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Abstract

This thesis aims to introduce and analyse a primal-dual active set strategy for

solving Allen-Cahn variational inequalities. We consider the standard Allen-Cahn

equation with non-local constraints and a vector-valued Allen-Cahn equation with

and without non-local constraints. Existence and uniqueness results are derived

in a formulation involving Lagrange multipliers for local and non-local constraints.

Local Convergence is shown by interpreting the primal-dual active set approach as

a semi-smooth Newton method. Properties of the method are discussed and several

numerical simulations in two and three space dimensions demonstrate its efficiency.

In the second part of the thesis various applications of the Allen-Cahn equation

are discussed. The non-local Allen-Cahn equation can be coupled with an elasti-

city equation to solve problems in structural topology optimisation. The model can

be extended to handle multiple structures by using the vector-valued Allen-Cahn

variational inequality with non-local constraints. Since many applications of the

Allen-Cahn equation involve evolution of interfaces in materials an important ex-

tension of the standard Allen-Cahn model is to allow materials to exhibit anisotropic

behaviour. We introduce an anisotropic version of the Allen-Cahn variational in-

equality and we show that it is possible to apply the primal-dual active set strategy

efficiently to this model. Finally, the Allen-Cahn model is applied to problems in

image processing, such as segmentation, denoising and inpainting.

The primal-dual active set method proves flexible and reliable for all the applications

considered in this thesis.
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Chapter 1

Introduction

The Allen-Cahn equation was introduced by Allen and Cahn [4] to model the motion

of antiphase boundaries in crystalline solids. It describes the curvature dependent

evolution of an interface separating two bulk regions. More precisely, the interface

moves with normal velocity v = −κ where κ is the mean curvature, which is defined

as the sum of all principle curvatures. Hence, this evolution is referred to as mean

curvature flow .

Such systems arise naturally in various fields including materials science, image pro-

cessing, biology and geology. One example in materials science is grain boundary

motion [4, 43]. Grain boundaries in alloys are interfaces separating crystals of dif-

ferent phases or crystals of the same phase with differing orientations. Associated

with the grain boundary is a surface energy which gives rise to a thermodynamic

restoring force. For a constant surface energy density this is simply the surface

tension force which is proportional to the mean curvature and hence the resulting

evolution is mean curvature flow.

A more recent area where mean curvature flow is used is image processing [32]. An

important task in image processing is to extract the contours of the objects in the

image. Moreover, it is desirable that during this process noise in the initial image is

suppressed. Algorithms based on mean curvature flow can be used for these tasks

and they can also be used to progressively modify the contours to a form which is

more manageable for pattern recognition and interpretation [44]. Other important

applications for mean curvature flow in image processing include image segmentation

and inpainting [18, 77].

Mean curvature flow can be coupled to conservation of volume, which can be seen

as being equivalent to mass conservation, to model minimal surfaces [57].

There are two main strategies to model mean curvature flow, the so-called ‘sharp’

and ‘diffuse’ interface models, see [43] for an overview. Sharp interface models

assume the interface to have zero thickness. The interface can be described for

example using a parametric equation or as the graph of a function. Diffuse interface
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approaches such as the phase field approach model the interface to have a small

finite thickness. In this thesis we consider the phase field approach which we will

describe in more detail in the next section.

1.1 Phase field model

Let Ω be an open and bounded domain in Rd and let Γ(t) be a hypersurface moving

through Ω that separates two bulk regions.

In the phase field model the sharp interface Γ(t) is modelled by a diffuse transition

layer with width of order ε, where 0 < ε � 1. An order parameter or phase field

function u : Ω× (0, T ) −→ R is introduced which indicates the phase of a material

and changes its value rapidly in the transition layer.

The model is based on the non-convex Ginzburg-Landau energy

E(u) :=

∫
Ω

(γε
2
|∇u|2 + γ

ε
ψ(u))dx (1.1)

where γ > 0 is a parameter related to the interfacial energy. The potential term

ψ : R −→ R+
0 ∪ {∞} is assumed to have two global minima at the points −1 and 1

such that the values ±1 describe the pure phases. Examples are the smooth double

well potential ψ(u) = (1− u2)2 or the double obstacle potential

ψ(u) =

1
2
(1− u2) if |u| ≤ 1 ,

∞ if |u| > 1 .
(1.2)

This double obstacle potential was introduced in the gradient theory of phase trans-

itions in [11, 23, 24]. Introducing

ψ0(u) := 1
2
(1− u2)

and the indicator function

I[−1,1](u) :=

0 if |u| ≤ 1 ,

∞ if |u| > 1 ,

we can rewrite (1.2) as

ψ(u) = ψ0(u) + I[−1,1](u) . (1.3)

In order to have E(u) of moderate size u favours the values ±1 due to the potential
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function. On the other hand given the gradient term
∫
Ω

|∇u|2 , oscillations between

the values ±1 are energetically not favourable.

Given an initial phase distribution u(., 0) = u0 : Ω→ R at time t = 0 the interface

motion can be modelled by the steepest descent of E with respect to the L2–norm

which results in the Allen-Cahn equation [112]. In the case of a smooth potential ψ

we obtain, after a suitable rescaling of time,

ε∂tu = γε∆u− γ
ε
ψ′(u) for x ∈ Ω and t > 0

together with Neumann boundary conditions ∂u
∂ν

= 0 on ∂Ω, where ν is the outer

unit normal to Ω. If ψ has the form (1.3) we obtain, see [25],

ε(∂tu, χ− u) + γε(∇u,∇(χ− u)) + γ
ε
(ψ′0(u), χ− u) ≥ 0 (1.4)

which has to hold for almost all t and all χ ∈ H1(Ω) with |χ| ≤ 1. Here and in what

follows (f, g) :=
∫
Ω

f(x)g(x) dx with f, g ∈ L2(Ω) denotes the L2–inner product.

Often we consider systems in which the total spatial amount of the phases are

conserved. In this case we study the steepest descent of E under the constraint∫
Ω

−udx = m where m ∈ (−1, 1) is a fixed number and
∫
Ω

−f(x)dx := 1
|Ω|

∫
Ω

f(x)dx with

|Ω| being the Lebesgue measure of Ω. In the case of a smooth potential ψ we obtain

(see [112, 57])

ε∂tu = γε∆u− γ
ε
ψ′(u) + γ

ε

∫
Ω

− ψ′(u)dx .

