<br>133.978<br>347.992<br>253.244                                                                                                                          | Centroid Y                                    | Centroid Z<br>263.931<br>40.281<br>9.2699<br>20.7137<br>26.1601<br>263.929<br>156.476<br>99.0028<br>241.904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 29.8227<br>24.8696<br>27.5137<br>21.6245<br>9.09684<br>22.3088<br>29.8022<br>17.8998<br>13.9516<br>18.2039                                                                                                                                   | Min (Ch2-T2) 27 27 27 27 27 27 27 27 27 27 27 27 27                                        |
| Img No 8<br>N 1<br>N 2<br>N 3<br>N 4<br>N 5<br>N 6<br>N 7<br>N 8<br>N 9<br>N 10<br>Img No 10                                                                                                                                                                                                            | Volume (µm³)<br>1586.58<br>1047.4<br>1309.3<br>1672.19<br>1109.74<br>1214.58<br>1568.37<br>1009.55<br>1095.57<br>749.472<br>Volume (µm³)                                                                                                                                                                                                                      | Centroid X<br>180.663<br>298.323<br>251.569<br>308.502<br>345.775<br>390.733<br>180.853<br>133.978<br>347.992<br>253.244<br>Centroid X                                                                                                            | Centroid Y                                    | Centroid Z<br>263.931<br>40.281<br>9.2699<br>20.7137<br>26.1601<br>9.26392<br>9.56.476<br>9.90028<br>241.904<br>Centroid Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 29.8227<br>24.8696<br>27.5137<br>21.6245<br>9.09684<br>22.3088<br>29.8022<br>17.8998<br>13.9516<br>18.2039                                                                                                                                   | Min (Ch2-T2)<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27 |
| Img No 8<br>N 1<br>N 2<br>N 3<br>N 4<br>N 5<br>N 6<br>N 7<br>N 8<br>N 9<br>N 10<br>Img No 10<br>N 1                                                                                                                                                                                                     | Volume (µm³)<br>1586.58<br>1047.4<br>1309.3<br>1672.19<br>1109.74<br>1214.58<br>1568.37<br>1009.55<br>1095.57<br>749.472<br>Volume (µm³)<br>864.23                                                                                                                                                                                                            | Centroid X<br>180.663<br>298.323<br>251.569<br>308.502<br>345.775<br>390.733<br>180.853<br>133.978<br>347.992<br>253.244<br>Centroid X<br>247.53                                                                                                  | Centroid Y                                    | Centroid Z<br>263.931<br>40.281<br>127.378<br>49.2699<br>20.7137<br>26.1601<br>263.929<br>456.476<br>99.0028<br>241.904<br><b>Centroid Z</b><br>99.9035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 29.8227<br>24.8696<br>27.5137<br>21.6245<br>9.09684<br>22.3088<br>29.8022<br>17.8998<br>13.9516<br>18.2039                                                                                                                                   | Min (Ch2-T2) 27 27 27 27 27 27 27 27 27 27 27 27 27                                        |
| Img No 8<br>N 1<br>N 2<br>N 3<br>N 4<br>N 5<br>N 6<br>N 7<br>N 8<br>N 9<br>N 10<br>Img No 10<br>N 1<br>N 2                                                                                                                                                                                              | Volume (µm³)<br>1586.58<br>1047.4<br>1309.3<br>1672.19<br>1109.74<br>1214.58<br>1568.37<br>1009.55<br>1095.57<br>749.472<br>Volume (µm³)<br>864.23<br>1303.43                                                                                                                                                                                                 | Centroid X<br>180.663<br>298.323<br>251.569<br>308.502<br>345.775<br>390.733<br>180.853<br>133.978<br>347.992<br>253.244<br>Centroid X<br>247.53<br>277.212                                                                                       | Centroid Y                                    | Centroid Z<br>263.931<br>440.281<br>427.378<br>49.2699<br>20.7137<br>26.1601<br>263.929<br>456.476<br>99.0028<br>241.904<br><b>Centroid Z</b><br>99.9035<br>81.476                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 29.8227<br>24.8696<br>27.5137<br>21.6245<br>9.09684<br>22.3088<br>29.8022<br>17.8998<br>13.9516<br>18.2039<br>10.2581<br>10.5137                                                                                                             | Min (Ch2-T2) 27 27 27 27 27 27 27 27 27 27 27 27 27                                        |
| Img No 8<br>N 1<br>N 2<br>N 3<br>N 4<br>N 5<br>N 6<br>N 7<br>N 8<br>N 9<br>N 10<br>Img No 10<br>N 1<br>N 2<br>N 3                                                                                                                                                                                       | Volume (µm³)<br>1586.58<br>1047.4<br>1309.3<br>1672.19<br>1109.74<br>1214.58<br>1568.37<br>1009.55<br>1095.57<br>749.472<br>Volume (µm³)<br>864.23<br>1303.43<br>1219.23                                                                                                                                                                                      | Centroid X<br>180.663<br>298.323<br>251.569<br>308.502<br>345.775<br>390.733<br>180.853<br>133.978<br>347.992<br>253.244<br>Centroid X<br>247.53<br>277.212<br>296.33                                                                             | Centroid Y                                    | Centroid Z<br>263.931<br>40.281<br>27.378<br>49.2699<br>20.7137<br>26.1601<br>263.929<br>456.476<br>99.0028<br>241.904<br>Centroid Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 29.8227<br>24.8696<br>27.5137<br>21.6245<br>9.09684<br>22.3088<br>29.8022<br>17.8998<br>13.9516<br>18.2039<br>10.2581<br>10.5137<br>11.3315                                                                                                  | Min (Ch2-T2) 27 27 27 27 27 27 27 27 27 27 27 27 27                                        |
| Img No 8<br>N 1<br>N 2<br>N 3<br>N 4<br>N 5<br>N 6<br>N 7<br>N 8<br>N 9<br>N 10<br>Img No 10<br>N 1<br>N 2<br>N 3<br>N 4                                                                                                                                                                                | Volume (µm³)<br>1586.58<br>1047.4<br>1309.3<br>1672.19<br>1109.74<br>1214.58<br>1568.37<br>1009.55<br>1095.57<br>749.472<br>Volume (µm³)<br>864.23<br>1303.43<br>1219.23<br>738.34                                                                                                                                                                            | Centroid X<br>180.663<br>298.323<br>251.569<br>308.502<br>345.775<br>390.733<br>180.853<br>133.978<br>347.992<br>253.244<br>Centroid X<br>247.53<br>277.212<br>296.33<br>215.772                                                                  | Centroid Y                                    | Centroid Z 263.931 440.281 427.378 49.2699 20.7137 26.1601 263.929 456.476 99.0028 241.904 Centroid Z 99.9035 81.476 228.315 26.2484                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 29.8227<br>24.8696<br>27.5137<br>21.6245<br>9.09684<br>22.3088<br>29.8022<br>17.8998<br>13.9516<br>18.2039<br>10.2581<br>10.5137<br>11.3315<br>8.99644                                                                                       | Min (Ch2-T2) 27 27 27 27 27 27 27 27 27 27 27 27 27                                        |
| Img No 8<br>N 1<br>N 2<br>N 3<br>N 4<br>N 5<br>N 6<br>N 7<br>N 8<br>N 9<br>N 10<br>Img No 10<br>N 1<br>N 2<br>N 3<br>N 4<br>N 5                                                                                                                                                                         | Volume (µm³)<br>1586.58<br>1047.4<br>1309.3<br>1672.19<br>1109.74<br>1214.58<br>1568.37<br>1009.55<br>1095.57<br>749.472<br>Volume (µm³)<br>864.23<br>1303.43<br>1219.23<br>738.34<br>752.913                                                                                                                                                                 | Centroid X<br>180.663<br>298.323<br>251.569<br>308.502<br>345.775<br>390.733<br>180.853<br>133.978<br>347.992<br>253.244<br>Centroid X<br>247.53<br>277.212<br>296.33<br>215.772<br>207.24                                                        | Centroid Y                                    | Centroid Z 263.931 40.281 40.281 40.281 40.2699 40.7137 40.1601 40.3929 40.6101 40.3929 456.476 41.904 Centroid Z 41.904 Centroid Z 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41.904 41. | 29.8227<br>24.8696<br>27.5137<br>21.6245<br>9.09684<br>22.3088<br>29.8022<br>17.8998<br>13.9516<br>18.2039<br>10.2581<br>10.5137<br>11.3315<br>8.99644<br>7.94462                                                                            | Min (Ch2-T2) 27 27 27 27 27 27 27 27 27 27 27 27 27                                        |
| Img No 8<br>N 1<br>N 2<br>N 3<br>N 4<br>N 5<br>N 6<br>N 7<br>N 8<br>N 9<br>N 10<br>Img No 10<br>N 1<br>N 2<br>N 3<br>N 4<br>N 5<br>N 6                                                                                                                                                                  | Volume (µm³)<br>1586.58<br>1047.4<br>1309.3<br>1672.19<br>1109.74<br>1214.58<br>1568.37<br>1009.55<br>1095.57<br>749.472<br>Volume (µm³)<br>864.23<br>1303.43<br>1219.23<br>738.34<br>752.913<br>807.155                                                                                                                                                      | Centroid X<br>180.663<br>298.323<br>251.569<br>308.502<br>345.775<br>390.733<br>180.853<br>133.978<br>347.992<br>253.244<br>Centroid X<br>247.53<br>277.212<br>296.33<br>215.772<br>207.24<br>298.345                                             | Centroid Y                                    | Centroid Z 263.931 440.281 440.281 427.378 49.2699 20.7137 26.1601 263.929 456.476 99.0028 241.904 Centroid Z 99.9035 81.476 228.315 26.2484 55.7694 293.387                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 29.8227<br>24.8696<br>27.5137<br>21.6245<br>9.09684<br>22.3088<br>29.8022<br>17.8998<br>13.9516<br>18.2039<br>10.2581<br>10.5137<br>11.3315<br>8.99644<br>7.94462<br>17.8771                                                                 | Min (Ch2-T2) 27 27 27 27 27 27 27 27 27 27 27 27 27                                        |
| Img No 8<br>N 1<br>N 2<br>N 3<br>N 4<br>N 5<br>N 6<br>N 7<br>N 8<br>N 9<br>N 10<br>Img No 10<br>N 1<br>N 2<br>N 3<br>N 4<br>N 5<br>N 6<br>N 7                                                                                                                                                           | Volume (μm³)         1586.58         1047.4         1309.3         1672.19         1109.74         1214.58         1568.37         1009.55         1095.57         749.472         Volume (μm³)         864.23         1303.43         1219.23         738.34         752.913         807.155         851.682                                                 | Centroid X<br>180.663<br>298.323<br>251.569<br>308.502<br>345.775<br>390.733<br>180.853<br>133.978<br>347.992<br>253.244<br>Centroid X<br>247.53<br>277.212<br>296.33<br>215.772<br>207.24<br>298.345<br>234.842                                  | Centroid Y                                    | Centroid Z<br>263.931<br>40.281<br>40.281<br>40.281<br>40.2699<br>40.7137<br>40.1601<br>40.3929<br>456.476<br>40.90028<br>454.476<br>424.1904<br>209.9035<br>81.476<br>424.315<br>42.2484<br>45.7694<br>4293.387<br>4.12548                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 29.8227<br>24.8696<br>27.5137<br>21.6245<br>9.09684<br>22.3088<br>29.8022<br>17.8998<br>13.9516<br>18.2039<br>10.2581<br>10.5137<br>11.3315<br>8.99644<br>7.94462<br>17.8771<br>19.3634                                                      | Min (Ch2-T2) 27 27 27 27 27 27 27 27 27 27 27 27 27                                        |
| Img No 8<br>N 1<br>N 2<br>N 3<br>N 4<br>N 5<br>N 6<br>N 7<br>N 8<br>N 9<br>N 10<br>Img No 10<br>N 1<br>N 2<br>N 3<br>N 4<br>N 5<br>N 6<br>N 7<br>N 8<br>N 7<br>N 8                                                                                                                                      | Volume (µm³)<br>1586.58<br>1047.4<br>1309.3<br>1672.19<br>1109.74<br>1214.58<br>1568.37<br>1009.55<br>1095.57<br>749.472<br>Volume (µm³)<br>864.23<br>1303.43<br>1219.23<br>738.34<br>752.913<br>807.155<br>851.682<br>1185.64                                                                                                                                | Centroid X<br>180.663<br>298.323<br>251.569<br>308.502<br>345.775<br>390.733<br>180.853<br>133.978<br>347.992<br>253.244<br>Centroid X<br>247.53<br>277.212<br>296.33<br>215.772<br>207.24<br>298.345<br>234.842<br>192.726                       | Centroid Y                                    | Centroid Z 263.931 440.281 427.378 49.2699 20.7137 26.1601 263.929 156.476 20.0028 241.904 Centroid Z 29.9035 81.476 228.315 26.2484 25.7694 293.387 11.2548 36.1758                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 29.8227<br>24.8696<br>27.5137<br>21.6245<br>9.09684<br>22.3088<br>29.8022<br>17.8998<br>13.9516<br>18.2039<br>10.2581<br>10.5137<br>11.3315<br>8.99644<br>7.94462<br>17.8771<br>19.3634<br>10.7835                                           | Min (Ch2-T2) 27 27 27 27 27 27 27 27 27 27 27 27 27                                        |
| Img No 8<br>N 1<br>N 2<br>N 3<br>N 4<br>N 5<br>N 6<br>N 7<br>N 8<br>N 9<br>N 10<br>Img No 10<br>N 1<br>N 2<br>N 3<br>N 4<br>N 5<br>N 6<br>N 7<br>N 8<br>N 7<br>N 8<br>N 9<br>N 10                                                                                                                       | Volume (µm³)<br>1586.58<br>1047.4<br>1309.3<br>1672.19<br>1109.74<br>1214.58<br>1568.37<br>1009.55<br>1095.57<br>749.472<br>Volume (µm³)<br>864.23<br>1303.43<br>1219.23<br>738.34<br>752.913<br>807.155<br>851.682<br>1185.64<br>755.139                                                                                                                     | Centroid X<br>180.663<br>298.323<br>251.569<br>308.502<br>345.775<br>390.733<br>180.853<br>133.978<br>347.992<br>253.244<br>Centroid X<br>247.53<br>277.212<br>296.33<br>215.772<br>207.24<br>298.345<br>234.842<br>192.726<br>260.511            | Centroid Y                                    | Centroid Z 263.931 440.281 427.378 49.2699 20.7137 26.1601 263.929 456.476 29.0028 241.904 Centroid Z 29.9035 181.476 228.315 26.2484 25.7694 293.387 11.2548 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158 263.158  | 29.8227<br>24.8696<br>27.5137<br>21.6245<br>9.09684<br>22.3088<br>29.8022<br>17.8998<br>13.9516<br>18.2039<br>10.2581<br>10.5137<br>11.3315<br>8.99644<br>7.94462<br>17.8771<br>19.3634<br>10.7835<br>25.5704                                | Min (Ch2-T2) 27 27 27 27 27 27 27 27 27 27 27 27 27                                        |
| Img No 8<br>N 1<br>N 2<br>N 3<br>N 4<br>N 5<br>N 6<br>N 7<br>N 8<br>N 9<br>N 10<br>Img No 10<br>N 1<br>N 2<br>N 3<br>N 4<br>N 5<br>N 6<br>N 7<br>N 6<br>N 7<br>N 8<br>N 7<br>N 8<br>N 9<br>N 10<br>Img No 10<br>N 1<br>N 1<br>N 5<br>N 1<br>N 1<br>N 1<br>N 1<br>N 1<br>N 1<br>N 1<br>N 1<br>N 1<br>N 1 | Volume (μm³)         1586.58         1047.4         1309.3         1672.19         1109.74         1214.58         1568.37         1009.55         1095.57         749.472         Volume (μm³)         864.23         1303.43         1219.23         738.34         752.913         807.155         851.682         1185.64         755.139         653.941 | Centroid X<br>180.663<br>298.323<br>251.569<br>308.502<br>345.775<br>390.733<br>180.853<br>133.978<br>347.992<br>253.244<br>Centroid X<br>247.53<br>277.212<br>296.33<br>215.772<br>207.24<br>298.345<br>234.842<br>192.726<br>260.511<br>289.169 | Centroid Y                                    | Centroid Z 263.931 40.281 40.281 40.281 40.2699 40.7137 40.1601 40.3029 40.6101 40.3029 40.6101 40.4 40.4 40.4 40.4 40.4 40.4 40.4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 29.8227<br>24.8696<br>27.5137<br>21.6245<br>9.09684<br>22.3088<br>29.8022<br>17.8998<br>13.9516<br>18.2039<br>10.2581<br>10.5137<br>11.3315<br>8.99644<br>7.94462<br>17.8771<br>19.3634<br>10.7835<br>25.5704<br>27.2392                     | Min (Ch2-T2) 27 27 27 27 27 27 27 27 27 27 27 27 27                                        |
| Img No 8<br>N 1<br>N 2<br>N 3<br>N 4<br>N 5<br>N 6<br>N 7<br>N 8<br>N 9<br>N 10<br>Img No 10<br>N 1<br>N 2<br>N 3<br>N 4<br>N 5<br>N 6<br>N 7<br>N 8<br>N 9<br>N 10<br>N 10<br>N 10<br>N 10<br>N 10<br>N 10<br>N 10<br>N 10                                                                             | Volume (μm³)         1586.58         1047.4         1309.3         1672.19         1109.74         1214.58         1568.37         1009.55         1095.57         749.472         Volume (μm³)         864.23         1303.43         1219.23         738.34         752.913         807.155         851.682         1185.64         755.139         653.941 | Centroid X<br>180.663<br>298.323<br>251.569<br>308.502<br>345.775<br>390.733<br>180.853<br>133.978<br>347.992<br>253.244<br>Centroid X<br>247.53<br>277.212<br>296.33<br>215.772<br>207.24<br>298.345<br>234.842<br>192.726<br>260.511<br>289.169 | Centroid Y                                    | Centroid Z 263.931 440.281 440.281 427.378 49.2699 20.7137 26.1601 263.929 456.476 49.90028 2641.904 2641.904 2641.904 265.7694 263.387 41.2548 36.1758 362.272                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 29.8227<br>24.8696<br>27.5137<br>21.6245<br>9.09684<br>22.3088<br>29.8022<br>17.8998<br>13.9516<br>18.2039<br>10.2581<br>10.5137<br>11.3315<br>8.99644<br>7.94462<br>17.8771<br>19.3634<br>10.7835<br>25.5704<br>27.2392                     | Min (Ch2-T2) 27 27 27 27 27 27 27 27 27 27 27 27 27                                        |
| Img No 8<br>N 1<br>N 2<br>N 3<br>N 4<br>N 5<br>N 6<br>N 7<br>N 8<br>N 9<br>N 10<br>Img No 10<br>N 1<br>N 2<br>N 3<br>N 4<br>N 5<br>N 6<br>N 7<br>N 8<br>N 7<br>N 8<br>N 7<br>N 8<br>N 7<br>N 8<br>N 7<br>N 8<br>N 7<br>N 8<br>N 4<br>Average value                                                      | Volume (μm³)<br>1586.58<br>1047.4<br>1309.3<br>1672.19<br>1109.74<br>1214.58<br>1568.37<br>1009.55<br>1095.57<br>749.472<br>Volume (μm³)<br>864.23<br>1303.43<br>1219.23<br>738.34<br>752.913<br>807.155<br>851.682<br>1185.64<br>755.139<br>653.941<br>u of the vol of Nuclei                                                                                | Centroid X<br>180.663<br>298.323<br>251.569<br>308.502<br>345.775<br>390.733<br>180.853<br>133.978<br>347.992<br>253.244<br>Centroid X<br>247.53<br>277.212<br>296.33<br>215.772<br>207.24<br>298.345<br>234.842<br>192.726<br>260.511<br>289.169 | Centroid Y                                    | Centroid Z 263.931 440.281 427.378 49.2699 20.7137 26.1601 263.929 156.476 29.0028 241.904 241.904 241.904 241.904 25.365 26.2484 25.7694 293.387 1.2548 26.1758 26.2484 25.365 232.272                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 29.8227<br>24.8696<br>27.5137<br>21.6245<br>9.09684<br>22.3088<br>29.8022<br>17.8998<br>13.9516<br>18.2039<br>10.2581<br>10.5137<br>11.3315<br>8.99644<br>7.94462<br>17.8771<br>19.3634<br>10.7835<br>25.5704<br>27.2392<br><b>1582.3458</b> | Min (Ch2-T2) 27 27 27 27 27 27 27 27 27 27 27 27 27                                        |

### **B.4.** (iii). Measurement of nuclei volume of third instars salivary glands from larvae where UAS-NOS2 and UAS-RNAi-Mi-2 were co expressed

| Img No 1     | Volume (µm <sup>3</sup> ) | Min (Ch2-T1)   | Centroid X |                    | Centroid Y             |                    | Centroid Z |          |
|--------------|---------------------------|----------------|------------|--------------------|------------------------|--------------------|------------|----------|
| N 1          | 3986.82                   | 61             |            | 239.637            |                        | 265.088            |            | 14.0555  |
| N 2          | 3528.92                   | 61             |            | 172.442            |                        | 192.335            |            | 10.8894  |
| N 3          | 2382.93                   | 61             |            | 103.148            |                        | 155.158            |            | 23.7584  |
| N 4          | 2971.34                   | 61             |            | 48.4228            |                        | 186.801            |            | 22.6211  |
| N 5          | 2698.48                   | 61             |            | 122.916            |                        | 195.66             |            | 30.5372  |
| N 6          | 3557.08                   | 61             |            | 335.168            |                        | 356.703            |            | 21.4542  |
| N 7          | 2114.54                   | 61             |            | 350.693            |                        | 310.198            |            | 40.8691  |
| N 8          | 2118.56                   | 61             |            | 37.3095            |                        | 119.824            |            | 25.3175  |
| N 9          | 2168.62                   | 61             |            | 282.156            |                        | 295.969            |            | 23.2276  |
| N 10         | 1950.5                    | 61             |            | 410.449            |                        | 323.424            |            | 37.9448  |
| Img No 2     | Volume (µm <sup>3</sup> ) | Min (Ch2-T1)   | Centroid X |                    | Centroid Y             |                    | Centroid Z |          |
| N1           | 3033.47                   | 59             |            | 277.004            |                        | 232.537            |            | 38.0145  |
| N 2          | 1411.25                   | 59             |            | 190.699            |                        | 284.481            |            | 15.9017  |
| N 3          | 1791.16                   | 59             |            | 208.676            |                        | 318.957            |            | 24.4851  |
| N 4          | 1446.79                   | 59             |            | 141.907            |                        | 393.89             |            | 18.7702  |
| N 5          | 2671.44                   | 59             |            | 252.089            |                        | 238.4              |            | 23.3252  |
| N 6          | 1672.72                   | 59             |            | 319.732            |                        | 147.136            |            | 21.7733  |
| N 7          | 1598.53                   | 59             |            | 277.918            |                        | 176.804            |            | 24.2238  |
| N 8          | 1643.67                   | 59             |            | 367.28             |                        | 158.518            |            | 37.5753  |
| N 9          | 1256.61                   | 59             |            | 183.925            |                        | 355.491            |            | 18.4302  |
| N 10         | 1409.91                   | 59             |            | 95.1               |                        | 352.391            |            | 23.162   |
| Ima No 3     | Volumo (um <sup>3</sup> ) | Min (Ch2 T1)   | Controid V |                    | Controid V             |                    | Controid 7 |          |
| N 1          | 1917 21                   | MIII (CII2-11) | Centrola A | 308 656            | Centrola 1             | 383 360            |            | 34 5863  |
| N 2          | 1635 /                    | 66             |            | 213 142            |                        | 351 612            |            | 33 0872  |
| N 3          | 2375 78                   | 66             |            | 213.142            |                        | 332.035            |            | 16 8159  |
| N 4          | 2885.98                   | 66             |            | 215.005            |                        | 76.0026            |            | 19 14 19 |
| N 5          | 1482 54                   | 66             |            | 203 785            |                        | 228 937            |            | 18 5222  |
| N 6          | 2083.02                   | 66             |            | 145 879            |                        | 220.937            |            | 20.6106  |
| N 7          | 1990.28                   | 66             |            | 187 466            |                        | 273 155            |            | 15 6353  |
| N8           | 1139 51                   | 66             |            | 140 847            |                        | 110 113            |            | 24 109   |
| N 9          | 1031.79                   | 66             |            | 183.594            |                        | 201.111            |            | 34.9251  |
| N 10         | 1708.25                   | 66             |            | 258.673            |                        | 404.932            |            | 17.144   |
| <b>T N</b> 4 |                           |                | G ( 1)¥    |                    | <b>C</b> ( 1) <b>V</b> |                    | G 4 117    |          |
| Img No 4     | Volume (µm <sup>3</sup> ) | Min (Ch2-11)   | Centroid X | 064 115            | Centroid Y             | 206 457            | Centroid Z | 12 7202  |
| N I          | 1/10.2/                   | 58             |            | 264.115            |                        | 286.457            |            | 13.7202  |
| N 2          | 2067.16                   | 58             |            | 227.701            |                        | 223.214            |            | 14.4211  |
| N 3          | 1619./6                   | 58             |            | 222.132            |                        | 296.817            |            | 20.9985  |
| N 4          | 995.141                   | 58             |            | 297.569            |                        | 392.06             |            | 32.8439  |
| N 5          | 1532.59                   | 58             |            | 269.166            |                        | 303.338            |            | 29.4496  |
| N O          | 1387.8                    | 58             |            | 520.02             |                        | 106.040            |            | 14.4002  |
| IN 7         | 1421.09                   | 58             |            | 100.167            |                        | 190.949            |            | 31.0220  |
| NO           | 1/38.34                   | 38<br>50       |            | 24 4520            |                        | 91./193<br>07./001 |            | 14 7017  |
| 1N 9<br>N 10 | 1942.08                   | 58             |            | 24.4339<br>76 2016 |                        | 97.4001<br>27.1707 |            | 14./01/  |
| IN IU        | 1588.92                   | 38             |            | /0.3810            |                        | 21.1707            |            | 10.2934  |
| Img No 5     | Volume (µm <sup>3</sup> ) | Min (Ch2-T1)   | Centroid X |                    | Centroid Y             |                    | Centroid Z |          |
| N 1          | 1539.31                   | 41             |            | 280.54             |                        | 271.116            |            | 11.848   |
| N 2          | 2508.08                   | 41             |            | 140.376            |                        | 231.421            |            | 12.645   |

| N 3         | 1338.85                   | 41                   |             | 332.295 |            | 208.409 |            | 12.2752  |
|-------------|---------------------------|----------------------|-------------|---------|------------|---------|------------|----------|
| N 4         | 867.536                   | 41                   |             | 88.9222 |            | 185.98  |            | 13.8769  |
| N 5         | 2453.55                   | 41                   |             | 269.995 |            | 169.129 |            | 18.2892  |
| N 6         | 1097.27                   | 41                   |             | 339.855 |            | 258.532 |            | 33.4532  |
| N 7         | 1586.91                   | 41                   |             | 362.812 |            | 290.057 |            | 19.1901  |
| N 8         | 1049.89                   | 41                   |             | 151.399 |            | 262.969 |            | 27.1158  |
| N 9         | 503.493                   | 41                   |             | 475.577 |            | 207.299 |            | 14.5504  |
| N 10        | 1064.2                    | 41                   |             | 123.665 |            | 168.508 |            | 15.5672  |
|             |                           |                      |             |         |            |         |            |          |
| Img No 6    | Volume (µm <sup>3</sup> ) | Min (Ch2-T1)         | Centroid X  |         | Centroid Y |         | Centroid Z |          |
| N 1         | 1306.67                   | 41                   |             | 95.7809 |            | 154.518 |            | 38.7789  |
| N 2         | 1337.73                   | 41                   |             | 280.268 |            | 189.135 |            | 37.7917  |
| N 3         | 1004.97                   | 41                   |             | 50.062  |            | 157.284 |            | 40.1076  |
| N 4         | 2831.89                   | 41                   |             | 213.581 |            | 141.543 |            | 15.1555  |
| N 5         | 2656.24                   | 41                   |             | 460.72  |            | 227.784 |            | 16.0008  |
| N 6         | 2497.57                   | 41                   |             | 433.531 |            | 273.287 |            | 15.7185  |
| N 7         | 2031.18                   | 41                   |             | 213.76  |            | 212.449 |            | 15.8626  |
| N 8         | 1914.52                   | 41                   |             | 13.9623 |            | 139.78  |            | 39.6229  |
| N 9         | 1961.68                   | 41                   |             | 467.096 |            | 330.424 |            | 17.9294  |
| N 10        | 3231.92                   | 41                   |             | 302.628 |            | 302.848 |            | 23.1456  |
|             |                           |                      |             |         |            |         |            |          |
| Img No 8    | Volume (µm <sup>3</sup> ) | Min (Ch2-T1)         | Centroid X  |         | Centroid Y |         | Centroid Z |          |
| N 1         | 1544.45                   | 83                   |             | 319.141 |            | 265.889 |            | 16.821   |
| N 2         | 1294.82                   | 83                   |             | 259.723 |            | 226.155 |            | 18.7829  |
| N 3         | 1045.2                    | 83                   |             | 327.666 |            | 297.269 |            | 29.5123  |
| N 4         | 1838.99                   | 83                   |             | 206.341 |            | 235.953 |            | 46.7877  |
| N 5         | 2060.23                   | 83                   |             | 279.614 |            | 251.311 |            | 15.4466  |
| N 6         | 975.252                   | 83                   |             | 155.384 |            | 214.06  |            | 18.0687  |
| N 7         | 1934.41                   | 83                   |             | 141.372 |            | 185.302 |            | 42.1862  |
| N 8         | 598.023                   | 83                   |             | 385.888 |            | 286.493 |            | 38.9638  |
| N 9         | 1354.71                   | 83                   |             | 34.0668 |            | 131.258 |            | 24.1579  |
| N 10        | 1295.49                   | 83                   |             | 259.641 |            | 226.169 |            | 18.7061  |
|             |                           |                      |             |         |            |         |            |          |
| Img No 10   | Volume (µm <sup>3</sup> ) | Min (Ch2-T1)         | Centroid X  |         | Centroid Y |         | Centroid Z |          |
| N I         | 3047.33                   | 58                   |             | 248.794 |            | 94.3459 |            | 27.2226  |
| N Z         | 2319.69                   | 58                   |             | 203.639 |            | 1/./68/ |            | 28.9678  |
| N 3         | 2258.9                    | 58                   |             | 208.572 |            | 110.376 |            | 27.3783  |
| N 4         | 2616.02                   | 58                   |             | 212.332 |            | 213.598 |            | 24.8275  |
| N D<br>N C  | 2563.05                   | 58                   |             | 286.542 |            | 317.289 |            | 29.9609  |
| N O         | 1551.6                    | 58                   |             | 238.368 |            | 343.251 |            | 21.1383  |
| IN /        | 2296.22                   | 58                   |             | 211.819 |            | 57 6102 |            | 39.908   |
| N ð<br>N O  | 2478.35                   | 58                   |             | 248.548 |            | 57.0103 |            | 42.50//  |
| N 9<br>N 10 | 1137.27                   | 58                   |             | 233.393 |            | 410.481 |            | 34.0586  |
| IN 10       | 958.267                   | 58                   |             | 219.342 |            | 300.03  |            | 28.0128  |
| A monage    | up of the volume of the   | a nuclai             |             |         |            |         | 105        | 0 181775 |
| Average val | ue of the volume of the   | e nuclei             | of mudat    |         |            |         | 187        | 0.404//5 |
| Stanuard de | viation of the average    | e value of the volum | e of nuclei |         |            |         | /12        |          |

### **B.4.** (iv). Measurement of nuclei volume of UAS-NOS2 over expressed third instar salivary glands from Mi-2 transheterozygous mutants

| Img No 1 | Volume (µm <sup>3</sup> ) | Centroid X | Centroid Y | Centroid Z | Min (Ch2-T2) |    |
|----------|---------------------------|------------|------------|------------|--------------|----|
| N 1      | 1264.57                   | 151.398    | 163.05     | 11.6759    |              | 83 |
| N 2      | 525.217                   | 98.0204    | 135.712    | 16.59      |              | 83 |
| N 3      | 964.416                   | 315.98     | 213.998    | 12.1889    |              | 83 |

| N 4      | 501.335                   | 363.956      | 178.846    | 14.3242    |            | 83      |
|----------|---------------------------|--------------|------------|------------|------------|---------|
| N 5      | 816.87                    | 269.761      | 181.878    | 16.2252    |            | 83      |
| N 6      | 1186.85                   | 53.8404      | 153.808    | 24.9072    |            | 83      |
| N 7      | 559.625                   | 123.267      | 136.279    | 29.0817    |            | 83      |
| N 8      | 384.957                   | 293.258      | 165.13     | 21.0421    |            | 83      |
| N 9      | 947.415                   | 269.236      | 227.45     | 16.1938    |            | 83      |
| N 10     | 1140.91                   | 29.8923      | 123.82     | 36.9258    |            | 83      |
|          |                           |              |            |            |            |         |
| Img No 2 | Volume (µm <sup>3</sup> ) | Min (Ch2-T2) | Centroid X | Centroid Y | Centroid Z |         |
| N 1      | 1070.88                   | 58           | 325.784    | 144.932    |            | 10.5381 |
| N 2      | 671.954                   | 58           | 331.774    | 202.451    |            | 15.5455 |
| N 3      | 950.856                   | 58           | 351.436    | 166.762    |            | 32.1237 |
| N 4      | 1543.07                   | 58           | 369.591    | 184.294    |            | 11.8258 |
| N 5      | 1137.67                   | 58           | 357.531    | 150.308    |            | 10.9338 |
| N 6      | 745.829                   | 58           | 287.203    | 241.374    |            | 12.1251 |
| N 7      | 1032.42                   | 58           | 346.684    | 230.457    |            | 11.8996 |
| N 8      | 1451.18                   | 58           | 259.238    | 123.95     |            | 20.1165 |
| N 9      | 752.103                   | 58           | 332.466    | 123.673    |            | 21.694  |
| N 10     | 890.137                   | 58           | 362.439    | 230.081    |            | 25.0705 |
|          |                           |              |            |            |            |         |
| Img No 5 | Volume (µm <sup>3</sup> ) | Min (Ch2-T1) | Centroid X | Centroid Y | Centroid Z |         |
| N 1      | 2264.93                   | 69           | 233.306    | 209.126    |            | 15.4465 |
| N 2      | 1348.68                   | 69           | 384.339    | 257.447    |            | 16.8437 |
| N 3      | 1221.08                   | 69           | 341.115    | 224.568    |            | 20.1746 |
| N 4      | 3511.49                   | 69           | 108.96     | 169.536    |            | 40.7226 |
| N 5      | 3272.81                   | 69           | 133.979    | 199.696    |            | 28.5379 |
| N 6      | 467.289                   | 69           | 430.844    | 223.549    |            | 17.8761 |
| N 7      | 636.238                   | 69           | 364.237    | 211.698    |            | 25.0414 |
| N 8      | 824.628                   | 69           | 275.111    | 251.428    |            | 13.4702 |
| N 9      | 1517.63                   | 69           | 202.523    | 183.707    |            | 32.6501 |
| N 10     | 1353.6                    | 69           | 182.15     | 182.05     |            | 19.3107 |
|          |                           |              |            |            |            |         |

| ig No 6 | Volume (µm <sup>3</sup> )                                      | Centroid X                                                                                                                                                                                                                                                                                                          | Centroid Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Centroid Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Min (Ch2-T2)                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1       | 716.279                                                        | 183.903                                                                                                                                                                                                                                                                                                             | 222.676                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.3815                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                  | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2       | 925.759                                                        | 275.786                                                                                                                                                                                                                                                                                                             | 253.109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11.3778                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                  | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3       | 672.562                                                        | 184.514                                                                                                                                                                                                                                                                                                             | 246.912                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.88173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                  | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4       | 695.027                                                        | 89.9822                                                                                                                                                                                                                                                                                                             | 211.354                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.79324                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                  | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 5       | 1013.19                                                        | 235.056                                                                                                                                                                                                                                                                                                             | 265.903                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19.8881                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                  | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 6       | 817.072                                                        | 239.165                                                                                                                                                                                                                                                                                                             | 232.201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16.0037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                  | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 7       | 886.899                                                        | 289.074                                                                                                                                                                                                                                                                                                             | 242.599                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24.105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                  | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 8       | 651.31                                                         | 262.325                                                                                                                                                                                                                                                                                                             | 248.629                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25.8434                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                  | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 9       | 854.515                                                        | 335.27                                                                                                                                                                                                                                                                                                              | 279.541                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13.8124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                  | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 10      | 804.119                                                        | 165.724                                                                                                                                                                                                                                                                                                             | 259.404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15.9202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                  | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         | g No 6<br>1<br>2<br>3<br>4<br>5<br>5<br>5<br>7<br>8<br>9<br>10 | g No 6         Volume (μm³)           1         716.279           2         925.759           3         672.562           4         695.027           5         1013.19           5         817.072           7         886.899           8         651.31           9         854.515           10         804.119 | g No 6         Volume (μm³)         Centroid X           1         716.279         183.903           2         925.759         275.786           3         672.562         184.514           4         695.027         89.9822           5         1013.19         235.056           6         817.072         239.165           7         886.899         289.074           8         651.31         262.325           9         854.515         335.27           10         804.119         165.724 | g No 6         Volume (μm³)         Centroid X         Centroid Y           1         716.279         183.903         222.676           2         925.759         275.786         253.109           3         672.562         184.514         246.912           4         695.027         89.9822         211.354           5         1013.19         235.056         265.903           6         817.072         239.165         232.201           7         886.899         289.074         242.599           8         651.31         262.325         248.629           9         854.515         335.27         279.541           10         804.119         165.724         259.404 | g No 6Volume (µm³)Centroid XCentroid YCentroid Z1716.279183.903222.67610.38152925.759275.786253.10911.37783672.562184.514246.9127.881734695.02789.9822211.3548.7932451013.19235.056265.90319.88816817.072239.165232.20116.00377886.899289.074242.59924.1058651.31262.325248.62925.84349854.515335.27279.54113.812410804.119165.724259.40415.9202 | g No 6         Volume (μm³)         Centroid X         Centroid Y         Centroid Z         Min (Ch2-T2)           1         716.279         183.903         222.676         10.3815           2         925.759         275.786         253.109         11.3778           3         672.562         184.514         246.912         7.88173           4         695.027         89.9822         211.354         8.79324           5         1013.19         235.056         265.903         19.8881           6         817.072         239.165         232.201         16.0037           7         886.899         289.074         242.599         24.105           8         651.31         262.325         248.629         25.8434           9         854.515         335.27         279.541         13.8124           10         804.119         165.724         259.404         15.9202 |

| Img No 7 | Volume (µm <sup>3</sup> ) | Centroid X | Centroid Y | Centroid Z | Min (Ch2-T2) |
|----------|---------------------------|------------|------------|------------|--------------|
| N 1      | 583.103                   | 245.501    | 144.981    | 21.5588    | 147          |
| N 2      | 445.878                   | 181.003    | 103.956    | 18.7081    | 147          |
| N 3      | 946.606                   | 241.951    | 247.724    | 18.5687    | 147          |
| N 4      | 891.351                   | 196.074    | 319.252    | 19.3122    | 147          |
| N 5      | 993.764                   | 159.474    | 341.37     | 21.9662    | 147          |
| N 6      | 764.854                   | 103.873    | 347.881    | 28.4686    | 147          |
| N 7      | 775.986                   | 210.309    | 222.745    | 13.2287    | 147          |
| N 8      | 745.626                   | 231.434    | 95.9894    | 8.04425    | 147          |

| N 9                           | 643.012                   | 206.802             | 101.03              | 7.3862                   | 1                  | 147          |
|-------------------------------|---------------------------|---------------------|---------------------|--------------------------|--------------------|--------------|
| N 10                          | 573.995                   | 181.848             | 86.5628             | 7.58956                  | 5                  | 147          |
|                               |                           |                     |                     |                          |                    |              |
| Img No 8                      | Volume (µm <sup>3</sup> ) | Centroid X          | Centroid Y          | Centroid Z               | Min (Ch2-T         | (2)          |
| N 1                           | 1016.43                   | 165.904             | 235.754             | 19.72                    | 5                  | 65           |
| N 2                           | 1340.06                   | 155.921             | 159.901             | 22.922                   | 7                  | 65           |
| N 3                           | 1381.35                   | 308.522             | 303.116             | 20.5519                  | 9                  | 65           |
| N 4                           | 1632.53                   | 261.83              | 223.865             | 13.7104                  | 4                  | 65           |
| N 5                           | 1190.09                   | 125.666             | 179.863             | 8.4107                   | 1                  | 65           |
| N 6                           | 2088.32                   | 86.2031             | 112.925             | 11.4595                  | 5                  | 65           |
| N 7                           | 2041.36                   | 268.478             | 317.905             | 6.0099                   | 1                  | 65           |
| N 8                           | 933.45                    | 347.272             | 377.367             | 4.70512                  | 2                  | 65           |
| N 9                           | 831.24                    | 57.4069             | 129.298             | 20.307                   | 3                  | 65           |
| N 10                          | 1916.69                   | 211.563             | 164.804             | 13.235                   | 7                  | 65           |
|                               |                           |                     |                     |                          |                    |              |
| Img No 9                      | Volume (µm³)              | Min (Ch2-T2)        | Centroid X          | Centroid Y               | Centroid Z         |              |
| N1                            | 1303.23                   | 61                  | 263.096             | 320.65                   | 7                  | 24.0311      |
| N 2                           | 1356.86                   | 61                  | 216.733             | 288.80                   | 7                  | 25,3082      |
| N3                            | 1345 12                   | 61                  | 270 31              | 295 423                  | 2                  | 12,8562      |
| N 4                           | 868 886                   | 61                  | 244.66              | 271.79                   | 2                  | 9 52248      |
| N 5                           | 1413-13                   | 61                  | 233 237             | 210.82                   | -                  | 26 4258      |
| N 6                           | 1385.8                    | 61                  | 195 178             | 179.95                   | 7                  | 28.0022      |
| N 7                           | 1305.0                    | 61                  | 180 147             | 225.40                   | 1                  | 11 779       |
| N 8                           | 1103 33                   | 61                  | 150.863             | 215 53                   | 5                  | 17 5293      |
| NO                            | 1314 56                   | 61                  | 105.005             | 170.03                   | 1                  | 27 9812      |
| N 10                          | 852.087                   | 61                  | 286 283             | 350.12                   | т<br>1             | 10,6050      |
| 10 10                         | 052.007                   | 01                  | 200.205             | 557.12                   | I                  | 19.0059      |
| Img No 10                     | Volume (um <sup>3</sup> ) | Min (Ch2-T2)        | Centroid X          | Centroid Y               | Centroid Z         |              |
| N 1                           | 1357 67                   | 96                  | 248 413             | 332.24                   | 1                  | 33 3904      |
| N 2                           | 2986.55                   | 96                  | 183.341             | 252.090                  | S                  | 26.8399      |
| N3                            | 2042.38                   | 96                  | 285 452             | 311.680                  | -<br>5             | 37 4758      |
| N 4                           | 2562 33                   | 96                  | 269.043             | 268 499                  | 2                  | 17 7375      |
| N 5                           | 1919 52                   | 96                  | 313.812             | 353 320                  | 5                  | 23 9146      |
| N 6                           | 1136.66                   | 96                  | 278 72              | 371.30                   | 2                  | 40 9801      |
| N 7                           | 2062.21                   | 96                  | 306 255             | 457 67                   | 3                  | 34 974       |
| N 8                           | 960 976                   | 96                  | 331 223             | 435.55                   | 7                  | 23.007       |
| N 9                           | 1231 58                   | 96                  | 327 372             | 463.29                   | ,<br>7             | 25.6687      |
| N 10                          | 2234.45                   | 96                  | 121 456             | 161.55                   | ,<br>,             | 14 6901      |
| 1120                          | 220 11 10                 | 20                  | 1211100             | 101100                   | -                  | 1 1107 01    |
| Average val                   | ue of the volume of the   | nuclei              |                     |                          |                    | 1195.479438  |
| Standard de                   | eviation of the average v | value of the volume | of nuclei           |                          |                    | 621.2223307  |
| <b>D</b> <i>A</i> () <b>M</b> |                           | :                   |                     | da fa ana Mi 2 4-        |                    |              |
| <u>D.4. (V). IVI</u>          | easurement of nucle       | i volume of thirt   | i mstar sanvary gia | mus from 1vii-2 u        | ansheterozy        | gous mutants |
| Img No 1                      | Volume (µm <sup>3</sup> ) |                     | Min (Ch2-T2)        | Centroid X               | Centroid Y         | Centroid Z   |
| N 1                           |                           | 5284.15             |                     | 46 339.143               | 342.411            | 10.6727      |
| N 2                           |                           | 4749.42             |                     | 46 382.36                | 107.7              | 14.7634      |
| N 3                           |                           | 5255.01             |                     | 46 240.829               | 397.543            | 17.1951      |
| N 4<br>N 5                    |                           | 5590.58             |                     | 40 338.864               | 342.288            | 10.994       |
| N 6                           |                           | 0U33.83<br>3420.49  |                     | 40 92.3234<br>46 494 129 | 400.879<br>32 0604 | 11.0765      |
| N 7                           |                           | 516676              |                     | 46 138.03                | 223.444            | 16 3266      |
| N 8                           |                           | 5684.49             |                     | 46 254.865               | 171.762            | 13.9235      |
| N 9                           |                           | 4882.8              |                     | 46 408.516               | 272.056            | 14.8096      |
| N 10                          |                           | 2300.03             |                     | 46 450.333               | 483.4              | 22.5701      |
|                               |                           |                     |                     |                          |                    |              |

