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Quantum electrodynamics near material boundaries

Quantum electrodynamics in free-space is a well-understood and a very successful theory.

This is not the case when polarizable boundaries are present, which is a common sce-

nario. The presence of reflective surfaces affects the photon field. Thereby the quantum-

mechanical vacuum fluctuations of the electromagnetic field are constrained leading to

changes in the interaction energies of charged particles which are directly measurable.

One of the most famous examples of such an effect is the Lamb shift of an atom in

front of a perfectly reflecting mirror, which depends on the distance of the atom from

the mirror, thus giving rise to an attractive force - the so-called Casimir-Polder force.

This thesis touches upon current challenges of quantum electrodynamics with externally

applied boundary conditions, which is of increasing importance for nanotechnology and

its applications in physics, chemistry and biology. When studying the abovementioned

vacuum effects one can use models of various degrees of sophistication for the material

properties that need to be taken into account. The simplest is to assume perfect reflec-

tivity. This leads to simple boundary conditions on the electromagnetic field and thereby

its quantum fluctuations. The difficulty of such calculations then lies only in the possibly

complex geometry of the macroscopic body. The next possible level of sophistication is to

allow imperfect reflectivity. The simplest way to achieve this is by considering a material

with constant and frequency-independent refractive index. However, for all real material

surfaces the reflectivity is frequency-dependent. Causality then requires that dispersion

is accompanied by absorption. The aim of this project was twofold: (i) to construct,

using well-understood tools of theoretical physics, the microscopic theory of quantum

systems, like atoms, interacting with macroscopic polarizable media, which would facili-

tate relatively simple perturbative calculations of QED corrections due to the presence of

boundaries, (ii) to apply the developed formalism to the calculation of the Casimir-Polder

force between an atom and a realistic material.
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Chapter 1

Thesis outline

Quantum electrodynamics in free-space is a well-understood and a very successful theory.

This is not the case when polarizable boundaries are present, which is a common sce-

nario. The presence of reflective and refracting surfaces affects the photon field. Thereby

the quantum-mechanical vacuum fluctuations of the electromagnetic field are constrained

leading to changes in the interaction energies of charged particles which are directly mea-

surable. One of the most famous examples of such an effect is the Lamb shift of an atom

in front of a perfectly reflecting mirror, which depends on the distance of the atom from

the mirror, thus giving rise to an attractive force – the so-called Casimir-Polder force.

This thesis touches upon current challenges of quantum electrodynamics with externally

applied boundary conditions, which is of increasing importance for nanotechnology and

its applications in physics, chemistry and biology. The aim of this project was twofold:

(i) to construct, using well-understood tools of theoretical physics, the microscopic theory

of quantum systems, like atoms, interacting with macroscopic polarizable media, which

would facilitate relatively simple perturbative calculations of QED corrections due to the

presence of boundaries, (ii) to apply the developed formalism to the calculation of the

Casimir-Polder force between an atom and a realistic dielectric material.

The problem is not new, and there exist a number of semi-phenomenological approaches

e.g. a fluctuating-noise-current theory [1]. However, such elaborate theories are often

opaque with respect to the underlying physical processes and are sometimes based on

implicit assumptions thereby being prone to hidden pitfalls. Hence [2] ...the remarkable

1



Chapter 1. Thesis outline 2

tendency to deal with such systems through simple models with explicit Hamiltonians, whose

predictions are then evaluated by standard approximations of quantum mechanics or quan-

tum field theory. From a fundamental field-theoretical point of view, the Casimir-Polder

force is a result of changes to the atomic electron’s self-energy, which in turn is due to the

impact of the boundaries on the photon propagator. Therefore, the main task was to set

up a microscopic and preferably gauge-independent model that would allow to work out

corrections to the quantum photon propagator which arise due to the presence of realistic

reflective boundaries.

There exist models of various degrees of sophistication to describe material’s optical re-

sponse to the electromagnetic field. The simplest is to assume perfect reflectivity. This

leads to simple boundary conditions on the electromagnetic field and thereby its quantum

fluctuations. The difficulty of such calculations then lies mostly in the possibly complex

geometry of the macroscopic body. At an early stage of my PhD, on the request of the

experimental cold-atom physics group at MIT, I used this simple model to derive previ-

ously unknown formulae designed to help experimental physicists to estimate magnitudes

of the Casimir-Polder forces in their experiments, [3][4]. It is interesting to point out that

the perfect-reflector model when applied to atoms seems to be grasping the essence of the

realistic problem, whereas it completely fails when applied to the free electron. This is be-

cause electromagnetic field quantization in the presence of perfect reflectors suffers from a

serious shortcoming - a lack of the evanescent modes. It turns out that these play a funda-

mental role in the interaction with quantum system that allows low-frequency excitations,

so that the simple perfect-reflector model is fundamentally inadequate for describing such

systems [5].

The next possible level of sophistication is to allow imperfect reflectivity. The simplest way

to achieve this is by considering a material with constant and frequency-independent re-

fractive index. The most important feature of this model is the inclusion of the evanescent

field modes which arise from total internal reflection of a wave approaching the interface

from inside the material. Such models are relatively uncomplicated, provided one refrains

from studying configurations capable of wave-guiding. Then, the spectrum of the normal

modes of the electromagnetic field becomes complicated as it gains a discrete part, in

addition to the continuous one, related to the modes allowed within the wave-guide. This

significantly complicates field operators, and any standard perturbative calculations that
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require summations over all quantum numbers run into difficulties simply because it is

non-trivial to combine a discrete sum with an integral. To explore the role of evanescent

modes in the Casimir-Polder effect I addressed the problem of the interaction of an atom

with a non-dispersive, single-layered dielectric. This exercise turned out to be an amazing

experience of using beautiful mathematics. The results I obtained are relevant to cur-

rent advancements in the atom-chip techniques and will be soon submitted to the journal

Physical Review A.

For all real material surfaces the reflectivity is frequency-dependent (i.e. the material is

dispersive). Causality then requires that dispersion is accompanied by absorption. From

a quantum-mechanical point of view it means that the electromagnetic field needs to

be coupled to additional quantum fields that would simulate the absorptive degrees of

freedom. The Huttner-Barnett model of a dielectric interacting with the electromagnetic

field does precisely this - it couples the electromagnetic field to the set of quantum fields.

One of them, called the polarization field, is a field of harmonic oscillators that models

polarization of the dielectric and the second, the so-called reservoir, is responsible for

absorption. The model was shown to work very well in a homogeneous medium, however,

its application to inhomogeneous media of even simple three-dimensional geometries is

increasingly complicated and leads to unwieldy results. The best illustrating example is

provided by the work of M. S. Yeung and T. K. Gustafson [6], where authors succeeded to

calculate changes to spontaneous decay rates for an atom close to an absorptive half-space.

However, the fundamental building block of their calculation – the photon propagator –

turned out to be too complicated and necessitated the use of numerical methods thereby

preventing a deep physical insight. For this reason, it seemed worthwhile to reconsider

the problem and look for a remedy. The final stage of my PhD involved setting up

and solving explicitly the inhomogeneous Huttner-Barnett model. I managed to show

that starting from the multipolar rather than minimal coupling it is possible to solve the

inhomogeneous Huttner-Barnett model in an entirely analytical and gauge-independent

manner and obtain relatively simple expression for the photon propagator thereby opening

the route to perturbative QED calculations using the Feynman’s diagrammatic technique.

I applied this formalism to calculate one-loop correction to the self-energy of the electron

bound by a nucleus near a dielectric half-space. The set of final results forms a publishable

content that is likely to be appreciated among experimental physicists worldwide.



Chapter 2

Introduction

2.1 Zero-point energy

The beginning of the twentieth century witnessed the development of one of the most

remarkable and intellectually formidable of all physical theories - the quantum mechanics.

The scope of quantum theory is to describe phenomena of the microscopic world that are

entirely beyond human perception, where physical intuition, which is based on our expe-

rience of the macroscopic world has only limited, if any, applicability. Put it differently,

quantum mechanics repeatedly happens to be counter-intuitive. For this reason, the only

honest description of the microscopic world can be achieved in the language of abstract

mathematics that is capable of reaching beyond limits of our perception.

In order to accommodate for one of the most profound surprises of quantum mechanics,

the existence of the zero-point energy, Nature has to be described not by numbers but

rather by objects that do not commute among themselves. Zero-point energy was as a

matter of fact one of the first indications of the insufficiency of commutative algebras to

spell out the laws of nature on the micro-scale. In the words of Dirac [7]:

...a new theory, which suggests that it is not the equations of classical mechanics that are

in any way at fault, but that the mathematical operations by which physical results are

deduced from them require modification.

4
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The notion of the zero-point energy appeared in quantum theory as early as in 1911.

It was then heuristically introduced by Planck in order to explain the spectrum of the

radiation emitted by black body [8]. The zero-point energy is the lowest energy that a

given quantum system can have and in contrast to classical physics this quantity is not

zero. The most didactic example of this concept is a simple harmonic oscillator, first solved

by Heisenberg using his matrix mechanics [9]. In one-dimensional case, the possible values

of the energy that a simple harmonic oscillator can have are given by

En = ~ω
(
n+

1

2

)
, n = 0, 1, 2 . . . . (2.1)

The lowest energy, energy of the ground state, is given by E0 = 1/2~ω. The most elegant

and fruitful way of modern derivation of the equation (2.1) is the well-known algebraical

approach that stems from the work of Dirac [7]. It can be found in almost every ele-

mentary textbook on quantum mechanics, however, to allow for a relatively self-contained

development brief summary will be given.

The Hamiltonian of a particle with mass m moving in the quadratic potential is given by

H =
p2

2m
+

1

2
mω2x2. (2.2)

The transition to quantum mechanics requires us to impose an algebraical rule, known as

commutation relation, on the canonically conjugate position x and momentum p,

[x, p] ≡ xp− px = i~. (2.3)

The algebraical method of solution is based on the introduction of non-Hermitean operators

defined by

a =
1√

2m~ω
(p− imωx) , a† =

1√
2m~ω

(p+ imωx) , [a, a†] = 1. (2.4)

The normalization factors are not unique and, in fact, we only require that the Hamiltonian

(2.2), when written out in terms of a and a† takes the form

H =
1

2
~ω
(
a†a+ aa†

)
. (2.5)
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Using the fundamental commutators one observes that an operator N ≡ a†a, called num-

ber operator, commutes with the Hamiltonian (2.5). Therefore, it is possible to find

simultaneous eigenstates of H and N . The defining eigenvalue problem is written as

N |n〉 = n|n〉. (2.6)

The expectation value of the number operator is given by n = 〈n|a†a|n〉 = (a|n〉)†a|n〉 =

|a|n〉|2. Therefore, n has to be a real and positive number or zero. It is not difficult to

demonstrate using the commutators that if |n〉 is an eigenstate of N with eigenvalue n

then a|n〉 or a†|n〉 are also eigenstates with eigenvalues n−1 or n+ 1, respectively. In fact

we have

a|n〉 =
√
n|n− 1〉, a†|n〉 =

√
n+ 1|n+ 1〉 (2.7)

and, in particular, we note that the operator a generates the eigenstates of N with lower

and lower eigenvalues that differ by unity. The process has to terminate at some point

because we know that n is a positive or zero. From (2.7) it is seen to happen when n = 0.

Therefore, we reach the conclusion that the spectrum of the number operator is given

by the positive integers and zero. To show that equation (2.1) holds, we compute the

expectation value of the Hamiltonian in the nth state using the information we gained

about the number operator:

En =
1

2
~ω〈n|a†a+ aa†|n〉 =

1

2
~ω〈n|a†a+ a†a+ 1|n〉 = ~ω

(
n+

1

2

)
. (2.8)

We note that the appearance of the state-independent contribution, the zero-point energy,

is intimately related to the non-commutativity of the canonically conjugate variables in

(2.2).

Quantum mechanics of the simple harmonic oscillator is very well understood and in con-

junction with Fourier analysis provides a very powerful and easily understandable method

of quantizing complicated physical systems. Heuristically speaking, once the dynamics

of the system is decomposed into harmonic components using Fourier analysis, one can

put the Hamiltonian describing a single Fourier component into the form (2.2). Then,

the route to quantization is open because the system can be viewed as a set of harmonic

oscillators that we know how to treat quantum-mechanically. Obviously, in this way, the
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physical system will inherit properties of a simple harmonic oscillator, most notably, the

zero-point energy will appear in the Hamiltonian. It is in this way that the zero-point

energy persists in modern physical theories. Here we will be mainly interested in elec-

tromagnetic zero-point energy. Therefore we would like to briefly demonstrate how the

zero-point energy of a simple harmonic oscillator reappears in the theory of the quantized

electromagnetic field.

The dynamics of the classical electromagnetic field in the absence of sources is described

by the Hamiltonian

H =
1

2

∫
d3r

[
ε0E

2(r, t) +
1

µ0
B2(r, t)

]
. (2.9)

The formalism of the classical field theory yields Maxwell’s equations

∇ ·E(r, t) = 0, (2.10)

∇ ·B(r, t) = 0, (2.11)

∇×E(r, t) = − ∂

∂t
B(r, t), (2.12)

∇×B(r, t) =
1

c2

∂

∂t
E(r, t). (2.13)

Introducing the potentials A and φ such that

B(r, t) = ∇×A(r, t), E(r, t) = − ∂

∂t
A(r, t)−∇φ(r, t) (2.14)

and choosing the Coulomb gauge ∇ · A(r, t) = 0 allows to set φ(r, t) = 0 (no sources)

thereby reducing the Maxwell’s equations to a single homogeneous wave equation for the

vector potential [10]

∇2A(r, t)− 1

c2

∂2

∂t2
A(r, t) = 0. (2.15)

It is well known [11] that the monochromatic solutions of equation (2.15) reduce the

Hamiltonian (2.9) to the simple harmonic form

H =
1

2

(
P 2 + ω2Q2

)
, (2.16)

thereby demonstrating the equivalence of the monochromatic component of the electro-

magnetic field to the simple harmonic oscillator of the unit mass. This allows the quantiza-

tion of the electromagnetic field by treating each mode of the field as a harmonic oscillator.
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The technique of separation of variables allows us to write down the real monochromatic

solution of equation (2.15) in the form

Ak(r, t) = N
[
a(0)fk(r)e−iωt + a∗(0)f∗k(r)e+iωt

]
, (2.17)

where the transverse vector mode function fk(r) is annihilated by the Helmholtz operator

∇2 +ω2/c2 and N is an arbitrary normalization constant. The transition from the classical

Hamiltonian (2.16) to the quantum one is achieved by imposing the commutation relation

on the canonically conjugate quantities Q and P . This procedure promotes the coefficient

a(0) in (2.17) to an operator that doesn’t commute with its own Hermitian conjugate but

rather satisfies the commutation relation [â(0), â†(0)] = 1. An analogous commutation

relation was responsible for the quantum-mechanical properties of the simple harmonic

oscillator. It is this relation through which the electromagnetic field acquires similar

properties, including the zero-point energy. In the simplest case of the electromagnetic

field in free-space, the full electric field operator in the Heisenberg picture is written as

E(r, t) = − i

(2π)3/2

∑
λ

∫
d3k

√
~ω
2ε0

ελ

[
akλ(0)eik·r−iωt − a†kλ(0)e−ik·r+iωt

]
(2.18)

i.e. it is a ’sum’ of monochromatic components. We observe how this construction satisfies

the fundamental requirements of the theory. First, the mode functions eik·r take care

of the spatial dependence of the operator so that together with time dependence e−iωt

it satisfies the wave equation (or equivalently Maxwell equations). The transversality

condition, as required by the Coulomb gauge (or first Maxwell equation), is satisfied by the

introduction of the two polarization vectors ελ such that k · ελ = 0, otherwise their choice

is arbitrary. The quantum mechanical properties are embedded in (2.18) by one-to-one

correspondence between each mode of the electromagnetic field, labelled by the composite

of wave-vector and polarization index (k, λ), and a unit-mass harmonic oscillator whose

excitations, known as photons, are created and annihilated by the operators a†kλ and

akλ, respectively. Thus, the state of the field is described by the state of infinitely many

harmonic oscillators and can be written as |...nkλ...〉 meaning that the oscillator labelled by

(kλ) is excited to the nth level (n photons with momentum k and polarization λ). Finally,

the normalization constant may vary and depends on the commutation relations that we

choose to work with, their precise form is fixed by the expected form of the Hamiltonian
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(2.9), which using equation (2.18) can be put in the form

H =
1

2

∫
d3k~ω

(
a†kλakλ + akλa

†
kλ

)
. (2.19)

Using the multi-mode generalization of the fundamental commutation relation between

the creation and annihilation operators

[
akλ, a

†
pσ

]
= δ(3)(k− p)δλσ (2.20)

we obtain for the vacuum expectation value of the Hamiltonian

E0 =
1

2
δ(3)(0)

∫
d3k~ω. (2.21)

The appearance of δ(3)(0) in the above expression may seem strange at first. To shed some

light on this we write

δ(3)(0) =
1

(2π)3

∫
d3re0 =

1

(2π)3

∫
d3r (2.22)

and observe that the r integral is nothing but the infinite quantization volume. This

problem disappears when the electromagnetic field is quantized in a finite box. What is

really interesting is the divergence of the frequency integral in (2.21) that demonstrates

that the zero-point energy of the electromagnetic field is in fact infinite, regardless of

whether the quantization volume is infinite or finite.

The analogy between the simple harmonic oscillator and the monochromatic mode of the

electromagnetic field immediately leads to the conclusion that

〈vac|E(r)|vac〉 = 0, 〈vac|E2(r)|vac〉 6= 0, (2.23)

i.e. on the average, the vacuum expectation value of the electric field operator vanishes

but this by no means implies that there is no electromagnetic field present in the vacuum

state. The non-vanishing expectation value of the square of the electric field operator

informs us that, (especially) in the vacuum state, there are some fluctuations of the elec-

tromagnetic field around the mean value of zero. The (infinite) zero-point energy is the

energy associated with these fluctuations. In the Heisenberg picture equations of motion
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for operators are obtained by evaluating the commutators with the Hamiltonian. Since

the zero-point energy is a c-number and not an operator it seems at first that it will not

influence equations of motion1. However, as was first noted by Casimir and Polder [13],

there are some observable consequences of the electromagnetic zero-point energy and we

turn our attention to this fact now.

2.2 ’...of some theoretical significance’

It is not possible to screen vacuum fluctuations. Therefore, every charged particle placed

in vacuum will interact with the vacuum-state electromagnetic field. There are many

manifestations of this interaction e.g. the deviation of the electron’s g-factor from 2. In

this work however, we will mainly concentrate on one in particular: the so-called Casimir-

Polder effect.

An electron as a charged particle interacts with the vacuum electromagnetic field whether it

is bound by a nucleus or not. For an electron within an atom, which is placed in an idealized

unbounded space, this interaction is widely known as the Lamb shift and is position

independent due to the translational invariance of empty unbounded space. What we are

concerned with is the modification of this interaction due to the presence of a polarizable

material. The spatial dependence of the vacuum fluctuations of the electromagnetic field

is governed by Maxwell’s equations. The introduction of polarizable boundaries imposes

boundary conditions on the fields across interfaces. This breaks translation invariance

thereby rendering the vacuum fluctuations position-dependent, which implies a position-

dependence of the particles’ interaction energies, and hence a force that is given by the

gradient of this energy. This force, when acting on a neutral atom, is widely known as the

Casimir-Polder force.

As is well-known, most problems in quantum mechanics don’t have exact solutions and

the present case is by no means an exception. However, one can study the Casimir-Polder

effect using perturbative techniques. In such an approach the Hamiltonian of the system

plays a central role, most notably its part that describes the interaction between the

quantum system (electron or atom) and the electromagnetic field. There exist numerous

1It has been shown in [12] that the zero-point energy is in fact required to preserve the formal consis-
tency of the quantum theory of the charged particles interacting with the electromagnetic field.
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ways of formulating non-relativistic QED [14], and any particular choice is dictated merely

by convenience. Throughout this dissertation we will restrict ourselves to a one-electron

atom, for which the current and charge densities are given by

j(r) = −eq̇δ(3)(r− q), ρ(r) = −eδ(3)(r− q) + eδ(3)(r), (2.24)

i.e. the proton is immobile and placed at the origin whereas the electron has position q.

The Lagrangian of the system may be written as

L =
1

2
mq̇2 +

∫
d3r

{
ε0
2

[
Ȧ(r) + ∇φ(r)

]2
− 1

2µ0
[∇×A(r)]2

+j(r) ·A(r)− ρ(r)φ(r)

}
. (2.25)

The Hamiltonian given in an arbitrary gauge may be obtained by a Legendre transforma-

tion

H =
[p + eA(q)]2

2m
+

1

2

∫
d3r

[
1

ε0
Π2(r) +

1

µ0
B2(r)

]
. (2.26)

The quantization is achieved as usual by imposing the commutation relations2

[qi, pj ] = i~δij , [Ai(r),Πj(r
′)] = i~δijδ(3)(r− r′). (2.27)

The interaction part of this Hamiltonian clearly reads

HINT =
e

2m
[p ·A(r) + A(r) · p] +

e2

2m
A2(r). (2.28)

Note that the electrostatic part of the interaction seems to be missing in (2.26). This

however is not the case, it is encapsulated in the longitudinal part of the canonical electro-

magnetic momentum Π, which is identified with the electric field −ε0E, see [11]. It is well

known that to study the Casimir-Polder force it is beneficial to transform the Hamiltonian

(2.26) to the so called Power-Zienau-Wolley or multipolar form and then use the fact that

the spatial dimensions of the atom are usually much smaller than the typical wavelength

of the radiation involved. This last assumption is widely known as a dipole approximation.

2The reader should note that the commutation relation between Ai(r) and Πj(r
′) is gauge-dependent

and the quantity appearing on the RHS should in general be considered as some ”unit” tensor rather
than standard delta-function. In particular, in the Coulomb gauge it becomes the well-known transverse
delta-function.
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The transformation can be achieved by several means. One can add a total time derivative

to the Lagrangian (2.25) thereby leaving equation of motion unchanged [11] or perform

a unitary transformation directly on the quantized Hamiltonian [15]. An alternative and

very interesting method exploits the gauge transformations of the vector potential A, as

was discussed in a great detail in [16]. In multipolar formulation of the QED Hamilto-

nian the sources (2.24) are replaced by the polarization P(r) and magnetization M(r)

associated with the atomic charges [14]

P(r) = −eq
∫ 1

0
dλδ(3)(r− λq), M(r) = −eq× q̇

∫ 1

0
dλλδ(3)(r− λq), (2.29)

where q is the electron’s coordinate and the proton is placed at the origin. The Hamiltonian

no longer depends on the vector potential A but takes the gauge-independent form [16]

H =

[
p− e

∫ 1

0
dλλq×B(λq)

]2

2m

+

∫
d3r

{[
1

2ε0
Π2(r) +

1

2µ0
B2(r)

]
+

1

ε0
P(r) ·Π(r) +

1

2ε0
P2(r)

}
, (2.30)

with the canonical electromagnetic momentum being now proportional to the displacement

field Π(r) = −ε0E(r)−P(r). The appropriate commutation relations to accompany (2.30)

are given by3

[qi, pj ] = i~δij , [Bi(r),Πj(r
′)] =

~
(2π)3

εijm
∫

d3kkme
ik·(r−r′). (2.31)

The assumption that the electromagnetic field varies slowly over the region in which the

electron is permitted to move allows one to argue that magnetic interactions in (2.30) are

negligible. This is because for a constant vector potential the magnetic field obtained from

the vector potential by spatial differentiation vanishes. Assuming that the coordinate of

the electron q is much smaller than any other length-scale in the problem lets us to write

P(r) = −eq
∫ 1

0
dλ δ(3)(r− λq) ≈ µδ(3)(r) + . . . (2.32)

3One should note that, in general, the issue of commutation relations for field operators in the presence
of reflective boundaries forms a delicate question. Some care is needed when formulating the QED in the
presence of dielectrics. We will address this problem in more detail in Chapter 4 of this thesis.
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where µ = −eq is the electric dipole moment of the electron with respect to the origin. We

note that in this picture the atom is envisaged to be a point-like electric dipole moment.

The Hamiltonian in its final form is be written as [11]

H =
p2

2m
+ V (r) +

1

2

∫
d3r

[
ε0E

2
⊥(r) +

1

µ0
B2(r)

]
− µ ·E⊥(0) = HA +HF +HINT (2.33)

where E⊥(r) is the transverse part of the electric field and µ is the atomic electric dipole

moment operator. In this formulation the interaction term

HINT = −µ ·E⊥(0) (2.34)

emphasizes the physics of the problem: the interaction occurs, as in the classical case,

via the coupling of the electric dipole moment of the atom to the transverse part of the

electric field. HA = p2/2m + V (r) is the part of the Hamiltonian that describes the

isolated atom and HF is the Hamiltonian of the free electromagnetic field. The transition

from the Hamiltonian (2.26) to the Hamiltonian (2.33) is known in the literature as a

Göppert-Mayer transformation. Here we have outlined the derivation which applies only

in free-space. Its generalization to the case when polarizable boundaries are present has

been developed in [17]. It turns out that the Hamiltonian of the atom plus the field

corrected for the dielectric still retains the form (2.33) only that the electric field operator

is no longer purely transverse but gains a longitudinal component due to the charge density

arising on the surface of a dielectric. The major advantage gained here, as compared to

the minimal coupling scheme, is the fact that the interaction term already encapsulates

the electrostatic interaction energy between an atom and the surface thereby removing the

need of separate treatment based on the Laplace equation, see e.g. [3].

The properties of a polarizable boundary present in the system are encoded in the specific

form of the electric field operator, whose form, as we shall see, largely depends on the

geometry of boundaries and on how complicated the dielectric’s electromagnetic response

is required. The method of obtaining the electric field operator is yet another problem

that will form a great part of this dissertation. Throughout this work we will always

employ µ · E rather that p · A type of coupling to perform perturbative calculations.

Having decided on the form of the interaction Hamiltonian we are in position to apply the
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perturbation theory and demonstrate explicitly how the measurable effects of quantum

vacuum arise in the simplest of possible scenarios:

A neutral atom placed in front of a perfectly reflecting mirror. Although the

interaction between an atom and an electromagnetic wave is in principle time dependent

it is sufficient to employ the time-independent perturbation theory in its standard formu-

lation [18]. Given the interaction Hamiltonian (2.34) the shift of the i-th energy level is

given by

∆Wi = 〈i; 0|HINT|i; 0〉+
∑
σ,j 6=i

∫ |〈j;nkλ|HINT|i; 0〉|2
Ei − (Ej + nσ~ω)

. (2.35)

In this formula the state of the combined system (atom + EM field) is described by the

composite state |i〉 ⊗ |nσ〉 ≡ |i;nσ〉 informing us that the atom is in the i-th state and the

field contains n photons in the state σ. The index σ is a collective index that contains the

photon quantum numbers. For example, in free-space σ = {k, λ} i.e. it labels photons by

their continuous momentum k and the two orthogonal polarization states λ = 1, 2. Note

however that the character of the index σ may be quite different, its precise form largely

depends on the geometry and the material properties of the polarizable media that are

present in the system. We start by evaluating the first-order correction to the energy-level

i which is simply an expectation value of the interaction Hamiltonian i.e.

〈i; 0|µ ·E|i; 0〉. (2.36)

This contribution is easily seen to be vanishing. The form of the electric field operator,

even in the presence of boundaries, will be the same as that of the free-space operator, cf.

Eq. (2.18). When calculating the expectation value between the states in which there are

no photons, the photon creation operator acting on vacuum will produce a 1-photon state

|1〉 thereby contributing a vanishing inner product of the two orthogonal states, namely

〈0|1〉 = 0. On the other hand, the combination of the photon annihilation operator a

acting on the vacuum state |0〉 vanishes by definition. Therefore, the first non-vanishing

contribution to the energy shift will come from the second order of the perturbation theory.

The combined integral and summation symbol that is present the last term of the formula

(2.35) denotes the sum over all quantum numbers, as in the standard quantum-mechanical

calculations. An unusual symbol used to denote it reminds us that it includes the sum over
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the discrete atomic states j and the sum over the photon’s quantum numbers σ, which can

have both discrete and continuous spectra. The denominator in the second order part of

(2.35) is obviously the energy difference between the intermediate states and the state for

which we are calculating the shift. For reasons similar to those responsible for vanishing

of the first term in (2.35) the summation in the second order correction will contribute

only for one intermediate state, the state in which there is one photon and the atom in an

arbitrary state j. Thus, effectively we have

∆Wi =
∑
j 6=i

∑
σ

∫ |〈j; 1kλ |−µ ·E(r0)| i; 0〉|2
Ei − (Ej + ~ω)

, (2.37)

where we have explicitly indicated that the sum over the atomic states j is discrete in

nature whereas the sum over the photon’s degrees of freedom can be mixed. Note also

that we work in the dipole approximation and the electric field operator is evaluated at

the centre of the atom (which is no longer placed at the origin but we have shifted it away

from the interface to position r0); therefore, it does not affect the atomic expectation value

which consists of the integration over the electron’s coordinates.

At this stage it is most convenient to work out the precise form of the electric field oper-

ator. For a perfectly reflecting plane mirror the standard method of electromagnetic field

quantization by the normal-mode expansion can be applied [19]. The task of finding the

electric field operator is split into two stages. First, one needs to solve the classical scat-

tering problem (Maxwell’s equations) i.e. find the normal-modes of the electromagnetic

field that is excluded from the half-space, located at say z < 0, as depicted in Fig. 2.1.

Then, an arbitrary field is represented as a weighted sum of normal-modes. The quan-

tum operator is obtained by promoting the expansion coefficients to the simple-harmonic

creation and annihilation operators, as explained in the previous section.

It is convenient to work with the vector potential that satisfies the well-understood wave

equation (2.15) rather than directly obtain the electric field from Maxwell’s equations. For

the normal modes of the vector potential A(r, t) = f(r)eiωt the wave equation yields an

eigenvalue problem

−∇2f(r) = ω2f(r), z > 0 (2.38)

i.e. the Helmholtz equation, which still needs to be supported by boundary conditions
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Figure 2.1: Electromagnetic wave scattering from the perfect reflector. The incident
and reflected components form a single monochromatic mode of the electromagnetic field

in this geometry.

appropriate for a perfectly reflecting surface. Maxwell’s equations demand that the tan-

gential component of the electric field E‖ is continuous across the surface. Since the

electric field vanishes for z < 0 we have that E‖(0
+) = 0. This implies the same for

the vector potential A‖, which is proportional to E‖. Next, A‖(0
+) = 0 implies that

B⊥(0+) ∼ ∂xAy − ∂yAx = 0. It is well known from the scattering theory [10] that these

boundary conditions can be satisfied if one postulates that the solution of (2.38) consists

of the incident and the reflected wave, cf. Fig. 2.1. Introducing wavevectors k+ = (k‖, kz)

and k− = (k‖,−kz), which represent the wave propagating in the positive or negative

z-direction, respectively, one may write down the scalar part of the solution as

INCIDENT : eik
−·r REFLECTED : eik

+·r (2.39)

with (k±)2 = ω2. This takes care of the spatial dependence of the mode function f(r).

The transversality condition ∇ · f(r) = 0, which follows from the Coulomb gauge we

are working in, imposes some restrictions on the vector character of the solutions. The

divergence operator acting on the scalar solutions (2.39) drops down the wavevectors k±,
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therefore the vector mode function might be written in the form4

f(r) = θ(z)
[
êλ(k−)eik

−·r +Rλêλ(k+)eik
+·r
]

(2.40)

with the condition that the unit polarization vectors satisfy k± · êλ(k±) = 0. This removes

one degree of freedom of the vector potential and in fact only two linearly independent

vectors are needed to span the Coulomb-gauge vector potential A(r, t) in full. A very

common choice in the literature is to work with the so-called transverse electric and trans-

verse magnetic polarizations denoted TE and TM, respectively. In the TE mode the

z-component of the electric field vanishes and in the TM mode the z-component of the

magnetic field vanishes. The terminology originates from the theory of wave-guides [10].

In the geometry where the mirror coincides with the z = 0 plane the polarization vectors

normalized to unity are given by

êTE

(
k±
)

=
1

|k‖|
(−ky, kx, 0), êTM

(
k±
)

=
1

|k‖||k|
(
±kxkz,±kykz,−k2

‖

)
. (2.41)

They satisfy the transversality condition k± · eλ(k±) = 0 and are mutually orthogonal, in

fact êTM(k±) ∝ k± × êTE(k±) i.e. the set {k±, êTE(k±), êTM(k±)} forms a Dreibein i.e.

a set of three mutually orthogonal vectors. For a perfect reflector the reflection coefficient

Rλ in (2.40) is of course equal to unity (up to a phase factor) but we wish to see how it

follows from the boundary conditions. The continuity of the x-component of the electric

field gives

TE mode :
ky
|k‖|

eik‖·r‖ +RTE
ky
|k‖|

eik‖·r‖ = 0 → RTE = −1,

TM mode :
−kxkz
|k‖||k|

eik‖·r‖ +RTM
kxkz
|k‖||k|

eik‖·r‖ = 0 → RTM = 1, (2.42)

and the continuity of the y-component of course yields the same. This in principle solves

the problem but it is necessary to check that this is consistent with the condition that

B⊥(0+) vanishes. From Maxwell’s equations it follows that B ∝ k × E. Therefore, we

see that for the TM mode the verification is trivial for the product k± × êTM(k±) is

4The modes in question, as a solution of the Hermitean operator’s eigenvalue problem, form a complete
set of modes. The discussion of the completeness relation as well as appropriate commutation relations
for resulting operators is postponed to Chapter 5 where the question becomes non-trivial. In the case of
perfect reflector the issue has been addressed for example in [20].
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proportional to êTE(k±), for which the normal component vanishes identically. For the

TE mode an explicit calculation gives

[
k− × êTE(k−) +RTE k+ × êTE(k+)

]
⊥ =

[(
k− − k+

)
× êTE(k−)

]
⊥ = 0. (2.43)

This confirms the consistency of equations (2.42). Once the mode functions are known the

vector potential operator is given as the superposition of the monochromatic solutions, cf.

Eq. (2.18),

A(r, t) =
∑

all modes

N
[
âkλ(0)fkλ(r)e−iωt + H.C

]
, (2.44)

where we have conveniently labelled the monochromatic modes by their momentum k and

polarization λ. In this particular case of a perfect mirror the sum over all modes can be

explicitly written out as

∑
all modes

≡
∫ ∞
−∞

dkx

∫ ∞
−∞

dky

∫ ∞
0

dkz
∑
λ

. (2.45)

The restricted range of the kz integration reflects the fact that fields are excluded from

the z < 0 half-space and therefore only the right-incident modes are allowed. The normal-

ization constant in (2.44) is fixed by evaluating the field Hamiltonian (2.9) and comparing

with the Hamiltonian of the harmonic oscillator fields (2.19)

N =
1

(2π)3/2

√
~

2ε0ω
. (2.46)

The electric field operator is obtained by the time derivative of the vector potential and

for clarity we write it down in full

E(r, t) = − i

(2π)3/2

∫
d2k‖

∫ ∞
0

dkz
∑
λ

√
~ω
2ε0

[
âkλ(0)e−iωtfkλ(r)−H.C.

]
− i

(2π)3/2

∫
d2k‖

∫ ∞
0

dkz
∑
λ

√
~ω
2ε0

{
âkλ(0)e−iωt

[
êλ(k−)eik

−·r +Rλêλ(k+)eik
+·r
]
−H.C.

}
.

With the above electric field operator the second-order term of the time-independent per-

turbation series (2.37) takes the form

∆Wi =
∑
j 6=i

∑
λ

∫
d2k‖

∫ ∞
0

dkz
|〈j; 1kλ |−µ ·E(r0)| i; 0〉|2

Ei − (Ej + ~ω)
. (2.47)
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Because of the dipole approximation the electric field operator is evaluated at the position

of the atom r0 and therefore the operation of integration hidden in the atomic expectation

value is not affected by the mode functions fkλ(r0). We note that

〈1kλ |E(r0)| 0〉 =
i

(2π)3/2

∑
σ

∫
d2p‖

∫ ∞
0

dpz

√
~ω
2ε0

f∗pσ(r0)
〈

1kλ

∣∣∣â†pσ∣∣∣ 0〉
=

i

(2π)3/2

√
~ω
2ε0

f∗kλ(r0) (2.48)

and

|〈j |µ · f∗(r0)| i〉|2 = 〈j |µ · f∗(r0)| i〉 〈i |µ · f(r0)| i〉 = f∗n(r0)fm(r0) 〈j |µn| i〉 〈i |µm| j〉 ,
(2.49)

so that Eq. (2.47) becomes

∆Wi =
1

(2π)3

∑
j 6=i

∑
λ

∫
d2k‖

∫ ∞
0

dkz
~ω
2ε0

f∗n(r0)fm(r0)
〈j |µn| i〉 〈i |µm| j〉

Eji + ~ω
, (2.50)

where the sums over the Cartesian indices n and m are implied. Also, to preserve clarity

we have suppressed the subscripts indicating the obvious dependence of the components of

the mode functions on the momentum k and polarization λ. The dipole matrix elements

can be further simplified using the fact that we work with the atomic states of definite

angular momentum |l,m〉 (in the following the spin of the electron is ignored). For the

hydrogen-like atom the components of the electric dipole operator, when expressed in

spherical polar coordinates, can be written in terms of the eigenfunctions of the angular

momentum operator Ym
l (θ, φ)

µx = e|q|
√

2π

3

[
Y1

1(θ, φ)−Y−1
1 (θ, φ)

]
µy = −ie|q|

√
2π

3

[
Y1

1(θ, φ) + Y−1
1 (θ, φ)

]
µz = −e|q|

√
4π

2
Y0

1(θ, φ)

Therefore, the problem is reduced to the evaluation of the quantities of the type

〈l′,m′|Ym
l (θ, φ)|l′′,m′′〉. (2.51)
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This can be done with the use of the commutator [Lz,Y
m
l (θ, φ)] = m~Ym

l (θ, φ) where Lz

is the z-component of the angular momentum operator. We write

0 = 〈l′,m′|[Lz,Ym
l (θ, φ)]−m~Ym

l (θ, φ)|l′′,m′′〉

= 〈l′,m′|LzYm
l (θ, φ)−Ym

l (θ, φ)Lz −m~Ym
l (θ, φ)|l′′,m′′〉

= 〈l′,m′|m′~Ym
l (θ, φ)−m′′~Ym

l (θ, φ)−m~Ym
l (θ, φ)|l′′,m′′〉

= ~(m′ −m′′ −m)〈l′,m′|Ym
l (θ, φ)|l′′,m′′〉, (2.52)

thereby arriving at the example of the m-selection rule [18]

〈l′,m′|Ym
l (θ, φ)|l′′,m′′〉 ∝ δm′,m′′+m, (2.53)

i.e. the matrix elements vanish unless m′ = m′′ +m. Now consider for example

〈l′,m′|µx|l′′,m′′〉〈l′′,m′′|µz|l′,m′〉 ∝ 〈l′,m′|Y1
1 −Y−1

1 |l′′,m′′〉〈l′′,m′′|Y0
1|l′,m′〉

∝
(
δm′,m′′+1 − δm′,m′′−1

)
δm′,m′′ = 0.

Similarly we have

〈l′,m′|µy|l′′,m′′〉〈l′′,m′′|µz|l′,m′〉 ∝ 〈l′,m′|Y1
1 + Y−1

1 |l′′,m′′〉〈l′′,m′′|Y0
1|l′,m′〉

∝
(
δm′,m′′+1 + δm′,m′′−1

)
δm′,m′′ = 0.

The remaining case is slightly less trivial. Computing the matrix elements gives

〈l′,m′|µx|l′′,m′′〉〈l′′,m′′|µy|l′,m′〉 = |〈l′,m′|Y−1
1 |l′′,m′ + 1〉|2 − |〈l′,m′|Y1

1|l′′,m′ − 1〉|2

(2.54)

and we see that there are the contributions that do not vanish identically. However, the

two terms can be shown to cancel out using the Wigner-Eckart theorem, see e.g. [18].

Alternatively, the vanishing of (2.54) can be argued on the rotational symmetry grounds

i.e. one can always rotate the coordinate system from {x, y, z} to {y, z, x}. Thus we have

that

〈l′,m′|µm|l′′,m′′〉〈l′′,m′′|µn|l′,m′〉 = δmn|〈l′′,m′′|µn|l′,m′〉|2 ≡ |µn|2δmn (2.55)
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and the formula (2.50) becomes

∆Wi =
1

(2π)3

∑
j 6=i

∑
λ,n

∫
d2k‖

∫ ∞
0

dkz
~ω
2ε0

|f∗n(r0)|2|µn|2
Eji + ~ω

. (2.56)

The reader is reminded that in fact f∗i (r0) = f∗i,kλ(r0). The situation is now ripe for the

explicit form of the mode functions (2.40) to be plugged into (2.56). We have

|f∗n(r0)|2|µn|2 = |µn|2
[
Rλen,λ(k−)en,λ(k+)e−2ikzz0 +Rλen,λ(k+)en,λ(k−)e2ikzz0

+e2
n,λ(k−) + e2

n,λ(k+)
]

(2.57)

where we have used the fact that R2
λ = 1 and the wave-vector k± is always real i.e. there

are no evanescent modes present in the radiation field. The terms that do not depend on

the position of the atom z0 are neglected as they are associated with the shift due to the

free-space electromagnetic field. These are of course partially responsible for the Lamb

shift. Since we are not interested in the Lamb shift itself but only in the corrections to that

effect due to the presence of the boundary we neglect the z0-independent terms. Formally,

this ’renormalization’ is achieved by calculating the energy shift using the free-space mode

functions and subtracting the result from equation (2.56) i.e. ∆W ren
i = ∆Wi−∆W free space

i .

Therefore, the renormalized shift is written as

∆W ren
i =

1

2(2π)3ε0

∑
j 6=i

∑
λ,n

|µn|2
∫

d2k‖

∫ ∞
−∞

dkz
|k|

Eji/~c+ |k|Rλen,λ(k+)en,λ(k−)e2ikzz0

(2.58)

where k = |k| = ω/c. Note that the kz integral range now spans from −∞ to ∞. This

is achieved by combining the two z0-dependent terms in (2.57) by a simple change of

variables kz → −kz. Note also that the quantity Eji = Ej − Ei, which is the energy

difference between the atomic levels, could be in principle negative if one considers an

excited state |i〉. In this case a prescription is needed on how to handle the pole at

Eji/~c+ |k| = 0. This is done by adding a small imaginary part into the denominator and

use of the distributional identity

lim
η→0

1

x+ iη
=
P
x
− iπδ(x) (2.59)

where P stands for the Cauchy principal-value. Then, the principal part yields the energy
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shift of the excited state |i〉 whereas the imaginary part of the energy shift ∆W ren
i is

proportional to the change of the spontaneous decay rate5. In fact we have

∆Γi = −2

~
Im (∆W ren

i ) . (2.60)

The η-prescription would have arisen naturally if the time-dependent perturbation theory

had been employed together with the adiabatic switching of the interaction.

The convergence of the expression (2.58) forms a delicate question and requires some

attention. The most convenient way to deal with it is to use techniques of complex analysis

and change the contour of the kz-integration so that the resulting integrand contains the

damping exponential e−2kzz0 . We reserve this way of extracting the finite result for the

more interesting example of a dispersive dielectric worked out in Chapter 5. Here we will

demonstrate yet another way of dealing with the apparently divergent expression (2.58).