Assuming homogeneous Neumann boundary conditions it follows that

d
dt

∫
Ω

udx = 0 and d
dt
E(u) ≤ 0 .

In the case of an obstacle potential we need to solve, for given initial data u0 ∈ H1(Ω)

with |u0| ≤ 1 a.e. in Ω, the following problem [25]:

(Pm) Find u ∈ H1(ΩT ) such that
∫
Ω

− u(x, t)dx = m, u(., 0) = u0, |u| ≤ 1 a.e. in

ΩT := Ω× (0, T ) and

ε(∂tu, χ− u) + γε(∇u,∇(χ− u)) + γ
ε
(ψ′0(u), χ− u) ≥ 0 (1.5)

which has to hold for almost all t and all χ ∈ H1(Ω) with |χ| ≤ 1 and
∫
Ω

− χ = m.
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1.2 Numerical methods for the Allen-Cahn equa-

tion

Most of the existing literature [45, 59, 81, 95] concentrates up to now on the explicit

and semi-implicit time discretisation of the Allen-Cahn equation. For the discret-

isation in space either finite differences or finite elements are used [31, 39, 43]. More

recently research focuses on the double obstacle since the order parameter is strictly

1 or −1 in the bulk regions and this can be used to reduce computation times.

One standard approach uses that the fully discrete variational inequality (1.4) sat-

isfies a minimum principle and hence the solution in the new time step can be

computed by first calculating a ũn+1 and then projecting componentwise onto the

interval [−1, 1] [48, 113]. For an implicit discretisation in time a projected SOR

algorithm can be used [48, 43]. Due to its simplicity this approach has been widely

used.

For explicit time discretisations it is known [43] that the interface cannot move

more than one element per time step, thus it is only necessary to compute the

order parameter u on the closure of the transition layer. This has been exploited

in the dynamic mesh algorithm by Nochetto, Paolini and Verdi [95]. They carry

a mesh only in the transition layer and add or remove triangles where necessary.

Elliott and Gardiner [46] use a similar technique for their ‘mask’ method where they

use a fixed mesh but only compute nodal values of u on the transition layer. For

uniform meshes, where stiffness and mass matrices require minimal storage, this

method proves very efficient. However, the explicit time discretisation has the usual

stability restriction for parabolic problems, τ ≤ Ch2, where τ denotes the time step

and h the mesh size [101].

There are a variety of other numerical methods. Kornhuber [82, 83] used monotone

multigrid methods to solve elliptic variational inequalities arising from obstacle prob-

lems. The monotone multigrid algorithm is based on a subspace correction approach

where the subspace is decomposed into smaller spaces, which leads to a polygonal

Gauss-Seidel relaxation as the fine grid smoother. This idea has been extended for

the vector-valued Allen-Cahn equation [84]. A review on various multigrid methods

for obstacle problems can be found in [66]. A new approach by Gräser [65] uses a

non-smooth Newton method which is based on the formulation of the problem as an

unconstrained minimisation problem. This strategy is applicable for more general

set-valued saddle point problems, see [67].

So far there are no computational comparisons between these various methods avail-

able. It would be of great interest to compare our primal-dual active set method to

the multigrid methods used by Kornhuber [84, 67].

For the non-local Allen-Cahn variational inequality so far only explicit methods have
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been used, see [25, 57].

In this work we focus on implicit discretisations in time which allow much larger

time steps than explicit discretisations. The Allen-Cahn variational inequality can

be interpreted as the first order optimality condition of a minimisation problem.

Active set methods have widely been used in optimisation and optimal control. We

use the primal-dual active set method introduced by Bergounioux, Ito and Kunisch

[15]. This method has been shown to be equivalent to a semi-smooth Newton method

[72] which we exploit to show local convergence.

1.3 Outline of the thesis

In Chapter 2 we introduce a Lagrange multiplier method to handle the inequality

constraint |u| ≤ 1 and the volume constraint
∫
Ω

− u = m and we reformulate the

Allen-Cahn variational inequality (1.5) as a complementarity problem. Existence

and uniqueness of the solution u and the Lagrange multipliers is shown using a

regularisation technique. We discretise in time using backward Euler and in space

using finite elements and apply the primal-dual active set method. Interpreting

the approach as a semi-smooth Newton method we can show local convergence.

We discuss some of the features of the primal-dual active set method and compare

numerical results to analytically known solutions.

In Chapter 3 we introduce the (non-local) vector-valued Allen-Cahn equation. Us-

ing similar techniques as in Chapter 2 we derive a complementarity formulation for

which we can show existence and uniqueness of the solution. We apply the primal-

dual active set strategy on the fully discrete problem. Using problems where the

analytical solution is known we show the efficiency and accuracy of our method. Fur-

ther simulations illustrate the flexibility of our method by considering more complex

processes, such as soap bubble configurations and grain growth.

Since the main computational effort of the primal-dual active set method lies in

solving a linear system we focus on efficient solvers in Chapter 4. We consider

various linear algebra solvers and discuss their advantages and disadvantages. We

also investigate preconditioning for the linear systems.

In Chapter 5 we discuss some applications of Allen-Cahn variational inequalities.

First we use the non-local Allen-Cahn equation to solve problems in structural to-

pology optimisation. Phase field models have successfully been used for this sort of

problem, but up to now the fourth order Cahn-Hilliard equation has been used. We

demonstrate that a non-local Allen-Cahn variational inequality can be used instead

which reduces computational costs and thus makes the phase field approach more

efficient. We also show how the model can be extended to handle multiple struc-

tures by using the vector-valued non-local Allen-Cahn. Since in many applications
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the materials under consideration are anisotropic, we apply the primal-dual active

set strategy to the anisotropic Allen-Cahn equation and we present some numerical

simulations in two and three space dimensions. Finally, we discuss some examples

from image processing. We use the vector-valued Allen-Cahn equation for image seg-

mentation of grayscale and colour images. We also look at image inpainting where

we replace the Cahn-Hilliard equation, that has been widely used, by a non-local

Allen-Cahn equation.