Min (Ch2-T2)

Centroid X Centroid Y

Img No 3

Volume (µm<sup>3</sup>)

Centroid Z
| N 1             |                                       | 5831.03 |              | 27 | 347.11                      | 157.802                      | 10.9839                      |
|-----------------|---------------------------------------|---------|--------------|----|-----------------------------|------------------------------|------------------------------|
| N 2             |                                       | 5145.31 |              | 27 | 36.6176                     | 217.464                      | 11.1124                      |
| N 3             |                                       | 5641.18 |              | 27 | 197.054                     | 205.976                      | 10.0017                      |
| N 4             |                                       | 5791.76 |              | 27 | 192.117                     | 298.453                      | 10.8653                      |
| N 5             |                                       | 4183.12 |              | 27 | 465.67                      | 220.114                      | 7.34198                      |
| N 6             |                                       | 4440.16 |              | 27 | 143.412                     | 358.859                      | 17.3444                      |
| N 7             |                                       | 4689 51 |              | 27 | 29.0318                     | 311 699                      | 9 1678                       |
| N S             |                                       | 3910.69 |              | 27 | 423 951                     | 70 3383                      | 18 8939                      |
| NO              |                                       | 35567   |              | 27 | 288 042                     | 331.07                       | 24 402                       |
| IN 9<br>N 10    |                                       | 2627 16 |              | 27 | 100 707                     | 170 774                      | 24.402                       |
| IN 10           |                                       | 3037.40 |              | 21 | 100.797                     | 1/0.//4                      | 23.9243                      |
| Ima No 4        | Valuma (um 3)                         |         | Min (Cho To) |    | Controld V                  | Controld V                   | Control 7                    |
| Img No 4        | volume (µm <sup>3</sup> )             | 4500 11 | Min (Cn2-12) | 24 | Centrold X                  | Centrold Y                   | Centrold Z                   |
| N I             |                                       | 4588.11 |              | 24 | /8.683                      | 207.195                      | 13.688/                      |
| N Z             |                                       | 4891.3  |              | 24 | 341.522                     | 233.853                      | 10.1584                      |
| N 3             |                                       | 4730.6  |              | 24 | 411.83                      | 163.321                      | 13.8161                      |
| N 4             |                                       | 5218.37 |              | 24 | 335.79                      | 440.364                      | 15.9222                      |
| N 5             |                                       | 4598.64 |              | 24 | 137.842                     | 109.387                      | 15.0939                      |
| N 6             |                                       | 5239.02 |              | 24 | 240.165                     | 287.727                      | 15.4292                      |
| N 7             |                                       | 4096.29 |              | 24 | 454.907                     | 377.652                      | 20.3982                      |
| N 8             |                                       | 3964.33 |              | 24 | 475.186                     | 119.927                      | 36.143                       |
| N 9             |                                       | 2376.53 |              | 24 | 216.954                     | 80.6753                      | 38.5052                      |
| N 10            |                                       | 4746.59 |              | 24 | 197.875                     | 478.598                      | 11.7008                      |
|                 |                                       |         |              |    |                             |                              |                              |
| Img No 5        | Volume (µm <sup>3</sup> )             |         | Min (Ch2-T2) |    | Centroid X                  | Centroid Y                   | Centroid Z                   |
| N 1             |                                       | 5960.56 |              | 24 | 168.774                     | 397.1                        | 11.3218                      |
| N 2             |                                       | 5711.81 |              | 24 | 282.327                     | 329.973                      | 6.58566                      |
| N 3             |                                       | 6257.68 |              | 24 | 358.172                     | 174.415                      | 9.58228                      |
| N 4             |                                       | 5557.79 |              | 24 | 294.93                      | 49.2474                      | 7.48263                      |
| N 5             |                                       | 6167.61 |              | 24 | 276.838                     | 480.986                      | 10.9611                      |
| N 6             |                                       | 5113.53 |              | 24 | 411.27                      | 95.9673                      | 15.4703                      |
| N 7             |                                       | 4073.82 |              | 24 | 229.791                     | 78.1601                      | 29.4461                      |
| N 8             |                                       | 6079.57 |              | 24 | 213.898                     | 146.529                      | 13.9651                      |
| N 9             |                                       | 8586 85 |              | 24 | 355 885                     | 370 515                      | 25 5645                      |
| N 10            |                                       | 4317.71 |              | 24 | 186.662                     | 349.131                      | 24.7128                      |
|                 |                                       |         |              |    |                             |                              |                              |
| Img No 6        | Volume (um <sup>3</sup> )             |         | Min (Ch2-T2) |    | Centroid X                  | Centroid Y                   | Centroid Z                   |
| N 1             | · · · · · · · · · · · · · · · · · · · | 5101 79 |              | 24 | 329 907                     | 274 881                      | 33 1215                      |
| N 2             |                                       | 4849.61 |              | 24 | 335 743                     | 108 233                      | 34 2701                      |
| N 3             |                                       | 5006.87 |              | 24 | 119 597                     | 236.029                      | 31.0753                      |
| N 4             |                                       | 4490.76 |              | 24 | 182.845                     | 330.091                      | 31.8/16                      |
| N 5             |                                       | 4458.98 |              | 24 | 335 200                     | 108.005                      | 33 0/70                      |
| N S             |                                       | 5426 15 |              | 24 | 20 2824                     | 241 570                      | 24 2295                      |
| IN U            |                                       | 2226.0  |              | 24 | 29.3624                     | 241.379                      | 24.3203                      |
| IN /            |                                       | 5350.9  |              | 24 | 1/1.181                     | 414.014                      | 23.0283                      |
| IN O            |                                       | 3800.03 |              | 24 | 200.007                     | 03.4110                      | 23.9173                      |
| N 9             |                                       | 6427.49 |              | 24 | 186.582                     | 212.695                      | 12.18/3                      |
| N 10            |                                       | 3115.48 |              | 24 | 446.786                     | 101.838                      | 11.6269                      |
|                 |                                       |         |              |    | G ( )1W                     | G ( )]W                      | 0 4 117                      |
| Img No 7        | Volume (µm <sup>3</sup> )             |         | Min (Ch2-12) |    | Centroid X                  | Centroid Y                   | Centroid Z                   |
| NI              |                                       | 5176.27 |              | 24 | 111.124                     | 153.643                      | 11.7426                      |
| N 2             |                                       | 4303.54 |              | 24 | 352.363                     | 119.694                      | 20.3326                      |
| N 3             |                                       | 4509.18 |              | 24 | 242.531                     | 200.084                      | 14.7969                      |
| N 4             |                                       | 5083.37 |              | 24 | 166.161                     | 273.131                      | 11.8575                      |
| N 5             |                                       | 4830.99 |              | 24 | 348.61                      | 27.3797                      | 12.1967                      |
| N 6             |                                       | 5471.57 |              | 24 | 237.377                     | 386.926                      | 12.1557                      |
| N 7             |                                       | 3423.12 |              | 24 | 88.007                      | 359.712                      | 27.994                       |
| N 8             |                                       | 2912.27 |              | 24 | 454.945                     | 51.5696                      | 30.513                       |
| N 9             |                                       | 4815.4  |              | 24 | 83.9389                     | 472.5                        | 10.4827                      |
| N 10            |                                       | 3773.67 |              | 24 | 221.68                      | 485.579                      | 26.2701                      |
|                 |                                       |         |              |    |                             |                              |                              |
|                 |                                       |         |              |    |                             |                              |                              |
| Img No 8        | Volume (µm <sup>3</sup> )             |         | Min (Ch2-T2) |    | Centroid X                  | Centroid Y                   | Centroid Z                   |
| Img No 8<br>N 1 | Volume (µm³)                          | 6750.31 | Min (Ch2-T2) | 24 | <b>Centroid X</b><br>177.08 | <b>Centroid Y</b><br>65.1586 | <b>Centroid Z</b><br>12.0069 |

| N 3            | 6185.83                           |              | 24 | 121.831    | 429.633     | 12.3676    |
|----------------|-----------------------------------|--------------|----|------------|-------------|------------|
| N 4            | 5779.41                           |              | 24 | 312.157    | 39.4423     | 11.7621    |
| N 5            | 5653.73                           |              | 24 | 100.419    | 142.733     | 21.2535    |
| N 6            | 3527.96                           |              | 24 | 363.988    | 136.551     | 13.6011    |
| N 7            | 5060.3                            |              | 24 | 22.6492    | 310.445     | 12.2637    |
| N 8            | 6734.72                           |              | 24 | 120.521    | 229.398     | 11.9996    |
| N 9            | 4538.53                           |              | 24 | 90.3875    | 268.31      | 27.7173    |
| N 10           | 6062.36                           |              | 24 | 304.71     | 246.137     | 11.0996    |
| Img No 9       | Volume (µm³)                      | Min (Ch2-T2) |    | Centroid X | Centroid Y  | Centroid Z |
| N 1            | 6777.63                           |              | 24 | 210.762    | 228.464     | 8.14379    |
| N 2            | 4240.19                           |              | 24 | 302.81     | 213.304     | 12.7124    |
| N 3            | 5709.39                           |              | 24 | 330.52     | 312.057     | 6.84228    |
| N 4            | 5096.53                           |              | 24 | 57.8488    | 252.934     | 22.0597    |
| N 5            | 4306.17                           |              | 24 | 138.081    | 101.968     | 9.61722    |
| N 6            | 4859.12                           |              | 24 | 162.511    | 157.64      | 28.1226    |
| N 7            | 3888.63                           |              | 24 | 314.969    | 236.368     | 22.5831    |
| N 8            | 4137.98                           |              | 24 | 210.887    | 128.841     | 15.0736    |
| N 9            | 4133.33                           |              | 24 | 445.687    | 483.852     | 9.32005    |
| N 10           | 4155.59                           |              | 24 | 276.422    | 403.987     | 8.73183    |
| Average value  | of the volume of the nuclei       |              |    |            | 4921.984125 |            |
| Standard devia | ation of the average value of the |              |    |            | 10/8 050000 |            |
| volume of nucl | ei                                |              |    |            | 1007.258082 |            |

## **B.5.** Analysis of the effect of FOXO expression in the whole salivary glands of YFP tagged Mi-2<sup>CPTI-000232.</sup>

| Cont A    |             |                |            |               |              |
|-----------|-------------|----------------|------------|---------------|--------------|
| Name      | Voxel Count | Volume (オ m ウ) | Centroid Z | Mean (Ch3-T1) | Sum (Ch3-T1) |
| Object 15 | 31881       | 5202.38        | 24.425     | 36.0363       | 1.15E+06     |
| Object 13 | 32314       | 5273.04        | 22.5145    | 41.6159       | 1.34E+06     |
| Object 12 | 24634       | 4019.81        | 20.5255    | 38.193        | 940846       |
| Object 10 | 31780       | 5185.9         | 19.8668    | 40.1613       | 1.28E+06     |
| Object 8  | 31251       | 5099.58        | 19.5871    | 38.9346       | 1.22E+06     |
| Object 5  | 29409       | 4799           | 17.4124    | 39.0328       | 1.15E+06     |
| Object 3  | 32159       | 5247.75        | 16.8994    | 41.5338       | 1.34E+06     |
| Object 6  | 30833       | 5031.37        | 16.8562    | 45.1009       | 1.39E+06     |
| Object 2  | 32521       | 5306.82        | 15.4246    | 41.4935       | 1.35E+06     |

| Expt A    |             |                           |            |               |              |
|-----------|-------------|---------------------------|------------|---------------|--------------|
| Name      | Voxel Count | Volume (µm <sup>3</sup> ) | Centroid Z | Mean (Ch3-T1) | Sum (Ch3-T1) |
| Object 61 | 1913        | 312.166                   | 75.7156    | 98.0831       | 187633       |
| Object 59 | 2063        | 336.643                   | 70.5177    | 66.0388       | 136238       |
| Object 54 | 3474        | 566.892                   | 66.8601    | 106.03        | 368348       |
| Object 57 | 5210        | 850.175                   | 66.3315    | 84.7261       | 441423       |

| ContB     |             |                |            |               |              |
|-----------|-------------|----------------|------------|---------------|--------------|
| Name      | Voxel Count | Volume (才 m ウ) | Centroid Z | Mean (Ch3-T1) | Sum (Ch3-T1) |
| Object 48 | 37761       | 6161.89        | 70.0909    | 104.61        | 3.95E+06     |
| Object 45 | 40668       | 6636.26        | 70.0565    | 93.6996       | 3.81E+06     |
| Object 43 | 46486       | 7585.65        | 69.8131    | 109.71        | 5.10E+06     |
| Object 44 | 44879       | 7323.42        | 68.6141    | 119.723       | 5.37E+06     |
| Object 41 | 42676       | 6963.93        | 67.9987    | 94.108        | 4.02E+06     |
| Object 42 | 43156       | 7042.25        | 66.5385    | 103.563       | 4.47E+06     |
| Object 40 | 46822       | 7640.48        | 66.4077    | 74.1274       | 3.47E+06     |
| Object 39 | 40866       | 6668.57        | 65.4502    | 99.4989       | 4.07E+06     |
| Object 38 | 59577       | 9721.86        | 63.4074    | 94.5012       | 5.63E+06     |
| Object 36 | 29626       | 4834.41        | 62.97      | 84.0115       | 2.49E+06     |
| Object 35 | 42979       | 7013.37        | 60.8811    | 75.4185       | 3.24E+06     |

| Expt B    |             |                           |            |         |               |              |
|-----------|-------------|---------------------------|------------|---------|---------------|--------------|
| Name      | Voxel Count | Volume (µm <sup>3</sup> ) | Centroid Z |         | Mean (Ch3-T1) | Sum (Ch3-T1) |
| Object 48 | 2174        | 354.756                   |            | 76.8878 | 64.6375       | 140522       |
| Object 49 | 7699        | 1256.33                   |            | 74.6084 | 73.5711       | 566424       |
| Object 44 | 5631        | 918.874                   |            | 71.5212 | 58.4218       | 328973       |
| Object 47 | 5594        | 912.837                   |            | 70.5694 | 70.1144       | 392220       |
| Object 46 | 2942        | 480.08                    |            | 69.4585 | 71.9643       | 211719       |
| Object 45 | 4654        | 759.446                   |            | 69.2293 | 69.2295       | 322194       |
| Object 41 | 1922        | 313.635                   |            | 68.6514 | 64.5812       | 124125       |
| Object 43 | 3900        | 636.407                   |            | 67.188  | 69.6141       | 271495       |
| Cont C    |             |                           |            |         |               |              |
| Name      | Voxel Count | Volume (µm <sup>3</sup> ) | Centroid Z |         | Mean (Ch3-T1) | Sum (Ch3-T1) |
| Object 26 | 38109       | 6218.68                   |            | 70.9409 | 46.5116       | 1.77E+06     |
| Object 27 | 34794       | 5677.73                   |            | 70.254  | 42.448        | 1.48E+06     |
| Object 25 | 35241       | 5750.67                   |            | 67.1465 | 36.7517       | 1.30E+06     |
| Object 24 | 37213       | 6072.47                   |            | 63.5125 | 28.484        | 1.06E+06     |
| Object 23 | 38724       | 6319.03                   |            | 60.9162 | 42.7212       | 1.65E+06     |
| Expt C    |             |                           |            |         |               |              |
| Name      | Voxel Count | Volume (才 m ウ)            | Centroid Z |         | Mean (Ch3-T1) | Sum (Ch3-T1) |
| Object 88 | 5105        | 833.041                   |            | 78.8641 | 73.7324       | 376404       |
| Object 95 | 9783        | 1596.4                    |            | 77.8684 | 91.096        | 891192       |
| Object 93 | 2298        | 374.991                   |            | 76.2245 | 59.1131       | 135842       |
| Object 91 | 4298        | 701.353                   |            | 75.617  | 91.1519       | 391771       |
| Object 92 | 1870        | 305.149                   |            | 75.3305 | 27.9754       | 52314        |
| Object 86 | 2746        | 448.096                   |            | 71.8245 | 33.2436       | 91287        |
| Object 90 | 4767        | 777.886                   |            | 71.0755 | 87.935        | 419186       |
| Object 87 | 7059        | 1151.9                    |            | 70.9168 | 95.5135       | 674230       |
| Object 83 | 2286        | 373.033                   |            | 70.5717 | 64.4654       | 147368       |
| Object 82 | 1614        | 263.375                   |            | 69.6729 | 35.1846       | 56788        |
| Cont D    |             |                           |            |         |               |              |
| Name      | Voxel Count | Volume (µm <sup>3</sup> ) | Centroid Z |         | Mean (Ch3-T1) | Sum (Ch3-T1) |
| Object 26 | 39348       | 6420.86                   |            | 67.1587 | 54.3412       | 2.14E+06     |
| Object 25 | 35681       | 5822.47                   |            | 66.6211 | 48.5976       | 1.73E+06     |
| Object 23 | 39793       | 6493.48                   |            | 58.7591 | 53.2384       | 2.12E+06     |
| Object 22 | 33547       | 5474.25                   |            | 57.272  | 44.3536       | 1.49E+06     |
| Exp D     |             |                           |            |         |               |              |
| Name      | Voxel Count | Volume (µm <sup>3</sup> ) | Centroid Z |         | Mean (Ch3-T1) | Sum (Ch3-T1) |
| Object 35 | 6505        | 1061.49                   |            | 32.7244 | 97.5127       | 634320       |
| Object 29 | 2694        | 439.611                   |            | 31.3486 | 72.3589       | 194935       |
| Object 34 | 2754        | 449.401                   |            | 30.7197 | 66.4942       | 183125       |
| Object 23 | 1041        | 169.872                   |            | 30.4947 | 35.2968       | 36744        |
| Object 14 | 1470        | 239.877                   |            | 29.0156 | 36.732        | 53996        |
| Cont E    |             |                           |            |         |               |              |
| Name      | Voxel Count | Volume (µm <sup>3</sup> ) | Centroid Z |         | Mean (Ch3-T1) | Sum (Ch3-T1) |
| Object 33 | 42655       | 17266.4                   |            | 130.502 | 115.714       | 4.94E+06     |
| Object 35 | 43472       | 17597.1                   |            | 129.228 | 128.01        | 5.56E+06     |
| Object 34 | 50963       | 20629.4                   |            | 128.573 | 77.4575       | 3.95E+06     |

| Name           | Voxel Count           | Volume (µm <sup>3</sup> )   | Centroid Z          | Mean (Ch3-T1) | Sum (Ch3-T1) |
|----------------|-----------------------|-----------------------------|---------------------|---------------|--------------|
| Object 58      | 4782                  | 1935.71                     | 57.2279             | 89.8137       | 429489       |
| Object 59      | 6375                  | 2580.55                     | 55.3074             | 87.9973       | 560983       |
| Object 54      | 3786                  | 1532.54                     | 53.3761             | 74.5343       | 282187       |
| Object 57      | 5453                  | 2207.33                     | 53.2536             | 80.0776       | 436663       |
| Object 55      | 4457                  | 1804.16                     | 52.188              | 77.3177       | 344605       |
| Object 53      | 6212                  | 2514.57                     | 49.3158             | 66.9316       | 415779       |
| Ratio of avera | ge intensity of YFP   | tagged Mi-2 in Experime     | ental A/ Control A  |               | 2.2          |
| Ratio of avera | ge intensity of YFP   | tagged Mi-2 in Experime     | ental B/ Control B  |               | 0.7          |
| Ratio of avera | ge intensity of YFP   | tagged Mi-2 in Experime     | ental C / Control C |               | 1.67         |
| Ratio of avera | ge intensity of YFP   | tagged Mi-2 in Experime     | ental D / Control D |               | 1.23         |
| Ratio of avera | ge intensity of YFP   | tagged Mi-2 in Experime     | ental E / Control E |               | 0.74         |
| Average value  | of the ratio of 5 exp | oerimental / 5 control sali | vary glands         |               | 1.308        |

## B.6. Visualization of endogenous Mi-2 protein in a single cell clones expressing FOXO

## For the data of Visualization of Mi-2 protein in GFP marked control clone cells refer Appendix No B.2 (i)

## B.6. (i) Visualization of Mi-2 protein in single cell clones expressing FOXO

| Img No 1   | Voxel<br>Count | Volume<br>(µm³) | Mean<br>(ChS2-<br>T2) | Sum<br>(ChS2-T2) | Mean (Ch3-<br>T3) | Min (Ch2-<br>T4) | Centroid<br>X | Centroid Y | Centroid<br>Z |
|------------|----------------|-----------------|-----------------------|------------------|-------------------|------------------|---------------|------------|---------------|
| Clone cell | 5926           | 2398.8          | 49.6775               | 294389           | 75.1618           | 26               | 283.728       | 279.731    | 14.5257       |
| Wt 1       | 12524          | 5069.61         | 51.9359               | 650445           | 1.75591           | 26               | 204.025       | 453.549    | 16.7442       |
| Wt 2       | 11915          | 4823.09         | 51.2926               | 611151           | 1.8073            | 26               | 200.822       | 373.802    | 15.6193       |
| Wt 3       | 5783           | 2340.91         | 71.452                | 413207           | 4.53761           | 26               | 367.516       | 484.065    | 16.9395       |
| Wt 4       | 11616          | 4702.06         | 45.6989               | 530839           | 1.19249           | 26               | 146.313       | 140.711    | 19.3238       |
| Wt 5       | 11405          | 4616.65         | 51.7989               | 590766           | 1.81482           | 26               | 200.966       | 373.643    | 15.7554       |
| Wt 6       | 12158          | 4921.46         | 59.2497               | 720358           | 1.899             | 26               | 244.909       | 174.154    | 13.7122       |
| Wt 7       | 9716           | 3932.96         | 49.2633               | 478642           | 1.40675           | 26               | 320.911       | 243.523    | 19.2008       |
| Wt 8       | 6781           | 2744.89         | 86.3367               | 585449           | 1.36794           | 26               | 256.284       | 65.1146    | 16.5195       |
| Wt 9       | 8147           | 3297.84         | 36.0713               | 293873           | 1.04812           | 26               | 167.601       | 280.355    | 25.001        |
| Wt 10      | 4494           | 1819.13         | 44.3981               | 199525           | 1.45972           | 26               | 347.175       | 321.852    | 24.9395       |
|            |                |                 |                       |                  |                   |                  |               |            |               |

| Img No 2   | Voxel<br>Count | Volume<br>(µm³) | Mean<br>(ChS2-<br>T2) | Sum<br>(ChS2-T2) | Mean (Ch3-<br>T3) | Min (Ch2-<br>T4) | Centroid<br>X | Centroid Y | Centroid<br>Z |
|------------|----------------|-----------------|-----------------------|------------------|-------------------|------------------|---------------|------------|---------------|
| Clone cell | 4031           | 1631.72         | 56.3659               | 227211           | 54.2803           | 26               | 411.026       | 344.151    | 16.6075       |
| Wt 1       | 7965           | 3224.17         | 162.892               | 1.30E+06         | 0.283365          | 26               | 57.1547       | 185.962    | 9.78293       |
| Wt 2       | 12462          | 5044.51         | 50.2859               | 626663           | 0.179024          | 26               | 263.574       | 372.198    | 14.1944       |
| Wt 3       | 11982          | 4850.21         | 57.0273               | 683301           | 0.13345           | 26               | 319.826       | 254.969    | 12.526        |
| Wt 4       | 13807          | 5588.96         | 96.4381               | 1.33E+06         | 0.176505          | 26               | 234.058       | 246.358    | 9.52937       |
| Wt 5       | 10972          | 4441.38         | 72.4608               | 795040           | 0.155031          | 26               | 190.322       | 309.921    | 13.5886       |
| Wt 6       | 6730           | 2724.25         | 77.8829               | 524152           | 0.175632          | 26               | 133.884       | 323.739    | 18.3195       |
| Wt 7       | 6233           | 2523.07         | 43.3003               | 269891           | 0.0657789         | 26               | 261.776       | 223.175    | 27.1943       |
| Wt 8       | 2222           | 899.447         | 149.495               | 332178           | 0.30333           | 26               | 23.5603       | 122.674    | 10.7259       |
| Wt 9       | 3811           | 1542.66         | 94.7798               | 361206           | 0.160588          | 26               | 47.8061       | 309.798    | 21.6106       |
| Wt 10      | 5549           | 2246.19         | 132.363               | 734480           | 0.11876           | 26               | 145.192       | 174.409    | 19.0674       |

| Img No 3   | Voxel<br>Count | Volume<br>(µm³) | Mean<br>(ChS2-<br>T2) | Sum<br>(ChS2-T2) | Mean (Ch3-<br>T3) | Min (Ch2-<br>T4) | Centroid<br>X | Centroid Y | Centroid<br>Z |
|------------|----------------|-----------------|-----------------------|------------------|-------------------|------------------|---------------|------------|---------------|
| Clone cell | 6309           | 2553.83         | 65.1783               | 411210           | 33.119            | 26               | 228.382       | 236.142    | 6.49152       |
| Wt 1       | 9874           | 3996.91         | 31.3227               | 309280           | 0.632874          | 26               | 228.931       | 458.284    | 4.37108       |
| Wt 2       | 12115          | 4904.05         | 32.2943               | 391246           | 0.758729          | 26               | 265.294       | 373.192    | 4.5319        |
| Wt 3       | 11272          | 4562.81         | 43.4707               | 490002           | 0.818045          | 26               | 222.045       | 135.728    | 5.56441       |
| Wt 4       | 11185          | 4527.6          | 93.7366               | 1.05E+06         | 0.77139           | 26               | 239.796       | 70.0352    | 10.0338       |
| Wt 5       | 11076          | 4483.47         | 45.278                | 501499           | 0.660437          | 26               | 304.409       | 140.721    | 5.87306       |
| Wt 6       | 6704           | 2713.72         | 133.328               | 893830           | 0.832339          | 26               | 373.837       | 16.761     | 9.53058       |

| Wt 7       | 6182           | 2502.42            | 55.3874              | 342405             | 0.686024          | 26               | 355.403       | 193.393    | 4.02491       |
|------------|----------------|--------------------|----------------------|--------------------|-------------------|------------------|---------------|------------|---------------|
| Wt 8       | 1539           | 622.975            | 25.575               | 39360              | 0.649123          | 26               | 360.851       | 396.452    | 1.19883       |
| Wt 9       | 8229           | 3331.03            | 18.2867              | 150481             | 0.421801          | 26               | 283.387       | 454.664    | 8.75987       |
| Wt 10      | 2639           | 1068.25            | 40.0955              | 105812             | 0.660856          | 26               | 321.793       | 261.483    | 9.21448       |
|            |                |                    |                      |                    |                   |                  |               |            |               |
| Ima No 4   | Voxel          | Volume             | Min<br>(ChS2-<br>T2) | Mean               | Sum (ChS2-        | Mean             | Centroid      | Controld V | Centroid      |
| Img No 4   | 10469          | (µm <sup>3</sup> ) | 12)                  | (CnS2-12)          | 12)               | (Cn3-13)         | A 452.46      |            | L<br>15 6950  |
| Clone cell | 10408          | 4257.50            | 22<br>22             | 70 0275            | 1.11E+00          | 0 657101         | 452.40        | 327.70     | 43.0839       |
|            | 10151          | 4100.95<br>5249.11 | 22<br>22             | 78 2407            | 1.04E+06          | 0.05/191         | 240.275       | 213.074    | 42.3127       |
| WL 2       | 13212          | 5000.24            | 22                   | 70.3427<br>82.0002 | 1.04E+00          | 0.039024         | 221 522       | 222.046    | 26.0607       |
| WES        | 14370          | 5900.24<br>7995 24 | 22<br>22             | 82.0095            | 1.20E+06          | 1 4008           | 255.005       | 255.040    | 12.0562       |
| WE 4       | 19480          | 7885.54<br>8466.00 | 22<br>22             | 98.0917            | 1.92E+06          | 1.4098           | 255.995       | 194.300    | 12.9302       |
|            | 12057          | 8400.22<br>4990.57 | 22<br>22             | 95.0971            | 1.99E+06          | 1.69/10          | 275.20        | 215.141    | 10.0046       |
|            | 12057          | 4880.57            | 22<br>22             | 84.9721<br>74.0866 | 1.02E+06          | 1.03291          | 373.39        | 414 629    | 11.512        |
| WL /       | 15070          | 4000.15            | 22<br>22             | 74.0800            | 1.21E+06          | 1.60027          | 4/1.20/       | 414.028    | 0.06519       |
|            | 12222          | 0105.85            | 22<br>22             | 80.0010            | 1.31E+06          | 1.62200          | 274.028       | 200.294    | 0.90518       |
| Wt 9       | 12232          | 4951.41            | 33                   | 84.4053            | 1.03E+06          | 1.03309          | 374.928       | 339.581    | 9.88645       |
| Wt 10      | 16867          | 6827.62            | 33                   | 94.3196            | 1.59E+06          | 1.11282          | 402.08        | 2/8.6/5    | 26.2702       |
| Img No 5   | Voxel<br>Count | Volume<br>(µm³)    | Min<br>(ChS2-<br>T2) | Mean<br>(ChS2-T2)  | Sum (ChS2-<br>T2) | Mean<br>(Ch3-T3) | Centroid<br>X | Centroid Y | Centroid<br>Z |
| Clone cell | 12821          | 5189.84            | 27                   | 56.7188            | 727192            | 111.852          | 231.773       | 389.54     | 8.53288       |
| Wt 1       | 13638          | 5520.55            | 27                   | 59.5908            | 812700            | 0.557633         | 201.071       | 218.046    | 13.4928       |
| Wt 2       | 16085          | 6511.08            | 27                   | 80.3816            | 1.29E+06          | 0.870314         | 20.8121       | 80.8275    | 7.58781       |
| Wt 3       | 14627          | 5920.89            | 27                   | 56.4721            | 826017            | 0.353388         | 312.262       | 180.041    | 16.2528       |
| Wt 4       | 15047          | 6090.9             | 27                   | 66.1061            | 994698            | 0.585034         | 140.411       | 321.212    | 11.163        |
| Wt 5       | 12858          | 5204.81            | 27                   | 59.7763            | 768604            | 0.449603         | 305.727       | 478.685    | 15.1924       |
| Wt 6       | 11386          | 4608.96            | 27                   | 49.2402            | 560649            | 0.259441         | 354.742       | 359.779    | 17.6587       |
| Wt 7       | 12724          | 5150.57            | 27                   | 56.8402            | 723235            | 0.541889         | 101.507       | 236.225    | 14.9732       |
| Wt 8       | 11370          | 4602.48            | 27                   | 74.0076            | 841466            | 2.08971          | 201.332       | 431.815    | 11.537        |
| Wt 9       | 13420          | 5432.31            | 27                   | 55.9759            | 751197            | 0.466841         | 220.797       | 102.485    | 15.3709       |
| Wt 10      | 1875           | 758.985            | 27                   | 45.9237            | 86107             | 0.149333         | 368.123       | 255.357    | 30.992        |
|            | Voxel          | Volume             | Mean<br>(ChS2-       | Sum                | Mean (Ch3-        | Min (Ch2-        | Centroid      |            | Centroid      |
| Img No 6   | Count          | (μm²)              | 12)                  | (Ch82-12)          | 13)               | 14)              | <b>X</b>      | Centroid Y | L<br>10.2407  |
| Clone cell | 6140           | 2485.42            | 68.6511              | 421518             | 55.8936           | 27               | 234.257       | 189.536    | 10.3487       |
| Wt 1       | 7019           | 2841.23            | 133.959              | 940260             | 1.24605           | 27               | 228.804       | 369.427    | 11.5736       |
| Wt 2       | 9267           | 3/51.21            | 54.647               | 506414             | 0.727959          | 27               | 299.465       | 331.77     | 15.0627       |
| Wt 3       | 7951           | 3218.5             | 58.8676              | 468056             | 1.59401           | 27               | 337.06        | 60.5629    | 16.0509       |
| wt 4       | 7673           | 3105.97            | 18.1108              | 138964             | 1.01251           | 27               | 371.73        | 211.195    | 13.9253       |
| Wt 5       | 5684           | 2300.84            | 91.8812              | 522253             | 0.937544          | 27               | 295.445       | 499.28     | 13.1816       |
| Wt 6       | 5337           | 2160.37            | 92.6457              | 494450             | 2.3961            | 27               | 236.2         | 14.2147    | 12.1447       |
| Wt 7       | 5317           | 2152.28            | 22.1896              | 117982             | 0.484484          | 27               | 293.854       | 419.962    | 30.2915       |
| Wt 8       | 5831           | 2360.34            | 26.6892              | 155625             | 0.526325          | 27               | 174.058       | 221.053    | 29.2072       |

| Img No 8   | Voxel<br>Count | Volume<br>(µm³) | Mean<br>(ChS2-<br>T2) | Sum<br>(ChS2-T2) | Mean (Ch3-<br>T3) | Min (Ch2-<br>T4) | Centroid<br>X | Centroid Y | Centroid<br>Z |
|------------|----------------|-----------------|-----------------------|------------------|-------------------|------------------|---------------|------------|---------------|
| Clone cell | 1421           | 525.06          | 57.3983               | 81563            | 134.306           | 21               | 355.334       | 251.882    | 37.0591       |
| Wt 1       | 12325          | 4554.09         | 63.5747               | 783558           | 1.10166           | 21               | 186.894       | 168.546    | 31.925        |
| Wt 2       | 13543          | 5004.14         | 65.0744               | 881303           | 0.594846          | 21               | 240.414       | 264.086    | 34.618        |
| Wt 3       | 12054          | 4453.96         | 43.7328               | 527155           | 0.388087          | 21               | 154.396       | 328.9      | 29.5766       |
| Wt 4       | 13875          | 5126.82         | 51.9299               | 720527           | 1.89477           | 21               | 145.61        | 132.192    | 20.7063       |

0.980657

0.58229

27

27

191.514

168.235

460.05

330.141

771668

264894

Wt 9

Wt 10

6359

4472

2574.07

1810.23

121.351

59.2339

16.1038

27.0485

| Wt 5  | 17071 | 6307.74 | 69.2098 | 1.18E+06 | 1.63828  | 21 | 286.289 | 236.095 | 14.8433 |
|-------|-------|---------|---------|----------|----------|----|---------|---------|---------|
| Wt 6  | 11560 | 4271.42 | 57.446  | 664076   | 1.96765  | 21 | 166.577 | 240.912 | 16.2061 |
| Wt 7  | 15473 | 5717.28 | 75.304  | 1.17E+06 | 0.760551 | 21 | 343.064 | 314.831 | 14.6899 |
| Wt 8  | 15948 | 5892.79 | 52.7918 | 841924   | 0.364623 | 21 | 305.497 | 387.945 | 22.9689 |
| Wt 9  | 15229 | 5627.12 | 68.4596 | 1.04E+06 | 1.12732  | 21 | 355.36  | 217.359 | 21.9091 |
| Wt 10 | 12201 | 4508.27 | 45.6923 | 557492   | 0.304319 | 21 | 406.471 | 262.782 | 28.7749 |

| Img No 9   | Voxel<br>Count | Volume<br>(µm³) | Min<br>(ChS2-<br>T2) | Mean<br>(ChS2-T2) | Sum (ChS2-<br>T2) | Mean<br>(Ch3-T3) | Centroid<br>X | Centroid Y | Centroid<br>Z |
|------------|----------------|-----------------|----------------------|-------------------|-------------------|------------------|---------------|------------|---------------|
| Clone cell | 1956           | 791.773         | 30                   | 56.7459           | 110995            | 161.799          | 370.33        | 218.358    | 7.32515       |
| Wt 1       | 9076           | 3673.89         | 30                   | 73.0263           | 662787            | 1.43643          | 61.1887       | 172.685    | 12.9802       |
| Wt 2       | 14497          | 5868.27         | 30                   | 63.2197           | 916496            | 1.60833          | 141.671       | 329.52     | 8.1143        |
| Wt 3       | 12837          | 5196.31         | 30                   | 63.4625           | 814668            | 1.62102          | 243.821       | 338.514    | 11.4434       |
| Wt 4       | 10809          | 4375.39         | 30                   | 71.3652           | 771386            | 1.6786           | 163.418       | 228.284    | 11.5409       |
| Wt 5       | 6680           | 2704.01         | 30                   | 49.0921           | 327935            | 1.42051          | 153.951       | 408.168    | 14.6097       |
| Wt 6       | 14115          | 5713.64         | 30                   | 98.0985           | 1.38E+06          | 1.53688          | 409.208       | 131.858    | 14.9501       |
| Wt 7       | 12282          | 4971.65         | 30                   | 71.975            | 883997            | 2.01124          | 316.695       | 175.099    | 12.331        |
| Wt 8       | 7470           | 3023.79         | 30                   | 74.2779           | 554856            | 1.06747          | 347.933       | 119.697    | 29.0462       |
| Wt 9       | 5310           | 2149.44         | 30                   | 54.1989           | 287796            | 1.40904          | 35.2719       | 438.408    | 26.3774       |
| Wt 10      | 6647           | 2690.65         | 30                   | 49,1405           | 326637            | 1.43719          | 153.926       | 408.087    | 14.6597       |

| Img No 10  | Voxel<br>Count | Volume<br>(µm³) | Mean<br>(ChS2-<br>T2) | Sum<br>(ChS2-T2) | Mean (Ch3-<br>T3) | Min (Ch2-<br>T4) | Centroid<br>X | Centroid Y | Centroid<br>Z |
|------------|----------------|-----------------|-----------------------|------------------|-------------------|------------------|---------------|------------|---------------|
| Clone cell | 12652          | 5121.43         | 20.3615               | 257614           | 24.4991           | 30               | 230.162       | 220.64     | 12.8897       |
| Wt 1       | 13263          | 5368.75         | 56.0877               | 743891           | 2.83314           | 30               | 259.755       | 389.231    | 11.2082       |
| Wt 2       | 12012          | 4862.36         | 27.1879               | 326581           | 1.14311           | 30               | 142.511       | 265.623    | 12.9088       |
| Wt 3       | 13311          | 5388.18         | 38.6086               | 513919           | 2.18894           | 30               | 315.96        | 294.045    | 13.314        |
| Wt 4       | 12435          | 5033.59         | 21.1697               | 263245           | 1.17982           | 30               | 268.577       | 52.6897    | 15.3642       |
| Wt 5       | 11803          | 4777.76         | 25.4222               | 300058           | 1.16242           | 30               | 294.699       | 131.011    | 18.4865       |
| Wt 6       | 8203           | 3320.51         | 16.8342               | 138091           | 1.69657           | 30               | 108.99        | 34.6136    | 12.7791       |
| Wt 7       | 12843          | 5198.74         | 90.3843               | 1.16E+06         | 2.02281           | 30               | 307.408       | 438.677    | 17.1863       |
| Wt 8       | 8344           | 3377.58         | 71.7765               | 598903           | 2.51953           | 30               | 431.846       | 343.675    | 13.3842       |
| Wt 9       | 10357          | 4192.43         | 38.7801               | 401645           | 1.08999           | 30               | 148.415       | 322.919    | 23.2528       |
| Wt 10      | 10806          | 4374.18         | 52.9699               | 572393           | 2.4777            | 30               | 217.675       | 375.933    | 24.7906       |

Average intensity of Mi-2 localization in 10 non adjacent wild type cells

|           | 54.749 |
|-----------|--------|
| Img No 1  | 74     |
|           | 93.692 |
| Img No 2  | 51     |
|           | 51.877 |
| Img No 3  | 49     |
|           | 85.076 |
| Img No 4  | 35     |
|           | 60.431 |
| Img No 5  | 45     |
|           | 67.957 |
| Img No 6  | 5      |
|           | 59.321 |
| Img No 8  | 53     |
|           | 66.785 |
| Img No 9  | 66     |
|           | 43.922 |
| Img No 10 | 11     |

Intensity of Mi-2 localization in clone cell V average intensity of Mi-2 localization in 10 non adjacent wild type cells

| Img No 1 | 0.9  |
|----------|------|
| Img No 2 | 0.6  |
| Img No 3 | 1.26 |
| Img No 4 | 1.25 |

| Img No 5  | 0.94 |
|-----------|------|
| Img No 6  | 1.01 |
| Img No 8  | 0.97 |
| Img No 9  | 0.85 |
| Img No 10 | 0.46 |

Average value of the ratio of the clone cell V wild type cells acquired from Img No 1 to Img No 10  $\,$ Std Dev of the average ratio of clone cell / wild type cell