We start by writing out explicitly the sums over λ = {TE,TM} and n = {x, y, z}

|µn|2 Rλenλ(k+)enλ(k−) = |µx|2
(

k2
y

|k‖|2
+

k2
xk

2
z

|k‖|2|k|2

)
+|µy|2

(
k2
x

|k‖|2
+

k2
yk

2
z

|k‖|2|k|2

)
−|µz|2

|k‖|2
|k|2

The coefficients of |µx|2 and |µy|2 are symmetric with respect to the interchange kx ↔
ky, therefore they are equal as we can always rename the integration variables. Slightly

rewriting the above expression we arrive at

∆W ren
i =

1

2(2π)3ε0

∑
j 6=i

∫
d2k‖

∫ ∞
−∞

dkz
|k|

Eji/~c+ |k|e
2ikzz0

×
[(
|µx|2 + |µy|2

)(
1−

k2
y

|k|2

)
− |µz|2

|k‖|2
|k|2

]
. (2.61)

The convergence of the integrals in (2.61) is still not obvious but, as we shall see, a

physically meaningful result will emerge shortly. We carry out a series of changes of

variables. First we note that in the kz-integral only the even cosine contributes and, in

fact, it is possible to restrict the integration range to the positive real axis. Next we

go to polar coordinates by writing kx = |k‖| sinφ and ky = |k‖| cosφ, then the φ-angle

5Spontaneous decay rates can of course be equivalently computed using Fermi’s golden rule [18], which
in fact seems to be a more intuitive way of approach.
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integration is elementary and we arrive at

∆W ren
i =

1

2(2π)2ε0

∑
j 6=i

∫ ∞
0

d|k‖|
∫ ∞
−∞

dkz
|k||k‖|

Eji/~c+ |k| cos(2kzz0)

×
[(
|µx|2 + |µy|2

)(
1 +

k2
z

|k|2
)
− 2|µz|2

|k‖|2
|k|2

]
. (2.62)

Introducing polar coordinates once more according to kz = k cos θ and |k‖| = k sin θ we

can quite easily perform the θ integral to get

∆W ren
i = − 1

8π2ε0

∑
j 6=i

∫ ∞
0

dk
k3

Eji/~c+ k

[
2|µz|2

(
sin(2kz0)

4k3z3
0

− cos(2kz0)

2k2z2
0

)

+
(
|µx|2 + |µy|2

)(sin(2kz0)

4k3z3
0

− cos(2kz0)

2k2z2
0

− sin(2kz0)

kz

)]
. (2.63)

The convergence of the expression (2.63) is made apparent by an algebraical trick. Note

that the following holds

∫ ∞
0

dk
k3

Eji/~c+ k

(
sin(2kz0)

2k3z3
0

− cos(kz0)

2k2z2
0

)
= −1

2

(
1

z3
0

+
∂

∂z0

1

z2
0

)∫ ∞
0

dt
sin t

2z0Eji/~c+ t
(2.64)

where the last t-integral is a well-known special function [21, 5.2.12] commonly denoted

f(2z0Eji/~c). We see that the trick is to represent the powers of k as derivatives with

respect to the position of the atom. This procedure yields a nice and compact expression

for the energy shift, which is susceptible for asymptotic analysis. Applying the outlined

procedure to the expression (2.63) gives us the final result

∆W ren
i = − 1

32π2ε0

∑
j 6=i

[(
|µx|2 + |µy|2

)( 1

z3
0

+
∂

∂z0

1

z2
0

+
∂2

∂z2
0

1

z0

)
f

(
2z0Eji
~c

)

−2|µz|2
(

1

z3
0

+
∂

∂z0

1

z2
0

)
f

(
2z0Eji
~c

)]
. (2.65)

We now pause to discuss the meaning of the dimensionless quantity that has naturally

appeared in the final result. To do so we rewrite it as

ζ =
2z0Eji
~c

=
2z0

c
ωji ∝

τγ
τa
. (2.66)

Here τγ = 2z0/c is the typical time needed by the virtual photon to make a round trip

between the atom and the mirror, which are a distance z0 apart. τa = ω−1
ji is proportional
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to the typical time-scale at which the atomic state |i〉 evolves in, if the strongest dipole

transition from state |j〉 goes to state |i〉. Therefore, the quantity ζ turns out to be a good

indicator of whether the interaction between an atom and the mirror is retarded or not. In

the case when ζ << 1 the physical situation is as follows: the time needed by the photon

to make a round trip between the mirror and the atom is much smaller than the typical

time-scale over which the atomic state evolves. In other words, the atom has no chance to

substantially evolve while the virtual photons with the mirror are exchanged. Then, the

interaction is said to be non-retarded and in fact can be approximated by electrostatics

where the speed of light is assumed to be infinite. In the opposite case, when ζ >> 1,

the interaction is said to be retarded as then the atom has changed significantly by the

time the photon returns after it has been reflected by the mirror. Thus it seems natural

to investigate the properties of (2.65) in these limiting cases. To do so one needs to work

out the asymptotic behaviour of the special function f(ζ). This is straightforward when

working with an alternative integral representation [21, 5.2.12]

f(ζ) =

∫ ∞
0

dt
e−ζt

t2 + 1
≈



∫ ∞
0

dt

t2 + 1
=
π

2
(ζ << 1)

∫ ∞
0

dt e−ζt =
1

ζ
(ζ >> 1)

. (2.67)

In the non-retarded limit, ζ << 1, the exponential is approximated by unity whereas in the

retarded limit we have used the fact that if ζ >> 1, then the contribution to the integral

comes essentially from the neighbourhood of t = 0+. In this case the rational function in

the integrand is well approximated by the first term of its Taylor series. The procedure

outlined here is an example of a more general method of doing asymptotic analysis known

as Watson’s lemma [22]. With the result (2.67) it is a matter of simple differentiation to

show that, in the limiting cases described above, the energy shift of the atomic ground

state induced by the perfect mirror at a distance z0 away is given by

∆W ren
g = − 1

64πε0z3
0

(
〈µ2
x〉+ 〈µ2

y〉+ 2〈µ2
z〉
)
, (ζ << 1), (2.68)

∆W ren
g = − 1

16π2ε0z4
0

∑
j 6=i

|µx|2 + |µy|2 + |µz|2
Eji

, (ζ >> 1), (2.69)

with 〈µ2
m〉 ≡

∑
j 6=i |µm|2 =

∑
j 6=i |〈i|µm|j〉|2 = 〈i|µ2

m|i〉. Equations (2.68) and (2.69) are
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well-known results. The non-retarded limit of the energy shift (2.68) is seen to be an

electrostatic interaction energy of a dipole with its own image, apart from the factor of

1/2 that arises due to the fact that in the process of bringing charges from infinity to form

a dipole in the vicinity of a mirror one needs to do work only on the real dipole and not on

its image. Quantum mechanics enters only via the expectation value of the atomic electric

dipole moment operator µ. Equation (2.69) demonstrates the influence retardation has

on the atom-mirror interaction and was first computed by Casimir and Polder in their

remarkable paper [13] that ends with a following remark:

The very simple form of Eq. (2.69)6 (...) suggest that it might be possible to derive these

expressions, perhaps apart from the numerical factors, by more elementary considerations.

This would be desirable since it would also give a more physical background to our result,

a result which in our opinion is rather remarkable. So far we have not been able to find

such a simple argument.

It is worth pointing out that Casimir & Polder arrived at equation (2.69) using the minimal

(p ·A) rather than the multipolar (µ ·E) coupling. This route seems to be more laborious

and physically less transparent. The understanding of the physics of atoms interacting

with the electromagnetic vacuum has progressed enormously since Casimir and Polder’s

milestone paper, for recent review see [23]. Their theoretical prediction awaited experimen-

tal confirmation for 45 years [24] but today there is a very little doubt about the physical

interpretation of the Casimir-Polder effect. It can be seen one of the direct confirmations of

the existence of the quantum vacuum of the electromagnetic field. The enormous progress

in cooling and trapping of atoms (and more recently also of molecules) has meant that

experimentalists now have unprecedented control over them, which includes the ability to

trap or guide them in very close vicinity of material surfaces. Moreover, there is now a

worldwide trend to miniaturize devices for trapping, guiding, and manipulating cold atoms

and molecules by constructing so-called atom chips. In experiments using such microfabri-

cated integrated devices atoms and molecules are now routinely very close to materials, so

that e.g. the Casimir-Polder force is no longer a small and hard-to-measure effect but may

be a dominant force. Precise knowledge of the Casimir-Polder force and related effects of

the interaction of atoms, molecules, and other quantum systems with macroscopic objects

6Here we refer to the result, which is totally equivalent to that obtained by Casimir and Polder in their
milestone paper.
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in their vicinity is therefore essential for these developments. Knowing the significance of

the Casimir-Polder and Casimir effect in the contemporary science it is interesting to note

that it has been discovered as a by-product of the industrial research of colloidal systems.

In 1983 H. B. G. Casimir himself seemed to not realize the impact his discovery will have

and referred to it as ’...of some theoretical significance’ [25].

Considerations reported by Casimir and Polder are quite general and, in fact, the formula

(2.65) contains some more physical information that can be extracted, namely the energy

shift of the excited states and the change of the spontaneous decay rates. Bearing in mind

the discussion after Eq. (2.58) we see that in order to compute the shift of the excited

states and the change of the spontaneous decay rates we need to make sense of the function

f(2z0Eji/~c) for Eji < 0. As explained before this is done by adding a small imaginary

part to the energy-difference denominator that arises in the second-order perturbation

theory. In the language of formula (2.65) this translates to

f̄

(
2z0Eji
~c

)
=

∫ ∞
0

dt
sin t

2z0Eji/~c+ t+ iη
=

∫ ∞
0

dt
sin t

t− 2z0|Eji|/~c+ iη
.

Using Eq. (2.59) we rewrite the above as

∫ ∞
0

dt
sin t

t− 2z0|Eji|/~c+ iη
= P

∫ ∞
0

dt
sin t

t− 2z0|Eji|/~c
− iπ sin

(
2z0|Eji|

~c

)
. (2.70)

By virtue of formula (2.60) and the fact that the Cauchy principal-value integral is neces-

sarily real, we immediately obtain the expression for the change of the spontaneous decay

rate

∆Γi = − 1

2πc3ε0

∑
j<i

|ωji|3
[
|µ‖|2

(
sin |ζ|
|ζ|3 −

cos |ζ|
|ζ|2 −

sin |ζ|
|ζ|

)

+2|µz|2
(

sin |ζ|
|ζ|3 −

cos |ζ|
|ζ|2

)]
. (2.71)

where we have defined |µx|2 + |µy|2 = |µ‖|2. Note that the sum over the atomic states is

restricted to only those states for which Eji < 0. This is an exact result, valid in any range

of the parameter |ζ| = 2z0|Eji|/~c. It has been derived many times before, see e.g. [20],

and describes the position-dependent corrections to the standard Einstein’s A-coefficient

due to the presence of a perfectly reflecting plane.
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The calculation of the energy-level shifts for excited states is slightly more involved for

one needs to evaluate

P
∫ ∞

0
dt

sin t

t− |ζ| = Im

(
P
∫ ∞

0
dt

eit

t− |ζ|

)
. (2.72)

This can be done with the standard techniques of complex analysis. The Cauchy principal-

value integral can be rewritten as follows

P
∫

= lim
ε→0

(∫
C1+Cε

−
∫
Cε

)
(2.73)

where the contour C1 consists of the interval t ∈ [0, |ζ| − ε] ∩ [|ζ|+ ε,∞] and Cε is a semi-

circle of radius ε centred at t = |ζ| running in the negative (clockwise) direction. Since the

integrand is analytic in the first quadrant of the complex plane we can rotate the contour

of integration in the first integral in (2.73) to run along the imaginary axis. The second

term, in the limit of small ε, is obtained by using the fractional residue theorem. After

taking the imaginary part we get

P
∫ ∞

0
dt

sin t

t− |ζ| = −|ζ|
∫ ∞

0
ds

e−s

s2 + ζ2
+ π cos |ζ| = −f(|ζ|) + π cos |ζ| (2.74)

where we have used the definition of the auxiliary function f , cf. Eq. (2.67). Therefore,

the energy shift of the excited state |i〉 splits into two distinct contributions ∆W ren
i =

∆W 1
i + ∆W 2

i . The first contribution has exactly the same form as Eq. (2.65) with the

exception that one needs to distinguish contributions from the states |j〉 that lie below the

state |i〉 from those for which the state |j〉 lies above the state |i〉 as they differ in sign, cf.

the first term of Eq. (2.74),

∆W 1
i = − 1

32π2ε0

∑
j 6=i

sgn(Eji)

[(
|µx|2 + |µy|2

)( 1

z3
0

+
∂

∂z0

1

z2
0

+
∂2

∂z2
0

1

z0

)
f

(
2z0|Eji|

~c

)

−2|µz|2
(

1

z3
0

+
∂

∂z0

1

z2
0

)
f

(
2z0|Eji|

~c

)]
. (2.75)

The second contribution to the energy shift of the excited state |i〉 arises due to the

additional term (cosine) that emerged in Eq. (2.74). It has a nature similar to Eq. (2.71)
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and can be explicitly evaluated by computing the derivatives

∆W ren
i = − 1

4πc3ε0

∑
j<i

|ωji|3
[
|µ‖|2

(
cos |ζ|
|ζ|3 +

sin |ζ|
|ζ|2 −

cos |ζ|
|ζ|

)

+2|µz|2
(

cos |ζ|
|ζ|3 +

sin |ζ|
|ζ|2

)]
. (2.76)

with |ζ| = 2z0|Eji|/~c. These exact results are well-known in the literature, see e.g.

[26][27][28]. It is worth noting that in the non-retarded limit |ζ| << 1 the total shift

∆W ren
i = ∆W 1

i +∆W 2
i still displays ground-state-like behaviour, Eq. (2.68). The situation

is entirely different in the retarded limit when |ζ| >> 1. The contribution ∆W 1
i still yields

Eq. (2.69) but it is dominated by contributions that come from equation (2.76). The

energy shift no longer decays like z−4
0 but gains an oscillatory contribution for which the

leading term behaves as z−1
0 .

We have demonstrated how one can use perturbation theory to study the quantum electro-

dynamics of atoms in the presence of boundaries. Even in the simplest possible example

of an atom in the vicinity of a perfectly reflecting mirror the calculations turn out to be

quite involved. Nevertheless they lead to unambiguous results that are physically mean-

ingful. The effects described here tend to be tiny unless the atom-mirror distance is very

small. What we calculated is a boundary-dependent correction to the Lamb shift, which

in the case of a hydrogen atom is of the order of 1000 MHz. One needs to be careful and

remember that the theory presented is valid only in the cases where there is no overlap

between the atomic wavefunction and the wavefunction of the solid. In practice it means

that the atom needs to be at least few Bohr radii away from the interface.

2.3 Casimir-Polder shift - how does one measure it?

As remarked earlier, although first derived in 1948, the Casimir-Polder force was unam-

biguously measured only in 1992-1993. On the other hand, the experimental verification

of the oscillatory behaviour of the spontaneous decay rate predicted by Eq. (2.71) hap-

pened in 1970 in an experiment carried out by Drexhage [29], cf. Fig. 2.2. In general,

there are two approaches to probe the Casimir-Polder potential. One can study directly

the energy-level shifts by laser spectroscopy or one can base the experiment on kinematic
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Figure 2.2: Picture taken from Sci. Am. 222, 108(1970). The result reported by
Drexhage was first considered suspicious for ’How can the emission of a photon be affected
by an atom’s environment when the atom can only ”see” its environment by emitting a

photon in the first place?’ [11]

effects thereby relying on Casimir-Polder forces that arise because of the position depen-

dence of the energy-level shifts. In the early nineties a couple of experiments with sodium

atoms [24][30] tested theoretical predictions of the Casimir-Polder effect with high preci-

sion. It was an experimental feat at the time and the first quantitative measurement of

the interaction between an atom and a surface. In their first experiment [30] Sukenik et.

al. effused sodium atoms through an oven slit and directed them through the micron-sized

gold-plated cavity. Subsequently, the atoms were exited by a laser just before they left

the cavity. Their excitation spectra were then obtained for various widths of the cavity.

In this study the range of the atom-wall distances was such that the experiment probed

essentially the nonretarded limit of the Casimir-Polder shifts, also known as the van der

Waals shifts. An excellent agreement with the theory was observed, cf. Fig 2.3. The next

experiment probed the Casimir-Polder potential for ground-state atoms in the retarded
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Figure 2.3: Picture taken from Phys. Rev. Lett. 68, 3432(1992).

regime [24]. The experimental set up was similar although the idea behind the measure-

ment was completely different. This time the ground-state sodium atoms that emerged

from the oven were passed through the cavity where some of them were deflected so much

by the Casimir-Polder force that they were adsorbed by the walls of the cavity. The re-

maining atoms that managed to get through were ionised by a laser and directed to a

channel electron multiplier where they could be detected. The idea behind the experiment

was to measure the intensity of the emerging beam I as a function of the cavity width

L. The results of this experiment were the first to unambiguously confirm the distance-

dependence of the Casimir-Polder force in the retarded limit. In Fig. 2.4 we reproduce the

results of this milestone paper where the plots of the quantity called opacity is presented.

Opacity is defined as the inverse of the intensity of the emerging beam normalized to the

intensity at the width of 6µm.

The measurement of the Casimir-Polder force in the intermediate range of the atom-

wall distances remained elusive until very recently. The breakthrough happened thanks
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Figure 2.4: Picture taken from Phys. Rev. Lett. 70, 560(1993). The different curves
correspond to different theoretical results authors used to determine the opacity of the
cavity: a) Casimir-Polder interaction, our Eq.(2.69), b) van der Waals interaction (non-
retarded limit), our Eq. (2.68), c) no atom-wall interaction. The agreement of the theory

and experiment is apparent.

to achievements in the field of cold-atom physics and development of evanescent-wave

mirrors. Quantum reflection is a process in which a particle that is moving through a

classically allowed region is reflected without reaching a classical turning point [31]. The

idea that the atom could be reflected by the atom-wall interaction has been around since

1936 [32] however, in order to observe such an effect (hence probe the Casimir-Polder

potential using the quantum reflection), the kinetic energy of atoms must be comparable

with the atom-wall interaction energy. Therefore, ultra-cold atoms are required in order

to succeed with this type of the experiment.

Recently a group of experimental physicists at the University of Tübingen, Germany, man-

aged to carry out an experiment using the evanescent-wave mirror and quantum reflection

that probed the Casimir-Polder potential in the transition region i.e. in between the

retarded long-distance and nonretarded short-distance limits [33]. The idea behind the

experiment was as follows. First, one creates a potential barrier close to the surface. This

is achieved by superimposing the attractive Casimir-Polder potential of the solid with the

repulsive potential generated by a laser beam which is incident from the inside the solid at

such an angle that it is totally internally reflected. The maximum height H of the barrier
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and its position Z can be adjusted by adjusting the laser’s power. Remarkably, only H

and Z need to be known in order to determine the Casimir-Polder potential at the point Z.

But the properties of the barrier can be determined by studying the quantum reflection

of cold atoms from it. This is done by trapping a cloud of ultra-cold Rubidium atoms

close to the surface. Then, by suddenly shifting the minimum of the trapping potential

the atoms can be moved towards the potential barrier with known velocity. The mov-

ing atoms undergo quantum reflection at the barrier, which allows the reflectivity of the

barrier to be measured as a function of the atoms’ incident velocity. This in turn allows

the potential height H to be determined. By varying the laser power the position of the

maximum height of the barrier Z with respect to the surface of the solid can be changed

thereby allowing to probe the Casimir-Polder potential at these points. The result of the

experiment is presented in Fig. 2.5

230 nm are presented. A novel method has been introduced
which is based on a test potential generated with an optical
evanescent wave at the glass surface. The measurements do
not coincide with the limiting formulas valid in the static
and in the retarded regime. A better agreement is reached
with the full QED calculation, although also here a devia-
tion is observed. In addition to the mentioned measurement
errors, this deviation might be caused by the imprecise
knowledge of the dielectric function of the used borosili-
cate glass prism. For calculating the theoretical curve the
well-known dielectric function of SiO2 glass has been
used. However, the optical properties of glasses vary de-
pending on the exact type of glass [34]. It is therefore pos-
sible that the theoretical curve slightly deviates from the
real situation in the experiment. Already a moderate in-
crease in the experimental resolution will make it possible
to discern between such theoretical and experimental
errors.
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FIG. 3 (color online). Measured and theoretical Casimir-
Polder potentials: in the large figure the theoretical surface
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full theoretical curve also valid in the transition regime (trans)
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Figure 2.5: Picture taken from Phys. Rev. Lett. 104, 083201 (2010). The different
curves correspond to different theoretical results authors used to determine the atom-wall
potential: (blue) Casimir-Polder limit, (red) van der Waals limit, (green) general formula.
The agreement of the theory and experiment was observed but is disputable, especially
for the high power output of the laser used in the evanescent-wave mirror. For details see

[33].



Chapter 3

Retarded Casimir-Polder force on

an atom near reflecting

microstructures

3.1 Introduction

The explosive rate of developments in nanotechnology as well as in the manipulation of cold

atoms has meant that interest in atom-surface interactions has increased strongly in recent

years. What were once tiny, elusive effects are now dominant interactions, or, as the case

may be, a major nuisance in some experimental set-ups. Motivated by a common type of

microstructure, which consists of a protruding ledge fabricated by successive etching and

possibly a thin electroplated top layer, we have recently studied the force on a neutral

atom in close proximity of reflecting surfaces of either cylindrical geometry or that of

a semi-infinite half-plane [3]. In the absence of free charges or thermal excitations, the

interaction of the atom with the microstructure is dominated by Casimir-Polder forces

[13], which are due to the interaction of the atomic dipole with polarization fluctuations

excited by vacuum fluctuations of the electromagnetic field. If the atom is sufficiently close

to the surface of the microstructure, then the interaction between the atomic dipole and

the surface is purely electrostatic and retardation can be neglected, which was the case

investigated in Ref. [3]. Then one does not need to quantize the electromagnetic field, but

33



Chapter 3. Retarded Casimir-Polder force on an atom near reflecting microstructures 34

can work with the classical Green’s function of Poisson’s equation. The only difficulty lies

then in the geometry of the problem.

However, in experimental situations one more often finds that retardation is in fact im-

portant, as the distance of the atom from the surface of the microstructure is often com-

mensurate or larger than the wavelength of a typical atomic transition. This is the case

we investigate here, again for microstructures of two types of geometries: a cylindrical

reflector of radius R and infinite length, and a reflecting half-plane.

Various versions of this problem have been studied before, both analytically and numeri-

cally. Probably the first to consider the interaction between an atom and a metallic wire,

according to [34], was almost 75 years ago Zel’dovich [35]. This problem was then revis-

ited and extended by Nabutovskii et al. [36], and subsequently by Marvin et al. [37]. In

Nabutovskii’s paper a dielectric cylinder is envisaged to be surrounded by a cylindrical

shell of vacuum which in turn is surrounded by a rarefied gas of polarizable particles. The

interaction energy of a single particle is then calculated through the work done by the

force (obtained from the stress tensor) due to the fluctuating electromagnetic fields, in the

limit of zero density of the surrounding gas. The asymptotic results obtained there (Eq.

(23) and Eq. (24) of Ref. [36] ) are, according to Ref. [34], valid only for dilute dielectric

materials; they diverge in the perfect-reflector limit.

On the other hand, the work by Marvin et al.[37], motivated by [38, 39] and based on

a normal-mode expansion and a linear-response formalism [40], gives the same general

formula for the interaction between a point particle and a cylinder [their Eq. (4.10)] as

the equivalent result in [36]. We have no reason to believe that the result in [37] is incorrect

in the perfect-conductor limit, as it reduces to our previous result [3] in the electrostatic

limit. Moreover, Ref. [37] manages to recover the original Casimir-Polder result [13]

in the large-radius limit of the cylinder. This suggests that the general expression in

[36] is probably correct, only that the perfect-conductor limit does not commute with

the asymptotic limit of the zero radius (or large distance of the atom from the cylinder)

studied there. In the small-radius limit, the result for the interaction between an atom

and a metallic filament, in both retarded and non-retarded limits, is also given by [34].

Marvin et al.’s work [37] is certainly the most comprehensive, but due to its generality it is

also quite cumbersome to apply, which is mainly done numerically for just a few examples
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[41]. Further numerical studies of the interaction of atoms with macroscopic cylinders can

be found in Refs. [42, 43, 44, 45].

By contrast, in this Chapter we are after a relatively simple theory that allows one to

estimate the force between an atom and a cylindrical reflector at any distance and cylinder

radius. To this end we are not interested in the precise dependence of the interaction on

material constants of the reflector, and therefore we work with the model of a perfectly

reflecting surface.

As discussed in Ref. [3], we also determine the force between an atom and a semi-infinite

half-plane, in order to facilitate estimates for common types of microstructures that consist

of a ledge protruding from a substrate. The Casimir-Polder interaction between an atom

and such a half-plane has also been studied before, but only in the extreme retarded limit

of very large distances of the atom from the surface [46]. To the best of our knowledge

no formula for the interaction in the intermediate region, when the distance of the atom

from the surface is comparable to the typical wavelength of an internal transition in the

atom, has been derived yet. Recent work of Mendes et al. [47], dealing with wedges, does

not include the general result in the half-plane geometry as a limiting case of a zero-angle

wedge.

3.2 Field quantization and the energy shift

The complete system of an atom interacting with the quantized electromagnetic field is

described by the Hamiltonian

H = HAtom +HField +HInt . (3.1)

We choose to work with µµµ ·E coupling, i.e. our interaction Hamiltonian is

HInt = −µµµ ·E . (3.2)

Quantization of the electromagnetic field is done by way of a normal-mode expansion of

the vector potential in terms of photon annihilation and creation operators for each mode
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λ and polarization σ,

A(r, t) =
∑
λ,σ

1√
2ε0ωλ

[
a

(σ)
λ F

(σ)
λ (r) e−iωt + h.c.

]
. (3.3)

To describe a mode we use the composite index λ instead of a wave vector, as we shall

be working in cylindrical coordinates where the quantum number of the azimuthal part

of the mode function is discrete, but the other two are continuous. We work in Coulomb

gauge, ∇∇∇ ·A(r) = 0, so that the normal modes F(r) satisfy the Helmholtz equation,

(∇∇∇2 + ω2) F(r) = 0 . (3.4)

The energy level shift due to the interaction (3.2) can be calculated perturbatively. For

our system in state |i; 0〉, i.e. the atom in state |i〉 and the electromagnetic field in its

vacuum state |0〉, the lowest non-vanishing order of perturbation theory is the second, so

that

∆W =
∑
j 6=i

∣∣∣〈j; 1
(σ)
λ |−µµµ ·E| i; 0

〉∣∣∣2
Ei − (Ej + ωλ)

. (3.5)

As the relevant field modes can be expected to vary slowly over the size of the atom, we

make the electric dipole approximation, which simplifies the expression for the energy shift

to

∆W = −
∑

λ,σ,j 6=i

ωλ
2ε0

∣∣∣〈j|µµµ|i〉 · F(σ)∗
λ (r)

∣∣∣2
Eji + ωλ

, (3.6)

where we have introduced the abbreviation Eji ≡ Ej − Ei. The sum over intermediate

states j in Eq. (3.6) is in practice limited to one or a few states to which there are strong

dipole transitions from the initial state i. These strong dipole transitions dominate the

internal dynamics of the atom, and the corresponding timescales are then given by 1/Eji,

the inverse frequency of these dominant dipole transitions. Therefore, when we analyse

the distance dependence of the energy shift, we shall use 1/Eji for these transitions as the

scale to which to compare the distance of the atom from the surface. We shall refer to Eji

as the frequency of a typical atomic transition.
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Alternatively one can use the atomic polarizability, whose diagonal elements are

ανν(ω) =
∑
j

2Eji |〈j|µν |i〉|2
E2
ji − ω2

, (3.7)

and express the energy shift as an integral over the polarizability and the electric field

susceptibility at imaginary frequencies [48]. In this formalism one can see most easily that

the energy shift at large distances (in the so-called retarded limit) must always depend

just on the static polarizability

ανν(0) =
∑
j

2 |〈j|µν |i〉|2
Eji

. (3.8)

For brevity and presentational clarity we shall henceforth abbreviate the matrix elements

of the atomic dipole moment as

|µµµ| ≡ |〈j |µµµ| i〉| . (3.9)

3.3 Energy shift near a perfectly reflecting wire

r
f

Figure 3.1: Atomic electric dipole moment in the vicinity of a perfectly reflecting cylin-

der of radius R. The normal modes F
(σ)
λ (x) in this geometry are given by Eqs. (3.15)
and (3.16).
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First we wish to calculate the energy shift of an atom near a perfectly reflecting and

infinitely long cylindrical wire of radius R. It is advantageous to work in cylindrical

coordinates, cf. Fig. 3.1.

In order to find two independent transverse vector field solutions of Eq. (3.4), we make

use of the representation theorem for the vector Helmholtz equation [49, 10.411]. If Φ(x)

is a solution of the scalar Helmholtz equation then the two independent solutions of the

vector equation are given by

F(1)(r) = (∇× êz) Φ(r) , (3.10)

F(2)(r) =
1

ω
∇× (∇× êz) Φ(r) . (3.11)

The particular choice of the constant unit vector êz is motivated by the symmetry of our

problem and lets us to identify the solutions F(1)(r) and F(2)(r) with the transverse electric

(TE) and transverse magnetic (TM) modes, respectively. In cylindrical coordinates the

scalar Helmholtz equation has solutions of the form

Φ(ρ, φ, z) = N [ cos δmJm(kρ) + sin δmYm(kρ) ] eimφ+iκz (3.12)

where Jm(kρ) and Ym(kρ) are Bessel functions of the first and second kind [21, §9]. The

separation constants satisfy ω2 = k2+κ2, and m is an integer. The phase shifts δm describe

the superposition of regular and irregular solutions. In free space only regular solutions

Jm(kρ) are admissible, and δm = 0. In the presence of the perfectly reflecting wire, the

phase shifts serve to make the electromagnetic fields satisfy the boundary conditions on

the surface of the wire. The normalization constant N is chosen such that

∫
d3r F

(σ)∗
λ′ (r) · F(σ)

λ (r) = δmm′δ(κ− κ′)
δ(k − k′)√

kk′
(3.13)

is met. Setting cos δm = 1, sin δm = 0, one can derive quite easily that N = (2πk)−1.

On the surface of a perfect conductor, the tangential components of the electric field and

the normal component of the magnetic field vanish. Therefore, at the surface ρ = R of

the cylindrical wire we must have Eφ = 0 = Ez and Bρ = 0. These boundary conditions
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determine the phase shifts as

tan δTE
m = −J

′
m(kR)

Y ′m(kR)
, tan δTM

m = −Jm(kR)

Ym(kR)
. (3.14)

According to Eqs. (3.10), (3.11), and (3.12), the normalized mode functions F
(σ)
λ (r), λ =

{k,m, κ}, that satisfy the boundary conditions at ρ = R are given by

FTE
λ (ρ, φ, z) =

1

2π

[
im

kρ

Jm(kρ)Y ′m(kR)− Ym(kρ)J ′m(kR)√
J ′2m(kR) + Y ′2m (kR)

êρ (3.15)

− J ′m(kρ)Y ′m(kR)− Y ′m(kρ)J ′m(kR)√
J ′2m(kR) + Y ′2m (kR)

êφ

]
eimφ+iκz,

FTM
λ (ρ, φ, z) =

1

2π

[
iκ

ω

J ′m(kρ)Ym(kR)− Y ′m(kρ)Jm(kR)√
J2
m(kR) + Y 2

m(kR)
êρ

−mκ
ωkρ

Jm(kρ)Ym(kR)− Ym(kρ)Jm(kR)√
J2
m(kR) + Y 2

m(kR)
êφ (3.16)

+
k

ω

Jm(kρ)Ym(kR)− Ym(kρ)Jm(kR)√
J2
m(kR) + Y 2

m(kR
êz

]
eimφ+iκz.

These mode functions can now be substituted into Eq. (3.6) for obtaining the energy shift

of an atom positioned at r = (ρ, φ, z). However, what we want to calculate here is only

the correction to the energy shift caused by the presence of a perfectly conducting surface,

rather than the whole energy shift due to the coupling of the atom to the fluctuating

vacuum field, which would include the free-space Lamb shift. Therefore we need to subtract

the energy shift caused by the vacuum fluctuations of the electromagnetic field in free space,

which is obtained by either letting the phase shifts δm → 0 or equivalently taking the limit

R → 0. In the limit of vanishing radius R of the cylinder the behaviour of the mode

functions (3.15), (3.16) is dominated by the singular behaviour of Ym(kR) and Y ′m(kR) at

the origin, which causes the phase shifts (3.14) to vanish. The renormalized energy shift

∆W ren = ∆W − limR→0 ∆W is found to be of the form

∆W ren = − 1

4πε0

∑
j 6=i

(
Ξρ|µρ|2 + Ξφ|µφ|2 + Ξz|µz|2

)
(3.17)
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with

Ξρ =
2

π

∞∑
m=0

′
∫ ∞

0
dk k

∫ ∞
0

dκ
ω

Eji + ω

×
{(

m

kρ

)2
[(
Jm(kρ)Y ′m(kR)− Ym(kρ)J ′m(kR)

)2
J ′2m(kR) + Y ′2m (kR)

− J2
m(kρ)

]

+
(κ
ω

)2
[(
J ′m(kρ)Ym(kR)− Y ′m(kρ)Jm(kR)

)2
J2
m(kR) + Y 2

m(kR)
− J ′2m(kρ)

]}
, (3.18)

Ξφ =
2

π

∞∑
m=0

′
∫ ∞

0
dk k

∫ ∞
0

dκ
ω

Eji + ω

×
{[(

J ′m(kρ)Y ′m(kR)− Y ′m(kρ)J ′m(kR)
)2

J ′2m(kR) + Y ′2m (kR)
− J ′2m(kρ)

]

+

(
m

kρ

κ

ω

)2
[(
Jm(kρ)Ym(kR)− Ym(kρ)Jm(kR)

)2
J2
m(kR) + Y 2

m(kR)
− J2

m(kρ)

]}
, (3.19)

Ξz =
2

π

∞∑
m=0

′
∫ ∞

0
dk k

∫ ∞
0

dκ
ω

Eji + ω

×
{(

k

ω

)2
[(
Jm(kρ)Ym(kR)− Ym(kρ)Jm(kR)

)2
J2
m(kR) + Y 2

m(kR)
− J2

m(kρ)

]}
(3.20)

where the primes on the sums indicate that the m = 0 term is weighted by an additional

factor of 1/2. It appears that the κ integrals fail to converge, but this is a common feature

in such calculations caused by the dipole approximation, see e.g. [13]. As we shall see,

convergence is in fact brought about by the Bessel functions, which come to bear if the k

integral is replaced by an integral over ω =
√
κ2 + k2.

As the Bessel functions Jm(x) and Ym(x) are both oscillatory for large x, we wish to

rotate the integration contour in the complex k plane, in order to get an integrand that is

exponentially damped for large arguments. To this end we introduce the Hankel functions

H
(1)
m (x) = Jm(x) + iYm(x) and H

(2)
m (x) = [H

(1)
m (x)]∗ = Jm(x)− iYm(x), in terms of which

we can rewrite the energy level shift in such a form that there are no poles in the first

quadrant of the complex k plane, as is required for the rotation of the integration contour.
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This step greatly simplifies further analysis.

Ξρ = −Re
2

π

∞∑
m=0

′
∫ ∞

0
dk k

∫ ∞
0

dκ
ω

Eji + ω

×
{
κ2

ω2
[H ′(1)

m (kρ)]2
Jm(kR)

H
(1)
m (kR)

+
m2

k2ρ2
[H(1)

m (kρ)]2
J ′m(kR)

H
′(1)
m (kR)

}
, (3.21)

Ξφ = −Re
2

π

∞∑
m=0

′
∫ ∞

0
dk k

∫ ∞
0

dκ
ω

Eji + ω

×
{

[H ′(1)
m (kρ)]2

J ′m(kR)

H
′(1)
m (kR)

+
m2

k2ρ2

κ2

ω2
[H(1)

m (kρ)]2
Jm(kR)

H
(1)
m (kR)

}
, (3.22)

Ξz = −Re
2

π

∞∑
m=0

′
∫ ∞

0
dk k

∫ ∞
0

dκ
ω

Eji + ω

{
k2

ω2
[H(1)

m (kρ)]2
Jm(kR)

H
(1)
m (kR)

}
. (3.23)

We now transform the k integration in Eqs. (3.21)–(3.23) into an integration over ω =
√
κ2 + k2, and note that on the interval 0 ≤ ω ≤ κ the integrands become pure imaginary

and therefore do not contribute if added to the real part of the integral. We can therefore

shift the lower limit down to the origin

∫ ∞
κ

dω −→
∫ ∞

0
dω (3.24)

without affecting the result. Further, we note that the functions H
(1)
m (z) and H

′(1)
m (z) have

no zeros in the first quadrant of the complex plane [21, Fig. 9.6], so that the contour of the

ω-integration can be rotated from the positive real to the positive imaginary axis, ω → iω.

Then the oscillatory Bessel functions turn into the modified Bessel functions according to

[21, 9.6.3 & 5]

Jm(iz) = eimπ/2Im(z), (3.25)

H(1)
m (iz) = −2i

π
e−imπ/2Km(z) . (3.26)
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Taking the real part and going to polar coordinates, where the angle integrals are elemen-

tary, we find that

Ξρ =
2

π

∞∑
m=0

′
∫ ∞

0
dk k

{(√
E2
ji + k2 − Eji

) Im(kR)

Km(kR)
[K ′m(kρ)]2

+
m2

k2ρ2

 E2
ji√

E2
ji + k2

− Eji

 I ′m(kR)

K ′m(kR)
[Km(kρ)]2

 , (3.27)

Ξφ =
2

π

∞∑
m=0

′
∫ ∞

0
dk k


 E2

ji√
E2
ji + k2

− Eji

 I ′m(kR)

K ′m(kR)
[K ′m(kρ)]2

+
m2

k2ρ2

(√
E2
ji + k2 − Eji

) Im(kR)

Km(kR)
[Km(kρ)]2

}
, (3.28)

Ξz =
2

π

∞∑
m=0

′
∫ ∞

0
dk k

 k2√
E2
ji + k2

Im(kR)

Km(kR)
[Km(kρ)]2

 . (3.29)

Note that the effect of our manipulations has been that the integration variable k in

Eqs. (3.27)–(3.29) has been rotated by π/2 in the complex plane compared to Eqs. (3.21)–

(3.23).

The final result for the energy shift, Eq. (3.17) with Eqs. (3.27)–(3.29), is a sum over a

series of rapidly converging integrals, which, unlike Eqs. (3.18)–(3.20), is reasonably easily

evaluated numerically. However, as the functions Ξρ,φ,z(Eji, d, R) are quite cumbersome

and it is not possible to find exact closed form expressions for them, we now look at their

asymptotics in various limiting cases, which is very useful for analytical estimates.

3.3.1 Asymptotic regimes

There are three length scales in the problem: the distance of the atom from the surface of

the cylinder d = ρ−R, the radius of the cylindrical wire R, and the wavelength of a typical

transition in the atom λji ∝ 1/Eji. Accordingly we get six different asymptotic regimes,

three non-retarded and three retarded. The criterion as to whether retardation matters is

the relative size of the distance d of the atom from the surface and the wavelength λji of

a typical transition: if the atom is very close to the surface then its interaction with the
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surface is entirely electrostatic [3], whereas retardation begins to play a role once d ∼ λji

or larger, because then the internal state of the atom is then subject to non-negligible

evolution during the time a virtual photon mediating the interaction would take to travel

from the atom to the surface and back. First we shall deal with the three non-retarded

cases, and then with the three retarded ones.

3.3.1.1 d� R� λji

If λji is larger than any other lengthscale, we can take the limit Eji → 0 in Eqs. (3.27)–

(3.29). This gives the same result as a purely electrostatic calculation [3]. If the distance

d of the atom from the surface is small, then the atom does not feel the curvature of the

surface, and one expects to get the same energy shift as one would close to a plane surface.

This is indeed the result we get when we take the limit d→ 0 by using uniform asymptotic

expansions for the Bessel functions [3]; we obtain

Ξρ ≈
1

8d3
, Ξφ ≈

1

16d3
, Ξz ≈

1

16d3
. (3.30)

3.3.1.2 d� λji � R

In this regime the energy shift behaves in exactly the same way as in the previous case,

because the radius of the wire has no influence on retardation, so that the relative size of

R and λji does not matter. All that matters is that the distance d of the atom from the

cylinder is still much less than the wavelength λji of the relevant transition in the atom. In

mathematical terms, the electrostatic limit (Eji → 0) and the large-radius limit (R→∞)

of the energy shift commute.

The limit of large radius was studied in great detail in [37]. Application of the summation

formula derived in Appendix A of [37] to Eqs. (3.27)-(3.29) leads to the original Casimir-

Polder result [13] for the interaction between an atom and a plane, perfectly reflecting

mirror:

Ξρ =
1

2πd3

∫ ∞
0

dη
e−2dEjiη

(1 + η2)2
, (3.31)

Ξφ = Ξz =
1

2πd3

∫ ∞
0

dη
e−2dEjiη

(1 + η2)2

1− η2

1 + η2
. (3.32)
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If we now take λji to be much greater than d, we reproduce the result (3.30) of the previous

section.

3.3.1.3 R� d� λji

In this case we again start by taking the limit Eji → 0 in Eqs. (3.27)–(3.29) and obtain

the electrostatic expression derived in [3]. In the limit of the radius of the wire being much

smaller than the distance d, the energy shift is dominated by summand with lowest m in

Eqs. (3.27)–(3.29) [3]. Asymptotically one gets

Ξρ ∝
1

d3 ln d
, Ξφ ∝

R2

d5
, Ξz ∝

1

d3 ln d
,

which is not very helpful numerically though, as logarithmic series converge only very

slowly.

3.3.1.4 λji � d� R

When λji is smaller than the distance d of the atom to the surface of the wire, then the

interaction is manifestly retarded. As λji is the smallest of the three lengthscales, we first

take the limit λji → 0, i.e. Eji →∞, in Eqs. (3.27)–(3.29) and find that the leading terms

in all three integrals go as 1/Eji. Thus the energy shift (3.17) indeed depends only on

the static polarizability (3.8) of the atom, as mentioned at the end of Section 3.2. The

remaining integration over k is then quite similar to those found in the non-relativistic

calculation in [3] and can be tackled by the same means. Scaling k to x = kρ/m and

realizing that the dominant contributions to the integrals and sums come from large x and

large m, one can approximate the Bessel Functions by their uniform asymptotic expansions

and then gets a geometric series, which is easy to sum. In this way one finds the following
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approximations

Ξρ ≈
1

2πEjiρ4

{
ρ4

∫ ∞
0

dk k3 I0(kR)

K0(kR)
[K1(kρ)]2 (3.33)

+

∫ ∞
0

dx x

(√
1 + x2 +

1√
1 + x2

)
A(A2 + 4A+ 1)

(A− 1)4

}
,

Ξφ ≈
1

2πEjiρ4

{
ρ4

∫ ∞
0

dk k3 I1(kR)

K1(kR)
[K1(kρ)]2 (3.34)

+

∫ ∞
0

dx x

(√
1 + x2 +

1√
1 + x2

)
A(A2 + 4A+ 1)

(A− 1)4

}
,

Ξz ≈
1

πEjiρ4

{
ρ4

∫ ∞
0

dk k3 I0(kR)

K0(kR)
[K0(kρ)]2

+

∫ ∞
0

dx
x3

√
1 + x2

A(A2 + 4A+ 1)

(A− 1)4

}
, (3.35)

with A(x) given by

A(x) =

(
R

ρ

)2
 1 +

√
1 + x2

1 +
√

1 + x2R2

ρ2

2

exp

[
2

(√
1 + x2

R2

ρ2
−
√

1 + x2

)]
. (3.36)

These are easy to evaluate numerically and provide a reasonable approximation to the

energy shift in the retarded limit, as shown in Fig. 3.2.

In the limit of the distance d = ρ− R being much smaller than the radius R of the wire,

the above approximations yield

Ξρ ≈ Ξφ ≈ Ξz ≈
1

4πd4

1

Eji
, (3.37)

which agrees with the retarded energy shift of an atom in front of a perfectly reflecting

plane mirror, as calculated by Casimir and Polder [13]. This is what one would expect

because an atom that is very close to the surface is not susceptible to the curvature of the

surface.

3.3.1.5 λji � R� d

In this case we again start by taking the limit Eji →∞ in Eqs. (3.27)–(3.29), which gives

a leading order contribution proportional to 1/Eji. In other words, this is again a fully

retarded case for which the static polarizability (3.8) is only atomic property that the
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Figure 3.2: The contributions to the energy shift in the retarded limit due to the three
components of the atomic dipole, multiplied by Ejid

4. Solid lines represent the results
of exact numerical integration of Eqs. (3.27)–(3.29) in the limit Eji → ∞, whereas the
dashed (red) lines represent the approximations (3.33)–(3.35). For large d the asymptotic
behaviour is dominated by the lowest m terms in the sums, given by (3.38)–(3.40) and
shown as dotted (blue) lines. The arrow on the vertical axis indicates the exact value in

the limit d→ 0, Eq. (3.37).

energy shift depends on. For distances d much larger than the wire radius R the dominant

contribution to the sum then comes from the summands with the lowest m, so that we

need consider only those,

Ξρ ≈
1

2πEji

{∫ ∞
0

dk k3 I0(kR)

K0(kR)
[K1(kρ)]2 − 2

∫ ∞
0

dk
k

ρ2

I ′1(kR)

K ′1(kR)
[K1(kρ)]2

}
, (3.38)

Ξφ ≈
1

2πEji

{∫ ∞
0

dk k

(
k2 +

2

ρ2

)
I1(kR)

K1(kR)
[K1(kρ)]2 − 2

∫ ∞
0

dk k3 I
′
1(kR)

K ′1(kR)
[K ′1(kρ)]2

}
,

(3.39)

Ξz ≈
1

πEji

∫ ∞
0

dk k3 I0(kR)

K0(kR)
[K0(kρ)]2 . (3.40)

The dotted lines in Fig. 3.2 show that these are indeed good approximations for large

d/R. Their leading-order behaviour is

Ξρ ∝
1

Eji

1

d4 ln d
, Ξφ ∝

1

Eji

R2

d6
, Ξz ∝

1

Eji

1

d4 ln d
,
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which is in full agreement with the asymptotic results by [34], even though those are for

a metallic wire characterized by a plasma frequency. This is because in the retarded limit

the interaction between the atom and the surface depends, to leading order, only on the

static polarizability.

As in the electrostatic case, the contributions due to the ρ and z components of the atomic

dipole fall off less rapidly than the φ contribution. We also note that, just as in the non-

retarded case, the series in powers of 1/ ln d converge too slowly to be of any practical use,

so that estimates must be made with Eqs. (3.38)–(3.40).

3.3.1.6 R� λji � d

As in the non-retarded cases, the limit of vanishing radius (R→ 0) and the retarded limit

(Eji →∞) commute, and we recover the results of the previous section, Eqs. (3.38)–(3.40).

This is another manifestation of the fact that the criterion of whether the interaction is

retarded depends solely on the distance d between an atom and the surface of the wire,

and that the relative size of geometrical features and the wavelength λji is irrelevant. This

means in particular that there are no resonance effects for λji cöınciding with the wire

radius R.

3.3.2 Numerical results

For intermediate parameter ranges one has to evaluate Eqs. (3.27)–(3.29) numerically.

This is straightforward, and one can employ standard software packages like Mathematica

or Maple. The numerical convergence of Eqs. (3.27)–(3.29) is very good, although more

terms are needed for small distances d than for large distances. Figs. 3.3–3.5 show the

contributions by the ρ, φ, and z components of the atomic dipole to the energy shift

(3.17) for various values of the typical transition frequency Eji in the atom. We give the

distance d and the transition wavelength 1/Eji in units of the wire radius R. For plotting

we have factored out of Ξρ,φ,z the asymptotic functional dependence of the shift in front

of a plane mirror, Eq. (3.37). In Fig. 3.6 we show how these contributions look when we

choose the wavelengths 1/Eji of a typical internal transition as a lengthscale and plot the
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Figure 3.3: The contribution (3.27) to the energy shift (3.17) due to the ρ compo-
nent of the dipole for various typical transition frequencies Eji. The dashed line is this

contribution in the retarded limit Eji →∞.

Figure 3.4: The contribution (3.28) to the energy shift (3.17) due to the φ compo-
nent of the dipole for various typical transition frequencies Eji. The dashed line is this

contribution in the retarded limit Eji →∞.
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Figure 3.5: The contribution (3.29) to the energy shift (3.17) due to the z compo-
nent of the dipole for various typical transition frequencies Eji. The dashed line is this

contribution in the retarded limit Eji →∞.

contributions to the energy shift for various wire radii R. The larger the value of R the

more terms are required in the numerical series.

3.4 Energy shift near a perfectly reflecting semi-infinite half-

plane

Next we wish to calculate the energy shift of an atom in the vicinity of a perfectly reflecting

half-plane, as illustrated by Fig. 3.7.