We conclude with Chapter 6 where we briefly summarise our main results and discuss

some possible areas of further research.
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Chapter 2

Allen-Cahn variational inequality

with non-local constraints

In this chapter we focus on developing an algorithm to solve the Allen-Cahn vari-

ational inequality (1.5). First, we reformulate the problem with the help of Lagrange

multipliers corresponding to the inequality and equality constraints. We show exist-

ence and uniqueness of the solution and the Lagrange multipliers and we introduce

a primal-dual active set strategy which is then applied to the discrete problem.

We demonstrate the efficiency and accuracy of the method using problems where

the analytical solution is known and we show numerically that the method is mesh

independent.

2.1 Formulation as a complementarity problem

As a first step we reformulate the problem (Pm) on page 3 in the following lemma

with the help of Lagrange multipliers µ+ and µ− corresponding to the inequality

constraints u ≤ 1 and u ≥ −1 and a Lagrange multiplier λ corresponding to the

constraint
∫
Ω

− udx = m :=
∫
Ω

− u0dx.

As a general assumption we require:

(Am) The domain Ω ⊂ Rd is bounded and either convex or has a C1,1-boundary.

Furthermore the initial data u0 ∈ H1(Ω) fulfil |u0| ≤ 1 a.e. and
∫
Ω

− u0 = m for a

given m ∈ (−1, 1).

Lemma 2.1.1. Let T > 0 be a positive time and let the assumptions (Am) hold. A

function u ∈ L2(0, T ;H2(Ω))∩H1(ΩT ) solves (1.5), if there exists µ+, µ− ∈ L2(ΩT )
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and λ ∈ L2(0, T ) such that

λ = ε2∂tu− γε2∆u+ γψ′0(u) + µ+ − µ− a.e. in ΩT , (2.1)

u(0) = u0,
∂u

∂ν
= 0 a.e. on (∂Ω)T := ∂Ω× (0, T ) , (2.2)∫

Ω

− udx = m for almost all t ∈ [0, T ] , (2.3)

|u| ≤ 1 a.e. in ΩT , (2.4)

µ+(u− 1) = 0, µ−(u+ 1) = 0 a.e. in ΩT , (2.5)

µ+ ≥ 0, µ− ≥ 0 a.e. in ΩT . (2.6)

Proof: Let η ∈ H1(Ω) be such that |η| ≤ 1 a.e. in Ω and
∫
Ω

−η = m. Testing (2.1)

with (η − u) gives

0 =

∫
Ω

(ε2∂tu− ε2γ∆u+ γψ′0(u))(η − u) +

∫
Ω

µ+(η − u)−
∫
Ω

µ−(η − u)

for almost every t ∈ (0, T ). Using the properties of η and (2.5)-(2.6) gives for almost

all t ∈ (0, T )

µ+(η − u) ≤ 0, µ−(η − u) ≥ 0 a.e. in Ω .

After integration by parts in space and dividing by ε > 0 we obtain

0 ≤
∫
Ω

(ε∂tu+ γ
ε
ψ′0(u))(η − u) + γε

∫
Ω

∇u · ∇(η − u)

for almost all t ∈ (0, T ) which is precisely (1.5).

�

2.2 Existence and uniqueness

The primal-dual active set method that we propose will heavily depend on the

Lagrange multipliers µ−, µ+, λ. Hence we show the existence of a solution u to the

system (2.1)-(2.6) together with unique Lagrange multipliers µ−, µ+ and λ. In the

proof of the existence theorem we handle the linear equality constraint
∫
Ω

−u = m

by projection and use a penalty approach for the inequality constraint |u| ≤ 1, see

also [7, 23]. In particular we replace the indicator function in ψ by terms penalising

deviations of u from the interval [−1, 1].

Therefore, we define ψ+(z) := max(z − 1, 0)2 , ψ−(z) := min (z + 1, 0)2 for all z ∈ R
and ψδ(z) := ψ0(z)+ 1

δ
(ψ+(z)+ψ−(z))+1 for δ > 0. For δ ∈ (0, 2) it can be shown

that ψ′′δ (z) ≥ −1 and ψδ(z) ≥ 0, for all z ∈ R. Note that for δ → 0 the function
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ψδ − 1 converges to the double obstacle potential (1.2). We need to add 1 in the

definition of ψδ in order to insure that ψδ(z) ≥ 0 for all z ∈ R.

Now, we consider the L2–gradient flow of

Eδ(u) :=
∫
Ω

(γε
2
|∇u|2 + γ

ε
ψδ(u))dx

under the mean value constraint. This leads to the semilinear parabolic equation

ε2∂tuδ = γε2∆uδ − γψ′δ(uδ) +
∫
Ω

− γψ′δ(uδ)dx a.e. in ΩT , (2.7)

uδ(0) = u0,
∂uδ
∂ν

= 0 on (∂Ω)T . (2.8)

The main challenge is to control approximate versions of the Lagrange multipliers

which is non-standard due to the coupling of non-local equality and local inequality

constraints.

Theorem 2.2.1. Let the assumptions (Am) hold and let T > 0. Then there exists

a unique solution (u, µ+, µ−, λ) of (2.1)-(2.6) with the following properties

u ∈ L2(0, T ;H2(Ω)) ∩ L∞(0, T ;H1(Ω)) ∩H1(ΩT ) ,

µ+, µ− ∈ L2(ΩT ) ,

λ ∈ L2(0, T ) .

Proof: Step 1: Existence of a solution uδ to (2.7)

We show the existence of a solution uδ to (2.7), (2.8) by a Galerkin approach,

following e.g. Evans [54, Section 7.1]. Since such an approach is standard we only

briefly describe the arguments and focus on specific aspects that appear in our case

due to the non-local structure. We choose {wj}j∈N0 to be the eigenfunctions of the

operator −∆ [54, Section 6.5] which can be normalised such that (wi, wj) = δij.