## 0.91555556 0.26330169

| B.7. Visualization of Dref protein in a single cell clones expr | essing FOXO |
|-----------------------------------------------------------------|-------------|
| B.7 (i) Visualization of Dref protein in GFP marked control     | clone cells |

| Img<br>No 1 | Voxel<br>Count | Volume<br>(µm <sup>3</sup> ) | Centroid X | Centroid<br>Y | Centroid<br>Z | Mean<br>(ChS1-T1) | Sum<br>(ChS1-T1) | Mean<br>(Ch3-T3) | Min (Ch2-<br>T4) |
|-------------|----------------|------------------------------|------------|---------------|---------------|-------------------|------------------|------------------|------------------|
| cell        | 12537          | 5074.87                      | 377.334    | 278.797       | 17.5966       | 77.1832           | 967646           | 27.3561          | 28               |
| Wt 1        | 9483           | 3838.64                      | 359.095    | 81.8614       | 20.5164       | 54.1479           | 513485           | 2.68544          | 28               |
| Wt 2        | 11642          | 4712.59                      | 263.146    | 193.081       | 13.9042       | 63.9853           | 744917           | 2.60651          | 28               |
| Wt 3        | 12018          | 4864.79                      | 185.698    | 393.332       | 11.9659       | 35.7308           | 429413           | 3.42802          | 28               |
| Wt 4        | 12489          | 5055.44                      | 182.309    | 274.892       | 13.9064       | 30.7777           | 384383           | 2.53503          | 28               |
| Wt 5        | 11620          | 4703.68                      | 348.397    | 462.126       | 16.0906       | 52.1121           | 605543           | 3.6432           | 28               |
| Wt 6        | 10615          | 4296.86                      | 327.269    | 152.408       | 18.7703       | 91.6864           | 973251           | 2.45455          | 28               |
| Wt 7        | 4020           | 1627.26                      | 151.026    | 189.678       | 28.4408       | 5.951             | 23923            | 1.17438          | 28               |
| Wt 8        | 10639          | 4306.58                      | 245.377    | 12.1003       | 18.4738       | 64.1035           | 681997           | 2.30228          | 28               |
| Wt 9        | 10148          | 4107.83                      | 192.637    | 104.298       | 21.6854       | 46.2587           | 469433           | 2.01537          | 28               |
| Wt 10       | 10976          | 4442.99                      | 253.629    | 500.166       | 12.9804       | 39.9289           | 438260           | 4.80603          | 28               |
| Img<br>No 2 | Voxel<br>Count | Volume<br>(µm³)              | Centroid X | Centroid<br>Y | Centroid<br>Z | Mean<br>(ChS1-T1) | Sum<br>(ChS1-T1) | Mean<br>(Ch3-T3) | Min (Ch2-<br>T4) |
| cell        | 13725          | 5555.77                      | 189.211    | 278.667       | 10.508        | 110.242           | 1.51E+06         | 18.7746          | 28               |
| Wt 1        | 8595           | 3479.19                      | 48.7956    | 106.63        | 9.33426       | 102.433           | 880409           | 2.82664          | 28               |
| Wt 2        | 12677          | 5131.55                      | 331.792    | 442.478       | 13.3376       | 43.1782           | 547370           | 2.07675          | 28               |
| Wt 3        | 10986          | 4447.04                      | 92.478     | 210.866       | 9.60304       | 26.8934           | 295451           | 2.429            | 28               |
| Wt 4        | 10355          | 4191.62                      | 164.653    | 464.446       | 13.6862       | 42.1197           | 436150           | 2.14505          | 28               |
| Wt 5        | 13742          | 5562.65                      | 207.951    | 167.658       | 13.5564       | 112.788           | 1.55E+06         | 2.53631          | 28               |
| Wt 6        | 12488          | 5055.04                      | 331.826    | 442.486       | 13.3804       | 43.5698           | 544100           | 2.09241          | 28               |
| Wt 7        | 2683           | 1086.06                      | 248.127    | 42.8763       | 27.1979       | 38.9307           | 104451           | 2.83451          | 28               |
| Wt 8        | 7437           | 3010.44                      | 302.292    | 228.063       | 22.551        | 21.6669           | 161137           | 1.53315          | 28               |
| Wt 9        | 1598           | 646.857                      | 99.3811    | 299.512       | 27.1658       | 17.0663           | 27272            | 1.38173          | 28               |
| Wt 10       | 4257           | 1723.2                       | 116.315    | 8.9495        | 15.1607       | 83.373            | 354919           | 2.74395          | 28               |
| Img<br>No 3 | Voxel<br>Count | Volume<br>(µm³)              | Centroid X | Centroid<br>Y | Centroid<br>Z | Mean<br>(ChS1-T1) | Sum<br>(ChS1-T1) | Mean<br>(Ch3-T3) | Min (Ch2-<br>T4) |
| cell        | 13213          | 5348.51                      | 125.298    | 81.419        | 15.3995       | 48.1247           | 635872           | 34.6765          | 28               |
| Wt 1        | 13557          | 5487.76                      | 272.629    | 473.451       | 16.8263       | 59.3622           | 804773           | 3.89341          | 28               |
| Wt 2        | 12663          | 5125.88                      | 332.65     | 285.733       | 19.6825       | 36.6146           | 463651           | 3.33112          | 28               |
| Wt 3        | 10549          | 4270.15                      | 205.935    | 138.755       | 25.9397       | 28.2233           | 297728           | 2.73514          | 28               |
| Wt 4        | 9423           | 3814.35                      | 22.5627    | 62.1387       | 11.9434       | 57.7552           | 544227           | 4.76992          | 28               |
| Wt 5        | 9954           | 4029.3                       | 423.482    | 439.749       | 17.879        | 28.3051           | 281749           | 3.36528          | 28               |
| Wt 6        | 13952          | 5647.65                      | 352.733    | 392.638       | 14.9992       | 39.9717           | 557685           | 3.80275          | 28               |
| Wt 7        | 14209          | 5751.69                      | 255.721    | 359.249       | 14.0899       | 33.7422           | 479443           | 3.90647          | 28               |
| Wt 8        | 12965          | 5248.13                      | 223.967    | 242.7         | 17.0882       | 39.3606           | 510310           | 3.77817          | 28               |
| Wt 9        | 10167          | 4115.52                      | 52.3317    | 184.29        | 16.9343       | 33.5659           | 341264           | 3.49641          | 28               |
| Wt 10       | 13705          | 5547.67                      | 163.323    | 346.92        | 15.7745       | 79.6242           | 1.09E+06         | 4.40803          | 28               |
| Img<br>No 4 | Voxel<br>Count | Volume<br>(µm³)              | Centroid X | Centroid<br>Y | Centroid<br>Z | Mean<br>(ChS1-T1) | Sum<br>(ChS1-T1) | Mean<br>(Ch3-T3) | Min (Ch2-<br>T4) |
| Clone       | 12393          | 5016.58                      | 108.779    | 79.0319       | 15.1173       | 37.8518           | 469097           | 23.1597          | 28               |

| cell  |       |         |         |         |         |         |          |         |    |
|-------|-------|---------|---------|---------|---------|---------|----------|---------|----|
| Wt 1  | 14981 | 6064.19 | 197.87  | 193.63  | 12.981  | 74.4835 | 1.12E+06 | 4.59182 | 28 |
| Wt 2  | 12747 | 5159.88 | 335.364 | 247.105 | 27.2068 | 24.0705 | 306827   | 3.12921 | 28 |
| Wt 3  | 11589 | 4691.13 | 413.58  | 369.367 | 22.9555 | 36.9629 | 428363   | 4.83001 | 28 |
| Wt 4  | 13575 | 5495.05 | 190.161 | 94.3954 | 11.811  | 62.1421 | 843579   | 4.15263 | 28 |
| Wt 5  | 11433 | 4627.98 | 129.733 | 165.207 | 17.2416 | 52.388  | 598952   | 4.05528 | 28 |
| Wt 6  | 14141 | 5724.16 | 267.585 | 184.327 | 15.5676 | 39.9018 | 564252   | 3.84697 | 28 |
| Wt 7  | 13774 | 5575.6  | 281.987 | 347.258 | 34.2766 | 47.3772 | 652574   | 3.67076 | 28 |
| Wt 8  | 9289  | 3760.11 | 180.812 | 238.778 | 35.0764 | 49.5626 | 460387   | 3.08752 | 28 |
| Wt 9  | 12298 | 4978.13 | 374.037 | 449.507 | 28.541  | 42.649  | 524498   | 4.85046 | 28 |
| Wt 10 | 6874  | 2782.54 | 237.471 | 116.882 | 34.1138 | 6.31001 | 43375    | 2.08525 | 28 |

| Img<br>No 5<br>Clone | Voxel<br>Count | Volume<br>(µm³) | Centroid X | Centroid<br>Y | Centroid<br>Z | Mean<br>(ChS1-T1) | Sum<br>(ChS1-T1) | Mean<br>(Ch3-T3) | Min (Ch2-<br>T4) |
|----------------------|----------------|-----------------|------------|---------------|---------------|-------------------|------------------|------------------|------------------|
| cell                 | 12826          | 5191.86         | 173.872    | 81.2192       | 21.6187       | 45.5204           | 583845           | 19.6176          | 28               |
| Wt 1                 | 10794          | 4369.32         | 78.6402    | 14.7472       | 18.6827       | 45.2675           | 488617           | 5.03178          | 28               |
| Wt 2                 | 11401          | 4615.03         | 182.806    | 363.443       | 26.6431       | 36.6784           | 418171           | 3.53294          | 28               |
| Wt 3                 | 14528          | 5880.81         | 229.126    | 178.723       | 19.6211       | 36.1043           | 524523           | 3.9046           | 28               |
| Wt 4                 | 12214          | 4944.13         | 275.857    | 287.76        | 23.5419       | 56.863            | 694525           | 4.09694          | 28               |
| Wt 5                 | 7398           | 2994.65         | 81.1825    | 241.192       | 29.8727       | 28.7931           | 213011           | 2.92985          | 28               |
| Wt 6                 | 3642           | 1474.25         | 36.8671    | 106.013       | 31.9822       | 46.1735           | 168164           | 3.37534          | 28               |
| Wt 7                 | 13518          | 5471.97         | 125.319    | 161.095       | 17.9872       | 44.2779           | 598548           | 4.8866           | 28               |
| Wt 8                 | 12292          | 4975.7          | 272.964    | 394.309       | 17.8211       | 82.228            | 1.01E+06         | 4.582            | 28               |
| Wt 9                 | 3882           | 1571.4          | 225.233    | 463.533       | 32.5546       | 21.797            | 84616            | 2.21381          | 28               |
| Wt 10                | 10309          | 4173            | 78.5861    | 15.5431       | 18.9176       | 43.5723           | 449187           | 4.97934          | 28               |

| Img<br>No 6 | Voxel<br>Count | Volume<br>(µm³)    | Mean<br>(ChS1-T1) | Sum<br>(ChS1-T1) | Mean<br>(Ch3-T3) | Min (Ch2-<br>T4) | Centroid<br>X | Centroid<br>Y | Centroid<br>Z |  |
|-------------|----------------|--------------------|-------------------|------------------|------------------|------------------|---------------|---------------|---------------|--|
| Clone       |                |                    |                   |                  |                  |                  |               |               | 32.38         |  |
| cell        | 9718           | 3933.77            | 47.8345           | 464856           | 21.0777          | 28               | 407.54        | 314.64        | 3             |  |
|             | 15005          |                    | 07.5402           | 1.505.05         | 6 <b>1</b> 70 51 | 20               | 220 61        | 1 67 000      | 16.31         |  |
| Wt 1        | 17097          | 6920.72            | 87.5692           | 1.50E+06         | 6.47851          | 28               | 220.61        | 167.898       | 6             |  |
| 11/4 0      | 1 (2.11        | (574.00            | 40.1.420          | 700146           | 6.56650          | 20               | 215.256       | 252 571       | 12.89         |  |
| wt 2        | 16241          | 6574.22            | 49.1439           | /98146           | 6.56659          | 28               | 215.256       | 253.571       | 12.20         |  |
| 114 2       | 16120          | 6529 90            | 61.0761           | 000612           | 6 6 4 1 4 5      | 20               | 202 707       | 222 176       | 13.30         |  |
| WL S        | 10129          | 0328.89            | 01.9701           | 999013           | 0.04143          | 28               | 282.787       | 355.170       | 11.28         |  |
| Wt 4        | 17725          | 7174 93            | 67 6987           | 1 20E±06         | 7 78307          | 28               | 374 625       | 404 233       | 11.28         |  |
| ****        | 17725          | /1/4./5            | 07.0907           | 1.2012+00        | 1.10507          | 20               | 574.025       | 404.233       | 22 49         |  |
| Wt 5        | 6514           | 2636 81            | 42,6131           | 277582           | 4 42247          | 28               | 145 116       | 27 6939       | 8             |  |
|             | 0511           | 2050.01            | 12.0151           | 211302           | 1.12217          | 20               | 115.110       | 21.0757       | 24.18         |  |
| Wt 6        | 4268           | 1727.65            | 46.8639           | 200015           | 3.84372          | 28               | 137.837       | 252.253       | 2             |  |
| Wt 7        | 9174           | 3713.56            | 30.2893           | 277874           | 5.12666          | 28               | 301.379       | 397.25        | 32.33         |  |
|             |                |                    |                   |                  |                  |                  |               |               | 18.24         |  |
| Wt 8        | 7365           | 2981.29            | 34.802            | 256317           | 4.82811          | 28               | 96.6781       | 173.173       | 2             |  |
|             |                |                    |                   |                  |                  |                  |               |               | 32.57         |  |
| Wt 9        | 10700          | 4331.27            | 36.9605           | 395477           | 3.95178          | 28               | 287.512       | 217.1         | 8             |  |
| Ima         | Voyol          | Volumo             |                   | Controid         | Controid         | Moon             | Sum           | Moon          | Min (Ch2      |  |
| No 7        | Count          | (um <sup>3</sup> ) | Controid X        | V                | 7                | (CbS1-T1)        | (ChS1-T1)     | (Ch3-T3)      | T4)           |  |
| Clone       | Count          | (µ111)             | Centrola A        | 1                | 2                | (Ch51-11)        | (0101-11)     | (015-15)      | 14)           |  |
| cell        | 14826          | 6001.44            | 347.137           | 309.923          | 12.676           | 51.0206          | 756432        | 27.1224       | 28            |  |
| Wt 1        | 13007          | 5265.13            | 176.885           | 245.89           | 12.1716          | 55.505           | 721954        | 9.55155       | 28            |  |
| Wt 2        | 10132          | 4101 35            | 135 929           | 67 8035          | 14 0436          | 65 776           | 666442        | 11 5214       | 28            |  |
|             | 10154          | TIVI.JJ            | 100.141           | 01.0000          | 17.07.00         | 02.110           | 000774        | 11.2414       | 20            |  |

| Wt 1  | 13007 | 5265.13 | 176.885 | 245.89  | 12.1716 | 55.505  | 721954 | 9.55155 | 28 |
|-------|-------|---------|---------|---------|---------|---------|--------|---------|----|
| Wt 2  | 10132 | 4101.35 | 135.929 | 67.8035 | 14.0436 | 65.776  | 666442 | 11.5214 | 28 |
| Wt 3  | 14354 | 5810.38 | 210.721 | 138.556 | 11.5438 | 65.1238 | 934787 | 11.2294 | 28 |
| Wt 4  | 9144  | 3701.42 | 213.131 | 310.724 | 26.0844 | 38.6873 | 353757 | 6.4591  | 28 |
| Wt 5  | 11801 | 4776.95 | 279.501 | 135.065 | 23.8101 | 48.6785 | 574455 | 7.79951 | 28 |
| Wt 6  | 13859 | 5610.01 | 356.079 | 203.892 | 12.7502 | 58.2612 | 807442 | 9.22231 | 28 |
| Wt 7  | 10164 | 4114.3  | 424.537 | 267.964 | 12.4464 | 51.2433 | 520837 | 9.59111 | 28 |
| Wt 8  | 7314  | 2960.65 | 274.263 | 324.891 | 14.4835 | 52.458  | 383678 | 8.36164 | 28 |
| Wt 9  | 5671  | 2295.57 | 369.776 | 389.47  | 27.5486 | 28.6928 | 162717 | 5.389   | 28 |
| Wt 10 | 11475 | 4644.99 | 279.628 | 134.978 | 23.6501 | 49.8126 | 571600 | 7.81935 | 28 |

| Img<br>No 8<br>Clone  | Voxel<br>Count | Volume<br>(µm³) | Centroid X        | Centroid<br>Y    | Centroid<br>Z    | Mean<br>(ChS1-T1) | Sum<br>(ChS1-T1) | Mean<br>(Ch3-T3) | Min (Ch2-<br>T4)       |
|-----------------------|----------------|-----------------|-------------------|------------------|------------------|-------------------|------------------|------------------|------------------------|
| cell                  | 15618          | 6322.04         | 355.341           | 235.025          | 11.2604          | 44.6134           | 696772           | 29.8957          | 28                     |
| Wt 1                  | 15041          | 6088.47         | 292.529           | 172.075          | 14.4875          | 42.5186           | 639522           | 6.2543           | 28                     |
| Wt 2                  | 11501          | 4655.51         | 189.084           | 456.15           | 17.9236          | 45.3553           | 521631           | 6.87323          | 28                     |
| Wt 3                  | 12430          | 5031.56         | 198.322           | 330.373          | 18.4267          | 35.9471           | 446823           | 6.03492          | 28                     |
| Wt 4                  | 14967          | 6058.52         | 296.91            | 474.318          | 13.3031          | 34.7166           | 519604           | 6.36099          | 28                     |
| Wt 5                  | 12609          | 5104.02         | 381.612           | 409.883          | 14.8718          | 27.2877           | 344070           | 5.93735          | 28                     |
| Wt 6                  | 10090          | 4084.35         | 231.77            | 237.227          | 24.1376          | 27.8793           | 281302           | 5.57047          | 28                     |
| Wt 7                  | 6607           | 2674.46         | 406.453           | 167.022          | 24.6911          | 43.0506           | 284435           | 6.01256          | 28                     |
| Wt 8                  | 8938           | 3618.03         | 380.3             | 495.088          | 23.6531          | 31.1232           | 278179           | 17.2517          | 28                     |
| Wt 9                  | 17111          | 6926.39         | 269.011           | 292.252          | 9.96733          | 29.7325           | 508753           | 6.95769          | 28                     |
| Wt 10                 | 5138           | 2079.82         | 423.35            | 12.3854          | 21.6162          | 131.713           | 676739           | 5.91475          | 28                     |
| Img<br>No 11<br>Clone | Voxel<br>Count | Volume<br>(µm³) | Mean<br>(ChS1-T1) | Sum<br>(ChS1-T1) | Mean<br>(Ch3-T3) | Min (Ch2-<br>T4)  | Centroid<br>X    | Centroid<br>Y    | Centroid<br>Z<br>8 524 |
| cell                  | 6177           | 2500.4          | 82.6667           | 510632           | 117.508          | 28                | 400.127          | 412.595          | 2<br>11.18             |
| Wt 1                  | 14232          | 5761            | 66.314            | 943781           | 4.34444          | 28                | 157.131          | 370.754          | 2                      |
| Wt 2                  | 13875          | 5616.49         | 74.1209           | 1.03E+06         | 4.30941          | 28                | 160.762          | 225.75           | 6<br>8 703             |
| Wt 3                  | 13205          | 5345.28         | 75.2273           | 993376           | 5.34373          | 28                | 158.826          | 291.771          | 8<br>15 40             |
| Wt 4                  | 13733          | 5559.01         | 53.2673           | 731520           | 3.87847          | 28                | 279.895          | 268.383          | 8                      |
| Wt 5                  | 13664          | 5531.07         | 72.8897           | 995965           | 5.32897          | 28                | 158.707          | 291.782          | 5                      |
| Wt 6                  | 12309          | 4982.58         | 74.2259           | 913646           | 4.52458          | 28                | 157.332          | 370.887          | 10.29<br>9.888         |
| Wt 7                  | 12352          | 4999.99         | 71.6338           | 884821           | 5.22579          | 28                | 224.97           | 301.92           | 1                      |
| Wt 8                  | 8663           | 3506.71         | 81.2463           | 703837           | 4.8332           | 28                | 29.0914          | 304.518          | 9<br>23.07             |
| Wt 9                  | 10430          | 4221.98         | 77.3235           | 806484           | 3.73873          | 28                | 97.7404          | 201.518          | 8                      |

Average intensity of Dref localization in 10 non adjacent wild type cells

| Img   |         |
|-------|---------|
| No 1  | 48.4682 |
| Img   |         |
| No 2  | 53.2019 |
| Img   |         |
| No 3  | 43.6525 |
| Img   |         |
| No 4  | 43.5848 |
| Img   |         |
| No 5  | 44.1755 |
| Img   |         |
| No 6  | 50.8796 |
| Img   |         |
| No 7  | 51.4239 |
| Img   |         |
| No 8  | 44.9324 |
| Img   |         |
| No 11 | 71.8054 |
|       |         |

Intensity of Dref localization in clone cell V average intensity of Dref localization in 10 non adjacent wild type cells

| Img  |      |
|------|------|
| No 1 | 1.59 |
| Img  |      |
| No 2 | 2.07 |
| Img  |      |
| No 3 | 1.1  |
| Img  |      |
| No 4 | 0.87 |
| Img  |      |
| No 5 | 1.03 |
| Img  |      |
| No 6 | 0.94 |
| Img  |      |
| No 7 | 1    |
|      |      |

| Img   |      |
|-------|------|
| No 8  | 1    |
| Img   |      |
| No 11 | 1.15 |

| Average value of the ratio of the clone cell V wild type cells acquired from |             |
|------------------------------------------------------------------------------|-------------|
| Img No 1 to Img No 10                                                        | 0.388365521 |
| Std Dev of the average ratio of clone cell / wild type cell                  | 1.19444444  |

## B.7. (ii) Visualization of Dref protein in single cell clones expressing FOXO

| Img No<br>1<br>Clone | Voxel<br>Count | Volume<br>(µm³) | Centroi<br>d X | Centroi<br>d Y | Centroi<br>d Z | Mean<br>(ChS1-T1) | Sum<br>(ChS1-T1) | Mean<br>(Ch3-T3) | Min (Ch2-<br>T4) |
|----------------------|----------------|-----------------|----------------|----------------|----------------|-------------------|------------------|------------------|------------------|
| cell                 | 4897           | 1982.27         | 375.6          | 310.878        | 14.2473        | 21.8517           | 107008           | 16.0856          | 28               |
| WT 1                 | 15575          | 6304.63         | 224.415        | 206.745        | 10.6781        | 136.941           | 2.13E+06         | 5.42324          | 28               |
| WT 2                 | 11078          | 4484.28         | 89.2942        | 311.583        | 19.7867        | 88.1677           | 976722           | 2.73948          | 28               |
| WT 3                 | 13479          | 5456.19         | 108.379        | 226.299        | 11.448         | 16.1433           | 217596           | 3.19341          | 28               |
| WT 4                 | 14319          | 5796.21         | 195.504        | 337.59         | 14.0323        | 200.847           | 2.88E+06         | 3.43292          | 28               |
| WT 5                 | 11212          | 4538.53         | 361.481        | 166.222        | 20.1654        | 49.3318           | 553108           | 2.18016          | 28               |
| WT 6                 | 9469           | 3832.97         | 193.071        | 274.472        | 6.26296        | 62.4085           | 590946           | 3.37744          | 28               |
| WT 7                 | 10808          | 4374.99         | 424.286        | 242.217        | 9.79247        | 76.0552           | 822005           | 2.98788          | 28               |
| WT 8                 | 13510          | 5468.74         | 108.421        | 226.299        | 11.4486        | 16.166            | 218403           | 3.18838          | 28               |

| Img No<br>2<br>Clone | Voxel<br>Count | Volume<br>(µm³) | Centroi<br>d X | Centroi<br>d Y | Centroi<br>d Z | Mean<br>(ChS1-T1) | Sum<br>(ChS1-T1) | Mean<br>(Ch3-T3) | Min (Ch2-<br>T4) |
|----------------------|----------------|-----------------|----------------|----------------|----------------|-------------------|------------------|------------------|------------------|
| cell                 | 6049           | 2448.59         | 342.108        | 225.587        | 20.3715        | 38.0374           | 230088           | 20.8823          | 28               |
| WT 1                 | 15331          | 6205.86         | 199.32         | 279.764        | 9.01644        | 55.5711           | 851961           | 6.06444          | 28               |
| WT 2                 | 15335          | 6207.48         | 199.324        | 279.765        | 9.01682        | 55.5605           | 852021           | 6.06528          | 28               |
| WT 3                 | 13747          | 5564.67         | 128.1          | 200.438        | 9.4721         | 40.3461           | 554638           | 6.69266          | 28               |
| WT 4                 | 14356          | 5811.19         | 349.122        | 324.05         | 12.6733        | 18.8101           | 270038           | 5.81081          | 28               |
| WT 5                 | 5396           | 2184.26         | 24.126         | 222.529        | 12.7166        | 90.1638           | 486524           | 5.4381           | 28               |
| WT 6                 | 8868           | 3589.69         | 261.217        | 318.455        | 29.1053        | 19.6314           | 174091           | 3.39502          | 28               |
| WT 7                 | 11157          | 4516.26         | 88.4358        | 113.169        | 12.9671        | 31.0388           | 346300           | 5.38003          | 28               |
| WT 8                 | 15199          | 6152.43         | 241.383        | 354.481        | 11.1677        | 31.1371           | 473253           | 5.04744          | 28               |

| Img No<br>3   | Voxel<br>Count | Volume<br>(µm³) | Centroi<br>d X | Centroi<br>d Y | Centroi<br>d Z | Mean<br>(ChS1-T1) | Sum<br>(ChS1-T1) | Mean<br>(Ch3-T3) | Min (Ch2-<br>T4) |
|---------------|----------------|-----------------|----------------|----------------|----------------|-------------------|------------------|------------------|------------------|
| Clone<br>cell | 1216           | 492.227         | 41.1513        | 241.415        | 11.0033        | 57.6488           | 70101            | 27.8865          | 21               |
| WT 1          | 11256          | 4556.34         | 232.274        | 186.324        | 18.3171        | 16.8251           | 189383           | 4.133            | 21               |
| WT 2          | 8793           | 3559.33         | 369.008        | 129.241        | 17.1591        | 26.4664           | 232719           | 3.57125          | 21               |
| WT 3          | 10942          | 4429.23         | 300.819        | 200.67         | 16.772         | 15.468            | 169251           | 4.37224          | 21               |
| WT 4          | 8095           | 3276.79         | 151.714        | 132.005        | 22.157         | 9.37356           | 75879            | 2.8656           | 21               |
| WT 5          | 8826           | 3572.69         | 330.107        | 229.223        | 23.8482        | 18.4099           | 162486           | 3.03988          | 21               |
| WT 6          | 8170           | 3307.15         | 188.566        | 251.02         | 25.0628        | 4.62876           | 37817            | 2.70184          | 21               |
| WT 7          | 6949           | 2812.9          | 204.129        | 115.043        | 31.1917        | 3.99597           | 27768            | 2.09656          | 21               |
| WT 8          | 8527           | 3451.66         | 303.025        | 102.961        | 28.4169        | 19.1637           | 163409           | 2.07928          | 21               |

| Img No<br>4 | Voxel<br>Count | Volume<br>(µm³) | Centroi<br>d X | Centroi<br>d Y | Centroi<br>d Z | Mean<br>(ChS1-T1) | Sum<br>(ChS1-T1) | Mean<br>(Ch3-T3) | Min (Ch2-<br>T4) |
|-------------|----------------|-----------------|----------------|----------------|----------------|-------------------|------------------|------------------|------------------|
| Clone       | 7202           | 2056 10         | 262 206        | 112 577        | 7 60016        | 50 8228           | 126996           | 22.0521          | 21               |
| cen         | 7303           | 2930.19         | 303.380        | 445.577        | 7.00010        | 39.8228           | 430880           | 22.9521          | 21               |
| WT 1        | 14132          | 5720.52         | 291.554        | 249.164        | 13.6359        | 46.2291           | 653309           | 6.4821           | 21               |
| WT 2        | 14354          | 5810.38         | 281.576        | 310.506        | 18.2718        | 34.1589           | 490317           | 5.37829          | 21               |
| WT 3        | 12635          | 5114.54         | 240.532        | 263.373        | 21.9619        | 26.9453           | 340454           | 4.13613          | 21               |
| WT 4        | 12267          | 4965.58         | 168.99         | 124.452        | 23.8687        | 59.9623           | 735558           | 4.85701          | 21               |
| WT 5        | 7981           | 3230.64         | 299.287        | 119.725        | 23.5886        | 67.9777           | 542530           | 4.04999          | 21               |
| WT 6        | 6103           | 2470.44         | 399.066        | 355.092        | 20.1811        | 30.9023           | 188597           | 3.54039          | 21               |
| WT 7        | 12734          | 5154.62         | 161.215        | 47.8902        | 24.6492        | 63.2189           | 805030           | 3.6836           | 21               |