The procedure of obtaining the normal modes of the vector potential is analogous to

that described in Section 3.3. The scalar solution of the Helmholtz equation (3.4) in the

cylindrical coordinates that is best suited to applying boundary conditions on the surface

of the half-plane is given by

Φ(x) =

[
α√
π

sin
(m

2
φ
)

+
β√
π

cos
(m

2
φ
)]
Jm/2(kρ)

eiκz

√
2π

,
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Figure 3.6: The contributions (3.27)–(3.29) to the energy shift (3.17) due to the ρ, φ,
and z components of the dipole for various radii R of the wire.

r

f

Figure 3.7: An atomic dipole in the vicinity of a perfectly reflecting semi-infinite half-

plane. The normal modes F
(σ)
λ (x) in this geometry are given by Eqs. (3.41) and (3.42).
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where Jm/2(kρ), with m = 0, 1, 2, . . ., are the regular solutions of Bessel’s equation, and

the separation constants satisfy ω2 = k2 + κ2. We must have m ≥ 0, as otherwise the

solutions are not linearly independent. Note that half-integer indices arise because the

angle φ is restricted to the interval [0, 2π], so that the usual argument of single-valuedness

of eimφ cannot be evoked.

In order to obtain two linearly independent vector solutions we again apply Eqs. (3.10)

and (3.11), and impose the boundary conditions for a perfectly reflecting half-plane, Eρ =

0 = Ez and Bφ = 0 for φ = 0 and φ = 2π. In this way we find for the mode functions

F
(1)
λ (r) = − 1√

2π

[
m

2kρ
sin
(m

2
φ
)
Jm/2(kρ) êρ + cos

(m
2
φ
)
J ′m/2(kρ) êφ

]
eiκz, (3.41)

F
(2)
λ (r) =

1√
2π

[
iκ

ω
sin
(m

2
φ
)
J ′m/2(kρ) êρ +

iκm

2kρω
cos
(m

2
φ
)
Jm/2(kρ) êφ

+
k

ω
sin
(m

2
φ
)
Jm/2(kρ) êz

]
eiκz, (3.42)

where the composite index stands for λ = {k,m, κ}. For m > 0 these mode functions

satisfy the normalization condition (3.13), but the first polarization has an additional

mode with m = 0 for which Eq. (3.41) must be multiplied by an additional factor 1/
√

2

for it to be normalized correctly according to (3.13),

F
(1)
m=0(r) = − 1

2π
J ′0(kρ) êφ e

iκz . (3.43)

Substituting the mode functions (3.41)-(3.43) into Eq. (3.6) and renormalizing the en-

ergy shift by subtracting the free-space contribution in the same way as this was done in
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Eqs. (3.18)-(3.20), we obtain an energy shift of the form (3.17) with

Ξρ =
2

π

∫ ∞
0

dk k

∫ ∞
0

dκ
ω

Eji + ω

{(κ
ω

)2
∞∑
m=0

′
[
sin2

(m
2
φ
)
J ′2m/2(kρ)− J ′2m(kρ)

]
+

(
1

kρ

)2 ∞∑
m=1

[(m
2

)2
sin2

(m
2
φ
)
J2
m/2(kρ)−m2J2

m(kρ)

]}
, (3.44)

Ξφ =
2

π

∫ ∞
0

dk k

∫ ∞
0

dκ
ω

Eji + ω

{ ∞∑
m=0

′
[
cos2

(m
2
φ
)
J ′2m/2(kρ)− J ′2m(kρ)

]
+

(
κ

kρω

)2 ∞∑
m=1

[(m
2

)2
cos2

(m
2
φ
)
J2
m/2(kρ)−m2J2

m(kρ)

]}
, (3.45)

Ξz =
2

π

∫ ∞
0

dk k

∫ ∞
0

dκ
ω

Eji + ω

{(
k

ω

)2 ∞∑
m=0

′
[
sin2

(m
2
φ
)
J2
m/2(kρ)− J2

m(kρ)
]}

,

(3.46)

where the primes on the sums indicate that the m = 0 terms are weighted by an additional

factor of 1/2. In order to simplify these expressions, the sums over the Bessel functions

need to be evaluated. Recently, similar summations have been carried out [47, 50], but

the results obtained do not include our particular case of sums involving Bessel functions

of the half-integer order.

We proceed along the following lines. First, we split each sum into two, one over Bessel

functions of integer orders, and the other over half-integer orders. For the first we can

apply the standard summation formula [21, 9.1.79]

∞∑
m=0

′ cos 2mφ J2
m(z) =

1

2
J0(2z sinφ) , (3.47)

and we choose to represent the right-hand side in terms of an integral [21, 9.1.24]

1

2
J0(2z sinφ) =

1

π

∫ ∞
1

dt
sin(2zt sinφ)√

t2 − 1
. (3.48)

For the half-integer sum we use a summation formula of [51, 5.7.17.(11.)], which in our

case gives
∞∑
m=0

cos(2m+ 1)φ J2
m+ 1

2

(z) =
1

π

∫ 1/ sinφ

1
dt

sin(2zt sinφ)√
t2 − 1

. (3.49)

We note that, if we use the integral representation (3.48), the sums over integer and over
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half-integer Bessel functions are very similar; the only difference is the upper limit of the t

integral in (3.48) and (3.49). As these t integrals and their derivatives will arise repeatedly,

we define the following auxiliary functions:

F (z, φ) ≡
∫ 1/ sinφ

1
dt

sin(2zt sinφ)√
t2 − 1

, (3.50)

G(z, φ) ≡
∫ ∞

1
dt

sin(2zt sinφ)√
t2 − 1

. (3.51)

Further we note that the κ integrals in Eqs. (3.44)-(3.46) suffer from the same convergence

problems as already discussed in Section 3.3. We avoid these by introducing polar coordi-

nates with k = ω sinα and κ = ω cosα. At the same time we parametrize the denominator

arising from perturbation theory by

1

Eji + ω
=

∫ ∞
0

dx e−(Eji+ω)x , (3.52)

with Eji + ω = Eji +
√
k2 + κ2 ≥ 0. Then Eqs. (3.44)-(3.46) become

Ξρ =
2

π

∫ ∞
0

dx e−Ejix
∫ ∞

0
dω ω3e−ωx

∫ π/2

0
dα sinα

×
{
σ1(ωρ sinα) + σ3(ωρ sinα) cos2 α

}
, (3.53)

Ξφ =
2

π

∫ ∞
0

dx e−Ejix
∫ ∞

0
dω ω3e−ωx

∫ π/2

0
dα sinα

×
{
σ2(ωρ sinα) cos2 α+ σ4(ωρ sinα)

}
, (3.54)

Ξz =
2

π

∫ ∞
0

dx e−Ejix
∫ ∞

0
dω ω3e−ωx

∫ π/2

0
dα sinα

×
{
σ5(ωρ sinα) sin2 α

}
. (3.55)

The sums σi(z) appearing in these expressions can be calculated by using Eqs. (3.47)–

(3.51) and standard derivative formulae for Bessel functions [21, 9.1.27]; we obtain in
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terms of (3.50) and (3.51): σ1(z)

σ2(z)

 =
1

z2

∞∑
m=1

(m2 )2

 sin2 (mφ/2)

cos2 (mφ/2)

 J2
m/2(z)−m2J2

m(z)

 (3.56)

=
1

8πz2

[
±∂

2G(z, φ)

∂φ2
+
∂2G(z, φ)

∂φ2

∣∣∣∣
φ=0

± ∂2F (z, φ)

∂φ2
− ∂2F (z, φ)

∂φ2

∣∣∣∣
φ=0

]
,

 σ3(z)

σ4(z)

 =
∞∑
m=0

′


 sin2 (mφ/2)

cos2 (mφ/2)

 J ′2m/2(z)− J ′2m(z)


= −

 σ1(z)

σ2(z)

+
1

2π

[
F (z, 0)−G(z, 0)

]
∓ cos 2φ

2π

[
F (z, φ) +G(z, φ)

]
+

cos 2z

2πz
(1∓ cosφ) , (3.57)

σ5(z) =
∞∑
m=0

′
{

sin2 (mφ/2) J2
m/2(z)− J2

m(z)
}

=
1

2π

[
F (z, 0)− F (z, φ)−G(z, φ)−G(z, 0)

]
. (3.58)

We now carry out the various integrations in the following order. First we evaluate the α

integrals, which all give Bessel functions J1 or J0 [49, 3.715(10),(14)]. Next we carry out

the integrations over ω, which involve integrals of the type [49, 6.611(1.)]

∫ ∞
0

dz e−az Jν(bz) =
b−ν

(√
a2 + b2 − a

)ν
√
a2 + b2

.

Finally, we calculate the t integrals that came in through the auxiliary functions F and

G, Eqs. (3.50) and (3.51). These are all elementary. At the very end we calculate the φ

derivatives of Eq. (3.56) and take the limit φ→ 0 in the appropriate terms. The end results

then still contain the parameter integral (3.52) over x, which we now scale by substituting

x = 2ρη. Then the final results read

Ξρ =
1

16πρ3

∫ ∞
0

dη e−2ρEjiη

{
3η4 + 6η2 + 4

η4(1 + η2)3/2
− 4

η4

+
4

(η2 + sin2 φ)3

[
(2η2 + 1) sin2 φ− η2

]
+

cosφ

(1 + η2)3/2(η2 + sin2 φ)3

×
[
(2 + η2) sin4 φ+ 2 sin2 φ(3η4 + 6η2 + 2)− η2(3η4 + 6η2 + 4)

]}
, (3.59)
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Ξφ =
1

16πρ3

∫ ∞
0

dη e−2ρEjiη

{
3η6 + 6η4 + 10η2 + 4

η4(1 + η2)5/2
− 4

η4

+
4

(η2 + sin2 φ)3

[
(1− 2η2) sin2 φ+ η2

]
+

cosφ

(1 + η2)5/2(η2 + sin2 φ)3

×
[
(2− 2η2 − η4) sin4 φ+ 2 sin2 φ(2 + 2η2 − 6η4 − 3η6)

+η2(3η6 + 6η4 + 10η2 + 4)
]}
, (3.60)

Ξz =
1

16πρ3

∫ ∞
0

dη e−2ρEjiη

{
9η4 + 10η2 + 4

η4(1 + η2)5/2
− 4

η4

+ 4
sin2 φ− η2

(η2 + sin2 φ)3
− cosφ

(1 + η2)5/2(η2 + sin2 φ)3

×
[
(η2 − 2) sin4 φ+ 2(η4 − 4η2 − 2) sin2 φ+ η2(9η4 + 10η2 + 4)

]}
. (3.61)

Inserted into Eq. (3.17) the Eqs. (3.59)–(3.61) give the final result for the energy shift of

an atom near a perfectly reflecting half-plane. Some of the integrations over the auxiliary

variable η could in principle be carried out, but those would yield complicated hypergeo-

metric functions. Thus it is preferable to have the result in the form of an integral over

elementary functions. It converges quickly and can therefore be very easily evaluated nu-

merically by using standard software packages. In addition, we shall go on to determine

asymptotic expressions in the non-retarded and retarded regimes.

3.4.1 Asymptotic regimes

3.4.1.1 Plane-mirror limit

In the limit of the polar angle φ being very small, the atom is very close to the half-plane

but far away from the edge, so that the energy shift should be the same as for an atom

in front of a plane, infinitely extended mirror. The component of the atomic dipole that

is normal to the surface should then give the contribution listed in Eq. (3.31) to the shift,

and the parallel components should contribute that shown in Eq. (3.32). As the distance d

of the atom from the half-plane is ρ sinφ, we take Eqs. (3.59)–(3.61) and scale η → η sinφ,

so as to get an exponential with the same argument as in Eqs. (3.31) and (3.32). If we

subsequently take the limit φ → 0, we recover Eqs. (3.31) and (3.32), as expected. Note,

however, that the geometry is different from the cylindrical case: the φ component of the

atomic dipole is now normal to the surface and its contribution Ξφ to the energy shift is
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given by (3.31), and the ρ and z components are parallel so that Ξρ and Ξz are given by

(3.32).

3.4.1.2 Non-retarded regime

If ρEji � 1 then the atom is very close to the half-plane, compared to the wavelength

of a typical internal transition. This means that the interaction of the atom and the

surface is instantaneous, as the atom evolves on a much longer timescale. In this case field

quantization is not necessary, and only Coulomb interactions between the atom and the

half-plane need to be considered, as was done in Ref. [3], where we derived

Ξρ =
5

48πρ3
+

cosφ

16πρ3 sin2 φ
+

(π − φ)(1 + sin2 φ)

16πρ3 sin3 φ

Ξφ = − 1

48πρ3
+

cosφ

8πρ3 sin2 φ
+

(π − φ)(1 + cos2 φ)

16πρ3 sin3 φ

Ξz =
1

24πρ3
+

cosφ

16πρ3 sin2 φ
+

π − φ
16πρ3 sin3 φ

.

Taking the limit Eji → 0 in Eqs. (3.59)–(3.61) we recover these results, which is an

important consistency check on our present calculation.

3.4.1.3 Retarded regime

In the opposite limit of the atom being far away from the half-plane, we need to distinguish

whether the atom is located beyond the edge of the half-plane or not. If it is, i.e. for

π/2 < φ < π the distance of the atom to the half-plane is its distance to the edge, namely

ρ, so that the condition for the interaction to be fully retarded is ρEji � 1. If, on the

other hand, 0 < φ < π/2 then the distance to the half-plane is ρ sinφ, and consequently

the criterion for full retardation is ρ sinφEji � 1, cf. Fig. 3.7.

Taking the limit Eji →∞ in the integrals (3.59)-(3.61) is straightforward, since, according

to Watson’s lemma [22], the integral is then dominated by contributions from the vicinity

of η = 0+, so that one just needs to factor out the exponential and expand the rest of the

integrand in the curly brackets in a Taylor series about this point. The leading terms of

these Taylor expansions turn out to be constants with respect to η in each case. Thus in
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the retarded limit we obtain

Ξρ =
1

64πρ4Eji

[
3 +

1

sin4(φ/2)
+

2

sin2(φ/2)

]
(3.62)

Ξφ =
1

64πρ4Eji

[
−3 +

1

sin4(φ/2)
+

2

sin2(φ/2)

]
(3.63)

Ξz =
1

64πρ4Eji

[
3 +

1

sin4(φ/2)
+

2

sin2(φ/2)

]
, (3.64)

which, for the case of isotropic polarizability, is in agreement with the result of Ref. [46].

Here again, the energy shift (3.17) depends only on the static polarizability (3.8) of the

atom, as follows from general considerations in the retarded limit [48]. In the light of our

comments above, we emphasize again that the results (3.62)–(3.64) are only valid when the

distance of the atom from the half-plane exceeds several wavelengths λji. This means that

for small angles φ one needs to revert to the plane-mirror limit discussed in Section 3.4.1.1

above, because in the region 0 < φ < π/2 Eqs. (3.62)–(3.64) apply only if sinφ � λji/ρ.

However, taking the limit ρ → ∞ together with φ → 0 while keeping ρ sinφ = d fixed

is legitimate, and reproduces the well-known Casimir-Polder result [13] for the retarded

interaction between an atom and a plane mirror, Eq. (3.37).

Taking the limit φ → π in Eqs. (3.62)–(3.64) shows that for an atomic dipole that is

polarized azimuthally the interaction vanishes when the atom is located exactly above the

edge of the half-plane. This conclusion actually holds not just in the retarded regime, but

generally for any distance, as Eq. (3.60) also vanishes in the limit φ → π. Purely from

symmetry one would expect there to be no azimuthal component to the Casimir-Polder

force directly above the edge, but the fact that there is no radially directed force either

is surprising. Since we have worked in the cylindrical coordinates, the direction of the

unit vectors êρ and êφ depends on the position coordinates ρ and φ. In this context it is

curious that, in the retarded limit, all three components of the atomic dipole contribute

to the energy shift with exactly the same angular dependence.

3.5 Summary

We have calculated the energy shift in a neutral atom caused by the presence at arbitrary

distance of perfectly reflecting microstructures of two different geometries. For an atom at
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Figure 3.8: Direction of the retarded Casimir-Polder force acting on the atom with
isotropic polarizability. Note from Eqn. (3.60) that an atom that is polarized azimuthally
does not experience any force when it is located exactly above the edge of the half-plane.

a distance d = ρ−R from the perfectly reflecting cylindrical wire of radius R we have found

an exact expression for the interaction energy, Eq. (3.17) with Eqs. (3.27)-(3.29). As these

integrals and sums are in general quite complicated, we have analysed various important

limiting cases. The limit of the distance d being small on the scale of the wavelength λji

of a typical atomic transition requires only electrostatic forces to be considered, which

was done in detail in Ref. [3]. The case of purely retarded interactions, which occur when

the distance d is much larger than λji, has been analysed in Sections 3.3.1.4–6. For a

small wire radius the three contributions to the energy shift are well approximated by

Eqs. (3.38)–(3.40), and for a large wire radius by Eqs. (3.33)–(3.35).

In the case of an atom close to a perfectly reflecting half-plane the exact analytic analysis

can be pushed a little bit further than in the cylindrical case. We have managed to find

an exact formula for the energy shift in terms of a simple, rapidly converging integral

over elementary functions, Eqs. (3.59)-(3.61), so that they are very easy to study numer-

ically. Nevertheless, we have also derived asymptotic formulae, which agree with previous

calculations.

The totality of our results can be used to reliably estimate the energy shift in an atom
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close to a variety of common microstructures that consist of a ledge and possibly an

electroplated top layer of higher reflectivity. We have determined the energy shifts for the

complete range of distances, which is very important for practical applications as in many

modern experiments the distance of the atom is neither much larger nor much smaller

than the typical wavelength of an atomic transition, but commensurate.



Chapter 4

On the difference between the

standard and generalized Coulomb

gauge

4.1 Generalized Coulomb gauge

Although the considerations we report here are quite general we would like to make a point

by referring to a specific example. Consider a dielectric half-space occupying the z < 0

region of space. The dielectric is a non-dispersive one i.e. it’s electromagnetic response is

described by a single number, the index of refraction n, that is one and the same for all

frequencies. Thus model is described by the dielectric constant

ε(z) = 1 + θ(−z)(n2 − 1) (4.1)

where θ(z) is a Heaviside the step function. The quantization of the electromagnetic field

that coexists with such a dielectric can be achieved by the normal-mode expansion [19].

60
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We start with Maxwell’s equations (no sources)

∇ ·D(r, t) = 0, (4.2)

∇ ·B(r, t) = 0, (4.3)

∇×E(r, t) +
∂

∂t
B(r, t) = 0, (4.4)

∇×H(r, t)− ∂

∂t
D(r, t) = 0. (4.5)

For non-magnetic material and the non-dispersive dielectric function (4.1) the constitutive

relations may be written as

B(r, t) = µ0H(r, t), D(r, t) = ε0ε(z)E(r, t) (4.6)

Introducing the electromagnetic potentials in the usual way [10]

B(r, t) = ∇×A(r, t), E(r, t) = − ∂

∂t
A(r, t)−∇φ(r, t) (4.7)

takes care of (4.3) and (4.4). The remaining two Maxwell equations (4.2) and (4.5) turn

into:

∇ · [ε(z)∇φ(r, t)] +
∂

∂t
∇ · [ε(z)A(r, t)] = 0, (4.8)

∇× [∇×A(r, t)] +
ε(z)

c2

∂2

∂t2
A(r, t) +

ε(z)

c2

∂

∂t
∇φ(r, t) = 0. (4.9)

The solution of these coupled differential equations can be very much simplified by a suit-

able choice of the gauge for the electromagnetic potentials. One usually aims to decouple

the two equations. The most convenient approach is to work in the so-called generalized

Coulomb gauge in which we require that

∇ · [ε(z)A(r, t)] = ε(z)∇ ·A(r, t) + (1− n2)Az(r, t)δ(z) = 0. (4.10)

where Eq. (4.1) has been used. We note that, since ε(z) is not constant but has a finite

jump at z = 0, the generalized Coulomb gauge differs from the standard Coulomb gauge

∇ ·A(r, t) = 0 (4.11)
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only by a surface term, which is proportional to a δ(z)-function. With (4.10) it follows

from Eq. (4.8) that in the absence of sources we can set φ(r, t) = 0. Thus in generalized

Coulomb gauge equation (4.9) reduces to

∇× [∇×A(r, t)] +
ε(z)

c2

∂2

∂t2
A(r, ω) = 0. (4.12)

Thus only the vector potential undergoes quantization, which is accomplished by expand-

ing A(r, t) in a complete set of the mode functions that satisfy

∇× [∇× fσ(r)]− ε(z)ω
2
σ

c2
fσ(r) = 0, (4.13)

supplemented by the condition that derives from the gauge we are working in, cf. Eq.

(4.10)

∇ · [ε(z)fσ(r)] = 0. (4.14)

We have labelled solutions corresponding to the eigenvalue ωσ by σ. The double-curl

operator can be rewritten using (4.14)

∇× [∇× fσ(r)] = ∇ [∇ · fσ(r)]−∇2fσ(r, σ) = −∇2fσ(r, σ), for z 6= 0.

Thus away from the interface we can work with the Helmholtz equation

∇2fσ(r) + ε(z)
ω2
σ

c2
fσ(r) = 0, z 6= 0, (4.15)

which can be solved as usual by considering the two distinct regions of space, z < 0 and

z > 0, and using Maxwell boundary conditions to match solutions across the interface.

Once the mode functions are known, the expansion of the vector potential is written as

Agc(r, t) =
∑
σ

√
~

2ε0ωσ

[
aσfσ(r)e−iωσt + C.C.

]
, (4.16)

where the superscript reminds us that the expansion is written down in the generalized

Coulomb gauge, Eq. (4.10). The quantization is accomplished by the promotion of the

expansion coefficients aσ to operators that satisfy the bosonic commutation rule

[âσ, â
†
σ′ ] = δσ,σ′ . (4.17)
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In the present geometry, described by the dielectric function (4.1), the outlined procedure

yields the well-known Carnigila-Mandel modes for the vector field operator which naturally

splits into two parts describing left-incident and right-incident photons, respectively [52]:

Âgc(r, t) =
∑
λ

∫
d2k‖

{[∫ ∞
0

dkzd

√
~

2ε0ωkλ
âLkλ(t)fLkλ(r)

]

+

[∫ ∞
0

dkz

√
~

2ε0ωkλ
âRkλ(t)fRkλ(r)

]}
+ H.C. (4.18)

Here λ labels the polarization of the photons λ = {TE,TM} and a harmonic time-

dependence of the annihilation operator is implicitly assumed i.e. akλ(t) = akλ(0)e−iωkλt.

The mode functions entering the expansion are given by

fLkλ(r) =
êλ(∇)

(2π)3/2n

{
θ(−z)

[
eik

+
d ·r +RLλe

ik−d ·r
]

+ θ(z)
[
TLλ e

ik+·r
]}

(4.19)

fRkλ(r) =
êλ(∇)

(2π)3/2

{
θ(z)

[
eik
−·r +RRλ e

ik+·r
]

+ θ(−z)
[
TRλ e

ik+
d ·r
]}

(4.20)

where k and kd are the wavevectors in the vacuum and dielectric, respectively

k± = (k‖,±kz), k±d = (k‖,±kzd). (4.21)

Their z-components are related to each other via kzd =
√
n2k2

z + (n2 − 1)k2
‖. The sign of

the square root is chosen in such a way that on the real axis we have sgn(kz) = sgn(kzd).

This ensures that the for a single mode of the electromagnetic field that consists of the

incident, reflected and transmitted wave the direction of propagation is consistent. In

equations (4.19) and (4.20) a shorthand notation has been introduced to represent the

unit polarization vectors êλ. We defined them as

êTE(∇) =
(
−∇2

‖

)−1/2
(−i∇y, i∇x, 0) , (4.22)

êTM(∇) =
(
∇2
‖∇2

)−1/2 (
−∇x∇z,−∇y∇z,∇2

‖

)
, (4.23)

where it is understood that the derivatives are replaced by the corresponding components

of the wave-vector that is present in the relevant exponential e.g. for the right-incident

incoming wave eik
−·r we replace ∇z by −ikz. We note in particular that the polarization

vectors do not act on the step functions. This is a convenient notation as the polarization
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vectors point in different directions for incident, reflected and transmitted waves, respec-

tively. However, one needs to be careful when carrying out explicit calculations with the

mode functions (4.19)-(4.20) and remember that the operator êλ(∇) is merely a shorthand

notation. The Fresnel coefficients are given by

RRTE =
kz − kzd
kz + kzd

, RRTM =
n2kz − kzd
n2kz + kzd

, RLλ = −RRλ ,

TRTE =
2kz

kz + kzd
, TRTM =

2nkz
n2kz + kzd

, TLλ =
kzd
kz
TRλ . (4.24)

The mode functions (4.19)-(4.20) are well-known to satisfy the completeness relation which

can be written in the form [19]

∑
λ

∫
d2k‖

[ ∫ ∞
0

dkz f
R
kλ,i(r)f∗Rkλ,j(r

′) +

∫ ∞
0

dkzd f
L
kλ,i(r)f∗Lkλ,j(r

′)

]
= δεij(r, r

′) (4.25)

where for definiteness throughout the chapter we choose r′ to refer to the outside of

dielectric i.e. z′ > 0. The proof of the relation

∇2
∑
λ

∫
d2k‖

[ ∫ ∞
0

dkz f
R
kλ,i(r)f∗Rkλ,j(r

′) +

∫ ∞
0

dkzd f
L
kλ,i(r)f∗Lkλ,j(r

′)

]
=
(
∇i∇j − δij∇2

)
δ(3)(r− r′) (4.26)

has been presented in [53]. Equation (4.26) is of course obtained by acting with the Laplace

operator ∇2 on (4.25). However, at this point it is still not obvious that

∇2δεij(r, r
′) =

(
∇i∇j − δij∇2

)
δ(3)(r− r′). (4.27)

The object δεij(r, r
′) represents the unit kernel in the subspace of the mode functions that

satisfy the generalized Coulomb gauge i.e. if fkλ(r) satisfies Eq. (4.14) then

∫
d3r′δεij(r, r

′)f jkλ(r′) = f ikλ(r). (4.28)

We point out that even though the generalized Coulomb gauge differs from the standard

Coulomb gauge only by a surface term, cf. Eq. (4.10), the corresponding unit kernels in

the position representation differ in the whole of space because of their non-local character,
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i.e. even though

∇ · fkλ(r) = ∇ · [ε(z)fkλ(r)] , for z 6= 0, (4.29)

we have

δ⊥ij(r− r′) 6= δεij(r, r
′), for all z, z′. (4.30)

Here, δ⊥ij(r− r′) is the usual transverse δ-function

δ⊥ij(r− r′) =
1

(2π)3

∫
d3k

(
δij −

kikj
k2

)
eik·(r−r

′), (4.31)

i.e. the unit kernel in the subspace of mode functions that satisfy ∇ · fkλ(r) = 0. Note in

particular that δεij(r, r
′) is not translation-invariant.

It is possible to calculate the r-representation of δεij(r, r
′) by directly evaluating the inte-

grals in (4.25). Before we do so, let us rewrite the transverse delta function (4.31) as

δ⊥ij(r− r′) = δijδ
(3)(r− r′)−∇i∇′jG0(r− r′), (4.32)

where we have introduced the Green’s function of the Poisson equation

G0(r− r′) =
1

4π

1

|r− r′| (4.33)

with the free-space boundary conditions. Let us now turn to the explicit evaluation of the

LHS of Eq. (4.25). First we deal with the case z < 0 and z′ > 0 for which we provide a

detailed calculation. Plugging the mode functions (4.19)-(4.20) into (4.25) and multiplying

out we obtain

δεij(r, r
′) =

1

(2π)3

∑
λ

∫
d2k‖e

ik‖·(r‖−r′‖)

×
{∫ ∞

0

dkzd
n2

[
TL∗λ êiλ(k+

d )ê∗jλ (k+)eikzdz−ik
∗
zz
′
+RLλT

L∗
λ êiλ(k−d )ê∗jλ (k+)e−ikzdz−ik

∗
zz
′
]

∫ ∞
0

dkz

[
TRλ êiλ(k−d )ê∗jλ (k−)e−ikzdz+ikzz

′
+RRλ T

R
λ êiλ(k−d )ê∗jλ (k+)e−ikzdz−ikzz

′
]}

. (4.34)
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where êiλ(k±) ≡ êiλ(∇)eik
±·r. First we focus attention on the kz and kzd integrals. We

convert the kzd integral using the relation kzd =
√
n2k2

z + (n2 − 1)k2
‖

∫ ∞
0

dkzd = n2

∫ 0

iΓ
dkz

kz
kzd

+ n2

∫ ∞
0

dkz
kz
kzd

, (4.35)

where Γ = |k‖|(n2−1)1/2/n. After the change of variables the result consists of the integral

along the real-positive axis (travelling modes) and the integral along the imaginary axis

on the interval kz ∈ [Γ, 0] (evanescent modes)

δεij(r, r
′) =

1

(2π)3

∑
λ

∫
d2k‖e

ik‖·(r‖−r′‖)

×
{∫ 0+

iΓ
dkz

[
kz
kzd

TL∗λ êiλ(k+
d )êjλ(k−)eikzdz+ikzz

′
+ TL∗λ RLλ ê

i
λ(k−d )êjλ(k−)e−ikzdz+ikzz

′
]

+

∫ ∞
0

dkz

[
kz
kzd

TLλ êiλ(k+
d )êjλ(k+)eikzdz−ikzz

′
+ TRλ êiλ(k−d )êjλ(k−)e−ikzdz+ikzz

′

+
kz
kzd

TLλ R
L
λ ê

i
λ(k−d )êjλ(k+)e−ikzdz−ikzz

′
+RRλ T

R
λ êiλ(k−d )êjλ(k+)e−ikzdz−ikzz

′
]}

, (4.36)

where the integral on the interval kz ∈ [iΓ, 0+] runs on the RHS of the branch cut due to

kzd that runs from kz = −iΓ to kz = iΓ. The last two terms of (4.36) cancel out by virtue

of the relations (4.24) whereas the second-last line can be combined to a single integral

running along the interval kz ∈ (−∞, 0−] ∩ [0+,∞)

δεij(r, r
′) =

1

(2π)3

∑
λ

∫
d2k‖e

ik‖·(r‖−r′‖)
{∫ ∞
−∞

dkz

[
TRλ êiλ(k−d )êjλ(k−)e−ikzdz+ikzz

′
]

+

∫ 0+

iΓ
dkz

[
kz
kzd

TL∗λ êiλ(k+
d )êjλ(k−)eikzdz+ikzz

′
+ TL∗λ RLλ ê

i
λ(k−d )êjλ(k−)e−ikzdz+ikzz

′
]}

. (4.37)

To proceed any further close inspection of (4.37) is necessary. To illustrate the argument

we focus on the TM contributions to the integral. The TE contributions are treated in an

exactly analogous way. We start by noting that

TL∗TM =
2nkz

kzd − n2kz
,

kz
kzd

TL∗TMR
L
TM =

2nkz
kzd + n2kz

, (4.38)
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where we have used the fact that for purely imaginary kz we have k∗z = −kz. Thus, the

kz-integral in the last line of (4.44) can be written as

∫ 0+

iΓ
dkz

(
2nkz

kzd + n2kz

)
êiTM(k−d )êjTM(k−)e−ikzdz+ikzz

′

+

∫ 0+

iΓ
dkz

(
2nkz

kzd − n2kz

)
êiTM(k+

d )êjTM(k−)e+ikzdz+ikzz
′
. (4.39)

We now observe that the second integral differs from the first integral only by the sign of

kzd. This allows us to combine the two integrals utilizing the branch-cut due to kzd. We

have

∫ 0+

iΓ
dkz

(
2nkz

kzd + n2kz

)
êiTM(k−d )êjTM(k−)e−ikzdz+ikzz

′

+

∫ 0−

iΓ
dkz

(
2nkz

−kzd − n2kz

)
êiTM(k−d )êjTM(k−)e−ikzdz+ikzz

′

=

∫
C
dkzT

R
TMê

i
TM(k−d )êjTM(k−)e−ikzdz+ikzz

′
(4.40)

where the contour C is illustrated in Fig. 4.1. Thus the completeness relation (4.37) may

Figure 4.1: The dashed line represents the contour C used to evaluate the kz-integral
in equation (4.40).
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be written compactly as

δεij(r, r
′) =

1

(2π)3

∑
λ

∫
d2k‖e

ik‖·(r‖−r′‖)
∫
γ
dkzT

R
λ êiλ(k−d )êjλ(k−)e−ikzdz+ikzz

′
(4.41)

where the contour γ runs along the negative real axis from kz = −∞ to kz = 0−, then

around the branch-cut along the contour C depicted in Fig. 4.1 and then from kz = 0+

to kz = ∞. The kz-integral may now be evaluated with the help of the residue theorem.

We note that for z < 0, z′ > 0 the integrand in (4.41) vanishes exponentially in the upper

kz-plane so we might close the contour there. To do so we need to determine the position

of the integrand’s poles, if any. The Fresnel’s coefficients for the half-space geometry are

analytic for Im(kz) > 0 thus it remains to look at the polarization vectors defined in

equations (4.22)-(4.23). For the TE mode we immediately note that êTE are independent

of kz. Thus the transverse electric modes do not contribute to the integral (4.41). For the

TM mode, each polarization vector contributes a factor of 1/|k| where |k| =
√
k2
z + k2

‖.

Thus for a TM mode the integrand has a simple pole in the upper half-plane at kz = i|k‖|.
With this it is a simple matter to show that

δεij(r, r
′) = −∇i∇′jGT (r− r′), z < 0, z′ > 0 (4.42)

where

GT (r− r′) =
1

4πn2

2n2

n2 + 1

1

|r− r′| (4.43)

is the transmitted part of the electrostatic Green’s function in the half-space geometry,

see e.g. [10].

The evaluate (4.25) for the case z > 0, z′ > 0 we again plug the relevant the mode

functions (4.19)-(4.20) and after utilizing some straightforward properties of the Fresnel



Chapter 4. On the difference between the standard and generalized Coulomb gauge 69

reflection coefficients we arrive at

δεij(r, r
′) =

1

(2π)3

∑
λ

∫
d2k‖e

ik‖·(r‖−r′‖)

×
{∫ ∞
−∞

dkz ê
i
λ(k+)êjλ(k+)eikz(z−z′)

+

∫ ∞
−∞

dkzR
R
λ ê

i
λ(k+)êjλ(k−)eikz(z+z′)

+

∫ 0

iΓ
dkz

kz
kzd

∣∣TLλ ∣∣2 êiλ(k−)êjλ(k−)eikz(z+z′)

}
(4.44)

with Γ = |k‖|(n2 − 1)1/2/n and êiλ(k±) ≡ êiλ(∇)eik
±·r. Now we note that, because of the

well-known completeness properties of the polarization vectors, the first term of (4.44)

yields the transverse δ-function, Eq. (4.31). The remaining two terms are combined into

a single contour integral utilizing the branch cut due to kzd =
√
n2k2

z + (n2 − 1)k2
‖. This

is done exactly in the same manner as in [53] or [54]. Thus the result reads

δεij(r, r
′) = δ⊥ij(r− r′) +

1

(2π)3

∑
λ

∫
d2k‖e

ik‖·(r‖−r′‖)
∫
γ
dkzR

R
λ ê

i
λ(k+)êjλ(k−)eikz(z+z′) (4.45)

where the contour γ runs along the negative real axis from kz = −∞ to kz = 0−, then

around the branch cut along the contour C depicted in Fig. 4.1 and then from kz = 0+

to kz = ∞. Since the reflection coefficient RRλ has no poles in the upper kz-plane we

can close the contour there. Then, for the TE mode the integral vanishes because the

polarization vectors do not depend on kz. For the TM mode however, the polarization

vectors contribute a pole at kz = i|k‖|. The integral is easily evaluated using the residue

theorem and leads to the final result written explicitly as

δεij(r, r
′) = δijδ

(3)(r− r′)−∇i∇′j
[
G0(r− r′) +GR(r, r′)

]
z, z′ > 0 (4.46)

with GR(r, r′) being the reflected part of the electrostatic Green’s function in the half-space

geometry

GR(r, r′) = − 1

4π

n2 − 1

n2 + 1

1

|r− r̄′| (4.47)

where r̄′ = (x′, y′,−z′).
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The results (4.42) and (4.46) may be compactly written as

δεij(r, r
′) = δijδ

(3)(r− r′)−∇i∇′jG(r, r′), z′ > 0 (4.48)

where

G(r, r′) =
1

4πn2

2n2

n2 + 1

1

|r− r′|θ(−z) +

(
1

4π

1

|r− r′| −
1

4π

n2 − 1

n2 + 1

1

|r− r̄′|

)
θ(z) (4.49)

is the Green’s function of the Poisson equation for the case of a source being outside the

dielectric occupying z < 0 region of space. We see that the end result has formally the

same form as (4.32) only that the free-space Green’s function of the Poisson equation is

replaced by the Green’s function in the presence of a dielectric half-space of refractive

index n. The result (4.48) may be formally written as

δεij(r, r
′) =

(
δij +∇i∇′j∇−2

)
δ(3)(r− r′) (4.50)

provided an appropriate meaning is attached to the integral operator ∇−2. We would like

to remark that it is in this sense the completeness relation proved in [55] holds. There of

course, the Green’s function is that in the slab geometry, see appendix of [56]. Equation

(4.50) is to be compared with (4.27). Note in particular, that the derivative ∇′j which

acts on r′ can not be shifted to act on r because of the reflection term in (4.49). This

is possible only after one acts with Laplace operator on (4.50). Then, replacing ∇′j with

−∇j we recover the result (4.27) derived in [53].

Once the completeness relation of the mode functions has been explicitly calculated it is

a simple matter to evaluate the equal-time field commutator. Using Eq. (4.16) we have

[
Agc
i (r), ε0Ej(r

′)
]

= −i~δεij(r, r′) (4.51)

so for the case of the electromagnetic field in the presence of a dielectric half-space the

commutator between the vector potential and electric field operator reads

[
Agc
i (r), ε0Ej(r

′)
]

= −i~δijδ(3)(r− r′) + i~∇i∇′jG(r, r′). (4.52)

where G(r, r′) is given by (4.49) and we remind the reader that we consider the case z′ > 0
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only. We see that, compared to the standard commutation relations of the QED, the

commutator in the presence of the dielectric gains an additional term that represents a

reflection from the surface. Note that in the limit of perfect reflectivity i.e. n → ∞ we

recover the results obtained in [57][20]. We will come back to this fact at the end of the

section 4.2.

4.2 Coulomb gauge

The natural question that arises is whether it is possible to quantize the electromagnetic

field in the presence of a dielectric half-space but work in standard Coulomb gauge. A

direct approach trying to solve the Maxwell equations (4.8)-(4.9) proves inconvenient but

one may exploit gauge transformations to work out the field operators in the standard

Coulomb gauge from the ones in the generalized Coulomb gauge. A gauge transformation

from the generalized Coulomb gauge to the true Coulomb gauge may be written as follows

Ac(r, t) = Agc(r, t)−∇χ(r, t), (4.53)

φc(r, t) = φgc(r, t) +
∂

∂t
χ(r, t). (4.54)

where we set φgc(r, t) = 0 in the absence of charges. It is clear that in the Coulomb gauge,

even in the absence of charges, the scalar potential does not vanish. In fact, we shall

see shortly that it enters the Hamiltonian on equal footing with the vector potential as a

second-quantized operator. We note that the LHS of Eq. (4.53) is transverse, and since

Agc is not, the gradient of the generating function must compensate for it [16]. In other

words we have1

∇iχ(r, t) =

∫
d3r′δ

‖
ij(r− r′)Agc

j (r′, t). (4.56)

1We aim here to make the LHS of equation (4.53) transverse. Setting ∇χ = Agc
‖ does the job but so

does
∇χ = Agc

‖ + f (4.55)

where f is some function with vanishing divergence i.e. ∇ · f = 0. To convince ourselves that f necessarily
vanishes we note that equation (4.55) implies that ∇ × f = 0. This in turn implies that f is given as a
gradient of some harmonic function Φ i.e. satisfying ∇2Φ = 0. Since we expect the fields to vanish at
infinity the function Φ is necessarily zero by the maximum principle, see e.g. [58].
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The form of the χ can be easily found if we use the position representation of the longitu-

dinal δ-function

∇iχ(r, t) =
1

4π

∫
d3r′

(
∇i∇′j

1

|r− r′|

)
Agc
j (r′, t) (4.57)

where the primed derivative acts only on the Green’s function and not on Agc
j . Thus, after

integrating by parts, we identify

χ(r, t) = − 1

4π

∫
d3r′

1

|r− r′|∇
′ ·Agc(r′, t). (4.58)

The generating function can be obtained directly evaluating the integrals in (4.58) using

the explicit form of the operator (4.18). Alternatively, we take the divergence of equation

(4.53) followed by a time derivative and find that the potential in the coulomb gauge φc

satisfies the Poisson equation

−∇2χ̇(r, t) =
σ(r‖, t)

ε0
δ(z), (4.59)

with the surface charge density given by

σ(r‖, t) = −2i

∫
d2k‖|k‖|

{[∫ ∞
0

dkzd

√
~ε0
2ωk

âLkTM(t)gLk (r‖)−H.C.

]

+

[∫ ∞
0

dkz

√
~ε0
2ωk

âRkTM(t)gRk (r‖)−H.C.

]}
. (4.60)

We have introduced the mode functions

gRk (r‖) =
1

(2π)3/2

n2 − 1

2n2

(
1 +RRTM

)
eik‖·r‖ , (4.61)

gLk (r‖) =
1

(2π)3/2

n2 − 1

2n2

TLTM

n
eik‖·r‖ , (4.62)

where the reflection coefficients are given by equations (4.24). The solution of Eq. (4.59)

can be easily found to be given by

χ̇(r, t) = i

∫
d2k‖e

−|k‖||z|

{[∫ ∞
0

dkzd

√
~

2ε0ωk
âLkTM(t)gLk (r‖)−H.C.

]

+

[∫ ∞
0

dkz

√
~

2ε0ωk
âRkTM(t)gRk (r‖)−H.C.

]}
. (4.63)
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As promised, the potential φc = χ̇ turns out to be a second-quantized operator. It relates

the vector potential in standard Coulomb gauge to that in generalized Coulomb gauge

via equation (4.53). It only affects photons with the TM polarization and, interestingly,

it’s symmetric with respect to the interface i.e. χ̇(−z) = ˙χ(z). According to (4.54) The

generating function χ is found by integrating Eq. (4.63) with respect to time.

Let us now come back to the issue of the commutation relations between the field operators.

Clearly we expect

[
Ac
i (r), ε0Ej(r

′)
]

= −i~δ⊥ij(r− r′) = −i~δijδ(3)(r− r′) + i~∇i∇′jG0(r− r′) (4.64)

which is a consequence of the fact that ∇χ is given as a longitudinal part of Agc, cf. Eq.

(4.56). This can also be confirmed by an explicit calculation using the mode functions

(4.61)-(4.62). The commutator splits as follows

[
Ac
i (r), ε0Ej(r

′)
]

=
[
Agc
i (r)−∇iχ(r), ε0Ej(r

′)
]

= −ihδεij(r, r′)−
[
∇iχ(r), ε0Ej(r

′)
]

(4.65)

where δεij(r, r
′) is given by equation (4.48) and the reader is reminded that we consider

the case z′ > 0 only. Plugging in the mode functions (4.61)-(4.62) into Eq. (4.65) we find,

using the same techniques as in the calculation of the completeness relation (4.25), that

[
∇iχ(r), ε0Ej(r

′)
]

= i~∇i∇′j

 −
n2 − 1

n2 + 1
G0(r− r′) z < 0, z′ > 0

GR(r, r′) z > 0, z′ > 0
, (4.66)

where G0 and GR are the Green’s functions as introduced in equations (4.33) and (4.47).

Equation (4.66) when combined with (4.48) and (4.65) confirms the assertion stated by

Eq. (4.64).

The commutator between the vector potential and electric field operators is gauge de-

pendent which has been clearly demonstrated by the above considerations. Therefore, the

modification of the QED commutation relations is not a physical effect but rather is related

to the choice of gauge in which the electromagnetic field is quantized, which is of course in

principle only a matter of convenience. We note that the commutation relation between
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the physical fields retain the standard form, as they should. Consider the commutator

[
B(r),E(r′)

]
= ∇×

[
A(r),E(r′)

]
. (4.67)

We see from (4.53) that regardless of the gauge one uses to calculate the RHS of the above

relation the end result is the same. The commutators (4.52) and (4.64) differ only by a

longitudinal part that is annihilated by the curl operator. Thus, the shape of the cavity

has no impact on the fundamental commutation relations of physical fields.

When the cavity walls are modelled as perfectly reflecting mirrors the generalized Coulomb

gauge (4.10) is meaningless. Then, a common way to quantize the electromagnetic field

is to work with the free-space form of Eq. (4.9) in standard Coulomb gauge (4.11) and

demand that the fields are excluded from interior of the perfect reflector i.e. one solves(
∇2 − ∂2

∂t2

)
A(r, t) = 0,

∇ ·A(r, t) = 0, (4.68)

together with the condition that the electric field vanishes for z ≤ 0. This in particular

implies that

Ex(z = 0+) = 0, Ey(z = 0+) = 0. (4.69)

The relation between the vector potential and the electric field is taken to be

E(r, t) = −∂A(r, t)

∂t
, (4.70)

and for this reason the boundary conditions for the electric field immediately imply the

rules for the vector potential. This method of quantization gives the vector field operator

which may be obtained by taking the n → ∞ limit of Eq. (4.18). This in turn implies

that the commutation relations for the field operators are given by the perfect reflector

limit of the commutation rule (4.52) and NOT by Eq. (4.64). Explicitly:

[
Ai(r), ε0Ej(r

′)
]

= −i~δijδ(3)(r− r′) +
i~
4π
∇i∇′j

(
1

|r− r′| −
1

|r− r̄′|

)
, z, z′ > 0, (4.71)

where r̄ = (x, y,−z). At first it seems surprising that in spite of the Coulomb gauge

condition imposed on the vector potential the reflected part of the Green’s function appears
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in the commutator. This can be explained as follows. In the presence of the perfect

reflector the fluctuations of the quantized electromagnetic field imply the existence of the

fluctuating charge density on the surface of the perfect reflector. The Gauss’s law reads

∇ ·E(r, t) =
σ(r‖, t)

ε0
δ(z), (4.72)

where σ(r‖) is given as a perfect reflector limit of Eq. (4.60). Relation (4.72) is a conse-

quence of the boundary conditions applied to the electric field at z = 0 (and vice-versa).

We observe that equations (4.68), (4.70) and (4.72) can not be simultaneously satisfied on

the surface of the perfect reflector. Thus, the gauge condition in (4.68) should rather read

∇ ·A(r, t) = 0 for z 6= 0 (4.73)

which is an adaptation of the generalized Coulomb gauge condition (4.10) to the case of the

perfect reflector rather than true Coulomb gauge. This is the origin of the reflected Green’s

function term appearing in the commutator (4.71) as it has also been recently pointed out

in [59]. We can now observe that the oversimplified model of the perfectly reflecting cavity

walls obscures the fact that the form of the commutation relation is actually determined

by the choice of gauge. We would also like to remark that it is claimed in [59] that the

commutator between the physical fields (4.67) is affected by the cavity walls if one assumes

them to be perfectly reflecting. We have clearly shown that this is an incorrect conclusion.