Furthermore, we choose w0 to be constant. A Galerkin approximation is then given

as

uN(x, t) =
N∑
j=0

cNj (t)wj(x) , (2.9)

ε2(∂tu
N , wj) + γε2(∇uN ,∇wj) + γ(ψ′δ(u

N), wj) = 0 for j = 1, . . . , N and t ≥ 0 ,

(2.10)

cNj (0) = (u0, wj) for j = 0, . . . , N , (2.11)

cN0 (t) = cN0 (0) for t ≥ 0 . (2.12)

To obtain equations (2.10) and (2.12) we first substitute (2.9) into (2.7) and use the

weak formulation. Then noting that for j = 1, ..., N the mean value term vanishes



2.2. Existence and uniqueness 10

because the wj, j = 1, ..., N are orthogonal to constants gives (2.10) and for j = 0

the only term that does not vanish is (δtu
N , w0) which leads to (cN0 )′(t) = 0 and

hence (2.12) follows. Standard ODE theory gives local existence up to some time T̃

to the initial value problem (2.9)-(2.12). Multiplying (2.10) by (cNj )′(t), summation

and integration gives

ε

∫
ΩT̃

(∂tu
N)2 + Eδ(u

N(T̃ )) = Eδ(u
N(0)) . (2.13)

We note that Eδ(u
N(0)) is bounded independent of N since we can use that

‖uN(0)‖2
L2 ≤

N∑
j=0

|cNj (0)|2‖wj‖2
L2 =

N∑
j=0

|(u0, wj)|2 ≤ ‖u0‖2
L2 .

This energy estimate can be used to show boundedness of the local ODE solution

and hence global existence to (2.9)-(2.12) on [0, T ].

Step 2: Regularity of a solution uδ

Standard compactness and regularity arguments, see e.g. Evans [54, Section 7.1],

give in the limit N →∞ the existence of a solution uδ ∈ L2(0, T ;H2(Ω))∩H1(ΩT )∩
L∞(0, T ;H1(Ω)) of (2.7), (2.8) satisfying

∫
Ω

uδ(t) =
∫
Ω

u0 for all t ∈ [0, T ]. In particular

we obtain

ε
∫

ΩT

(∂tuδ)
2 + Eδ(uδ(T )) ≤ Eδ(u0) (2.14)

for all δ > 0. Since ψ′δ(uδ) = −uδ + 2
δ

max(uδ − 1, 0) + 2
δ

min(uδ + 1, 0) and

uδ ∈ L2(0, T ;H2(Ω)) it follows in particular that ψ′δ(uδ) ∈ L2(0, T ;H1(Ω)). Hence

we can multiply (2.7) by −∆uδ and integrate by parts to obtain

ε2 d
dt

1
2

∫
Ω

|∇uδ|2 + ε2γ
∫
Ω

|∆uδ|2 + γ
∫
Ω

1
δ
(ψ′′+(uδ) + ψ′′−(uδ))|∇uδ|2 = −

∫
Ω

γψ′′0(uδ)|∇uδ|2

=
∫
Ω

γ|∇uδ|2 .

Note that ψ′′+(z) ≥ 0 and ψ′′−(z) ≥ 0 for all z ∈ R. Hence, using a Grönwall argument

for the inequality

ε2 d
dt

1
2

∫
Ω

|∇uδ|2 ≤
∫
Ω

γ|∇uδ|2

gives that ‖∇uδ(t)‖L2 ≤ C for a.e. t ∈ (0, T ). Using now the Poincaré inequality

gives that (uδ)δ∈(0,2) is uniformly bounded in L∞(0, T ;H1(Ω)). Furthermore, ∆uδ is

uniformly bounded in L2(ΩT ). Now elliptic regularity theory [68, Chapter 2] gives

that (uδ)δ>0 is uniformly bounded in L2(0, T ;H2(Ω)) ∩ L∞(0, T ;H1(Ω)) ∩H1(ΩT ).

When passing to the limit in (2.7) we would like to obtain the Lagrange multipliers
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µ± as the limit of γ
δ
ψ±(uδ) and λ as the limit of

∫
Ω

− γψ′δ(uδ) , as δ tends to zero. To

this end we need to estimate

λδ :=
∫
Ω

− γψ′δ(uδ)dx

in L2(0, T ) uniformly in δ.

Step 3: Prove that λδ ∈ L2(0, T ) uniformly for δ ∈ (0, 2)

Multiplying (2.7) by uδ ± 1 gives after integration by parts using
∫
Ω

∂tuδ = 0 and∫
Ω

− uδ = m:

∫
Ω

ε2∂tuδuδ + γε2
∫
Ω

|∇uδ|2 +
∫
Ω

γψ′δ(uδ)(uδ ± 1) = λδ(m± 1)|Ω| . (2.15)

Since ψ′′δ ≥ −1 we obtain that ψδ(z) + 1
2
z2 is convex in z which gives that

ψ′δ(uδ)(uδ ∓ 1) + uδ(uδ ∓ 1) ≥ ψδ(uδ)− ψδ(±1) + 1
2
u2
δ − 1

2
(±1)2

and hence

ψ′δ(uδ)(uδ ∓ 1) + 1
2
(uδ ∓ 1)2 ≥ ψδ(uδ)− ψδ(±1) . (2.16)

We consider now the two identities in (2.15) separately. In the first case we can

estimate λδ as follows

λδ = 1
(m+1)|Ω|

(∫
Ω

ε2∂tuδuδ + γε2
∫
Ω

|∇uδ|2 +
∫
Ω

γψ′δ(uδ)(uδ + 1)

)
≥ C

(m+1)|Ω|

(
−‖∂tuδ‖L2‖uδ‖L2 − 1

2

∫
Ω

(uδ − 1)2 +
∫
Ω

ψδ(uδ)

)
≥ C

(m+1)|Ω|

(
−‖∂tuδ‖L2‖uδ‖L2 − 1− ‖uδ‖2

L2

)
where we used (2.16), ψδ(z) ≥ 0 for all z ∈ R and δ ∈ (0, 2) and ψδ(±1) = 1. The

constant C depends on ε and γ but does not depend on δ. We treat the second case

similarly and derive

λδ = 1
(m−1)|Ω|

(∫
Ω

ε2∂tuδuδ + γε2
∫
Ω

|∇uδ|2 +
∫
Ω

γψ′δ(uδ)(uδ − 1)

)
≤ C

|m−1||Ω|

(
‖∂tuδ‖L2‖uδ‖L2 + ‖∇uδ‖L2 −

∫
Ω

ψ′δ(uδ)(uδ − 1)

)
≤ C

|m−1||Ω|

(
‖∂tuδ‖L2‖uδ‖L2 + ‖∇uδ‖L2 + 1

2

∫
Ω

(uδ + 1)2 −
∫
Ω

ψδ(uδ)