| WT 8                                                                                                                                                                                                         | 8861                                                                                                                                                                               | 3586.86                                                                                                                                                                                                                                                   | 206.572                                                                                                                                                                                                                             | 148.584                                                                                                                                                                                                                              | 13.0894                                                                                                                                                                                                                               | 79.194                                                                                                                                                                                                                    | 701738                                                                                                                                                                                                                 | 6.11263                                                                                                                                                                                                                        | 21                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Img No<br>6<br>Clone                                                                                                                                                                                         | Voxel<br>Count                                                                                                                                                                     | Volume<br>(µm³)                                                                                                                                                                                                                                           | Centroi<br>d X                                                                                                                                                                                                                      | Centroi<br>d Y                                                                                                                                                                                                                       | Centroi<br>d Z                                                                                                                                                                                                                        | Mean<br>(ChS1-T1)                                                                                                                                                                                                         | Sum<br>(ChS1-T1)                                                                                                                                                                                                       | Mean<br>(Ch3-T3)                                                                                                                                                                                                               | Min (Ch2-<br>T4)                                                                                             |
| cell                                                                                                                                                                                                         | 7098                                                                                                                                                                               | 2873.21                                                                                                                                                                                                                                                   | 109.303                                                                                                                                                                                                                             | 157.299                                                                                                                                                                                                                              | 9.82065                                                                                                                                                                                                                               | 29.8819                                                                                                                                                                                                                   | 212102                                                                                                                                                                                                                 | 21.2744                                                                                                                                                                                                                        | 21                                                                                                           |
| WT 1                                                                                                                                                                                                         | 8172                                                                                                                                                                               | 3307.96                                                                                                                                                                                                                                                   | 177.537                                                                                                                                                                                                                             | 197.043                                                                                                                                                                                                                              | 17.7122                                                                                                                                                                                                                               | 11.0064                                                                                                                                                                                                                   | 89944                                                                                                                                                                                                                  | 4.9836                                                                                                                                                                                                                         | 21                                                                                                           |
| WT 2                                                                                                                                                                                                         | 11857                                                                                                                                                                              | 4799.62                                                                                                                                                                                                                                                   | 84.9397                                                                                                                                                                                                                             | 73.8671                                                                                                                                                                                                                              | 14.4626                                                                                                                                                                                                                               | 24.8619                                                                                                                                                                                                                   | 294787                                                                                                                                                                                                                 | 5.42692                                                                                                                                                                                                                        | 21                                                                                                           |
| WT 3                                                                                                                                                                                                         | 6720                                                                                                                                                                               | 2720.2                                                                                                                                                                                                                                                    | 187.917                                                                                                                                                                                                                             | 167.141                                                                                                                                                                                                                              | 26.496                                                                                                                                                                                                                                | 9.00863                                                                                                                                                                                                                   | 60538                                                                                                                                                                                                                  | 3.28914                                                                                                                                                                                                                        | 21                                                                                                           |
| WT 4                                                                                                                                                                                                         | 6263                                                                                                                                                                               | 2535.21                                                                                                                                                                                                                                                   | 86.7524                                                                                                                                                                                                                             | 287.172                                                                                                                                                                                                                              | 30.0158                                                                                                                                                                                                                               | 8.88424                                                                                                                                                                                                                   | 55642                                                                                                                                                                                                                  | 2.32716                                                                                                                                                                                                                        | 21                                                                                                           |
| WT 5                                                                                                                                                                                                         | 11596                                                                                                                                                                              | 4693.97                                                                                                                                                                                                                                                   | 326.727                                                                                                                                                                                                                             | 493.305                                                                                                                                                                                                                              | 15.3965                                                                                                                                                                                                                               | 23.0484                                                                                                                                                                                                                   | 267269                                                                                                                                                                                                                 | 7.31252                                                                                                                                                                                                                        | 21                                                                                                           |
| WT 6                                                                                                                                                                                                         | 7473                                                                                                                                                                               | 3025.01                                                                                                                                                                                                                                                   | 269.298                                                                                                                                                                                                                             | 355.555                                                                                                                                                                                                                              | 26.4081                                                                                                                                                                                                                               | 12.2714                                                                                                                                                                                                                   | 91704                                                                                                                                                                                                                  | 6.21584                                                                                                                                                                                                                        | 21                                                                                                           |
| WT 7                                                                                                                                                                                                         | 11716                                                                                                                                                                              | 4742.54                                                                                                                                                                                                                                                   | 134.466                                                                                                                                                                                                                             | 391.129                                                                                                                                                                                                                              | 23.2597                                                                                                                                                                                                                               | 9.80889                                                                                                                                                                                                                   | 114921                                                                                                                                                                                                                 | 4.20109                                                                                                                                                                                                                        | 21                                                                                                           |
| WT 8                                                                                                                                                                                                         | 9167                                                                                                                                                                               | 3710.73                                                                                                                                                                                                                                                   | 52.4041                                                                                                                                                                                                                             | 207.399                                                                                                                                                                                                                              | 26.4742                                                                                                                                                                                                                               | 13.4633                                                                                                                                                                                                                   | 123418                                                                                                                                                                                                                 | 2.91153                                                                                                                                                                                                                        | 21                                                                                                           |
| Img No<br>7<br>Clone                                                                                                                                                                                         | Voxel<br>Count                                                                                                                                                                     | Volume<br>(µm³)                                                                                                                                                                                                                                           | Centroi<br>d X                                                                                                                                                                                                                      | Centroi<br>d Y                                                                                                                                                                                                                       | Centroi<br>d Z                                                                                                                                                                                                                        | Mean<br>(ChS1-T1)                                                                                                                                                                                                         | Sum<br>(ChS1-T1)                                                                                                                                                                                                       | Mean<br>(Ch3-T3)                                                                                                                                                                                                               | Min (Ch2-<br>T4)                                                                                             |
| cell                                                                                                                                                                                                         | 1990                                                                                                                                                                               | 805.536                                                                                                                                                                                                                                                   | 414.375                                                                                                                                                                                                                             | 251.045                                                                                                                                                                                                                              | 9.15327                                                                                                                                                                                                                               | 55.8985                                                                                                                                                                                                                   | 111238                                                                                                                                                                                                                 | 29.5492                                                                                                                                                                                                                        | 21                                                                                                           |
| WT 1                                                                                                                                                                                                         | 7877                                                                                                                                                                               | 3188.54                                                                                                                                                                                                                                                   | 152.58                                                                                                                                                                                                                              | 272.38                                                                                                                                                                                                                               | 10.8956                                                                                                                                                                                                                               | 31.1363                                                                                                                                                                                                                   | 245261                                                                                                                                                                                                                 | 8.23715                                                                                                                                                                                                                        | 21                                                                                                           |
| WT 2                                                                                                                                                                                                         | 8771                                                                                                                                                                               | 3550.43                                                                                                                                                                                                                                                   | 291.994                                                                                                                                                                                                                             | 345.835                                                                                                                                                                                                                              | 12.9498                                                                                                                                                                                                                               | 21.3459                                                                                                                                                                                                                   | 187225                                                                                                                                                                                                                 | 6.32311                                                                                                                                                                                                                        | 21                                                                                                           |
| WT 3                                                                                                                                                                                                         | 9096                                                                                                                                                                               | 3681.99                                                                                                                                                                                                                                                   | 237.207                                                                                                                                                                                                                             | 297.978                                                                                                                                                                                                                              | 12.4757                                                                                                                                                                                                                               | 21.2917                                                                                                                                                                                                                   | 193669                                                                                                                                                                                                                 | 7.35818                                                                                                                                                                                                                        | 21                                                                                                           |
| WT 4                                                                                                                                                                                                         | 9921                                                                                                                                                                               | 4015.94                                                                                                                                                                                                                                                   | 224.809                                                                                                                                                                                                                             | 236.512                                                                                                                                                                                                                              | 9.5953                                                                                                                                                                                                                                | 52.1609                                                                                                                                                                                                                   | 517488                                                                                                                                                                                                                 | 7.90586                                                                                                                                                                                                                        | 21                                                                                                           |
| WT 5                                                                                                                                                                                                         | 7586                                                                                                                                                                               | 3070.75                                                                                                                                                                                                                                                   | 262.125                                                                                                                                                                                                                             | 213.617                                                                                                                                                                                                                              | 16.6277                                                                                                                                                                                                                               | 7.28091                                                                                                                                                                                                                   | 55233                                                                                                                                                                                                                  | 10.7139                                                                                                                                                                                                                        | 21                                                                                                           |
| WT 6                                                                                                                                                                                                         | 6072                                                                                                                                                                               | 2457.9                                                                                                                                                                                                                                                    | 158.028                                                                                                                                                                                                                             | 198.915                                                                                                                                                                                                                              | 21.3613                                                                                                                                                                                                                               | 40.5343                                                                                                                                                                                                                   | 246124                                                                                                                                                                                                                 | 4.55188                                                                                                                                                                                                                        | 21                                                                                                           |
| WT 7                                                                                                                                                                                                         | 7967                                                                                                                                                                               | 3224.98                                                                                                                                                                                                                                                   | 356.328                                                                                                                                                                                                                             | 215.213                                                                                                                                                                                                                              | 16.9667                                                                                                                                                                                                                               | 30.1816                                                                                                                                                                                                                   | 240457                                                                                                                                                                                                                 | 4.37128                                                                                                                                                                                                                        | 21                                                                                                           |
| WT 8                                                                                                                                                                                                         | 5026                                                                                                                                                                               | 2034.48                                                                                                                                                                                                                                                   | 98.0251                                                                                                                                                                                                                             | 206.822                                                                                                                                                                                                                              | 12.0326                                                                                                                                                                                                                               | 95.0493                                                                                                                                                                                                                   | 477718                                                                                                                                                                                                                 | 6.54318                                                                                                                                                                                                                        | 21                                                                                                           |
|                                                                                                                                                                                                              |                                                                                                                                                                                    |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                           |                                                                                                                                                                                                                        |                                                                                                                                                                                                                                |                                                                                                              |
| Img No<br>8<br>Clone                                                                                                                                                                                         | Voxel<br>Count                                                                                                                                                                     | Volume<br>(µm³)                                                                                                                                                                                                                                           | Centroi<br>d X                                                                                                                                                                                                                      | Centroi<br>d Y                                                                                                                                                                                                                       | Centroi<br>d Z                                                                                                                                                                                                                        | Mean<br>(ChS1-T1)                                                                                                                                                                                                         | Sum<br>(ChS1-T1)                                                                                                                                                                                                       | Mean<br>(Ch3-T3)                                                                                                                                                                                                               | Min (Ch2-<br>T4)                                                                                             |
| Img No<br>8<br>Clone<br>cell                                                                                                                                                                                 | Voxel<br>Count<br>11542                                                                                                                                                            | <b>Volume</b><br>(μm³)<br>4672.11                                                                                                                                                                                                                         | <b>Centroi</b><br><b>d X</b><br>286.499                                                                                                                                                                                             | Centroi<br>d Y<br>408.29                                                                                                                                                                                                             | <b>Centroi</b><br><b>d Z</b><br>15.9587                                                                                                                                                                                               | Mean<br>(ChS1-T1)<br>37.7211                                                                                                                                                                                              | <b>Sum</b><br>(ChS1-T1)<br>435377                                                                                                                                                                                      | Mean<br>(Ch3-T3)<br>72.9244                                                                                                                                                                                                    | Min (Ch2-<br>T4)<br>21                                                                                       |
| Img No<br>8<br>Clone<br>cell<br>WT 1                                                                                                                                                                         | Voxel<br>Count<br>11542<br>12138                                                                                                                                                   | <b>Volume</b><br>(μm <sup>3</sup> )<br>4672.11<br>4913.36                                                                                                                                                                                                 | <b>Centroi</b><br><b>d X</b><br>286.499<br>201.222                                                                                                                                                                                  | <b>Centroi</b><br><b>d Y</b><br>408.29<br>373.605                                                                                                                                                                                    | <b>Centroi</b><br>d Z<br>15.9587<br>15.6616                                                                                                                                                                                           | Mean<br>(ChS1-T1)<br>37.7211<br>48.8208                                                                                                                                                                                   | Sum<br>(ChS1-T1)<br>435377<br>592587                                                                                                                                                                                   | Mean<br>(Ch3-T3)<br>72.9244<br>1.78687                                                                                                                                                                                         | Min (Ch2-<br>T4)<br>21<br>21                                                                                 |
| Img No<br>8<br>Clone<br>cell<br>WT 1<br>WT 2                                                                                                                                                                 | Voxel<br>Count<br>11542<br>12138<br>13174                                                                                                                                          | <b>Volume</b><br>(μm <sup>3</sup> )<br>4672.11<br>4913.36<br>5332.73                                                                                                                                                                                      | Centroi<br>d X<br>286.499<br>201.222<br>203.953                                                                                                                                                                                     | Centroi<br>d Y<br>408.29<br>373.605<br>453.387                                                                                                                                                                                       | Centroi<br>d Z<br>15.9587<br>15.6616<br>16.8026                                                                                                                                                                                       | Mean<br>(ChS1-T1)<br>37.7211<br>48.8208<br>62.7194                                                                                                                                                                        | Sum<br>(ChS1-T1)<br>435377<br>592587<br>826265                                                                                                                                                                         | Mean<br>(Ch3-T3)<br>72.9244<br>1.78687<br>1.72666                                                                                                                                                                              | Min (Ch2-<br>T4)<br>21<br>21<br>21<br>21                                                                     |
| Img No<br>8<br>Clone<br>cell<br>WT 1<br>WT 2<br>WT 3                                                                                                                                                         | Voxel<br>Count<br>11542<br>12138<br>13174<br>10666                                                                                                                                 | Volume<br>(μm <sup>3</sup> )<br>4672.11<br>4913.36<br>5332.73<br>4317.51                                                                                                                                                                                  | Centroi<br>d X<br>286.499<br>201.222<br>203.953<br>320.98                                                                                                                                                                           | Centroi<br>d Y<br>408.29<br>373.605<br>453.387<br>243.583                                                                                                                                                                            | Centroi<br>d Z<br>15.9587<br>15.6616<br>16.8026<br>19.2421                                                                                                                                                                            | Mean<br>(ChS1-T1)<br>37.7211<br>48.8208<br>62.7194<br>45.7475                                                                                                                                                             | Sum<br>(ChS1-T1)<br>435377<br>592587<br>826265<br>487943                                                                                                                                                               | Mean<br>(Ch3-T3)<br>72.9244<br>1.78687<br>1.72666<br>1.37943                                                                                                                                                                   | Min (Ch2-<br>T4)<br>21<br>21<br>21<br>21<br>21                                                               |
| Img No<br>8<br>Clone<br>cell<br>WT 1<br>WT 2<br>WT 3<br>WT 4                                                                                                                                                 | Voxel<br>Count<br>11542<br>12138<br>13174<br>10666<br>7233                                                                                                                         | Volume<br>(μm³)<br>4672.11<br>4913.36<br>5332.73<br>4317.51<br>2927.86                                                                                                                                                                                    | Centroi<br>d X<br>286.499<br>201.222<br>203.953<br>320.98<br>368.211                                                                                                                                                                | Centroi<br>d Y<br>408.29<br>373.605<br>453.387<br>243.583<br>484.199                                                                                                                                                                 | Centroi<br>d Z<br>15.9587<br>15.6616<br>16.8026<br>19.2421<br>16.6676                                                                                                                                                                 | Mean<br>(ChS1-T1)<br>37.7211<br>48.8208<br>62.7194<br>45.7475<br>105.742                                                                                                                                                  | Sum<br>(ChS1-T1)<br>435377<br>592587<br>826265<br>487943<br>764835                                                                                                                                                     | Mean<br>(Ch3-T3)<br>72.9244<br>1.78687<br>1.72666<br>1.37943<br>4.51804                                                                                                                                                        | Min (Ch2-<br>T4)<br>21<br>21<br>21<br>21<br>21<br>21<br>21                                                   |
| Img No<br>8<br>Clone<br>cell<br>WT 1<br>WT 2<br>WT 3<br>WT 4<br>WT 5                                                                                                                                         | Voxel<br>Count<br>11542<br>12138<br>13174<br>10666<br>7233<br>12259                                                                                                                | Volume<br>(μm <sup>3</sup> )<br>4672.11<br>4913.36<br>5332.73<br>4317.51<br>2927.86<br>4962.34                                                                                                                                                            | Centroi<br>d X<br>286.499<br>201.222<br>203.953<br>320.98<br>368.211<br>244.181                                                                                                                                                     | Centroi<br>d Y<br>408.29<br>373.605<br>453.387<br>243.583<br>484.199<br>174.201                                                                                                                                                      | Centroi<br>d Z<br>15.9587<br>15.6616<br>16.8026<br>19.2421<br>16.6676<br>13.8058                                                                                                                                                      | Mean<br>(ChS1-T1)<br>37.7211<br>48.8208<br>62.7194<br>45.7475<br>105.742<br>65.4639                                                                                                                                       | Sum<br>(ChS1-T1)<br>435377<br>592587<br>826265<br>487943<br>764835<br>802522                                                                                                                                           | Mean<br>(Ch3-T3)<br>72.9244<br>1.78687<br>1.72666<br>1.37943<br>4.51804<br>1.85578                                                                                                                                             | Min (Ch2-<br>T4)<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21                                             |
| Img No<br>8<br>Clone<br>cell<br>WT 1<br>WT 2<br>WT 3<br>WT 4<br>WT 5<br>WT 6                                                                                                                                 | Voxel<br>Count<br>11542<br>12138<br>13174<br>10666<br>7233<br>12259<br>8244                                                                                                        | <b>Volume</b><br>(µm³)<br>4672.11<br>4913.36<br>5332.73<br>4317.51<br>2927.86<br>4962.34<br>3337.1                                                                                                                                                        | Centroi<br>d X<br>286.499<br>201.222<br>203.953<br>320.98<br>368.211<br>244.181<br>167.971                                                                                                                                          | Centroi<br>d Y<br>408.29<br>373.605<br>453.387<br>243.583<br>484.199<br>174.201<br>280.458                                                                                                                                           | Centroi<br>d Z<br>15.9587<br>15.6616<br>16.8026<br>19.2421<br>16.6676<br>13.8058<br>24.5304                                                                                                                                           | Mean<br>(ChS1-T1)<br>37.7211<br>48.8208<br>62.7194<br>45.7475<br>105.742<br>65.4639<br>17.759                                                                                                                             | Sum<br>(ChS1-T1)<br>435377<br>592587<br>826265<br>487943<br>764835<br>802522<br>146405                                                                                                                                 | Mean<br>(Ch3-T3)<br>72.9244<br>1.78687<br>1.72666<br>1.37943<br>4.51804<br>1.85578<br>1.06174                                                                                                                                  | Min (Ch2-<br>T4)<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21                                       |
| Img No<br>8<br>Clone<br>cell<br>WT 1<br>WT 2<br>WT 3<br>WT 4<br>WT 5<br>WT 6<br>WT 7                                                                                                                         | Voxel<br>Count<br>11542<br>12138<br>13174<br>10666<br>7233<br>12259<br>8244<br>5769                                                                                                | Volume<br>(μm³)<br>4672.11<br>4913.36<br>5332.73<br>4317.51<br>2927.86<br>4962.34<br>3337.1<br>2335.24                                                                                                                                                    | Centroi<br>d X<br>286.499<br>201.222<br>203.953<br>320.98<br>368.211<br>244.181<br>167.971<br>347.098                                                                                                                               | Centroi<br>d Y<br>408.29<br>373.605<br>453.387<br>243.583<br>484.199<br>174.201<br>280.458<br>321.55                                                                                                                                 | Centroi<br>d Z<br>15.9587<br>15.6616<br>16.8026<br>19.2421<br>16.6676<br>13.8058<br>24.5304<br>24.832                                                                                                                                 | Mean<br>(ChS1-T1)     37.7211     48.8208     62.7194     45.7475     105.742     65.4639     17.759     44.0579                                                                                                          | Sum<br>(ChS1-T1)<br>435377<br>592587<br>826265<br>487943<br>764835<br>802522<br>146405<br>254170                                                                                                                       | Mean<br>(Ch3-T3)<br>72.9244<br>1.78687<br>1.72666<br>1.37943<br>4.51804<br>1.85578<br>1.06174<br>1.45068                                                                                                                       | Min (Ch2-<br>T4)<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21                                 |
| Img No<br>8<br>Clone<br>cell<br>WT 1<br>WT 2<br>WT 3<br>WT 4<br>WT 5<br>WT 6<br>WT 7<br>WT 8                                                                                                                 | Voxel<br>Count<br>11542<br>12138<br>13174<br>10666<br>7233<br>12259<br>8244<br>5769<br>6319                                                                                        | <b>Volume</b><br>(µm³)<br>4672.11<br>4913.36<br>5332.73<br>4317.51<br>2927.86<br>4962.34<br>3337.1<br>2335.24<br>2557.88                                                                                                                                  | Centroi<br>d X<br>286.499<br>201.222<br>203.953<br>320.98<br>368.211<br>244.181<br>167.971<br>347.098<br>357.765                                                                                                                    | Centroi<br>d Y<br>408.29<br>373.605<br>453.387<br>243.583<br>484.199<br>174.201<br>280.458<br>321.55<br>398.372                                                                                                                      | Centroi<br>d Z<br>15.9587<br>15.6616<br>16.8026<br>19.2421<br>16.6676<br>13.8058<br>24.5304<br>24.832<br>20.0392                                                                                                                      | Mean<br>(ChS1-T1)<br>37.7211<br>48.8208<br>62.7194<br>45.7475<br>105.742<br>65.4639<br>17.759<br>44.0579<br>42.9964                                                                                                       | Sum<br>(ChS1-T1)<br>435377<br>592587<br>826265<br>487943<br>764835<br>802522<br>146405<br>254170<br>271694                                                                                                             | Mean<br>(Ch3-T3)<br>72.9244<br>1.78687<br>1.72666<br>1.37943<br>4.51804<br>1.85578<br>1.06174<br>1.45068<br>2.04162                                                                                                            | Min (Ch2-<br>T4)<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21                                 |
| Img No<br>8<br>Clone<br>cell<br>WT 1<br>WT 2<br>WT 3<br>WT 4<br>WT 5<br>WT 6<br>WT 6<br>WT 7<br>WT 8<br>Img No<br>9<br>Clone                                                                                 | Voxel<br>Count<br>11542<br>12138<br>13174<br>10666<br>7233<br>12259<br>8244<br>5769<br>6319<br>Voxel<br>Count                                                                      | Volume<br>(μm³)<br>4672.11<br>4913.36<br>5332.73<br>4317.51<br>2927.86<br>4962.34<br>3337.1<br>2335.24<br>2557.88<br>Volume<br>(μm³)                                                                                                                      | Centroi<br>d X<br>286.499<br>201.222<br>203.953<br>320.98<br>368.211<br>244.181<br>167.971<br>347.098<br>357.765<br>Centroi<br>d X                                                                                                  | Centroi<br>d Y<br>408.29<br>373.605<br>453.387<br>243.583<br>484.199<br>174.201<br>280.458<br>321.55<br>398.372<br>Centroi<br>d Y                                                                                                    | Centroi<br>d Z<br>15.9587<br>15.6616<br>16.8026<br>19.2421<br>16.6676<br>13.8058<br>24.5304<br>24.832<br>20.0392<br>Centroi<br>d Z                                                                                                    | Mean<br>(ChS1-T1)<br>37.7211<br>48.8208<br>62.7194<br>45.7475<br>105.742<br>65.4639<br>17.759<br>44.0579<br>42.9964<br>Mean<br>(ChS1-T1)                                                                                  | Sum<br>(ChS1-T1)<br>435377<br>592587<br>826265<br>487943<br>764835<br>802522<br>146405<br>254170<br>271694<br>Sum<br>(ChS1-T1)                                                                                         | Mean<br>(Ch3-T3)<br>72.9244<br>1.78687<br>1.72666<br>1.37943<br>4.51804<br>1.85578<br>1.06174<br>1.45068<br>2.04162<br>Mean<br>(Ch3-T3)                                                                                        | Min (Ch2-<br>T4)<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21               |
| Img No<br>8<br>Clone<br>cell<br>WT 1<br>WT 2<br>WT 3<br>WT 4<br>WT 5<br>WT 6<br>WT 7<br>WT 8<br>Img No<br>9<br>Clone<br>cell                                                                                 | Voxel<br>Count<br>11542<br>12138<br>13174<br>10666<br>7233<br>12259<br>8244<br>5769<br>6319<br>Voxel<br>Count<br>11905                                                             | Volume<br>(μm³)<br>4672.11<br>4913.36<br>5332.73<br>4317.51<br>2927.86<br>4962.34<br>3337.1<br>2335.24<br>2557.88<br>Volume<br>(μm³)<br>4819.05                                                                                                           | Centroi<br>d X<br>286.499<br>201.222<br>203.953<br>320.98<br>368.211<br>244.181<br>167.971<br>347.098<br>357.765<br>Centroi<br>d X<br>231.138                                                                                       | Centroi<br>d Y<br>408.29<br>373.605<br>453.387<br>243.583<br>484.199<br>174.201<br>280.458<br>321.55<br>398.372<br>Centroi<br>d Y<br>389.265                                                                                         | Centroi<br>d Z<br>15.9587<br>15.6616<br>16.8026<br>19.2421<br>16.6676<br>13.8058<br>24.5304<br>24.832<br>20.0392<br>Centroi<br>d Z<br>9.15691                                                                                         | Mean<br>(ChS1-T1)     37.7211     48.8208     62.7194     45.7475     105.742     65.4639     17.759     44.0579     42.9964     Mean<br>(ChS1-T1)     46.5367                                                            | Sum<br>(ChS1-T1)<br>435377<br>592587<br>826265<br>487943<br>764835<br>802522<br>146405<br>254170<br>271694<br>Sum<br>(ChS1-T1)                                                                                         | Mean<br>(Ch3-T3)<br>72.9244<br>1.78687<br>1.72666<br>1.37943<br>4.51804<br>1.85578<br>1.06174<br>1.45068<br>2.04162<br>Mean<br>(Ch3-T3)                                                                                        | Min (Ch2-<br>T4)<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>Min (Ch2-<br>T4)<br>21             |
| Img No<br>8<br>Clone<br>cell<br>WT 1<br>WT 2<br>WT 3<br>WT 4<br>WT 5<br>WT 6<br>WT 7<br>WT 8<br>Img No<br>9<br>Clone<br>cell<br>WT 1                                                                         | Voxel<br>Count<br>11542<br>12138<br>13174<br>10666<br>7233<br>12259<br>8244<br>5769<br>6319<br>Voxel<br>Count<br>11905<br>10638                                                    | Volume<br>(μm³)<br>4672.11<br>4913.36<br>5332.73<br>4317.51<br>2927.86<br>4962.34<br>3337.1<br>2335.24<br>2557.88<br>Volume<br>(μm³)<br>4819.05<br>4306.17                                                                                                | Centroi<br>d X<br>286.499<br>201.222<br>203.953<br>320.98<br>368.211<br>244.181<br>167.971<br>347.098<br>357.765<br>Centroi<br>d X<br>231.138<br>296.272                                                                            | Centroi<br>d Y<br>408.29<br>373.605<br>453.387<br>243.583<br>484.199<br>174.201<br>280.458<br>321.55<br>398.372<br>Centroi<br>d Y<br>389.265<br>279.017                                                                              | Centroi<br>d Z<br>15.9587<br>15.6616<br>16.8026<br>19.2421<br>16.6676<br>13.8058<br>24.5304<br>24.832<br>20.0392<br>Centroi<br>d Z<br>9.15691<br>13.4906                                                                              | Mean<br>(ChS1-T1)     37.7211     48.8208     62.7194     45.7475     105.742     65.4639     17.759     44.0579     42.9964     Mean<br>(ChS1-T1)     46.5367     26.2712                                                | Sum<br>(ChS1-T1)<br>435377<br>592587<br>826265<br>487943<br>764835<br>802522<br>146405<br>254170<br>271694<br>Sum<br>(ChS1-T1)<br>554020<br>279473                                                                     | Mean<br>(Ch3-T3)<br>72.9244<br>1.78687<br>1.72666<br>1.37943<br>4.51804<br>1.85578<br>1.06174<br>1.45068<br>2.04162<br>Mean<br>(Ch3-T3)<br>115.238<br>0.476593                                                                 | Min (Ch2-<br>T4)<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>Min (Ch2-<br>T4)<br>21<br>21<br>21 |
| Img No<br>8<br>Clone<br>cell<br>WT 1<br>WT 2<br>WT 3<br>WT 4<br>WT 5<br>WT 6<br>WT 7<br>WT 8<br>Img No<br>9<br>Clone<br>cell<br>WT 1<br>WT 2                                                                 | Voxel<br>Count<br>11542<br>12138<br>13174<br>10666<br>7233<br>12259<br>8244<br>5769<br>6319<br>Voxel<br>Count<br>11905<br>10638<br>11720                                           | Volume<br>(μm³)<br>4672.11<br>4913.36<br>5332.73<br>4317.51<br>2927.86<br>4962.34<br>3337.1<br>2335.24<br>2557.88<br>Volume<br>(μm³)<br>4819.05<br>4306.17<br>4744.16                                                                                     | Centroi<br>d X<br>286.499<br>201.222<br>203.953<br>320.98<br>368.211<br>244.181<br>167.971<br>347.098<br>357.765<br>Centroi<br>d X<br>231.138<br>296.272<br>201.702                                                                 | Centroi<br>d Y<br>408.29<br>373.605<br>453.387<br>243.583<br>484.199<br>174.201<br>280.458<br>321.55<br>398.372<br>Centroi<br>d Y<br>389.265<br>279.017<br>217.089                                                                   | Centroi<br>d Z<br>15.9587<br>15.6616<br>16.8026<br>19.2421<br>16.6676<br>13.8058<br>24.5304<br>24.832<br>20.0392<br>Centroi<br>d Z<br>9.15691<br>13.4906<br>13.9402                                                                   | Mean<br>(ChS1-T1)   37.7211   48.8208   62.7194   45.7475   105.742   65.4639   17.759   44.0579   42.9964   Mean<br>(ChS1-T1)   46.5367   26.2712   55.9625                                                              | Sum<br>(ChS1-T1)<br>435377<br>592587<br>826265<br>487943<br>764835<br>802522<br>146405<br>254170<br>271694<br>Sum<br>(ChS1-T1)<br>554020<br>279473<br>655881                                                           | Mean<br>(Ch3-T3)<br>72.9244<br>1.78687<br>1.72666<br>1.37943<br>4.51804<br>1.85578<br>1.06174<br>1.45068<br>2.04162<br>Mean<br>(Ch3-T3)<br>115.238<br>0.476593<br>0.544881                                                     | Min (Ch2-<br>T4)<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21               |
| Img No<br>8<br>Clone<br>cell<br>WT 1<br>WT 2<br>WT 3<br>WT 4<br>WT 5<br>WT 6<br>WT 7<br>WT 8<br>Img No<br>9<br>Clone<br>cell<br>WT 1<br>WT 2<br>WT 3                                                         | Voxel<br>Count<br>11542<br>12138<br>13174<br>10666<br>7233<br>12259<br>8244<br>5769<br>6319<br>Voxel<br>Count<br>11905<br>10638<br>11720<br>10201                                  | Volume<br>(μm³)<br>4672.11<br>4913.36<br>5332.73<br>4317.51<br>2927.86<br>4962.34<br>3337.1<br>2335.24<br>2557.88<br>Volume<br>(μm³)<br>4819.05<br>4306.17<br>4744.16<br>4129.28                                                                          | Centroi<br>d X<br>286.499<br>201.222<br>203.953<br>320.98<br>368.211<br>244.181<br>167.971<br>347.098<br>357.765<br>Centroi<br>d X<br>231.138<br>296.272<br>201.702<br>222.283                                                      | Centroi<br>d Y<br>408.29<br>373.605<br>453.387<br>243.583<br>484.199<br>174.201<br>280.458<br>321.55<br>398.372<br>Centroi<br>d Y<br>389.265<br>279.017<br>217.089<br>101.375                                                        | Centroi<br>d Z<br>15.9587<br>15.6616<br>16.8026<br>19.2421<br>16.6676<br>13.8058<br>24.5304<br>24.832<br>20.0392<br>Centroi<br>d Z<br>9.15691<br>13.4906<br>13.9402<br>14.6395                                                        | Mean<br>(ChS1-T1)   37.7211   48.8208   62.7194   45.7475   105.742   65.4639   17.759   44.0579   42.9964   Mean<br>(ChS1-T1)   46.5367   26.2712   55.9625   56.4311                                                    | Sum<br>(ChS1-T1)<br>435377<br>592587<br>826265<br>487943<br>764835<br>802522<br>146405<br>254170<br>271694<br>Sum<br>(ChS1-T1)<br>554020<br>279473<br>655881<br>575654                                                 | Mean<br>(Ch3-T3)<br>72.9244<br>1.78687<br>1.72666<br>1.37943<br>4.51804<br>1.85578<br>1.06174<br>1.45068<br>2.04162<br>Mean<br>(Ch3-T3)<br>115.238<br>0.476593<br>0.544881<br>0.457504                                         | Min (Ch2-<br>T4)<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21               |
| Img No<br>8<br>Clone<br>cell<br>WT 1<br>WT 2<br>WT 3<br>WT 4<br>WT 5<br>WT 6<br>WT 7<br>WT 8<br>Img No<br>9<br>Clone<br>cell<br>WT 1<br>WT 2<br>WT 3<br>WT 4                                                 | Voxel<br>Count<br>11542<br>12138<br>13174<br>10666<br>7233<br>12259<br>8244<br>5769<br>6319<br>Voxel<br>Count<br>11905<br>10638<br>11720<br>10201<br>10968                         | Volume<br>(μm³)     4672.11     4913.36     5332.73     4317.51     2927.86     4962.34     3337.1     2335.24     2557.88     Volume<br>(μm³)     4819.05     4306.17     4744.16     4129.28     4439.76                                                | Centroi<br>d X<br>286.499<br>201.222<br>203.953<br>320.98<br>368.211<br>244.181<br>167.971<br>347.098<br>357.765<br>Centroi<br>d X<br>231.138<br>296.272<br>201.702<br>222.283<br>303.885                                           | Centroi<br>d Y<br>408.29<br>373.605<br>453.387<br>243.583<br>484.199<br>174.201<br>280.458<br>321.55<br>398.372<br>Centroi<br>d Y<br>389.265<br>279.017<br>217.089<br>101.375<br>479.659                                             | Centroi<br>d Z<br>15.9587<br>15.6616<br>16.8026<br>19.2421<br>16.6676<br>13.8058<br>24.5304<br>24.832<br>20.0392<br>Centroi<br>d Z<br>9.15691<br>13.4906<br>13.9402<br>14.6395<br>16.1523                                             | Mean<br>(ChS1-T1)   37.7211   48.8208   62.7194   45.7475   105.742   65.4639   17.759   44.0579   42.9964   Mean<br>(ChS1-T1)   46.5367   26.2712   55.9625   56.4311   20.9043                                          | Sum<br>(ChS1-T1)<br>435377<br>592587<br>826265<br>487943<br>764835<br>802522<br>146405<br>254170<br>271694<br>271694<br>554020<br>279473<br>655881<br>575654<br>229278                                                 | Mean<br>(Ch3-T3)<br>72.9244<br>1.78687<br>1.72666<br>1.37943<br>4.51804<br>1.85578<br>1.06174<br>1.45068<br>2.04162<br>0.4162<br>Mean<br>(Ch3-T3)<br>115.238<br>0.476593<br>0.544881<br>0.457504<br>0.457504<br>0.466083       | Min (Ch2-<br>T4)<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21               |
| Img No<br>8<br>Clone<br>cell<br>WT 1<br>WT 2<br>WT 3<br>WT 4<br>WT 5<br>WT 6<br>WT 7<br>WT 8<br>Img No<br>9<br>Clone<br>cell<br>WT 1<br>WT 2<br>WT 3<br>WT 4<br>WT 3                                         | Voxel<br>11542<br>12138<br>13174<br>10666<br>7233<br>12259<br>8244<br>5769<br>6319<br>Voxel<br>Count<br>11905<br>10638<br>11720<br>10201<br>10968<br>6199                          | Volume<br>(μm³)     4672.11     4913.36     5332.73     4317.51     2927.86     4962.34     3337.1     2335.24     2557.88     Volume<br>(μm³)     4819.05     4306.17     4744.16     4129.28     4439.76     2509.3                                     | Centroi<br>d X<br>286.499<br>201.222<br>203.953<br>320.98<br>368.211<br>244.181<br>167.971<br>347.098<br>357.765<br>Centroi<br>d X<br>231.138<br>296.272<br>201.702<br>222.283<br>303.885<br>356.197                                | Centroi<br>d Y<br>408.29<br>373.605<br>453.387<br>243.583<br>484.199<br>174.201<br>280.458<br>321.55<br>398.372<br>Centroi<br>d Y<br>389.265<br>279.017<br>217.089<br>101.375<br>479.659<br>359.769                                  | Centroi<br>d Z<br>15.9587<br>15.6616<br>16.8026<br>19.2421<br>16.6676<br>13.8058<br>24.5304<br>24.832<br>20.0392<br>Centroi<br>d Z<br>9.15691<br>13.4906<br>13.9402<br>14.6395<br>16.1523<br>16.8495                                  | Mean<br>(ChS1-T1)   37.7211   48.8208   62.7194   45.7475   105.742   65.4639   17.759   44.0579   42.9964   Mean<br>(ChS1-T1)   46.5367   26.2712   55.9625   56.4311   20.9043                                          | Sum<br>(ChS1-T1)<br>435377<br>592587<br>826265<br>487943<br>764835<br>802522<br>146405<br>254170<br>271694<br>271694<br>554020<br>279473<br>655881<br>575654<br>229278                                                 | Mean<br>(Ch3-T3)<br>72.9244<br>1.78687<br>1.72666<br>1.37943<br>4.51804<br>1.85578<br>1.06174<br>1.45068<br>2.04162<br>Mean<br>(Ch3-T3)<br>115.238<br>0.476593<br>0.544881<br>0.457504<br>0.457504<br>0.466083<br>0.27327      | Min (Ch2-<br>T4)<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21               |
| Img No<br>8<br>Clone<br>cell<br>WT 1<br>WT 2<br>WT 3<br>WT 4<br>WT 5<br>WT 6<br>WT 7<br>WT 8<br>Img No<br>9<br>Clone<br>cell<br>WT 1<br>WT 2<br>WT 3<br>WT 4<br>WT 5<br>WT 4                                 | Voxel<br>11542<br>12138<br>13174<br>10666<br>7233<br>12259<br>8244<br>5769<br>6319<br>Voxel<br>Count<br>11905<br>10638<br>11720<br>10201<br>10968<br>6199<br>4530                  | Volume<br>(μm³)     4672.11     4913.36     5332.73     4317.51     2927.86     4962.34     3337.1     2335.24     2557.88     Volume<br>(μm³)     4819.05     4306.17     4744.16     4129.28     4439.76     2509.3     1833.71                         | Centroi<br>d X<br>286.499<br>201.222<br>203.953<br>320.98<br>368.211<br>244.181<br>167.971<br>347.098<br>357.765<br>Centroi<br>d X<br>231.138<br>296.272<br>201.702<br>222.283<br>303.885<br>356.197<br>91.689                      | Centroi<br>d Y<br>408.29<br>373.605<br>453.387<br>243.583<br>484.199<br>174.201<br>280.458<br>321.55<br>398.372<br>Centroi<br>d Y<br>389.265<br>279.017<br>217.089<br>101.375<br>479.659<br>359.769<br>151.512                       | Centroi<br>d Z<br>15.9587<br>15.6616<br>16.8026<br>19.2421<br>16.6676<br>13.8058<br>24.5304<br>24.832<br>20.0392<br>Centroi<br>d Z<br>9.15691<br>13.4906<br>13.9402<br>14.6395<br>16.1523<br>16.8495<br>16.2143                       | Mean<br>(ChS1-T1)   37.7211   48.8208   62.7194   45.7475   105.742   65.4639   17.759   44.0579   42.9964   Mean<br>(ChS1-T1)   46.5367   26.2712   55.9625   56.4311   20.9043   19.2707   40.9161                      | Sum<br>(ChS1-T1)<br>435377<br>592587<br>826265<br>487943<br>764835<br>802522<br>146405<br>254170<br>271694<br>271694<br>554020<br>279473<br>655881<br>575654<br>229278<br>119459<br>185350                             | Mean<br>(Ch3-T3)<br>72.9244<br>1.78687<br>1.72666<br>1.37943<br>4.51804<br>1.85578<br>1.06174<br>1.45068<br>2.04162<br>Mean<br>(Ch3-T3)<br>115.238<br>0.476593<br>0.544881<br>0.457504<br>0.466083<br>0.27327<br>0.630243      | Min (Ch2-<br>T4)<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21               |
| Img No<br>8<br>Clone<br>cell<br>WT 1<br>WT 2<br>WT 3<br>WT 4<br>WT 5<br>WT 6<br>WT 7<br>WT 8<br>Img No<br>9<br>Clone<br>cell<br>WT 1<br>WT 2<br>WT 3<br>WT 4<br>WT 5<br>WT 4<br>WT 5<br>WT 6<br>WT 7         | Voxel<br>11542<br>12138<br>13174<br>10666<br>7233<br>12259<br>8244<br>5769<br>6319<br>Voxel<br>Count<br>11905<br>10638<br>11720<br>10201<br>10201<br>10968<br>6199<br>4530<br>7819 | Volume<br>(μm³)     4672.11     4913.36     5332.73     4317.51     2927.86     4962.34     3337.1     2335.24     2557.88     Volume<br>(μm³)     4819.05     4306.17     4744.16     4129.28     4439.76     2509.3     1833.71     3165.07             | Centroi<br>d X<br>286.499<br>201.222<br>203.953<br>320.98<br>368.211<br>244.181<br>167.971<br>347.098<br>357.765<br>Centroi<br>d X<br>231.138<br>296.272<br>201.702<br>222.283<br>303.885<br>356.197<br>91.689<br>103.409           | Centroi<br>d Y<br>408.29<br>373.605<br>453.387<br>243.583<br>484.199<br>174.201<br>280.458<br>321.55<br>398.372<br>Centroi<br>d Y<br>389.265<br>279.017<br>217.089<br>101.375<br>479.659<br>359.769<br>151.512<br>234.773            | Centroi<br>d Z<br>15.9587<br>15.6616<br>16.8026<br>19.2421<br>16.6676<br>13.8058<br>24.5304<br>24.832<br>20.0392<br>Centroi<br>d Z<br>9.15691<br>13.4906<br>13.9402<br>14.6395<br>16.1523<br>16.8495<br>16.2143<br>15.7753            | Mean<br>(ChS1-T1)   37.7211   48.8208   62.7194   45.7475   105.742   65.4639   17.759   44.0579   42.9964   Mean<br>(ChS1-T1)   46.5367   26.2712   55.9625   56.4311   20.9043   19.2707   40.9161   36.7053            | Sum<br>(ChS1-T1)<br>435377<br>592587<br>826265<br>487943<br>764835<br>802522<br>146405<br>254170<br>271694<br>271694<br>554020<br>279473<br>655881<br>575654<br>229278<br>119459<br>185350<br>286999                   | Mean<br>(Ch3-T3)   72.9244   1.78687   1.72666   1.37943   4.51804   1.85578   1.06174   1.45068   2.04162   Mean<br>(Ch3-T3)   115.238   0.476593   0.544881   0.457504   0.466083   0.27327   0.630243   0.518736            | Min (Ch2-<br>T4)<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21               |
| Img No<br>8<br>Clone<br>cell<br>WT 1<br>WT 2<br>WT 3<br>WT 4<br>WT 5<br>WT 6<br>WT 7<br>WT 8<br>Img No<br>9<br>Clone<br>cell<br>WT 1<br>WT 2<br>WT 3<br>WT 4<br>WT 5<br>WT 4<br>WT 5<br>WT 6<br>WT 7<br>WT 8 | Voxel<br>Count<br>11542<br>12138<br>13174<br>10666<br>7233<br>12259<br>8244<br>5769<br>6319<br>Voxel<br>Count<br>11905<br>10638<br>11720<br>10201<br>10968<br>6199<br>4530<br>7819 | Volume<br>(μm³)     4672.11     4913.36     5332.73     4317.51     2927.86     4962.34     3337.1     2335.24     2557.88     Volume<br>(μm³)     4819.05     4306.17     4744.16     4129.28     4439.76     2509.3     1833.71     3165.07     1665.72 | Centroi<br>d X<br>286.499<br>201.222<br>203.953<br>320.98<br>368.211<br>244.181<br>167.971<br>347.098<br>357.765<br>Centroi<br>d X<br>231.138<br>296.272<br>201.702<br>222.283<br>303.885<br>356.197<br>91.689<br>103.409<br>164.33 | Centroi<br>d Y<br>408.29<br>373.605<br>453.387<br>243.583<br>484.199<br>174.201<br>280.458<br>321.55<br>398.372<br>Centroi<br>d Y<br>389.265<br>279.017<br>217.089<br>101.375<br>479.659<br>359.769<br>151.512<br>234.773<br>350.827 | Centroi<br>d Z<br>15.9587<br>15.6616<br>16.8026<br>19.2421<br>16.6676<br>13.8058<br>24.5304<br>24.832<br>20.0392<br>Centroi<br>d Z<br>9.15691<br>13.4906<br>13.9402<br>14.6395<br>16.1523<br>16.8495<br>16.2143<br>15.7753<br>27.7618 | Mean<br>(ChS1-T1)   37.7211   48.8208   62.7194   45.7475   105.742   65.4639   17.759   44.0579   42.9964   Mean<br>(ChS1-T1)   46.5367   26.2712   55.9625   56.4311   20.9043   19.2707   40.9161   36.7053   0.838639 | Sum<br>(ChS1-T1)<br>435377<br>592587<br>826265<br>487943<br>764835<br>802522<br>146405<br>254170<br>271694<br>254170<br>271694<br>554020<br>279473<br>655881<br>575654<br>229278<br>119459<br>185350<br>286999<br>3451 | Mean<br>(Ch3-T3)   72.9244   1.78687   1.72666   1.37943   4.51804   1.85578   1.06174   1.45068   2.04162   Mean<br>(Ch3-T3)   115.238   0.476593   0.544881   0.457504   0.466083   0.27327   0.630243   0.518736   0.277278 | Min (Ch2-<br>T4)<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21<br>21               |

| Img No<br>10<br>Clone | Voxel<br>Count | Volume<br>(µm³) | Centroi<br>d X | Centroi<br>d Y | Centroi<br>d Z | Mean<br>(ChS1-T1) | Sum<br>(ChS1-T1) | Mean<br>(Ch3-T3) | Min (Ch2-<br>T4) |
|-----------------------|----------------|-----------------|----------------|----------------|----------------|-------------------|------------------|------------------|------------------|
| cell                  | 6568           | 2658.67         | 312.575        | 157.738        | 8.83085        | 61.9353           | 406791           | 100.419          | 21               |
| WT 1                  | 11559          | 4678.99         | 218.034        | 271.423        | 13.515         | 36.7489           | 424781           | 0.967731         | 21               |
| WT 2                  | 6973           | 2822.61         | 228.82         | 369.204        | 11.4754        | 133.994           | 934340           | 1.24208          | 21               |

| WT 3                  | 6915           | 2799.13         | 191.89         | 459.823        | 16.4315        | 106.884           | 739105           | 0.941287         | 21               |
|-----------------------|----------------|-----------------|----------------|----------------|----------------|-------------------|------------------|------------------|------------------|
| WT 4                  | 11006          | 4455.14         | 234.619        | 88.9119        | 15.9659        | 20.0054           | 220179           | 33.8953          | 21               |
| WT 5                  | 9183           | 3717.2          | 337.44         | 60.5975        | 15.9796        | 30.5114           | 280186           | 1.6304           | 21               |
| WT 6                  | 6719           | 2719.8          | 174.035        | 221.005        | 29.2913        | 4.43146           | 29775            | 0.507218         | 21               |
| WT 7                  | 10410          | 4213.88         | 309.405        | 246.52         | 17.9939        | 21.483            | 223638           | 1.17839          | 21               |
| WT 8                  | 4937           | 1998.46         | 168.635        | 3166.86        | 1713.94        | 29.4235           | 145264           | 0.575248         | 21               |
| Img No<br>11<br>Clone | Voxel<br>Count | Volume<br>(µm³) | Centroi<br>d X | Centroi<br>d Y | Centroi<br>d Z | Mean<br>(ChS1-T1) | Sum<br>(ChS1-T1) | Mean<br>(Ch3-T3) | Min (Ch2-<br>T4) |
| cell                  | 9637           | 3900.98         | 238.783        | 109.481        | 22.5438        | 12.1881           | 117457           | 53.0554          | 21               |
| WT 1                  | 9380           | 3796.95         | 369.856        | 296.816        | 8.20992        | 82.7686           | 776369           | 1.17559          | 21               |
| WT 2                  | 12345          | 4997.15         | 313.687        | 420.875        | 16.8358        | 38.7673           | 478582           | 0.701418         | 21               |
| WT 3                  | 10599          | 4290.39         | 370.005        | 296.718        | 8.85876        | 75.5053           | 800281           | 1.09124          | 21               |
| WT 4                  | 11512          | 4659.96         | 124.578        | 223.788        | 12.3464        | 83.7859           | 964543           | 0.946056         | 21               |
| WT 5                  | 10073          | 4077.47         | 122.759        | 98.9131        | 12.4406        | 49.9169           | 502813           | 13.6841          | 21               |
| WT 6                  | 2232           | 903.495         | 443.285        | 190.723        | 14.3132        | 57.1335           | 127522           | 0.737455         | 21               |
| WT 7                  | 1579           | 639.166         | 396.669        | 127.174        | 27.4471        | 62.8778           | 99284            | 0.535149         | 21               |
| WT 8                  | 15089          | 6107.9          | 267.783        | 199.961        | 6.95367        | 95.2693           | 1.44E+06         | 1.11114          | 21               |

Average intensity of Dref localization in 10 non adjacent wild type

| cells  |        |
|--------|--------|
| Img No |        |
| 1      | 80.758 |
| Img No |        |
| 2      | 42.782 |
| Img No |        |
| 3      | 14.291 |
| Img No |        |
| 4      | 51.074 |
| Img No |        |
| 6      | 14.044 |
| Img No |        |
| 7      | 37.373 |
| Img No |        |
| 8      | 54.163 |
| Img No |        |
| 9      | 32.162 |
| Img No |        |
| 10     | 47.935 |
| Img No |        |
| 11     | 68.253 |
|        |        |

Intensity of Dref localization in clone cell V average intensity of Dref localization in 10 non adjacent wild type cells Img No

| IIIIg NO     |      |
|--------------|------|
| 1            | 0.27 |
| Img No       |      |
| 2            | 0.89 |
| Img No       |      |
| 3            | 4.03 |
| Img No       |      |
| 4<br>7 N     | 1.17 |
| Img No       | 0.10 |
| 0<br>Jana Na | 2.12 |
| 1111g 180    | 15   |
| /<br>Img No  | 1.5  |
| 8            | 0.7  |
| Img No       | 0.7  |
| 9            | 1.44 |
| Img No       |      |
| 10           | 1.29 |
| Img No       |      |
| 11           | 0.18 |
|              |      |

| Average value of the ratio of the clone cell V wild type cells acquired from Img No 1 to |            |
|------------------------------------------------------------------------------------------|------------|
| Img No 11                                                                                | 1.359      |
| Std Dev of the average ratio of clone cell / wild type cell                              | 1.10606861 |

## B.8. Analysis of the phenotypic effect of Simj expression on salivary gland size

| <b>D</b> |                                 |                              |                            |               |
|----------|---------------------------------|------------------------------|----------------------------|---------------|
| D V      | (i) Mooguromont of DAD          | stoined nuclei size from     | www.thind.incton.colivon   | alonda        |
| D.O.     | (I) vieasifientent of DAFT      | Stattled inficiel size from  | vw umu o msiai sanvai v    | <b>YIAHUS</b> |
| 2.0.     | (1) 101040541 01110110 01 20111 | Stanie a nation since in our | j ii unit a motar san tarj | 5             |

| SG 1          | 1 | Length | Distance | μm   | 27.61 |
|---------------|---|--------|----------|------|-------|
|               | 2 | Lengui | Distance | μΠ   | 21.55 |
|               | 3 | Length | Distance | μm   | 24.29 |
|               | 4 | Length | Distance | μm   | 28.5  |
| 60.2          | 3 | Length | Distance | μm   | 25.98 |
| <b>SG 2</b>   | 1 | Length | Distance | μm   | 25.84 |
|               | 2 | Length | Distance | μm   | 24.39 |
|               | 3 | Length | Distance | μm   | 25.83 |
|               | 4 | Length | Distance | μm   | 27.79 |
| 60.2          | 3 | Length | Distance | μm   | 22.52 |
| 36.3          | 1 | Lengui | Distance | μΠ   | 27.1  |
|               | 2 | Length | Distance | μm   | 29.81 |
|               | 3 | Length | Distance | μm   | 25.52 |
| 80.4          | 4 | Length | Distance | μm   | 27.54 |
| <b>3</b> G 4  | 1 | Length | Distance | μm   | 27.1  |
|               | 2 | Length | Distance | μm   | 24.17 |
|               | 3 | Length | Distance | μm   | 23.12 |
|               | 4 | Length | Distance | μm   | 24.55 |
| 8C 5          | 5 | Length | Distance | μm   | 26.31 |
| 36.2          | 1 | Length | Distance | μm   | 20.18 |
| 80.4          | 2 | Length | Distance | μm   | 27.80 |
| 30 0          | 1 | Length | Distance | μm   | 24.01 |
|               | 2 | Length | Distance | μm   | 24.52 |
| 80.7          | 3 | Length | Distance | μm   | 26.99 |
| <b>SG</b> /   | 1 | Length | Distance | μm   | 28.54 |
|               | 2 | Length | Distance | μm   | 27.33 |
|               | 3 | Length | Distance | μm   | 28.94 |
| 60.0          | 4 | Length | Distance | μm   | 22.4  |
| 30 9          | 1 | Length | Distance | μm   | 21.10 |
|               | 2 | Length | Distance | μm   | 20.7  |
| 50.0          | 3 | Length | Distance | μm   | 20.02 |
| 36.9          | 1 | Length | Distance | μm   | 30.77 |
|               | 2 | Length | Distance | μιιι | 20.07 |
|               | 3 | Length | Distance | μm   | 29.07 |
|               | 4 | Length | Distance | μιιι | 20.90 |
|               | 5 | Length | Distance | μιιι | 20.05 |
| SC 10         | 1 | Length | Distance | μιιι | 29.79 |
| 56 10         | 2 | Length | Distance | μιιι | 26.19 |
|               | 2 | Length | Distance | μm   | 20.18 |
|               | 3 | Length | Distance | μm   | 30.41 |
|               | 4 | Length | Distance | μm   | 20.1  |
|               | 5 | Length | Distance | μm   | 29.51 |
| SC 11         | 1 | Length | Distance | μιιι | 20.62 |
| <b>5</b> G 11 | 1 | Length | Distance | μm   | 29.05 |
|               | 2 | Length | Distance | μm   | 30.63 |
|               | 3 | Length | Distance | μm   | 30.35 |
|               | 4 | Length | Distance | μm   | 25.08 |
| 50.12         | 5 | Length | Distance | μm   | 25.62 |
| SG 12         | 1 | Length | Distance | μm   | 34.49 |
|               | 2 | Length | Distance | μm   | 30.28 |

|                  | 3               | Length       | Distance      | μm | 30.38    |
|------------------|-----------------|--------------|---------------|----|----------|
|                  | 4               | Length       | Distance      | μm | 30.84    |
|                  | 5               | Length       | Distance      | μm | 28.4     |
| SG 13            | 1               | Length       | Distance      | μm | 26.54    |
|                  | 2               | Length       | Distance      | μm | 28.14    |
|                  | 3               | Length       | Distance      | μm | 29.36    |
|                  | 4               | Length       | Distance      | μm | 29.68    |
|                  | 5               | Length       | Distance      | μm | 30.99    |
|                  | 6               | Length       | Distance      | μm | 24.82    |
|                  | 7               | Length       | Distance      | μm | 32.45    |
| SG 14            | 1               | Length       | Distance      | μm | 29.22    |
|                  | 2               | Length       | Distance      | μm | 25.61    |
|                  | 3               | Length       | Distance      | μm | 27.78    |
|                  | 4               | Length       | Distance      | μm | 24.29    |
|                  | 5               | Length       | Distance      | μm | 29.97    |
| SG 15            | 1               | Length       | Distance      | μm | 32.91    |
|                  | 2               | Length       | Distance      | μm | 28.79    |
|                  | 3               | Length       | Distance      | μm | 35.38    |
|                  | 4               | Length       | Distance      | μm | 31.87    |
| SG 16            | 1               | Length       | Distance      | μm | 28.36    |
|                  | 2               | Length       | Distance      | μm | 28.86    |
|                  | 3               | Length       | Distance      | μm | 36.72    |
| SG 17            | 1               | Length       | Distance      | μm | 22.41    |
|                  | 2               | Length       | Distance      | μm | 20.22    |
| SG 18            | 1               | Length       | Distance      | μm | 23.88    |
|                  | 2               | Length       | Distance      | μm | 19.33    |
|                  | 3               | Length       | Distance      | μm | 21.07    |
|                  | 4               | Length       | Distance      | μm | 23.85    |
| SG 19            | 1               | Length       | Distance      | μm | 34.37    |
|                  | 2               | Length       | Distance      | μm | 31.11    |
|                  | 3               | Length       | Distance      | μm | 31.42    |
|                  | 4               | Length       | Distance      | μm | 30.3     |
| SG 20            | 1               | Length       | Distance      | μm | 27.6     |
|                  | 2               | Length       | Distance      | μm | 23.77    |
|                  | 3               | Length       | Distance      | μm | 24.25    |
| SG 21            | 1               | Length       | Distance      | μm | 25.47    |
|                  | 2               | Length       | Distance      | μm | 25.73    |
|                  | 3               | Length       | Distance      | μm | 22.63    |
|                  | 4               | Length       | Distance      | μm | 24.57    |
| Avorago value of | 5<br>nuclei siz | Length       | Distance      | μm | 21.02    |
| Average value of | on of the       | c from 21 Sa | invary glands |    | 21.33189 |
| Stanuaru uevlati | 3.444441        |              |               |    |          |

# B.8. (ii) Measurement of DAPI stained nuclei size from salivary glands of UAS-simj containing third instar larvae where expression of UAS-simj was not driven by c147-GAL4 driver.