4.3 Hamiltonians

Quantum electrodynamics in the presence of dielectrics is most conveniently formulated in

the generalized Coulomb gauge. The minimal-coupling Hamiltonian of a charged particle

that is placed near dielectric half-space and coupled to the quantized electromagnetic field

may be written as [17]

Hgc =
[p− qAgc(r0)]2

2m
+

1

2

∫
d3r

{
ε0ε(z)

[
∂Agc(r)

∂t

]2

+
B2(r)

µ0

}

+
1

2

∫
d3rε0ε(z)∇φgc(r) ·∇φgc(r), (4.74)
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where r0 is the position of the particle. Here it will prove most convenient to write the

Hamiltonian Hf of the electromagnetic field in the form

Hf =
∑
k

~ωk

(
a†kak +

1

2

)
. (4.75)

The integral involving the scalar potential φgc is a c-number and it contains infinite self-

energy of the particle Σ as well as the z0-dependent electrostatic interaction between the

dielectric and the charge

1

2

∫
d3rε0ε(z)∇φgc(r) ·∇φgc(r) = Σ + V es, (4.76)

with

V es = − q2

4πε0

n2 − 1

n2 + 1

1

4z0
. (4.77)

Equation (4.77) can be seen as an interaction energy of a static charge with its image in

the dielectric, multiplied by a factor of 1/2. Dropping the irrelevant self-energy of the

particle Σ the Hamiltonian Hgc may be written as

Hgc =
[p− qAgc(r0)]2

2m
+Hf + V es. (4.78)

Perhaps the most instructive way of obtaining the Hamiltonian in Coulomb gauge Hc is

by using the unitary transformation

Hc = eiS/~Hgce−iS/~ + i~
(
d

dt
eiS/~

)
e−iS/~, (4.79)

with the operator S is given by

S(r0, t) = −qχ(r0, t). (4.80)

The generating function χ(r, t) is given as an integral of (4.63) with respect to time and is

evaluated at the position of the particle r0. In what follows we set operators to be time-

independent (Schrödinger picture) so that the term containing the time derivative in (4.79)

does not contribute. Then, using the same methods as in the proof of the completeness
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relation (4.25), it is not difficult to show that

eiS/~ [p− qAgc(r0)] e−iS/~ = [p− qAc(r0)] ,

eiS/~Hfe−iS/~ = Hf +
i

~

[
S(r0), Hf

]
+

1

2

(
i

~

)2 [
S(r0),

[
S(r0), Hf

]]
= Hf + qχ̇(r0)− n2 − 1

2n2
V es. (4.81)

With this, the Hamiltonian in the Coulomb gauge is written

Hc =
[p− qAc(r0)]2

2m
+Hf + qχ̇(r0) +

(
n2 + 1

2n2

)
V es. (4.82)

We see that compared to the Hamiltonian written out in the generalized Coulomb gauge,

Eq. (4.78), some of the electrostatic interaction energy has been redistributed and is now

contained in the second-quantized part of the Hamiltonian Hc. We will demonstrate that

it is now shared among two terms

Hes
int = qχ̇(r0) +

(
n2 + 1

2n2

)
V es. (4.83)

Working with the standard time-independent perturbation theory applied to the interac-

tion term qχ̇(r) one finds that the first non-vanishing contribution is of the second-order

and is given by

∆Ees =
∑
k,pf

|〈pf ; 1kTM|qχ̇(r0)|p; 0〉|2

p2

2m
−
(

p2
f

2m
+ ωk

) ≈ −q2
∑
k

|χ̇(r)|2
ωk

= − q2

2ε0

∫
d2k‖e

−2|k‖|z0

[∫ ∞
0

dkzd

∣∣gLk (r‖)
∣∣2

ω2
k

+

∫ ∞
0

dkz

∣∣gRk (r‖)
∣∣2

ω2
k

]
, (4.84)

where we have used no-recoil approximation. The mode functions g are given in Eqs.

(4.61)-(4.62). The resulting integrals in (4.84) can be calculated analytically and the

result is

∆Ees =

(
n2 − 1

2n2

)
V es. (4.85)
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Thus, the contributions from both terms in equation (4.83) add up to yield the whole of

the electrostatic interaction energy(
n2 − 1

2n2

)
V es +

(
n2 + 1

2n2

)
V es = V es. (4.86)

This is of course what one would expect since both formulations of the theory must lead

to the same results.



Chapter 5

Interaction of atoms with layered

dielectrics

5.1 Introduction

The question of the interaction between a neutral atom and a macroscopic dielectric body,

once of purely academic interest, has recently been promoted to a real-life physics problem,

thanks to the rapid developments in nanotechnology and experimental techniques. It is

no longer the case this interaction, the so-called Casimir-Polder interaction, is a tiny effect

that can be ignored in all practical situations. Instead, on the length-scales that nanotech-

nology nowadays operates in, dispersion forces as they are also called, become significant

and may appreciably influence miniaturized physical systems. The ambition of nanotech-

nology and cold-atom physics to construct a quantum computer faces, among others, the

problem of trapping and extremely accurate guiding of single atoms above dielectric sub-

strates, so-called atom chips. To best utilize such technologies the nearby environment

of a trapped atom usually comprises of a complicated arrangement of inhomogeneous di-

electrics. The question then arises, what are the magnitudes of the Casimir-Polder forces

involved and can one possibly engineer the shapes of surrounding bodies to obtain the

optimal ones that would minimize the nuisance of the dispersion forces or positively con-

tribute to the trapping or guiding? However, to search for such possibilities one needs

to go beyond simple featureless geometries and ground-state atoms as such models lack

79
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flexibility. Perhaps the least sophisticated but still interesting example to study in this

context is to consider a neutral atom, possibly excited, above a layered dielectric half-

space, cf. Fig. 5.1. If the atom is in its ground state, then the Casimir-Polder force is

always attractive. In such case it is desirable to derive simple analytical formulae that

would allow to obtain quick estimates of the magnitudes of the forces involved in terms of

the optical properties of the layer and the substrate [56]. On the other hand, if the atom is

in its excited state, then as it is widely recognised [27], the potential acquires a oscillatory

contribution that can result in a repulsive force. Additionally, the presence of the layer

creates the possibility of a resonance between the wavelength of the atomic transition and

the thickness of the layer, which could lead to an enhancement of the interaction.

There is a variety of theoretical approaches devised to study the Casimir-Polder interaction

(for a comprehensive account of the subject see [60]) but perhaps the most successful

ones being the linear response theory [48] and phenomenological macroscopic QED [61].

Consider for example methods developed in [27][62]. They use linear response theory

[48] and express the field susceptibilities in terms of Fresnel reflection coefficients. This

method allows them to express the Casimir-Polder interaction as an integral along the

imaginary frequency axis of the product of the atomic and field susceptibilities. In practice

the problem is reduced to the calculation of the classical electromagnetic Green tensor

expressed in terms of Fresnel coefficients. Such calculations tend to be tedious and often

inevitably lead to the use of the numerical methods. However it is generally beneficial

to study problems of QED with methods that are physically transparent and do not

obscure basic the physics. In the example of the geometry considered in this Chapter the

technique of the electromagnetic field quantization based on the normal-mode expansion

[52] seems to be best emphasizing the physics of the problem, namely the fact that the

system supports two kinds of modes of the electromagnetic field [63]. These comprise

of travelling modes with a continuous spectrum and the trapped modes with discrete

spectrum i.e. occurring at only certain allowed frequencies. The trapped modes arise

because of repeated total internal reflections within the top layer of higher refractive index

than the substrate and emerge as evanescent waves outside the wave-guide. This gives a

rise to a complicated structure of evanescent modes outside the layered dielectric where

evanescent waves with continuous spectrum, also arising in a half-space geometry [52], are

superposed with evanescent modes that arise only in the presence of the slab-like waveguide
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[56]. In the framework we apply in this work, in the same spirit as [56][64], the use of

standard perturbation theory renders all calculations explicit and it is possible from the

outset to track down and remove if necessary any ambiguities that tend to remain hidden

in more elaborate theories. For example, linear-response theory results in an integral over

the Fresnel reflection coefficients but gives no indication of whether the evanescent waves

associated with the trapped modes contribute to the Casimir-Polder interaction or not.

The question is answered at once if the normal modes approach is used instead, see [63][65].

Also, it has been recently pointed out [56] that elaborate theories may not only obscure

the basic physics but can also lead one to draw incorrect conclusions [66].

The purpose of this Chapter is twofold. Firstly, it aims to support current experimental

efforts by providing the analytical formulae useful for quick estimates of the dispersion

forces acting on an atom placed in the vicinity of the layered dielectric with the emphasis

on the corrections caused by the layer as compared to the standard half-space results

reported in [64]. It also investigates the resonant interaction between an excited atom

and a layer in the search for the possible enhancement or sign reversal of the Casimir-

Polder force. Furthermore, it formulates a simple and explicit theory based on the well

understood concepts of theoretical physics such as perturbation theory and electromagnetic

field quantization based on normal-modes expansion. The theoretical aspect, although

serving only as a means to a practical end result, is interesting in its own right. The

perturbative approach used in this work leads to the problem of the summation over the

modes of the electromagnetic field, which is non-trivial because of the dual character of

the modes of the electromagnetic field. The task of adding the discrete and continuous

field modes is elegantly accomplished with the use of complex-integral techniques. This

allows us to explicitly show that the canonical commutation relations between the field

operators are satisfied, which is equivalent to saying that the completeness relation of the

normal-modes holds in the geometry considered. Although this is not a surprise because

the field modes are solutions of a Hermitian operator’s eigenvalue problem, the explicit

calculation we carry out provides us with the mathematics necessary to complete a typical

perturbative calculation in this geometry. It also allows us to cast the end result in a

simple and elegant form that is easy to study analytically in various asymptotic regimes,

which was our goal.
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This chapter is organised as follows. First we quantize the electromagnetic field in the

presence of the layered dielectric, Section 5.2. Then, in Section 5.2.3, we explicitly prove

the completeness relation of the electromagnetic field modes. Equipped with the necessary

mathematical tools we proceed to calculate the energy shift in Section 5.3 and then study

it analytically (Section 5.4) and numerically (Section 5.5).

5.2 Field quantization in the presence of a layered boundary

Figure 5.1: Atomic dipole moment in the vicinity of the layered dielectric. The dielectric
function is a piecewise constant function of the coordinate z.

Our ultimate aim is to work out the energy-level shift in an atom caused by the presence

of a layered dielectric. In order to obtain a result that fully takes into account retardation

effects, the quantization of the electromagnetic field is necessary. To emphasize the physics

of the problem we choose to quantize the electromagnetic field by a normal-mode expansion

as described in [19]. The dielectric environment we consider (cf. Fig. 5.1) consists of the

substrate, a dielectric half-space occupying the region of space z < −L/2 described by a

dielectric constant εs = n2
s . On top of the substrate we place an additional dielectric layer

of thickness L, which has a dielectric constant εl = n2
l . We assume that the dielectric

constant of the layer is higher than that of the substrate εl > εs in order to account for

modes that are trapped inside the layer. Although we work with this assumption the final
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result will turn out to be valid even when the reflectivity of the substrate exceeds that of

the layer. Throughout the Chapter we shall assume all dielectric constants to be frequency

independent so that the optical properties of the system are described solely by a pair of

real numbers, εl and εs.

To solve Maxwell equations for the electromagnetic field operators in the Heisenberg’s

picture we introduce, in the usual manner [10], the electromagnetic potentials A(r, t) and

Φ(r, t) and work in the generalized Coulomb gauge

∇ · [ε(r)A(r)] = 0, (5.1)

with the dielectric permittivity being a piecewise constant function as plotted in Fig. 5.1.

In the absence of free charges one can set Φ(r, t) = 0 and work only with the vector

potential A(r, t) which satisfies the wave equation

∇2A(r, t)− ε(z) ∂
2

∂t2
A(r, t) = 0, |z| 6= L/2. (5.2)

Note that right on the interfaces the condition (5.1) is singular due to discontinuities of

the dielectric function and equation (5.2) doesn’t hold at these points. The normal-modes

of the field f(r)eiωt satisfy the Helmholtz equation

∇2fkλ(r) + ε(z)ω2fkλ(r) = 0, |z| 6= L/2. (5.3)

and we have labelled them by their wave-vector k and polarization λ = {TE,TM}. The

mode decomposition allows solving the field equation (5.2) in each distinct region of space

separately and then stitch up the solutions across the interfaces by demanding that they

are consistent with the Maxwell boundary conditions i.e. E‖, D⊥ and B are continuous.

The Helmholtz equation (5.3) stems from the Hermitean operator’s eigenvalue problem

[19] [
1√
ε
∇×∇× 1√

ε

]√
εfkλ(r) = −ω2√εfkλ(r), (5.4)

so that we expect the weighted mode functions
√
ε(r)fkλ(r) to form a complete set of

functions being capable of describing any field configurations. The completeness relation
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takes the form

∫
d2k‖

∑
kz

∫
f ikλ(r) f∗jkλ(r′) = δεij(r, r

′), z, z′ > L/2 (5.5)

with δεij(r, r
′) being the unit kernel in the subspace of functions satisfying (5.1), we shall

call it the generalized transverse delta-function. From the considerations outlined in the

Chapter 4 we expect that it is given by

δεij(r, r
′) = δijδ

(3)(r− r′)−∇i∇′j G(r, r′) (5.6)

with the electrostatic Green’s function of the Laplace equation given by

G(r, r′) =
1

4π

1

|r− r′| −
1

4π

∫ ∞
0

dkJ0(k|r‖ − r′‖|)

n2
l − 1

n2
l + 1

− n2
l − n2

s

n2
s + n2

l

e−2kL

1− n2
l − 1

n2
l + 1

n2
l − n2

s

n2
s + n2

l

e−2kL

e−k(z+z′) (5.7)

where we have chosen to confine ourselves to the case z, z′ > L/2. The J0 in the above

equation is a Bessel function of the first kind [21, 9.1.1] and the outline of the derivation

of the Green’s function is given in the Appendix D.

The sum over all modes in equation (5.5) is complicated because the spectrum of the field

modes has non-trivial structure. It has been shown previously [63][67] that the system

supports two kinds of quite distinct types of modes. There are travelling modes going

from left to right or in the opposite direction, and there are trapped modes that exist

within the dielectric layer, which essentially acts as a wave-guide. The spectrum of the

travelling modes is continuous whereas the spectrum of the modes trapped in the dielectric

layer is discrete and only some values of the wavevector are allowed, namely those satisfying

a certain dispersion relation. This dual character of the spectrum of the field modes is a

major obstacle in working out the energy shift but an elegant treatment of the problem

has been developed in [55], whose basic idea we follow here.

We choose the normalization convention

∫
d3r ε(z)f∗kλ(r) · fk′λ′(r) = δλλ′ ×

 δ(3)(k− k′) travelling modes

δ(2)(k‖ − k′‖)δkzk′z trapped modes,
. (5.8)
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Then, the electric field E(r) = −∂tA(r) is expanded in terms of the normal modes as

E(r) = i
∑
λ

∫
d2k‖

∑
kz

∫ √
ωk

2ε0
ckλfkλ(r)e−iωkt + C.C. (5.9)

where C.C. stands for complex conjugate. To promote the classical field (5.9) to an

operator, we introduce for each mode photon creation and annihilation operators, a†kλ

and akλ, satisfying bosonic commutation relation

[akλ, a
†
kλ′ ] = δλλ′ ×

 δ(3)(k− k′) travelling photons

δ(2)(k‖ − k′‖)δkzk′z trapped photons
.

(5.10)

These operators replace c-numbers ckλ in the expansion (5.9) which accomplishes the quan-

tization of the electromagnetic field. To be able to write out the field operators explicitly

one needs to solve the eigenvalue problem (5.3) and determine the spatial dependence of

functions fkλ(r) so we turn our attention to this now.

5.2.1 Travelling modes

Before the travelling modes are worked out, for further convenience, we introduce Fresnel

coefficients for a single interface. Assume that a plane wave is travelling from the medium

with refractive index nb to the medium with the refractive index na, the interface being

the z = 0 plane. Then, the standard Fresnel reflection and transmission coefficients given

by [10]

rba
TE =

kzb − kza

kzb + kza
, tba

TE =
2kzb

kzb + kza
, (5.11)

rba
TM =

kzb/n
2
b − kza/n

2
a

kzb/n
2
b + kza/n2

a

, tba
TM =

2kzb/nanb

kzb/n
2
b + kza/n2

a

,

where kzi are the components of the wavevectors perpendicular to the interface in the

medium i = {a,b}.

The geometry of the problem (cf. Fig. 5.1) naturally divides the space into three distinct

regions. Consequently there are three wavevectors to be distinguished. The wavevector in
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vacuum (z > L/2)

k± = (kx, ky,±kz) = (k‖,±kz), (5.12)

the wavevector in the dielectric layer (|z| < L/2)

k±l = (kx, ky,±kzl) = (k‖,±kzl), (5.13)

and the wavevector in the substrate (z < −L/2)

k±s = (kx, ky,±kzs) = (k‖,±kzs). (5.14)

The components of the wavevector that are parallel to the surface are the same for all three

regions of space. This follows directly from the requirement that the boundary conditions

must be satisfied at all points of a given surface i.e. the spatial phase factors eiki·r must be

equal at z = ±L/2 for all r‖. The different signs of the z-components of the wavevectors

correspond to the waves propagating in different directions. However, the direction of the

propagation of a particular mode needs to be consistent in all three layers so we require

that on the real axis

sign(kz) = sign(kzl) = sign(kzs). (5.15)

Since the frequency ω of a single mode is fixed, the z-components of the wavevectors in

the dielectric are related to the vacuum wavevector kz by

kzl =
√

(n2
l − 1)k2

‖ + n2
l k

2
z , (5.16)

kzs =
√

(n2
s − 1)k2

‖ + n2
sk

2
z . (5.17)

The mode functions fkλ(r) are transverse everywhere except right on the interfaces z =

±L/2, cf. (5.1). To ensure this transversality, it is convenient to introduce orthonormal

polarisation vectors

fkλ(r) = êλ(k)fkλ(r) (5.18)

defined as

êTE(∇) = (−∆‖)
−1/2

(
− i∇y, i∇x, 0

)
,

êTM(∇) = (∆‖∆)−1/2
(
−∇x∇z,−∇y∇z,∆‖

)
, (5.19)
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with ∆ being the Laplace operator expressed in Cartesian coordinates and it is understood

that the above operators act on the factors of the type eik
±
i r i.e. êλ(k±i ) ≡ êλ(∇)eik

±
i r.

Polarization vectors defined in such a way are normalized to unity provided all three com-

ponents of the wavevector are real. This statement breaks down in the case of evanescent

waves which have wavevectors with pure imaginary components. The spatial dependence

of the mode functions is worked out requiring that each mode consists of the incoming,

reflected and transmitted parts that are joined together by standard boundary conditions

across the interfaces, i.e. E‖, D⊥ and B are continuous.

With this the travelling modes of the system incident from the left, normalized according

to (5.8), are given by

fLkλ(r) =
êλ(∇)

(2π)3/2ns


eik

+
s ·r +RLλe

ik−s ·r z < −L/2
ILλ e

ik+
l ·r + JLλ e

ik−l ·r |z| < L/2

TLλ e
ik+·r z > L/2

,

(5.20)

whereas the right-incident modes are given by

fRkλ(r) =
êλ(∇)

(2π)3/2


TRλ e

ik−s ·r z < −L/2
IRλ e

ik−l ·r + JRλ e
ik+

l ·r |z| < L/2

eik
−·r +RRλ e

ik+·r z > L/2

.

(5.21)

For the sake of clarity the reflection and transmission coefficients are listed in full in

Appendix C whereas here we only write down the most relevant of them:

RRλ =
rvl
λ + rls

λ e
2ikzlL

1 + rvl
λ r

ls
λ e

2ikzlL
e−ikzL, (5.22)

TLλ =
tslλ t

lv
λ e

(2ikzl−ikzs−ikz)L/2

1 + rsl
λ r

lv
λ e

2ikzlL
. (5.23)

5.2.2 Trapped modes

Trapped modes correspond to the repeated total internal reflections within the layer of

higher refractive index nl. This happens when the angle of incidence of the incoming
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wave is sufficiently high and exceeds some critical angle. This critical angle is different for

the two opposite waveguide interfaces. First consider the layer-vacuum interface. From

equation (5.16) we can obtain the reciprocal relation expressing the kz in terms of the kzl

kz =
1

nl

√
k2

zl − (n2
l − 1)k2

‖ (5.24)

It is seen that whenever k2
zl < (n2

l − 1)k2
‖ the kz becomes pure imaginary

kz = +
i

nl

√
(n2

l − 1)k2
‖ − k2

zl (5.25)

and we have a mode that exhibits evanescent behaviour on the vacuum side. The sign of

the square root is chosen so that these modes decay exponentially when moving away from

the layer in the positive z-direction. This also ensures that the total internal reflection

truly occurs i.e. |rvl
λ |2 = 1.

However, since on the other side of the waveguide we have a substrate rather than vacuum

not all of the modes internally reflected at the vacuum-layer interface get trapped. From

the relation

kzs =
ns

nl

√
k2

zl − k2
‖

(
n2

l

n2
s

− 1

)
(5.26)

we get the condition of total internal reflection for the substrate-dielectric interface to be

k2
zl ≤ (n2

l /n
2
s − 1)k2

‖. Therefore, the modes satisfying the condition

(n2
l /n

2
s − 1)k2

‖ ≤ k2
zl ≤ (n2

l − 1)k2
‖ (5.27)

are not trapped but appear in vacuum as a continuous spectrum of evanescent waves

that are accounted for in the left-incident travelling modes, their quantization was first

presented in [52]. The trapped modes occur if

0 ≤ k2
zl ≤ (n2

l /n
2
s − 1)k2

‖. (5.28)
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The procedure of obtaining the trapped modes is largely equivalent to that of the travelling

modes. They have the form

fTkλ(r) = Nλêλ(∇)


T ls
λ e

ik−s ·r z < −L/2
Vλe

ik−l ·r + eik
+
l ·r |z| < L/2

T lv
λ e

ik+·r z > L/2

.

(5.29)

Standard boundary conditions are imposed on both interfaces and from z = −L/2 bound-

ary we get

T ls
λ = (tlsλ/r

ls
λ )e−i(kzl+kzs)L/2 ,

Vλ = (1/rls
λ )e−ikzlL , (5.30)

whereas from the z = L/2 boundary

T lv
λ = tlvλ e

−i(kzl−kz)L/2 ,

Vλ = rlv
λ e

ikzlL. (5.31)

Since both equations, (5.30) and (5.31), need to be simultaneously satisfied we have our

dispersion relation

1 + rvl
λ r

ls
λ e

2ikzlL = 0 (5.32)

that determines the allowed values of kzl within the layer. Since we will be dealing with an

atom on the vacuum side it will be necessary to express the dispersion relation in terms

of kz rather than kzl. With little effort one can show that the allowed values of the z-

component of the evanescent waves’ wavevector appearing on the vacuum side are given

by numbers qnλ :

qnTE = {kz : kz + ikzl(kz) tan[φTE(kz)] = 0} ,

qnTM =
{
kz : kz + ikzl(kz)/n

2
l tan[φTM(kz)] = 0

}
,

(5.33)
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with

φTE(kz) = arg
[
(kzl + kzs)e

−ikzlL
]
,

φTE(kz) = arg
[
(kzl/n

2
l + kzs/n

2
s )e−ikzlL

]
.

The numbers qnλ lie on the imaginary kz-axis, they satisfy, cf. Eq. (5.25) and (5.28),(
1

n2
l

− 1

)
k2
‖ < (qnλ)2 <

(
1

n2
s

− 1

)
k2
‖. (5.34)

The normalization constant Nλ for trapped modes is easily obtained by the direct evalu-

ation of the integral (5.8). It is given by

Nλ =
1

2π

[
2n2

l L+ Fλ(nl, ns) + Fλ(nl, 1)

]−1/2

(5.35)

with

Fλ(nl, ns) =
n2

s

2
|êλ(k−s )|2 |t

ls
λ |2
|kzs|

− nl

kzl
Im(rls

λ) ê∗λ(k+
l ) · êλ(k−l )

and the reader is reminded that in (5.35) the z-components of the wavevectors k and ks are

pure imaginary and because of that the TM polarization vectors êTM(k−) and êTM(k−s )

are no longer normalized to unity.

5.2.3 Field operators and commutation relations. Completeness of the

modes.

Now that we have determined the spatial dependence of the mode functions we are in

position to write out the vector potential field operator explicitly

Â(r, t) =

{∫
d2k‖

∫ ∞
0

dkz
1√

2ε0ωk
fRkλ(r)aRkλe

−iωkt

+

∫
d2k‖

∫ ∞
0

dkzs
1√

2ε0ωk
fLkλ(r)aLkλe

−iωkt

+

∫
d2k‖

∑
kzl

1√
2ε0ωk

fTkλ(r)aTkλe
−iωkt

}
+ H.C. (5.36)
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The sum in the last term runs over the allowed values of the z-component of the layer’s

wavevector kzl i.e. solutions of the dispersion relation (5.32). For a given type of mode, left-

incident, right-incident or trapped, photon creation and annihilation operators appearing

in (5.39) satisfy the commutation relations (5.10). Commutators between photon operators

corresponding to different types of modes vanish as a consequence of the orthogonality of

the field modes (5.8), e.g. [
aLkλ,

(
aRk′λ′

)†]
= 0. (5.37)

We would like to explicitly verify the equal-time canonical commutation relation between

field operators, say the electric field operator Ê(r, t) and the vector potential operator

Â(r, t)

[
Âi(r, t), ε0Êj(r

′, t)
]

= −iδεij(r, r′), z, z′ > L/2 (5.38)

with δεij(r, r
′) given by Eq. (5.6) and (5.7). To evaluate (5.38) we shall need the electric

field operator

Ê(r, t) = i

{∫
d2k‖

∫ ∞
0

dkz

√
ωk

2ε0
fRkλ(r)aRkλe

−iωkt

+

∫
d2k‖

∫ ∞
0

dkzs

√
ωk

2ε0
fLkλ(r)aLkλe

−iωkt

+

∫
d2k‖

∑
kzl

√
ωk

2ε0
fTkλ(r)aTkλe

−iωkt

}
+H.C. (5.39)

Plugging in the operators (5.39) and (5.36) into (5.38) and making use of commutation

relations (5.10) and (5.37) we are led to result that the LHS of (5.38) is given by

LHS = iRe
∑
λ

∫
d2k‖

[ ∫ ∞
0

dkz f
R
kλ,i(r)f∗Rkλ,j(r

′)

+

∫ ∞
0

dkzs f
L
kλ,i(r)f∗Lkλ,j(r

′)

+
∑
kzl

fTkλ,i(r)f∗Tkλ,j(r
′)

]
. (5.40)

The quantity on the right-hand side is the summation over all modes just as prescribed by

equation (5.5) and therefore we expect it to be equal to the generalized transverse delta

function, Eq. (5.6). This shows that the statement of the completeness of the modes (5.5)
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is in fact equivalent to the commutation relation (5.38), as has been noted before in [53].

To prove that the relation

δεij(r, r
′) =

∑
λ

∫
d2k‖

[ ∫ ∞
0

dkz f
R
kλ,i(r)f∗Rkλ,j(r

′)

+

∫ ∞
0

dkzs f
L
kλ,i(r)f∗Lkλ,j(r

′) +
∑
kzl

fTkλ,i(r)f∗Tkλ,j(r
′)

]
(5.41)

holds for z, z′ > L/2 we need to carry out the sum over all field modes. To get started

we carry out a change of variables in (5.41). We convert the kzs-integral and the kzl-sum

to run over the values of kz. In the case of the integral it is a simple change of variables

according to (5.17) ∫ ∞
0

dkzs = n2
s

∫ ∞
0

dkz
kz

kzs
+ n2

s

∫ 0

iΓs

dkz
kz

kzs
(5.42)

with Γs =
√

(n2
s − 1)k2

‖/ns. It is seen that the contributions from the left-incident modes

split into a travelling part and an evanescent part. The values of kz included in the last

integral correspond to the condition stated in equation (5.27). In the case of the sum

we change the summation over kzl to run over the values of kz as defined by equation

(5.33). Plugging in the mode functions (5.20) and (5.21) into equation (5.41) and utilizing

straightforward properties of the reflection and transmission coefficients that hold for real

kz, kzs,

R∗Rλ (−kz) = RRλ (kz),
kz

kzs

∣∣TLλ ∣∣2 +
∣∣RRλ ∣∣2 = 1, (5.43)

we can rewrite the completeness relation as

δεij(r, r
′) = δ⊥ij(r− r′) +

∑
λ

êiλ(∇)ê∗jλ (∇′)
∫

d2k‖e
ik‖(r‖−r′‖)

{∑
qnλ

|Nλ|2
∣∣∣T lv
λ

∣∣∣2 eikz(z+z′)

+
1

(2π)3

∫ 0

iΓs

dkz
kz

kzs

∣∣TLλ ∣∣2 eikz(z+z′) +
1

(2π)3

∫ ∞
−∞

dkzR
R
λ e

ikz(z+z′)

}
. (5.44)

The first term in the above equation is the standard transverse delta-function. Therefore,

if equation (5.41) is to hold, the term in the curly brackets needs to be proportional to

the reflection part of the electrostatic Greens function, cf. Eq. (5.7). Note however that it

contains two integrals and a sum and at this stage it is not clear how to proceed with the

proof that it is indeed the case. Now it is apparent that the discreteness of the spectrum

of the trapped modes is a nuisance that needs to be overcome if one is to complete the



Chapter 5. Interaction of atoms with layered dielectrics 93

task of summing over the electromagnetic modes successfully. Similar difficulty would

appear in any perturbative calculation in this type of geometry, which led Eberlein and

Contreras Reyes to address the problem in a considerable detail [55]. We proceed with a

completely analogous method to [55] first noting that what we have here can be considered

as a superposition of a slab and a half-space geometry, cf. [55] and [53]. One can utilize

the branch-cut due to kzs (it runs along the imaginary kz axis between ±iΓs, cf. Fig. 5.2)

to express the integral of |TLλ |2 in (5.44) as an integral of the reflection coefficient RRλ that

runs from 0− along the square root cut up to the branch-point at +iΓs and then back

down to the origin 0+. Note that the branch-cut due to the kzl is irrelevant because of

the symmetry property of the reflection coefficient RRλ (−kzl) = RRλ (kzl). Indeed, the first

two integrals in the curly braces in equation (5.44) can be combined together as a single

integral in the complex kz plane [53]. This is possible because the relation

kz

kzs

∣∣TLλ ∣∣2 ∣∣∣∣
kz; kzs,kzl>0

= RRλ

∣∣∣∣
kz; kzs,kzl>0

−RRλ
∣∣∣∣
kz; kzs,kzl<0

(5.45)

continues to hold for coefficients (5.22) with purely imaginary z-component of the vacuum

wavevector kz (cf. [54]). Thus, the contributions from the travelling and evanescent modes

can be combined into a one single complex integral along the path γs depicted in Fig. 5.2

and the term in the curly brackets of equation (5.44) becomes

1

(2π)3

∫
γs

dkzR
R
λ ê

i
λ(k+)êjλ(k−)eikz(z+z′) +

∑
qnλ

|Nλ|2
∣∣∣T lv
λ

∣∣∣2 êiλ(k+)êjλ(k−)eikz(z+z′). (5.46)

Here we have now included the polarization vectors explicitly in the integrals. This is a

crucial step as they alter the analytical structure of the complex kz-plane. In particular,

the TM polarization vector introduces a pole at the points where kz = ±i|k‖| due to the

factor 1/|k|2 present in the normalization factor. We will see that this is precisely this

pole that gives rise to the reflection term present in (5.6).

Recall equation (5.22) which shows that the reflection coefficient contains the phase factor

e−ikzL. Since z + z′ − L > 0 the argument of the exponential in (5.46) is negative in the

upper half of the complex kz plane and we can evaluate the kz-integral in equation (5.46) by

closing the contour in the upper half-plane. For this we need to determine the analytical

properties of RRλ . We note that the denominator of the reflection coefficient (5.22) is
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Figure 5.2: The dashed line represents the contour γs used to evaluate the kz integral in

Eq. (5.46). Here Γs =
√

(n2s − 1)k2
‖/ns and Γl =

√
(n2l − 1)k2

‖/nl. The crosses represent

the poles of the reflection coefficient RRλ i.e. the solutions to the dispersion relation (5.32).

precisely the dispersion relation (5.32). Rewriting the reflection coefficients in the form

RRTE =

kz − kzl

(
1− rls

TE exp(2ikzlL)

1 + rls
TE exp(2ikzlL)

)
kz + kzl

(
1− rls

TE exp(2ikzlL)

1 + rls
TE exp(2ikzlL)

) , RRTM =

kz −
kzl

n2
l

(
1− rls

TM exp(2ikzlL)

1 + rls
TM exp(2ikzlL)

)
kz +

kzl

n2
l

(
1− rls

TM exp(2ikzlL)

1 + rls
TM exp(2ikzlL)

)

allows us to deduce that RRλ has a finite number of simple poles on the imaginary axis.

When closing the contour we enclose all of them and by Cauchy’s theorem the problem is

reduced to the evaluation of the residues at these points.

∑
λ

∫
γs

dkzR
R
λ ê

i
λ(k+)êjλ(k−)eikz(z+z′) = 2πi

∑
λ

∑
Res

RRλ ê
i
λ(k+)êjλ(k−)eikz(z+z′)

= 2πi
∑
λ

∑
qnλ

lim
kz→qnλ

(kz − qnλ)êiλ(k+)êjλ(k−)
rvl
λ + rls

λ e
2ikzlL

1 + rvl
λ r

ls
λ e

2ikzlL
eikz(z+z′−L)

+2πi lim
kz→i|k‖|

(kz − i|k‖|)êiTM(k+)êjTM(k−)
rvl
λ + rls

λ e
2ikzlL

1 + rvl
λ r

ls
λ e

2ikzlL
eikz(z+z′−L)

Here, the first term represents the contributions from the poles in the reflection coefficient

and corresponds the trapped modes, whereas the second term represents the contributions

from the pole that arises due to the TM polarization vector. When carrying out the
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calculation explicitly one needs to remember that the two independent variables are kz

and k‖ and that, according to Eq. (5.16) and (5.17), kzl and kzs are functions of those. In

addition, the denominator of the reflection coefficient is not of the form f(kz)(kz − qnλ) so

that multiplying it with (kz − qnλ) does not remove the singularity, the whole expression

is still indeterminate. Therefore, l’Hôpital’s rule needs to be used to evaluate the limit.

Doing so we find that

1

(2π)3

∫
γs

dkzR
R
λ ê

i
λ(k+)êjλ(k−)eikz(z+z′)

= −
∑
qnλ

|Nλ|2
∣∣∣T lv
λ

∣∣∣2 êiλ(k+)êjλ(k−)eikz(z+z′) −∇i∇′jGR(r, r′) (5.47)

where GR(r, r′) is the reflected part of the Green’s function of the Poisson equation given

in Eq. (5.6). We see that the poles of the reflection coefficient RRλ yield a term that

exactly cancels out the contributions of the trapped modes to the completeness relation

(5.44) whereas the pole of the TM polarization vector yields the term proportional to

Green’s function. Thus, the final result can be written as

∫
d2k‖

∑
kz

∫
f ikλ(r)f∗jkλ(r′) =

1

i
[Ai(r),−ε0Ej(r′)]

= δ⊥ij(r− r′)−∇i∇′jGR(r, r′) z, z′ > L/2

which is precisely what we have anticipated on the basis of our discussion in Chapter 4.

In the next section we demonstrate how the calculation presented here may be applied to

accomplish typical perturbative QED calculation in a layered geometry.

5.3 Energy shift

To work out the energy shift we use standard perturbation theory where the atom is

treated by means of the Schrödinger quantum mechanics and only the electromagnetic

field is second-quantized. Taking the interaction Hamiltonian to be

Hint = −µ ·E (5.48)
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the energy shift of the atomic state i, up to the second-order, is given by

∆Ei = 〈i; 0|Hint|i; 0〉+
∑
j 6=i

∑
k,λ

∫ |〈j; 0|Hint|i; 1kλ〉|2
Ei − (Ej + ωk)

.

Here, µ is the atomic electric dipole moment, |j;nkλ〉 is the state of the system in which

the atom is in the state |j〉 with energy Ej and the photon field contains n photons with

momentum k and polarization λ. Because the electric field operator is linear in the photon

creation and annihilation operators the first-order contribution vanishes and the second-

order correction is the lowest-order contribution. Since the electric field does not vary

appreciably over the size of the atom we use dipole approximation. Then the energy shift

can be expressed as

∆Ei = −
∑
j 6=i

∑
k,λ

∫
ωk

2ε0

|〈i|µ|j〉 · f∗kλ(r0)|2
Eji + ωk

(5.49)

where we have abbreviated Eji = Ej − Ei and r0 = (0, 0, z0) is the position of the atom.

It is seen that the calculation involves a summation over the modes of the electromagnetic

field as carried out in the proof of the completeness relation (5.44). Equation (5.49) can

be written out explicitly as

∆Etot
i = − 1

2ε0

∑
λ

∑
j 6=i
|µm|2

∫
dk‖

(
∆Evac + ∆Etrav + ∆Eevan + ∆Etrap

)
(5.50)

with |µm|2 ≡ |〈i|µm|j〉|2. There are four distinct contributions to the energy shift. ∆Evac

is the position-independent contribution caused by the vacuum fields that corresponds to

the Lamb shift in free space

∆Evac =
1

(2π)3

∫ ∞
−∞

dkz
ω

Eji + ω
emλ (k−)em∗λ (k−) (5.51)

and the remaining three contributions come from the travelling, evanescent and trapped

modes, respectively,

∆Etrav =
1

(2π)3

∫ ∞
−∞

dkz
ω

Eji + ω
RRλ e

m
λ (k+)em∗λ (k−)e2ikzz0 ,

∆Eevan =
1

(2π)3

∫ 0

iΓs

dkz
ω

Eji + ω

kz

kzs
|TLλ |2emλ (k+)em∗λ (k+)e2ikzz0 , (5.52)

∆Etrap =
∑
qnλ

ω

Eji + ω
|Nλ|2|T lv

λ |2emλ (k+)em∗λ (k+)e2ikzz0 ,
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with z0 being the position of the atom with respect to the origin. Note that because of

the dipole approximation the shorthand notation for polarisation vectors (5.19) can be no

longer applied. Normally one is interested in the energy shift caused by the presence of

the dielectric boundaries only i.e. the correction to the shift that would appear in the free

space. Therefore, we renormalize the energy-level shift (5.50) by subtracting from it it’s

free space limit i.e.

∆Ei = ∆Etot
i − lim

nl,ns→1
∆Etot

i . (5.53)

The renormalization procedure amounts to the removal of the contributions ∆Evac (5.51)

from the energy shift (5.50) and takes care of any infinities that would appear otherwise,

provided we treat the remaining parts with care. As noted elsewhere [56], the contributions

(5.52) suffer from convergence problems when treated separately. However, appropriate

tools to handle the problem have been developed in Sec. 5.2.3. We aim to combine ∆Etrav,

∆Eevan and ∆Etrap into one compact expression easy to handle analytically. We can use

the same tricks as in the proof of the completeness relation because the analytical structure

of the complex kz-plane is the same except that the function ω = (k2
‖ + k2

z )1/2 that comes

about as the denominator of the perturbation theory introduces additional branch-points

at kz = ±i|k‖| as compared to Fig. 5.2. This poses no difficulties though if one chooses

the branch-cuts to lie between ±i|k‖| and ±i∞. Then, the contributions to the energy

shift from the travelling modes ∆Etrav and the evanescent modes ∆Eevan can be combined

together into a single complex integral as explained in the steps between Eq. (5.44) and

Eq. (5.46). This is possible because for imaginary kz we have em∗λ (k+) = emλ (k−) whereas

for kz real em∗λ (k−) = emλ (k−) holds. On the other hand, we also know from Eq. (5.47)

that the sum in ∆Etrap is equal to the integral of the reflection coefficient RRλ taken

along any clockwise contour enclosing all of it’s poles. Choosing this contour to run from

kz = 0− + iΓs to kz = 0− + iΓl and then back down from kz = 0+ + iΓl to kz = 0+ + iΓs,

cf. Fig. 5.2, we write down the renormalized energy shift ∆Ei compactly as

∆Ei = − 1

2(2π)3ε0

∑
m,λ

∑
j 6=i
|µm|2

∫
dk‖

∫
γl

dkz
ω

Eji + ω
RRλ e

m
λ (k+)emλ (k−)e2ikzz0 (5.54)

where the contour of integration γl is shown in Fig. 5.3. It resembles that of Fig. 5.2 only

that now it runs on the imaginary axis up to the point kz = iΓl enclosing all the poles of

the reflection coefficients RRλ .
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Figure 5.3: The dashed line represents the final contour γl used to evaluate the energy
shift in Eq. (5.54).

The formula (5.54) is equally applicable to the ground-state atoms |0〉 as it is to the atoms

that are in one of the excited states |i〉 provided we use the contour of integration as given

in Fig. 5.3 and interpret the kz integral as a Cauchy principal-value.

5.3.1 Ground state atoms

In the case of a ground-state atom the energy difference Ej0 ≡ Ej −E0 is always positive

hence the denominator in Eq. (5.54) that originates from second-order perturbation theory,

Ej0 + ω, never vanishes. Then, Eq. (5.54) contains no poles in the upper half of the kz-

plane other than those due to the reflection coefficient RRλ . To evaluate the kz integral

we can deform the contour of integration in Eq. (5.54) from that sketched in Fig. 5.3 to

the one as shown in Fig. 5.4 which is beneficial from the computational point of view as

it simplifies the analysis of Eq. (5.54) considerably. Writing out explicitly the sums over

the polarization vectors (5.19) and then expressing the integral in the k‖-plane in polar

coordinates, kx = q cosφ, ky = q sinφ, where the angle integral is computable analytically,
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Figure 5.4: The final contour C used to evaluate the energy shift of the ground state
atom in Eq. (5.55).

we rewrite the energy shift as

∆E0 =
1

16π2ε0

∑
j 6=0

∫ ∞
0

dq q

∫
C
dkz

ω

Ej0 + ω

×
[
|µ‖|2

(
R̃RTE −

k2
z

ω2
R̃RTM

)
+2|µ⊥|2

q2

ω2
R̃RTM

]
e2ikzZ (5.55)

with ω(kz) =
√
q2 + k2

z , |µ‖|2 = |µx|2 + |µy|2 and the contour C is that in Fig. 5.4 with

|k‖| = q. The reflection coefficients R̃Rλ (of course expressed in terms of new variables) are

given by

R̃Rλ =
rvl
λ + rls

λ e
2ikzlL

1 + rvl
λ r

ls
λ e

2ikzlL
, (5.56)

i.e. we have pulled out the phase factor e−ikzL in order to define Z = z0 − L/2 as the

distance between the atom and the surface, cf. Eq. (5.22).

In order to perform the kz integration in (5.55) we need to analytically continue the

function ω = ω(kz), which is real and positive on the real axis, to the both sides of the

branch cut along which the integration is carried out, (cf. Fig. 5.4). Doing so we find that

on the LHS of the cut the positive value of the square root needs to be taken, and hence

on the RHS of the cut we must take the opposite sign. Therefore we have

∫
C

dkz
ω

Ej0 + ω
= −

∫ i∞

iq
dkz

2Ej0ω

(Ej0 − ω)(Ej0 + ω)
.
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Now we carry out a sequence of changes of variables. First we express kz integration in

terms of the frequency ω by substitution ω =
√
q2 + k2

z∫ i∞

iq
dkz =

∫ i∞

0
dω

ω√
ω2 − q2

. (5.57)

Then, we express the integral to run along the real axis setting ω = iξ. After this is done,

the energy shift of the ground state is expressed as a double integral that covers the first

quadrant of the (q, ξ)-plane

∆E0 = − 1

8π2ε0

∑
j 6=i

Ej0

∫ ∞
0

dqq

∫ ∞
0

dξ
e−2
√
ξ2+q2Z√

ξ2 + q2(E2
j0 + ξ2)

×
{
|µ‖|2

[
(ξ2 + q2)R̃RTM − ξ2R̃RTE

]
+ 2k2R̃RTM|µ⊥|2

}
.

It seems natural to introduce polar coordinates, q = x̄ sinφ, ξ = x̄ cosφ. We also choose

to scale the radial integration variable x̄ = Ej0x with Ej0 > 0 and set y = cosφ. This

provides us with the final form of the energy shift that is more suitable for numerical

computations and asymptotic analysis

∆E0 =
1

8π2ε0

∑
j 6=i

E3
j0

∫ ∞
0

dxx3

∫ 1

0
dy

e−2Ej0Zx

1 + x2y2

×
[
|µ‖|2

(
y2R̃RTE − R̃RTM

)
+ 2|µ⊥|2(y2 − 1)R̃RTM

]
. (5.58)

The reflection coefficient R̃Rλ are expressed as in (5.56) but with wavevectors given by

kzi = ixEj0

√
(n2

i − 1)y2 + 1, ni = {1, nl, ns}.

Note that even though the wave vector is imaginary, the final result is a real number, as

it should, because the Fresnel coefficients contain ratios of wavevectors only.

5.3.2 Excited atoms

As mentioned at the beginning of the previous section the energy level shift of an excited

atom is also given by Eq. (5.54). However, one needs to remember that the quantity

Eji ≡ Ej − Ei can now become negative for j < i and the denominator originating from
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perturbation theory contributes additional poles lying on the path of kz integration, which

is taken as that shown in Fig. 5.3 and is understood as a Cauchy principal-value. The

poles are located at kz = ±
√
E2
ji − k2

‖ and their precise location depends on the value of

|k‖| that is not fixed but varies as we carry out the k‖ integrations in equation (5.54).