)
≤ C

|m−1||Ω|

(
‖∂tuδ‖L2‖uδ‖L2 + 1 + ‖uδ‖2

L2

)
where we used that m− 1 < 0 and ‖∇uδ‖L2 ≤ C. Together with |m− 1| > 1− |m|
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and m+ 1 > 1− |m| we can estimate λδ as follows

|λδ| ≤ C
(1−|m|)|Ω|(‖∂tuδ‖L2‖uδ‖L2 + ‖uδ‖2

L2 + 1)

Now we square the above inequality and integrate it with respect to time. Using

Young’s inequality and denoting by C a generic constant that can depend on ε, γ

and |Ω| we obtain

T∫
0

|λδ|2dt ≤ C

 T∫
0

‖∂tuδ‖2
L2‖uδ‖2

L2dt+

T∫
0

‖uδ‖4
L2dt+

T∫
0

1dt


≤ C

‖uδ‖2
L∞(0,T ;H1(Ω))

T∫
0

‖∂tuδ‖2
L2dt+ T‖uδ‖4

L∞(0,T ;H1(Ω)) + T


≤ C

where we used that uδ is uniformly bounded in L∞(0, T ;H1(Ω)) ∩H1(0, T ;L2(Ω))

for δ ∈ (0, 2). Hence we obtain

λδ ∈ L2(0, T ) uniformly for δ ∈ (0, 2) .

We refer to [7] where similar arguments have been used for a Cahn-Hilliard system

with logarithmic free energy.

Step 4: Existence of u ∈ L2(0, T ;H2(Ω)) ∩ H1(ΩT ) ∩ L∞(0, T ;H1(Ω)), µ ∈ L2(Ω)

and λ ∈ L2(0, T ) solving (2.1)-(2.6)

Using standard compactness results [100, Chapter 4] we obtain the existence of a sub-

sequence, still denoted by (uδ), and a u ∈ L2(0, T ;H2(Ω))∩H1(ΩT )∩L∞(0, T ;H1(Ω)),

such that

uδ ⇀ u in L2(0, T ;H2(Ω)) ,

uδ ⇀ u in H1(ΩT ) ,

uδ → u in L2(0, T ;H1(Ω)) ,

uδ
∗
⇀ u in L∞(0, T ;H1(Ω)) ,

uδ → u a.e. in ΩT .

The third convergence result follows from the previous two [85]. The energy estimate

(2.14) gives furthermore

∫
Ω

(ψ+(uδ) + ψ−(uδ)) ≤ c(ε, γ, u0)δ
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for almost all t ∈ [0, T ]. Since uδ → u a.e. in ΩT we obtain from Fatou’s Lemma

∫
Ω

(max(u, 1)2 + min(u,−1)2) =
∫
Ω

lim
δ→0

(max(uδ,1)2 + min(uδ, − 1)2)

≤ lim inf
δ→0

∫
Ω

(ψ+(uδ) + ψ−(uδ))

≤ lim
δ→0

c(ε, γ, u0)δ = 0 .

We hence obtain |u| ≤ 1 a.e. in ΩT .

Defining

µδ,± := ±γ
δ
ψ′±(uδ)

we can rewrite (2.7) as

λδ = ε2∂tuδ − γε2∆uδ + γψ′0(uδ) + µδ,+ − µδ,− . (2.17)

Since µδ,+ · µδ,− = 0 we obtain from (2.17) and the a priori estimates on uδ and λδ

that

‖µδ,+‖L2(ΩT ) + ‖µδ,−‖L2(ΩT ) ≤ c(ε, γ, u0) .

Hence there exists µ+, µ− ∈ L2(ΩT ) such that for a subsequence

µδ,± ⇀ µ± in L2(ΩT ) as δ ↘ 0 .

Since µ± are the weak limits of nonnegative functions we obtain µ± ≥ 0 a.e. Passing

to the limit in a weak formulation of (2.17) now gives (2.1) and (2.2). (2.3) follows

since uδ → u in L2(ΩT ). In addition, using the monotonicity of ψ′+ and ψ′+(1) = 0

we obtain

µδ,+(uδ − 1) = γ
δ
ψ′+(uδ)(uδ − 1)

= γ
δ
(ψ′+(uδ)− ψ′+(1))(uδ − 1) ≥ 0 .

Since uδ → u and µδ,+ ⇀ µ in L2(ΩT ) we obtain

∫
ΩT

µ+(u− 1) = limδ→0

∫
ΩT

µδ,+(uδ − 1) ≥ 0 .

Since (u− 1) ≤ 0 and µ+ ≥ 0 we hence deduce

µ+(u− 1) = 0 a.e. in ΩT .

Step 5: Uniqueness of u, µ+, µ−, and λ

Assume that there are two solutions (u1, µ1
+, µ

1
−, λ

1) and (u2, µ2
+, µ

2
−, λ

2). Then we

define u = u1 − u2, µ± = µ1
± − µ2

±, λ = λ1 − λ2. Multiplying the difference of the
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equation (2.1) for u1 and u2 with u gives after integration and using
∫
Ω

u = 0

ε2 d
dt

∫
Ω

(u)2 + γε2
∫
Ω

|∇u|2 +
∫
Ω

(µ1
+ − µ2

+)(u1 − u2)

−
∫
Ω

(µ1
− − µ2

−)(u1 − u2) = γ
∫
Ω

(u)2 .

Using that (µ1
+−µ2

+)(u1− u2) = µ1
+(u1− 1)−µ1

+(u2− 1) +µ2
+(u2− 1)−µ2

+(u1− 1)

and −(µ1
− − µ2

−)(u1 − u2) = −µ1
−(u1 + 1) + µ1

−(u2 + 1) − µ2
−(u2 + 1) + µ2

−(u1 + 1)

it follows from the complementary conditions (2.4)-(2.6) that these two terms are

non-negative. We hence deduce

ε2 d
dt

∫
Ω

|u|2 + γε2
∫
Ω

|∇u|2 ≤ γ
∫
Ω

|u|2 .

A Grönwall argument now gives uniqueness of u. Hence µ+−µ−−λ is uniquely given

through equation (2.1). Using that u ∈ L2(0, T ;H2(Ω)) and hence u is continuous

for d ≤ 3, we find for all t ∈ [0, T ] a ρ > 0 such that

Aρ := |{x ∈ Ω| |u(x, t)| < 1− ρ}| > 0 .