| SG 1 | 1 | Length | Distance | μm | 26.05 |
|------|---|--------|----------|----|-------|
|      | 2 | Length | Distance | μm | 25.98 |
|      | 3 | Length | Distance | μm | 25.53 |
|      | 4 | Length | Distance | μm | 24.42 |
| SG 2 | 1 | Length | Distance | μm | 24.47 |
|      | 2 | Length | Distance | μm | 23.13 |
|      | 3 | Length | Distance | μm | 24.87 |
| SG 3 | 1 | Length | Distance | μm | 27.51 |
|      | 2 | Length | Distance | μm | 29.39 |

|       | 3 | Length | Distance | μm      | 25.72 |
|-------|---|--------|----------|---------|-------|
|       | 4 | Length | Distance | μm      | 25.69 |
| SG 4  | 1 | Length | Distance | μm      | 25.51 |
|       | 2 | Length | Distance | μm      | 19.6  |
|       | 3 | Length | Distance | μm      | 26.66 |
|       | 4 | Length | Distance | μm      | 24.13 |
|       | 5 | Length | Distance | μm      | 20.96 |
| SG 5  | 1 | Length | Distance | μm      | 28.63 |
|       | 2 | Length | Distance | μm      | 27.6  |
|       | 3 | Length | Distance | μm      | 27.7  |
|       | 4 | Length | Distance | μm      | 26.49 |
|       | 5 | Length | Distance | μm      | 24.66 |
| SG 6  | 1 | Length | Distance | μm      | 29.23 |
|       | 2 | Length | Distance | μm      | 27.7  |
|       | 3 | Length | Distance | um      | 30.85 |
|       | 4 | Length | Distance | um      | 29.88 |
| SG 7  | 1 | Length | Distance | ,       | 28.95 |
| 507   | 2 | Length | Distance | um      | 26.33 |
|       | 2 | Length | Distance |         | 26.33 |
|       | 4 | Length | Distance | µm      | 20.54 |
|       | 5 | Length | Distance | µm      | 24.41 |
|       | 5 | Longth | Distance | µm      | 20.75 |
|       | 7 | Length | Distance | μin<br> | 29.15 |
| 50.9  | / | Length | Distance | μm      | 29.86 |
| SG 8  | 1 | Length | Distance | μm      | 25.34 |
|       | 2 | Length | Distance | μιπ     | 20.99 |
| 66 A  | 3 | Length | Distance | μm      | 25.48 |
| SG 9  | 1 | Length | Distance | μm      | 27.51 |
|       | 2 | Length | Distance | μm      | 28.01 |
|       | 3 | Length | Distance | μm      | 29.43 |
|       | 4 | Length | Distance | μm      | 26.66 |
|       | 5 | Length | Distance | μm      | 23.68 |
|       | 6 | Length | Distance | μm      | 23.93 |
|       | 7 | Length | Distance | μm      | 29.07 |
| SG 10 | 1 | Length | Distance | μm      | 23.88 |
|       | 2 | Length | Distance | μm      | 23.05 |
|       | 3 | Length | Distance | μm      | 23.53 |
|       | 4 | Length | Distance | μm      | 27.09 |
|       | 5 | Length | Distance | μm      | 23.14 |
| SG 11 | 1 | Length | Distance | μm      | 19.51 |
|       | 2 | Length | Distance | μm      | 17.61 |
|       | 3 | Length | Distance | μm      | 16.68 |
|       | 4 | Length | Distance | μm      | 18.15 |
|       | 5 | Length | Distance | μm      | 17.86 |
|       | 6 | Length | Distance | μm      | 19.74 |
|       | 7 | Length | Distance | μm      | 15.58 |
| SG 12 | 1 | Length | Distance | μm      | 19.77 |
|       | 2 | Length | Distance | μm      | 20.41 |
|       | 3 | Length | Distance | μm      | 21.25 |
|       | 4 | Length | Distance | μm      | 18.23 |
|       | 5 | Length | Distance | μm      | 21.27 |
| SG 13 | 1 | Length | Distance | μm      | 18.83 |
|       | 2 | Length | Distance | μm      | 21.3  |
|       | 3 | Length | Distance | μm      | 20.75 |
|       | 4 | Length | Distance | μm      | 19.95 |
|       |   |        |          |         |       |

| SG 14 | 1 | Length | Distance | μm      | 20.71 |
|-------|---|--------|----------|---------|-------|
|       | 2 | Length | Distance | μm      | 19.66 |
|       | 3 | Length | Distance | μm      | 20.53 |
|       | 4 | Length | Distance | μm      | 21.98 |
| SG 15 | 1 | Length | Distance | μm      | 24.02 |
|       | 2 | Length | Distance | μm      | 23.32 |
|       | 3 | Length | Distance | μm      | 23.47 |
|       | 4 | Length | Distance | μm      | 27.84 |
|       | 5 | Length | Distance | μm      | 23.1  |
| SG 16 | 1 | Length | Distance | μm      | 25.9  |
|       | 2 | Length | Distance | μm      | 25.23 |
|       | 3 | Length | Distance | um      | 20.77 |
|       | 4 | Length | Distance | <br>IIM | 24.19 |
|       | 5 | Length | Distance | um      | 23.89 |
|       | 1 | Length | Distance | um      | 25.18 |
|       | 2 | Length | Distance | um      | 23.10 |
|       | 3 | Length | Distance | um      | 25.01 |
|       | 4 | Longth | Distance | μm      | 24.08 |
| SC 17 | 4 | Length | Distance | μm      | 24.90 |
| SG 17 | 1 | Length | Distance | μm<br>  | 27.17 |
|       | 2 | Length | Distance | μm      | 27.19 |
|       | 3 | Length | Distance | μm      | 24.58 |
|       | 4 | Length | Distance | μm      | 27.03 |
| SG 18 | 1 | Length | Distance | μm      | 25.04 |
|       | 2 | Length | Distance | μm      | 20.89 |
|       | 3 | Length | Distance | μm      | 21.77 |
|       | 4 | Length | Distance | μm      | 26.81 |
| SG 19 | 1 | Length | Distance | μm      | 21.51 |
|       | 2 | Length | Distance | μm      | 21.01 |
|       | 3 | Length | Distance | μm      | 20.5  |
|       | 4 | Length | Distance | μm      | 21.41 |
|       | 5 | Length | Distance | μm      | 19.96 |
| SG 20 | 1 | Length | Distance | μm      | 25.24 |
|       | 2 | Length | Distance | μm      | 22.07 |
|       | 3 | Length | Distance | μm      | 21    |
|       | 4 | Length | Distance | μm      | 20.75 |
| SG 21 | 1 | Length | Distance | μm      | 21.1  |
|       | 2 | Length | Distance | μm      | 26.78 |
|       | 3 | Length | Distance | μm      | 23.05 |
|       | 4 | Length | Distance | μm      | 21.88 |
| SG 22 | 1 | Length | Distance | μm      | 27.16 |
|       | 2 | Length | Distance | μm      | 24.4  |
|       | 3 | Length | Distance | μm      | 25.5  |
|       | 4 | Length | Distance | μm      | 20.86 |
|       | 5 | Length | Distance | μm      | 26.01 |
| SG 23 | 1 | Length | Distance | μm      | 19.98 |
|       | 2 | Length | Distance | μm      | 20.88 |
|       | 3 | Length | Distance | μm      | 20.54 |
|       | 4 | Length | Distance | μm      | 18.66 |
| SG 24 | 1 | Length | Distance | μm      | 22.43 |
|       | 2 | Length | Distance | μm      | 19.68 |
|       | 3 | Length | Distance | μm      | 25.41 |
|       | 4 | Length | Distance | μm      | 21.1  |
| SG 25 | 1 | Length | Distance | um      | 30 54 |
|       | 2 | Length | Distance | um      | 24 64 |
|       | - |        |          | £11     |       |

|                | 3        | Length       | Distance            | μm                            | 24.4                           |
|----------------|----------|--------------|---------------------|-------------------------------|--------------------------------|
| SG 26          | 1        | Length       | Distance            | μm                            | 21.99                          |
|                | 2        | Length       | Distance            | μm                            | 20.48                          |
|                | 3        | Length       | Distance            | μm                            | 23.8                           |
| SG 27          | 1        | Length       | Distance            | μm                            | 25.61                          |
|                | 2        | Length       | Distance            | μm                            | 21.96                          |
|                | 3        | Length       | Distance            | μm                            | 22.05                          |
|                | 4        | Length       | Distance            | μm                            | 19.81                          |
| SG 28          | 1        | Length       | Distance            | μm                            | 22.2                           |
|                | 2        | Length       | Distance            | μm                            | 19.93                          |
|                | 3        | Length       | Distance            | μm                            | 21.02                          |
|                | 4        | Length       | Distance            | μm                            | 19.13                          |
|                | 5        | Length       | Distance            | μm                            | 19.47                          |
| SG 29          | 1        | Length       | Distance            | μm                            | 24.09                          |
|                | 2        | Length       | Distance            | μm                            | 21.42                          |
|                | 3        | Length       | Distance            | μm                            | 20.19                          |
|                | 4        | Length       | Distance            | μm                            | 24.32                          |
|                | 5        | Length       | Distance            | μm                            | 20.74                          |
| SG 30          | 1        | Length       | Distance            | μm                            | 25.76                          |
|                | 2        | Length       | Distance            | μm                            | 24.05                          |
|                | 3        | Length       | Distance            | μm                            | 20.73                          |
| SG 31          | 1        | Length       | Distance            | μm                            | 22.83                          |
|                | 2        | Length       | Distance            | μm                            | 22.82                          |
|                | 3        | Length       | Distance            | μm                            | 25.59                          |
| SG 32          | 1        | Length       | Distance            | μm                            | 21.53                          |
|                | 2        | Length       | Distance            | μm                            | 23.82                          |
|                | 3        | Length       | Distance            | μm                            | 24.85                          |
| B.8. (iii) Mea | asuremen | nt of DAPI s | stained nuclei size | from salivary glands of third | instar larvae where expression |
| ot UAS-simj    | was driv | en by c147-  | -GAL4 driver.       |                               |                                |

| SG 1 | 1 | Length | Distance | μm | 21.94 |
|------|---|--------|----------|----|-------|
|      | 2 | Length | Distance | μm | 27.75 |
|      | 3 | Length | Distance | μm | 23.26 |
|      | 4 | Length | Distance | μm | 23.6  |
|      | 5 | Length | Distance | μm | 21.77 |
| SG 2 | 1 | Length | Distance | μm | 24.52 |
|      | 2 | Length | Distance | μm | 26.2  |
|      | 3 | Length | Distance | μm | 22.69 |
| SG 3 | 1 | Length | Distance | μm | 19.54 |
|      | 2 | Length | Distance | μm | 19.17 |
|      | 3 | Length | Distance | μm | 19.77 |
|      | 4 | Length | Distance | μm | 20.55 |
|      | 5 | Length | Distance | μm | 18.84 |
| SG 4 | 1 | Length | Distance | μm | 19.48 |
|      | 2 | Length | Distance | μm | 19.32 |
|      | 3 | Length | Distance | μm | 21.28 |
|      | 4 | Length | Distance | μm | 20.83 |
|      | 5 | Length | Distance | μm | 17.33 |
|      | 6 | Length | Distance | μm | 18.95 |
|      | 7 | Length | Distance | μm | 22.33 |
| SG 5 | 1 | Length | Distance | μm | 19.26 |
|      | 2 | Length | Distance | μm | 20.36 |
|      | 3 | Length | Distance | μm | 20.32 |
|      | 4 | Length | Distance | μm | 18.48 |
| SG 6 | 1 | Length | Distance | μm | 22.11 |
|      |   |        |          |    |       |

|       | 2 | Length | Distance | μm | 26.07 |
|-------|---|--------|----------|----|-------|
|       | 3 | Length | Distance | μm | 17.49 |
|       | 4 | Length | Distance | μm | 21.03 |
|       | 5 | Length | Distance | μm | 18.33 |
| SG 7  | 1 | Length | Distance | μm | 19.53 |
|       | 2 | Length | Distance | μm | 20.55 |
|       | 3 | Length | Distance | μm | 19.66 |
|       | 4 | Length | Distance | μm | 19.4  |
|       | 5 | Length | Distance | μm | 18.4  |
| SG 8  | 1 | Length | Distance | μm | 17.59 |
|       | 2 | Length | Distance | μm | 14.45 |
|       | 3 | Length | Distance | μm | 17.26 |
|       | 4 | Length | Distance | μm | 15.72 |
|       | 5 | Length | Distance | μm | 18.81 |
| SG 9  | 1 | Length | Distance | μm | 16    |
|       | 2 | Length | Distance | μm | 17.95 |
|       | 3 | Length | Distance | μm | 17.33 |
|       | 4 | Length | Distance | μm | 17.71 |
|       | 5 | Length | Distance | μm | 16.65 |
|       | 6 | Length | Distance | μm | 17.11 |
|       | 7 | Length | Distance | μm | 17.55 |
| SG 10 | 1 | Length | Distance | μm | 16.68 |
|       | 2 | Length | Distance | μm | 18.89 |
|       | 3 | Length | Distance | μm | 19.03 |
|       | 4 | Length | Distance | μm | 19.7  |
|       | 5 | Length | Distance | μm | 21.56 |
|       | 6 | Length | Distance | μm | 19.4  |
| SG 11 | 1 | Length | Distance | μm | 21.66 |
|       | 2 | Length | Distance | μm | 21.3  |
|       | 3 | Length | Distance | μm | 21.58 |
|       | 4 | Length | Distance | μm | 20.87 |
|       | 5 | Length | Distance | μm | 18.94 |
|       | 6 | Length | Distance | μm | 19.67 |
| SG 12 | 1 | Length | Distance | μm | 26.04 |
|       | 2 | Length | Distance | μm | 23.58 |
|       | 3 | Length | Distance | μm | 20.96 |
|       | 4 | Length | Distance | μm | 20.7  |
|       | 5 | Length | Distance | μm | 19.88 |
|       | 6 | Length | Distance | μm | 23.03 |
|       | 7 | Length | Distance | μm | 22.83 |
| SG 13 | 1 | Length | Distance | μm | 21.42 |
|       | 2 | Length | Distance | μm | 23.52 |
|       | 3 | Length | Distance | μm | 22.35 |
|       | 4 | Length | Distance | μm | 23.39 |
| SG 14 | 1 | Length | Distance | μm | 27.11 |
|       | 2 | Length | Distance | μm | 25.36 |
|       | 3 | Length | Distance | μm | 24.08 |
|       | 4 | Length | Distance | μm | 26.26 |
|       | 5 | Length | Distance | μm | 23.65 |
| SG 15 | 1 | Length | Distance | μm | 20.75 |
|       | 2 | Length | Distance | μm | 26.84 |
|       | 3 | Length | Distance | μm | 21.81 |
|       | 4 | Length | Distance | μm | 24.9  |
| SG 16 | 1 | Length | Distance | μm | 22.66 |

|                   | 2           | Length      | Distance          | μm  | 22.38     |
|-------------------|-------------|-------------|-------------------|-----|-----------|
|                   | 3           | Length      | Distance          | μm  | 25.11     |
|                   | 4           | Length      | Distance          | μm  | 22.63     |
|                   | 5           | Length      | Distance          | μm  | 21.66     |
| SG 17             | 1           | Length      | Distance          | μm  | 21.72     |
|                   | 2           | Length      | Distance          | μm  | 26.29     |
|                   | 3           | Length      | Distance          | μm  | 22.7      |
|                   | 4           | Length      | Distance          | μm  | 23.25     |
|                   | 5           | Length      | Distance          | μm  | 23.41     |
|                   | 6           | Length      | Distance          | μm  | 23.5      |
|                   | 7           | Length      | Distance          | μm  | 22.82     |
|                   | 8           | Length      | Distance          | μm  | 25.87     |
| SG 18             | 1           | Length      | Distance          | μm  | 27.6      |
|                   | 2           | Length      | Distance          | μm  | 25.59     |
|                   | 3           | Length      | Distance          | μm  | 25.11     |
|                   | 4           | Length      | Distance          | μm  | 27.19     |
| SG 19             | 1           | Length      | Distance          | μm  | 22.1      |
|                   | 2           | Length      | Distance          | μm  | 21.63     |
|                   | 3           | Length      | Distance          | um  | 22.96     |
|                   | 4           | Length      | Distance          | μm  | 21.53     |
|                   | 5           | Length      | Distance          | um  | 23.4      |
| SG 20             | 1           | Length      | Distance          | um  | 19.99     |
| 50 -0             | 2           | Length      | Distance          | um  | 21 51     |
|                   | - 3         | Length      | Distance          | um  | 22.5      |
|                   | 4           | Length      | Distance          | μm  | 20.94     |
| SG 21             | 1           | Length      | Distance          | um  | 19 37     |
| 50 21             | 2           | Length      | Distance          | μm  | 25.12     |
|                   | 2           | Length      | Distance          | μm  | 23.12     |
|                   | 4           | Length      | Distance          | um  | 21.81     |
| SG 22             | 1           | Length      | Distance          | μm  | 17.89     |
| 50 22             | 2           | Length      | Distance          | μm  | 17.07     |
|                   | 2           | Longth      | Distance          | um  | 17.01     |
|                   | 1           | Longth      | Distance          | μm  | 18.77     |
| SC 23             |             | Longth      | Distance          | μm  | 17.81     |
| 56 25             | 2           | Longth      | Distance          | μπ  | 17.01     |
|                   | 2           | Length      | Distance          | μπ  | 17.7      |
|                   | 3           | Length      | Distance          | μιι | 10.07     |
| 50.24             | 4           | Length      | Distance          | μm  | 1/.8/     |
| 5G 24             | 1           | Length      | Distance          | μm  | 18.15     |
|                   | 2           | Length      | Distance          | μm  | 17.51     |
|                   | 3           | Length      | Distance          | μm  | 19.8      |
|                   | 4           | Length      | Distance          | μm  | 20.09     |
|                   | 5           | Length      | Distance          | μm  | 21.68     |
|                   | 6           | Length      | Distance          | μm  | 20.08     |
|                   | 7           | Length      | Distance          | μm  | 19.7      |
|                   | 8           | Length      | Distance          | μm  | 18.3      |
|                   | 9           | Length      | Distance          | μm  | 20.54     |
| SG 25             | 1           | Length      | Distance          | μm  | 21.05     |
|                   | 2           | Length      | Distance          | μm  | 19.77     |
|                   | 3           | Length      | Distance          | μm  | 19.99     |
|                   | 4           | Length      | Distance          | μm  | 21.07     |
|                   | 5           | Length      | Distance          | μm  | 19.19     |
| Average value of  | nuclei sizo | e from 25 s | alivary glands    |     | 21.061308 |
| Standard deviatio | n of the a  | werage valu | ue of nuclei size |     | 2.8174103 |



B.8. (iv) One way ANOVA analysis of the data shown in appendix B.8 (i), B.8 (ii) and B.8 (iii)

#### **One-way ANOVA: DATA versus GENES**

MS Source DF SS F Ρ 2 2231.47 1115.73 113.53 0.000 GENES 361 3547.93 363 5779.39 9.83 Error Total S = 3.135 R-Sq = 38.61% R-Sq(adj) = 38.27% Individual 95% CIs For Mean Based on Pooled StDev Level Ν Mean StDev -----+----+----+-----+-----+-----+-----+---90 27.538 3.424 144 23.621 3.218 (---\*--) 1 2 (-\*--) 130 21.061 2.817 (-\*--) 3 -----+-----+-----+-----+-----+---22.0 24.0 26.0 28.0 Pooled StDev = 3.135Tukey 95% Simultaneous Confidence Intervals All Pairwise Comparisons among Levels of GENES Individual confidence level = 98.02% GENES = 1 subtracted from: -3.0 0.0 3.0 -6.0 GENES = 2 subtracted from: GENES Lower Center Upper 3 -3.448 -2.560 -1.672 (-\*--) -6.0 -3.0 0.0 3.0

**B.9. Effect of Simj expression on Mi-2 localization in single cell clones** For the data of Visualization of Mi-2 protein in GFP marked control clone cells. refer Appendix B.2. (i) For the data of Visualization of Mi-2 protein in single cell clones expressing *NOS2* refer Appendix B.2. (ii) B.9. (i) Visualization of Mi-2 protein in single cell clones expressing *simj* 

| Img No<br>1<br>Clone    | Voxel<br>Count         | Volume<br>(µm³)             | Min<br>(ChS2-T2)               | Mean<br>(ChS2-T2)               | Sum<br>(ChS2-T2)                | Mean<br>(Ch3-T3)     | Centroi<br>d X     | Centroi<br>d Y     | Centroid Z         |
|-------------------------|------------------------|-----------------------------|--------------------------------|---------------------------------|---------------------------------|----------------------|--------------------|--------------------|--------------------|
| cell                    | 16360                  | 6622.39                     | 57                             | 141.12                          | 2.31E+06                        | 34.0834              | 450.376            | 121.158            | 6.58191            |
| Wt 1                    | 7803                   | 3158.59                     | 57                             | 134.5                           | 1.05E+06                        | 0.066641             | 58.9468            | 231.115            | 6.39536            |
| Wt 2                    | 6450                   | 2610.91                     | 57                             | 137.121                         | 884431                          | 0.0724031            | 135.03             | 228.92             | 7.17395            |
| Wt 3                    | 6553                   | 2652.6                      | 57                             | 127.699                         | 836809                          | 0.0602777            | 146.638            | 318.454            | 7.77537            |
| Wt 4                    | 6067                   | 2455.87                     | 57                             | 124.882                         | 757657                          | 0.0525795            | 253.202            | 287.083            | 8.43036            |
| Wt 5                    | 7037                   | 2848.52                     | 57                             | 128.13                          | 901654                          | 0.0667898            | 321.164            | 297.007            | 8.19582            |
| Wt 6                    | 11357                  | 4597.22                     | 57                             | 130.938                         | 1.49E+06                        | 0.07185              | 85.6533            | 381.751            | 8.85163            |
| Wt 7                    | 4918                   | 1990.77                     | 57                             | 124.378                         | 611690                          | 0.0518503            | 37.2056            | 191.542            | 16.0702            |
| Wt 8                    | 4313                   | 1745.87                     | 57                             | 120.296                         | 518836                          | 0.0428936            | 483.09             | 306.288            | 14.2054            |
| Wt 9                    | 4564                   | 1847.47                     | 57                             | 128.315                         | 585628                          | 0.0580631            | 145.961            | 366.089            | 17.4189            |
| Wt 10                   | 7057                   | 2856.62                     | 57                             | 127.882                         | 902460                          | 0.0671674            | 321.05             | 296.46             | 8.18591            |
| Img No<br>2<br>Clone    | Voxel<br>Count         | Volume<br>(µm³)             | Min<br>(ChS2-T2)               | Mean<br>(ChS2-T2)               | Sum<br>(ChS2-T2)                | Mean<br>(Ch3-T3)     | Centroi<br>d X     | Centroi<br>d Y     | Centroid Z         |
| cell                    | 14667                  | 5937.08                     | 57                             | 147.235                         | 2.16E+06                        | 106.857              | 111.108            | 355.654            | 8.96755            |
| Wt 1                    | 6379                   | 2582.17                     | 57                             | 107.023                         | 682698                          | 0.773632             | 422.654            | 171.442            | 8.37827            |
| Wt 2                    | 2836                   | 1147.99                     | 57                             | 96.3551                         | 273263                          | 0.538082             | 465.529            | 91.0815            | 6.44288            |
| Wt 3                    | 6290                   | 2546.14                     | 57                             | 105.174                         | 661545                          | 0.793323             | 286.41             | 127.942            | 7.10127            |
| Wt4                     | 4997                   | 2022.74                     | 57                             | 98.9956                         | 494681                          | 0.923154             | 243.587            | 206.562            | 6.3336             |
| Wt 5                    | 3766                   | 1524.45                     | 57                             | 95.427                          | 359378                          | 0.644981             | 170.429            | 44.2262            | 6.25544            |
| Wt6                     | 4603                   | 1863.26                     | 57                             | 98.6007                         | 453859                          | 1.09841              | 59.3167            | 160.709            | 6.10146            |
| Wt 7                    | 5385                   | 2179.8                      | 57                             | 107.846                         | 580751                          | 0.803528             | 460.835            | 324.756            | 8.42581            |
| Img No<br>3             | Voxel<br>Count         | Volume<br>(µm³)             | Min<br>(ChS2-T2)               | Mean<br>(ChS2-T2)               | Sum<br>(ChS2-T2)                | Mean<br>(Ch3-T3)     | Centroi<br>d X     | Centroi<br>d Y     | Centroid Z         |
| cell 1                  | 10897                  | 4411.02                     | 43                             | 105.125                         | 1.15E+06                        | 100.482              | 69.3808            | 410.013            | 9.28421            |
| Wt 1                    | 9418                   | 3812.33                     | 43                             | 100.859                         | 949889                          | 5.40285              | 167.029            | 97.5033            | 14.8709            |
| Wt 2                    | 10938                  | 4427.61                     | 43                             | 116.031                         | 1.27E+06                        | 0.360304             | 393.396            | 64.4188            | 16.2063            |
| Wt 3                    | 10338                  | 4184.74                     | 43                             | 109.234                         | 1.13E+06                        | 0.397079             | 265.724            | 60.3963            | 17.8363            |
| Wt4                     | 10249                  | 4148.71                     | 43                             | 119.768                         | 1.23E+06                        | 0.465997             | 369.051            | 186.718            | 14.6418            |
| Wt 5                    | 9484                   | 3839.05                     | 43                             | 103.639                         | 982913                          | 0.499578             | 374.002            | 395.276            | 13.7109            |
| Wt 6                    | 7438                   | 3010.84                     | 43                             | 100.523                         | 747693                          | 0.661871             | 186.82             | 355.517            | 13.5144            |
| Wt 7                    | 9304                   | 3766.18                     | 43                             | 100.792                         | 937768                          | 5.42197              | 166.839            | 97.4275            | 14.9012            |
| Wt 8                    | 4113                   | 1664.91                     | 43                             | 83.2815                         | 342537                          | 0.222952             | 465.848            | 362.801            | 13.3744            |
| Img No<br>4             | Voxel<br>Count         | Volume<br>(µm³)             | Min<br>(ChS2-T2)               | Mean<br>(ChS2-T2)               | Sum<br>(ChS2-T2)                | Mean<br>(Ch3-T3)     | Centroi<br>d X     | Centroi<br>d Y     | Centroid Z         |
| cell 1                  | 12135                  | 4912.15                     | 46                             | 136.017                         | 1.65E+06                        | 131.048              | 73.6278            | 66.9926            | 6.75731            |
| Wt 1                    | 9413                   | 3810.3                      | 46                             | 104.73                          | 985828                          | 0.232976             | 299.246            | 192.522            | 11.1588            |
| Wt 2                    | 7596                   | 3074.8                      | 46                             | 98.5566                         | 748636                          | 0.180358             | 366.104            | 159.209            | 15.7353            |
| Wt 3                    | 8831                   | 3574.72                     | 46                             | 104.357                         | 921574                          | 0.226362             | 395.488            | 228.113            | 10.5665            |
| Wt4                     | 6251                   | 2530.35                     | 46                             | 108.921                         | 680867                          | 0.158695             | 430.473            | 188.593            | 18.9736            |
| Wt 5                    | 4965                   | 2009.79                     | 46                             | 83.3398                         | 413782                          | 0.181269             | 388.245            | 438.983            | 12.4427            |
| Img No<br>5             | Voxel                  | Volume                      | Min<br>(ChSa Ta)               | Mean                            | Sum                             | Mean                 | Centroi            | Centroi<br>d V     | Controid 7         |
| Clope                   | Count                  | (µm³)                       | (CnS2-12)                      | (CnS2-12)                       | (Clis2-12)                      | (CII3-13)            | uл                 | uı                 | Centrola Z         |
| Clone<br>cell 1         | <b>Count</b><br>11912  | ( <b>µm³</b> )<br>4821.88   | ( <b>CnS2-1</b> 2)<br>46       | ( <b>CnS2-1</b> 2)<br>116.041   | (CIIS2-12)<br>1.38E+06          | (CIIS-13)<br>86.7053 | u X<br>262.517     | 377.754            | 4.94233            |
| Clone<br>cell 1<br>Wt 1 | Count<br>11912<br>7862 | (µm³)<br>4821.88<br>3182.47 | ( <b>CnS2-1</b> 2)<br>46<br>46 | (CnS2-12)<br>116.041<br>104.207 | (CHS2-12)<br>1.38E+06<br>819274 | 86.7053<br>1.43933   | 262.517<br>389.811 | 377.754<br>237.671 | 4.94233<br>6.54299 |

| Wt 3                                                  | 8910                                                 | 3606.69                                                                   | 46                                     | 103.984                                                                   | 926498                                                               | 0.885297                                                                       | 446.283                                                                  | 32.5094                                                                  | 4.98328                                                                  |
|-------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Wt4                                                   | 14570                                                | 5897.82                                                                   | 46                                     | 106.463                                                                   | 1.55E+06                                                             | 1.53974                                                                        | 83.7579                                                                  | 392.986                                                                  | 10.0226                                                                  |
| Wt 5                                                  | 3761                                                 | 1522.42                                                                   | 46                                     | 91.8282                                                                   | 345366                                                               | 0.711513                                                                       | 483.096                                                                  | 275.215                                                                  | 9.95799                                                                  |
| Wt 6                                                  | 10828                                                | 4383.09                                                                   | 46                                     | 99.1778                                                                   | 1.07E+06                                                             | 1.71888                                                                        | 173.078                                                                  | 301.655                                                                  | 7.16236                                                                  |
| Wt 7                                                  | 6918                                                 | 2800.35                                                                   | 46                                     | 92.9818                                                                   | 643248                                                               | 1.46343                                                                        | 283.103                                                                  | 284.763                                                                  | 6.13544                                                                  |
| Wt 8                                                  | 6202                                                 | 2510.52                                                                   | 46                                     | 92.4595                                                                   | 573434                                                               | 1.31699                                                                        | 233.008                                                                  | 462.724                                                                  | 12.1098                                                                  |
| Wt 9                                                  | 7090                                                 | 2869.97                                                                   | 46                                     | 100.922                                                                   | 715540                                                               | 1.1165                                                                         | 468.742                                                                  | 147.919                                                                  | 6.06135                                                                  |
| Wt 10                                                 | 8786                                                 | 3556.5                                                                    | 46                                     | 105.365                                                                   | 925740                                                               | 1.3402                                                                         | 381.439                                                                  | 334.936                                                                  | 7.32825                                                                  |
| Img No<br>6<br>Clone                                  | Voxel<br>Count                                       | Volume<br>(µm³)                                                           | Min<br>(ChS2-T2)                       | Mean<br>(ChS2-T2)                                                         | Sum<br>(ChS2-T2)                                                     | Mean<br>(Ch3-T3)                                                               | Centroi<br>d X                                                           | Centroi<br>d Y                                                           | Centroid Z                                                               |
| cell 1                                                | 10737                                                | 4346.25                                                                   | 82                                     | 144.792                                                                   | 1.55E+06                                                             | 99.106                                                                         | 382.245                                                                  | 205.242                                                                  | 8.45925                                                                  |
| Wt 1                                                  | 8151                                                 | 3299.46                                                                   | 82                                     | 138.355                                                                   | 1.13E+06                                                             | 1.2439                                                                         | 190.642                                                                  | 266.164                                                                  | 9.98736                                                                  |
| Wt 2                                                  | 5951                                                 | 2408.92                                                                   | 82                                     | 138.537                                                                   | 824432                                                               | 1.13325                                                                        | 63.2121                                                                  | 315.229                                                                  | 9.09746                                                                  |
| Wt 3                                                  | 3516                                                 | 1423.25                                                                   | 82                                     | 131.48                                                                    | 462284                                                               | 0.877986                                                                       | 186.644                                                                  | 376.67                                                                   | 10.1183                                                                  |
| Wt4                                                   | 5396                                                 | 2184.26                                                                   | 82                                     | 135.979                                                                   | 733744                                                               | 0.6894                                                                         | 449.377                                                                  | 331.161                                                                  | 10.4459                                                                  |
| Wt 5                                                  | 4025                                                 | 1629.29                                                                   | 82                                     | 141.379                                                                   | 569051                                                               | 0.693913                                                                       | 225.77                                                                   | 175.476                                                                  | 14.2631                                                                  |
| Wt 6                                                  | 4172                                                 | 1688.79                                                                   | 82                                     | 132.339                                                                   | 552119                                                               | 0.697987                                                                       | 336.289                                                                  | 373.71                                                                   | 10.8015                                                                  |
| Wt 7                                                  | 5133                                                 | 2077.8                                                                    | 82                                     | 138.425                                                                   | 710534                                                               | 1.15995                                                                        | 131.847                                                                  | 310.744                                                                  | 10.1773                                                                  |
| Wt 8                                                  | 6482                                                 | 2623.86                                                                   | 82                                     | 144.29                                                                    | 935288                                                               | 0.695927                                                                       | 362.157                                                                  | 136.408                                                                  | 17.8952                                                                  |
| Wt 9                                                  | 4665                                                 | 1888.35                                                                   | 82                                     | 136.768                                                                   | 638023                                                               | 0.627653                                                                       | 193.52                                                                   | 295.749                                                                  | 28.0585                                                                  |
| Wt 10                                                 | 4404                                                 | 1782.7                                                                    | 82                                     | 137.188                                                                   | 604178                                                               | 0.864668                                                                       | 283.085                                                                  | 180.765                                                                  | 22.2007                                                                  |
| Img No<br>7                                           | Voxel<br>Count                                       | Volume<br>(µm³)                                                           | Min<br>(ChS2-T2)                       | Mean<br>(ChS2-T2)                                                         | Sum<br>(ChS2-T2)                                                     | Mean<br>(Ch3-T3)                                                               | Centroi<br>d X                                                           | Centroi<br>d Y                                                           | Centroid Z                                                               |
| clone<br>cell 2                                       | 12052                                                | 4878.55                                                                   | 48                                     | 115.294                                                                   | 1.39E+06                                                             | 50.3392                                                                        | 446.966                                                                  | 131.514                                                                  | 9.66653                                                                  |
| Wt 1                                                  | 10324                                                | 4179.07                                                                   | 48                                     | 114.416                                                                   | 1.18E+06                                                             | 6.90672                                                                        | 206.639                                                                  | 62.141                                                                   | 13.3637                                                                  |
| Wt 2                                                  | 8672                                                 | 3510.35                                                                   | 48                                     | 97.4154                                                                   | 844786                                                               | 1.07922                                                                        | 241.722                                                                  | 151.791                                                                  | 13.0232                                                                  |
| Wt 3                                                  | 10713                                                | 4336.53                                                                   | 48                                     | 111.816                                                                   | 1.20E+06                                                             | 0.782881                                                                       | 310.893                                                                  | 55.49                                                                    | 12.1105                                                                  |
| Wt 4                                                  | 8377                                                 | 3390.94                                                                   | 48                                     | 99.0227                                                                   | 829513                                                               | 1.06589                                                                        | 49.0674                                                                  | 42.1019                                                                  | 13.7572                                                                  |
| Wt 5                                                  | 6804                                                 | 2754.2                                                                    | 48                                     | 93.1974                                                                   | 634115                                                               | 1.14947                                                                        | 235.311                                                                  | 272.532                                                                  | 12.8602                                                                  |
| Wt 6                                                  | 8038                                                 | 3253.72                                                                   | 48                                     | 99.6891                                                                   | 801301                                                               | 0.840134                                                                       | 383.176                                                                  | 82.4943                                                                  | 11.1687                                                                  |
| Wt 7                                                  | 8274                                                 | 3349.25                                                                   | 48                                     | 99.9821                                                                   | 827252                                                               | 1.09137                                                                        | 117.506                                                                  | 90.594                                                                   | 15.2236                                                                  |
| Wt 8                                                  | 6397                                                 | 2589.45                                                                   | 48                                     | 95.6301                                                                   | 611746                                                               | 0.849304                                                                       | 136.869                                                                  | 164.634                                                                  | 23.1369                                                                  |
| Wt 9                                                  | 4070                                                 | 1647.5                                                                    | 48                                     | 91.0776                                                                   | 370686                                                               | 0.746437                                                                       | 441.777                                                                  | 415.365                                                                  | 14.5973                                                                  |
| Wt 10                                                 | 3715                                                 | 1503.8                                                                    | 48                                     | 90.6323                                                                   | 336699                                                               | 0.474832                                                                       | 492.25                                                                   | 293.276                                                                  | 29.5489                                                                  |
| Img No<br>8                                           | Voxel<br>Count                                       | Volume<br>(µm³)                                                           | Min<br>(ChS2-T2)                       | Mean<br>(ChS2-T2)                                                         | Sum<br>(ChS2-T2)                                                     | Mean<br>(Ch3-T3)                                                               | Centroi<br>d X                                                           | Centroi<br>d Y                                                           | Centroid Z                                                               |
| cell 1                                                | 6063                                                 | 2454.25                                                                   | 48                                     | 92.7236                                                                   | 562183                                                               | 71.2057                                                                        | 371.73                                                                   | 188.228                                                                  | 16.8872                                                                  |
| Wt 1                                                  | 10285                                                | 4163.28                                                                   | 48                                     | 105.176                                                                   | 1.08E+06                                                             | 0.685853                                                                       | 171.67                                                                   | 152.74                                                                   | 9.84414                                                                  |
| Wt 2                                                  | 8555                                                 | 3462.99                                                                   | 48                                     | 110.321                                                                   | 943799                                                               | 0.881707                                                                       | 403.47                                                                   | 361.087                                                                  | 28.3517                                                                  |
| Wt 3                                                  | 7818                                                 | 3164.66                                                                   | 48                                     | 112.952                                                                   | 883058                                                               | 0.46879                                                                        | 161.899                                                                  | 170.223                                                                  | 26.5562                                                                  |
|                                                       | 7014                                                 |                                                                           |                                        |                                                                           |                                                                      |                                                                                |                                                                          |                                                                          |                                                                          |
| Wt4                                                   | /314                                                 | 2960.65                                                                   | 48                                     | 104.331                                                                   | 763075                                                               | 0.331146                                                                       | 272.52                                                                   | 168.699                                                                  | 26.5334                                                                  |
| Wt 4<br>Wt 5                                          | 7314<br>7368                                         | 2960.65<br>2982.51                                                        | 48<br>48                               | 104.331<br>111.402                                                        | 763075<br>820808                                                     | 0.331146<br>0.452904                                                           | 272.52<br>157.032                                                        | 168.699<br>249.292                                                       | 26.5334<br>27.8422                                                       |
| Wt 4<br>Wt 5<br>Wt 6                                  | 7314<br>7368<br>7900                                 | 2960.65<br>2982.51<br>3197.85                                             | 48<br>48<br>48                         | 104.331<br>111.402<br>102.947                                             | 763075<br>820808<br>813279                                           | 0.331146<br>0.452904<br>9.6243                                                 | 272.52<br>157.032<br>75.4914                                             | 168.699<br>249.292<br>275.457                                            | 26.5334<br>27.8422<br>20.8491                                            |
| Wt 4<br>Wt 5<br>Wt 6<br>Wt 7                          | 7314<br>7368<br>7900<br>8657                         | 2960.65<br>2982.51<br>3197.85<br>3504.28                                  | 48<br>48<br>48<br>48                   | 104.331<br>111.402<br>102.947<br>111.391                                  | 763075<br>820808<br>813279<br>964308                                 | 0.331146<br>0.452904<br>9.6243<br>0.354511                                     | 272.52<br>157.032<br>75.4914<br>289.877                                  | 168.699<br>249.292<br>275.457<br>334.798                                 | 26.5334<br>27.8422<br>20.8491<br>26.7977                                 |
| Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8                  | 7314<br>7368<br>7900<br>8657<br>7226                 | 2960.65<br>2982.51<br>3197.85<br>3504.28<br>2925.03                       | 48<br>48<br>48<br>48<br>48             | 104.331<br>111.402<br>102.947<br>111.391<br>100.072                       | 763075<br>820808<br>813279<br>964308<br>723117                       | 0.331146<br>0.452904<br>9.6243<br>0.354511<br>0.314282                         | 272.52<br>157.032<br>75.4914<br>289.877<br>215.965                       | 168.699<br>249.292<br>275.457<br>334.798<br>89.5086                      | 26.5334<br>27.8422<br>20.8491<br>26.7977<br>22.8316                      |
| Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Wt 9          | 7314<br>7368<br>7900<br>8657<br>7226<br>6204         | 2960.65<br>2982.51<br>3197.85<br>3504.28<br>2925.03<br>2511.33            | 48<br>48<br>48<br>48<br>48<br>48       | 104.331<br>111.402<br>102.947<br>111.391<br>100.072<br>111.563            | 763075<br>820808<br>813279<br>964308<br>723117<br>692136             | 0.331146<br>0.452904<br>9.6243<br>0.354511<br>0.314282<br>0.436331             | 272.52<br>157.032<br>75.4914<br>289.877<br>215.965<br>262.281            | 168.699<br>249.292<br>275.457<br>334.798<br>89.5086<br>381.69            | 26.5334<br>27.8422<br>20.8491<br>26.7977<br>22.8316<br>17.829            |
| Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Wt 9<br>Wt 10 | 7314<br>7368<br>7900<br>8657<br>7226<br>6204<br>9198 | 2960.65<br>2982.51<br>3197.85<br>3504.28<br>2925.03<br>2511.33<br>3723.27 | 48<br>48<br>48<br>48<br>48<br>48<br>48 | 104.331<br>111.402<br>102.947<br>111.391<br>100.072<br>111.563<br>113.835 | 763075<br>820808<br>813279<br>964308<br>723117<br>692136<br>1.05E+06 | 0.331146<br>0.452904<br>9.6243<br>0.354511<br>0.314282<br>0.436331<br>0.262122 | 272.52<br>157.032<br>75.4914<br>289.877<br>215.965<br>262.281<br>415.942 | 168.699<br>249.292<br>275.457<br>334.798<br>89.5086<br>381.69<br>473.261 | 26.5334<br>27.8422<br>20.8491<br>26.7977<br>22.8316<br>17.829<br>27.6655 |