For |k‖| ∈ [0, |Eji|] the poles are located on the real kz axis but as we increase the value

of |k‖| to exceed |Eji| both poles move onto the positive imaginary axis according to the

convention that Im(kz) > 0. For |k‖| belonging to the interval [|Eji|, ns|Eji|] the poles

are located on the opposite sides of the branch cut due to the kzs and care needs to be

taken when evaluating those pole contributions. To evaluate the Cauchy principal-value

of the kz-integral we circumvent the poles and close the contour in the upper half-plane,

as was done in the previous section. The contribution from the large semicircle vanishes

and equation (5.54) acquires pole contributions that are easily worked out by the residue

theorem. The energy shift splits into the a ”non-resonant” ground-state-like part ∆Ei and

a ”resonant” oscillatory part ∆Eres
i that arises only if the atom is in an excited state. The

”non-resonant” part is given by

∆Ei =
1

8π2ε0

∑
j 6=i

E3
ji

∫ ∞
0

dxx3

∫ 1

0
dy

e−2|Eji|Zx

1 + x2y2

×
[
|µ‖|2

(
y2R̃RTE − R̃RTM

)
+ 2|µ⊥|2(y2 − 1)R̃RTM

]
(5.59)

with wavevectors expressed as

kzi = ix|Eji|
√

(n2
i − 1)y2 + 1, ni = {1, nl, ns}, (5.60)

whereas the ”resonant” part is given by

∆Eres
i = Re

i

8πε0

∑
j<i

|Eji|3
∫ ∞

0

dkk√
1− k2

e2i|Eji|
√

1−k2Z

×
{
|µ‖|2

[
(1− k2)R̃RTM − R̃RTE

]
− 2|µ⊥|2k2R̃RTM

}
, (5.61)

with wavevectors expressed as

kzi = |Eji|
√
n2

i − k2, ni = {1, nl, ns}.
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The reflection coefficients are as usual and are given in (5.56). The integral in (5.61) con-

tains poles because the dispersion relation present in the denominators of the reflection

coefficients has now solutions on the real axis when k ∈ [ns, nl]. This signals the contribu-

tions from surface excitations (trapped modes). This fact has been discussed in [27] where

the interaction of an excited atom with layered dielectric has been studied, although using

mainly numerical analysis. Here we will attempt to study the results (5.59) and (5.61)

analytically. To do so it will prove beneficial to rewrite equation (5.61) slightly. We change

the variables according to
√

1− k2 = η and split the contributions to Eq. (5.61) into two

parts. The first one is a contribution from the travelling modes and given by

∆Eres,trav
i = −Re

i

8πε0

∑
j<i

|Eji|3
∫ 1

0
dηe2i|Eji|Zη

×
{
|µ‖|2

[
R̃RTE − η2R̃RTM

]
+ 2|µ⊥|2(1− η2)R̃RTM

}
(5.62)

where the wavevectors in reflection coefficients are all real and can be expressed as

kzi = |Eji|
√
n2

i − 1 + η2, ni = {1, nl, ns}, (5.63)

and the second is a contribution from the evanescent modes

∆Eres,evan
i = −Re

1

8πε0

∑
j<i

|Eji|3
∫ ∞

0
dηe−2|Eji|Zη

×
{
|µ‖|2

[
R̃RTE + η2R̃RTM

]
+ 2|µ⊥|2(1 + η2)R̃RTM

}
(5.64)

where the wavevectors in reflection coefficients can be expressed as

kzi = |Eji|
√
n2

i − 1− η2, ni = {1, nl, ns}. (5.65)

Finally, it is worth noting that the imaginary part of Eq. (5.61) is actually proportional to

the modified decay rates [64]. These have been already studied in [67] so that we focus on

energy shifts only. However, the methods of analysis that are reported in the next section

allow to write down at once equivalent analytical formulae for the decay rates.
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5.4 Asymptotic analysis

The interaction between the atom and the dielectric is electromagnetic in nature and it is

mediated by photons. The atomic system in state |i〉 evolves in time with a characteristic

time-scale that is proportional to E−1
ji , with Eji being the energy-level spacing between

the states |i〉 and |j〉 which are connected by the strongest dipole transition. Since it takes

a finite time for the photon to make a round trip between an atom and a surface, the atom

will have changed by the time the photon comes back. Therefore, the time needed by the

photon to reach the surface compared to the typical atomic time-scale is a fundamental

quantity that plays decisive role in characterizing the interaction. In natural units, if

2EjiZ << 1 we can safely assume that the interaction is instantaneous and we are in the

so-called nonretarded or van der Waals regime. If 2EjiZ >> 1 the interaction becomes

manifestly retarded as the atom will have changed significantly by the time the photon

comes back. However, the problem we have considered here provides us with yet another

length scale, namely the thickness of the top layer L. We shall now consider the energy

shift in various asymptotic regimes.

5.4.1 Ground state atoms. Electrostatic limit, (2EjiZ << 1)

In this limit the interaction is instantaneous (or electrostatic) in nature and the energy

shift is obtainable using the Green’s function of the classical Laplace equation [3], the

derivation is outlined in the Appendix D. It reads

∆Eel = − 1

16πε0

(
〈µ2
‖〉+ 2〈µ2

⊥〉
)∫ ∞

0
dkk2e−2kZ


n2

l − 1

n2
l + 1

− n2
l − n2

s

n2
s + n2

l

e−2kL

1− n2
l − 1

n2
l + 1

n2
l − n2

s

n2
s + n2

l

e−2kL

 . (5.66)

with 〈µ2
‖〉 ≡ 〈µ2

x〉+ 〈µ2
y〉 and 〈µ2

⊥〉 ≡ 〈µ2
z〉.

Now we show that we can also obtain the above result as a limiting case of the results

of previous section. Note however that equation (5.58), which has been scaled with Eji,

cannot be used to take the electrostatic limit in which we mathematically let Eji → 0. It is

best to start from equation (5.54). Equation (5.66) follows immediately if we spot that in

the limit Eji → 0 the branch cut due to ω =
√

k2
‖ + k2

z is no longer present and the contour
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in Fig. 5.4 collapses to a simple enclosure of the point kz = i|k‖|. The contributions from

the TE mode vanish as the product of the polarization vectors is regular at kz = i|k‖| but

for the TM mode contributions this point is a simple pole, cf. Eq. (5.19). Therefore we

have that

∆Eel = − 1

(2π)32ε0

∑
m

∑
j 6=i
|µm|2

∫
dk‖

×2πi lim
kz→i|k‖|

(kz − i|k‖|)RRTMe
m
TM(k+)emTM(k−)e2ikzz0 .

Taking the limit and expressing the remaining integrals in polar coordinates where the

angle integral is elementary yields equation (5.66) with 〈µ2
m〉 ≡

∑
j 6=i |〈i|µm|j〉|2 = 〈i|µ2

m|i〉.
Equation (5.66) can be further analysed depending on the relative values of L and Z.

5.4.1.1 Thin layer (Z/L >> 1)

In this case the distance of the atom from the surface is much greater than the thickness of

the layer of refractive index nl (but still small enough for the retardation to be neglected).

Then, rescaling the integral in equation (5.66) with k = x/L allows us to use the Watson’s

lemma1 to derive the following result

∆Eel ≈ ∆Eel
ns
− 1

64πε0Z3

(
〈µ2
‖〉+ 2〈µ2

⊥〉
)[
a1
L

Z + a2
L2

Z2
+O

(
L3

Z3

)]
, (5.67)

with the coefficients ai given by

a1 =
3

n2
l

n4
l − n4

s

(n2
s + 1)2

,

a2 = − 6

n4
l

(n4
l − n4

s )(n2
s + n4

l )

(n2
s + 1)3

,

where ∆Eel
ns

is the well-known electrostatic interaction energy between an atom and a

dielectric half-space of refractive index ns that can be obtained by the method of images

∆Eel
ns

= − 1

64πε0Z3

n2
s − 1

n2
s + 1

(
〈µ2
‖〉+ 2〈µ2

⊥〉
)
. (5.68)

1The essential idea is to spot that, since the integrand is strongly damped by the exponential, most
of the contributions to the integral will come from small values of k. Thus, it is permissible to perform a
Taylor expansion of the remaining part of the integrand about k = 0. For a more rigorous treatment see
[22].
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The corrections to this result are represented by the remaining elements of the asymptotic

series. Note that if nl > ns then a1 > 0 and, not surprisingly, the interaction, as compared

to a half-space alone, is enhanced by the presence of the thin dielectric layer of higher

refractive index nl.

5.4.1.2 Thick layer (Z/L << 1)

In this case the thickness of the layer is much greater than the distance between the atom

and the surface. The top layer now appears from the point of view of the atom almost as

a half-space of refractive index nl only that it is in fact of finite thickness. To analyse the

result (5.66) in this limit we cast it in a somewhat different form. Note that, especially

when kL is large but not only then,

n2
l − 1

n2
l + 1

n2
l − n2

s

n2
s + n2

l

e−2kL < 1 (5.69)

and the denominator of the integrand in Eq. (5.66) can be written as geometrical series.

Since the series is absolutely convergent we can integrate it term by term and obtain the

following representation of the electrostatic result

∆Eel = ∆Eel
nl

+
1

16πε0

(
〈µ2
‖〉+ 2〈µ2

⊥〉
) n2

l

n4
l − 1

∞∑
ν=1

(
n2

l − 1

n2
l + 1

n2
l − n2

s

n2
s + n2

l

)ν
1

(Z + νL)3
(5.70)

where ∆Eel
nl

is the electrostatic energy shift due to a single half-space of refractive index nl,

i.e. Eq. (5.68) with ns replaced by nl. The sum in Eq. (5.70) represents the correction to

∆Eel
nl

due to the finite thickness of the layer. For fixed Z and L it can be easily computed

numerically to any desired degree of accuracy. We note however, that to the leading order

in Z/L the interaction is weakened by the same amount independently of the distance

of the atom from the surface and therefore is not measurable. The next-to-leading order

correction is the first to be distance-dependent and is proportional to Z/L4, which can be

easily seen by expanding the factor in series around Z/kL = 0:

1

(Z + kL)3
≈ 1

k3L3
− 3Z

k4L4
+O

(
Z2

L5

)
. (5.71)
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5.4.2 Ground state atoms. Retarded limit, (2ZEji >> 1)

5.4.2.1 Thin layer (Z/L >> 1)

In this case we study the situation when the top layer is much thinner than the distance

between the atom and the surface. To obtain the asymptotic series we use Watson’s lemma

in much the same way as in the electrostatic case [22]. Series expansion of the integrand

in Eq. (5.58) about x = 0 decouples the integrals and the resulting integrals can be

calculated analytically. Thus, to first approximation, for an atom located sufficiently far

from the interface, the impact of the thin dielectric layer on the standard Casimir-Polder

interaction can be described by

∆Eret = ∆Eret
ns
− 1

16π2ε0Z4

∑
j 6=i

(
a‖|µ‖|2 + 2a⊥|µ⊥|2

Eji

)
L

Z +O

(
L2

Z2

)
(5.72)

where ∆Eret
ns

is the retarded limit of energy shift as caused by the single dielectric half-space

of refractive index ns, which was calculated in [64]:

∆Eret
ns

= − 3

64π2ε0Z4

∑
j 6=i

(
c‖|µ‖|2 + c⊥|µ⊥|2

Eji

)
, (5.73)

with the coefficients c given by

c‖ = − 1

n2
s − 1

(
2

3
n2

s + ns −
8

3

)
+

2n4
s

(n2
s − 1)

√
n2

s + 1
ln

 √
n2

s + 1 + 1

ns

[√
n2

s + 1 + ns

]


+
2n4

s − 2n2
s − 1

(n2
s − 1)3/2

ln
(√

n2
s + 1 + ns

)
,

c⊥ =
1

n2
s − 1

(
4n4

s − 2n3
s −

4

3
n2

s +
4

3

)
− 4n6

s

(n2
s − 1)

√
n2

s + 1
ln

 √
n2

s + 1 + 1

ns

[√
n2

s + 1 + ns

]


−2n2
s (2n4

s − 2n2
s + 1)

(n2
s − 1)3/2

ln
(√

n2
s − 1 + ns

)
.
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The coefficients a‖ and a⊥ in (5.72) are expressed in terms of the elementary functions as

follows

a‖ =
1

n2
l

n2
l − n2

s

(n2
s − 1)2(n2

s + 1)

×
[
n5

s (6ns − 3)(n2
l − 1) + 3n2

s (n2
l + 1)− n2

l (2n4
s + 3n3

s + 3ns − 8)

]
− n2

l − n2
s

n2
l (n2

s − 1)5/2
ln
(√

n2
s − 1 + ns

)[
2n2

sn
2
l (n2

s − 1)2 − 2n4
s (n2

s − 1) + n2
l

]
− n4

s

2n2
l

n2
l − n2

s

(n2
s − 1)2(n2

s + 1)3/2
ln

(√
n2

s + 1 + 1√
n2

s + 1− 1

√
n2

s + 1− ns√
n2

s + 1 + ns

)

×
[
2n4

s (n2
l − 1)− 2n2

s − 3n2
l + 1

]

a⊥ =
1

n2
l

n2
l − n2

s

(n2
s − 1)2(n2

s + 1)

×
[
n4

s (4n2
s − 3ns − 3)− n2

s (12n6
s − 6n5

s + 2)(n2
l − 1) + n2

l (2n6
s + 7n4

s − 3n3
s + 2)

]
+

n2
s

n2
l

n2
l − n2

s

(n2
s − 1)5/2

ln
(√

n2
s − 1 + ns

)[
n2

l (4n6
s − 6n4

s + 3n2
s − 1)− n2

s (2n2
s − 1)2

]
+

n6
s

2n2
l

n2
l − n2

s

(n2
s − 1)2(n2

s + 1)3/2
ln

(√
n2

s + 1 + 1√
n2

s + 1− 1

√
n2

s + 1− ns√
n2

s + 1 + ns

)

×
[
4n4

s (n2
l − 1) + 2n2

s (n2
l − 2)− 3n2

l + 1

]

Both, a‖ and a⊥, are positive for nl > ns so that, as one would expect, the interaction,

as compared to a half-space alone, is enhanced by the thin dielectric layer of the higher

refractive index nl. The above result simplifies significantly in the case when ns approaches

unity i.e. when the situation resembles that of an atom interacting with a dielectric slab

of refractive index nl. The coefficients a‖ and a⊥ reduce then to those recently calculated

in [56] and are given by

a‖ =
(n2

l − 1)(9n2
l + 5)

10n2
l

,

a⊥ =
(n2

l − 1)(5n2
l + 4)

10n2
l

.
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5.4.2.2 Thick layer (Z/L << 1)

Here we assume that the thickness of the top layer is much greater than the distance

between the atom and the surface, but which is still large enough for retardation to occur.

Note that the reflection coefficient R̃Rλ (5.22) can be separated into L− dependent and

L− independent parts in the following manner

R̃Rλ = rvl
λ +

[1− (rvl
λ )2]rls

λ e
2ikzlL

1 + rvl
λ r

ls
λ e

2iLkzlL
. (5.74)

This way of writing the reflection coefficient splits the energy shift (5.58) into a shift due

to the single interface of refractive index nl and corrections due to the finite thickness

and the underlying material. It can be shown numerically, see Sec. 5.5, that for large

values of L the correction term is vanishingly small and can be safely discarded. Brute-

force asymptotic analysis allows us to draw similar conclusions as in the electrostatic

case, Section 5.4.1.2. To leading order the interaction gets altered by the same amount

regardless of the position of the atom with respect to the interface. The next-to-leading-

order correction is proportional to Z/L5.

5.4.3 Excited atoms. Nonretarded limit, (2Z|Eji| << 1)

The energy shift of an excited atom is given by equations (5.59) and (5.61). The ”non-

resonant” part, i.e. Eq. (5.59) has the same form as the energy shift of the ground state

atom and has been analysed in the previous section. Here we focus on the ”resonant” part

of the interaction that is given by equation (5.61). In order to conveniently obtain the

nonretarded limit of (5.61) we will work with its slightly modified form given in equations

(5.62) and (5.64).

We start by noting that close to the interface we expect asymptotic series to be in the

inverse powers of Z. Equation (5.62), where the η integration runs over η ∈ [0, 1], con-

tributes only positive powers of Z. This is most easily seen by expanding the exponential

exp(2i|Eji|Zη) about origin as we may do in the limit 2Z|Eji| → 0. Therefore, to leading-

order of the electrostatic limit, only (5.64) contributes. Further we approximate (5.64) by
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setting η = k/(|Eji|Z). Then, in the limit |Eji|Z → 0 the wavevectors can be approxi-

mated as

kz = kzl = kzs = i
k

|Eji|Z
(5.75)

and the result for the energy shift is seen to reduce to

∆Eres,el = − 1

8πε0

∑
j<i

(
|µ‖|2 + 2|µ⊥|2

)∫ ∞
0

dkk2e−2kZ

n2
l − 1

n2
l + 1

− n2
l − n2

s

n2
s + n2

l

e−2kL

1− n2
l − 1

n2
l + 1

n2
l − n2

s

n2
s + n2

l

e−2kL

. (5.76)

The final result turns out to have the same dependence on Z and L as the Coulomb

interaction of the ground state atom, cf. Eq. (5.66); therefore we shall not analyse Eq.

(5.76) any further. Note however, that the dependence on the atomic states is different in

equations (5.66) and (5.76). In the electrostatic limit, to the order we are considering, the

quantity ∆Eres,el turns out to be real, hence corrections to the decay rates seem to vanish.

This conclusion is incorrect for it is known that the change of spontaneous emission in

the nonretarded limit is in fact constant for a non-dispersive dielectric half-space [64].

However, any serious analysis of the changes of the decay rates induced by surfaces needs

to take into account the absorption of the material, which in the nonretarded limit plays

crucial role and can not be neglected. Recall that we have started from Eq. (5.61), that as

explained before, contains poles on the real axis signalling the trapped modes. However,

the denominator of (5.76) never vanishes which reflects the fact that in the electrostatic

limit the trapped modes cease to exist and do not contribute towards the energy shifts, as

first mentioned in [27].

5.4.4 Excited atoms. Retarded limit, (2Z|Eji| >> 1)

The leading-order behaviour of equation (5.61) in the retarded limit can be obtained by

repeated integration by parts. Unlike in the electrostatic case now both equations, Eq.

(5.62) and Eq. (5.64) contribute. We integrate them by parts and note that the non-

oscillatory contributions that arise from the boundary terms evaluated at η = 0 cancel

out. It turns out that the leading-order contributions to the energy shift are due to the

perpendicular component of the atomic dipole moment. They dominate the retarded inter-

action energy and behave as Z−1. The contributions due to the component of the atomic
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dipole moment that is perpendicular to the surface contribute only terms proportional to

Z−2. We find that in the retarded limit the interaction energy up to the leading-order is

given by

∆Eres,ret
i = − 1

8πε0Z
∑
j<i

|Eji|2|µ‖|2
1

1 + 2rvlrls cos(2|Eji|τ) + r2
vlr

2
ls

×
{
rvl(1 + r2

ls) cos(2|Eji|Z)

+r2
vlrls cos[2|Eji|(Z − τ)]

+rls cos[2|Eji|(Z + τ)]} , (5.77)

where we have defined the optical thickness of the layer as τ = nlL and

rvl =
1− nl

1 + nl
, rls =

nl − ns

nl + ns
. (5.78)

The final result agrees with that derived for a half-space in [64] if we take either L → 0

or nl → ns, which is a consistency check of our calculation. However, the limit of perfect

reflectivity of the top layer does not make sense and one has to start from equation (5.61)

and rewrite the reflection coefficient in the form (5.74) in order to study this case. Equation

(5.77) is valid only approximately when the distance between the atom and the surface is

much greater than the wavelength of the strongest atomic dipole transition. Nevertheless

it allows us to draw important conclusion. We note that the interaction is resonant i.e. it

is enhanced for certain values of LEji. The most convenient way to grasp the essence of

the resonance effects is to take the slab limit of equation (5.77) i.e. set ns = 1. We have

∆Eres,ret
i = − 1

8πε0Z
∑
j<i

|Eji|2|µ‖|2
1

1− 2r2
vl cos(2|Eji|τ) + r4

vl

×
{
rvl(1 + r2

vl) cos(2|Eji|Z)

−r3
vl cos[2|Eji|(Z − τ)]

−rvl cos[2|Eji|(Z + τ)]} . (5.79)

Then, it is easily seen that whenever cos(2|Eji|τ) = 1 the interaction vanishes and, con-

versely, the amplitude of oscillations in equation (5.79) is maximized when cos(2|Eji|τ) =

−1. Therefore we have a condition for resonance in terms of the wavelength of the strongest
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atomic dipole transition λji

τ = nL =
λji
2

(
k +

1

2

)
, k = 0, 1, 2 ... (5.80)

Eq. (5.80) holds for Z|Eji| >> 1 but if the value of Z|Eji| approaches unity, the relation

looses its validity. The complications arise from the fact that when the atom is close to the

surface the evanescent waves come into play whereas the condition (5.80) arises due to the

interaction of an atom with travelling modes only. In the nonretarded limit Z|Eji| << 1

the notion of resonance looses its meaning altogether, cf. Eq. (5.76). Exploring the

extreme cases in the retarded limit we note that at the anti-resonance i.e. when

τ =
λji
2
k, k = 0, 1, 2 ... (5.81)

equation (5.77) becomes

∆Eres,ret
i =

1

8πε0Z
ns − 1

ns + 1

∑
j<i

|Eji|2|µ‖|2 cos(2|Eji|Z), (5.82)

i.e. the atom does not feel the presence of the layer and the interaction assumes the form

of that between an atom and a single half-space of refractive index ns, cf. [64]. This

means that in the retarded regime the interaction between an excited atom and a slab

of thickness L vanishes whenever the optical thickness of the slab τ = nlL is equal to

a half-integer multiple of the wavelength of the dominant atomic transition λji, cf. Fig.

5.11. Conversely, at resonance the shift becomes

∆Eres,ret
i =

1

8πε0Z
n2

l − ns

n2
l + ns

∑
j<i

|Eji|2|µ‖|2 cos(2|Eji|Z), (5.83)

so that the amplitude of oscillations exceeds the amplitude that would have been caused by

a single half-space of refractive index nl. It also reaches the perfect reflector limit nl →∞
more rapidly. Finally, we shall also remark that the meaning of the conditions (5.80) and

(5.81) is interchanged if the refractive index of the substrate ns exceeds that of the layer

nl i.e. when ns > nl.
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5.5 Numerical Examples

In this section we present a few numerical results designed to illustrate the influence of the

dielectric layer on the usual Casimir-Polder interaction between an atom and a dielectric

half-space. In practice, the sum over intermediate states j in Eq. (5.58) and in Eq.

(5.61) is restricted to one or a few states to which there are strong dipole transitions.

Hence, we assume a two-level system in which Eji is a single number, namely the energy

spacing of the levels with the strongest dipole transition. Additionally, we focus just on

the contributions to the energy shift due to the component of the atomic dipole that is

parallel to the interface of the dielectrics. The contributions due to the perpendicular

components of the atomic dipole moment can be easily generated with from Eq. (5.58)

using standard computer algebra packages like Mathematica or Maple. We start by simple

checks on the asymptotic expansions derived in the previous section.

5.5.1 Ground-state atoms

Figure 5.5: Plot of the exact energy-level shift contributions ∆E‖ (solid), Eq. (5.58),
multiplied by Z4. Dashed lines represent the energy shifts due to the single dielectric
half-spaces of refractive indices nl (top) and ns (bottom), whereas the dotted-dashed

lines represents the asymptotic approximation (5.72).
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Figure 5.6: Plot of the exact energy-level shift ∆E‖ (solid), Eq. (5.58), multiplied by
Z4. Dashed lines represent the energy shifts due to the single dielectric half-spaces of
refractive indices nl (bottom) and ns (top), whereas the dotted-dashed lines represents

the asymptotic approximation (5.72).

We choose to plot the energy level shift ∆E multiplied by Z4 so that the asymptotic

behaviour of it as a function of distance is more apparent, because ∆EZ4 for a dielectric

half-space approaches constant [64]. Then, one can easily track the variation of the energy

shift caused by the top layer as compared to the half-space shifts, Fig. 5.5 and Fig. 5.6.

We remark that even though the derivation of the energy shift in this Chapter was based

on the assumption nl > ns, the result is also valid in the case when the top layer has a

smaller reflectivity than the substrate. In such a case the result can be used e.g. to model

a thin layer of oxide or any kind of dirt on the substrate which is often present in real

cold-atom experiments.

The asymptotic expansion (5.72) works well for large Z/L and not too high values of the

refractive index nl. This is demonstrated in Fig. 5.7. The increase of the refractive index

nl has impact on the accuracy of the approximation which is valid provided

Z >> λji + τl (5.84)
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with λji being the wavelength of the dominant atomic transition and τl = nlL is the optical

thickness of the top layer. In Fig. 5.8 we demonstrate the behaviour of the energy shift

Figure 5.7: Plot of the exact energy shift ∆E‖, (solid, Eq. (5.58)), multiplied by Z4

together with the asymptotic approximations (dashed, Eq. (5.72)).

depending on the various values of the parameter Eji measured in units of the layer’s

thickness. For small Eji we clearly observe linear behaviour that corresponds to the Z−3

dependence of the shift in the electrostatic regime.

We also find it instructive to plot the energy level shift as a function of the thickness of

the top layer L for different values of the refractive index nl while keeping the distance of

the atom from the surface fixed, Fig. 5.9 and Fig. 5.10.

5.5.2 Excited atoms

The energy shift of an excited atom splits into two distinct parts, cf. Eq. (5.59) and Eq.

(5.61). The non-oscillatory part displays the same behaviour as the energy shift of the

ground-state atoms. We have analysed it numerically in the previous section. Here we will

focus on the oscillatory contributions to the level shifts that are given by Eq. (5.61). We

choose to plot the dimensionless integrals contained in equations (5.62) and (5.64) as this
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Figure 5.8: Plot of the exact energy shift ∆E‖ (Eq. (5.58)) multiplied by Z4 as a
function of Z/L for various values of the retardation parameter EjiL.

Figure 5.9: Plot of the exact energy shift ∆E‖ (Eq. (5.58)) multiplied by Z4 as a
function of layer’s thickness L measured in units of fixed atom-wall separation Z for

various values of the layer’s refractive index nl > ns.
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Figure 5.10: Plot of the exact energy shift ∆E‖ (Eq. (5.58)) multiplied by Z4 as
a function of layer’s thickness L measured in units of fixed atom-wall separation Z for

various values of the substrate’s refractive index ns > nl.

is numerically more efficient than plotting the integral in Eq. (5.61). It should be borne in

mind that the reflection coefficients contain the dispersion relation in denominators that

now has solutions on the real axis. For the purpose of the present demonstration it is

sufficient to simply displace the poles off the real axis by adding small imaginary part to

the denominator of the reflection coefficients effectively taking the Cauchy principal-value

during numerical integration.

In Fig. 5.11 we demonstrate that indeed, if the anti-resonance condition (5.81) is satisfied,

the interaction energy between the excited atom and the slab is strongly suppressed for

ZEji >> 1. In general, for the layered dielectric rather than the slab, the effect of

resonance is shown in Fig. 5.12 and Fig. 5.13. Note that the energy level shift in an

excited atom due to the layered dielectric can be significantly enhanced. Unlike in the

case of the ground state atom where the energy shift caused by the layered structure of

refractive indices nl and ns is bounded by the single half-space shifts (compare Fig. 5.5),

the excited atom can experience shifts greater than those caused by the unlayered half-

space of the refractive index n = max(nl, ns), Fig. 5.12, which is due to resonance effects.
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Figure 5.11: Plot of the exact energy-level shift (5.61) (resonant part) in an excited
atom due to the parallel component of the atomic dipole moment placed in front of a slab
of thickness L and refractive index nl = 2π. The energy spacing of the dominant atomic
transition is such that LEji = 3/4 i.e. it satisfies the resonance condition (5.81). As is
seen, when LEji = 1/2, the energy shift in the retarded regime is strongly suppressed, cf

Eq. (5.77).

Conversely, it is also possible that the interaction with the layer will be unnoticeable if

the anti-resonance condition (5.81) is satisfied, Fig. 5.13. Next, in Fig. 5.14, we show

that the approximation of Eq. (5.61) derived in (5.77) turns out to be quite accurate and

can be safely used to quickly estimate the energy shift in an excited atom caused by the

layered dielectric, provided the condition ZEji >> 1 is satisfied. It is also interesting to

plot the resonant part of the energy shift as a function of LEji while keeping ZEji fixed.

This is done in Fig. 5.15. It is seen that the energy shift indeed experiences the oscillatory

resonant behaviour. The subsequent minima and maxima are less and less pronounced

as the value of LEji increases. This is because as we increase LEji the resonances and

anti-resonances move closer and closer together so that their effects cancel out. It is

interesting to note that this behaviour could not have been inferred from equation (5.77),

which indicates that the approximation (5.77) can be useful only for LEji << 1, which

can also be easily verified numerically.
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Figure 5.12: Plot of the exact energy-level shift (5.61) (resonant part) in an excited
atom due to the parallel component of the atomic dipole moment placed in front of the
layered dielectric with parameters as shown on the graph (solid). The resonant condition
(5.80) is satisfied so that the interaction is enhanced. The amplitude of oscillations exceeds
the one that would have been caused by an unlayered half-space of the refractive index
n = 2π, cf. Eq. (5.82). Compare also Fig. 5.5. The dashed lines represent the interaction

between an atom and single half-space of refractive index n as indicated.

5.6 Summary

Using perturbation theory we have calculated the energy level shift in a neutral atom

placed in front of the layered dielectric half-space, Fig. 5.1. The major difficulty in work-

ing out the energy shift is the sum over all modes that appears in this type of calculation,

Eq. (5.50), especially when the spectrum of the modes consists of the continuous and

discrete parts, Sec. 5.2.1 and 5.2.2. This obstacle can be circumvented by using the

complex-variable techniques to express the sum over all modes as a single contour integral

in the complex kz-plane, Eq. (5.54) and Fig. 5.4. Then, the energy shift (5.58) is easily

analyzed asymptotically as well as numerically. For a ground-state atom, regardless of

whether in retarded or non-retarded regime, we find that the leading-order correction to

the interaction of an atom with an unlayered interface is proportional to L/Z. The asymp-

totic series are given by (5.67) and (5.72) and provide reasonable estimate of the influence
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Figure 5.13: Plot of the exact energy-level shift (5.61) (resonant part) in an excited
atom due to the parallel component of the atomic dipole moment placed in front of
the layered dielectric with parameters as shown on the graph (solid). The anti-resonant
condition (5.81) is satisfied so that the presence of the layer is almost unnoticeable, cf. Eq.
(5.82). The dashed lines represent the interaction between an atom and single half-space

of refractive index n as indicated.

of the single dielectric layer on the standard half-space result, Fig. 5.7. In the opposite

case of very thick layer i.e. Z/L << 1 we find that the result is well approximated by

dielectric half-space [64]. For excited atoms we find that the interaction between an atom

and the layered dielectric (5.61) is subject to resonances that occur between the wave-

length of the dominant atomic transition λji and the thickness of the layer L, Sec. 5.4.4.

In particular, the interaction between an atom and the slab can be strongly suppressed in

the retarded regime, cf. Fig. 5.11, whenever the optical thickness of the slab τ is equal

to the half-integer multiple of the wavelength of the dominant atomic transition λji. The

existence of resonance effects suggests a physical picture of the excited atom as a radiat-

ing dipole. The resonance and anti-resonance correspond to constructive and destructive

interference. We have also provided reasonable approximations in the non-retarded (5.76)

and retarded (5.77) regimes that can be used to quickly estimate the magnitude of the

resonant interaction between an atom and a layered dielectric.
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Figure 5.14: Plot of the exact energy-level shift (5.61) (resonant part) in an excited atom
due to the parallel component of the atomic dipole moment placed in front of the layered
dielectric with parameters as shown on the graph (solid). The dashed line represents the

approximation in the retarded regime, Eq. (5.77).

Figure 5.15: Plot of the exact energy-level shift (5.61) (resonant part) in an excited atom
due to the parallel component of the atomic dipole moment placed in front of the layered
dielectric with parameters as shown on the graph (solid). The dashed lines represent
energy shifts caused by the single half-spaces of refractive index nl = 2π (top) and ns = 2

(bottom).



Chapter 6

Quantum electrodynamics near a

Huttner-Barnett dielectric

6.1 Introduction

The term ’Casimir-Polder shift’ refers to the change in the atomic energy-levels induced by

a nearby reflecting surface e.g. dielectrics. A similar effect in free-space is the Lamb shift.

Crudely speaking, the Casimir-Polder shift can be viewed as a Stark effect where the role

of the electric field is played by the non-zero and position-dependent vacuum fluctuations

- an unavoidable consequence of the electromagnetic field quantization in the presence of

dielectrics [11].

In order to study the Casimir-Polder effect a theory of the quantized electromagnetic field

in the presence of boundaries is needed. The methods of field quantization largely depend

on how sophisticated the model of material’s optical response is. In the simplest case one

might assume perfect reflectivity of the surfaces. The quantization of the electromagnetic

field can then be achieved by the so-called normal-mode expansion. In this approach the

electromagnetic field is expanded in terms of a complete set of solutions of the homogeneous

Helmholtz equation. The presence of the boundaries is included by imposing appropri-

ate boundary conditions on the electromagnetic field. Then, to accomplish quantization,

the expansion coefficients are promoted to creation and annihilation operators which are

required to satisfy bosonic commutation relations. This approach has the advantage of

121
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being simple and therefore workable even for complex geometries [4] but suffers from a

lack of physical features e.g. missing evanescent modes [5]. This particular drawback can

be removed by considering non-dispersive and non-absorbing dielectrics characterized by

a single number - an index of refraction. Then, the goal of field quantization can still be

achieved by a similar procedure as for perfect reflectors [19]. However, it is well known

that the above-mentioned techniques of the electromagnetic field quantization run into

difficulties when one wants to include in the formalism the presence of realistic dielectrics.

The response of the material’s surface to the electromagnetic radiation in reality depends

on the frequency of the impinging radiation. Furthermore, causality requirements demand

that any dispersion is always accompanied by absorption. Therefore, in any model of in-

teraction between real dielectrics and the electromagnetic field, the field has to be coupled

to a reservoir in order to simulate absorptive degrees of freedom [68][69]. This can be done

in a number of ways. One could model the absorptive degrees of freedom by adding to the

operator-valued Maxwell equations Langevin-type fluctuating noise-currents that ensure

that canonical commutation relations do not decay in time but rather take the expected

form [1]. In this approach the field equations are solved using the Green’s function of

the wave equation and the noise-current operators play a major role in describing the

dynamics of the coupled field-dielectric system. A number of papers attempted to provide

microscopic justification of such a procedure by deriving the commutative properties of

the noise-current operators that otherwise were introduced ad hoc [70][71][72].

A more direct approach to the modelling of the interaction between electromagnetic field

and an absorptive dielectric is to explicitly include in the Lagrangian (or Hamiltonian)

the matter degrees of freedom that are responsible for absorption. The dielectric is then

envisaged to consist of a continuum of harmonic oscillators coupled to the reservoir which

is just yet another set of harmonic oscillators. This is the so-called quantum model of a

classical dielectric introduced by Hopfield [73]. The first Fano-type [74] diagonalization

of the resulting Hamiltonian has been achieved for fields in three dimensions in [75] for

a bulk dielectric and the general treatment of inhomogeneous dielectrics followed in [71].

The model has also been extended to include spatially dispersive bodies [76] and magne-

todielectrics [77]. Practical applications of the Huttner-Barnett model, e.g. calculation

of spontaneous decay rates [78], work well for bulk dielectrics where simple forms of the

relevant operators can be found. However, in a bulk medium the local field corrections
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play an important role and need to be included. On the other hand, complications that

arise due to inhomogeneities of the dielectric seem to lead to unwieldy and impractical

results, see e.g. Appendix in [6].

In this Chapter we aim to demonstrate that starting from the Power-Zienau-Wooley type

of Hamiltonian rather than adopting the minimal coupling scheme it is possible to carry

out explicit and easy to follow perturbative QED calculations is the presence of inhomoge-

neous Huttner-Barnett dielectrics. We apply the formalism we develop to the problem of

calculating the energy-level shifts and change in spontaneous-decay rates for a neutral atom

placed in the vicinity of a dielectric half-space. We successfully rederive the well-known

results of phenomenological methods and broaden them by providing the asymptotic ex-

pansions that quantify the influence of absorption on the standard Casimir-Polder force

calculated in [64]. We use only standard methods of Quantum Field Theory in a similar

way as this is done in condensed matter theories. This requires the calculation of quantum

propagators, most notably that of the electromagnetic field. This task is non-trivial but

manageable. We partially adapt the seemingly overlooked results of [79] and find an exact

solution of the Dyson equation satisfied by the photon propagator. In Appendix B we

make contact with the phenomenological noise-current approach and calculate the pho-

ton propagator using the electromagnetic field operators constructed on the basis of the

noise-current operators as developed by the Jena group.

6.2 Hamiltonian of the model and solving strategy

To find the energy-level shifts and change in spontaneous decay rates for an atom placed

in the vicinity of an absorptive macroscopic body we adopt essentially the same model as

[68]. The dielectric is modelled by a continuum of quantized harmonic oscillators - the

polarization field, which is coupled to yet another set of quantized harmonic oscillators -

the reservoir, the presence of which leads to a damping in the polarization field so as to

allow absorption. Such coupled quantum fields are subsequently allowed to interact with

the electromagnetic field via the µ · E type of coupling. It turns out that the subsystem

consisting of the reservoir, the polarization and the electromagnetic field is exactly soluble

(at least for simple geometries of the dielectric); therefore the interaction of the atom

with the dielectric can be reduced to the interaction of the atomic electron with the
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’dressed’ electromagnetic field i.e. the electromagnetic field corrected for the presence

of an absorptive body. This approach stems from the theory developed in [80] where

the interaction between an atom and a point-like absorptive dielectric (damped harmonic

oscillator) was addressed.

Our starting point is the Lagrangian density describing the electromagnetic field and

dielectric. It consists of the following parts

L0 = LEM + LP + LR + LP−EM (6.1)

that are described as follows:

(i). The Lagrangian density LEM of the free electromagnetic field :

LEM =
ε0
2

E2(r)− 1

2µ0
B2(r), (6.2)

where E(r) is the electric field and B(r) is the magnetic induction.

(ii). The Lagrangian density LP of the polarization field :

LP =
1

2
MẊ(r)− 1

2
Mω2

TX2(r). (6.3)

Here, X is the dipole moment density of the continuum of harmonic oscillators describing

the dielectric. The strength of the restoring force acting on the polarization oscillators

is determined by the combination Mω2
T. Hence, for fixed absorption frequency ωT of

the dielectric, the ’mass’ M is the parameter that determines the susceptibility of the

polarization oscillator to an external agent. It has dimensions of (mass) × (lenght)−1 ×
(dipole moment density)−2 and, in fact, the quantity (Mε0ω

2
T)−1 will turn out to be the

polarizability of the dielectric at zero frequency [73]. The absence of derivatives with

respect to r in equation (6.3) implies that the polarization oscillators at different points

in space are mutually independent resulting in a model with no spatial dispersion.
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(iii). The Lagrangian density LR of the reservoir, including its coupling to the polarization

field:

LR =

∫ ∞
0

dν

{
1

2
ρνẎν(r)− 1

2
ρνν

2 [Yν(r)−X(r)]2
}
.

(6.4)

Here, Y is the dipole moment density of the bath oscillators and the parameter ρν has

dimensions of (mass) × (lenght)−1 × (dipole moment density)−2 per unit frequency. The

coupling of the bath to the polarization field leads to the appearance of term proportional

to Ẋ(r, t) in the equations of motion for the polarization field, hence it is responsible for

damping [81][82]. The ’masses’ of the bath oscillators ρν vary continuously with index ν

and describe the strength of the coupling between a single polarization oscillator and the

continuum of reservoir oscillators for different frequencies ν. The precise profile of ρν is

chosen so that the desired absorption spectrum is obtained [83].

(iv). The Lagrangian density LP−EM describing the interaction of the polarization field

with the electromagnetic field :

LP−EM = g(r)X(r) ·E(r). (6.5)

The dimensionless coupling function g(r) specifies where the interaction takes place i.e.

g(r) =

 1 inside the dielectric

0 outside the dielectric
, (6.6)

so that g(r) describes the shape of the dielectric body.
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It is straightforward to identify the canonical momenta and obtain the corresponding

Hamiltonian densities

HEM =
1

2ε0
D2(r) +

1

2µ0
B2(r), (6.7)

HP =
P2(r)

2M +
1

2
Mω2

TX2(r), (6.8)

HR =

∫ ∞
0

dν

[
Z2
ν(r)

2ρν
+

1

2
ρνν

2Y2
ν(r)

]
, (6.9)

HP−R = −
∫ ∞

0
dνρνν

2X(r) ·Yν(r), (6.10)

HP−EM = −g(r)

ε0
D(r) ·X(r), (6.11)

where we have separated out the part of the Hamiltonian that represents the frequency

shifts

HS =
1

2

∫ ∞
0

dνρνν
2X2(r) +

1

2

g2(r)

ε0
X2(r). (6.12)

The first term of (6.12) arises due the coupling between the polarization field and the

reservoir whereas the second term is caused by the coupling between the electromagnetic

and the polarization field. Equations (6.7)-(6.12) accompanied by the set of the equal-time

commutation relations

[
Di(r), Bj(r

′)
]

=
~

(2π)3
εijm

∫
d3kkme

ik·(r−r′), (6.13)[
Xi(r), Pj(r

′)
]

= i~δijδ(3)(r− r′), (6.14)[
Yi,ν(r), Zj,ν′(r

′)
]

= i~δijδ(3)(r− r′)δ(ν − ν ′), (6.15)

allow one to derive the expected equations of motion for the damped-polariton model, cf.

[70]. Here, D(r) ≡ ε0E(r) + g(r)X(r) is the displacement field which is in fact the negative

of the momentum conjugate to A(r), with A(r) being the vector potential. The fact that

it is the displacement field that plays the role of the electromagnetic conjugate momentum

is a result of the µ · E type of coupling chosen in (6.5). The terms of the Hamiltonian

density (6.12) shift the eigenfrequency of the polarization field ωT, i.e.

ω2
T → ω̃2

T = ω2
T +

1

M

∫ ∞
0

dνρνν
2 +

g2(r)

ε0M
. (6.16)

The second term contains the parameter ρν that pertains to the shape of the absorption
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spectrum. For our choice of ν-dependence, see Appendix E, it turns out to be infinite.

However, this is not problematic as the observable quantities, most notably the dielectric

function, stay physically meaningful. Additionally, the last term in (6.16) in principle

introduces position dependence of the frequency ω̃T through the coupling function g(r). At

this stage it is not yet apparent but this position dependence will happen to be irrelevant.

Hence, we now set g(r) = 1 but promise, when the time comes, to point out why we are

allowed to do so. Then, we can incorporate equation (6.12) in the Hamiltonian density of

the polarization field writing

HP =
P2(r)

2M +
1

2
Mω̃2

TX2(r), (6.17)

with

ω̃2
T = ω2

T + ω2
P +

1

M

∫ ∞
0

dνρνν
2. (6.18)

Although our model does not allow for free electrons, by hindsight, we have introduced

notation ω2
P = (ε0M)−1 in analogy to plasma frequency.1

Our aim is to investigate the influence of an absorbing dielectric on the properties of an

atom such as the energy-level shift and spontaneous decay rates. Therefore, for our Hamil-

tonian to be complete we have to supplement it by the atomic part. The full Hamiltonian

reads

H =

∫
d3r (HEM +HP +HR +HP−R +HP−EM +HA +HA−EM) , (6.19)

where HA is the Hamiltonian density of the non-interacting atom and HA−EM describes

its coupling to the electromagnetic field. We consider a one-electron atom and treat the

atomic electron non-relativistically by representing it as a quantum of the Schrödinger

field satisfying the fermionic anticommutation relations. Thus, the Hamiltonian density

HA of the non-interacting2 atomic electron can be written as

HA = Ψ†(r)

[
− ~2

2m
∇2 + V (|r−R|)

]
Ψ(r), (6.20)

1At this stage the analogy between the quantity (ε0M)−1 and the plasma frequency, as commonly
introduced in the free-electron model of plasma, is not yet apparent. This choice of notation will justify
itself once the precise form of ρν in Eqs. (6.17)-(6.18) is chosen so that the dielectric function of the model
is specified, for details see Appendix E.

2Here, by non-interacting we mean the absence of interactions with the quantized part of the electro-
magnetic field.
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where Ψ(r) is the Schrödinger field operator satisfying the anticommutator relation

{
Ψ(r),Ψ†(r)

}
= δ(3)(r− r′), (6.21)

and V (|r − R|) is the potential due to the immobile nucleus which we choose to be al-

ways located well outside the dielectric at a position R so that there is no wave-function

overlap between the atom and the solid. The atom is coupled to the electric field via its

electric dipole moment. The Hamiltonian density describing this coupling in the dipole

approximation may be written as

HA−EM = −µ ·E(r) δ(3)(r−R), (6.22)

with delta function ensuring that we evaluate the electric field at the position of the

nucleus. Here, µ is the electric-dipole moment operator which may be written as

µ = −e
∫

d3r′Ψ†(r′) ρ Ψ(r′), (6.23)

with −e being the charge of the electron and ρ̃ is the negative3 of its position with respect

to the nucleus i.e. ρ̃ = r′ −R. It is convenient to expand the field operator Ψ(r) in terms

of the complete set of atomic wave-functions satisfying[
− ~2

2m
∇2 + V (|r−R|)

]
φn(r) = Enφn(r). (6.24)

We have

Ψ(r) =
∑
m

cmφm(r), Ψ†(r) =
∑
m

c†mφ
∗
m(r) (6.25)

where the operators cm and c†n can be shown to satisfy the anticommutation relation

{
cn, c

†
m

}
= δmn. (6.26)

This property follows directly from (6.21) and the fact that the eigenfunctions φn(r) are

orthonormal. We use equations (6.25) and (6.26) to rewrite Hamiltonians HA and HEM

3The minus sign ensures the consistency with the conventional definition of the electric dipole moment
µ = −eρ where ρ points from the position of the negative charge to that of the positive one.
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in a more useful form

HA =

∫
d3r HA =

∑
n

Enc
†
ncn, (6.27)

HA−EM =

∫
d3r HA−EM = −e

∑
ij

c†icj〈i|ρ|j〉 ·E(R), (6.28)

where 〈i|ρ|j〉 are the dipole matrix elements i.e. the expectation value of the electron’s

position operator ρ

〈i|ρ|j〉 =

∫
d3ρ φ∗i (ρ) ρ φj(ρ). (6.29)

We calculate the energy-level shifts and spontaneous decay rates using Green’s function

approach in the same manner as in [80]. In this approach the energy shifts and decay rates

of the atom are given as poles of the atomic propagator which in our case is accessible

only perturbatively. To perform the perturbative calculations we work in the interaction

picture where the general expression for the perturbative expansion of a Green’s function

of the field Ψ under the influence of the interaction HI is [84]

G(r, r′, t, t′) =
∞∑
n=0

(
− i
~

)n+1 ∫
dt1 . . .