Hence we obtain that for almost all t ∈ [0, T ] the Lagrange multiplier λ(t) is uniquely

given through

λ(t) = 1
Aρ

∫
Ω

(ε2∂tu− γε2∆u+ γψ′0(u))dx .

Finally, we obtain that µ+ and µ− are uniquely given as

µ+ = (λ− ε2∂tu+ γε2∆u− γψ′0(u))+ ,

µ− = (−λ+ ε2∂tu− γε2∆u+ γψ′0(u))+

where (z)+ := max(z, 0). Here we use the fact that

λ = ε2∂tu− γε2∆u+ γψ′0(u) a.e. on {|u| < 1} .

�

Remark 2.2.2. i) The variational inequality (1.5) has a unique solution. This

follows from a testing procedure similar to the one in Theorem 2.2.1.

ii) If (Am) holds we obtain that there exists a solution of (Pm) if and only if (2.1)-

(2.6) is solvable. In particular, if there is a solution u of (Pm) Lagrange multipliers

µ+, µ−, λ exist such that (2.1)-(2.6) hold. This follows from the unique solvability

of (Pm), Theorem 2.2.1 and Lemma 2.1.1.

Similar to Lemma 2.1.1 and Theorem 2.2.1 we can prove the following theorem for
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(1.4) without local constraints, i.e. the standard Allen-Cahn equation.

Theorem 2.2.3. Let Ω ⊂ Rd be a bounded domain which is convex or has a C1,1–

boundary and let u0 ∈ H1(Ω) such that |u0| ≤ 1 a.e. in Ω. Then there exists a unique

solution to the Allen-Cahn variational inequality (1.4) without mass conservation

and there exist unique Lagrange multipliers µ+, µ− ∈ L2(ΩT ) such that the initial

and boundary conditions (2.2), the complementary conditions (2.4)-(2.6) and

0 = ε2∂tu− γε2∆u+ γψ′0(u) + µ− − µ− a.e. in ΩT

hold.

2.3 Primal-dual active set (PDAS) method

For the numerical approximation of solutions u of (1.5) we introduce a primal-dual

active set method or equivalently a semi-smooth Newton method [72]. Both are well

known in the context of optimisation with partial differential equations as constraints

[76, 99, 113]. A good introduction to optimisation can be found in [93, 113].

We present a time discretisation of the Allen-Cahn system (2.18) and reformulate

the complementarity conditions in the form of primal-dual active sets. Finally, even

though the method is not applicable to the time-discrete problem, we introduce for

ease of understanding the idea of the resulting iterative solution for the time-discrete

problem, which will be applied to the fully discrete problem in the next section.

We denote the time-step by τ , which can be a variable time-step, t0 = 0, tn := tn−1+τ

and un ≈ u(., tn). Then the time discretisation of (Pm) is obtained using an Euler

scheme. In this thesis we focus on the implicit discretisation leading to the following

formulation:

Given un−1 find u = un ∈ H1(Ω) such that
∫
Ω

− udx = m, |u| ≤ 1 a.e. in Ω and

ε
τ
(u− un−1, χ− u) + γε(∇u,∇(χ− u)) + γ

ε
(ψ′0(u), χ− u) ≥ 0 (2.18)

for all χ ∈ H1(Ω) with |χ| ≤ 1 and
∫
Ω

− χdx = m.

For simplicity we denote by u the time-discrete solution at time tn. This discretisa-

tion can also be seen as the first order optimality condition of the following quadratic

optimisation problem

min

{
γε
2
‖∇u‖2

L2 + γ
ε

∫
Ω

ψ0(u) + ε
2τ
‖u− un−1‖2

L2

}
(2.19)

s.t. |u| ≤ 1 and
∫
Ω

− udx = m.
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As in Lemma 2.1.1 one can reformulate (2.18) by using 1/ε scaled Lagrange multi-

pliers µ± on Ω for the inequality constraints |u| ≤ 1, µ := µ+ − µ− and λ ∈ R for∫
Ω

− u = m and obtain:

µ = λ− ε2

τ
(u− un−1) + ε2γ∆u− γψ′0(u) a.e. in Ω , (2.20)

∂u

∂ν
= 0 a.e. on ∂Ω , (2.21)∫

Ω

− udx = m, (2.22)

together with the complementarity conditions

|u| ≤ 1 a.e. in Ω , (2.23)

µ+(u− 1) = 0, µ−(u+ 1) = 0 a.e. in Ω , (2.24)

µ+ ≥ 0, µ− ≥ 0 a.e. in Ω . (2.25)

Now the idea is to reformulate the complementarity conditions using active sets

based on the primal variable u and the dual variables µ±. Then, for any c > 0,

(2.23)-(2.25) is equivalent to:

u = 1 a.e. in A+; u = −1 a.e. in A−; (2.26)

µ = 0 a.e. in I := Ω \ (A+ ∪ A−) (2.27)

with
A+ = {x ∈ Ω | c (u(x)− 1) + µ(x) > 0}
A− = {x ∈ Ω | c (u(x) + 1) + µ(x) < 0}

. (2.28)

The sets A− and A+ are called active sets, meaning that the inequality constraint

|u(x)| < 1 is active, and the set I is called inactive. For the Allen-Cahn equation

the inactive set I represents the interface.

A further equivalent formulation of (2.23)-(2.25) is given by the following equation

H(u, µ) := µ−max(0, µ+ c (u− 1)) + min(0, µ+ c (u+ 1)) = 0. (2.29)

The equivalence of the complementarity conditions (2.23)-(2.25), the active and

inactive set formulation (2.26)-(2.28) and the equation (2.29) is obtained by noting

the following:

From (2.29) we obtain that if u + µ
c
∈ [−1, 1] then µ = 0 and hence u ∈ [−1, 1]. If

u+ µ
c
> 1 we obtain µ = c(µ

c
+u− 1) = µ+ c(u− 1) which implies u = 1 and µ > 0.

If u+ µ
c
< −1 we obtain µ = c(µ

c
+ u+ 1) = µ+ c(u+ 1) which implies u = −1 and

µ < 0.

On the other hand we obtain (2.29) by noting that µ = max(µ, 0) + min(µ, 0) and
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using the complementarity conditions (2.23)-(2.25).