Average intensity of Mi-2 localization in 10 non adjacent wild type cells

| Img No 1 | 128.4141  |
|----------|-----------|
| Img No 2 | 101.34591 |
| Img No 3 | 104.26594 |
| Img No 4 | 99.98088  |
| Img No 5 | 100.13723 |

| Img No 6                  | 137.474                       |                                                                             |
|---------------------------|-------------------------------|-----------------------------------------------------------------------------|
| Img No 7                  | 99.28787                      |                                                                             |
| Img No 8                  | 108.399                       |                                                                             |
| Intensity of M            | i-2 localization in c         | clone cell V average intensity of Mi-2 localization in 10 non adjacent wild |
| Img No 1                  | 1.09                          |                                                                             |
| Img No 2                  | 1.45                          |                                                                             |
| Img No 3                  | 1                             |                                                                             |
| Img No 4                  | 1.36                          |                                                                             |
| Img No 5                  | 1.15                          |                                                                             |
| Img No 6                  | 1.05                          |                                                                             |
| Img No 7                  | 1.16                          |                                                                             |
| Img No 8<br>Average value | 0.85<br>e of the ratio of the | clone cell V wild type cells acquired from Img No 1                         |
|                           |                               |                                                                             |

to Img No 10

Std Dev of the average ratio of clone cell / wild type cell

1.13875 0.192460571

| Img No<br>1<br>Clone | Voxel<br>Count | Volume<br>(µm³) | Min<br>(ChS2-T2) | Mean<br>(ChS2-T2) | Sum<br>(ChS2-T2) | Mean<br>(Ch3-T3) | Centroid<br>X | Centroi<br>d Y | Centroi<br>d Z |
|----------------------|----------------|-----------------|------------------|-------------------|------------------|------------------|---------------|----------------|----------------|
| cell                 | 16172          | 6546.29         | 74               | 123.38            | 2.00E+06         | 21.7323          | 209.454       | 400.617        | 17.4676        |
| Wt 1                 | 10776          | 4362.04         | 74               | 107.156           | 1.15E+06         | 7.54092          | 252.024       | 225.261        | 8.25965        |
| Wt 2                 | 11466          | 4641.34         | 74               | 108.849           | 1.25E+06         | 7.54457          | 259.279       | 136.932        | 10.5404        |
| Wt 3                 | 8045           | 3256.55         | 74               | 107.111           | 861711           | 7.5376           | 433.186       | 53.2793        | 10.0894        |
| Wt 4                 | 11732          | 4749.02         | 74               | 109.527           | 1.28E+06         | 7.51432          | 354.609       | 143.346        | 9.58302        |
| Wt 5                 | 8333           | 3373.13         | 74               | 106.685           | 889005           | 7.52274          | 433.489       | 53.6209        | 10.2934        |
| Wt 6                 | 10327          | 4180.28         | 74               | 110.942           | 1.15E+06         | 7.08086          | 96.8129       | 224.166        | 21.5723        |
| Wt 7                 | 10455          | 4232.1          | 74               | 107.647           | 1.13E+06         | 7.45806          | 159.288       | 197.558        | 14.5456        |
| Wt 8                 | 8031           | 3250.88         | 74               | 106.099           | 852080           | 7.37106          | 263.567       | 86.5598        | 17.6076        |
| Wt 9                 | 11045          | 4470.92         | 74               | 109.702           | 1.21E+06         | 7.51299          | 335.895       | 229.224        | 9.92214        |
| Wt 10                | 14609          | 5913.6          | 74               | 104.654           | 1.53E+06         | 7.22411          | 394.799       | 249.991        | 20.6995        |
| Wt 11                | 12654          | 5122.23         | 74               | 112.387           | 1.42E+06         | 7.38897          | 457.86        | 211.473        | 10.6776        |
| Wt 12                | 10458          | 4233.31         | 74               | 109.68            | 1.15E+06         | 7.28772          | 56.4343       | 282.082        | 13.8287        |
| Img No<br>2<br>Clana | Voxel<br>Count | Volume<br>(µm³) | Min<br>(ChS2-T2) | Mean<br>(ChS2-T2) | Sum<br>(ChS2-T2) | Mean<br>(Ch3-T3) | Centroid<br>X | Centroi<br>d Y | Centroi<br>d Z |
| cell                 | 7598           | 3075.61         | 20               | 140.452           | 1.07E+06         | 36.667           | 295.14        | 160.866        | 8.2656         |
| Wt 1                 | 2229           | 902.281         | 20               | 120.628           | 268880           | 0.0592194        | 298.851       | 351.624        | 10.1534        |
| Wt 2                 | 1839           | 744.412         | 20               | 122.661           | 225573           | 0.0598151        | 358.953       | 194.269        | 14.6324        |
| Wt 3                 | 2933           | 1187.25         | 20               | 123.267           | 361543           | 0.603478         | 208.024       | 283.56         | 11.4398        |
| Wt4                  | 6200           | 2509.71         | 20               | 129.018           | 799912           | 0.0496774        | 210.263       | 109.745        | 8.24532        |
| Img No<br>3          | Voxel<br>Count | Volume<br>(µm³) | Min<br>(ChS2-T2) | Mean<br>(ChS2-T2) | Sum<br>(ChS2-T2) | Mean<br>(Ch3-T3) | Centroid<br>X | Centroi<br>d Y | Centroi<br>d Z |
| Clone<br>cell 2      | 10518          | 4257.6          | 36               | 113 101           | 1 19E+06         | 25 9756          | 113 54        | 76 7985        | 7 80643        |
| Wt 1                 | 5906           | 2390.7          | 36               | 97.1392           | 573704           | 0.028615         | 324.328       | 187.99         | 13.5229        |
| Wt 2                 | 5764           | 2333.22         | 36               | 94.2611           | 543321           | 0.0294934        | 398.222       | 374.03         | 13.4434        |
| Wt 3                 | 2894           | 1171.47         | 36               | 91.1334           | 263740           | 0.0342087        | 409.428       | 268.281        | 15.5746        |
| Wt 4                 | 6295           | 2548.16         | 36               | 96.346            | 606498           | 0.029865         | 323.859       | 188.042        | 13.2818        |
| Wt 5                 | 2464           | 997.407         | 36               | 90.9947           | 224211           | 0.0434253        | 287.119       | 57.7228        | 15.9123        |
| Wt 6                 | 3128           | 1266.19         | 36               | 92.7986           | 290274           | 0.0457161        | 470.256       | 465.329        | 11.4655        |
| Wt 7                 | 4965           | 2009.79         | 36               | 104.999           | 521320           | 5.7565           | 386.103       | 454.155        | 10.7984        |
| Wt 8                 | 2797           | 1132.2          | 36               | 92.5359           | 258823           | 0.0207365        | 296.506       | 432.159        | 18.6232        |
| Wt 9                 | 4845           | 1961.22         | 36               | 91.9154           | 445330           | 0.0276574        | 306.421       | 116.699        | 14.7889        |
| Wt 10                | 6512           | 2636            | 36               | 96.5951           | 629027           | 0.0325553        | 275.406       | 337.272        | 14.601         |
| Img No<br>4<br>Clone | Voxel<br>Count | Volume<br>(µm³) | Min<br>(ChS2-T2) | Mean<br>(ChS2-T2) | Sum<br>(ChS2-T2) | Mean<br>(Ch3-T3) | Centroid<br>X | Centroi<br>d Y | Centroi<br>d Z |
| cell 2               | 6762           | 2737.2          | 21               | 102.576           | 693617           | 40.5945          | 49.1375       | 241.077        | 22.5568        |
| Wt 1                 | 2375           | 961.38          | 21               | 66.3562           | 157596           | 0.119158         | 250.877       | 195.117        | 21.968         |
| Wt 2                 | 2585           | 1046.39         | 21               | 66.3749           | 171579           | 0.109865         | 298.417       | 126.352        | 18.7911        |

| Wt 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1409                                                                                                                                                                                                          | 570.352                                                                                                                                                                                                                                                                                              | 21                                                                                                         | 66.0823                                                                                                                                                                                                                                                                                         | 93110                                                                                                                                                                                                                                                                    | 0.106458                                                                                                                                                                                                                                                                                                 | 499.216                                                                                                                                                                                                                                                                             | 99.1249                                                                                                                                                                                                                                                                                    | 18.4592                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Wt 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5402                                                                                                                                                                                                          | 2186.69                                                                                                                                                                                                                                                                                              | 21                                                                                                         | 68.4304                                                                                                                                                                                                                                                                                         | 369661                                                                                                                                                                                                                                                                   | 0.15124                                                                                                                                                                                                                                                                                                  | 172.493                                                                                                                                                                                                                                                                             | 195.208                                                                                                                                                                                                                                                                                    | 16.5041                                                                                                                                                                                                                                                                                 |
| Wt 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2597                                                                                                                                                                                                          | 1051.24                                                                                                                                                                                                                                                                                              | 21                                                                                                         | 67.0316                                                                                                                                                                                                                                                                                         | 174081                                                                                                                                                                                                                                                                   | 0.174817                                                                                                                                                                                                                                                                                                 | 327.301                                                                                                                                                                                                                                                                             | 200.939                                                                                                                                                                                                                                                                                    | 19.8552                                                                                                                                                                                                                                                                                 |
| Wt 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11364                                                                                                                                                                                                         | 4600.05                                                                                                                                                                                                                                                                                              | 21                                                                                                         | 92,0505                                                                                                                                                                                                                                                                                         | 1 05E+06                                                                                                                                                                                                                                                                 | 0 25308                                                                                                                                                                                                                                                                                                  | 27 6017                                                                                                                                                                                                                                                                             | 290 467                                                                                                                                                                                                                                                                                    | 19 4423                                                                                                                                                                                                                                                                                 |
| Wt 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11059                                                                                                                                                                                                         | 4476 59                                                                                                                                                                                                                                                                                              | 21                                                                                                         | 93.0073                                                                                                                                                                                                                                                                                         | 1.03E+06                                                                                                                                                                                                                                                                 | 0 156434                                                                                                                                                                                                                                                                                                 | 62 9432                                                                                                                                                                                                                                                                             | 335.013                                                                                                                                                                                                                                                                                    | 20 1609                                                                                                                                                                                                                                                                                 |
| Wt 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2710                                                                                                                                                                                                          | 1096.99                                                                                                                                                                                                                                                                                              | 21                                                                                                         | 69 5251                                                                                                                                                                                                                                                                                         | 188413                                                                                                                                                                                                                                                                   | 0.101107                                                                                                                                                                                                                                                                                                 | 163 166                                                                                                                                                                                                                                                                             | 355 57                                                                                                                                                                                                                                                                                     | 11 7786                                                                                                                                                                                                                                                                                 |
| Wt 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6774                                                                                                                                                                                                          | 2742.06                                                                                                                                                                                                                                                                                              | 21                                                                                                         | 90 1255                                                                                                                                                                                                                                                                                         | 610510                                                                                                                                                                                                                                                                   | 0.130794                                                                                                                                                                                                                                                                                                 | 115 738                                                                                                                                                                                                                                                                             | 341.5                                                                                                                                                                                                                                                                                      | 18 6181                                                                                                                                                                                                                                                                                 |
| int y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0774                                                                                                                                                                                                          | 2742.00                                                                                                                                                                                                                                                                                              | 21                                                                                                         | 90.1255                                                                                                                                                                                                                                                                                         | 010510                                                                                                                                                                                                                                                                   | 0.150774                                                                                                                                                                                                                                                                                                 | 115.750                                                                                                                                                                                                                                                                             | 541.5                                                                                                                                                                                                                                                                                      | 10.0101                                                                                                                                                                                                                                                                                 |
| Img No<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Voxel<br>Count                                                                                                                                                                                                | Volume<br>(µm³)                                                                                                                                                                                                                                                                                      | Min<br>(ChS2-T2)                                                                                           | Mean<br>(ChS2-T2)                                                                                                                                                                                                                                                                               | Sum<br>(ChS2-T2)                                                                                                                                                                                                                                                         | Mean<br>(Ch3-T3)                                                                                                                                                                                                                                                                                         | Centroid<br>X                                                                                                                                                                                                                                                                       | Centroi<br>d Y                                                                                                                                                                                                                                                                             | Centroi<br>d Z                                                                                                                                                                                                                                                                          |
| Clone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6317                                                                                                                                                                                                          | 2560 21                                                                                                                                                                                                                                                                                              | 51                                                                                                         | 110 665                                                                                                                                                                                                                                                                                         | 702300                                                                                                                                                                                                                                                                   | 52 8703                                                                                                                                                                                                                                                                                                  | 325 764                                                                                                                                                                                                                                                                             | 211 777                                                                                                                                                                                                                                                                                    | 27 1484                                                                                                                                                                                                                                                                                 |
| W/4 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5563                                                                                                                                                                                                          | 2309.21                                                                                                                                                                                                                                                                                              | 51                                                                                                         | 111 536                                                                                                                                                                                                                                                                                         | 620473                                                                                                                                                                                                                                                                   | 0.724600                                                                                                                                                                                                                                                                                                 | 105 306                                                                                                                                                                                                                                                                             | 211.777                                                                                                                                                                                                                                                                                    | 26 1710                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6571                                                                                                                                                                                                          | 2251.80                                                                                                                                                                                                                                                                                              | 51                                                                                                         | 111.530                                                                                                                                                                                                                                                                                         | 732038                                                                                                                                                                                                                                                                   | 1 54084                                                                                                                                                                                                                                                                                                  | 87 0370                                                                                                                                                                                                                                                                             | 200.527                                                                                                                                                                                                                                                                                    | 7 86653                                                                                                                                                                                                                                                                                 |
| Wt 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6474                                                                                                                                                                                                          | 2639.89                                                                                                                                                                                                                                                                                              | 51                                                                                                         | 115 156                                                                                                                                                                                                                                                                                         | 732938                                                                                                                                                                                                                                                                   | 1.34984                                                                                                                                                                                                                                                                                                  | 55 7008                                                                                                                                                                                                                                                                             | 209.137                                                                                                                                                                                                                                                                                    | 6 10148                                                                                                                                                                                                                                                                                 |
| Wt A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6510                                                                                                                                                                                                          | 2620.02                                                                                                                                                                                                                                                                                              | 51                                                                                                         | 115.015                                                                                                                                                                                                                                                                                         | 749323                                                                                                                                                                                                                                                                   | 0 799049                                                                                                                                                                                                                                                                                                 | 60 1131                                                                                                                                                                                                                                                                             | 136 150                                                                                                                                                                                                                                                                                    | 11 7028                                                                                                                                                                                                                                                                                 |
| WL 4<br>W/+ 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6033                                                                                                                                                                                                          | 2038.84                                                                                                                                                                                                                                                                                              | 51                                                                                                         | 110.87                                                                                                                                                                                                                                                                                          | 668876                                                                                                                                                                                                                                                                   | 1 30715                                                                                                                                                                                                                                                                                                  | 105 20                                                                                                                                                                                                                                                                              | 310 728                                                                                                                                                                                                                                                                                    | 7 08080                                                                                                                                                                                                                                                                                 |
| W15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6003                                                                                                                                                                                                          | 2442.11                                                                                                                                                                                                                                                                                              | 51                                                                                                         | 102.42                                                                                                                                                                                                                                                                                          | 707002                                                                                                                                                                                                                                                                   | 0.07014                                                                                                                                                                                                                                                                                                  | 146 201                                                                                                                                                                                                                                                                             | 102 111                                                                                                                                                                                                                                                                                    | 1.70707                                                                                                                                                                                                                                                                                 |
| WL 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3306                                                                                                                                                                                                          | 1338.24                                                                                                                                                                                                                                                                                              | 51                                                                                                         | 03 6034                                                                                                                                                                                                                                                                                         | 300453                                                                                                                                                                                                                                                                   | 0.97914                                                                                                                                                                                                                                                                                                  | 140.301                                                                                                                                                                                                                                                                             | 80 7058                                                                                                                                                                                                                                                                                    | 11.0266                                                                                                                                                                                                                                                                                 |
| WL /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6226                                                                                                                                                                                                          | 1556.24                                                                                                                                                                                                                                                                                              | 51                                                                                                         | 93.0034                                                                                                                                                                                                                                                                                         | 509433<br>600453                                                                                                                                                                                                                                                         | 0.603608                                                                                                                                                                                                                                                                                                 | 413.890                                                                                                                                                                                                                                                                             | 27 2001                                                                                                                                                                                                                                                                                    | 7 27171                                                                                                                                                                                                                                                                                 |
| WLO<br>W40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2741                                                                                                                                                                                                          | 1514.20                                                                                                                                                                                                                                                                                              | 51                                                                                                         | 99.8101<br>100.204                                                                                                                                                                                                                                                                              | 022433                                                                                                                                                                                                                                                                   | 0.06515                                                                                                                                                                                                                                                                                                  | 400.299                                                                                                                                                                                                                                                                             | 27.2901                                                                                                                                                                                                                                                                                    | 10.2617                                                                                                                                                                                                                                                                                 |
| wt9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5741                                                                                                                                                                                                          | 1514.55                                                                                                                                                                                                                                                                                              | 51                                                                                                         | 100.294                                                                                                                                                                                                                                                                                         | 373201                                                                                                                                                                                                                                                                   | 0.8/115/                                                                                                                                                                                                                                                                                                 | 417.927                                                                                                                                                                                                                                                                             | 33.0172                                                                                                                                                                                                                                                                                    | 10.3017                                                                                                                                                                                                                                                                                 |
| Img No<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Voxel<br>Count                                                                                                                                                                                                | Volume<br>(µm³)                                                                                                                                                                                                                                                                                      | Min<br>(ChS2-T2)                                                                                           | Mean<br>(ChS2-T2)                                                                                                                                                                                                                                                                               | Sum<br>(ChS2-T2)                                                                                                                                                                                                                                                         | Mean<br>(Ch3-T3)                                                                                                                                                                                                                                                                                         | Centroid<br>X                                                                                                                                                                                                                                                                       | Centroi<br>d Y                                                                                                                                                                                                                                                                             | Centroi<br>d Z                                                                                                                                                                                                                                                                          |
| cell 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12381                                                                                                                                                                                                         | 5011.73                                                                                                                                                                                                                                                                                              | 33                                                                                                         | 118.317                                                                                                                                                                                                                                                                                         | 1.46E+06                                                                                                                                                                                                                                                                 | 91.5425                                                                                                                                                                                                                                                                                                  | 68.9879                                                                                                                                                                                                                                                                             | 186.166                                                                                                                                                                                                                                                                                    | 14.4475                                                                                                                                                                                                                                                                                 |
| Wt 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7812                                                                                                                                                                                                          | 3162.23                                                                                                                                                                                                                                                                                              | 33                                                                                                         | 100.612                                                                                                                                                                                                                                                                                         | 785979                                                                                                                                                                                                                                                                   | 5.30364                                                                                                                                                                                                                                                                                                  | 201.783                                                                                                                                                                                                                                                                             | 77.6409                                                                                                                                                                                                                                                                                    | 12.6624                                                                                                                                                                                                                                                                                 |
| Wt 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5703                                                                                                                                                                                                          | 2308.53                                                                                                                                                                                                                                                                                              | 33                                                                                                         | 92.2779                                                                                                                                                                                                                                                                                         | 526261                                                                                                                                                                                                                                                                   | 0.96686                                                                                                                                                                                                                                                                                                  | 424.319                                                                                                                                                                                                                                                                             | 119.253                                                                                                                                                                                                                                                                                    | 6.47466                                                                                                                                                                                                                                                                                 |
| Wt 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4305                                                                                                                                                                                                          | 1742.63                                                                                                                                                                                                                                                                                              | 33                                                                                                         | 83.4839                                                                                                                                                                                                                                                                                         | 359398                                                                                                                                                                                                                                                                   | 0.840186                                                                                                                                                                                                                                                                                                 | 253.371                                                                                                                                                                                                                                                                             | 411.972                                                                                                                                                                                                                                                                                    | 11.1022                                                                                                                                                                                                                                                                                 |
| Wt 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3921                                                                                                                                                                                                          | 1587.19                                                                                                                                                                                                                                                                                              | 33                                                                                                         | 85.8202                                                                                                                                                                                                                                                                                         | 336501                                                                                                                                                                                                                                                                   | 0.624586                                                                                                                                                                                                                                                                                                 | 407.377                                                                                                                                                                                                                                                                             | 308.667                                                                                                                                                                                                                                                                                    | 10.9064                                                                                                                                                                                                                                                                                 |
| Wt 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4673                                                                                                                                                                                                          | 1891.59                                                                                                                                                                                                                                                                                              | 33                                                                                                         | 84.6719                                                                                                                                                                                                                                                                                         | 395672                                                                                                                                                                                                                                                                   | 1.00492                                                                                                                                                                                                                                                                                                  | 111.663                                                                                                                                                                                                                                                                             | 439.067                                                                                                                                                                                                                                                                                    | 8.6101                                                                                                                                                                                                                                                                                  |
| Wt 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3706                                                                                                                                                                                                          | 1500.16                                                                                                                                                                                                                                                                                              | 33                                                                                                         | 89.8079                                                                                                                                                                                                                                                                                         | 332828                                                                                                                                                                                                                                                                   | 0.66082                                                                                                                                                                                                                                                                                                  | 471.025                                                                                                                                                                                                                                                                             | 240.413                                                                                                                                                                                                                                                                                    | 10.629                                                                                                                                                                                                                                                                                  |
| Wt 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8022                                                                                                                                                                                                          | 3247.24                                                                                                                                                                                                                                                                                              | 33                                                                                                         | 99.8736                                                                                                                                                                                                                                                                                         | 801186                                                                                                                                                                                                                                                                   | 5.27774                                                                                                                                                                                                                                                                                                  | 202.405                                                                                                                                                                                                                                                                             | 77.7253                                                                                                                                                                                                                                                                                    | 12.4814                                                                                                                                                                                                                                                                                 |
| Wt 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7214                                                                                                                                                                                                          | 2920.17                                                                                                                                                                                                                                                                                              | 33                                                                                                         | 96 9885                                                                                                                                                                                                                                                                                         | 699675                                                                                                                                                                                                                                                                   | 0 754921                                                                                                                                                                                                                                                                                                 | 454 835                                                                                                                                                                                                                                                                             | 191.906                                                                                                                                                                                                                                                                                    | 19.2657                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                      |                                                                                                            | /0./000                                                                                                                                                                                                                                                                                         | 0//0/0                                                                                                                                                                                                                                                                   | 0.751741                                                                                                                                                                                                                                                                                                 | 10 11000                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                         |
| Wt 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4095                                                                                                                                                                                                          | 1657.62                                                                                                                                                                                                                                                                                              | 33                                                                                                         | 82.8821                                                                                                                                                                                                                                                                                         | 339402                                                                                                                                                                                                                                                                   | 1.14701                                                                                                                                                                                                                                                                                                  | 25.3888                                                                                                                                                                                                                                                                             | 371.083                                                                                                                                                                                                                                                                                    | 7.84249                                                                                                                                                                                                                                                                                 |
| Wt 9<br>Wt 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4095<br>3689                                                                                                                                                                                                  | 1657.62<br>1493.28                                                                                                                                                                                                                                                                                   | 33<br>33                                                                                                   | 82.8821<br>83.621                                                                                                                                                                                                                                                                               | 339402<br>308478                                                                                                                                                                                                                                                         | 1.14701<br>0.952833                                                                                                                                                                                                                                                                                      | 25.3888<br>367.144                                                                                                                                                                                                                                                                  | 371.083<br>31.8336                                                                                                                                                                                                                                                                         | 7.84249<br>7.0309                                                                                                                                                                                                                                                                       |
| Wt 9<br>Wt 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4095<br>3689                                                                                                                                                                                                  | 1657.62<br>1493.28                                                                                                                                                                                                                                                                                   | 33<br>33                                                                                                   | 82.8821<br>83.621                                                                                                                                                                                                                                                                               | 339402<br>308478                                                                                                                                                                                                                                                         | 1.14701<br>0.952833                                                                                                                                                                                                                                                                                      | 25.3888<br>367.144                                                                                                                                                                                                                                                                  | 371.083<br>31.8336                                                                                                                                                                                                                                                                         | 7.84249<br>7.0309                                                                                                                                                                                                                                                                       |
| Wt 9<br>Wt 10<br>Img No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4095<br>3689<br>Voxel                                                                                                                                                                                         | 1657.62<br>1493.28<br><b>Volume</b>                                                                                                                                                                                                                                                                  | 33<br>33<br>Min<br>(CbS2 T2)                                                                               | 82.8821<br>83.621<br>Mean<br>(ChS2 T2)                                                                                                                                                                                                                                                          | 339402<br>308478<br>Sum                                                                                                                                                                                                                                                  | 1.14701<br>0.952833<br>Mean<br>(Cb3 T3)                                                                                                                                                                                                                                                                  | 25.3888<br>367.144<br>Centroid                                                                                                                                                                                                                                                      | 371.083<br>31.8336<br><b>Centroi</b>                                                                                                                                                                                                                                                       | 7.84249<br>7.0309<br>Centroi                                                                                                                                                                                                                                                            |
| Wt 9<br>Wt 10<br>Img No<br>7<br>Clone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4095<br>3689<br>Voxel<br>Count                                                                                                                                                                                | 1657.62<br>1493.28<br>Volume<br>(µm <sup>3</sup> )                                                                                                                                                                                                                                                   | 33<br>33<br>Min<br>(ChS2-T2)                                                                               | 82.8821<br>83.621<br>Mean<br>(ChS2-T2)                                                                                                                                                                                                                                                          | 339402<br>308478<br>Sum<br>(ChS2-T2)                                                                                                                                                                                                                                     | 1.14701<br>0.952833<br>Mean<br>(Ch3-T3)                                                                                                                                                                                                                                                                  | 25.3888<br>367.144<br>Centroid<br>X                                                                                                                                                                                                                                                 | 371.083<br>31.8336<br>Centroi<br>d Y                                                                                                                                                                                                                                                       | 7.84249<br>7.0309<br>Centroi<br>d Z                                                                                                                                                                                                                                                     |
| Wt 9<br>Wt 10<br>Img No<br>7<br>Clone<br>cell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4095<br>3689<br><b>Voxel</b><br>Count<br>9126                                                                                                                                                                 | 1657.62<br>1493.28<br><b>Volume</b><br>(μm <sup>3</sup> )<br>59106.1                                                                                                                                                                                                                                 | 33<br>33<br>Min<br>(ChS2-T2)<br>46                                                                         | 82.8821<br>83.621<br>Mean<br>(ChS2-T2)<br>116.208                                                                                                                                                                                                                                               | 339402<br>308478<br>Sum<br>(ChS2-T2)<br>1.06E+06                                                                                                                                                                                                                         | 1.14701<br>0.952833<br>Mean<br>(Ch3-T3)<br>55.5371                                                                                                                                                                                                                                                       | 25.3888<br>367.144<br>Centroid<br>X<br>86.5536                                                                                                                                                                                                                                      | 371.083<br>31.8336<br><b>Centroi</b><br><b>d Y</b><br>67.8617                                                                                                                                                                                                                              | 7.84249<br>7.0309<br>Centroi<br>d Z<br>7.99025                                                                                                                                                                                                                                          |
| Wt 9<br>Wt 10<br>Img No<br>7<br>Clone<br>cell<br>Wt 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4095<br>3689<br><b>Voxel</b><br>Count<br>9126<br>1431                                                                                                                                                         | 1657.62<br>1493.28<br><b>Volume</b><br>(μm <sup>3</sup> )<br>59106.1<br>9268.11                                                                                                                                                                                                                      | 33<br>33<br>Min<br>(ChS2-T2)<br>46<br>46                                                                   | 82.8821<br>83.621<br>Mean<br>(ChS2-T2)<br>116.208<br>85.8134                                                                                                                                                                                                                                    | 339402<br>308478<br>Sum<br>(ChS2-T2)<br>1.06E+06<br>122799                                                                                                                                                                                                               | 1.14701<br>0.952833<br>Mean<br>(Ch3-T3)<br>55.5371<br>0.489867                                                                                                                                                                                                                                           | 25.3888<br>367.144<br>Centroid X<br>86.5536<br>339.789                                                                                                                                                                                                                              | 371.083<br>31.8336<br><b>Centroi</b><br><b>d Y</b><br>67.8617<br>367.468                                                                                                                                                                                                                   | 7.84249<br>7.0309<br>Centroi<br>d Z<br>7.99025<br>13.6171                                                                                                                                                                                                                               |
| Wt 9<br>Wt 10<br>Img No<br>7<br>Clone<br>cell<br>Wt 1<br>Wt 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4095<br>3689<br><b>Voxel</b><br>Count<br>9126<br>1431<br>2748                                                                                                                                                 | 1657.62<br>1493.28<br><b>Volume</b><br>(μm <sup>3</sup> )<br>59106.1<br>9268.11<br>17797.9                                                                                                                                                                                                           | 33<br>33<br>Min<br>(ChS2-T2)<br>46<br>46<br>46                                                             | 82.8821<br>83.621<br>Mean<br>(ChS2-T2)<br>116.208<br>85.8134<br>92.321                                                                                                                                                                                                                          | 339402<br>308478<br>Sum<br>(ChS2-T2)<br>1.06E+06<br>122799<br>253698                                                                                                                                                                                                     | 1.14701<br>0.952833<br>Mean<br>(Ch3-T3)<br>55.5371<br>0.489867<br>0.394469                                                                                                                                                                                                                               | 25.3888<br>367.144<br>Centroid<br>X<br>86.5536<br>339.789<br>375.177                                                                                                                                                                                                                | 371.083<br>31.8336<br><b>Centroi</b><br><b>d Y</b><br>67.8617<br>367.468<br>453.989                                                                                                                                                                                                        | 7.84249<br>7.0309<br>Centroi<br>d Z<br>7.99025<br>13.6171<br>15.2682                                                                                                                                                                                                                    |
| Wt 9<br>Wt 10<br>Img No<br>7<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4095<br>3689<br><b>Voxel</b><br>Count<br>9126<br>1431<br>2748<br>2103                                                                                                                                         | 1657.62<br>1493.28<br><b>Volume</b><br>(μm <sup>3</sup> )<br>59106.1<br>9268.11<br>17797.9<br>13620.4                                                                                                                                                                                                | 33<br>33<br>Min<br>(ChS2-T2)<br>46<br>46<br>46<br>46                                                       | 82.8821<br>83.621<br>Mean<br>(ChS2-T2)<br>116.208<br>85.8134<br>92.321<br>84.1555                                                                                                                                                                                                               | 339402<br>308478<br>Sum<br>(ChS2-T2)<br>1.06E+06<br>122799<br>253698<br>176979                                                                                                                                                                                           | 1.14701<br>0.952833<br>Mean<br>(Ch3-T3)<br>55.5371<br>0.489867<br>0.394469<br>0.470281                                                                                                                                                                                                                   | 25.3888<br>367.144<br>Centroid<br>X<br>86.5536<br>339.789<br>375.177<br>337.789                                                                                                                                                                                                     | 371.083<br>31.8336<br><b>Centroi</b><br><b>d Y</b><br>67.8617<br>367.468<br>453.989<br>365.628                                                                                                                                                                                             | 7.84249<br>7.0309<br><b>Centroi</b><br><b>d Z</b><br>7.99025<br>13.6171<br>15.2682<br>14.292                                                                                                                                                                                            |
| Wt 9<br>Wt 10<br>Img No<br>7<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4095<br>3689<br><b>Voxel</b><br>Count<br>9126<br>1431<br>2748<br>2103<br>698                                                                                                                                  | 1657.62<br>1493.28<br><b>Volume</b><br>(μm <sup>3</sup> )<br>59106.1<br>9268.11<br>17797.9<br>13620.4<br>4520.71                                                                                                                                                                                     | 33<br>33<br>Min<br>(ChS2-T2)<br>46<br>46<br>46<br>46<br>46                                                 | 82.8821<br>83.621<br>Mean<br>(ChS2-T2)<br>116.208<br>85.8134<br>92.321<br>84.1555<br>83.894                                                                                                                                                                                                     | 339402<br>308478<br>Sum<br>(ChS2-T2)<br>1.06E+06<br>122799<br>253698<br>176979<br>58558                                                                                                                                                                                  | 1.14701<br>0.952833<br>Mean<br>(Ch3-T3)<br>55.5371<br>0.489867<br>0.394469<br>0.470281<br>0.848138                                                                                                                                                                                                       | 25.3888<br>367.144<br>Centroid<br>X<br>86.5536<br>339.789<br>375.177<br>337.789<br>113.301                                                                                                                                                                                          | 371.083<br>31.8336<br><b>Centroi</b><br><b>d Y</b><br>67.8617<br>367.468<br>453.989<br>365.628<br>342.94                                                                                                                                                                                   | 7.84249<br>7.0309<br><b>Centroi</b><br><b>d Z</b><br>7.99025<br>13.6171<br>15.2682<br>14.292<br>15.9943                                                                                                                                                                                 |
| Wt 9<br>Wt 10<br>Img No<br>7<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4095<br>3689<br><b>Voxel</b><br>0126<br>1431<br>2748<br>2103<br>698<br>2014                                                                                                                                   | 1657.62<br>1493.28<br><b>Volume</b><br>(μm <sup>3</sup> )<br>59106.1<br>9268.11<br>17797.9<br>13620.4<br>4520.71<br>13044                                                                                                                                                                            | 33<br>33<br>Min<br>(ChS2-T2)<br>46<br>46<br>46<br>46<br>46<br>46                                           | 82.8821<br>83.621<br>Mean<br>(ChS2-T2)<br>116.208<br>85.8134<br>92.321<br>84.1555<br>83.894<br>84.1837                                                                                                                                                                                          | 339402<br>308478<br>Sum<br>(ChS2-T2)<br>1.06E+06<br>122799<br>253698<br>176979<br>58558<br>169546                                                                                                                                                                        | 1.14701<br>0.952833<br>Mean<br>(Ch3-T3)<br>55.5371<br>0.489867<br>0.394469<br>0.470281<br>0.848138<br>0.459782                                                                                                                                                                                           | 25.3888<br>367.144<br>Centroid<br>X<br>86.5536<br>339.789<br>375.177<br>337.789<br>113.301<br>254.818                                                                                                                                                                               | 371.083<br>31.8336<br>Centroi<br>d Y<br>67.8617<br>367.468<br>453.989<br>365.628<br>342.94<br>400.292                                                                                                                                                                                      | 7.84249<br>7.0309<br><b>Centroi</b><br><b>d Z</b><br>7.99025<br>13.6171<br>15.2682<br>14.292<br>15.9943<br>15.2175                                                                                                                                                                      |
| Wt 9<br>Wt 10<br>Img No<br>7<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4095<br>3689<br><b>Voxel</b><br>9126<br>1431<br>2748<br>2103<br>698<br>2014<br>1605                                                                                                                           | 1657.62<br>1493.28<br><b>Volume</b><br>(μm <sup>3</sup> )<br>59106.1<br>9268.11<br>17797.9<br>13620.4<br>4520.71<br>13044<br>10395.1                                                                                                                                                                 | 33<br>33<br>Min<br>(ChS2-T2)<br>46<br>46<br>46<br>46<br>46<br>46<br>46                                     | 82.8821<br>83.621<br>Mean<br>(ChS2-T2)<br>116.208<br>85.8134<br>92.321<br>84.1555<br>83.894<br>84.1837<br>82.5445                                                                                                                                                                               | 339402<br>308478<br>Sum<br>(ChS2-T2)<br>1.06E+06<br>122799<br>253698<br>176979<br>58558<br>169546<br>132484                                                                                                                                                              | 1.14701<br>0.952833<br>Mean<br>(Ch3-T3)<br>55.5371<br>0.489867<br>0.394469<br>0.470281<br>0.848138<br>0.459782<br>0.322118                                                                                                                                                                               | 25.3888<br>367.144<br>Centroid X<br>86.5536<br>339.789<br>375.177<br>337.789<br>113.301<br>254.818<br>333.394                                                                                                                                                                       | 371.083<br>31.8336<br><b>Centroi</b><br><b>d Y</b><br>67.8617<br>367.468<br>453.989<br>365.628<br>342.94<br>400.292<br>248.903                                                                                                                                                             | 7.84249<br>7.0309<br><b>Centroi</b><br><b>d Z</b><br>7.99025<br>13.6171<br>15.2682<br>14.292<br>15.9943<br>15.2175<br>14.4997                                                                                                                                                           |
| Wt 9<br>Wt 10<br>Img No<br>7<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4095<br>3689<br><b>Voxel</b><br>9126<br>1431<br>2748<br>2103<br>698<br>2014<br>1605<br>511                                                                                                                    | 1657.62<br>1493.28<br><b>Volume</b><br>(μm <sup>3</sup> )<br>59106.1<br>9268.11<br>17797.9<br>13620.4<br>4520.71<br>13044<br>10395.1<br>3309.58                                                                                                                                                      | 33<br>33<br>Min<br>(ChS2-T2)<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46                               | 82.8821<br>83.621<br>Mean<br>(ChS2-T2)<br>116.208<br>85.8134<br>92.321<br>84.1555<br>83.894<br>84.1837<br>82.5445<br>95.7358                                                                                                                                                                    | 339402<br>308478<br>Sum<br>(ChS2-T2)<br>1.06E+06<br>122799<br>253698<br>176979<br>58558<br>169546<br>132484<br>48921                                                                                                                                                     | 1.14701<br>0.952833<br>Mean<br>(Ch3-T3)<br>55.5371<br>0.489867<br>0.394469<br>0.470281<br>0.848138<br>0.459782<br>0.322118<br>0.215264                                                                                                                                                                   | 25.3888<br>367.144<br>Centroid X<br>86.5536<br>339.789<br>375.177<br>337.789<br>113.301<br>254.818<br>333.394<br>448.374                                                                                                                                                            | 371.083<br>31.8336<br>Centroi<br>d Y<br>67.8617<br>367.468<br>453.989<br>365.628<br>342.94<br>400.292<br>248.903<br>423.155                                                                                                                                                                | 7.84249<br>7.0309<br><b>Centroi</b><br><b>d Z</b><br>7.99025<br>13.6171<br>15.2682<br>14.292<br>15.9943<br>15.2175<br>14.4997<br>8.48532                                                                                                                                                |
| Wt 9<br>Wt 10<br>Img No<br>7<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4095<br>3689<br><b>Voxel</b><br>Count<br>9126<br>1431<br>2748<br>2103<br>698<br>2014<br>1605<br>511<br>458                                                                                                    | 1657.62<br>1493.28<br><b>Volume</b><br>(μm <sup>3</sup> )<br>59106.1<br>9268.11<br>17797.9<br>13620.4<br>4520.71<br>13044<br>10395.1<br>3309.58<br>2966.31                                                                                                                                           | 33<br>33<br>Min<br>(ChS2-T2)<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46             | 82.8821<br>83.621<br>Mean<br>(ChS2-T2)<br>116.208<br>85.8134<br>92.321<br>84.1555<br>83.894<br>84.1837<br>82.5445<br>95.7358<br>103.332                                                                                                                                                         | 339402<br>308478<br>Sum<br>(ChS2-T2)<br>1.06E+06<br>122799<br>253698<br>176979<br>58558<br>169546<br>132484<br>48921<br>47326                                                                                                                                            | 1.14701<br>0.952833<br>Mean<br>(Ch3-T3)<br>55.5371<br>0.489867<br>0.394469<br>0.470281<br>0.848138<br>0.459782<br>0.322118<br>0.215264<br>0.255459                                                                                                                                                       | 25.3888<br>367.144<br>Centroid<br>X<br>86.5536<br>339.789<br>375.177<br>337.789<br>113.301<br>254.818<br>333.394<br>448.374<br>52.3472                                                                                                                                              | 371.083<br>31.8336<br><b>Centroi</b><br><b>d Y</b><br>67.8617<br>367.468<br>453.989<br>365.628<br>342.94<br>400.292<br>248.903<br>423.155<br>343.98                                                                                                                                        | 7.84249<br>7.0309<br><b>Centroi</b><br><b>d Z</b><br>7.99025<br>13.6171<br>15.2682<br>14.292<br>15.9943<br>15.2175<br>14.4997<br>8.48532<br>5.23144                                                                                                                                     |
| Wt 9<br>Wt 10<br>Img No<br>7<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Img No<br>8<br>Clone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4095<br>3689<br>Voxel<br>Count<br>9126<br>1431<br>2748<br>2103<br>698<br>2014<br>1605<br>511<br>458<br>Voxel<br>Count                                                                                         | 1657.62<br>1493.28<br><b>Volume</b><br>(μm <sup>3</sup> )<br>59106.1<br>9268.11<br>17797.9<br>13620.4<br>4520.71<br>13044<br>10395.1<br>3309.58<br>2966.31<br><b>Volume</b><br>(μm <sup>3</sup> )                                                                                                    | 33<br>33<br>Min<br>(ChS2-T2)<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46 | 82.8821<br>83.621<br>Mean<br>(ChS2-T2)<br>116.208<br>85.8134<br>92.321<br>84.1555<br>83.894<br>84.1837<br>82.5445<br>95.7358<br>103.332<br>Mean<br>(ChS2-T2)                                                                                                                                    | 339402<br>308478<br>Sum<br>(ChS2-T2)<br>1.06E+06<br>122799<br>253698<br>176979<br>58558<br>169546<br>132484<br>48921<br>47326<br>Sum<br>(ChS2-T2)                                                                                                                        | 1.14701<br>0.952833<br>Mean<br>(Ch3-T3)<br>55.5371<br>0.489867<br>0.394469<br>0.470281<br>0.848138<br>0.459782<br>0.322118<br>0.215264<br>0.255459<br>Mean<br>(Ch3-T3)                                                                                                                                   | 25.3888<br>367.144<br>Centroid X<br>86.5536<br>339.789<br>375.177<br>337.789<br>113.301<br>254.818<br>333.394<br>448.374<br>52.3472<br>Centroid X                                                                                                                                   | 371.083<br>31.8336<br>Centroi<br>d Y<br>67.8617<br>367.468<br>453.989<br>365.628<br>342.94<br>400.292<br>248.903<br>423.155<br>343.98<br>Centroi<br>d Y                                                                                                                                    | 7.84249<br>7.0309<br><b>Centroi</b><br><b>d Z</b><br>7.99025<br>13.6171<br>15.2682<br>14.292<br>15.9943<br>15.2175<br>14.4997<br>8.48532<br>5.23144<br><b>Centroi</b><br><b>d Z</b>                                                                                                     |
| Wt 9<br>Wt 10<br>Img No<br>7<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Img No<br>8<br>Clone<br>cell 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4095<br>3689<br>Voxel<br>Count<br>9126<br>1431<br>2748<br>2103<br>698<br>2014<br>1605<br>511<br>458<br>Voxel<br>Count                                                                                         | 1657.62<br>1493.28<br><b>Volume</b><br>(μm <sup>3</sup> )<br>59106.1<br>9268.11<br>17797.9<br>13620.4<br>4520.71<br>13044<br>10395.1<br>3309.58<br>2966.31<br><b>Volume</b><br>(μm <sup>3</sup> )<br>2088.32                                                                                         | 33<br>33<br>Min<br>(ChS2-T2)<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46 | 82.8821<br>83.621<br>Mean<br>(ChS2-T2)<br>116.208<br>85.8134<br>92.321<br>84.1555<br>83.894<br>84.1837<br>82.5445<br>95.7358<br>103.332<br>Mean<br>(ChS2-T2)<br>89.4315                                                                                                                         | 339402<br>308478<br>Sum<br>(ChS2-T2)<br>1.06E+06<br>122799<br>253698<br>176979<br>58558<br>169546<br>132484<br>48921<br>47326<br>Sum<br>(ChS2-T2)<br>461377                                                                                                              | 1.14701<br>0.952833<br>Mean<br>(Ch3-T3)<br>55.5371<br>0.489867<br>0.394469<br>0.470281<br>0.848138<br>0.459782<br>0.322118<br>0.215264<br>0.255459<br>Mean<br>(Ch3-T3)<br>12.1022                                                                                                                        | 25.3888<br>367.144<br>Centroid X<br>86.5536<br>339.789<br>375.177<br>337.789<br>113.301<br>254.818<br>333.394<br>448.374<br>52.3472<br>Centroid X<br>62.516                                                                                                                         | 371.083<br>31.8336<br>Centroi<br>d Y<br>67.8617<br>367.468<br>453.989<br>365.628<br>342.94<br>400.292<br>248.903<br>423.155<br>343.98<br>Centroi<br>d Y<br>184.495                                                                                                                         | 7.84249<br>7.0309<br>Centroi<br>d Z<br>7.99025<br>13.6171<br>15.2682<br>14.292<br>15.9943<br>15.2175<br>14.4997<br>8.48532<br>5.23144<br>Centroi<br>d Z<br>6.93584                                                                                                                      |
| Wt 9<br>Wt 10<br>Img No<br>7<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Img No<br>8<br>Clone<br>cell 1<br>Wt 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4095<br>3689<br>Voxel<br>Count<br>9126<br>1431<br>2748<br>2103<br>698<br>2014<br>1605<br>511<br>458<br>Voxel<br>Count<br>5159<br>2965                                                                         | 1657.62<br>1493.28<br><b>Volume</b><br>(μm <sup>3</sup> )<br>59106.1<br>9268.11<br>17797.9<br>13620.4<br>4520.71<br>13044<br>10395.1<br>3309.58<br>2966.31<br><b>Volume</b><br>(μm <sup>3</sup> )<br>2088.32<br>1200.21                                                                              | 33<br>33<br>Min<br>(ChS2-T2)<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46 | 82.8821<br>83.621<br>Mean<br>(ChS2-T2)<br>116.208<br>85.8134<br>92.321<br>84.1555<br>83.894<br>84.1837<br>82.5445<br>95.7358<br>103.332<br>Mean<br>(ChS2-T2)<br>89.4315<br>76.6513                                                                                                              | 339402<br>308478<br>Sum<br>(ChS2-T2)<br>1.06E+06<br>122799<br>253698<br>176979<br>58558<br>169546<br>132484<br>48921<br>47326<br>Sum<br>(ChS2-T2)<br>461377<br>227271                                                                                                    | 1.14701<br>0.952833<br>Mean<br>(Ch3-T3)<br>55.5371<br>0.489867<br>0.394469<br>0.470281<br>0.848138<br>0.459782<br>0.322118<br>0.215264<br>0.255459<br>Mean<br>(Ch3-T3)<br>12.1022<br>4.8543                                                                                                              | 25.3888<br>367.144<br>Centroid X<br>86.5536<br>339.789<br>375.177<br>337.789<br>113.301<br>254.818<br>333.394<br>448.374<br>52.3472<br>Centroid X<br>62.516<br>313.632                                                                                                              | 371.083<br>31.8336<br>Centroi<br>d Y<br>67.8617<br>367.468<br>453.989<br>365.628<br>342.94<br>400.292<br>248.903<br>423.155<br>343.98<br>Centroi<br>d Y<br>184.495<br>191.968                                                                                                              | 7.84249<br>7.0309<br>Centroi<br>d Z<br>7.99025<br>13.6171<br>15.2682<br>14.292<br>15.9943<br>15.2175<br>14.4997<br>8.48532<br>5.23144<br>Centroi<br>d Z<br>6.93584<br>6.60236                                                                                                           |
| Wt 9<br>Wt 10<br>Img No<br>7<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Img No<br>8<br>Clone<br>cell 1<br>Wt 1<br>Wt 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4095<br>3689<br>Voxel<br>Count<br>9126<br>1431<br>2748<br>2103<br>698<br>2014<br>1605<br>511<br>458<br>Voxel<br>Count<br>5159<br>2965<br>3195                                                                 | 1657.62<br>1493.28<br><b>Volume</b><br>(μm <sup>3</sup> )<br>59106.1<br>9268.11<br>17797.9<br>13620.4<br>4520.71<br>13044<br>10395.1<br>3309.58<br>2966.31<br><b>Volume</b><br>(μm <sup>3</sup> )<br>2088.32<br>1200.21<br>1293.31                                                                   | 33<br>33<br>Min<br>(ChS2-T2)<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46 | 82.8821<br>83.621<br>Mean<br>(ChS2-T2)<br>116.208<br>85.8134<br>92.321<br>84.1555<br>83.894<br>84.1837<br>82.5445<br>95.7358<br>103.332<br>Mean<br>(ChS2-T2)<br>89.4315<br>76.6513<br>80.713                                                                                                    | 339402<br>308478<br>Sum<br>(ChS2-T2)<br>1.06E+06<br>122799<br>253698<br>176979<br>58558<br>169546<br>132484<br>48921<br>47326<br>Sum<br>(ChS2-T2)<br>461377<br>227271<br>257878                                                                                          | 1.14701<br>0.952833<br>Mean<br>(Ch3-T3)<br>55.5371<br>0.489867<br>0.394469<br>0.470281<br>0.848138<br>0.459782<br>0.322118<br>0.215264<br>0.255459<br>Mean<br>(Ch3-T3)<br>12.1022<br>4.8543<br>2.73646                                                                                                   | 25.3888<br>367.144<br>Centroid X<br>86.5536<br>339.789<br>375.177<br>337.789<br>113.301<br>254.818<br>333.394<br>448.374<br>52.3472<br>Centroid X<br>62.516<br>313.632<br>465.044                                                                                                   | 371.083<br>31.8336<br>Centroi<br>d Y<br>67.8617<br>367.468<br>453.989<br>365.628<br>342.94<br>400.292<br>248.903<br>423.155<br>343.98<br>Centroi<br>d Y<br>184.495<br>191.968<br>158 479                                                                                                   | 7.84249<br>7.0309<br>Centroi<br>d Z<br>7.99025<br>13.6171<br>15.2682<br>14.292<br>15.9943<br>15.2175<br>14.4997<br>8.48532<br>5.23144<br>Centroi<br>d Z<br>6.93584<br>6.60236<br>8.9011                                                                                                 |
| Wt 9<br>Wt 10<br>Img No<br>7<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Img No<br>8<br>Clone<br>cell 1<br>Wt 1<br>Wt 2<br>Wt 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4095<br>3689<br>Voxel<br>Count<br>9126<br>1431<br>2748<br>2103<br>698<br>2014<br>1605<br>511<br>458<br>Voxel<br>Count<br>5159<br>2965<br>3195<br>3847                                                         | 1657.62<br>1493.28<br><b>Volume</b><br>(μm <sup>3</sup> )<br>59106.1<br>9268.11<br>17797.9<br>13620.4<br>4520.71<br>13044<br>10395.1<br>3309.58<br>2966.31<br><b>Volume</b><br>(μm <sup>3</sup> )<br>2088.32<br>1200.21<br>1293.31<br>1557.23                                                        | 33<br>33<br>Min<br>(ChS2-T2)<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46 | 82.8821<br>83.621<br>Mean<br>(ChS2-T2)<br>116.208<br>85.8134<br>92.321<br>84.1555<br>83.894<br>84.1837<br>82.5445<br>95.7358<br>103.332<br>Mean<br>(ChS2-T2)<br>89.4315<br>76.6513<br>80.713<br>83.1339                                                                                         | 339402<br>308478<br>Sum<br>(ChS2-T2)<br>1.06E+06<br>122799<br>253698<br>176979<br>58558<br>169546<br>132484<br>48921<br>47326<br>Sum<br>(ChS2-T2)<br>461377<br>227271<br>257878<br>319816                                                                                | 1.14701<br>0.952833<br>Mean<br>(Ch3-T3)<br>55.5371<br>0.489867<br>0.394469<br>0.470281<br>0.848138<br>0.459782<br>0.322118<br>0.215264<br>0.255459<br>Mean<br>(Ch3-T3)<br>12.1022<br>4.8543<br>2.73646<br>6.03483                                                                                        | 25.3888<br>367.144<br>Centroid X<br>86.5536<br>339.789<br>375.177<br>337.789<br>113.301<br>254.818<br>333.394<br>448.374<br>52.3472<br>Centroid X<br>62.516<br>313.632<br>465.044<br>278.747                                                                                        | 371.083<br>31.8336<br>Centroi<br>d Y<br>67.8617<br>367.468<br>453.989<br>365.628<br>342.94<br>400.292<br>248.903<br>423.155<br>343.98<br>Centroi<br>d Y<br>184.495<br>191.968<br>158.479<br>147.807                                                                                        | 7.84249<br>7.0309<br>Centroi<br>d Z<br>7.99025<br>13.6171<br>15.2682<br>14.292<br>15.9943<br>15.2175<br>14.4997<br>8.48532<br>5.23144<br>Centroi<br>d Z<br>6.93584<br>6.60236<br>8.9011<br>11.2132                                                                                      |
| Wt 9<br>Wt 10<br>Img No<br>7<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Img No<br>8<br>Clone<br>cell 1<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4095<br>3689<br>Voxel<br>Count<br>9126<br>1431<br>2748<br>2103<br>698<br>2014<br>1605<br>511<br>458<br>Voxel<br>Count<br>5159<br>2965<br>3195<br>3847<br>2165                                                 | 1657.62<br>1493.28<br><b>Volume</b><br>(μm <sup>3</sup> )<br>59106.1<br>9268.11<br>17797.9<br>13620.4<br>4520.71<br>13044<br>10395.1<br>3309.58<br>2966.31<br><b>Volume</b><br>(μm <sup>3</sup> )<br>2088.32<br>1200.21<br>1293.31<br>1557.23<br>876.374                                             | 33<br>33<br>Min<br>(ChS2-T2)<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46 | 82.8821<br>83.621<br>Mean<br>(ChS2-T2)<br>116.208<br>85.8134<br>92.321<br>84.1555<br>83.894<br>84.1837<br>82.5445<br>95.7358<br>103.332<br>Mean<br>(ChS2-T2)<br>89.4315<br>76.6513<br>80.713<br>83.1339<br>73.3266                                                                              | 339402<br>308478<br>Sum<br>(ChS2-T2)<br>1.06E+06<br>122799<br>253698<br>176979<br>58558<br>169546<br>132484<br>48921<br>47326<br>Sum<br>(ChS2-T2)<br>461377<br>227271<br>257878<br>319816<br>158752                                                                      | 1.14701<br>0.952833<br>Mean<br>(Ch3-T3)<br>55.5371<br>0.489867<br>0.394469<br>0.470281<br>0.848138<br>0.459782<br>0.322118<br>0.215264<br>0.255459<br>Mean<br>(Ch3-T3)<br>12.1022<br>4.8543<br>2.73646<br>6.03483<br>4.67945                                                                             | 25.3888<br>367.144<br>Centroid X<br>86.5536<br>339.789<br>375.177<br>337.789<br>113.301<br>254.818<br>333.394<br>448.374<br>52.3472<br>Centroid X<br>62.516<br>313.632<br>465.044<br>278.747<br>222.654                                                                             | 371.083<br>31.8336<br>Centroi<br>d Y<br>67.8617<br>367.468<br>453.989<br>365.628<br>342.94<br>400.292<br>248.903<br>423.155<br>343.98<br>Centroi<br>d Y<br>184.495<br>191.968<br>158.479<br>147.807<br>183.005                                                                             | 7.84249<br>7.0309<br>Centroi<br>d Z<br>7.99025<br>13.6171<br>15.2682<br>14.292<br>15.9943<br>15.2175<br>14.4997<br>8.48532<br>5.23144<br>Centroi<br>d Z<br>6.93584<br>6.60236<br>8.9011<br>11.2132<br>7.65589                                                                           |
| Wt 9<br>Wt 10<br>Img No<br>7<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Img No<br>8<br>Clone<br>cell 1<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4095<br>3689<br>Voxel<br>2014<br>1605<br>511<br>458<br>Voxel<br>Count<br>5159<br>2965<br>3195<br>3847<br>2165<br>1864                                                                                         | 1657.62<br>1493.28<br>Volume<br>(μm <sup>3</sup> )<br>59106.1<br>9268.11<br>17797.9<br>13620.4<br>4520.71<br>13044<br>10395.1<br>3309.58<br>2966.31<br>Volume<br>(μm <sup>3</sup> )<br>2088.32<br>1200.21<br>1293.31<br>1557.23<br>876.374<br>754.532                                                | 33<br>33<br>Min<br>(ChS2-T2)<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46 | 82.8821<br>83.621<br>Mean<br>(ChS2-T2)<br>116.208<br>85.8134<br>92.321<br>84.1555<br>83.894<br>84.1837<br>82.5445<br>95.7358<br>103.332<br>Mean<br>(ChS2-T2)<br>89.4315<br>76.6513<br>80.713<br>83.1339<br>73.3266<br>74.9453                                                                   | 339402<br>308478<br>Sum<br>(ChS2-T2)<br>1.06E+06<br>122799<br>253698<br>176979<br>58558<br>169546<br>132484<br>48921<br>47326<br>Sum<br>(ChS2-T2)<br>461377<br>227271<br>257878<br>319816<br>158752<br>139698                                                            | 1.14701<br>0.952833<br>Mean<br>(Ch3-T3)<br>55.5371<br>0.489867<br>0.394469<br>0.470281<br>0.848138<br>0.459782<br>0.322118<br>0.215264<br>0.255459<br>Mean<br>(Ch3-T3)<br>12.1022<br>4.8543<br>2.73646<br>6.03483<br>4.67945<br>3.603                                                                    | 25.3888<br>367.144<br>Centroid X<br>86.5536<br>339.789<br>375.177<br>337.789<br>113.301<br>254.818<br>333.394<br>448.374<br>52.3472<br>Centroid X<br>62.516<br>313.632<br>465.044<br>278.747<br>222.654<br>13.4871                                                                  | 371.083<br>31.8336<br>Centroi<br>d Y<br>67.8617<br>367.468<br>453.989<br>365.628<br>342.94<br>400.292<br>248.903<br>423.155<br>343.98<br>Centroi<br>d Y<br>184.495<br>191.968<br>158.479<br>147.807<br>183.005<br>105.137                                                                  | 7.84249<br>7.0309<br>Centroi<br>d Z<br>7.99025<br>13.6171<br>15.2682<br>14.292<br>15.9943<br>15.2175<br>14.4997<br>8.48532<br>5.23144<br>Centroi<br>d Z<br>6.93584<br>6.60236<br>8.9011<br>11.2132<br>7.65589<br>8.57135                                                                |
| Wt 9   Wt 10   Img No   7   Clone   cell   Wt 1   Wt 2   Wt 3   Wt 4   Wt 5   Wt 6   Wt 7   Wt 8   Img No   8   Clone   cell 1   Wt 1   Wt 2   Wt 3   Wt 4   Wt 5   Wt 4   Wt 5   Wt 4   Wt 5   Wt 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4095<br>3689<br>Voxel<br>Count<br>9126<br>1431<br>2748<br>2103<br>698<br>2014<br>1605<br>511<br>458<br>Voxel<br>Count<br>5159<br>2965<br>3195<br>3847<br>2165<br>1864<br>4364                                 | 1657.62<br>1493.28<br>Volume<br>(μm <sup>3</sup> )<br>59106.1<br>9268.11<br>17797.9<br>13620.4<br>4520.71<br>13044<br>10395.1<br>3309.58<br>2966.31<br>Volume<br>(μm <sup>3</sup> )<br>2088.32<br>1200.21<br>1293.31<br>1557.23<br>876.374<br>754.532<br>1766.51                                     | 33<br>33<br>Min<br>(ChS2-T2)<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46 | 82.8821<br>83.621<br>Mean<br>(ChS2-T2)<br>116.208<br>85.8134<br>92.321<br>84.1555<br>83.894<br>84.1837<br>82.5445<br>95.7358<br>103.332<br>Mean<br>(ChS2-T2)<br>89.4315<br>76.6513<br>80.713<br>83.1339<br>73.3266<br>74.9453<br>82.2523                                                        | 339402<br>308478<br>Sum<br>(ChS2-T2)<br>1.06E+06<br>122799<br>253698<br>176979<br>58558<br>169546<br>132484<br>48921<br>47326<br>Sum<br>(ChS2-T2)<br>461377<br>227271<br>257878<br>319816<br>158752<br>139698<br>358949                                                  | 1.14701<br>0.952833<br>Mean<br>(Ch3-T3)<br>55.5371<br>0.489867<br>0.394469<br>0.470281<br>0.848138<br>0.459782<br>0.322118<br>0.215264<br>0.255459<br>Mean<br>(Ch3-T3)<br>12.1022<br>4.8543<br>2.73646<br>6.03483<br>4.67945<br>3.603<br>3.46746                                                         | 25.3888<br>367.144<br>Centroid X<br>86.5536<br>339.789<br>375.177<br>337.789<br>113.301<br>254.818<br>333.394<br>448.374<br>52.3472<br>Centroid X<br>62.516<br>313.632<br>465.044<br>278.747<br>222.654<br>13.4871<br>454.75                                                        | 371.083<br>31.8336<br>Centroi<br>d Y<br>67.8617<br>367.468<br>453.989<br>365.628<br>342.94<br>400.292<br>248.903<br>423.155<br>343.98<br>Centroi<br>d Y<br>184.495<br>191.968<br>158.479<br>147.807<br>183.005<br>105.137<br>212.85                                                        | 7.84249<br>7.0309<br>Centroi<br>d Z<br>7.99025<br>13.6171<br>15.2682<br>14.292<br>15.9943<br>15.2175<br>14.4997<br>8.48532<br>5.23144<br>Centroi<br>d Z<br>6.93584<br>6.60236<br>8.9011<br>11.2132<br>7.65589<br>8.57135<br>8.04629                                                     |
| Wt 9   Wt 10   Img No   7   Clone   cell   Wt 1   Wt 2   Wt 3   Wt 4   Wt 5   Wt 6   Wt 7   Wt 8   Img No   8   Clone   cell 1   Wt 1   Wt 2   Wt 3   Wt 4   Wt 5   Wt 4   Wt 5   Wt 6   Wt 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4095<br>3689<br>Voxel<br>Count<br>9126<br>1431<br>2748<br>2103<br>698<br>2014<br>1605<br>511<br>458<br>Voxel<br>Count<br>5159<br>2965<br>3195<br>3847<br>2165<br>1864<br>4364<br>1330                         | 1657.62<br>1493.28<br>Volume<br>(µm³)<br>59106.1<br>9268.11<br>17797.9<br>13620.4<br>4520.71<br>13044<br>10395.1<br>3309.58<br>2966.31<br>Volume<br>(µm³)<br>2088.32<br>1200.21<br>1293.31<br>1557.23<br>876.374<br>754.532<br>1766.51<br>538.373                                                    | 33<br>33<br>Min<br>(ChS2-T2)<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46 | 82.8821<br>83.621<br>Mean<br>(ChS2-T2)<br>116.208<br>85.8134<br>92.321<br>84.1555<br>83.894<br>84.1837<br>82.5445<br>95.7358<br>103.332<br>Mean<br>(ChS2-T2)<br>89.4315<br>76.6513<br>80.713<br>83.1339<br>73.3266<br>74.9453<br>82.2523<br>73.8128                                             | 339402<br>308478<br>Sum<br>(ChS2-T2)<br>1.06E+06<br>122799<br>253698<br>176979<br>58558<br>169546<br>132484<br>48921<br>47326<br>Sum<br>(ChS2-T2)<br>461377<br>227271<br>257878<br>319816<br>158752<br>139698<br>358949<br>98171                                         | 1.14701<br>0.952833<br>Mean<br>(Ch3-T3)<br>55.5371<br>0.489867<br>0.394469<br>0.470281<br>0.848138<br>0.459782<br>0.322118<br>0.215264<br>0.255459<br>Mean<br>(Ch3-T3)<br>12.1022<br>4.8543<br>2.73646<br>6.03483<br>4.67945<br>3.603<br>3.46746<br>5.33308                                              | 25.3888<br>367.144<br>Centroid X<br>86.5536<br>339.789<br>375.177<br>337.789<br>113.301<br>254.818<br>333.394<br>448.374<br>52.3472<br>Centroid X<br>62.516<br>313.632<br>465.044<br>278.747<br>222.654<br>13.4871<br>454.75<br>260.156                                             | 371.083<br>31.8336<br>Centroi<br>d Y<br>67.8617<br>367.468<br>453.989<br>365.628<br>342.94<br>400.292<br>248.903<br>423.155<br>343.98<br>Centroi<br>d Y<br>184.495<br>191.968<br>158.479<br>147.807<br>183.005<br>105.137<br>212.85<br>253.741                                             | 7.84249<br>7.0309<br>Centroi<br>d Z<br>7.99025<br>13.6171<br>15.2682<br>14.292<br>15.9943<br>15.2175<br>14.4997<br>8.48532<br>5.23144<br>Centroi<br>d Z<br>6.93584<br>6.60236<br>8.9011<br>11.2132<br>7.65589<br>8.57135<br>8.04629<br>6.69624                                          |
| Wt 9   Wt 10   Img No   7   Clone   cell   Wt 1   Wt 2   Wt 3   Wt 4   Wt 5   Wt 6   Wt 7   Wt 8   Img No   8   Clone   cell 1   Wt 1   Wt 2   Wt 3   Wt 4   Wt 5   Wt 6   Wt 7   Wt 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4095<br>3689<br>Voxel<br>Count<br>9126<br>1431<br>2748<br>2103<br>698<br>2014<br>1605<br>511<br>458<br>Voxel<br>Count<br>5159<br>2965<br>3195<br>3847<br>2165<br>1864<br>4364<br>1330<br>3140                 | 1657.62<br>1493.28<br><b>Volume</b><br>(μm <sup>3</sup> )<br>59106.1<br>9268.11<br>17797.9<br>13620.4<br>4520.71<br>13044<br>10395.1<br>3309.58<br>2966.31<br><b>Volume</b><br>(μm <sup>3</sup> )<br>2088.32<br>1200.21<br>1293.31<br>1557.23<br>876.374<br>754.532<br>1766.51<br>538.373<br>1271.05 | 33<br>33<br>Min<br>(ChS2-T2)<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46 | 82.8821<br>83.621<br>Mean<br>(ChS2-T2)<br>116.208<br>85.8134<br>92.321<br>84.1555<br>83.894<br>84.1837<br>82.5445<br>95.7358<br>103.332<br>Mean<br>(ChS2-T2)<br>89.4315<br>76.6513<br>80.713<br>83.1339<br>73.3266<br>74.9453<br>82.2523<br>73.8128<br>77.3914                                  | 339402<br>308478<br>Sum<br>(ChS2-T2)<br>1.06E+06<br>122799<br>253698<br>176979<br>58558<br>169546<br>132484<br>48921<br>47326<br>Sum<br>(ChS2-T2)<br>461377<br>227271<br>257878<br>319816<br>158752<br>139698<br>358949<br>98171<br>243009                               | 1.14701<br>0.952833<br>Mean<br>(Ch3-T3)<br>55.5371<br>0.489867<br>0.394469<br>0.470281<br>0.848138<br>0.459782<br>0.322118<br>0.215264<br>0.255459<br>Mean<br>(Ch3-T3)<br>12.1022<br>4.8543<br>2.73646<br>6.03483<br>4.67945<br>3.603<br>3.46746<br>5.3308<br>6.39108                                    | 25.3888<br>367.144<br>Centroid X<br>86.5536<br>339.789<br>375.177<br>337.789<br>113.301<br>254.818<br>333.394<br>448.374<br>52.3472<br>Centroid X<br>62.516<br>313.632<br>465.044<br>278.747<br>222.654<br>13.4871<br>454.75<br>260.156<br>151.116                                  | 371.083<br>31.8336<br>Centroi<br>d Y<br>67.8617<br>367.468<br>453.989<br>365.628<br>342.94<br>400.292<br>248.903<br>423.155<br>343.98<br>Centroi<br>d Y<br>184.495<br>191.968<br>158.479<br>147.807<br>183.005<br>105.137<br>212.85<br>253.741<br>207.164                                  | 7.84249<br>7.0309<br>Centroi<br>d Z<br>7.99025<br>13.6171<br>15.2682<br>14.292<br>15.9943<br>15.2175<br>14.4997<br>8.48532<br>5.23144<br>Centroi<br>d Z<br>6.93584<br>6.60236<br>8.9011<br>11.2132<br>7.65589<br>8.57135<br>8.04629<br>6.69624<br>6.61911                               |
| Wt 9<br>Wt 10<br>Img No<br>7<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Img No<br>8<br>Clone<br>cell 1<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Wt 1<br>Wt 1<br>Wt 2<br>Wt 8<br>Wt 7<br>Wt 8<br>Wt 1<br>Wt 1<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Wt 1<br>Wt 1<br>Wt 2<br>Wt 8<br>Wt 7<br>Wt 8<br>Une<br>cell Wt 1<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Wt 1<br>Wt 1<br>Wt 2<br>Wt 8<br>Une<br>cell Wt 7<br>Wt 8<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 1<br>Wt 1<br>Wt 2<br>Wt 8<br>Wt 7<br>Wt 8<br>Wt 1<br>Wt 1<br>Wt 2<br>Wt 8<br>Une<br>cell 1<br>Wt 1<br>Wt 7<br>Wt 8<br>Wt 4<br>Wt 7<br>Wt 8<br>Wt 1<br>Wt 1<br>Wt 2<br>Wt 8<br>Wt 4<br>Wt 7<br>Wt 8<br>Wt 1<br>Wt 2<br>Wt 8<br>Wt 4<br>Wt 7<br>Wt 8<br>Wt 1<br>Wt 7<br>Wt 8<br>Wt 8<br>Wt 8<br>Wt 8<br>Wt 8<br>Wt 8<br>Wt 8<br>Wt 8                                                                                                                                                                                                                                | 4095<br>3689<br>Voxel<br>Count<br>9126<br>1431<br>2748<br>2103<br>698<br>2014<br>1605<br>511<br>458<br>Voxel<br>Count<br>5159<br>2965<br>3195<br>3847<br>2165<br>1864<br>4364<br>1330<br>3140<br>2481         | 1657.62   1493.28   Volume   (μm³)   59106.1   9268.11   17797.9   13620.4   4520.71   13044   10395.1   3309.58   2966.31   Volume   (μm³)   2088.32   1200.21   1293.31   1557.23   876.374   754.532   1766.51   538.373   1271.05   1004.29                                                      | 33<br>33<br>Min<br>(ChS2-T2)<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46 | 82.8821<br>83.621<br>Mean<br>(ChS2-T2)<br>116.208<br>85.8134<br>92.321<br>84.1555<br>83.894<br>84.1837<br>82.5445<br>95.7358<br>103.332<br>Mean<br>(ChS2-T2)<br>89.4315<br>76.6513<br>80.713<br>83.1339<br>73.3266<br>74.9453<br>82.2523<br>73.8128<br>77.3914<br>80.5917                       | 339402<br>308478<br>Sum<br>(ChS2-T2)<br>1.06E+06<br>122799<br>253698<br>176979<br>58558<br>169546<br>132484<br>48921<br>47326<br>Sum<br>(ChS2-T2)<br>461377<br>227271<br>257878<br>319816<br>158752<br>139698<br>358949<br>98171<br>243009<br>199948                     | 1.14701<br>0.952833<br>Mean<br>(Ch3-T3)<br>55.5371<br>0.489867<br>0.394469<br>0.470281<br>0.848138<br>0.459782<br>0.322118<br>0.215264<br>0.255459<br>Mean<br>(Ch3-T3)<br>12.1022<br>4.8543<br>2.73646<br>6.03483<br>4.67945<br>3.603<br>3.46746<br>5.33308<br>6.39108<br>5.41838                        | 25.3888<br>367.144<br>Centroid X<br>86.5536<br>339.789<br>375.177<br>337.789<br>113.301<br>254.818<br>333.394<br>448.374<br>52.3472<br>Centroid X<br>62.516<br>313.632<br>465.044<br>278.747<br>222.654<br>13.4871<br>454.75<br>260.156<br>151.116<br>241.277                       | 371.083<br>31.8336<br>Centroi<br>d Y<br>67.8617<br>367.468<br>453.989<br>365.628<br>342.94<br>400.292<br>248.903<br>423.155<br>343.98<br>Centroi<br>d Y<br>184.495<br>191.968<br>158.479<br>147.807<br>183.005<br>105.137<br>212.85<br>253.741<br>207.164<br>154.473                       | 7.84249<br>7.0309<br>Centroi<br>d Z<br>7.99025<br>13.6171<br>15.2682<br>14.292<br>15.9943<br>15.2175<br>14.4997<br>8.48532<br>5.23144<br>Centroi<br>d Z<br>6.93584<br>6.60236<br>8.9011<br>11.2132<br>7.65589<br>8.57135<br>8.04629<br>6.69624<br>6.61911<br>18.894                     |
| Wt 9<br>Wt 10<br>Img No<br>7<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Img No<br>8<br>Clone<br>cell 1<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 1<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 1<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 1<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Wt 1<br>Wt 2<br>Wt 1<br>Wt 1<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Wt 1<br>Wt 1<br>Wt 2<br>Wt 7<br>Wt 8<br>Wt 7<br>Wt 1<br>Wt 2<br>Wt 8<br>Wt 7<br>Wt 8<br>Ung No<br>8<br>Clone<br>cell 1<br>Wt 1<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 7<br>Wt 8<br>Clone<br>cell 1<br>Wt 1<br>Wt 2<br>Wt 8<br>Clone<br>cell 1<br>Wt 1<br>Wt 2<br>Wt 8<br>Clone<br>cell 1<br>Wt 1<br>Wt 2<br>Wt 8<br>Clone<br>cell 1<br>Wt 1<br>Wt 2<br>Wt 8<br>Clone<br>cell 1<br>Wt 1<br>Wt 4<br>Wt 7<br>Wt 8<br>Wt 4<br>Wt 7<br>Wt 8<br>Wt 4<br>Wt 7<br>Wt 8<br>Wt 1<br>Wt 1<br>Wt 1<br>Wt 1<br>Wt 1<br>Wt 1<br>Wt 4<br>Wt 5<br>Wt 4<br>Wt 4<br>Wt 4<br>Wt 4<br>Wt 4<br>Wt 4<br>Wt 4<br>Wt 4 | 4095<br>3689<br>Voxel<br>Count<br>9126<br>1431<br>2748<br>2103<br>698<br>2014<br>1605<br>511<br>458<br>Voxel<br>Count<br>5159<br>2965<br>3195<br>3847<br>2165<br>1864<br>4364<br>1330<br>3140<br>2481         | 1657.62   1493.28   Volume   (μm³)   59106.1   9268.11   17797.9   13620.4   4520.71   13044   10395.1   3309.58   2966.31   Volume   (μm³)   2088.32   1200.21   1293.31   1557.23   876.374   754.532   1766.51   538.373   1271.05   1004.29   1962.03                                            | 33<br>33<br>Min<br>(ChS2-T2)<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46 | 82.8821<br>83.621<br>Mean<br>(ChS2-T2)<br>116.208<br>85.8134<br>92.321<br>84.1555<br>83.894<br>84.1837<br>82.5445<br>95.7358<br>103.332<br>Mean<br>(ChS2-T2)<br>89.4315<br>76.6513<br>80.713<br>83.1339<br>73.3266<br>74.9453<br>82.2523<br>73.8128<br>77.3914<br>80.5917<br>88.0881            | 339402<br>308478<br>Sum<br>(ChS2-T2)<br>1.06E+06<br>122799<br>253698<br>176979<br>58558<br>169546<br>132484<br>48921<br>47326<br>Sum<br>(ChS2-T2)<br>461377<br>227271<br>257878<br>319816<br>158752<br>139698<br>358949<br>98171<br>243009<br>199948<br>426963           | 1.14701<br>0.952833<br>Mean<br>(Ch3-T3)<br>55.5371<br>0.489867<br>0.394469<br>0.470281<br>0.848138<br>0.459782<br>0.322118<br>0.215264<br>0.255459<br>Mean<br>(Ch3-T3)<br>12.1022<br>4.8543<br>2.73646<br>6.03483<br>4.67945<br>3.603<br>3.46746<br>5.33308<br>6.39108<br>5.41838<br>0.736125            | 25.3888<br>367.144<br>Centroid X<br>86.5536<br>339.789<br>375.177<br>337.789<br>113.301<br>254.818<br>333.394<br>448.374<br>52.3472<br>Centroid X<br>62.516<br>313.632<br>465.044<br>278.747<br>222.654<br>13.4871<br>454.75<br>260.156<br>151.116<br>241.277<br>468.567            | 371.083<br>31.8336<br>Centroi<br>d Y<br>67.8617<br>367.468<br>453.989<br>365.628<br>342.94<br>400.292<br>248.903<br>423.155<br>343.98<br>Centroi<br>d Y<br>184.495<br>191.968<br>158.479<br>147.807<br>183.005<br>105.137<br>212.85<br>253.741<br>207.164<br>154.473<br>210.101            | 7.84249<br>7.0309<br>Centroi<br>d Z<br>7.99025<br>13.6171<br>15.2682<br>14.292<br>15.9943<br>15.2175<br>14.4997<br>8.48532<br>5.23144<br>Centroi<br>d Z<br>6.93584<br>6.60236<br>8.9011<br>11.2132<br>7.65589<br>8.57135<br>8.04629<br>6.69624<br>6.61911<br>18.894<br>28.1314          |
| Wt 9<br>Wt 10<br>Img No<br>7<br>Clone<br>cell<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Img No<br>8<br>Clone<br>cell 1<br>Wt 1<br>Wt 2<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 3<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Wt 4<br>Wt 5<br>Wt 6<br>Wt 7<br>Wt 8<br>Wt 1<br>Wt 1<br>Wt 1<br>Wt 1<br>Wt 1<br>Wt 1<br>Wt 1<br>Wt 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4095<br>3689<br>Voxel<br>Count<br>9126<br>1431<br>2748<br>2103<br>698<br>2014<br>1605<br>511<br>458<br>Voxel<br>Count<br>5159<br>2965<br>3195<br>3847<br>2165<br>1864<br>4364<br>1330<br>3140<br>2481<br>4847 | 1657.62   1493.28   Volume   (μm³)   59106.1   9268.11   17797.9   13620.4   4520.71   13044   10395.1   3309.58   2966.31   Volume   (μm³)   2088.32   1200.21   1293.31   1557.23   876.374   754.532   1766.51   538.373   1271.05   1004.29   1962.03   2172.52                                  | 33<br>33<br>Min<br>(ChS2-T2)<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46 | 82.8821<br>83.621<br>Mean<br>(ChS2-T2)<br>116.208<br>85.8134<br>92.321<br>84.1555<br>83.894<br>84.1837<br>82.5445<br>95.7358<br>103.332<br>Mean<br>(ChS2-T2)<br>89.4315<br>76.6513<br>80.713<br>83.1339<br>73.3266<br>74.9453<br>82.2523<br>73.8128<br>77.3914<br>80.5917<br>88.0881<br>83.9765 | 339402<br>308478<br>Sum<br>(ChS2-T2)<br>1.06E+06<br>122799<br>253698<br>176979<br>58558<br>169546<br>132484<br>48921<br>47326<br>Sum<br>(ChS2-T2)<br>461377<br>227271<br>257878<br>319816<br>158752<br>139698<br>358949<br>98171<br>243009<br>199948<br>426963<br>450702 | 1.14701<br>0.952833<br>Mean<br>(Ch3-T3)<br>55.5371<br>0.489867<br>0.394469<br>0.470281<br>0.848138<br>0.459782<br>0.322118<br>0.215264<br>0.255459<br>Mean<br>(Ch3-T3)<br>12.1022<br>4.8543<br>2.73646<br>6.03483<br>4.67945<br>3.603<br>3.46746<br>5.33308<br>6.39108<br>5.41838<br>0.736125<br>5.50419 | 25.3888<br>367.144<br>Centroid X<br>86.5536<br>339.789<br>375.177<br>337.789<br>113.301<br>254.818<br>333.394<br>448.374<br>52.3472<br>Centroid X<br>62.516<br>313.632<br>465.044<br>278.747<br>222.654<br>13.4871<br>454.75<br>260.156<br>151.116<br>241.277<br>468.567<br>318.822 | 371.083<br>31.8336<br>Centroi<br>d Y<br>67.8617<br>367.468<br>453.989<br>365.628<br>342.94<br>400.292<br>248.903<br>423.155<br>343.98<br>Centroi<br>d Y<br>184.495<br>191.968<br>158.479<br>147.807<br>183.005<br>105.137<br>212.85<br>253.741<br>207.164<br>154.473<br>210.101<br>153.324 | 7.84249<br>7.0309<br>Centroi<br>d Z<br>7.99025<br>13.6171<br>15.2682<br>14.292<br>15.9943<br>15.2175<br>14.4997<br>8.48532<br>5.23144<br>Centroi<br>d Z<br>6.93584<br>6.60236<br>8.9011<br>11.2132<br>7.65589<br>8.57135<br>8.04629<br>6.69624<br>6.61911<br>18.894<br>28.1314<br>20.64 |