∫
dtn

×
〈

Ω|T
[
Ψ(r, t)Ψ†(r′, t′)HI(t1) . . . HI(tn)

]
|Ω
〉

conn
. (6.30)

Wick’s theorem states that the terms appearing in the expansion (6.30), when written out

explicitly for a specific interaction Hamiltonian, turn out to be given entirely in terms of

the propagators of the non-interacting fields

G(0)(r, r′, t, t′) = − i
~
〈Ω|T

[
Ψ(r, t)Ψ†(r′, t′)

]
|Ω〉, (6.31)

where now Ψ is the field operator in the Heisenberg picture and |Ω〉 is the exact ground

state of the non-interacting system. The subscript ’conn’ in equation (6.30) indicates that

only connected diagrams contribute, as disconnected diagrams drop out in the normaliza-

tion of |Ω〉.

First we determine the non-interacting propagators of the atom, the polarization field,

the bath and the electromagnetic field. Then, the interaction of the polarization field

with the reservoir is treated exactly. Once this is accomplished the correction to the
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electromagnetic-field propagator caused by the presence of the absorptive dielectric can be

calculated. This is the dressed photon propagator enters the final perturbative expansion

of the atomic propagator whose poles contain the information about energy-level shifts

and changes in transition rates.

6.3 Unperturbed Feynman propagators

6.3.1 Atomic-electron propagator

The unperturbed atomic-electron propagator corresponding to the Hamiltonian (6.20) or

equivalently (6.27) is defined by

G(0)(r, r′, t, t′) = − i
~
〈Ω|T

[
Ψ(r, t)Ψ†(r′, t′)

]
|Ω〉, (6.32)

where Ψ is the Schrödinger field operator in the Heisenberg picture and |Ω〉 is the ex-

act ground state of the non-interacting system. We plug the field operators written out

in terms of the atomic eigenfunctions, Eq. (6.25), and remember that we work in the

Heisenberg picture so that the operators cl and c†m are now time-dependent:

G(0)(r, r′, t, t′) =
∑
l,m

φl(r)φ∗m(r′)G
(0)
lm(t, t′) (6.33)

with

G
(0)
lm(t, t′) = − i

~
〈Ω|T

[
cl(t)c

†
m(t′)

]
|Ω〉. (6.34)

The time-dependence of the fermionic annihilation and creation operators is determined

using the Heisenberg equations of motion, anticommutation relation (6.26) and the Hamil-

tonian (6.27):

i~ċn = [cn, H] =
∑
m

Em[cn, c
†
mcm] =

∑
m

Em

(
{cn, c†m}cm − c†m{cn, cm}

)
=
∑
m

Emδnmcm,

so that we have

cm(t) = cm(0)e−iEmt/~, c†m(t) = c†m(0)eiEmt/~. (6.35)
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With equation (6.35) we determine G
(0)
lm(t, t′) to be

G
(0)
lm(t− t′) = − i

~
θ(t− t′)e−iEl(t−t′)/~δlm. (6.36)

where we have used the definition of the time ordering operator and the fact that the

vacuum state |Ω〉 is annihilated by cm(0). We shall work with the Fourier transform of

G
(0)
lm(t, t′) with respect to the time difference t− t′ ≡ τ

G
(0)
lm(E) =

∫ ∞
−∞

dτeiEτ/~G
(0)
lm(τ) =

1

E − El + iη
δlm. (6.37)

With this convention of Fourier transform the η-prescription ensures the correct causal

behaviour of the propagator and guarantees the convergence of the integrals.

6.3.2 Photon propagator

To calculate the zeroth-order propagator of the displacement field D(r, t) whose dynamics

is governed by the Hamiltonian (6.7) not including the coupling term (6.11), we note that

the Heisenberg equations of motion imply

∂Di(r, t)

∂t
=

1

µ0
εijk ∇jBk(r, t), (6.38)

∂Bi(r, t)

∂t
= − 1

ε0
εijk ∇jDk(r, t), (6.39)

where εijk is the Levi-Civita symbol and the sum over doubly occurring Cartesian indices

is implied. Thus the displacement field D(r, t) satisfies the homogeneous wave equation

(∇i∇j − δij∇2)Dj(r, t) +
∂2

∂t2
Di(r, t) = 0. (6.40)

Formal definition of the photon propagator reads:

Dij(r, r
′, t, t′) = − i

~
〈0|T

[
Di(r, t)Dj(r

′, t′)
]
|0〉, (6.41)

where Di(r, t) is the displacement field operator in the Heisenberg picture and |0〉 is the

exact ground state of the non-interacting electromagnetic field. We apply the differential

wave-operator that appears in (6.40) to the definition of the propagator. One needs to be
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careful when evaluating time derivatives which do interact with the time-ordering operator,

namely

∂

∂t
T[A(t)B(t′)] =

∂

∂t

[
θ(t− t′)A(t)B(t′) + θ(t′ − t)B(t′)A(t)

]
= δ(t− t′)[A(t), B(t)] + T

[
∂A(t)

∂t
B(t′)

]
. (6.42)

Applying this formula to calculate time derivatives we find that

(
∇i∇j − δij∇2

)
D

(0)
jk (r, r′, t, t′) +

∂2

∂t2
D

(0)
ik (r, r′, t, t′)

=
i

~

〈
0

∣∣∣∣T [(∇i∇j − δij∇2
)
Dj(r, t)Dk(r

′, t′) +
∂2

∂t2
Di(r, t)Dk(r

′, t′)

]∣∣∣∣ 0〉
+

i

~

[
∂Di(r, t)

∂t
,Dk(r

′, t)

]
δ(t− t′) (6.43)

where we have used the fact that spatial derivatives commute with time-ordering operator.

By virtue of Eq. (6.40) the second line of (6.43) vanishes and it remains to evaluate

the commutator
[
Ḋi(r, t), Dk(r

′, t)
]
. To do so we use Maxwell’s equation (6.38) and the

commutator (6.13)[
∂Di(r, t)

∂t
,Dk(r

′, t)

]
=
i~
µ0

(
∇i∇k − δik∇2

)
δ(3)(r− r′). (6.44)

Thus the displacement field propagator D
(0)
ij (r, r′, t, t′) satisfies the following differential

equation

(∇i∇j − δij∇2)D
(0)
jk (r− r′, t− t′) + µ0ε0

∂2

∂t2
D

(0)
ik (r− r′, t− t′)

=
ε0

(2π)3
δ(t− t′)

∫
d3q(qiqk − δikq2)eiq·(r−r

′). (6.45)

We note that the free-space photon propagator depends only on the differences r− r′ and

t − t′. This property allows us to find the solution of (6.45) using Fourier transform. As

a first step we note that Maxwell’s equation (6.38) implies that the displacement field is

transverse and so is its propagator

∇iD(0)
jk (r− r′, t− t′) = 0. (6.46)
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Therefore, Eq. (6.45) simplifies to

∇2D
(0)
jk (r− r′, t− t′)− µ0ε0

∂2

∂t2
D

(0)
ik (r− r′, t− t′)

= − ε0
(2π)3

δ(t− t′)
∫

d3q(qiqk − δikq2)eiq·(r−r
′). (6.47)

Introducing Fourier transformed propagator

D
(0)
ik (q, ω) =

∫
d3(r− r′)e−iq·(r−r

′)

∫ ∞
−∞

d(t− t′)eiω(t−t′)D
(0)
ik (r− r′, t− t′) (6.48)

we readily obtain the spectral representation of the propagator

D
(0)
ik (q, ω) = ε0

δikq
2 − qiqk

ω2 − q2 + iη
, (6.49)

where the poles in the denominator have been misplaced so that the result displays causal-

ity appropriate for the Feynman propagator. In Appendix A we show that this choice of

the η-prescription indeed guarantees the correct behaviour of the propagator when trans-

formed back to the time variable.

6.3.3 Polarization field propagator

The Hamiltonian density (6.17) describes a collection of mutually independent harmonic

oscillators i.e. the harmonic oscillator at r is unaffected by the oscillator at r + dr. This

allows us to introduce, for each harmonic oscillator, creation and annihilation operators,

b†(r) and b(r), in a completely the same way as this is done in the well-known algebraical

approach to a simple harmonic oscillator in non-relativistic quantum mechanics, see e.g.

Chapter 2 of this thesis,

X(r) =

√
~

2Mω̃T

[
b†(r) + b(r)

]
, P(r) = i

√
~Mω̃T

2

[
b†(r)− b(r)

]
. (6.50)

The operators b†(r) and b(r) satisfy equal-time commutation relation

[
bi(r), b†j(r)

]
= δijδ

(3)(r− r′) (6.51)
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which follows directly from their definition and the relation (6.14). The operator bi(r) has

the property that it annihilates the ground state of the oscillator at r oscillating in the

i-th direction. We will use this property, together with the commutation relation (6.51),

to directly evaluate the polarization field propagator defined as

K
(0)
ij (r, r′, t, t′) = − i

~
〈Ω|T

[
Xi(r, t)Xj(r

′, t′)
]
|Ω〉. (6.52)

Here Xi(r, t) is the polarization field operator in the Heisenberg picture and |Ω〉 is the

exact ground state of the non-interacting polarization field. When written out in terms

of the creation and annihilation operators the Hamiltonian density (6.17) takes on the

diagonal form

HP =
1

2
~ω̃T

[
b†(r) · b(r) + b(r) · b†(r)

]
, (6.53)

so that the time dependence of the creation and annihilation operators is harmonic

b(r, t) = b(r, 0)e−iω̃Tt, b†(r, t) = b†(r, 0)eiω̃Tt, (6.54)

which follows from the Heisenberg’s equations of motion. We plug the polarization field

operators expressed in terms of the ladder operators into Eq. (6.52). Due to orthogonality

of states only terms proportional to b ·b† contribute. Taking care of the appropriate time

ordering of operators and using the commutator (6.51) to move the annihilation operators

to the right of creation operators, so that they act on the vacuum state |Ω〉, we readily

obtain

K
(0)
ij (r− r′, t− t′) = − i

2Mω̃T
δijδ

(3)(r− r′)
[
θ(t− t′)e−iω̃T(t−t′) + θ(t′ − t)e+iω̃T(t−t′)

]
,

(6.55)

where the frequency ω̃T has been defined in Eq. (6.18). We shall need Fourier transform

of the polarization propagator with respect to the time difference t− t′

K
(0)
ij (r− r′;ω) =

∫ ∞
−∞

d(t− t′)eiω(t−t′)K
(0)
ij (r− r′, t− t′), (6.56)

which is given by

K
(0)
ij (r− r′;ω) =

1

M
1

ω2 − ω̃2
T + iη

δijδ
(3)(r− r′). (6.57)
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6.3.4 Reservoir propagator

The dynamics of the non-interacting reservoir field is described by the Hamiltonian (6.9)

which describes a set of independent harmonic oscillators. The propagator for the free

reservoir field can be obtained by repeating the steps needed to derive the propagator for

the free polarization field, see Section 6.3.3. Therefore, we don’t give detailed derivation

but simply copy the structure of results (6.55) and (6.57). In the time domain the reservoir

propagator reads

H
(0)
ij (r− r′, t− t′, ν, ν ′) = − i

2ρνν
δijδ

(3)(r− r′)δ(ν − ν ′)

×
[
θ(t− t′)e−iν(t−t′) + θ(t′ − t)e+iν(t−t′)

]
. (6.58)

It’s Fourier transformation with respect to t− t′ is given by

H
(0)
ij (r− r′, ν, ν ′;ω) =

∫ ∞
−∞

d(t− t′)eiω(t−t′)H
(0)
ij (r− r′, t− t′, ν, ν ′), (6.59)

with

H
(0)
ij (r, r′, ν, ν ′;ω) =

1

ρν

δij
ω2 − ν2 + iη

δ(3)(r− r′)δ(ν − ν ′). (6.60)

6.4 Dressed propagators

Having collected all unperturbed propagators we can proceed to work out the propagators

for the coupled fields. We are going to use perturbation theory in its diagrammatic formu-

lation i.e. representing each term of the perturbative expansion (6.30) by an appropriate

Feynman diagram [84]. In order to proceed, one needs to establish the correspondence

between elements of Feynman diagrams and analytical expressions, the so-called Feynman

rules. We have four different free propagators and accordingly we associate with them four

distinct lines:
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≡ ih̄G
(0)
ii (t, t

′)
t′ tii

≡ ih̄D
(0)
kl (r, r

′, t, t′)
r′, t′ r, tkl

≡ ih̄K(0)
mn(r, r

′, t, t′)
r′, t′ r, tmn

≡ ih̄H(0)
pq (r, r

′, t, t′; ν, ν ′)
r′, t′ r, tν, pq

We shall need to consider three interaction Hamiltonians sequentially, HP−R, HP−EM and

HA−EM:

HP−R = −
∫

d3r

∫ ∞
0

dνρνν
2X(r) ·Yν(r), (6.61)

HP−EM = − 1

ε0

∫
d3rg(r)D(r) ·X(r), (6.62)

HA−EM = − 1

ε0

∑
ij

c†icj µij ·
∫

d3r D(r)δ(3)(r−R), (6.63)

where we have introduced shorthand notation µij = 〈i|µ|j〉 for the matrix elements of

the atomic electric dipole moment operator µ. These interaction Hamiltonians yield the

following rules for the vertices between the lines defined above:

t′ ii r1, t1 jj t
≡ ε−1

0 μk
ijδ

(3)(r1 −R)

kl

r′, t′ kl r1, t1 mn r, t
≡ −ε−1

0 g(r)δlm

r′, t′ mn r1, t1 ν, pq r, t
≡ −ρνν

2δnp
.

To compute a diagram one has to sum over all internal indices and integrate over internal

times, internal coordinates and reservoir oscillator frequencies ν and ν ′. We remind the

reader that the subscript ’conn’ in equation (6.30) means that the summation runs only
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over the terms that correspond to the connected Feynman diagrams. Topologically equiv-

alent diagrams i.e. those that can be obtained by permuting the factors HI(ti) in (6.30)

are counted only once therefore we have omitted the usual factor of 1/n! that would have

otherwise arisen in a straightforward expansion of the time-ordered exponential.

6.4.1 Dressing the polarization line

We chose to represent the dressed polarization propagator with a bold dashed line:

≡ ih̄Kmn(r, r
′, t, t′)

r′, t′ r, tmn

From the Feynman rules for the interaction Hamiltonian (6.61) one can see that the polar-

ization line can only ever join one reservoir line, hence the following sequence of Feynman

diagrams corresponding to the expansion (6.30) can be drawn:

=

+

+

+ . . .

=

The equivalent analytical expression, which is the integral Dyson equation satisfied by the

dressed polarization propagator, then reads

Kmn(r, r′, t, t′) = K(0)
mn(r, r′, t, t′)

+

∫ ∞
−∞

dt1

∫ ∞
−∞

dt2

∫
d3r1

∫
d3r2

∫ ∞
0

dν

∫ ∞
0

dν ′ K
(0)
ml (r, r1, t, t1)

×H(0)
lp (r1, r2, t1, t2, ν, ν

′)Kpn(r2, r
′, t2, t

′) (6.64)

The above equation is easily solved exactly. Both spatial integrations are trivially calcu-

lated, cf. Eqs. (6.57) and (6.60). Then, we Fourier transform with respect to t− t′

Kmn(r, r′;ω) =

∫ ∞
−∞

d(t− t′)eiω(t−t′)Kmn(r, r′, t− t′) (6.65)
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and find the following expression for the dressed polarization field propagator in the fre-

quency domain

Kmn(r− r′;ω) = Kmn(r− r′;ω) = K(ω)δ(3)(r− r′)δmn (6.66)

with

K(ω) =
1

M

[
ω2 − ω2

T − ω2
P −

ω2

M

∫ ∞
0

dν
ρνν

2

ω2 − ν2 + iη

]−1

. (6.67)

Note that K(ω) is an even function of ω.

6.4.2 Dressing the photon line

The coupling between the (dressed) polarization field and the electromagnetic field (6.62)

has formally the same form as the coupling between the polarization field and the bath

(6.61). Therefore, by analogy with the previous section, we write down the graphical

equation for the dressed photon propagator:

=

where the bold dashed line denotes the dressed photon propagator i.e.

≡ ih̄Dkl(r, r
′, t, t′)

r′, t′ r, tkl

The corresponding analytical expression is given by

Dik(r, r
′, t, t′) = D

(0)
ik (r− r′, t− t′)

+
1

ε20

∫ ∞
−∞

dt1

∫ ∞
−∞

dt2

∫
d3r1

∫
d3r2 g(r1)g(r2)D

(0)
ij (r− r1, t− t1)

×Kjl(r1 − r2, t1, t2)Dlk(r2, r
′, t2, t

′). (6.68)

Now recall the remark made after Eq. (6.16) where we have discussed the shifted eigen-

frequency ω̃T of the polarization field. It enters the Dyson equation (6.68) through the

dressed polarization field propagator Kjl(r1 − r2, t1, t2). We noted there, that according

to Eq. (6.16), it suffers a jump in the region where the polarization field is coupled to the



Chapter 6. Quantum electrodynamics near a Huttner-Barnett dielectric 139

electromagnetic field i.e. in the region where the coupling function g(r) = 1. It is now

apparent that this discontinuity of the frequency ω̃T is not problematic because all spatial

integrations in (6.68) are limited to the region of space where g(r) = 1.

To simplify (6.68) we note that one of the spatial integrations is trivial due to the δ-

function, cf. Eq. (6.66), and after we carry out the Fourier transformation with respect

to time difference t− t′

Dik(r, r
′;ω) =

∫ ∞
−∞

d(t− t′)eiω(t−t′)Dik(r, r
′, t, t′) (6.69)

we find the Dyson equation for the dressed photon propagator in the frequency domain

Dik(r, r
′;ω) = D

(0)
ik (r− r′;ω) +

K(ω)

ε20

∫
d3r1g(r1)D

(0)
ij (r− r1;ω)Djk(r1, r

′;ω). (6.70)

The dimensionless coupling function g(r) is as defined in equation (6.6), D
(0)
ik (r − r′, ω)

is the real-space photon propagator in an unbounded vacuum i.e. the inverse Fourier

transform of (6.49)

D
(0)
ik (r− r′, ω) =

ε0
(2π)3

∫
d3q eiq(r−r′) δikq

2 − qiqk
ω2 − q2 + iη

. (6.71)

Function K(ω) is the frequency-dependent complex function that arose from the dressed

polarization field propagator and is given in (6.67); it will be shown to be related to the

dielectric permittivity. Interestingly, the geometry of the dielectric enters the calculations

only through g(r), which effectively defines the limits of the integration in equation (6.70).

Solution of the integral equation (6.70) is much less trivial than the case of dressing the

polarization line, Section 6.4.1. This is because of the translation invariance has been

lost when the inhomogeneous dielectric has been introduced into the system. In the next

section we are going to solve the Dyson equation satisfied by the dressed photon propagator

for the two geometries - the half-space and the gap. To illustrate the different methods we

will first determine the propagator in the half-space geometry somewhat indirectly. We

will convert the integral equation to a differential equation and then solve the resulting

boundary value problem. Next we will determine the propagator for the gap geometry. In

this case we will solve the integral equation directly by iteration. The iteration method

applied here largely relies on the developments reported in [79]. We will also illustrate how
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the iteration technique works for the half-space geometry and point out a peculiar issue

of the convergence of the iterative expansion. In Appendix B, for comparison with other

theories, we will also construct a photon propagator using an alternative method based on

phenomenological noise-current approach.

6.4.2.1 The half-space

Figure 6.1: Atomic dipole moment at a distance Z away from the dielectric half-space
of complex and frequency-dependent permittivity ε(ω). The transverse propagator of the

displacement field Dik(r, r′;ω) in this geometry is given by Eq. (6.108).

The integral equation satisfied by the dressed photon propagator was derived in Section

6.4.2. For convenience we write it down again here:

Dik(r, r
′;ω) = D

(0)
ik (r− r′;ω) +

K(ω)

ε20

∫
d3r1g(r1)D

(0)
ij (r− r1;ω)Djk(r1, r

′;ω). (6.72)

To recall, D
(0)
ik (r − r′) is the photon propagator in free space, Eq. (6.71), and g(r) is

a dimensionless coupling constant that is equal to unity in the region occupied by the

dielectric and vanishes otherwise. We now specify the geometry of the problem to describe

a dielectric half-space occupying the z < 0 region of space, as illustrated in Fig. 6.1. This

choice of the dielectric’s geometry is realized by taking

g(r1) = θ(−z1) (6.73)

where θ is the Heaviside step function. Knowing that the free-space propagator satisfies

the differential equation (6.45) we apply the same differential operator to equation (6.72)
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and obtain

(
∇i∇j − δij∇2

)
Djk(r, r

′;ω)− ω2Dik(r, r
′;ω) =

ε0
(2π)3

∫
d3q

(
qiqk − δikq2

)
eiq·(r−r

′)

+
1

(2π)3

K(ω)

ε0

∫
d3r1θ(−z1)

∫
d3q eiq·(r−r1)

(
qiqj − δijq2

)
Djk(r1, r

′;ω). (6.74)

Now we write out the factor
(
qiqj − δijq2

)
in the last term as derivatives acting on ex-

ponential and pull it outside the integrals. Then, interchanging the order of q and r1

integration we arrive at the differential equation satisfied by the photon propagator in the

half-space geometry

(
∇i∇j − δij∇2

) [
1 + θ(−z)K(ω)

ε0

]
Djk(r, r

′;ω)− ω2Dik(r, r
′;ω)

=
ε0

(2π)3

∫
d3q

(
qiqk − δikq2

)
eiq·(r−r

′). (6.75)

The quantity that appears on the RHS can be written as

− 1

(2π)3

∫
d3q

(
q2δik − qiqk

)
eiq·(r−r

′) = ∇2δ⊥ik(r− r′) (6.76)

where δ⊥ik(r− r′) is the standard transverse delta-function. Now it is more apparent that

the RHS of (6.75) contains a distribution and, unlike the transverse delta function, it is

a local distribution i.e. it is sharply localized around the point r = r′, the non-local part

being removed by the Laplacian through the relation

−∇2

(
1

4π|r− r′|

)
= δ(3)(r− r′). (6.77)

The locality of ∇2δ⊥ik(r−r′) is a very fortunate property of the differential equation (6.75),

which is essentially a scattering problem. Its RHS contains distribution which represents

a unit source and our task is to work out reflection and transmission at a boundary of the

dielectric. Therefore, in order to proceed any further, we need to specify physical situation

i.e. decide on which side of the boundary the source is localized. Since our ultimate aim

is to work out the energy-shift in an atom located outside the dielectric, we choose to first

consider the case z′ > 0. Then, Eq. (6.75) may be written in a ”piecewise” manner i.e.
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on the vacuum side we have

(
∇i∇j − δij∇2

)
Djk(r, r

′;ω)− ω2Dik(r, r
′;ω) = ε0∇2δ⊥ik(r− r′), z > 0, (6.78)

whereas on the dielectric side we have

(
∇i∇j − δij∇2

)
Djk(r, r

′;ω)− ξ(ω)ω2Dik(r, r
′;ω) = 0, z < 0, (6.79)

and the behaviour of the propagator Djk(r, r
′;ω) across the interface z = 0 is still to

be determined. Note how the local character of the RHS of equation (6.75) simplifies

the solution of Eqs. (6.78)-(6.79). It is this property that allows us to set the RHS of

(6.79) to zero. The function ξ(ω) that appeared in (6.79) is an even function of ω and, on

the positive real axis, it coincides with the dielectric function of the bulk dielectric4, see

Appendix E. It is explicitly written out as

ξ(ω) =
1

1 +
K(ω)

ε0

= 1 +
1

ε0M

[
ω2

T − ω2 − ω2

M

∫ ∞
0

dν
ρνν

2

ν2 − ω2 − iη

]−1

= 1 +
ω2

P

ω2
T − ω2 − 2iγ

√
ω2
. (6.82)

To solve Eqs. (6.78)-(6.79) we start with the following ansatz

Dik(r, r
′;ω) = θ(−z)D(t)

ik (r, r′;ω) + θ(z)
[
D

(0)
ik (r− r′;ω) +D

(r)
ik (r, r′;ω)

]
, (6.83)

which we justify as follows. On the vacuum side the solution is written as a sum that

consists of the particular solution5 D
(0)
ik (r − r′;ω) and the solution D

(r)
ik (r, r′;ω) of the

4Note the difference in the η prescription in equations (E.10) and (6.82). This is because equation
(6.82) originates from the Feynman propagator for the polarization field, Eq. (6.57), that is defined as

Kij(r, r
′, t, t′) = − i

~
〈0|T

(
Xi(r, t)Xj(r

′, t′)
)
|0〉, (6.80)

whereas the response function (E.10) is related to the retarded propagator of the polarization field

Kret
ij (r, r′, t, t′) = − i

~
〈0|

[
Xi(r, t), Xj(r

′, t′)
]
|0〉, (6.81)

for details see [80].
5We already know the particular solution of Eq. (6.78) because we have derived it in Section 6.3.2, Eq.

(6.45).
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homogeneous equation, i.e. Eq. (6.78) with the RHS set to zero, which represents the cor-

rection due to reflection at the boundary. The solution on the dielectric side D
(t)
ik (r, r′;ω)

represents the transmitted part and satisfies the homogeneous equation (6.79). The homo-

geneous solutions D
(r)
ik (r, r′;ω) and D

(t)
ik (r, r′;ω) are chosen in such a way that the general

solution given in Eq. (6.83) satisfies appropriate boundary conditions across the interface

z = 0. To see what these boundary conditions should be recall the formal definition of the

dressed propagator

Dij(r, r
′;ω) = − i

~
〈Ω|T

[
Di(r, t)Dj(r

′, t′)
]
|Ω〉. (6.84)

The displacement operator Di(r, t) satisfies Maxwell’s equations which follow from Heisen-

berg’s equations of motion, see Appendix E. Therefore, the photon propagator, by virtue

of its definition (6.84), when taken as a function of argument r and index i, is required to

satisfy Maxwell’s boundary conditions across the interface:

E‖ continuous ⇒ ε−1D‖j

∣∣∣∣
z=0−

= D‖j

∣∣∣∣
z=0+

Dz continuous ⇒ D3j

∣∣∣∣
z=0−

= D3j

∣∣∣∣
z=0+

B‖ continuous ⇒ ε−1∇zD‖j
∣∣∣∣
z=0−

= ∇zD‖j
∣∣∣∣
z=0+

(6.85)

with ‖= {1, 2}. Another way to see it is to think about the relation

Dk(r;ω) =

∫
d3r′ Dkl(r, r

′;ω) jl(r
′;ω) (6.86)

which expresses the displacement field D(r;ω) as a function of some given current j(r;ω).

If Dk(r;ω) is to satisfy Maxwell’s boundary conditions so is the propagator with respect

to variable r and index k. The apparent complication arising from the appearance of the

non-standard distribution in the boundary-value problem (6.75) is an initial illusion. In

fact, it is easier to find the solution of (6.75) than it is to solve the standard differential

equation satisfied by the Green’s function of the wave equation, for example see [85].

Equations (6.78)-(6.79), together with the boundary conditions (6.85), form a boundary-

value problem which is equivalent to the integral equation (6.72) with the choice g(r1) =

θ(−z1) (dielectric occupying z < 0 half-space) and z′ > 0 (source of radiation located in

vacuum).
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Because of the boundary the problem has lost translational invariance in the z-direction,

but not in directions parallel to the surface. In other words, the propagator depends only

on the difference r‖− r′‖ but separately on z and z′. We shall work with quantities Fourier

transformed with respect to r‖ − r′‖ i.e.

Dij(z, z
′; q‖, ω) =

∫
d2(r‖ − r′‖)e

−iq‖·(r‖−r′‖)Dij(r‖ − r‖, z, z
′;ω). (6.87)

Our first task is to find representation of the free-space propagator (6.71) as a two-

dimensional integral over the momenta parallel to the surface. We write

D
(0)
ik (r− r′, ω) =

ε0
(2π)3

∫
d3q

δikq
2 − qiqk

ω2 − q2 + iη
eiq(r−r′)

= − ε0
(2π)3

(
∇i∇k − δik∇2

) ∫
d2q‖e

iq‖·(r‖−r′‖)
∫ ∞
−∞

dqz
eiqz(z−z′)

(qz − kz)(qz + kz)

and use the residue theorem to evaluate the qz integral. The result is written in a compact

form as

D
(0)
ik (r− r′, ω) = − iε0

2(2π)2

(
∇i∇k − δik∇2

) ∫
d2q‖e

iq‖·
(
r‖−r′‖

)
eikz |z−z

′|

kz
(6.88)

where kz is the z-component of the wavevector in vacuum and is given by kz =
√
ω2 − q2

‖ + iη.

The square-root is taken such that the imaginary part of kz is always positive. Equation

(6.88) shows that Fourier transform of the free-space photon propagator with respect r‖−r′‖

is singular when crossing the z = z′ plane. We now note a very useful relation

q2δik − qiqk = ω2
[
eTE
i (q)eTE

k (q) + eTM
i (q)eTM

k (q)
]

(6.89)

with q = (q‖, kz) being the vacuum wavevector and we have introduced the unit polariza-

tion vectors

eTE(q‖) =
1

|q‖|
(−qy, qx, 0), eTM(q‖, kz) =

1

|q‖|ω
(qxkz, qykz,−q2

‖). (6.90)
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This relation follows from the completeness property of the polarization vectors (6.90).

We may now write

(
∇i∇k − δik∇2

)
e
iq‖·

(
r‖−r′‖

)
+ikz |z−z′| = ω2

∑
λ

 eλi (q‖, kz)e
λ
k(q‖, kz) z > z′

eλi (q‖,−kz)eλk(q‖,−kz) z < z′
(6.91)

so that the representation of the free-space propagator (6.88) may be written as

D
(0)
ij (z, z′; q‖, ω) = − iε0ω

2

2kz

∑
λ

 eλi (q‖, kz)e
λ
k(q‖, kz)e

ikz(z−z′) z > z′

eλi (q‖,−kz)eλk(q‖,−kz)e−ikz(z−z′) z < z′
. (6.92)

Warning: The above representation of the free-space propagator is valid away from the

point z = z′. At this point the z-derivatives in (6.88), when acting on eikz |z−z
′|, produce

terms proportional to the delta function and its derivative. We will use Eq. (6.92) in

the process of matching the boundary conditions. This is safe because then we consider

z = 0± and the source located at z′ is always well away from the boundary.

To proceed further we note that taking the divergence of the integral equation (6.72) and

using the fact that ∇iD(0)
ik (r− r′;ω) = 0 one infers that the dressed photon propagator is

transverse everywhere

∇iDik(r, r
′;ω) = 0. (6.93)

With this, equations (6.78)-(6.79) simplify further and in the (q‖, z)-space may be written

as (
∇2
z − q2

‖ + ω2
)
Dij(z, z

′; q‖, ω) = ε0

(
q2
‖ −∇2

z

)
δ⊥ij(q‖, z − z′), z > 0(

∇2
z − q2

‖ + ξ(ω)ω2
)
Dij(z, z

′; q‖, ω) = 0, z < 0
(6.94)

where δ⊥ij(q‖, z − z′) is Fourier transform of δ⊥ij(r− r′) with respect to r‖ − r′‖:

δ⊥ij(q‖, z − z′) =

∫
d2(r‖ − r′‖)e

−iq‖·(r‖−r′‖)δ⊥ij(r− r′). (6.95)

Equations (6.94) provide us with very important information, namely that the homoge-

neous solutions D
(r)
ik (r, r′;ω) and D

(t)
ik (r, r′;ω), as postulated in (6.83), must necessarily
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take the form

D
(r)
ij (z, z′; q‖, ω) = − iε0

2

[
Rij(q‖, z

′)eikzz + Sij(q‖, z
′)e−ikzz

]
, z > 0, (6.96)

D
(t)
ij (z, z′; q‖, ω) = − iε0

2

[
Tij(q‖, z

′)e−ikzdz + Uij(q‖, z
′)eikzdz

]
, z < 0, (6.97)

with kz =
√
ω2 − q2

‖ + iη and kzd =
√
ξ(ω)ω2 − q2

‖ and we take the square-roots such

that kz and kzd have always positive imaginary part. With this choice of the sign for

the square-roots, we observe that terms of the homogeneous solutions (6.96)-(6.97) that

contain exponentials e−ikzz and eikzdz are unphysical for they represent waves that diverge

at infinity. For this reason we may set Sij = Uij = 0. The remaining two matrices Rij

and Tij are chosen so that the general solution (6.83) satisfies the boundary conditions

(6.85). To impose the boundary conditions and work out the amplitudes Rij and Tij we

observe that the transversality of the dressed propagator (6.93) imposes rather stringent

constraints on both of them. For example, the matrix Rij needs to be written in the form

Rij = vi(q‖)rj(q‖, z
′), (6.98)

where the vector v is such that

q · v = 0 ⇒ v =

(
vx, vy,−

qxvy + qyvx
kz

)
, (6.99)

with q ≡ (q‖, kz). By hindsight, we pick vx = −qy and vy = qx so that

v = (−qy, qx, 0) . (6.100)

However, this choice is too restrictive on its own. There is no a priori reason for D
(+)
3j to

vanish. Therefore, an additional basis vector is needed in order to span the amplitude Rij

in full generality. An obvious and convenient choice is to choose a vector that is orthogonal

to both q and v

w = v × q = (qxkz, qykz,−q2
‖). (6.101)

We represent Rij as a linear combination

Rij = [αv + βw]i rj(q‖, z
′) ≡ eTE

i (q‖, kz)r
TE
j (q‖, z

′) + eTM
i (q‖, kz)r

TM
j (q‖, z

′), (6.102)
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where we have recognized in the above argument, apart from normalization factors, the

transverse electric and transverse magnetic polarization vectors, cf. Eq. (6.90). Similarly

we have

Tij = eTE
i (q‖,−kzd)tTE

j (q‖, z
′) + eTM

i (q‖,−kzd)tTM
j (q‖, z

′), (6.103)

with

eTM(q‖,−kzd) =
1√

ξ(ω)|q‖|ω
(−qxkzd,−qykzd,−q2

‖). (6.104)

We have intentionally written out the kz-dependence of the polarization vectors even

though in reality kz and kzd are expressible in terms of frequency ω and parallel wave-vector

q‖. This is useful as it explicitly indicates the wave-vector to which a given polarization

vector is orthogonal to. The decomposition into transverse electric and transverse magnetic

components significantly simplifies the matching of boundary conditions. The dressed

photon propagator can now be written in the form

Dij(z, z
′; q‖, ω) = − iε0

2

∑
λ

{[
eλi (q‖,−kzd)tλj e−ikzdz

]
θ(−z)

+

[
eλi (q‖, kz)r

λ
j e
ikzz +

ω2

kz
eλi (q‖,−kz)eλj (q‖,−kz)e−ikz(z−z′)

]
θ(z)

}
. (6.105)

The last term appearing in the above expression is the free-space photon propagator given

in Eq. (6.92). We have chosen the solution for which z − z′ < 0 as is appropriate for the

boundary conditions matching at z = 0± in the situation when z′ > 0. Imposing boundary

conditions (6.85) we find that

rλj = rλR e
λ
j (q‖,−kz)

ω2

kz
eikzz

′
,

tλj = tλR e
λ
j (q‖,−kz)

ξ(ω)ω2

kz
eikzz

′
, (6.106)

with rλ and tλ being the standard Fresnel’s reflection and transmission coefficients

rTE
R =

kz − kzd
kz + kzd

, rTM
R =

ξ(ω)kz − kzd
ξ(ω)kz + kzd

,

tTE
R =

2kz
kz + kzd

, tTM
R =

2
√
ξ(ω)kz

ξ(ω)kz + kzd
. (6.107)
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For future reference we write out the propagator in a complete form:

Dij(r, r
′;ω) = θ(z)D

(0)
ij (r− r′;ω)− iε0

(2π)2

∑
λ

∫
d2q‖

ω2

2kz
e
iq‖·(r‖−r′‖)

×
{
θ(−z)

[
ξ(ω)eλi (q‖,−kzd)eλj (q‖,−kz)tλR

]
e−ikzdz+ikzz

′

+θ(z)
[
eλi (q‖, kz)e

λ
j (q‖,−kz)rλReikz(z+z′)

]}
. (6.108)

and we remind the reader that the expression (6.108) is valid for z′ > 0. In the calculations

of the atomic energy-level shifts we will use the propagator for the case z, z′ > 0, where it

splits into a free-space partD
(0)
ij (r−r′;ω), which is not interesting for us as it corresponds to

the position-independent Lamb shift, and the correction due to reflection at the boundary

D
(r)
ij (r, r′;ω) that gives a rise do the distance-dependent Casimir-Polder shift. We recall

that we treat the atom-field interaction in the dipole approximation. This effectively

means that we will need the reflected part of the propagator D
(r)
ij (r, r′;ω) evaluated at

equal arguments r = r′. In such a case it largely simplifies and can be written in the form

D(r)(Z;ω) = − iε0
8π

∫ ∞
0

dk
k

kz
e2ikzZ


ω2rTE

R − k2
zr

TM
R 0 0

0 ω2rTE
R − k2

zr
TM
R 0

0 0 2k2rTM
R

 (6.109)

with kz =
√
ω2 − k2 + iη and we have gone to polar coordinates, qx = k cosφ, qy =

k sinφ, where the angle integration annihilated the off-diagonal elements of equal-argument

propagator D
(r)
ik (r, r;ω).

We can readily apply the methods developed here to obtain the propagator in the case

when the source is placed in the dielectric i.e. z′ < 0. In this case, the integral equation

(6.72) is converted to the Fourier transformed set of differential equations

(
∇2
z − q2

‖ + ω2
)
Dij(z, z

′; q‖, ω) = 0 z > 0(
∇2
z − q2

‖ + ξ(ω)ω2
)
Dij(z, z

′; q‖, ω) = ε0ξ(ω)
(
q2
‖ −∇2

z

)
δ⊥ij(q‖, z − z′) z < 0

(6.110)

with the boundary conditions given in (6.85). The particular solution of Eq. (6.110) for

z < 0 is given by the displacement propagator in a bulk dielectric D
(ε)
ik (r − r′;ω) i.e. the

solution of (6.70) with g(r1) = 1. It is fairly straightforward to obtain it using the fact

that the bulk propagator depends only on the difference r− r′. Fourier transformation of
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(6.72) with respect to r− r′ reads

D
(ε)
ik (q, ω) = ε0

δikq
2 − qiqk

ω2 − q2 + iη
+
K(ω)

ε0

δijq
2 − qiqj

ω2 − q2 + iη
D

(ε)
jk (q, ω). (6.111)

This matrix equation becomes an algebraical one by virtue of the transversality of the

propagator, Eq. (6.93). The calculation is straightforward and in the real space we obtain

D
(ε)
ik (r− r′, ω) =

ε0ξ(ω)

(2π)3

∫
d3q

δikq
2 − qiqk

ξ(ω)ω2 − q2
eiq(r−r′) (6.112)

with ξ(ω) = (1 + K(ω)/ε0)−1. In order to solve (6.110) we are going to need Fourier

transform of (6.112) with respect to r‖ − r′‖. It can be written in the form

D
(ε)
ij (z, z′; q‖, ω) = − iε0ξ(ω)ω2

2kzd

∑
λ

 eλi (q‖, kzd)e
λ
k(q‖, kzd)e

ikzd(z−z′) z > z′

eλi (q‖,−kzd)eλk(q‖,−kzd)e−ikzd(z−z′) z < z′
.(6.113)

in a complete analogy with the formula for the free space propagator, Eq. (6.92). Here

kzd =
√
ξ(w)ω2 − q2

‖ is the z-component of wave-vector in medium with always posi-

tive imaginary part. Also, make note of the important remark below Eq. (6.92). The

homogeneous solutions of equations (6.110) are written as

D
(t)
ij (z, z′; q‖, ω) = − iε0

2

[
Tij(q‖, z

′)eikzz + Sij(q‖, z
′)e−ikzz

]
, z > 0, (6.114)

D
(r)
ij (z, z′; q‖, ω) = − iε0

2

[
Rij(q‖, z

′)e−ikzdz + Uij(q‖, z
′)eikzdz

]
, z < 0, (6.115)

with kz =
√
ω2 − q2

‖ + iη and kzd =
√
ξ(ω)ω2 − q2

‖ and we take the roots such that kz

and kzd have always positive imaginary part. With this choice we observe that terms

of the homogeneous solutions (6.114)-(6.115) that contain exponentials e−ikzz and eikzdz

are unphysical, for they represent waves that diverge at infinity. For this reason we set

Sij = Uij = 0. The remaining two matrices, Rij and Tij , are chosen so that the general

solution, i.e. the sum of the particular and homogeneous solution, satisfies boundary

conditions (6.85). To simplify matching of the boundary conditions we decompose the

propagators into transverse electric and transverse magnetic components in exactly the
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same manner as it was done in Eqs. (6.98)-(6.104)

Rij = eTE
i (q‖,−kzd)rTE

j (q‖, z
′) + eTM

i (q‖,−kzd)rTM
j (q‖, z

′),

Tij = eTE
i (q‖, kz)t

TE
j (q‖, z

′) + eTM
i (q‖, kz)t

TM
j (q‖, z

′).

With this, the most general and physically admissible solution of Eqs. (6.110) suitable for

boundary-condition matching may be written as

Dij(z, z
′; q‖, ω) = − iε0

2

∑
λ

{[
eλi (q‖, kz)t

λ
j e
ikzz
]
θ(z)

+

[
eλi (q‖,−kzd)rλj e−ikzdz +

ω2

kz
eλi (q‖, kzd)e

λ
j (q‖, kzd)e

ikzd(z−z′)
]
θ(−z)

}
. (6.116)

The last term appearing in the above expression is the photon propagator in a bulk di-

electric given in Eq. (6.113). We have chosen the solution for which z − z′ > 0 as is

appropriate for the boundary conditions matching at z = 0± in the situation when z′ < 0.

Imposing boundary conditions (6.85) we find that

rλj = rλL e
λ
j (q‖, kzd)

ω2

kzd
e−ikzdz

′
,

tλj = tλL e
λ
j (q‖, kzd)

ξ(ω)ω2

kzd
e−ikzdz

′
,

with rλ and tλ being the Fresnel’s reflection and transmission coefficients

rTE
L =

kzd − kz
kz + kzd

, rTM
L =

kzd − ξ(ω)kz
ξ(ω)kz + kzd

,

tTE
L =

2kzd
kz + kzd

, tTM
L =

2
√
ξ(ω)kzd

ξ(ω)kz + kzd
. (6.117)

For future reference we write out the propagator in a complete form:

Dij(r, r
′;ω) = θ(−z)D(ε)

ij (r− r′;ω)− iε0
(2π)2

∑
λ

∫
d2q‖

ξ(ω)ω2

2kzd
e
iq‖·(r‖−r′‖)

×
{
θ(−z)

[
ξ(ω)eλi (q‖,−kzd)eλj (q‖, kzd)r

λ
L

]
e−ikzd(z+z′)

+θ(z)
[
eλi (q‖, kz)e

λ
j (q‖, kzd)t

λ
Le

ikzz−ikzdz′
]}

, (6.118)
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and we remind the reader that the expression (6.118) is valid for z′ < 0. It is easily verified

that Dij(r, r
′;ω) is indeed transverse everywhere.

6.4.2.2 The gap

Figure 6.2: Atomic dipole moment at a distance Z away from the middle of the gap
formed by parallel dielectric plates of complex and frequency-dependent permittivity ε(ω).
The transverse propagator of the displacement field Dik(r, r′;ω) in this geometry is given

by Eq. (6.146).

In the previous section we have calculated the photon propagator in a half-space geometry.

This was done by converting the integral equation into the differential equation supported

by Maxwell’s boundary conditions. In this Section we wish to calculate the photon prop-

agator in a gap geometry, as illustrated in Fig. 6.2, but using a different method. We will

solve the integral equation (6.70) directly relying on iteration. We start with the integral

equation (6.70) with the coupling function g(r1) chosen such that it describes the gap

centred at the origin and of width L,

Dik(r, r
′;ω) = D

(0)
ik (r− r′;ω)

+
K(ω)

ε20

∫
d3r1

[
θ

(
−L

2
− z1

)
+ θ

(
z1 −

L

2

)]
D

(0)
ij (r− r1;ω)Djk(r1, r

′;ω), (6.119)

where θ is the Heaviside step function. Equation (6.119) defines the problem completely

but its not very practical for it does not allow the iterative process. To see what we mean

by the iterative process let us write Eq. (6.119) symbolically

D = D0 +KD0 ⊗D. (6.120)
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Iterating the above equation leads to the expansion

D = D0 +KD0 ⊗D0 +K2D0 ⊗D0 ⊗D0 +K3D0 ⊗D0 ⊗D0 ⊗D0 + . . . (6.121)

Such an expansion proves especially useful if the action of the operator O = D0⊗ on the

free-space propagator D0 amounts to a simple multiplication i.e.

D0 ⊗D0 = CD0, (6.122)

where C is some constant. Then, equation (6.121) becomes a geometrical series

D = D0
(
1 +KC +K2C2 +K3C3 + . . .

)
(6.123)

which we know how to sum up to all orders. In the language of the integral equation

(6.119), the formula (6.122) implies

∫
d3r1

[
θ

(
−L

2
− z1

)
+ θ

(
z1 −

L

2

)]
D

(0)
ij (r− r1;ω)D

(0)
jk (r1 − r′;ω)

?
= CijD

(0)
jk (r− r′;ω)

(6.124)

where Cij is some constant matrix. It so happens that Eq. (6.124) doesn’t hold so the

iteration of Eq. (6.119) as it stands is not fruitful. However, the situation can be remedied

by a clever trick that was developed in [79]. Here we will adapt it to find the solution of

(6.119).