If the sets A± were known, we would only have to solve a system of equations,

namely (2.20)-(2.22) together with (2.26), (2.27). In particular, given (2.26), (2.27)

the system (2.20)-(2.22) on Ω reduces to an equation for λ ∈ R and for u on the

interface I:

0 = λ− ε2

τ
(u− un−1) + ε2γ∆u− γψ′0(u) a.e. in I , (2.30)

∂u

∂ν
= 0 a.e. on ∂I ∩ ∂Ω , u = ±1 a.e. on ∂I ∩ ∂A± ,

∫
Ω

− u = m. (2.31)

Now given u and λ one can determine µ on A± using (2.20).

This leads to the idea of the Primal-Dual Active Set (PDAS) algorithm:

Given initial active sets A±0 iterate the following steps for k ≥ 0

1. Set uk = ±1 on A±k and µk = 0 on Ik,

2. Solve (2.30)-(2.31) for λk ∈ R and uk on Ik,

3. Determine µk on A±k using (2.20),

4. Determine the new active sets A±k+1,

5. Stop the iteration if A±k+1 = A±k , otherwise set k = k + 1 and goto 1.

This algorithm is formally equivalent to a Newton algorithm applied to (2.1)-(2.3)

and (2.29), see [72]. However, the method is more driven by the current active set

than by the current values of u, µ and λ in the sense that different uk and µk can

lead to the same active sets A± and hence in the next iteration uk+1, µk+1 and λk+1

are the same.

In general, active set methods converge faster when good initial active sets are

provided. For the Allen-Cahn equation this is the case due to the evolution in

time. This is why we chose an active set method over other numerical methods in

optimisation such as interior point methods or sequential quadratic programming

(SQP) methods [93].

As mentioned in the beginning of this section we cannot apply the primal-dual active

set method to the time-discrete Allen-Cahn variational inequality (2.18). The reason

is that although one can show the existence of the Langrange multipliers and the

regularity µ± ∈ L2(Ω) this regularity does in general not hold in each iteration of the

PDAS- algorithm. Then the multipliers may still exist but only as measures. This

effect is also known for obstacle problems [76]. Therefore, the pointwise definition

of the active sets A± according to (2.28) is not possible. However, we show in the

next section that the application of the PDAS-method to the fully discrete problem

is possible and the algorithm converges locally.
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2.4 Finite element discretisation

For space discretisation we employ a finite element approximation which we present

in this section. Furthermore we present the PDAS-algorithm for the fully discrete

system and discuss the local convergence by employing the formulation as a semi-

smooth Newton method. At the end of this section we discuss some properties of

the proposed method.

2.4.1 Notation

For simplicity we assume that Ω is a polyhedral domain. We introduce now a finite

element space. For more details on finite elements we refer the reader to [26].Let

Th be a regular triangulation of Ω into disjoint open simplices, i.e. Ω = ∪T∈ThT .

Furthermore, we define h := maxT∈Th diam T the maximal element size of Th and

we set J to be the set of vertices of Th and {pj}j∈J to be the coordinates of these

vertices. Associated with Th is the piecewise linear finite element space

Sh :=
{
ϕ ∈ H1(Ω)

∣∣∣ϕ∣∣
T

∈ P1(T ) ∀ T ∈ Th
}
⊂ C0(Ω),

where we denote by P1(T ) the set of all affine linear functions on T . We are using

P1–finite elements because we want to make use of mass lumping, and in fact we need

mass lumping in order to show convergence of the primal-dual active set method.

We will refer to nodes and vertices as being the same since we restrict ourselves

to P1–elements. We denote the standard nodal basis functions of Sh by χj for all

j ∈ J . Then uj for j ∈ J denote the coefficients of the basis representation of uh in

Sh which is given by uh =
∑

j∈J ujχj and the vector of coefficients is denoted by u.

We use this notation for all vectors in RJ , where J is the number of vertices in J , in

order to avoid confusions later on when we introduce the vector-valued Allen-Cahn

equation.

In order to derive a discretisation of our models we set

Kh := {η ∈ Sh | |η(x)| ≤ 1 for all x ∈ Ω}, Kmh := {η ∈ Kh|
∫
Ω

− ηdx = m}.

We introduce also the lumped mass scalar product (f, g)h =
∫

Ω
Ih(fg) instead of

(f, g), where Ih : C0(Ω) → Sh is the standard interpolation operator [26] such that

(Ih f)(pj) = f(pj) for all nodes j ∈ J .

Defining mj := (1, χj) we have
∫
Ω

− uh =
∑

j∈J mjuj/
∑

j∈J mj. Moreover we define

the stiffness matrix as A := (aij) with aij = (∇χj,∇χi), the mass matrix M :=

((χj, χi)h) = diag(mj) and the mass vector m := (mj).
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2.4.2 Finite element approximation and the PDAS-algorithm

We now introduce the following finite element approximations of (2.18) using ψ′0(u) =

−u. In the following we consider a fixed time-step τ = tn − tn−1 and omit in some

places the superscript n:

Given un−1
h ∈ Kmh find uh = unh ∈ Kmh such that

( ε
τ
(uh − un−1

h )− γ
ε
uh, χ− uh)h + γε(∇uh,∇(χ− uh)) ≥ 0 ∀χ ∈ Kmh . (2.32)

Due to the use of piecewise linear finite elements and nodal basis functions the

reformulation (2.32) with Lagrange multipliers µh ∈ Sh and λ ∈ R can be stated as

follows:

Find uh ∈ Sh, µh ∈ Sh and λ ∈ R such that

( ε
2

τ
− γ)(uh, ϕ)h + γε2(∇uh,∇ϕ) + (µh, ϕ)h − λ(1, ϕ) = ε2

τ
(un−1

h , ϕ)h ∀ϕ ∈ Sh ,

(2.33)∑
j∈J

mjuj = m
∑
j∈J

mj , (2.34)

(µj)− ≥ 0, (µj)+ ≥ 0, |uj| ≤ 1, (2.35)

(uj + 1)(µj)− = (uj − 1)(µj)+ = 0 ∀ j ∈ J . (2.36)

As in (2.29) the complementarity conditions can be rewritten as

H(uj, µj) = 0 ∀j ∈ J . (2.37)

Applying now the PDAS-method to the discrete problem (2.33)-(2.36) we obtain

the following algorithm:

Primal-Dual Active Set Algorithm (PDAS-I):

0. Set k = 0 and initialise A±0 using un−1
h and µn−1

h from the previous time-step

iteration. More precisely, set

A+
0 := {j ∈ J : un−1

j +
µn−1
j

c
> 1}, A−0 := {j ∈ J : un−1

j +
µn−1
j

c
< −1}.