| Img No<br>9<br>Clana  | Voxel<br>Count | Volume<br>(µm³)   | Min<br>(ChS2-T2) | Mean<br>(ChS2-T2) | Sum<br>(ChS2-T2) | Mean<br>(Ch3-T3) | Centroid<br>X | Centroi<br>d Y | Centroi<br>d Z |
|-----------------------|----------------|-------------------|------------------|-------------------|------------------|------------------|---------------|----------------|----------------|
| cell 1                | 4906           | 1985 91           | 51               | 126 627           | 621232           | 9 57073          | 190 359       | 349 251        | 20 1981        |
| Wf 1                  | 3141           | 1271.45           | 51               | 108 847           | 341887           | 1 65266          | 366 957       | 200 716        | 16 7896        |
| Wt 2                  | 5238           | 2120.3            | 51               | 117.063           | 613176           | 2 73654          | 290.002       | 182 944        | 12 4519        |
| Wt 3                  | 5754           | 2329.17           | 51               | 123 906           | 712956           | 2 40945          | 35 8479       | 325.8          | 17 8203        |
| Wt 4                  | 6808           | 2755.82           | 51               | 124.862           | 850061           | 2.10913          | 59 1281       | 420 543        | 17.8685        |
| Wt 5                  | 6808           | 2755.82           | 51               | 124.862           | 850061           | 2.17847          | 59 1281       | 420 543        | 17.8685        |
| Wt 6                  | 5504           | 2735.02           | 51               | 119 234           | 656265           | 5 80142          | 333 212       | 306 852        | 16 6154        |
| Wt 7                  | 5927           | 2399.2            | 51               | 119.63            | 709046           | 3 69226          | 121 964       | 429 526        | 6 25696        |
| Wt S                  | 4345           | 1758.82           | 51               | 113.008           | 491020           | 2 46053          | 193 529       | 426 195        | 8 98067        |
| WtQ                   | 5179           | 2096.42           | 51               | 117 283           | 607408           | 2.40055          | 265 778       | 260 33         | 15 3862        |
| Wt 10                 | 2788           | 1128.56           | 51               | 130.387           | 363519           | 3.10976          | 62.3633       | 217.58         | 21.1646        |
| Img No<br>10<br>Clone | Voxel<br>Count | Volume<br>(µm³)   | Min<br>(ChS2-T2) | Mean<br>(ChS2-T2) | Sum<br>(ChS2-T2) | Mean<br>(Ch3-T3) | Centroid<br>X | Centroi<br>d Y | Centroi<br>d Z |
| cell 1                | 8386           | 3394.58           | 51               | 132.969           | 1.12E+06         | 24.102           | 127.356       | 112.763        | 8.90651        |
| Wt 1                  | 5141           | 2081.03           | 51               | 115.911           | 595901           | 6.94242          | 212.348       | 170.187        | 10.3202        |
| Wt 2                  | 3073           | 1243.93           | 51               | 111.569           | 342853           | 3.85421          | 323.234       | 273.354        | 13.7491        |
| Wt 3                  | 4833           | 1956.36           | 51               | 113.276           | 547463           | 6.53404          | 201.155       | 373.923        | 8.15622        |
| Wt4                   | 5064           | 2049.87           | 51               | 113.955           | 577068           | 5.85999          | 166.625       | 446.863        | 11.0737        |
| Wt 5                  | 5700           | 2307.31           | 51               | 114.321           | 651631           | 7.90053          | 247.03        | 234.362        | 7.06649        |
| Wt 6                  | 5969           | 2416.2            | 51               | 120.682           | 720348           | 5.44848          | 235.86        | 27.0756        | 8.97638        |
| Wt 7                  | 4039           | 1634.95           | 51               | 113.083           | 456744           | 6.35083          | 281.482       | 444.351        | 9.41025        |
| Wt 8                  | 3700           | 1497.73           | 51               | 112.04            | 414547           | 4.34676          | 108.976       | 221.151        | 14.0205        |
| Wt9                   | 3258           | 1318.81           | 51               | 113.675           | 370352           | 4.34254          | 251.206       | 80.2769        | 16.1357        |
| Wt 10                 | 4040           | 1635.36           | 51               | 116.712           | 471515           | 3.37673          | 306.012       | 43.2859        | 18.0121        |
| Wt 11                 | 3040           | 1230.57           | 51               | 110.27            | 335220           | 3.8727           | 122.975       | 374.218        | 14.6049        |
| Img No<br>11<br>Clone | Voxel<br>Count | Volume<br>(µm³)   | Min<br>(ChS2-T2) | Mean<br>(ChS2-T2) | Sum<br>(ChS2-T2) | Mean<br>(Ch3-T3) | Centroid<br>X | Centroi<br>d Y | Centroi<br>d Z |
| cell 1                | 6420           | 2598.76           | 51               | 132.426           | 850177           | 44.7316          | 204.724       | 422.07         | 11.4545        |
| Wt 1                  | 4572           | 1850.71           | 51               | 113.974           | 521087           | 3.70516          | 318.287       | 307.999        | 11.2657        |
| Wt 2                  | 7732           | 3129.85           | 51               | 122.111           | 944165           | 3.48047          | 317.877       | 172.161        | 8.02742        |
| Wt 3                  | 4525           | 1831.68           | 51               | 111.473           | 504417           | 4.02762          | 268.03        | 212.661        | 10.3386        |
| Wt4                   | 5617           | 2273.72           | 51               | 113.031           | 634895           | 3.43493          | 222.777       | 270.272        | 9.98309        |
| Wt 5                  | 4553           | 1843.02           | 51               | 113.834           | 518285           | 3.73951          | 317.936       | 307.867        | 11.4707        |
| Wt 6                  | 6451           | 2611.31           | 51               | 119.129           | 768499           | 2.86529          | 424.715       | 117.475        | 10.1959        |
| Wt 7                  | 4119           | 1667.34           | 51               | 115.759           | 476810           | 1.23258          | 147.434       | 257.38         | 19.4817        |
| Wt 8                  | 7151           | 2894.67           | 51               | 124.812           | 892530           | 3.64494          | 296.389       | 473.039        | 9.57013        |
| Wt 9                  | 9874           | 3996.91           | 51               | 134.116           | 1.32E+06         | 2.83755          | 378.877       | 288.534        | 12.1791        |
| Wt 10                 | 5249           | 2124.75           | 51               | 117.71            | 617861           | 1.83768          | 369.971       | 393.477        | 11.9042        |
| Img No<br>12<br>Clone | Voxel<br>Count | Volume<br>(µm³)   | Min<br>(ChS2-T2) | Mean<br>(ChS2-T2) | Sum<br>(ChS2-T2) | Mean<br>(Ch3-T3) | Centroid<br>X | Centroi<br>d Y | Centroi<br>d Z |
| cell 1                | 1310           | 530.277           | 51               | 91.4618           | 119815           | 16.8015          | 246.427       | 331.27         | 11.2359        |
| Wt 1                  | 10693          | 4328.44           | 51               | 128.509           | 1.37E+06         | 0.192088         | 348.976       | 190.269        | 9.67446        |
| Wt 2                  | 8180           | 3311.2            | 51               | 121.693           | 995445           | 0.162103         | 459.046       | 217.906        | 9.19951        |
| Wt 3                  | 8212           | 3324.15           | 51               | 112.869           | 926878           | 0.183999         | 79.0043       | 256.897        | 11.6111        |
| Wt4                   | 9819           | 3974.65           | 51               | 131.015           | 1.29E+06         | 0.217741         | 67.6166       | 87.7511        | 11.1855        |
| Wt 5                  | 8974           | 3632.6            | 51               | 113.611           | 1.02E+06         | 0.167818         | 191.84        | 138.977        | 9.7183         |
| Wt 6                  | 8322           | 3368.68           | 51               | 113.014           | 940506           | 0.173276         | 432.103       | 298.146        | 9.01754        |
| Wt 7                  | 7475           | 3025.82           | 51               | 111.091           | 830408           | 0.146355         | 445.508       | 395.162        | 8.96829        |
| Wt 8                  | 5311           | 2149.85           | 51               | 104.164           | 553217           | 0.144229         | 335.86        | 409.082        | 9.62531        |
| Wt 9                  | 7779           | 3148.88           | 51               | 111.224           | 865209           | 0.137935         | 490.169       | 464.469        | 9.82311        |
| Wt 10                 | 4368           | 1768.13           | 51               | 102.095           | 445951           | 0.466346         | 283.117       | 57.8633        | 8.54006        |
| Average in            | ntensity of M  | li-2 localization | n in 10 non adi  | acent wild type   | cells            |                  |               |                |                |
| Img No 1              | •              | 10                | 8.3699           |                   |                  |                  |               |                |                |
| Img No 2              |                | 12                | 3.8935           |                   |                  |                  |               |                |                |
| Img No 3              |                | 94                | .87184           |                   |                  |                  |               |                |                |
| Img No 4              |                | 75                | .44264           |                   |                  |                  |               |                |                |

| Img No 5               | 106.6946                  |                                                                           |
|------------------------|---------------------------|---------------------------------------------------------------------------|
| Img No 6               | 90.0039                   |                                                                           |
| Img No 7               | 88.99749                  |                                                                           |
| Img No 8               | 79.53481                  |                                                                           |
| Img No 9               | 119.9082                  |                                                                           |
| Img No 10              | 114.1358                  |                                                                           |
| Img No 11              | 118.5949                  |                                                                           |
| Img No 12              | 114.9285                  |                                                                           |
| Intensity of Mi-2 loca | alization in clone cell V | average intensity of Mi-2 localization in 10 non adjacent wild type cells |
| Img No 1               | 1.3                       |                                                                           |
| Img No 2               | 1.13                      |                                                                           |
| Img No 3               | 1.13                      |                                                                           |
| Img No 4               | 1.19                      |                                                                           |
| Img No 5               | 1.36                      |                                                                           |
| Img No 6               | 1.03                      |                                                                           |
| Img No 7               | 1.31                      |                                                                           |
| Img No 8               | 1.12                      |                                                                           |
| Img No 9               | 1.05                      |                                                                           |
| Img No 10              | 1.16                      |                                                                           |
| Img No 11              | 1.11                      |                                                                           |
| Img No 12              | 0.79                      |                                                                           |
| A                      |                           |                                                                           |

Average value of the ratio of the clone cell V wild type cells acquired from Img No 1 to Img No 101.14Std Dev of the average ratio of clone cell / wild type cell0.15076

### C. List of CPTI lines Annotated and Screened

### C.1. List of CPTI lines Annotated

CPTI-000106, CPTI-000110, CPTI 000205, CPTI-000232, CPTI-000239, CPTI-000256, CPTI 000340, CPTI-000546, CPTI-000703, CPTI-000762, CPTI-000765, CPTI 000774, CPTI-000787, CPTI-000836, CPTI-000847, CPTI-000877, CPTI-000943, CPTI-000944, CPTI 001017, CPTI-001031, CPTI-001137, CPTI-001166, CPTI-001218, CPTI-001223, CPTI-001224, CPTI-001259, CPTI-001261, CPTI-001262, CPTI-001272, CPTI-001279, CPTI-001282, CPTI-001309, CPTI-001309, CPTI-001323, CPTI-001324, CPTI-001328, CPTI-001332, CPTI-001334, CPTI-001341, CPTI-001403, CPTI-001412, CPTI-001414, CPTI-001423, CPTI-001427, CPTI-001455, CPTI-001478, CPTI-001481, CPTI-001495, CPTI-001515, CPTI-001516, CPTI-001527, CPTI-001569, CPTI-001586, CPTI-001589, CPTI-001595, CPTI-001636, CPTI-001660, CPTI-001678, CPTI-001655, CPTI-001692, CPTI-001693, CPTI-001695, CPTI-001709, CPTI-001714, CPTI-001735, CPTI-001740, CPTI-001765, CPTI-001769, CPTI-001771, CPTI-001775, CPTI-001796, CPTI-001881, CPTI-001883, CPTI-001919, CPTI-001977, CPTI-001987, CPTI-001990, CPTI-002016, CPTI-00232, CPTI-00235, CPTI-00285, CPTI-002487, CPTI-002273, CPTI-00286, CPTI-002805, CPTI-002285, CPTI-002292, CPTI-002315, CPTI-002343, CPTI-002401, CPTI-002487, CPTI 002773, CPTI 002786, CPTI-002805, CPTI-100038.