We now postulate that if D
(−)
ik (r, r′;ω) denotes the propagator of the displacement field

in the geometry where the dielectric occupies the z < −L/2 half-space, i.e. the result of

the previous Section, cf. Fig. 6.1, translated by −L/2, then the solution of the integral

equation

Dik(r, r
′;ω) = D

(−)
ik (r, r′;ω) +

K(ω)

ε20

∫
d3r1θ

(
z1 −

L

2

)
D

(−)
ik (r, r1;ω)Djk(r1, r

′;ω),

(6.125)

yields the propagator in the gap geometry as pictured in Fig. 6.2. Similarly, ifD
(+)
ik (r, r′;ω)

denotes the propagator of the displacement field in the geometry where the dielectric

occupies the z > L/2 half-space, i.e. the result of the previous Section, cf. Fig. 6.1,
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mirror-reflected and translated by L/2, then the solution of the integral equation

Dik(r, r
′;ω) = D

(+)
ik (r, r′;ω) +

K(ω)

ε20

∫
d3r1θ

(
−z1 −

L

2

)
D

(+)
ij (r, r1;ω)Djk(r1, r

′;ω)

(6.126)

also yields the propagator in the gap geometry as pictured in Fig. 6.2. To see that these

assertions are correct recall that Hamiltonian density of the electromagnetic field, including

its coupling to the polarization field, is given by

H = H0 −
g(r)

ε0
X ·D (6.127)

where H0 is Hamiltonian density of the non-interacting electromagnetic field i.e. the

electromagnetic field in free-space and g(r) is the coupling function that specifies where

the interaction takes place, cf. Eq. (6.7). X and D are polarization and displacement

field operators, respectively. In the case of the gap geometry the above Hamiltonian can

be written as

H = H0 −
1

ε0

[
θ

(
−L

2
− z
)

+ θ

(
z − L

2

)]
X ·D. (6.128)

The integral equation (6.119) corresponds to the Hamiltonian (6.128) where we take the

zeroth-order propagator of the perturbative expansion (6.30) to be the free-space propaga-

tor. However, this is by no means necessary. We may just as well rewrite the Hamiltonian

(6.128) as

H = H′0 +
1

ε0
θ

(
z − L

2

)
X ·D (6.129)

with H′0 = H0 − θ (−L/2− z1) X ·D/ε0 and take the zeroth-order propagator to be the

propagator in the presence of the dielectric half-space occupying the z < −L/2 region of

space. Doing so, the perturbative expansion (6.30) yields the Dyson equation (6.125). We

can justify the integral equation (6.126) in a similar way.

From now on we will be working with quantities Fourier transformed with respect to r‖−r′‖

Dij(z, z
′; q‖, ω) =

∫
d2(r‖ − r′‖)e

−iq‖·(r‖−r′‖)Dij(r‖ − r′‖, z, z
′;ω). (6.130)
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For notational clarity we will suppress the dependence of propagators on frequency ω and

parallel wavevector q‖. With this Eqs. (6.125)-(6.126) become

Dik(z, z
′) = D

(−)
ik (z, z′) +

K(ω)

ε20

∫ ∞
L
2

dz1D
(−)
ij (z, z1)Djk(z1, z

′), (6.131)

Dik(z, z
′) = D

(+)
ik (z, z′) +

K(ω)

ε20

∫ −L
2

−∞
dz1D

(+)
ij (z, z1)Djk(z1, z

′). (6.132)

and we mark this result as a starting point of further analysis.

As promised we will solve the integral equations directly by iteration. To do so we combine

equations (6.131) and (6.132) and obtain

Dik(z, z
′) = D

(−)
ik (z, z′) +

K(ω)

ε20

∫ ∞
L
2

dz1D
(−)
ij (z, z1)D

(+)
jk (z1, z

′)

+
K2(ω)

ε40

∫ ∞
L
2

dz1

∫ −L
2

−∞
dz2D

(−)
ij (z, z1)D

(+)
jl (z1, z2)Dlk(z2, z

′). (6.133)

The crucial observation is that, for an appropriate choice of the range of z and z′, we can

achieve

∫ ∞
L
2

dz1

∫ −L
2

−∞
dz2D

(−)
ij (z, z1)D

(+)
jl (z1, z2)D

(−)
lk (z2, z

′) = CijD
(−)
jk (z, z′), (6.134)

where Cij is some constant matrix i.e. independent of z and z′. In other words, the double-

integral operator in the last line of (6.133), when acting on D
(−)
jk , results in a (matrix)

multiplication, that is provided we choose z and z′ appropriately. We need to carefully

consider all three propagators that enter the double integral. The range of arguments of

the middle propagator D
(+)
jl (z1, z2) is fixed by the limits of integration. From Eq. (6.134)

we read off

z1 ∈
(
L

2
,∞
)
, z2 ∈

(
−∞,−L

2

)
. (6.135)

Recall that D
(+)
jl (z1, z2) and D

(−)
jl (z1, z2) denote the propagator of the displacement field

in the half-space geometry when the dielectric occupies the z > L/2 and z < −L/2 region

of space, respectively. Thus, the range of arguments (6.135) implies that D
(+)
jl (z1, z2)

is given by the transmitted part of the solution (6.108), only that we need to mirror-

reflect it and then translate it by L/2. This operation is effected by the substitution

(z, z′) → (L/2 − z, L/2 − z′) and eλi (q‖,−kzd)eλj (q‖,−kz) → eλi (q‖, kzd)e
λ
j (q‖, kz). We
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write out D
(+)
jl (z1, z2) explicitly

D
(+)
jl (z1, z2) = −iε0

ξ(ω)ω2

2kz

∑
λ

eλj (q‖, kzd)e
λ
l (q‖, kz)t

λe−ikzd(L/2−z1)+ikz(L/2−z2)

≡
∑
λ

D
(+)
ij (z1, z2)

∣∣∣
λ
. (6.136)

The choice of the range of arguments z and z′ is dictated by the fact that we want (6.134)

to hold. We will see shortly that the choice6

z ∈
(
−∞,−L

2

)
, z′ ∈

(
−L

2
,
L

2

)
. (6.137)

does the job. For this choice of z and z′, the remaining two propagators on the LHS of

(6.134), D
(−)
ij (z, z1) and D

(−)
lk (z2, z

′), also consist of a transmitted part of the half-space

propagator. They can be obtained by translating the transmitted part of the solution

(6.108) by −L/2. Explicitly,

D
(−)
ij (z, z1) = −iε0

ξ(ω)ω2

2kz

∑
λ

eλi (q‖,−kzd)eλj (q‖,−kz)tλe−ikzd(z+L/2)+ikz(z1+L/2)

≡
∑
λ

D
(−)
ij (z, z1)

∣∣∣
λ
, (6.138)

and the expression for D
(−)
lk (z2, z

′) is obtained by the replacement (z, z1)→ (z2, z
′). Now

we can proceed to show directly that, if the range of z and z′ is that given in (6.137),

the formula (6.134) is indeed the case. In doing so it is useful to note that the scalar

products of polarization vectors with different z-components are diagonal with respect to

polarization indices i.e. we have

eλi (q‖, qz)e
σ
i (q‖, pz) = fλ(qz, pz)δλσ, (6.139)

6Note however that the propagator which is needed to calculate the atomic energy-level shift is the one
where the source of radiation and observation point are located in the vacuum i.e. z, z′ ∈ (−L/2, L/2).
First, we find the propagator for the range of arguments (6.137) and once this solution is known the case
z, z′ ∈ (−L/2, L/2) can be obtained using the integral equation (6.132).
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where the function f is obtained by direct evaluation of the LHS of the above equation.

It is always equal to unity for the TE mode and for the TM mode reads

fTM(qz, pz) =
qzpz + q2

‖√
q2
‖ + q2

z

√
q2
‖ + p2

z

. (6.140)

This is very useful because it shows that the product of propagators can be always split

into separate contributions from the transverse electric and transverse magnetic modes i.e.

we can always write

D
(−)
ij (z, z1)D

(+)
jl (z1, z2)D

(−)
lk (z2, z

′) =
∑
λ

D
(−)
ij (z, z1)

∣∣∣∣
λ

D
(+)
jl (z1, z2)

∣∣∣∣
λ

D
(−)
lk (z2, z

′)

∣∣∣∣
λ

.

This is true for a product of arbitrary number of half-space propagators. With this in

mind we directly evaluate the integral (6.134) and find that

∫ ∞
L
2

dz1

∫ −L
2

−∞
dz2D

(−)
ij (z, z1)D

(+)
jl (z1, z2)D

(−)
lk (z2, z

′) =
ε40

K2(ω)

∑
λ

(
rλeikzL

)2

×
(
−iε0

ξ(ω)ω2

2kz

)
tλeλi (q‖,−kzd)eλk(q‖,−kz)e−ikzd(z+L/2)+ikz(z′+L/2)

=
ε40

K2(ω)

∑
λ

(
rλeikzL

)2
D

(−)
ik (z, z′)

∣∣∣∣
λ

, (6.141)

where we have used the relation between K(ω) and ξ(ω), Eq. (6.82). Equation (6.141)

tells us two important things: (i) the action of the double integral operator appearing in

the last line of (6.133) on the propagator D
(−)
jk amounts to a simple multiplication so that

the iteration of the integral equation (6.133) is possible, it results in a geometrical series

that can be summed up to all orders; (ii) the iteration leads to the two independent series

for two polarizations - the transverse electric (TE) and transverse magnetic (TM) modes

do not mix up. In order to illustrate iteration more clearly we introduce a shorthand

notation

∫ −L
2

−∞
dz1D

(..)
ij (z, z1)D

(..)
jl (z1, z2) ≡ D(..)(z, z1)	D(..)(z1, z

′),∫ ∞
L
2

dz1D
(..)
ij (z, z1)D

(..)
jl (z1, z2) ≡ D(..)(z, z1)⊕D(..)(z1, z

′),

where the symbol 	 pertains to the integration over the interval (−∞,−L/2) and similarly
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the symbol ⊕ pertains to the integration over the interval (L/2,∞). With this, the integral

equation (6.133) is written compactly as

D(z, z′) = D(−)(z, z′) +
K(ω)

ε20
D(−)(z, z1)⊕D(+)(z1, z

′)

+
K2(ω)

ε40
D(−)(z, z1)⊕D(+)(z1, z2)	D(z2, z

′).

Likewise, Eq. (6.141) becomes

[
K(ω)

ε20

]2

D(−)(z, z1)⊕D(+)(z1, z2)	D(−)(z2, z
′) =

∑
λ

(
rλeikzL

)2
D(−)(z, z′)

∣∣∣∣
λ

. (6.142)

As mentioned before, the iterative process will not mix the transverse electric and trans-

verse magnetic modes, the series will look the same for both polarizations; thus we drop

the polarization index for a while. The expansion of the propagator for the case z < −L/2
and |z′| < L/2 takes the form

D(z, z′) = D(−)(z, z′)

+

[
K(ω)

ε20

]
D(−)(z, z1)⊕D(+)(z1, z

′)

+

[
K(ω)

ε20

]2

D(−)(z, z1)⊕D(+)(z1, z2)	D(−)(z2, z
′)

+

[
K(ω)

ε20

]3

D(−)(z, z1)⊕D(+)(z1, z2)	D(−)(z2, z3)⊕D(+)(z3, z
′)

+

[
K(ω)

ε20

]4

D(−)(z, z1)⊕D(+)(z1, z2)	D(−)(z2, z3)

⊕D(+)(z3, z4)	D(−)(z4, z
′)

+

[
K(ω)

ε20

]5

D(−)(z, z1)⊕D(+)(z1, z2)	D(−)(z2, z3)

⊕D(+)(z3, z4)	D(−)(z4, z5)⊕D(+)(z5, z
′)

. . .

=

[
D(−)(z, z′) +

K(ω)

ε20
D(−)(z, z1)⊕D(+)(z1, z

′)

]
×
[
1 +

(
reikzL

)2
+
(
reikzL

)4
+ . . .

]
=

[
D(−)(z, z′) +

K(ω)

ε20
D(−)(z, z1)⊕D(+)(z1, z

′)

](
1

1− r2e2ikzL

)
. (6.143)
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When writing out the second-last line we have used the relation (6.142) whereas the last

line follows from the summation of the geometrical series which is possible provided

|rλ| < 1. (6.144)

This condition will not always be satisfied because we are working with a complex per-

mittivity that, most notably, allows the resonance between the photon’s frequency ω and

the frequency of the absorption line in the dielectric ωT. In such a resonant situation it is

possible for the modulus of the reflection coefficient to exceed unity. A similar situation

occurs in electrostatics where, in the case of the non-dispersive media, the famous image

factor (ε − 1)/(ε + 1) is bounded by unity but when ε becomes complex and frequency-

dependent this no longer the case. In fact, one can easily verify that whenever the real

part of the dielectric function becomes negative then we can have |(ε − 1)/(ε + 1)| > 1.

The permittivity that results from our model, see Appendix E, is given by

ε(ω) = 1 +
ω2

P

ω2
T − ω2 − 2iγω

. (6.145)

In the limit when the damping is negligible i.e. γ → 0 the real part of ε(ω) is seen to

be negative approximately when ωT < ω <
√
ω2

T + ω2
P, a situation which is illustrated in

Fig. 6.3. In such case one has to abandon the idea of iteration as the geometric series

in (6.143) does not converge. However, we can still obtain the propagator by solving

the differential equation derived in the Section 6.4.2.1. This situation is similar to that

described in Appendix D of [2].

The last line of Eq. (6.143) gives the photon propagator in the gap geometry for the case

z < −L/2 and |z′| < L/2. This is not quite yet what we need. In order to calculate the

energy-level shift and decay rates we will need the propagator for the case when both z

and z′ lie within the gap between dielectrics i.e. |z|, |z′| < L/2. This solution is obtained

by plugging the last line of (6.143) into the integral equation (6.132) and evaluating the

resulting integrals directly. The calculation is straightforward but somewhat lengthy. After
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Figure 6.3: Plot of the real part of the dielectric function given in Eq. (6.145) as
a function of ω/ωT. The shaded area indicates the range of frequency for which the
real part of the dielectric function becomes negative. I this frequency band i.e. when
ωT < ω <

√
ω2
T + ω2

P the propagation of photons in the dielectric is not allowed, see also
discussion in [86].

some algebra we arrive at expression for the photon propagator needed in our calculations

Dik(r, r
′;ω) = D

(0)
ik (r− r′;ω)− iε0

(2π)2

∑
λ

∫
d2qe

iq‖·(r‖−r′‖) ω
2

2kz

rλeikzL

[1− (rλ)2e2ikzL]

×
[
rλêλi (q‖, kz)ê

λ
k(q‖, kz)e

ikz(z−z′+L) + rλêλi (q‖,−kz)êλk(q‖,−kz)e−ikz(z−z′−L)

+êλi (q‖, kz)ê
λ
k(q‖,−kz)eikz(z+z′) + êλi (q‖,−kz)êλk(q‖, kz)e

−ikz(z+z′)
]
.

(6.146)

with the Fresnel reflection coefficients given by

rTE =
kz − kzd
kz + kzd

, rTM =
ξ(ω)kz − kzd
ξ(ω)kz + kzd

. (6.147)

The reader is reminded that the formula (6.146) is valid for |z|, |z′| < L/2.

In further calculations wee shall need the photon propagator evaluated at equal space

arguments r = r′. In such a case the correction to the free-space propagator due to the

gap dielectric splits into the part that depends solely on the width of the cavity L and the

part that, in addition, also depends on the position of the within the gap. As we explain

later, see Sec. 6.8, we shall be interested in the position-dependent part. In terms of the
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distances defined in Fig. 6.2 it is explicitly given by

D
(r)
ik (Z;ω) = − iε0

4π

∫ ∞
0

dk
k

kz
cos(2kzZ)eikzL

×


ω2RTE − k2

zRTM 0 0

0 ω2RTE − k2
zRTM 0

0 0 2k2RTM


(6.148)

where we have abbreviated

Rλ =
rλ

(1− rλeikzL)(1 + rλeikzL)
(6.149)

and rλ are given in (6.147) with kz =
√
ω2 − k2 + iη having always positive imaginary part.

We have exploited polar coordinates, qx = k cosφ, qy = k sinφ, where the φ integration

causes the off-diagonal components of the propagator to vanish.

6.4.2.3 The half-space revisited

The methods of the previous section can be readily applied to the geometry in which the

dielectric occupies the z < 0 half-space thereby providing a verification of the derivation

presented in Appendix 6.4.2.1. For the case of a dielectric half-space occupying the z < 0

region of space the coupling function becomes g(r) = θ(−z), and the integral equation

(6.72) becomes

Dik(z, z
′) = D

(0)
ik (z − z′) +

K(ω)

ε20

∫ 0

−∞
dz1D

(0)
ij (z − z1)Djk(z1, z

′), (6.150)

where D
(0)
ik (z− z′) is the free-space photon propagator, Eq. (6.88). This integral equation

does not lend itself to iteration what can be easily checked by trying. In order to be able

to proceed along the same lines as in the case of the gap an auxiliary integral equation

that facilitates the iteration process is required. We follow the idea of [79] and note that

the following equation will enable the iteration process

Dik(z, z
′) = D

(ε)
ik (z − z′)− K(ω)

ε20

∫ ∞
0

dz1D
(ε)
ij (z − z1)Djk(z1, z

′), (6.151)
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where D
(ε)
ik (z − z′) is Fourier transformed propagator in a bulk medium, Eq. (6.113).

Equation (6.151) can be justified using the same argument as that spelled out at the

beginning of Section 6.4.2.2. Recall that the part of the Hamiltonian density describing

the interaction of the photon field with the polarization field has the form

H = H0 −
θ(−z)
ε0

X(r) ·D(r), (6.152)

where H0 is the Hamiltonian density of the non-interacting electromagnetic field. Using

the fact that θ(−z) + θ(z) = 1 the above equation can be written as

H = Hε +
θ(z)

ε0
X(r) ·D(r), (6.153)

where now Hε = H0 − X(r) · D(r)/ε0 corresponds to the Hamiltonian density of the

electromagnetic field interacting with an unbounded dielectric. Thus we have a choice,

we either correct the free-space propagator for the presence of the dielectric half-space

or, equivalently, correct the bulk dielectric propagator for the absence of the dielectric

half-space. The second approach yields the integral equation (6.151).

We proceed by plugging equation (6.150) into equation (6.151)

Dik(z, z
′) = D

(ε)
ik (z − z′)− K(ω)

ε20

∫ ∞
0

dz1D
(ε)
ij (z − z1)D

(0)
jk (z1 − z′)

−K
2(ω)

ε40

∫ ∞
0

dz1

∫ 0

−∞
dz2D

(ε)
ij (z − z1)D

(0)
jl (z1 − z2)Dlk(z2, z

′) (6.154)

and focus our attention on the solution of the case when z < 0 and z′ > 0. The solution

of the case z, z′ > 0 is then obtained with the use of the integral equation (6.150). The

advantage gained by the introduction of equation (6.154) is such that the double-integral

operator in the last term, when acting on D
(ε)
ik , results in a simple multiplication i.e.

∫ ∞
0

dz1

∫ 0

−∞
dz2D

(ε)
ij (z − z1)D

(0)
jl (z1 − z2)D

(ε)
lk (z2 − z′) = CijD

(ε)
lk (z − z′). (6.155)

To verify this we first note that the arguments of all three propagators entering Eq. (6.155)

have definite sign. Indeed we have

z − z1 < 0, z1 − z2 > 0, z2 − z′ < 0. (6.156)
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Therefore, it follows from Eq. (6.92) and (6.113) that the appropriate propagators entering

the integral (6.155) are given by

D
(0)
ij (z − z′) = − iε0ω

2

2kz

∑
λ

eλi (q‖, kz)e
λ
j (q‖, kz)e

ikz(z−z′)

≡
∑
λ

D
(0)
ij (z − z′)

∣∣∣
λ
, (6.157)

D
(ε)
ij (z − z′) = − iε0ξ

2(ω)ω2

2kzd

∑
λ

eλi (q‖,−kzd)eλj (q‖,−kzd)e−ikzd(z−z′)

≡
∑
λ

D
(ε)
ij (z − z′)

∣∣∣
λ
. (6.158)

Plugging in the propagators and evaluating the integrals directly we arrive at the result

∫ ∞
0

dz1

∫ 0

−∞
dz2D

(ε)
ij (z − z1)D

(0)
jl (z1 − z2)D

(ε)
lk (z2 − z′)

=
ε40

K2(ω)

∑
λ

r2
λ

1− r2
λ

D
(ε)
lk (z − z′)

∣∣∣∣
λ

, (6.159)

where we have used the relation between K(ω) and ξ(ω), Eq. (6.82), and the fact that the

integrals of this type do not mix the TE and TM modes, cf. Eq. (6.139) and the discussion

therein. Here rλ is the half-space Fresnel coefficient, Eq. (6.107). We now introduce a

convenient notation in the same spirit as before

∫ 0

−∞
dz1D

(..)
ij (z, z1)D

(..)
jk (z1, z

′) ≡ D(..)(z, z1)	D(..)(z1, z
′),∫ ∞

0
dz1D

(..)
ij (z, z1)D

(..)
jk (z1, z

′) ≡ D(..)(z, z1)⊕D(..)(z1, z
′).

where the symbol 	 pertains to the integral along the negative axis and, likewise, ⊕
pertains to the integration along the positive axis. With this, Eq. (6.159) becomes

K2(ω)

ε40
D(ε)(z − z1)⊕D(0)(z1 − z2)	D(ε)(z2 − z′) =

∑
λ

r2
λ

1− r2
λ

D(ε)(z − z′)
∣∣∣∣
λ

. (6.160)

The solution of the integral equation (6.154) can now be obtained by iteration in an exactly

analogous way as in the case of the gap. The expansion of the propagator for the case
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z < 0 and z′ > 0 takes the form

D(z, z′) = D(ε)(z − z′)

−
[
K(ω)

ε20

]
D(ε)(z − z1)⊕D(0)(z1 − z′)

−
[
K(ω)

ε20

]2

D(ε)(z − z1)⊕D(0)(z1 − z2)	D(ε)(z2 − z′)

+

[
K(ω)

ε20

]3

D(ε)(z − z1)⊕D(0)(z1 − z2)	D(ε)(z2 − z3)⊕D(0)(z3 − z′)

+

[
K(ω)

ε20

]4

D(ε)(z − z1)⊕D(0)(z1 − z2)	D(ε)(z2 − z3)

⊕D(0)(z3 − z4)	D(ε)(z4 − z′)

−
[
K(ω)

ε20

]5

D(ε)(z − z1)⊕D(0)(z1 − z2)	D(ε)(z2 − z3)

⊕D(0)(z3 − z4)	D(ε)(z4 − z5)⊕D(0)(z5 − z′)

. . .

=

[
D(ε)(z − z′)− K(ω)

ε20
D(ε)(z − z1)⊕D(0)(z1 − z′)

]
×
[

1−
(

r2
λ

1− r2
λ

)
+

(
r2
λ

1− r2
λ

)2

+ . . .

]

=

[
D(ε)(z − z′)− K(ω)

ε20
D(ε)(z − z1)⊕D(0)(z1 − z′)

] (
1− r2

λ

)
. (6.161)

It now remains to compute the term in square brackets. Here some care needs to be taken.

The integral that needs to be evaluated is explicitly written as

Iik(z, z
′) =

K(ω)

ε20

∫ ∞
0

dz1D
(ε)
ij (z − z1)D

(0)
jk (z1 − z′). (6.162)

Now, the argument of D(ε) is negative definite i.e. z − z1 < 0 but the sign of z1 − z′ can

be both positive and negative. In such a case the propagator (6.88) contains components

that are discontinuous at z1 = z as well as elements proportional to δ(z1− z). To properly

take into account all contributions to the integral (6.162) it is convenient to represent the

differential operator in (6.88) using the polarization vectors written out symbolically in

terms of derivatives, see Eq. (5.19). Using the well-known completeness relation of the
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polarization vectors we may write

∇i∇k − δik∇2 = −∇2
∑
λ

eλi (∇)eλk(∇). (6.163)

With this, the propagators entering the integral (6.162) are given by

D
(0)
ij (z − z′) = − iε0

2kz

(
q2
‖ −∇2

z′

)∑
λ

eλi (q‖,−∇z′)eλj (q‖,−∇z′)eikz |z−z
′|, (6.164)

D
(ε)
ij (z − z′) = − iε0ξ

2(ω)ω2

2kzd

∑
λ

eλi (q‖,−kzd)eλj (q‖,−kzd)e−ikzd(z−z′). (6.165)

Note that we have shifted the z-derivatives to act on z′ rather than on z so that they could

be pulled outside the integral in (6.162). This is possible thanks to the fact that

eλi (q‖,∇z)eikz |z−z
′| = eλi (q‖,−∇z′)eikz |z−z

′|. (6.166)

With this it is not difficult to demonstrate that the integral (6.162) is given by

Iik(z, z
′) = D

(ε)
ik (z − z′)− iε0ξ(ω)ω2

2kzd

∑
λ

1

tλR
eλi (q‖,−kzd)eλk(q‖,−kz)e−ikzdz+ikzz

′
(6.167)

i.e. it contributes a term that exactly cancels out the bulk dielectric propagator in (6.161).

The remaining parts combine together to yield the final result

Dij(z, z
′) = − iε0ω

2

2kz

[
ξ(ω)eλi (q‖,−kzd)eλj (q‖,−kz)tλR

]
e−ikzdz+ikzz

′
. (6.168)

This formula is valid for z < 0, z′ > 0 and agrees with the previous findings, Eq. (6.108),

based on the solution of the differential equation. It is a straightforward calculation to

plug equation (6.168) into (6.150) and see that the result for the case z, z′ > 0 also agrees

with the result (6.108). As a final remark we would like to comment on the problem of

the convergence of the series in (6.161). The expansion will converge provided∣∣∣∣ r2
λ

1− r2
λ

∣∣∣∣ < 1. (6.169)

At this stage it seems that there is no straightforward physical interpretation of this

condition.
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6.5 Atomic propagator and electron’s self-energy

To perform perturbative expansion of the atomic propagator we start with the formula

(6.30) with the field operators Ψ and Ψ† being replaced by the atomic creation and anni-

hilation operators, ci and c†i , respectively

Gii(t, t
′) =

∞∑
n=0

(
− i
~

)n+1 ∫
dt1 . . .

∫
dtn

×
〈

Ω
∣∣∣T [ci(t)c†i (t′)HA−EM(t1) . . . HA−EM(tn)

]∣∣∣Ω〉
conn

. (6.170)

Using the Wick’s theorem to evaluate the ground-state expectation value of the time-

ordered product of operators one easily sees that the zeroth-order term is a propagator

for non-interacting system. The first-order correction vanishes simply because it is not

possible to contract all of the operators.

Figure 6.4: The figure illustrates two tadpole diagrams that one can draw having at
disposal two vertices, three atomic lines and one photon line. The contributions from

these diagrams contain equal-time atomic propagators and vanish identically.

The first non-vanishing contributions come from the term of order e2. Having two vertices

at our disposal we see that apart from the irrelevant disconnected diagrams we can draw

the so-called ’tadpole’ diagram, which is also irrelevant, see Fig. 6.4, and a self-energy

diagram that contains the information about the energy-level shifts and decay rates

.

In fact, it is more convenient to perform partial summation and consider the following

series of diagrams
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= +

where the thick solid line represents the dressed atomic propagator. The location of poles

of such constructed propagator is much more straightforward to work out. The analytical

expression corresponding to the above graphical equation is given by

Gii(t, t
′) = G

(0)
ii (t, t′) +

i~
ε20

∑
k,l,m

µkmiµ
l
im

∫ ∞
−∞

dt1

∫ ∞
−∞

dt2

×G(0)
ii (t, t1)G(0)

mm(t1, t2)Dkl(R,R, t1, t2)Gii(t2, t
′). (6.171)

Since we are looking for the poles of the Gii(E) we need to Fourier-transform (6.171) with

respect to t − t′. One finds using equation (6.37) that the dressed atomic propagator is

given by

Gii(E) =

∫ ∞
−∞

d(t− t′)ei(t−t′)E/~Gii(t− t′) =
1

E − Ei + iη − Σii(E)
(6.172)

with the self-energy insertion identified with

Σii(E) =
i~

2πε20

∑
k,l,m

µkmiµ
l
im

∫ ∞
−∞

dω
Dkl(R,R;ω)

E − ~ω − Em + iη
. (6.173)

The self-energy insertion (6.173) contains the photon propagator which in the case of an

atom outside the dielectric splits into two separate parts; (i) the free-space part that gives

a rise to the position-independent Lamb shift and (ii) the reflected part that gives a rise

to the distance-to-surface-dependent Casimir-Polder shift. The zeros of the denominator

in (6.172) occur at the atomic energy-levels. Thus, we obtain the spectrum writing

E − Ei = Σ
(0)
ii (E) + Σ

(r)
ii (E). (6.174)

We want to work out changes in the energy-levels already corrected for the coupling

between the electron and the free-space electromagnetic fields. Therefore, the renormalized

energy-level shift can be written as

∆Eren
i ≡ E − Ēi = Σ

(r)
ii (E), (6.175)
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where we have absorbed the self-energy associated with the free-space electromagnetic

field into Ēi so that it represents the atomic energy-levels already corrected for the Lamb

shift and free-space decay rates.

Equation (6.175) represents the integral equation which served us only as a convenient way

to locate the poles of the atomic propagator. Our result is valid only up to the second-

order of the perturbation theory and any attempt of finding exact solution of (6.175) is

meaningless. At this stage, to obtain the energy shifts, we simply iterate the integral

equation once and arrive at

∆Eren
i ≈ Σ

(r)
ii (Ēi) = − i

2πε20

∑
k,l,m

µkmiµ
l
im

∫ ∞
−∞

dω
D

(r)
kl (R,R;ω)

ωmi + ω − iη (6.176)

where we have abbreviated ωmi = ωm − ωi. The ω-integral in (6.176) can be restricted to

the positive real axis by writing

1

ω + ωmi − iη
=

ω − ωmi
ω2 − (ωmg − iη)2

(6.177)

and noting that D
(r)
kr (R,R;ω) is even in ω, see Section 6.4.2 and Appendix E. Note that

the term proportional to ω is odd and vanishes when integrated over the real ω axis.

The photon propagator is analytic in the first quadrant of the complex ω-plane therefore

it is permissible to rotate the contour of ω-integration by π/2 i.e. ω → iω. However,

one must remember that when we consider an excited state i of the atom then ωmi < 0

and there will in general be some poles present in the first quadrant of the ω plane due

to the denominator in (6.176). We also remind the reader that the Fresnel’s reflection

coefficients present in the propagator are famous for signalling trapped electromagnetic

modes by poles in the complex plane, cf. Sec. (5.2.2). This doesn’t concern us when we

consider the half-space or gap but requires attention when considering systems capable of

wave-guiding. Next we recall that D
(r)
kr (R,R;ω) is diagonal, cf. Eqs. (6.109) and (6.148),

and write down the final result in the form

∆Eren
i = ∆Ei + ∆E?i (6.178)
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with ∆Ei and ∆E?i given by

∆Ei =
1

πε20

∑
k,m

|µkim|2
∫ ∞

0
dω

ωmi
ω2 + ω2

mi

D
(r)
kk (R,R; iω) (6.179)

∆E?i =
1

ε20

∑
k,m

|µkim|2D(r)
kk (R,R; |ωmi|)θ(−ωmi) (6.180)

where |µkmi| ≡ |〈m|µk|i〉| are the matrix elements of the k-th component of the electric

dipole moment operator. The quantity ∆E?i is a contribution to the self-energy that

originates from poles of equation (6.176) that come into play if one considers an excited

state i for which ωmi < 0. Equations (6.179) and (6.180) have been derived before by

different methods e.g. the linear response theory [48][27] or the noise-current approach

to phenomenological QED [87]. The shift ∆Ei is real because it is evaluated at complex

frequencies where the susceptibilities are real. However, ∆E?i is complex and contains the

decay rates. In fact we have

∆Ei = Re (∆Eren
i )

~∆Γi = −2Im (∆E?i ) (6.181)

where ∆Ei are the renormalized energy-level shifts and ∆Γi are the changes in decay rates.

6.6 Energy-level shifts near a half-space

6.6.1 Ground state

Substituting the photon propagator (6.109) into equation (6.179) we find that the energy

shift of the ground state |g〉 is given by

∆Eg = − 1

8π2ε0

∑
m

∫ ∞
0

dkk

∫ ∞
0

dω
ωmg

ω2 + ω2
mg

e−2
√
k2+ω2Z

√
k2 + ω2

×
{[

(k2 + ω2)r̄TM − ω2r̄TE
]
|µ‖mg|2 + 2k2r̄TM|µ⊥mg|2

}
, (6.182)
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where we have abbreviated |µ‖mi|2 = |µxmi|2 + |µymi|2 and ωmi ≡ ωm − ωi. The reflection

coefficients are defined in (6.107) and are expressed in terms of the new variables as

r̄TE =

√
ω2 + k2 −

√
ε(iω)ω2 + k2

√
ω2 + k2 +

√
ε(iω)ω2 + k2

r̄TM =
ε(iω)

√
ω2 + k2 −

√
ε(iω)ω2 + k2

ε(iω)
√
ω2 + k2 +

√
ε(iω)ω2 + k2

. (6.183)

Note that we have replaced ξ(ω) with ε(ω) in (6.183) compared to (6.107), as for the

frequencies considered both functions coincide, see Section 6.4.2 and Appendix E. If we now

introduce polar coordinates according to, ω = ωmgxy, k = ωmgx
√

1− y2 with y = cosφ,

we obtain the perhaps most useful form of the ground-state shift, especially for numerical

analysis and the study of retardation,

∆Eg = − 1

8π2ε0

∑
m

∫ ∞
0

dxx3

∫ 1

0
dy

ω3
mg

1 + x2y2
e−2ωmgZx

×
[(
r̃TM − y2r̃TE

)
|µ‖mg|2 + 2

(
1− y2

)
r̃TM|µ⊥mg|2

]
. (6.184)

The result (6.184) formally takes the same form as the results obtained in calculations

involving non-dispersive dielectrics, see e.g. [64] and Chapter 5, the only difference being

the reflection coefficients that now, through the dielectric constant, depend on the product

xy of the integration variables which is the photon frequency,

r̃TE =
1−

√
y2[ε(ixy)− 1] + 1

1 +
√
y2[ε(ixy)− 1] + 1

,

r̃TM =
ε(ixy)−

√
y2[ε(ixy)− 1] + 1

ε(ixy) +
√
y2[ε(ixy)− 1] + 1

. (6.185)

Equation (6.184) is suitable for numerical analysis but doesn’t give immediate insight into

the behaviour of the interaction energy as a function of the distance from the surface. It

is therefore instructive to consider some of its limiting cases.

As has been recognized e.g. in [64], the dimensionless parameter that plays a decisive role

in the characteristics of the Casimir-Polder interaction is given by the combination 2ωmgZ
which is the ratio of two time-scales: (i) the typical time 2Z/c needed by a virtual photon

to make a round trip between the atom and the surface, (ii) the typical time-scale ω−1
mg at

which the atomic system evolves. While equation (6.184) includes a sum over atomic states



Chapter 6. Quantum electrodynamics near a Huttner-Barnett dielectric 170

|m〉, in reality contributions to the shift will be dominated by the state which is connected

to a ground state by the strongest dipole transition. We call the frequency ωmg that

pertains to this strongest transition a ’typical transition frequency’ and it is this number

that enters the retardation criterion parameter. Briefly speaking, if 2ωmgZ << 1 we are

in the so-called nonretarded regime when the time needed by the photon to travel between

the dielectric and the atom is negligibly small compared to the typical atomic time-scale.

Then, the interaction can be safely approximated as instantaneous and our result should

reduce to that calculated in the paper by Barton [2], where it is interpreted as the Coulomb

interaction of an atom with surface polaritons. In the opposite case, 2ωmgZ >> 1, the

interaction becomes retarded, i.e. by the time the photon has completed a round trip the

atomic state has significantly changed. In this case, for reasons that become apparent

later, the interaction depends only on static polarizabilities i.e. polarizabilities evaluated

at zero frequency

ανν(ω = 0) =
∑
j

2ωji |〈j|µν |i〉|2
ω2
ji − ω2

∣∣∣∣∣∣
ω=0

= 2
∑
j

|〈j|µν |i〉|2
ωji

,

ε(ω = 0)

ε0
= 1 +

ω2
P

ω2
T − ω2 − 2iγω

∣∣∣∣
ω=0

= 1 +
ω2

P

ω2
T

, (6.186)

where ανν is the polarizability of the atom and ε/ε0−1 is the susceptibility of the dielectric,

see Appendix E.

6.6.1.1 Nonretarded limit

The form of the energy shift best suited for taking the non-retarded limit is that in equation

(6.182). After changing the variables in the ω integration according to dω = (2ωmgZk) ds

we let 2ωmgZ → 0, as we may do because the ’line’ s = ∞ does not contribute to the

integral, and make approximations:

k2 + ξ2 → k2
[
1 + (2ωmgZ)2s2

]
≈ k,

k2 + εξ2 → k2
[
1 + ε(2ωmgZ)2s2

]
≈ k.
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This significantly simplifies equation (6.182). The k-integral becomes elementary and the

final result is written as

∆Enonret
g ≈ − 1

32π2ε0Z3

∑
m

∫ ∞
0

dξ
ωmg

ξ2 + ω2
mg

ε(iξ)− 1

ε(iξ) + 1

(
|µ‖mg|2 + 2|µ⊥mg|2

)
. (6.187)

We observe the expected Z−3 behaviour of the energy level shift in the van der Waals

regime. The result (6.187), although written in a slightly less explicit form, is in fact

equivalent to that derived in [88], their equation (13). It also confirms the results derived

on the basis of the phenomenological quantum electrodynamics, see e.g. [87].

6.6.1.2 Retarded limit

To study the influence of retardation on the energy shift it is convenient to start with

equation (6.184) where the criterion parameter 2ωmgZ is present in the exponential factor

which in the limit 2ωmgZ →∞ strongly damps the integrand. In such a scenario the main

contributions to the integral come from the neighbourhood of x = 0+ and it is permissible

to expand the integrand in Taylor series around this point. A straightforward calculation

leads to

∆Eret
g ≈ −

3

64π2ε0

∑
m

∑
σ=‖,⊥

(
cσ4
Z4
− 4γ

ω2
T

cσ5
Z5

) |〈g|µσ|m〉|2
ωmg

, (6.188)

where we have neglected terms of order (ωmg)Z and higher. First we observe, as it was

previously recognized [48], that to leading-order only the static polarizability of the atom

matters in the retarded limit

αkk(0) = 2
∑
m

|〈m|µk|g〉|2
ωmg

. (6.189)

The leading-order behaviour of the energy shift displays a Z−4 distance dependence and in

fact is just the well-known retarded limit of the energy shift of a ground state atom interact-

ing with a dielectric half-space described by a static refractive index n2(0) ≡ n2 = 1 + ω2
P/ω

2
T.

This case has been studied extensively in [64] where the coefficients c
‖,⊥
4 that depend only
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on n have been worked out in an analytical form. For completeness we cite them here

c
‖
4 = − 1

n2 − 1

(
2

3
n2 + n− 8

3

)
+

2n4

(n2 − 1)
√
n2 + 1

ln

 √
n2 + 1 + 1

n
[√

n2 + 1 + n
]


+
2n4 − 2n2 − 1

(n2 − 1)3/2
ln
(√

n2 + 1 + n
)
,

c⊥4 =
1

n2 − 1

(
4n4 − 2n3 − 4

3
n2 +

4

3

)
− 4n6

(n2 − 1)
√
n2 + 1

ln

 √
n2 + 1 + 1

n
[√

n2 + 1 + n
]


−2n2(2n4 − 2n2 + 1)

(n2 − 1)3/2
ln
(√

n2 − 1 + n
)
.

Hence, we conclude that to leading-order, in the retarded limit, absorption makes no

difference and only static polarizabilities, of both, the dielectric and the atom, matter.

This is because the wavelength of the electromagnetic radiation that matters the most in

the atom-wall interaction is of order of the distance between the atom and the dielectric.

Hence for an atom in the so-called far-zone only long wavelengths of electromagnetic

radiation come to play i.e. low frequencies.

Now we turn our attention to the next term of the asymptotic expansion which is pro-

portional to Z−5. This is the first term that contains information about corrections to

the energy shift due to absorption in the retarded regime. The coefficient in front of

Z−5 is given by γ/ω2
T c

σ
5 where numbers cσ5 depend only on the static refractive index

n =
√

1 + ω2
P/ω

2
T and are given by

c
‖
5 =

1

3(n− 1)(n+ 1)2(n2 + 1)

{
6n6 − 3n5 − 11n4 + 4n3 + 2n2 − 5n+ 7

−6n2
(
n5 + n4 − n3 − n2 − 2n− 2

)
ln

[
n

(
n+ 1

n2 + 1

)]}
,

c⊥5 =
4

3(n− 1)(n+ 1)2(n2 + 1)

{
− 6n8 + 3n7 + 10n6 − 5n5 + 3n4 − n3 − 6n2 + n+ 1

+3n4
(
2n5 + 2n4 − n3 − n2 − 3n− 3

)
ln

[
n

(
n+ 1

n2 + 1

)]}
. (6.190)

We provide plots of these functions in Fig. 6.5 on page 173 from where a quick estimate of

the value of the coefficients can be obtained. Since both c
‖
5 and c⊥5 are positive we see that

absorption reduces the magnitude of the ground-state energy shift by an amount that is

proportional to the damping constant γ, cf. Fig 6.6 on page 174. We also note that the
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correction goes with the inverse square of the absorption frequency ωT in the dielectric

so that only absorption lines that lie at sufficiently low frequencies make a significant

difference. This happens because the main contribution to the shift of the ground state in

the retarded limit comes from large wavelengths or equivalently small values of x (which

is a scaled frequency). Therefore, the integral is not sensitive to any absorption line peaks

which lie at higher frequencies as there the integrand is highly damped anyway, cf. Eq.

(6.184).

Figure 6.5: Plot of the coefficients cσi (n) that enter equation (6.188) for different values
of the static refractive index n(0).

6.6.2 Excited states.

The shift of an excited energy-level gets contributions from both parts of ∆Eren, cf. (6.179)

and (6.180). The non-residue contributions (6.179) assume exactly the same form as the

results of the previous section; therefore we will not analyze them again. Instead we shall

have a closer look at equation (6.180).
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Figure 6.6: Plot of the exact ground-state energy shift (contributions due to the per-

pendicular component of the atomic dipole moment) ∆E
‖
g , equation (6.182), multiplied

by Z4ωmg as a function of Zωmg for various values of the damping parameter γ. Solid
line represents the energy shift caused by the non-absorptive and non-dispersive dielectric

half-space with static refractive index n(0).

Plugging in the photon propagator (6.109) we find that the energy shift of the excited

state |i〉 is given as a real part of the following expression

∆E?i = − i

8πε0

∑
m<i

∫ ∞
0

dk
ke2iZ

√
ω2
mi−k2√

ω2
mi − k2 + iη

×
{[
ω2
mir

TE
mi − (ω2

mi − k2)rTM
mi

]
|µ‖mi|2 + 2k2rTM

mi |µ⊥mi|2
}
. (6.191)

Here, rλmi are the reflection coefficients of (6.107) evaluated at the atomic transition fre-

quencies ω = |ωmi|. Also, the restriction of the sum over atomic states to those lying below

the state |i〉 should be noted. To perform the asymptotic analysis of ∆E?i we change the

variable in equation (6.191) to kz =
√
ω2
mi − k2/|ωmi| and get

∆E?i =
i

8πε0

∑
m<i

|ωmi|3
∫ i∞

1
dkze

2i|ωmi|Zkz

×
{(
r̄TE
mi − k2

z r̄
TM
mi

)
|µ‖mi|2 + 2

(
1− k2

z

)
r̄TM
mi |µ⊥mi|2

}
. (6.192)

The contour of integration runs from kz = 1 along the real axis to kz = 0 and then up
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along the imaginary axis to kz = i∞. The reflection coefficients expressed as functions of

kz are

r̄TE
mi (kz) =

kz −
√

[ε(|ωmi|)− 1] + k2
z

kz +
√

[ε(|ωmi|)− 1] + k2
z

,

r̄TM
mi (kz) =

ε(|ωmi|)kz −
√

[ε(|ωmi|)− 1] + k2
z

ε(|ωmi|)kz +
√

[ε(|ωmi|)− 1] + k2
z

. (6.193)

6.6.2.1 Nonretarded limit

First we work out the nonretarded limit of equation (6.192) i.e. we assume 2|ωmg|Z << 1.

To do so we split the integration in Eq. (6.192) in a following way

∫ i∞

1
dkz =

∫ ∞
0

d(ikz)−
∫ 1

0
dkz (6.194)

and note that in the limit 2|ωmi|Z → 0 the second integral on the RHS contributes to the

asymptotic series terms that are proportional to non-negative powers of Z and therefore

can be discarded. The remaining part is given by

∆E?,1i = − 1

8πε0

∑
m<i

|ωmi|3
∫ ∞

0
dkze

−2|ωmi|Zkz

×
[
(r̃TE
mi + k2

z r̃
TM
mi )|µ‖mi|2 + 2(1 + k2

z)r̃
TM
mi |µ⊥mi|2

]
(6.195)

where r̃λim are the reflection coefficients, (6.193), evaluated at imaginary argument r̃λmi =

r̄λmi(ikz). Scaling the integral again according to x = 2|ωmi|Z kz and approximating

√
[ε(|ωmi|)− 1]− x2

(2|ωmi|Z)2
≈ ix

2|ωmi|Z
(6.196)

we derive that, in the nonretarded limit, equation (6.191) becomes

∆E?,nonret
i = − 1

32πε0Z3

∑
m<i

ε(|ωmi|)− 1

ε(|ωmi|) + 1

(
|µ‖mi|2 + 2|µ⊥mi|2

)
(6.197)
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Thus, to leading order the residue contributions to the energy shift of the excited state

|i〉, cf. Eq.(6.180), are given by the real part of the above expression,

∆E?,nonret
i = − 1

32πε0Z3

∑
m<i

|ε(|ωmi|)|2 − 1

|ε(ω|mi|) + 1|2
(
|µ‖mi|2 + 2|µ⊥mi|2

)
. (6.198)

We see that in the nonretarded regime the residue contributions behave as Z−3 and there-

fore are of the same order as the non-residue contributions, cf. Eq. (6.187). The result

(6.198) is in fact equivalent to the real part of Eq. (7.10) derived in [2].

6.6.2.2 Retarded limit

Now we turn our attention to the asymptotic behaviour of equation (6.192) in the retarded

limit, i.e. when 2|ωmi|Z >> 1. It is again useful to split the integration according to

(6.194) only that now both integrals play an important role. The first contribution, the

integral along kz ∈ [0, i∞], given in Eq. (6.195), can be tackled by the use of Watson’s

lemma [22]. Noting that the integrand is strongly damped we separate off the exponential

and expand the remaining part into Taylor series about kz = 0. The resulting integrals

are elementary and we obtain for the leading term

∆E?,1,ret
i =

1

8πε0

∑
m<i

|ωmi|3
{ |µ‖mi|2

2|ωmi|Z
+ 2

[
1− 2iε(|ωmi|)√

ε(|ωmi|)− 1

1

2|ωmi|Z

]
|µ⊥mi|2

2|ωmi|Z

}
. (6.199)

Next we treat the integral on the interval kz ∈ [0, 1] which, unlike in the nonretarded case,

cannot be discarded. However, its asymptotic expansion in inverse powers of Z is easily

obtained by repeated integration by parts. Interestingly, the asymptotic series contain the

non-oscillatory terms that exactly cancel out the contributions given in equation (6.199)

and altogether we find that to leading-order

∆E?,ret
i =

1

4πε0

∑
m<i

|ωmi|3
n(|ωmi|)− 1

n(|ωmi|) + 1
e2i|ωmi|Z

{
|µ‖mi|2

2|ωmi|Z
+ 2i

|µ⊥mi|2
(2|ωmi|Z)2

}
, (6.200)

with n(|ωmi|) =
√
ε(|ωmi|). Thus, it turns out that up to leading-order in Z only con-

tributions due to the parallel component of the atomic dipole moment are contributing.