### C.2. List of CPTI lines Screened

CPTI-000847, CPTI-000256, CPTI-001409, CPTI- 000106, CPTI -000199, CPTI -001332, CPTI 000205, CPTI 000232, CPTI 000239, CPTI 000340 CPTI 000472, CPTI 000546, CPTI 000703, CPTI 000762, CPTI 001017, CPTI 000765, CPTI 000774, CPTI 000787, CPTI 000836, CPTI 001224, CPTI 001223, CPTI 000943, CPTI 001031, CPTI 001166, CPTI 001279, CPTI 001308, CPTI 001198, CPTI 001218, CPTI 001259, CPTI 001262, CPTI 001272, CPTI 001282, CPTI 001309, CPTI 001323, CPTI 001324, CPTI 001328, CPTI 001334, CPTI 001883, CPTI 001455, CPTI 001478., CPTI 001775, CPTI 001802, CPTI 001881, CPTI 001987, CPTI 002118, CPTI 002292, CPTI 002016, CPTI 001998, CPTI 002035, CPTI 002315, CPTI 002292, CPTI 002773, CPTI 002264, CPTI 001919, CPTI 002406, CPTI 002032, CPTI 000877, CPTI 002786, CPTI 002264, CPTI 002256, CPTI 002256, CPTI 001269, CPTI 001527, CPTI 001586, CPTI 001660, CPTI 001636, CPTI 001714, CPTI 001718, CPTI 001802, CPTI 001692 CPTI 000774, CPTI 001879, CPTI 002805, CPTI 1000888.

## **REFERENCES:**

- AHRINGER, J. (2000) NuRD and SIN3 histone deacetylase complexes in development. *Trends Genet*, 16, 351-6.
- AIRIO, A., PUKKALA, E. & ISOMAKI, H. (1995) Elevated cancer incidence in patients with dermatomyositis: a population based study. *J Rheumatol*, 22, 1300-3.
- ALBERTS, B., JOHNSON, A., LEWIS, J., RAFF, M., ROBERTS, K. A. & WALTER, P. (2002) *Molecular Biology of the Cell.*
- ALEKSANDAR S. NECAKOV, L. C., CAROL SCHWARTZ, IAN J. H. ROBERTS AND HENRY M. & (UNPUBLISHED), K. Nitric oxide signaling controls the nuclear receptor-directed transition from growth to metamorphosis.
- ALLAND, L., MUHLE, R., HOU, H., JR., POTES, J., CHIN, L., SCHREIBER-AGUS, N. & DEPINHO, R. A. (1997) Role for N-CoR and histone deacetylase in Sin3mediated transcriptional repression. *Nature*, 387, 49-55.
- ANDREAS BARTHEL, D. S., TERRY G UNTERMAN (2005) FoxO proteins in insulin action and metabolism *Trends in Endocrinology and Metabolism*, 16, 183-189.
- ANNE BRUNET, A. B., MICHAEL J. ZIGMOND,K, MICHAEL Z. LIN, P. J., LINDA S. HU,, MICHAEL J. ANDERSON, K. C. A., JOHN BLENIS, & GREENBERG, A. M. E. (1999) Akt Promotes Cell Survival by Phosphorylating and Inhibiting a Forkhead Transcription Factor. *Cell, Vol*, 96, 857–868.
- ASADA, K., KUROKAWA, J. & FURUKAWA, T. (2009) Redox- and calmodulindependent S-nitrosylation of the KCNQ1 channel. *J Biol Chem*, 284, 6014-20.
- AYER, D. E. (1999) Histone deacetylases: transcriptional repression with SINers and NuRDs. *Trends in Cell Biology*, 9, 193-198.
- BELLEN, H. J., LEVIS, R. W., LIAO, G., HE, Y., CARLSON, J. W., TSANG, G., EVANS-HOLM, M., HIESINGER, P. R., SCHULZE, K. L., RUBIN, G. M., HOSKINS, R. A. & SPRADLING, A. C. (2004) The BDGP gene disruption project: single transposon insertions associated with 40% of Drosophila genes. *Genetics*, 167, 761-81.
- BERNAL, A. & KIMBRELL, D. A. (2000) Drosophila Thor participates in host immune defense and connects a translational regulator with innate immunity. *Proc Natl Acad Sci U S A*, 97, 6019-24.
- BOUAZOUNE, K., MITTERWEGER, A., LANGST, G., IMHOF, A., AKHTAR, A., BECKER, P. B. & BREHM, A. (2002) The dMi-2 chromodomains are DNA binding modules important for ATP-dependent nucleosome mobilization. *Embo J*, 21, 2430-40.

- BRACKERTZ, M., BOEKE, J., ZHANG, R. & RENKAWITZ, R. (2002) Two highly related p66 proteins comprise a new family of potent transcriptional repressors interacting with MBD2 and MBD3. *J Biol Chem*, 277, 40958-66.
- BRAND, A. H. & PERRIMON, N. (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. *Development*, 118, 401-15.
- BREDT, D. S. (1999) Endogenous nitric oxide synthesis: biological functions and pathophysiology. *Free Radic Res*, 31, 577-96.
- BREDT DS & SH., S. (1994) Nitric Oxide: A Physiologic Messenger Molecule. Annual Review of Biochemistry, 63, 175-195.
- BREDT, D. S. & SNYDER, S. H. (1990) Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. *Proc Natl Acad Sci U S A*, 87, 682-5.
- BREHM, A., LÄNGST, G., KEHLE, J., CEDRIC R CLAPIER, AXEL IMHOF, ANTON EBERHARTER, MÜLLER, J. & BECKER, P. B. (2000) dMi-2 and ISWI chromatin remodelling factors have distinct nucleosome binding and mobilization properties. *EMBO J*, 19, 4332-4341.
- BRUCKDORFER, R. (2005) The basics about nitric oxide. Mol Aspects Med., 26, 3-31.
- BUGA, G. M., WEI, L. H., BAUER, P. M., FUKUTO, J. M. & IGNARRO, L. J. (1998) NG-hydroxy-L-arginine and nitric oxide inhibit Caco-2 tumor cell proliferation by distinct mechanisms. *Am J Physiol*, 275, R1256-64.
- BUTLER, A. R. & RHODES, P. (1997) Chemistry, analysis, and biological roles of Snitrosothiols. *Anal Biochem*, 249, 1-9.
- CA GRUETTER, DY GRUETTER, JE LYON, PJ KADOWITZ & IGNARRO, L. (1981) Relationship between cyclic guanosine 3':5'-monophosphate formation and relaxation of coronary arterial smooth muscle by glyceryl trinitrate, nitroprusside, nitrite and nitric oxide: effects of methylene blue and methemoglobin *The journal of pharmacology and experimental therapeutics.*, 219, 181-186.
- CHA, M. S., LEE, M. J., JE, G. H. & KWAK, J. Y. (2001) Endogenous production of nitric oxide by vascular endothelial growth factor down-regulates proliferation of choriocarcinoma cells. *Biochem Biophys Res Commun*, 282, 1061-6.
- CHOI, T. Y., PARK, S. Y., KANG, H. S., CHEONG, J. H., KIM, H. D., LEE, B. L., HIROSE, F., YAMAGUCHI, M. & YOO, M. A. (2004) Redox regulation of DNA binding activity of DREF (DNA replication-related element binding factor) in *Drosophila*. *Biochem J*, 378, 833-8.
- CIANI, E., SEVERI, S., CONTESTABILE, A., BARTESAGHI, R. & CONTESTABILE, A. (2004) Nitric oxide negatively regulates proliferation and

promotes neuronal differentiation through N-Myc downregulation. *J Cell Sci*, 117, 4727-37.

- CONTESTABILE, A. & CIANI, E. (2004) Role of nitric oxide in the regulation of neuronal proliferation, survival and differentiation. *Neurochemistry International Nitric Oxide and Cyclic GMP Signal Transduction in Brain*, 45, 903-914.
- CORTES, M., WONG, E., KOIPALLY, J. & GEORGOPOULOS, K. (1999) Control of lymphocyte development by the lkaros gene family. *Current Opinion in Immunology*, 11, 167-171.
- CRABTREE, L. H. G. R. (2010) Chromatin remodelling during development. *Nature*, 463, 474-484.
- CULOTTA, E. & JR., D. E. K. (1992) NO News Is Good News. Science, 258, 1862-1865.
- DANG THI PHUONG THAO, HIROKAZU SETO & YAMAGUCHI, M. (2007) Drosophila Myc is required for normal DREF gene expression. *Experimental Cell Research* 314, 1 8 4 – 1 9 2.
- DANIEL L. MOORADIAN, THOMAS C HUTSELL & KEEFER, L. K. (1995) Nitric Oxide (NO) Donor MOlecules: Effect of NO Release Rate on Vascular Smooth Muscle Cell Proliferation In Vitro Journal of Cardiovascular Pharmacology, 25, 674-678.
- DANSEN, T. B. & BURGERING, B. M. (2008) Unravelling the tumor-suppressive functions of FOXO proteins. *Trends Cell Biol*, 18, 421-9.
- DEMEREC, M. (1950) Biology of Drosophila.
- DENHAM, S. & ROWLAND, I. J. (1992) Inhibition of the reactive proliferation of lymphocytes by activated macrophages: the role of nitric oxide. *Clin Exp Immunol*, 87, 157-62.
- DIETZL, G., CHEN, D., SCHNORRER, F., SU, K. C., BARINOVA, Y., FELLNER, M., GASSER, B., KINSEY, K., OPPEL, S., SCHEIBLAUER, S., COUTO, A., MARRA, V., KELEMAN, K. & DICKSON, B. J. (2007) A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. *Nature*, 448, 151-6.
- DUFFY, J. B. (2002) GAL4 system in Drosophila: a fly geneticist's Swiss army knife. *Genesis*, 34, 1-15.
- DUNCAN, A. J. & HEALES, S. J. R. (2005) Nitric oxide and neurological disorders. *Molecular Aspects of Medicine*, 26, 67–96.

- E. RYDER, H. SPRIGGS, E. DRUMMOND, JOHNSTON, D. S. & RUSSELL, S. (2009) The Flannotator—a gene and protein expression annotation tool for *Drosophila melanogaster*. *Bioinformatics Applications Note*, 25, 548–549.
- E. RYDER, H. SPRIGGS, G. JOHNSON, E. DRUMMOND, J. DRUMMOND, J. WEBSTER, J. ROOTE, N. LOWE, K. LILLEY, S. HESTER, J. HOWARD, J. REES, S. RUSSELL & JOHNSTON, D. S. mapping and characterisation of protein expression and interaction in *Drosophila melanogaster*, using a hybrid piggyBac/P-element YFP gene trap system with tandem affinity tags.
- EBERHARDT, J. P. W. & BECK, K.-F. (2001) Regulation of gene expression by nitric oxide. *Eur J Physiol*, 442, 479–486.
- ENZO NISOLI, E. C., CRISTINA TONELLO, CLARA SCIORATI, LUCA BRISCINI & & CARRUBA, M. O. (1998) Effects of nitric oxide on proliferation and differentiation of rat brown adipocytes in primary cultures. *British Journal of Pharmacology*, 125, 888-894.
- ESSAM A. SHETA, KIRK MCMILLAN & MASTERS, B. S. S. (1994) Evidence for a Bidomain Structure of Constitutive Cerebellar NitricOxide Synthase. *The journal of Biological Chemistry*, 269 15147-15153.
- FENG, Q., CAO, R., XIA, L., ERDJUMENT-BROMAGE, H., TEMPST, P. & ZHANG, Y. (2002) Identification and functional characterization of the p66/p68 components of the MeCP1 complex. *Mol Cell Biol*, 22, 536-46.
- FENG, Q. & ZHANG, Y. (2001) The MeCP1 complex represses transcription through preferential binding, remodeling, and deacetylating methylated nucleosomes. *Genes Dev*, 15, 827-32.
- FIRE, A., ALBERTSON, D., HARRISON, S. W. & MOERMAN, D. G. (1991) Production of antisense RNA leads to effective and specific inhibition of gene expression in C. elegans muscle. *Development*, 113, 503-14.
- FIRE, A., XU, S., MONTGOMERY, M. K., KOSTAS, S. A., DRIVER, S. E. & MELLO, C. C. (1998) Potent and specific genetic interference by doublestranded RNA in Caenorhabditis elegans. *Nature*, 391, 806-11.
- FORSTERMANN, U., MUGGE, A., ALHEID, U., HAVERICH, A. & FROLICH, J. C. (1988) Selective attenuation of endothelium-mediated vasodilation in atherosclerotic human coronary arteries. *Circulation Research*, 62, 185-90.
- FRANCIS, R., BARTON, M. K., KIMBLE, J. & SCHEDL, T. (1995) gld-1, a tumor suppressor gene required for oocyte development in Caenorhabditis elegans. *Genetics*, 139, 579-606.
- FREEDMAN, J. E., LOSCALZO, J., BARNARD, M. R., ALPERT, C., KEANEY, J. F. & MICHELSON, A. D. (1997) Nitric oxide released from activated platelets inhibits platelet recruitment. *J Clin Invest*, 100, 350-6.

- FREEDMAN, J. E., TING, B., HANKIN, B., LOSCALZO, J., KEANEY, J. F., JR. & VITA, J. A. (1998) Impaired platelet production of nitric oxide predicts presence of acute coronary syndromes. *Circulation*, 98, 1481-6.
- FUMIKO HIROSE, MASAMITSU YAMAGUCHI, HIROSHI HANDA, YUKIO INOMATA & MATSUKAGE, A. (1993) Novel 8-Base Pair Sequence (Drosophila DNA Replication-related Element) andS pecific Binding Factor Involved in the Expressiono of Drosophila Genes for DNA Polymerase a! and Proliferating Cell Nuclear Antigen. *The Journal of Biological Chemistry*, 268, 2092-2099.
- FURCHGOTT, R. (1983) Role of endothelium in responses of vascular smooth muscle. *Circulation Research*, 53, 557-573.
- FURCHGOTT, R. F. & ZAWADZKI, J. V. (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. *Nature*, 288, 373-6.
- GARG, U. C. & HASSID, A. (1989) Inhibition of rat mesangial cell mitogenesis by nitric oxide-generating vasodilators. *Am J Physiol*, 257, F60-6.
- GEORGOPOULOS, K., WINANDY, S. & AVITAHL, N. (1997) The role of the Ikaros gene in lymphocyte development and homeostasis. *Annu Rev Immunol*, 15, 155-76.
- GIBBS, S. M. (2003) Regulation of neuronal proliferation and differentiation by nitric oxide. *Mol Neurobiol*, 27, 107-20.
- GREENSPAN, R. J. (1997) Fly Pushing The theory and Practice of Drosophila Genetics, Cold Spring Harbor Laboratory Press
- GRIFFITH OW & DJ., S. (1995) Nitric oxide synthases: properties and catalytic mechanism. *Annu Rev Physiol*, 57, 707-36.
- HAENLIN, M., STELLER, H., PIRROTTA, V. & MOHIER, E. (1985) A 43 kilobase cosmid P transposon rescues the fs(1)K10 morphogenetic locus and three adjacent Drosophila developmental mutants. *Cell*, 40, 827-37.
- HALEY, J. E. (1998) Gases as neurotransmitters. Essays Biochem, 33, 79-91.
- HANCOCK, J. T. (1997) *Cell Signalling*, Edinburgh Gate, Harlow, Addition Wesley Longman.
- HANS PETER SEELIG, ISABELLE MOOSBRUGGER, HANS EHRFELD, THOMAS FINK, MANFRED RENZ & EKKEHARD GENTH (1995) The major dermatomyositis-specific mi-2 autoantigen is a presumed helicase involved in transcriptional activation. *Arthritis Rheum.*, 38 1389 - 1399.

- HIROSE, F., OHSHIMA, N., KWON, E. J., YOSHIDA, H. & YAMAGUCHI, M. (2002) Drosophila Mi-2 negatively regulates dDREF by inhibiting its DNAbinding activity. *Mol Cell Biol*, 22, 5182-93.
- HIROSE, F., YAMAGUCHI, M., KURODA, K., OMORI, A., HACHIYA, T., IKEDA, M., NISHIMOTO, Y. & MATSUKAGE, A. (1996) Isolation and Characterization of cDNA for DREF, a Promoteractivating Factor for Drosophila DNA Replication-related Genes. *Biochemistry*, 271, 3930 -3937.
- HIROSE, F., YAMAGUCHI, M. & MATSUKAGE, A. (1999) Targeted expression of the DNA binding domain of DRE-binding factor, a Drosophila transcription factor, attenuates DNA replication of the salivary gland and eye imaginal disc. *Mol Cell Biol*, 19, 6020-8.
- HIROSE, F., YAMAGUCHI, M., NISHIDA, Y., MASUTANI, M., MIYAZAWA, H., HANAOKA, F. & MATSUKAGE, A. (1991) Structure and expression during development of Drosophila melanogaster gene for DNA polymerase alpha. *Nucleic Acids Res*, 19, 4991-8.
- HOLSCHER, C. (1997) Nitric oxide, the enigmatic neuronal messenger: its role in synaptic plasticity. *Trends Neurosci*, 20, 298-303.
- IGNARRO LJ, BUGA GM, WOOD KS, BYRNS RE & G., C. (1987) Endotheliumderived relaxing factor produced and released from artery and vein is nitric oxide. *Proceedings of National Academy of Sciences USA*, 84, 9265-9269,.
- IGNARRO, L. J., ADAMS, J. B., HORWITZ, P. M. & WOOD, K. S. (1986) Activation of soluble guanylate cyclase by NO-hemoproteins involves NO-heme exchange. Comparison of heme-containing and heme-deficient enzyme forms. *J Biol Chem*, 261, 4997-5002.
- JACOBS, F. M., VAN DER HEIDE, L. P., WIJCHERS, P. J., BURBACH, J. P., HOEKMAN, M. F. & SMIDT, M. P. (2003) FoxO6, a novel member of the FoxO class of transcription factors with distinct shuttling dynamics. *J Biol Chem*, 278, 35959-67.
- JARRY, A., CHARRIER, L., BOU-HANNA, C., DEVILDER, M. C., CRUSSAIRE, V., DENIS, M. G., VALLETTE, G. & LABOISSE, C. L. (2004) Position in cell cycle controls the sensitivity of colon cancer cells to nitric oxide-dependent programmed cell death. *Cancer Res*, 64, 4227-34.
- JARVIK, J. W., ADLER, S. A., TELMER, C. A., SUBRAMANIAM, V. & LOPEZ, A. J. (1996) CD-tagging: a new approach to gene and protein discovery and analysis. *Biotechniques*, 20, 896-904.
- JEON, H. K., CHOI, S. U. & JUNG, N. P. (2005) Association of the ERK1/2 and p38 kinase pathways with nitric oxide-induced apoptosis and cell cycle arrest in colon cancer cells. *Cell Biol Toxicol*, 21, 115-25.

- JOHNSTON, L. A., PROBER, D. A., EDGAR, B. A., EISENMAN, R. N. & GALLANT, P. (1999) Drosophila myc regulates cellular growth during development. *Cell*, 98, 779-90.
- JULIE M. PINKSTON, D. G., MALENE HANSEN, CYNTHIA KENYON (2006) Mutations That Increase the Life Span of C. elegans Inhibit Tumor Growth. *SCIENCE*, 313.
- JUNGER, M., RINTELEN, F., STOCKER, H., WASSERMAN, J., VEGH, M., RADIMERSKI, T., GREENBERG, M. & HAFEN, E. (2003) The Drosophila Forkhead transcription factor FOXO mediates the reduction in cell number associated with reduced insulin signaling. *Journal of Biology*, 2, 20.
- KEHLE, J., BEUCHLE, D., TREUHEIT, S., CHRISTEN, B., KENNISON, J. A., BIENZ, M. & MULLER, J. (1998) dMi-2, a Hunchback-Interacting Protein That Functions in Polycomb Repression. *Science*, 282, 2-6.
- KENNERDELL, J. R. & CARTHEW, R. W. (1998) Use of dsRNA-Mediated Genetic Interference to Demonstrate that frizzled and frizzled 2 Act in the Wingless Pathway. *Cell*, 95, 1017-1026.
- KHATTAK, S., LEE, B. R., CHO, S. H., AHNN, J. & SPOEREL, N. A. (2002) Genetic characterization of Drosophila Mi-2 ATPase. *Gene*, 293, 107-14.
- KIM, J., SIF, S., JONES, B., JACKSON, A., KOIPALLY, J., HELLER, E., WINANDY, S., VIEL, A., SAWYER, A., IKEDA, T., KINGSTON, R. & GEORGOPOULOS, K. (1999) Ikaros DNA-binding proteins direct formation of chromatin remodeling complexes in lymphocytes. *Immunity*, 10, 345-55.
- KIM, Y.-O., PARK, S.-J., BALABAN, R. S., NIRENBERG, M. & KIM, Y. (2004) A functional genomic screen for cardiogenic genes using RNA interference in developing Drosophila embryos. *PNAS, Developmental Biology*, 101, 159-164.
- KIMBER, S. J. (2005) The regulation of Growth by Nitric Oxide Signalling in Drosophila Melanogaster (DPhil). *Department of Biology and Environmental sciences.* Brighton, University of sussex.
- KON, C., CADIGAN, K. M., DA SILVA, S. L. & NUSSE, R. (2005) Developmental roles of the Mi-2/NURD-associated protein p66 in Drosophila. *Genetics*, 169, 2087-100.
- KRAMER, J. M., DAVIDGE, J. T., LOCKYER, J. M. & STAVELEY, B. E. (2003) Expression of Drosophila FOXO regulates growth and can phenocopy starvation. *BMC Developmental Biology*, 3, 1-14.
- KUNERT N, B. A. (2009) Novel Mi-2 related ATP-dependent chromatin remodelers. *Epigenetics*, 4, 209-211.
- KUNERT, N., WAGNER, E., MURAWSKA, M., KLINKER, H., KREMMER, E. & BREHM, A. (2009) dMec: a novel Mi-2 chromatin remodelling complex involved in transcriptional repression. *Embo J*, 28, 533-44.

- KUZIN, B., REGULSKI, M., STASIV, Y., SCHEINKER, V., TULLY, T. & ENIKOLOPOV, G. (2000) Nitric oxide interacts with the retinoblastoma pathway to control eye development in Drosophila. *Current Biology*, 10, 459-462.
- KUZIN, B., ROBERTS, I., PEUNOVA, N. & ENIKOLOPOV, G. (1996) Nitric Oxide Regulates Cell Proliferation during Drosophila Development. *Cell*, 87, 639-649.
- KWON, N. S., STUEHR, D. J. & NATHAN, C. F. (1991) Inhibition of tumor cell ribonucleotide reductase by macrophage-derived nitric oxide. J Exp Med, 174, 761-7.
- LASALA, R. A. S. (2007) The Effect of Nitric Oxide on Gene Expression in YFP-Tagged Drosophila melanogaster Protein Trap Insertions (M.Sc). *School of Life Sciences.* Brighton, University Of Sussex.
- LAUDANSKI, P., DZIECIOL, J., ANCHIM, T. & WOLCZYNSKI, S. (2001) The influence of glyco-nitric oxide conjugate on proliferation of breast cancer cells in vitro. *Folia Histochem Cytobiol*, 39 Suppl 2, 87-8.
- LEIPER, J. M., SANTA MARIA, J., CHUBB, A., MACALLISTER, R. J., CHARLES, I. G., WHITLEY, G. S. & VALLANCE, P. (1999) Identification of two human dimethylarginine dimethylaminohydrolases with distinct tissue distributions and homology with microbial arginine deiminases. *Biochem J*, 343 Pt 1, 209-14.
- LIPPINCOTT-SCHWARTZ, J., SNAPP, E. & KENWORTHY, A. (2001) Studying protein dynamics in living cells. *Nat Rev Mol Cell Biol*, 2, 444-56.
- LOUIS J. IGNARRO, GEORGETTE M. BUGA, KEITH S. WOOD, RUSSELL E. BYRNS & CHAUDHURI, A. G. (1987) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. *Proceedings of National Academy of Sciences USA*, 84, 9265-9269,.
- LUKACSOVICH, T., ASZTALOS, Z., AWANO, W., BABA, K., KONDO, S., NIWA, S. & YAMAMOTO, D. (2001) Dual-tagging gene trap of novel genes in Drosophila melanogaster. *Genetics*, 157, 727-42.
- MALINSKI, T. THE VITAL ROLE OF NITRIC OXIDE. 47-57.
- MARK A. SMITH, PEGGY L. RICHEY HARRIS, LAWRENCE M. SAYRE, JOSEPH S. BECKMAN & PERRY, G. (1997) Widespread Peroxynitrite-Mediated Damage in Alzheimer's Disease *The Journal of Neuroscience*, 17 2653–2657.
- MATSUKAGE, A., HIROSE, F., YOO, M. A. & YAMAGUCHI, M. (2008) The DRE/DREF transcriptional regulatory system: a master key for cell proliferation. *Biochim Biophys Acta*, 1779, 81-9.

- MEDEMA, B. M. T. B. A. R. H. (2003) Decisions on life and death: FOXO Forkhead transcription factors are in command when PKB/Akt is off duty. *Journal of Leukocyte Biology*, 73, 689-701.
- NAGAI, T., IBATA, K., PARK, E. S., KUBOTA, M., MIKOSHIBA, K. & MIYAWAKI, A. (2002) A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. *Nat Biotechnol*, 20, 87-90.
- NAKAYA N, LOWE SW, TAYA Y, CHENCHIK A & G., E. (2000) Specific pattern of p53 phosphorylation during nitric oxide-induced cell cycle arrest. *Oncogene*, 19, 6369-6375.
- NAKAYA, N., LOWE, S. W., TAYA, Y., CHENCHIK, A. & ENIKOLOPOV, G. (2000) Specific pattern of p53 phosphorylation during nitric oxide-induced cell cycle arrest. *Oncogene*, 19, 6369-75.
- NAN, X., NG, H. H., JOHNSON, C. A., LAHERTY, C. D., TURNER, B. M., EISENMAN, R. N. & BIRD, A. (1998) Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. *Nature*, 393, 386-9.
- NASEEM, K. M. (2005) The role of nitric oxide in cardiovascular diseases. *Molecular Aspects of Medicine*, 26, 33–65.
- NATALIA, P. & GRIGORI, E. (1995) Nitric oxide triggers a switch to growth arrest during differentiation of neuronal cells. 375, 68-73.
- NEUFELD, T. (2003) Shrinkage control: regulation of insulin-mediated growth by FOXO transcription factors. *Journal of Biology*, 2, 18.
- NG, H. H. & BIRD, A. (2000) Histone deacetylases: silencers for hire. *Trends Biochem Sci*, 25, 121-6.
- NUNOKAWA, Y. & TANAKA, S. (1992) INTERFERON-y INHIBITS PROLIFERATION OF RAT VASCULAR SMOOTH MUSCLE CELLS BY NITRIC OXIDE GENERATION. *Biochemical and Biophysical Research Communications*, 188,, 409-415.
- O'KANE, C. J. & GEHRING, W. J. (1987) Detection in situ of genomic regulatory elements in Drosophila. *Proc Natl Acad Sci U S A*, 84, 9123-7.
- OHSHIMA, N., TAKAHASHI, M. & HIROSE, F. (2003) Identification of a human homologue of the DREF transcription factor with a potential role in regulation of the histone H1 gene. *J Biol Chem*, 278, 22928-38.
- ORNITZ, D. M., MOREADITH, R. W. & LEDER, P. (1991) Binary system for regulating transgene expression in mice: targeting int-2 gene expression with yeast GAL4/UAS control elements. *Proc Natl Acad Sci U S A*, 88, 698-702.

- PAIK, J. H., KOLLIPARA, R., CHU, G., JI, H., XIAO, Y., DING, Z., MIAO, L., TOTHOVA, Z., HORNER, J. W., CARRASCO, D. R., JIANG, S., GILLILAND, D. G., CHIN, L., WONG, W. H., CASTRILLON, D. H. & DEPINHO, R. A. (2007) FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. *Cell*, 128, 309-23.
- PAZIN, M. J. & KADONAGA, J. T. (1997) SWI2/SNF2 and Related Proteins: Minireview ATP-Driven Motors That Disrupt Protein–DNA Interactions? *Cell*, 88, 737–740.
- PEARSON, M. J. (1974) Polyteny and the functional significance of the polytene cell cycle. *J Cell Sci*, 15, 457-79.
- PIRROTTA, V. (1997) PcG complexes and chromatin silencing. *Current Opinion in Genetics & Development* 7, 249-258.
- POLLOCK, J. S., FORSTERMANN, U., MITCHELL, J. A., WARNER, T. D., SCHMIDT, H. H., NAKANE, M. & MURAD, F. (1991) Purification and characterization of particulate endothelium-derived relaxing factor synthase from cultured and native bovine aortic endothelial cells. *Proc Natl Acad Sci U S A*, 88, 10480-4.
- POLYSCIENCES, I. Warrington, PA PUIG, O., MARR, M. T., RUHF, M. L. & TJIAN, R. (2003) Control of cell number by Drosophila FOXO: downstream and feedback regulation of the insulin receptor pathway 10.1101/gad.1098703. *Genes Dev.*, 17, 2006-2020.
- R. TIMOTHY MILLER, PAVEL MARTA SEK, TSUNEO OMURA & MASTERS, B. S. S. (1999) Rapid Kinetic Studies of Electron Transfer in the Three Isoforms of Nitric Oxide Synthase1. *Biochemical and Biophysical Research Communications*, 265, 184–188
- RANA, T. M. (2007) Illuminating the silence: understanding the structure and function of small RNAs. *Nat Rev Mol Cell Biol*, 8, 23-36.
- REGULSKI, M. & TULLY, T. (1995) Molecular and Biochemical Characterization of dNOS: A Drosophila Ca2+/ Calmodulin-Dependent Nitric Oxide Synthase. *PNAS*, 92, 9072-9076.
- REKAS, A., ALATTIA, J. R., NAGAI, T., MIYAWAKI, A. & IKURA, M. (2002) Crystal structure of venus, a yellow fluorescent protein with improved maturation and reduced environmental sensitivity. *J Biol Chem*, 277, 50573-8.
- RENATE DEURING, L. F., JENNIFER A. ARMSTRONG, M. S., OPHELIA PAPOULAS, M. P., GARY DAUBRESSE, M. V., SARAH L. MOSELEY,, MARIA BERLOCO, T. T., CARL WU, & SERGIO PIMPINELLI, A. J. W. T. (2000) The ISWI chromatin-remodeling protein is required for gene expression and the maintenance of higher order chromatin structure in Vivo. *Molecular Cell*, 5, 355–365.
- SALVADOR MONCADA, ANNIE HIGGS & FURCHGOTT, R. (1997) XIV. International Union of Pharmacology Nomenclature in Nitric Oxide Researcha. *PHARMACOLOGICAL REVIEWS*, 49, 137-142.
- SCHMIDT, H. H., POLLOCK, J. S., NAKANE, M., GORSKY, L. D., FORSTERMANN, U. & MURAD, F. (1991) Purification of a soluble isoform of guanylyl cyclase-activating-factor synthase. *Proc Natl Acad Sci U S A*, 88, 365-9.
- SCOTT, A. (2009) Characterisation of the Regulation of Growth by Nitric Oxide Signalling in *Drosophila melanogaster (DPhil)Biology and Environmental Sciences.* Brighton, Sussex.
- SEELIG HP, RENZ M, T., ARGOFF IN, GE Q & MB., F. (1996) Two forms of the major antigenic protein of the dermatomyositis-specific Mi-2 autoantigen. *Arthritis Rheum*, 39, 1769-71.
- SMITH, A. V. & ORR-WEAVER, T. L. (1991) The regulation of the cell cycle during Drosophila embryogenesis: the transition to polyteny. *Development*, 112, 997-1008.
- SPRADLING, A. C. & RUBIN, G. M. (1982) Transposition of Cloned P Elements into Drosophila Germ Line Chromosomes. *Science*, 218, 341-347.
- STAMLER, J. S., LAMAS, S. & FANG, F. C. (2001) Nitrosylation. the prototypic redox-based signaling mechanism. *Cell*, 106, 675-83.
- STEPHEN E. RUNDLETT, ANDREW A. CARMEN, NORIYUKI SUKA, &, B. M. T. & GRUNSTEIN, M. (1998) Transcriptional repression byUME6 involves deacetylation of lysine 5 of histoneH4 by RPD3. *Nature*, 392, 831-835.
- STRUHL, K. (1998) Histone acetylation and transcriptional regulatory mechanisms. *Genes Dev*, 12, 599-606.
- STUEHR, D. J. (1997) STRUCTURE-FUNCTION ASPECTS IN THE NITRIC OXIDE SYNTHASES. Annu. Rev. Pharmacol. Toxicol., 37, 339–59.
- STUEHR, D. J. & IKEDA-SAITO, M. (1992) Spectral characterization of brain and macrophage nitric oxide synthases. Cytochrome P-450-like hemeproteins that contain a flavin semiquinone radical. *J Biol Chem*, 267, 20547-50.
- TAUNTON, J., HASSIG, C. A. & SCHREIBER, S. L. (1996) A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. *Science*, 272, 408-11.
- TELEMAN, A. A., HIETAKANGAS, V., SAYADIAN, A. C. & COHEN, S. M. (2008) Nutritional control of protein biosynthetic capacity by insulin via Myc in Drosophila. *Cell Metab*, 7, 21-32.

- TINGWEI BILL CAI, P. G. W., AND ALVIN A. HOLDER Part 1 Chemistry of NO Donors.
- TINGWEI BILL CAI, P. G. W., AND ALVIN A. HOLDER (2005) NO and NO Donors.
- TOH, Y., PENCIL, S. D. & NICOLSON, G. L. (1994) A novel candidate metastasisassociated gene, mta1, differentially expressed in highly metastatic mammary adenocarcinoma cell lines. cDNA cloning, expression, and protein analyses. J Biol Chem, 269, 22958-63.
- TONG JK, HASSIG CA, SCHNITZLER GR, KINGSTON RE & SL., S. (1998) Chromatin deacetylation by an ATP-dependent nucleosome remodelling complex. *Nature*, 395, 917-21.
- TONG, J. K., HASSIG, C. A., SCHNITZLER, G. R., KINGSTON, R. E. & SCHREIBER, S. L. (1998) Chromatin deacetylation by an ATP-dependent nucleosome remodelling complex. *Nature*, 395, 917-21.
- TSIEN, R. Y. (1998) THE GREEN FLUORESCENT PROTEIN. Annu. Rev. Biochem., 67, 509–44.
- TSUKIYAMA, T. & WU, C. (1997) Chromatin remodeling and transcription. *Current Opinion in Genetics & Development*, 7, 182-191.
- TUAN ROCKY. S & LO W CECILLIA (2000) Developmental Biology Protocols, Vol III,, Humana Press, Totowa, New Jersey.
- VENKEN, K. J. & BELLEN, H. J. (2005) Emerging technologies for gene manipulation in Drosophila melanogaster. *Nat Rev Genet*, 6, 167-78.
- VILLALOBO, A. (2006) Nitric oxide and cell proliferation. FEBS J., 273, 2329-2344.
- WADE, P. A., GEGONNE, A., JONES, P. L., BALLESTAR, E., AUBRY, F. & WOLFFE, A. P. (1999) Mi-2 complex couples DNA methylation to chromatin remodelling and histone deacetylation. *Nat Genet*, 23, 62-6.
- WADE, P. A., JONES, P. L., VERMAAK, D. & WOLFFE, A. P. (1998) A multiple subunit Mi-2 histone deacetylase from Xenopus laevis cofractionates with an associated Snf2 superfamily ATPase. *Curr Biol*, 8, 843-6.
- WADE, S. A. D. P. A. (2007) The human Mi-2|[sol]|NuRD complex and gene regulation. *Oncogene* 26, 5433–5438.
- XAVIER MORIN, RICHARD DANEMAN, MICHAEL ZAVORTINK & CHIA, W. (2001) A protein trap strategy to detect GFP-tagged proteins expressed from their endogenous loci in Drosophila. *PNAS*, 98, 15050–15055.
- XUE, Y., IEMIN WONG, G., MORENO, T., MARY K. YOUNG, J. C. T. & WANG\*K, A. W. (1998) NURD, a Novel Complex with Both ATP-Dependent

Chromatin-Remodeling and Histone Deacetylase Activities. *Molecular Cell*, 2, 851–861.

- YAMAGUCHI, M., NISHIDA, Y., MORIUCHI, T., HIROSE, F., HUI, C. C., SUZUKI, Y. & MATSUKAGE, A. (1990) Drosophila proliferating cell nuclear antigen (cyclin) gene: structure, expression during development, and specific binding of homeodomain proteins to its 5'-flanking region. *Mol Cell Biol*, 10, 872-9.
- YI ZHANG, GARY LEROY, HANS-PETER SEELIG, WILLIAM S. LANE & REINBERG, D. (1998) The Dermatomyositis-Specific Autoantigen Mi2 Is a Component of a Complex Containing Histone Deacetylase and Nucleosome Remodeling Activities. *Cell*, 95, 279–289.
- YOKO FURUKAWA-HIBI, KIYOMI YOSHIDA-ARAKI, TSUTOMU OHTA, KYOJI IKEDA & MOTOYAMA, N. (2002) FOXO Forkhead Transcription Factors Induce G2-M Checkpoint in Response to Oxidative Stress. *The journal* of Biological Chemistry, 30, 26729–26732.
- YU, S. M., HUNG, L. M. & LIN, C. C. (1997) cGMP-elevating agents suppress proliferation of vascular smooth muscle cells by inhibiting the activation of epidermal growth factor signaling pathway. *Circulation*, 95, 1269-77.
- YUI, Y., HATTORI, R., KOSUGA, K., EIZAWA, H., HIKI, K. & KAWAI, C. (1991) Purification of nitric oxide synthase from rat macrophages. *J Biol Chem*, 266, 12544-7.
- ZHANG, Y., NG, H. H., ERDJUMENT-BROMAGE, H., TEMPST, P., BIRD, A. & REINBERG, D. (1999) Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. *Genes Dev*, 13, 1924-35.

## **COMPONENTS OF NURD COMPLEX**



Schematic diagram of 2MDa NuRD complex consisting of eight polypeptides: MTA1/2, HDAC1, HDAC2, RbAp46, RbAp48, MBD3, p66 and Mi-2. Figure adopted from (Ahringer, 2000).

| NuRD component     | Organism        | Developmental Roles                                                                              |
|--------------------|-----------------|--------------------------------------------------------------------------------------------------|
| HDAC1/2            |                 |                                                                                                  |
| i) Rpd3            | D. melanogaster | Groucho-mediated transcriptional repression.                                                     |
|                    |                 | (Mannervik M, 1999).                                                                             |
| ii) Hda-1          | C. elegans      | Embryonic viability.(Solari and Ahringer, 2000).                                                 |
| iii) Hdac1/2       | M. musculus     | Control of proliferation.(Montgomery et al., 2007)                                               |
| RbAp46/48          |                 |                                                                                                  |
| i) <i>Rba-1</i>    | C. elegans      | Embryonic viability. (Solari and Ahringer, 2000)                                                 |
| ii) RbAp46/48      | D. melanogaster | Histone binding. (Ahringer, 2000)                                                                |
| Mi-2               |                 |                                                                                                  |
| i) <i>dMi-2</i>    | D. melanogaster | Hox repression, larval and germ cell viability.<br>(Kehle et al., 1998).                         |
| ii) <i>let-418</i> | C. elegans.     | Larval viability, vulval development, maintenance.<br>(Solari and Ahringer, 2000).               |
| iii) Chd4          | M. musculus     | Haematopoiesis, epidermal development,<br>peri-implantation development.<br>(Kashiwagi M, 2007). |
| MTA1/2             |                 |                                                                                                  |
| i) <i>mta1/2</i>   | D. melanogaster | Interaction with hunchback, polycomb repression (Kehle et al., 1998).                            |
| ii) Egr-1          | C. elegans.     | Embryonic patterning, Hox regulation. (Solari and Ahringer, 2000).                               |
| iii) Mta2          | M. musculus     | Metastasis. (Toh et al., 1995).                                                                  |
| Mbd3               |                 |                                                                                                  |
| i) <i>dMbd2/3</i>  | D. melanogaster | Methylation mediated gene silencing (Feng and Zhang, 2001).                                      |
| ii) <i>Mbd2/3</i>  | C. elegans.     | Morphological defects. (Gutierrez and Sommer, 2004)                                              |
| iii) <i>Mbd3</i>   | M. musculus     | Silencing of pre-implanation genes. (Keisuke Kaji, 2007)                                         |
| P66                |                 |                                                                                                  |
| i) <i>Simj</i>     | D. melanogaster | Wnt signalling, activation of ecdysone responsive genes. (Kon et al., 2005)                      |
| ii) <i>p66</i>     | M. musculus     | Pleiotrophic effects post-gastrulation, silencing of a few TE genes. (Marino and Nusse, 2007).   |