To see the behaviour of contributions due to the perpendicular component of the atomic

dipole moment, one needs to derive the next order of the asymptotic series. We again need
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to take the real part of expression (6.200) to get the explicit form of the energy shift

∆E?,ret
i =

1

4πε0

∑
m<i

|ωmi|3
|n(ωmi) + 1|2

×
{[

(|n(|ωmi|)|2 − 1) cos(2|ωmi|Z)− 2Im[n(|ωmi|)] sin(2|ωmi|Z)

] |µ‖mi|2
2|ωmi|Z

−2

[
(|n(|ωmi|)|2 − 1) sin(2|ωmi|Z) + 2Im[n(|ωmi|)] cos(2|ωmi|Z)

] |µ⊥mi|2
(2|ωmi|Z)2

}
. (6.201)

We see that in the retarded regime the shift of the excited state consists of two quite differ-

ently behaving contributions. The non-residue contributions (6.179) behave as Z−4 (see

the analysis of the ground state shift, Section 6.6.1), and the residue contributions (6.201)

depend on the distance as Z−1. While it would be tempting to say that equation (6.201)

will always dominate, this might however not always be the case as this also depends

on the values of the dipole matrix elements which can vary significantly. Additionally,

Eq. (6.201) displays oscillatory behaviour and in principle there are sets of parameters

for which it vanishes. Finally, we remark that it is easily verified that in the limit of

non-absorptive dielectric media our result reduces to that derived in [64].

6.7 Spontaneous decay rates near a half-space

The non-residue contributions to the self-energy (6.179) are real and hence they contribute

towards the energy-level shifts only. The decay rates are contained solely in the residue

contributions to the self-energy, (6.191), that are complex. In the non-retarded limit they

are given by the imaginary part of (6.197)

∆Γnonret
i =

1

8πε0Z3

∑
m<i

Im[ε(|ωmi|)]
|ε(|ωmi|) + 1|2

(
|µ‖mi|2 + 2|µ⊥mi|2

)
, (6.202)

whereas in the retarded limit by the imaginary part of (6.200):

∆Γret
i = − 1

2πε0

∑
m<i

|ωmi|3
|n(ωmi) + 1|2

×
{[

(|n(|ωmi|)|2 − 1) sin(2|ωmi|Z) + 2Im[n(|ωmi|)] cos(2|ωmi|Z)

] |µ‖mi|2
2|ωmi|Z

+2

[
(|n(|ωmi|)|2 − 1) cos(2|ωmi|Z)− 2Im[n(|ωmi|)] sin(2|ωmi|Z)

] |µ⊥mi|2
(2|ωmi|Z)2

}
. (6.203)
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Figure 6.7: Normalized lifetime τ‖, cf. Eq. (6.204), of the atomic state |i〉 plotted as
a function of |ωmi|/ωT i.e. the frequency of the dipole transition |i〉 → |m〉 measured in
units of the transverse resonance frequency of the dielectric ωT. The sequence of graphs
corresponds to various distances of the atom from the mirror ZωT, as indicated. The
three different line styles (colours) indicate distinct choices of the damping constant in the
dielectric γ. We have: γ/ωT = 0.05 (black, solid), γ/ωT = 0.5 (blue, dashed), γ/ωT = 5
(red, dot-dashed). Evidently, for sufficiently high frequencies |ωmi| the dielectric becomes
transparent whereas, if the atom is close to the surface and the absorption is small, the
interaction is resonant at |ωmi|/ωT ≈ 1 i.e. when the frequency of the atomic transition

coincides with the absorption line of the dielectric.
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The result (6.202) is found to be in an agreement with that derived in [6], their Eq. (128),

whereas equation (6.203) reduces to the results given in [64] if we assume n(ω) to be real

and frequency-independent.

As a numerical example we wish to plot the normalized lifetime of the atomic state |i〉
decaying into some state |m〉. For simplicity we assume a two-level system and |µ⊥mi| = 0

so that the atom is polarized horizontally with respect to the surface, a situation that is

of course artificial. Then, the quantity we plot in Fig. 6.7 is given by

τ−1
‖ =

∆Γi
∆Γ0

i

= −2 Im (∆E?i )

~∆Γ0
i

(6.204)

where the quantity ∆E?i is given by the expression (6.191) and ∆Γ0
i is the well-known

decay rate in free-space

∆Γ0
i =
|ωmi|3|µmi|2

3πε0~
. (6.205)

6.8 Energy-level shifts in a gap

In this section we are going to study an atom placed between two identical mirrors dis-

tance L apart, as depicted in Fig. 6.2. The scenario of the atom and the gap has been

studied previously, see e.g. [89][90]. There, for an atom fixed in the middle of the gap, the

dependence of the interaction energy on the width of the cavity has been derived7. How-

ever, modern cold-atom experiments often deal with atoms trapped in nano-structures. In

such experiments it is valuable to know the dependence of the energy shift on the posi-

tion within the gap, in particular, it would be very useful to work out the shape of the

Casimir-Polder potential when the atom’s position only slightly varies with respect to the

centre of the gap. Therefore, in this Section we will deal with the part of the interaction

energy that for a fixed width of the cavity L depends on the position within the gap only.

We have derived the photon propagator in a gap geometry in Section 6.4.2.2, the main

result is given in Eq. (6.146). However, since we consider the width of the cavity to be

fixed, we discard the part of the propagator which does not depend on the position of the

atom. Then, the propagator has formally the same form as in the case of the half-space

7The original publication of the results [89] contains some errors in asymptotic analysis, see [90] for
corrected formulae.
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calculation, cf. Eq. (6.109) and Eq. (6.148). For this reason the calculations of the energy

shifts and decay rates for an atom in the gap are largely automatic. The general equations

retain the same form as those in the case of a half-space only with different reflection

coefficients.

6.8.1 Ground state

To work out the energy shift of a ground state |g〉 we plug the position-dependent part

of the photon propagator (6.148) into equation (6.179). Then, the energy shift can be

expressed as

∆Eg = − 1

4π2ε0

∑
m

∫ ∞
0

dk

∫ ∞
0

dξ
ωmg

ξ2 + ω2
mg

k√
k2 + ξ2

cosh
(

2
√
k2 + ξ2Z

)
e−
√
k2+ξ2L

×
{[(

k2 + ξ2
)
R̄TM − ξ2R̄TE

]
|µ‖mg|2 + 2k2R̄TM|µ⊥mg|2

}
. (6.206)

Here, we have abbreviated

R̄λ =
r̄λ(

1− r̄λe−
√
k2+ξ2L

)(
1 + r̄λe−

√
k2+ξ2L

) , (6.207)

with r̄λ as given in Eq. (6.183). If we now introduce polar coordinates in (6.206) according

to, ω = ωmgxy, k = ωmgx
√

1− y2 with y = cosφ, we obtain the perhaps most useful form

of the ground-state shift, especially for numerical analysis and the study of retardation,

∆Eg = − 1

4π2ε0

∑
m

∫ ∞
0

dxx3

∫ 1

0
dy

ω3
mg

1 + x2y2
cosh(2ωmgZx)e−ωmgLx

×
[(
R̃TM − y2R̃TE

)
|µ‖mg|2 + 2

(
1− y2

)
R̃TM|µ⊥mg|2

]
(6.208)

with R̃λ explicitly given as

R̃λ =
r̃λ

(1− r̃λe−ωmgLx) (1 + r̃λe−ωmgLx)
. (6.209)

Here, the Fresnel’s reflection coefficients r̃λ are those given in Eq. (6.185).

We consider an atom that is approximately in the middle of the gap so that both interfaces

are approximately at the same distance away. In order to define the asymptotic regimes we
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use the parameter 2ωmg(L/2) = ωmgL. The interaction is nonretarded when ωmgL << 1

and conversely, the interaction is retarded when ωmgL >> 1. For a physical interpretation

of this criterion see the discussion at the end of Section 6.6.1.

6.8.1.1 Nonretarded limit

To take the nonretarded limit we work with equation (6.206). If we follow the steps de-

scribed in Section 6.6.1.1, where we have dealt with the dielectric half-space, remembering

that now Lωmg plays the role of the decisive parameter, we readily derive

∆Enonret
g = − 1

4π2ε0L3

∑
m

∫ ∞
0

dkk2

∫ ∞
0

dξ
ωmg

ξ2 + ω2
mg

× cosh

(
2k
Z
L

)
χ(iξ)e−k

1− χ2(iξ)e−2k

[
|µ‖mg|2 + 2|µ⊥mg|2

]
(6.210)

where χ(iξ) is an analogue of the electrostatic image factor defined as

χ(iξ) =
ε(iξ)− 1

ε(iξ) + 1
. (6.211)

Here ε(ω) is the dielectric function of the model as described in Appendix E. The k-

integral could be in principle carried out but gives a combination of special functions

therefore renders the result not very useful. Instead, we work out the corrections due to

the small displacement from the middle of the gap i.e. we assume that Z/L << 1 and

expand the hyperbolic cosine in Taylor series around the origin

cosh

(
2k
Z
L

)
≈ 1 + 2k2Z2

L2
. (6.212)

We discard the second term that does not depend on Z. Then, the k-integral yields the

combination of the polylogarithm functions, see e.g. [51], and the result is written as

∆Enonret
g = − 6

π2ε0L3

Z2

L2

∑
m

(
|µ‖mg|2 + 2|µ⊥mg|2

)∫ ∞
0

dξ
ωmg

ξ2 + ω2
mg

×{Li5 [χ(iξ)]− Li5 [−χ(iξ)]} . (6.213)
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The image factor χ(iξ), Eq. (6.211), when evaluated at imaginary frequencies, is real and

bounded by unity. Then, the polylogarithm functions can be represented as series as [91]

Lin(z) =
∞∑
k=1

zk

kn
|z| < 1, (6.214)

and their combination appearing in (6.213) becomes

Li5[χ(iξ)]− Li5[−χ(iξ)] = 2
∞∑
k=0

z2k+1

(2k + 1)n
= 2

[
χ(iξ) +

χ2(iξ)

243
+
χ5(iξ)

3125
+ . . .

]
. (6.215)

The expansion is seen to converge quite quickly regardless of the value of χ(iξ) which in

the case of the dielectric function resulting from our model, see Appendix E, is given by

χ(iξ) =
ω2

P

2ξ(2γ + ξ) + ω2
P + 2ω2

T

, (6.216)

and always satisfies |χ(iξ)| < 1. Thus, we keep only the leading term of (6.215) and write

the final result as

∆Enonret
g = − 12

π2ε0L3

Z2

L2

∑
m

(
|µ‖mg|2 + 2|µ⊥mg|2

)∫ ∞
0

dξ
ωmg

ξ2 + ω2
mg

χ(iξ), Z/L << 1 (6.217)

Thus, for a fixed cavity width L, an atom placed in the middle of the gap experiences

an upside-down harmonic potential. In other words, the middle of the gap is an unstable

point for a ground-state atom. Therefore, the trap must be able to compensate for the

Casimir-Polder potential, otherwise the atom will be adsorbed onto the surface.

6.8.1.2 Retarded limit

Now we turn our attention to the retarded limit of the ground-state energy-level shift in

an atom placed roughly in the middle of an absorbing cavity of width L. We shall work

with equation (6.208). First we assume 2Zωmg to be much smaller than the unity and

approximate the hyperbolic cosine by its series expansion, cf. Eq. (6.212). Retaining only
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the second term depending on the position within the gap we get

∆Eg = − Z
2

2π2ε0

∑
m

∫ ∞
0

dxx5

∫ 1

0
dy

ω5
mg

1 + x2y2
e−ωmgLx

×
[(
R̃TM − y2R̃TE

)
|µ‖mg|2 + 2

(
1− y2

)
R̃TM|µ⊥mg|2

]
. (6.218)

In the limit of ωmgL→∞ the x-integration in (6.218) receives contributions only from the

neighbourhood of x = 0+, because it is strongly damped the exponential exp(−ωmgLx).

The asymptotic behaviour of such type of the integral is usually obtained by the Watson’s

lemma [22]

∫ ∞
0

dxe−αxf(x) ≈
∫ ∞

0
dxe−αx[f(0) + xf ′(0) + ...], α→∞.

However, in case of (6.218), one cannot separate the exponential and approximate the

remaining part of the integrand by its Taylor series expansion because the reflection co-

efficients contain factors exp(−ωmgLx) and each term of the Taylor expansion, after inte-

gration with respect to x, would produce terms proportional to L−6 which on dimensional

grounds is the expected leading-order behaviour. Therefore we have to take into account

the contributions from all orders of the expansion. We do this by writing

R̃λ = r̃λ
∞∑
n=0

(r̃λe−ωmgLx)2n, (6.219)

which is possible because |r̃λe−ωmgLx| < 1. Then, equation (6.218) becomes

∆Eg = − Z
2

2π2ε0

∞∑
n=0

∑
m

∫ ∞
0

dxx5

∫ 1

0
dy

ω5
mg

1 + x2y2
e−(2n+1)ωmgLx

×
{[(

r̃TM
)2n+1 − y2

(
r̃TE

)2n+1
]
|µ‖mg|2 + 2

(
1− y2

) (
r̃TM

)2n+1 |µ⊥mg|2
}
. (6.220)

Now we are in the position to approximate the damped x integrand by its Taylor series.

Doing so and carrying out the straightforward x integrations we arrive at

∆Eret
g = − 60

π2ε0

Z2

L2

∑
m

∑
σ=‖,⊥

1

ωmg

(
aσ4
L4
− 12γ

ω2
T

aσ5
L5

)
|µσmg|2, Z/L << 1,
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with the coefficients aσ4,5 given by

a
‖
4 =

∞∑
k=0

∫ 1

0
dy

[
(r̃TM)2k+1

(2k + 1)6
− y2 (r̃TE)2k+1

(2k + 1)6

]
x=0

,

a
‖
5 =

β

ε0

∞∑
k=0

∫ 1

0
dy y

[
(r̃TM)2k+1

(2k + 1)6

1

r̃TM

∂r̃TM

∂ε

−y2 (r̃TE)2k+1

(2k + 1)6

1

r̃TE

∂r̃TE

∂ε

]
x=0

,

a⊥4 =

∞∑
k=0

∫ 1

0
dy 2(1− y2)

[
(r̃TM)2k+1

(2k + 1)6

]
x=0

,

a⊥5 =
β

ε0

∞∑
k=0

∫ 1

0
dy 2(1− y2)y

[
(r̃TM)2k+1

(2k + 1)6

1

r̃TM

∂r̃TM

∂ε

]
x=0

.

Setting x = 0 in the above equations is related to the fact that in the retarded regime the

interaction depends only on static polarizabilities, of both atom and the dielectric. The

coefficients listed above are well approximated by the n = 0 elements of the sums, cf. eq

(6.215). Hence the energy shift reduces to

∆Eret
g = − 60

π2ε0

Z2

L2

∑
m

∑
σ=‖,⊥

1

ωmg

(
cσ4
L4
− 12γ

ω2
T

cσ5
L5

)
|µσmg|2, Z/L << 1, (6.221)

with coefficients cσ4,5 being the same as in the case of the half-space, see Fig. 6.5 on page

173 and the discussion preceding equation (6.190). Since coefficients cσ4,5 are positive we

again observe that the ground-state atom experiences an upside-down harmonic potential.

Thus for the ground-state atom, in the limit of retarded interaction, the middle of the gap

is an unstable point.

6.8.2 Excited states

The calculation of the energy shift of the excited atomic state i is done along the same lines

as in the case of the half-space. The non-residue contributions (6.179) assume the same

form as those for the ground state, Eqs. (6.217) and (6.221), calculated in the preceding

section. To calculate the residue contributions (6.180) we plug in the propagator (6.148)
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and arrive at

∆E?i = − i

4πε0

∑
m<i

∫ ∞
0

dkk
cos
(

2
√
ω2
mi − k2Z

)
√
ω2
mi − k2 + iη

eiL
√
ω2
mi−k2

×
{[
ω2
miRTE

mi − (ω2
mi − k2)RTM

mi

]
|µ‖mi|2 + 2k2RTM

mi |µ⊥mi|2
}

(6.222)

with Rλmi being the reflection coefficients (6.149) evaluated at the atomic transition fre-

quencies ω = |ωmi|. We proceed to determine an asymptotic expressions for (6.222) in the

case when the atom is placed approximately in the middle of the gap i.e. when Z/L << 1

is satisfied. As before, we define the interaction to be nonretarded when |ωmi|L << 1 and

retarded when |ωmi|L >> 1.

6.8.2.1 Nonretarded limit

To find an approximation of equation (6.222) when the interaction is assumed to be in-

stantaneous we replace the integration variable kz =
√
ω2
mi − k2/|ωmi| and rewrite it as

∆E?i =
i

4πε0

∑
m<i

|ωmi|3
∫ i∞

1
dkz cos(2kz|ωmi|Z)eikz |ωmi|L

×
{(
R̄TE
mi − k2

zR̄TM
mi

)
|µ‖mi|2 + 2(1− k2

z)R̄TM
mi |µ⊥mi|2

}
. (6.223)

The contour of integration runs from 1 to 0 along the real axis and then from 0 to i∞
along the imaginary axis. Note that there is no pole at kz = 0. The reflection coefficient

R̄λmi is expressed as follows

R̄λmi =
r̄λmi

(1− r̄λmieikz |ωmi|L)(1 + r̄λmie
ikz |ωmi|L)

(6.224)

with r̄λmi given by (6.193). We note that in equation (6.223) the part of the integration

on the interval kz ∈ [0, 1], in the limit |ωmi|L → 0, produces an asymptotic series in

non-negative powers of L and therefore can be discarded (one anticipates a leading-order
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behaviour of L−3 in the electrostatic limit). The remaining part can be rewritten as

∆E?i = − 1

4πε0

∑
m<i

|ωmi|3
∫ ∞

0
dkz cosh(2kzZ)e−kzL

×
{(
R̃TE
mi + k2

zR̃TM
mi

)
|µ‖mi|2 + 2(1 + k2

z)R̃TM
mi |µ⊥mi|2

}
(6.225)

and dealt with using by the methods analogous to those described in Sec. 6.6.2. In

(6.225) the reflection coefficients R̃λmi are as in (6.224) but evaluated at imaginary kz

i.e. R̃λmi(kz) = R̄λmi(ikz). Repeating the steps of equations (6.195)-(6.197), we transform

equation (6.225) into

∆E?,nonret
i = − 1

4πε0L3

∑
m<i

∫ ∞
0

dxx2 cosh

(
2
Z
L
x

)
× χ(|ωmi|)e−x

1− χ2(|ωmi|)e−2x

(
|µ‖mi|2 + 2|µ⊥mi|2

)
. (6.226)

This is perhaps computationally the most convenient representation of the self-energy

in the non-retarded limit. The energy shift ∆E?,nonret
i is given by the real part of the

above expression. The x integral can be worked out in the limit |Z|/L << 1 yielding

the combination of polylogarithm functions as in Eq. (6.213). However, care needs to be

taken because the image factor χ(|ωmi|) is now evaluated at real frequency and is complex.

Its modulus is not necessarily bound by unity and thus the series representation of the

polylogarithm functions (6.214) is no longer convergent so that an approximation similar

to that in (6.215) is not always possible. However, whenever8 we have Re[ε(|ωmi|)] > 0

the image factor will satisfy |χ(|ωmi|)| < 1 and it pays to write the first order position

dependent term in the limit |Z|/L << 1 as

∆E?,nonret
i = − 6

πε0L3

Z2

L2

∑
m<i

(
|µ‖mi|2 + 2|µ⊥mi|2

)
{Li5[χ(|ωmi|)]− Li5[χ(−|ωmi|)]}. (6.227)

8The real part of the dielectric constant, as introduced in Appendix E, becomes negative approximately,
assuming small damping, in the frequency band between ωT and ωL, see [86]
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We can write out the energy shift explicitly by extracting the real part of the above

expression. Using the series representation of the Li5, Eq. (6.214), we obtain

∆E?,nonret
i = − 12

πε0L3

Z2

L2

∑
m<i

∞∑
k=0

{ |χ(|ωmi|)|2k+1

(2k + 1)5

× cos[(2k + 1)φ(|ωmi|)]}
(
|µ‖mi|2 + 2|µ⊥mi|2

)
, (6.228)

with

φ(|ωmi|) = Arg [χ(|ωmi|)] = Arg

[
ω2

P

2(ω2
T − ω2

mi) + ω2
P − 4iγ|ωmi|

]
. (6.229)

The series in (6.228) converge rapidly, cf. Eq. (6.215), and can be approximated by taking

only the first term into account. Thus we find that the excited state i of an atom placed

closely to the middle of the gap experiences the energy shift

∆E?,nonret
i ≈ − 12

πε0L3

Z2

L2

∑
m<i

|ε(|ωmi|)|2 + 1

|ε(|ωmi|) + 1|2
(
|µ‖mi|2 + 2|µ⊥mi|2

)
. (6.230)

We would like to emphasize that equations (6.228) and (6.230) can be used to estimate

the energy shift only when the dielectric function of the material ε(ω) has a positive real

part at the atomic transition frequency. Practically it means that |ωmi| has to be far away

from any resonance absorption lines in the dielectric. In the case of the resonant situation

the energy shift is given by the real part of Eq. (6.226).

6.8.2.2 Retarded limit

Recall the methods that have been used to derive the energy shift of an excited state for an

atom near a dielectric half-space, Eq. (6.201). One might feel tempted to apply the same

procedure to equation (6.222) in order to obtain its behaviour in the retarded limit. This

however proves unsuccessful for the following reason. In order to derive Eq. (6.201) we

have used repeated integration by parts. This method, when applied to formula (6.222),

involves taking derivatives of the coefficient R̄λmi with respect to the integration variable,

say kz. These coefficients however contain factors exp (−ikz|ωmi|L), and for that reason,

each derivative with respect to kz produces a term that is proportional to L. Therefore,

the repeated integration by parts fails to produce the asymptotic series in inverse powers
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of L. Moreover, the difficulty can not be overcome by rewriting R̄λmi as a geometrical

series, as we did in the case of a ground-state atom in the gap, cf. Eq. (6.219), because

the modulus of the reflection coefficient r̄λmi may now be greater than one. Therefore,

one has to find different way of working out the asymptotic behaviour of the shift when

|ωmi|L >> 1. We start from equation (6.223) and note that the integrand is an analytic

function in the strip 0 < Im(kz) ≤ 1. Hence we deform the contour of integration in Eq.

(6.223) to run from 1 to 1 + i∞ along the line Re(kz) = 1 and then from 1 + i∞ to i∞.

The latter part of the contour can contribute only in the limit |ωmi|L → 0 and therefore

can be discarded. After a simple change of variables kz = κz + 1 we readily obtain

∆E?i =
i

4πε0

∑
m<i

|ωmi|2
∫ i∞

0
dκz cos[2(κz + 1)|ωmi|Z]ei(κz+1)|ωmi|L

{[
¯̄RTE
mi − (1 + κz)

2 ¯̄RTM
mi

]
|µ‖mi|2 + 2

[
1− (1 + κz)

2
] ¯̄RTM

mi |µ⊥mi|2
}

(6.231)

with the reflection coefficients given by

¯̄Rλmi =
¯̄rλmi(

1− ¯̄rλmie
i(κz+1)|ωmi|L

) (
1 + ¯̄rλmie

i(κz+1)|ωmi|L
) .

Here, the doubly barred single-interface Fresnel coefficients have become

¯̄rTE
mi =

κz + 1−
√
ε(|ωmi|)− 1 + (κz + 1)2

κz + 1 +
√
ε(|ωmi|)− 1 + (κz + 1)2

,

¯̄rTM
mi =

ε(|ωmi|)(κz + 1)−
√
ε(|ωmi|)− 1 + (κz + 1)2

ε(|ωmi|)(κz + 1) +
√
ε(|ωmi|)− 1 + (κz + 1)2

.

Now we scale the variables according to κz = x/|ωmi|L and take the limit |ωmi|L→∞.

For x/|ωmi|L << 1 the reflection coefficients simplify to

¯̄rTE
mi = −¯̄rTM

mi =
1− n(|ωmi|)
1 + n(|ωmi|)

(6.232)
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with n(|ωmi|) being the complex index of refraction, n(|ωmi|) =
√
ε(|ωmi|). Further short

calculation reveals that in the retarded limit ∆Eres
i can be expressed as

∆E?,ret
i =

1

2πε0L

∑
m<i

|ωmi|2
n(|ωmi|)− 1

n(|ωmi|) + 1
cos(2|ωmi|Z)

×
∫ ∞

0
dx

ei|ωmi|L−x

1−
[
n(|ωmi|)−1
n(|ωmi|)+1

]2
e2i|ωmi|L−2x

(
|µ‖mi|2 +

2ix

|ωmi|L
|µ⊥mi|2

)
. (6.233)

Note that the dominating contribution comes from the atomic dipole moment that is

parallel to the surfaces. It is expressible in terms of elementary functions as

∆E?,ret
i

∣∣∣
‖

=
1

2πε0L

∑
m<i

|ωmi|2 cos(2|ωmi|Z) tanh−1

[
n(ωmi)− 1

n(ωmi) + 1
ei|ωmi|L

]
|µ‖mi|2. (6.234)

Equation (6.233) contains both decay rates and energy shifts. To extract the shifts we

need take the real part what is most conveniently done by representing the integrand of

equation (6.233) as a geometrical series. Doing so we arrive at

∆E?,ret
i

∣∣∣
‖

=
1

2πε0L

∑
m<i

|ωmi|2|µ‖mi|2 cos(2|ωmi|Z)

×
∞∑
q=0

∣∣∣∣n(ωmi)− 1

n(ωmi) + 1

∣∣∣∣2q+1 cos[(2q + 1)(φn + |ωmi|L)]

2q + 1
, (6.235)

where

φn = Arg

[
n(ωmi)− 1

n(ωmi) + 1

]
. (6.236)

Written in this form the final result suggests that the energy shift of the excited state |i〉
displays resonant behaviour i.e. it is enhanced for certain relative values of the atomic

transition frequency |ωmi| with respect to the width of the cavity L, as has also been

reported in [92]. The infinite series in equation (6.235) are dominated by its first term so

that one can state the approximate condition for resonance to be

| cos(φn + |ωmi|L)| = 1, (6.237)

which in terms of the wavelength of the atomic transition gives

L

λmi
=

1

2

(
k − φn

π

)
, k = 0, 1, 2 . . . . (6.238)
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with φn given in Eq. (6.236). In the absence of absorption vanishes and the condition

states that the resonance occurs whenever the width of the cavity is equal to the half-

integer multiply of the wavelength of the atomic transition, as one would expect.

6.9 Spontaneous decay rates in a gap

Spontaneous decay rates in the nonretarded and retarded regime are given by the imag-

inary part of the expressions (6.226) and (6.233), respectively. There is nothing further

gained by writing out the imaginary part of (6.226) explicitly. For practical purposes, the

electrostatic result is most conveniently computed using the expression (6.226) and taking

the imaginary part after the evaluation of the integral, cf. Eq. (6.181). In the case when

the interaction is fully retarded the dominant contributions due to the dipole moment that

is parallel to the surface can we written out as

∆Γret
i

∣∣
‖ = − 1

πε0L

∑
m<i

|ωmi|2|µ‖mi|2 cos(2|ωmi|Z)

×
∞∑
q=0

∣∣∣∣n(ωmi)− 1

n(ωmi) + 1

∣∣∣∣2q+1 sin[(2q + 1)(φn + |ωmi|L)]

2q + 1
, (6.239)

with φn given in Eq. (6.236).

6.10 Summary and conclusions

We have showed that starting from a gauge-independent microscopic model represented by

the Hamiltonian (6.19) it is possible to develop a formalism which allows to calculate QED

corrections in the presence of absorptive and dispersive boundaries. In order to not pre-

sume the equivalence between the Green’s function of the wave equation and the quantum

photon propagator we have used the diagrammatic technique to integrate out the damped

polaritons to give a Dyson equation for the photon propagator. We then solved this inte-

gral equation exactly using traceable methods. This allowed us to calculate analytically

a one-loop self-energy diagram for an electron bound by a nucleus near a dielectric half-

space and hence to determine the energy-level shifts and change in transition rates which

are proportional to the real and imaginary part of the electron’s self energy, respectively.
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Table 6.1: Equation numbers of the major results of this Chapter. The half-space.

∆E
∆Γ ground state excited states

non-retarded
regime

Eq. (6.202) Eq. (6.187) Eq. (6.198)

retarded
regime

Eq. (6.203) Eq. (6.188) Eq. (6.201)

Table 6.2: Equation numbers of the major results of this chapter. The gap.

∆E
∆Γ ground state excited states

non-retarded
regime

Eq. (6.226) Eq. (6.217) Eq. (6.226)

retarded
regime

Eq. (6.239) Eq. (6.221) Eq. (6.235)

We have investigated the role of the material’s absorption in some detail and confirmed

the previously known result that absorption has the most profound impact on the atomic

system in the non-retarded regime i.e. when the distance between the atom and the mirror

is much smaller than the wavelength of the dominant dipole transition. If the distance

between the atom and the surface far exceeds the wavelength of the dominant transition,

then to leading order dispersion and absorption make no difference. The next-to-leading

order corrections are proportional to damping constant of the Lorentz-type dielectric func-

tion and it turns out that, in the retarded regime, only the material’s absorption lines that

lie in the low-frequency region have significant impact on the interaction. This suggests

that the interaction of macroscopic bodies and quantum systems for which polarizability

peaks at low frequencies, e.g. free electron, might be affected in a more substantial way.

We provide complete reference to the major results of this Chapter in Table 6.1 and 6.2.



Appendix A

Free-space photon propagator

The spectral representation of the photon propagator derived in Section 6.3.2 using the

differential equation (6.45)

D
(0)
ik (q, ω) = ε0

δikq
2 − qiqk

ω2 − q2
(A.1)

is meaningless unless we specify how do we circumvent the poles of the denominator. This

is because the definition of the photon propagator (6.41) is unique whereas (A.1) is not,

and we have to put some additional information in. To see the right way of displacing the

poles off the real axis we evaluate the matrix elements in equation (6.41) directly using

the normal-mode expansion of the of the electric field operator1

Eλi (r, t) =
i

(2π)3/2

∑
λ

∫
d3q

√
~ωq

2ε0

(
aqλe

iωqt−iq·r − a†qλe−iωqt+iq·r
)
êλi (q). (A.2)

We plug this operator into the definition (6.41) and bear in mind that when calculating the

vacuum expectation value of the product of operators Eλi (r, t)Eσj (r′, t′) only the terms pro-

portional to aqλa
†
pσ survive. Using the commutation relation [aqλ, a

†
pσ] = δ(3)(q− p)δλσ

1Note that for the electromagnetic field not interacting with the polarization field the electric field
operator and the displacement field operator coincide up to a factor of ε0.
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we find that the propagator is given by

D
(0)
ij (r− r′, t− t′) = − iε0

2(2π)3

∑
λ

∫
d3qe−iq·(r−r

′)ωqê
λ
i (q)êλj (q)

×
[
θ(t− t′)e−iωq(t−t′) + θ(t′ − t)eiωq(t′−t)

]
. (A.3)

where ωq = |q|. Using the integral representation of the θ-function

θ(t− t′) =
1

2πi

∫ ∞
−∞

dx
eix(t−t′)

x− iη , η > 0 (A.4)

one can quite simply show that the spectral representation of the photon propagator with

the correct prescription to handle the poles is indeed given by

D
(0)
ik (q, ω) = ε0

δikq
2 − qiqk

ω2 − q2 + iη
, (A.5)

where we have also used the completeness property of the polarization vectors

∑
λ

êλi (q)êλj (q) = δik −
qiqk
q2

. (A.6)

At this point one may wonder why even bother with the derivation of the photon propaga-

tor presented in Section 6.3.2. This is done in order to determine the differential equation

satisfied by the propagator which proves to be useful in calculations of the dressed photon

propagator i.e. the propagator of the electromagnetic field interacting with the polariza-

tion field.



Appendix B

Photon propagator using the

phenomenological QED

The phenomenological theory of quantum electrodynamics, as developed in [1], gives the

electric field operator as

Ei(r, t) = −iµ0

∫
d3r′

∫ ∞
0

dωe−iωtGik(r, r
′;ω)Jk(r

′, ω) + H.C. (B.1)

where Jk(r, ω) is the so-called noise current operator satisfying the following commutation

relation [
Ji(r, ω), J†k(r′, ω′)

]
=

~ε0
π
ε′(r, ω)ω2δ(3)(r− r′)δ(ω − ω′)δik, (B.2)

where ε′(r, ω) is the imaginary part of the phenomenologically introduced dielectric permit-

tivity. Gik(r, r
′;ω) is the Green’s function of the wave equation in the usual mathematical

sense i.e. it is a solution of

(∇i∇j − δij∇2)Gjk(r, r
′;ω)− ε(r, ω)ω2Gik(r, r

′;ω) = δikδ
(3)(r− r′), (B.3)

with the requirement that it satisfies the retarded boundary conditions in time. For an

overview of the theory and some applications see [93].

194



Appendix B. Photon propagator using the phenomenological QED 195

We want to calculate the Feynman propagator corresponding to the electric field operator

i.e. the quantity

DE
ij(r, r

′, t, t′) = − i
~
〈0|T

[
Ei(r, t)Ej(r

′, t′)
]
|0〉. (B.4)

Plugging into the above definition the operator (B.1) and utilizing the commutation rela-

tions (B.2) together with some of the properties of the Green’s tensor derived in [93] we

arrive at

DE
ij(r, r

′, t, t′) = − i

πε0

∫ ∞
0

dωω2
[
θ(t− t′)e−iω(t−t′) + θ(t′ − t)eiω(t−t′)

]
G′′ij(r, r

′;ω)

where G′′ij(r, r
′;ω) is the imaginary part of the Green’s tensor i.e.

Gij(r, r
′;ω) = G′ij(r, r

′;ω) + iG′′ij(r, r
′;ω). (B.5)

Now we carry out the Fourier transform with respect to t − t′ using the distributional

identities ∫ ∞
0

dτe±iτΩ = πδ(Ω)± iP
Ω

(B.6)

where P denotes the Cauchy principal value. We arrive at

DE
ij(r, r

′; Ω) =
2

πε0
P
∫ ∞

0
dω

ω3

Ω2 − ω2
G′′ij(r, r

′;ω)

− i

ε0

∫ ∞
0

dωω2 [δ(Ω− ω) + δ(Ω + ω)]G′′ij(r, r
′;ω). (B.7)

The Green’s tensor satisfies the retarded boundary conditions in time to preserve causality.

This means that it is analytical in the upper-half of the complex ω plane. Analycity in the

upper-half of the ω-plane implies Kramers-Krönig relations [10], thus the Green’s tensor

may be said to inherit the properties of the permittivity. In particular, its imaginary part

is an odd function of frequency ω whereas its real part is even in ω. Having said that we

can deal with the principal-value integral in (B.7). Since G′′ij(r, r
′;−ω) = −G′′ij(r, r′;ω)

and the remaining part of the integrand is also odd we extend the lower integration limit

to start from −∞ and multiply by 1/2. On the other hand, the real part of the Green’s

tensor is even in ω so that we can replace

G′′ij(r, r
′, ω)→ 1

i
Gij(r, r

′, ω) (B.8)
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without changing the value of the integral. The first line of equation (B.7) becomes

P
iπε0

∫ ∞
−∞

dω
ω3

Ω2 − ω2
Gij(r, r

′;ω). (B.9)

To work out this integral we consider a new contour of integration γ that runs from −∞
to ∞ circumventing the poles at ω = ±Ω from the above and then closes up in the upper

half of the ω-plane along the large semicircle |ω| = R. Because the Green’s tensor in

analytic in the upper half-plane such calculated integral vanishes and we can express the

principal-value integral as

P
∫

= −
∫
γ−
−
∫
γ+
−
∫

Γ
(B.10)

where γ± denotes the clockwise contours that go around the poles at ω = ±Ω respectively

and Γ denotes the contribution from the large semicircle taken counter-clockwise. Using

the residue theorem we derive that the contribution from γ± is given by

− 1

ε0
Ω2G′ij(r, r

′; Ω), (B.11)

whereas the large semicircle contributes the delta function

− 1

ε0
δijδ

(3)(r− r′), (B.12)

where while calculating it we have used the fact that asymptotically the Green’s tensor

behaves as [93]

lim
|ω|→∞

ω2Gij(r, r;ω) = −δijδ(3)(r− r′). (B.13)

The second line of equation (B.7) is on the other hand easily seen to be

− i

ε0
Ω2G′′ij(r, r

′; |Ω|), (B.14)

so the final result relating the photon propagator to the Green’s function of the wave

equation on the real Ω-axis is written compactly as

DE
ij(r, r

′; Ω) = −Ω2

ε0
Gij(r, r

′; |Ω|)− 1

ε0
δijδ

(3)(r− r′). (B.15)

A similar formula has been given in [94]. We would like to make connection with the
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phenomenological QED by comparing this result with the results of Section 6.4.2. It needs

to emphasized that what we have calculated here is the propagator for the electric field

E whereas in Section 6.4.2 the propagator for the displacement field D was obtained.

Therefore, the results have a chance to coincide only when r, r′ are pointing to the outside

of the dielectric, so we restrict ourselves to this case. Then, the Green’s tensor Gij(r, r
′;ω)

splits into a free-space part G
(0)
ij and the correction that describes the reflection of the

electromagnetic field from the surface G
(r)
ij and the result can be rewritten as

DE
ij(r, r

′; Ω) = −Ω2

ε0

[
G

(0)
ij (r− r′; |Ω|) + δijδ

(3)(r− r′)
]
− Ω2

ε0
G

(r)
ij (r, r′; |Ω|). (B.16)

It is now clear that the Feynman propagator is an even function of Ω unlike the Green’s

function of the wave equation that has the same analytical structure as the dielectric

function. It is not difficult to verify that for the particular geometry considered in Section

6.4.2.1, the half-space, formula (B.16) indeed holds. The terms in square brackets combine

to deliver the transverse free-space propagator as given in equation (6.49). The reflected

part G
(r)
ij (r, r′; |Ω|), that can be found for example in [1], satisfies the homogeneous wave

equation. Therefore, it is automatically transverse

∇iG(r)
ij (r− r′;ω) = 0 (B.17)

and coincides with the reflected part of the photon propagator DE
ij(r, r

′;ω) given in equa-

tion (6.108) except for a different behaviour in the ω-plane, which of course arises due

to the different boundary conditions in time. DE
ij(r, r

′; t − t′) is a Feynman propagator

whereas Gij(r, r
′, t− t′) describes the retarded solutions of the wave equation.



Appendix C

Fresnel coefficients for layered

dielectric

In this section we list the reflection and transmission coefficients appearing in the normal-

modes of the system as discussed in Section 5.2.1. For the left-incident modes we find

RLλ =
rsl
λ + rlv

λ e
2ikzlL

1 + rsl
λ r

lv
λ e

2ikzlL
e−ikzsL

ILλ =
tslλe

i(kzl−kzs)L/2

1 + rsl
λ r

lv
λ e

2ikzlL

JLλ =
tslλr

lv
λ e

(3ikzl−ikzs)L/2

1 + rsl
λ r

lv
λ e

2ikzlL

TLλ =
tslλ t

lv
λ e

(2ikzl−ikzs−ikz)L/2

1 + rsl
λ r

lv
λ e

2ikzlL
.

and for the right-incident modes we get

RRλ =
rvl
λ + rls

λ e
2ikzlL

1 + rvl
λ r

ls
λ e

2ikzlL
e−ikzL

IRλ =
tvl
λ e

i(kzl−kz)L/2

1 + rvl
λ r

ls
λ e

2ikzlL

JRλ =
tvl
λ r

ls
λ e

(3ikzl−ikz)L/2

1 + rvl
λ r

ls
λ e

2ikzlL

TRλ =
tvl
λ t

ls
λe

(2ikzl−ikzs−ikz)L/2

1 + rvl
λ r

ls
λ e

2ikzlL
.

The standard Fresnel reflection coefficients rab
λ are given by (5.11).
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Appendix D

Electrostatic calculation of the

energy-level shift in a ground-state

atom in a layered geometry

To provide an additional check on the consistency of our calculations we would like to derive

equation (5.66) by means of ordinary electrostatics. We start from the general formula

derived in [3] that expresses the electrostatic interaction energy of a electric dipole in the

presence of a dielectric in terms of Green’s function of the Laplace equation

∆E =
1

2

∑
i

〈µ2
i 〉∇i∇′i GR(r, r′)

∣∣∣∣
r=r0,r′=r0

. (D.1)

Here the sum runs over three components of the dipole moment and the subscript R means

that only the homogeneous correction to the free-space Green’s function (reflected part)

that is caused by the presence of the boundary enters the formula. This ensures that

the self-energy of the dipole is omitted and guarantees the convergence of the final result.

The harmonic function GR(r, r′) is a solution of the Laplace equation that vanishes for

|z| → ∞. Therefore it can be written in the form:

GR(r, r′) = − 1

4πε0

∫ ∞
0

d2k‖e
ik‖·r‖


C1(k‖, r

′)ekzz z < L/2

C2(k‖, r
′)ekzz + C3(k‖, r

′)e−kzz |z| < L/2

C4(k‖, r
′)e−kzz z > L/2

, (D.2)
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with kz =
√
k2
x + k2

y. The C coefficients are easily worked out by applying the continuity

conditions, which result from Maxwell’s equations, across the interfaces and one finds that

GR(r, r′) = − 1

4πε0

∫ ∞
0

dkJ0(kρ)

n2
l − 1

n2
l + 1

− n2
l − n2

s

n2
s + n2

l

e−2kL

1− n2
l − 1

n2
l + 1

n2
l − n2

s

n2
s + n2

l

e−2kL

e−k(z+z′) (D.3)

with ρ =
√

(x− x′)2 + (y − y′)2. Application of the formula (D.1) is straightforward and

we easily derive that the electrostatic interaction energy of a dipole in a vicinity of the

layered dielectric is indeed equal to (5.66).



Appendix E

Simple model of dielectric constant

in the Huttner-Barnett model

To determine the dielectric permittivity of the model we use equations of motion for the

fields that follow from the Hamiltonian (6.7)-(6.11) and the commutation relations (6.13)-

(6.15). It is not difficult to show that temporally Fourier transformed equations of motion

read

(∇i∇j − δij∇2)Ej(r, ω)− ω2Ei(r, ω) = g(r)ω2Xi(r, ω), (E.1)(
ω2

T − ω2 +
1

M

∫ ∞
0

dνρνν
2

)
Xi(r, ω) =

g(r)

M Ei(r, ω) +
1

M

∫ ∞
0

dνρνν
2Yν,i(r, ω), (E.2)

(ν2 − ω2)Yν,i(r, ω) = ν2Xi(r, ω). (E.3)

The susceptibility is defined as the proportionality constant between polarization X(r, ω)

and electric field E(r, ω). In the isotropic case we have

X(r, ω) = ε0Πret(r, ω)E(r, ω). (E.4)

Transforming the above relation back to the time variable gives

X(r, t) =
ε0
2π

∫ ∞
−∞

dw e−iωt Πret(r, ω)E(r, ω). (E.5)
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If we now introduce

E(r, ω) =

∫ ∞
−∞

dt′eiωt
′
E(r, t′) (E.6)

and plug it into Eq. (E.5), then, upon interchanging ω and t′ integrations we obtain

X(r, t) = ε0

∫ ∞
−∞

dt′Πret(r, t− t′)E(r, t′). (E.7)

On physical grounds we expect that X(r, t) doesn’t depend on E(r, t′) at the times t′ later

than t, in other words, the relationship between X(r, t) and E(r, t′) has to be causal. This

requirement forces the response function Πret(r, t− t′) to vanish for times t− t′ < 0

Πret(r, t− t′) =

 Π(r, t− t′) t− t′ > 0

0 t− t′ < 0
, (E.8)

and from the relation

Πret(r, t− t′) =
1

2π

∫ ∞
−∞

dωe−iω(t−t′)Πret(r, ω), (E.9)

we can see that it’s Fourier transform is analytic in the upper half of the complex ω-plane.

To determine the susceptibility Πret(r, ω) which follows from our model one has to find the

relation between X(r, ω) and E(r, ω) that follows from equations of motion (E.1)-(E.3).

This is straightforward and yields

Πret(r, ω) =
g(r)

ε0M

[
ω2

T − ω2 − ω2

M

∫ ∞
0

dν
ρνν

2

ν2 − ω2

]−1

. (E.10)

However, in order for the relation (E.10) to be meaningful one has to decide how to deal

with the poles present in the ν integral. The freedom of choice is constrained by the

retarded nature of Πret(r, t − t′), cf. Eq. (E.8). It is known from the previous work [80,

App. 2], that the function ρν in (E.10) must be positive, even and have no poles on the

real axis. With these properties in mind it is not difficult to show that an appropriate

choice to handle the poles is given by

Yν(r, ω) =
ν2

ν2 − ω2 − iηωX(r, ω). (E.11)

This has been also noted in [71].
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The specific form of the dielectric permittivity is determined by the choice of the coupling

function ρν that describes the interaction between the reservoir and the dielectric, see [83]

for some possible choices. Here we choose the coupling function ρν such as to arrive at

the simple single-resonance Lorentz model of the dielectric function. This is guaranteed

by choosing

ρν =
4Mγ

πν2
(E.12)

which gives a frequency-independent coupling between the bath and polarization oscilla-

tors, cf eq. (6.10). Carrying out the integration gives

Πret(r, ω) = g(r)
ω2

P

ω2
T − ω2 − 2iγω

. (E.13)

with ω2
P = (ε0M)−1. From the relation

D(r, ω) = ε0E + g(r)X(r, ω) = ε(r, ω)E(r, ω) (E.14)

we read off
ε

ε0
= 1 + g2(r)

ω2
P

ω2
T − ω2 − 2iγω

. (E.15)
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