1. Define Ik = J \ (A+
k ∪ A

−
k ).

Set ukj = ±1 for j ∈ A±k and µkj = 0 for j ∈ Ik.

2. Solve the discrete PDE (2.33) with the non-local constraint (2.34) to obtain ukj
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for j ∈ Ik and λk ∈ R:

( ε
τ
− γ

ε
)mju

k
j + γε

∑
i∈Ik

aiju
k
i − 1

ε
mjλ

k (2.38)

= ε
τ
mju

n−1
j + γε(

∑
i∈A−k

aij −
∑
i∈A+

k

aij) ∀j ∈ Ik

∑
i∈Ik

miu
k
i = m

∑
i∈J

mi −
∑
i∈A+

k

mi +
∑
i∈A−k

mi. (2.39)

3. Determine µkj for j ∈ A±k using (2.33):

µkj = −( ε
2

τ
− γ)ukj − γε2 1

mj

∑
i∈J

aiju
k
i + λk + ε2

τ
un−1
j .

4. Set A+
k+1 := {j ∈ J : ukj +

µkj
c
> 1}, A−k+1 := {j ∈ J : ukj +

µkj
c
< −1}.

5. If A±k+1 = A±k stop, otherwise set k = k + 1 and goto 1.

Remark 2.4.1. We solve (2.38), (2.39) by multiplying (2.39) with −1
ε

and using

the conjugate gradient method. In Chapter 4 we discuss the choice of linear algebra

solvers in more detail.

2.5 Convergence as a semi-smooth Newton method

In this section we consider the system (2.33), (2.34) and (2.37) as a problem of

finding a root of F (u, µ, λ) = 0. Since the function H in (2.37) is not Fréchet

differentiable we cannot use the classical Newton method. We need to introduce the

concept of slant differentiability [40] in which case a semi-smooth Newton method

can be used.

Definition 2.5.1. Let X,Z be Banach spaces and let F : D ⊂ X −→ Z be

a mapping where D is an open subset of X. The mapping F is called slantly

differentiable in the open subset U ⊂ D if there exists a family of mappings

K : U −→ L(X,Z) such that

lim
h→0

1

‖h‖
‖F (x+ h)− F (x)−K(x+ h)h‖ = 0

for every x ∈ U .

We refer to K as slanting function for F in U .

In [72] it is shown that the mapping y 7−→ max(0, y) from R to R is slantly differ-

entiable and one possible slanting function is G(y) = 1 for y > 0 and G(y) = 0 for
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y ≤ 0. Setting A+
h := {j ∈ J : uj +

µj
c
> 1}, A−h := {j ∈ J : uj +

µj
c
< −1},

Ih := J \(A+
h ∪A

−
h ) and adapting the above for the min-max-function H(uj, µj) one

derives the slanting function G(uj, µj) = (−c, 0) for j ∈ A±h and G(uj, µj) = (0, 1)

for j ∈ Ih. We now consider the system (2.33), (2.34) and (2.37) as a problem of

finding a root of F (u, µ, λ) = 0, by using a semi-smooth Newton method (SSN)

(uk+1, µk+1, λk+1) = (uk, µk, λk)−G(uk, µk, λk)−1F (uk, µk, λk). We set

Gu(u, µ) := (guij) with guij :=

{
−c for i = j ∈ A±h
0 elsewhere

(2.40)

Gµ(u, µ) := (gµij) with gµij :=

{
1 for i = j ∈ Ih
0 elsewhere

(2.41)

and derive for F the slanting function

G(u, µ, λ) =

 ( ε
2

τ
− γ)M + γε2A M −m
Gu(u, µ) Gµ(u, µ) 0

−mt 0T 0

 . (2.42)

Moreover, it is easy to show the equivalence of the Newton algorithm to the PDAS-I

method using as a starting set A±0 the set given by an initial guess (u−1, µ−1).

Theorem 2.5.2. The PDAS-I algorithm converges locally to the coefficient vector

u∗ of the solution uh of the discrete Allen-Cahn variational inequality with mass

constraints (2.32), if at least one node pj of uh exists such that |uh(pj)| < 1 and

τ(1− ε2

cph
) < ε2

γ
. (2.43)

Proof: Let µ∗ and λ∗ be the Lagrange multipliers corresponding to u∗. Given at

least one inactive node pj of uh there exists an open neighbourhood U of (u∗, µ∗, λ∗)

where j ∈ Ih for all (u, µ, λ) ∈ U . Since for a fixed discretisation there exists only

a finite number of possible active sets, only finitely many different Gu(u, µ) and

Gµ(u, µ) can occur, as is the case for G. In the following theorem we show that

G is invertible for all possible active sets with Ih 6= ∅. Hence the inverses of G

are uniformly bounded on U . The convergence result for the semismooth Newton

method in [40, 72] then provides the local convergence. �

In order to show the invertibility ofG(u, µ, λ) we need a discrete Poincaré inequality:

There exists a Poincaré constant cph > 0 such that

(v, v)h ≤ cph(∇v,∇v) ∀v ∈ K (2.44)

with K := {v ∈ Sh |
∫
Ω

v = 0, v(pj) = 0 if j ∈ A±h }. We then obtain the following
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theorem.

Theorem 2.5.3. Assume Ih 6= ∅ and let τ be such that (2.43) Then the matrix

G(u, µ, λ) is invertible which is equivalent to the unique solvability of (2.38), (2.39).

Proof: We show that the kernel ofG(u, µ, λ) contains only 0 provided that Ih 6= ∅.
The equation

G(u, µ, λ)(v, κ, α)t = 0 (2.45)

implies v ≡ 0 on the active sets A±h , κ = 0 on Ih and m · v = 0. If one can show

that v = 0 has to hold, we can conclude by using a row j ∈ Ih that α = 0. Then

the first block of rows yield κ = 0, and hence the assertion holds.

To show v = 0 we prove that v =
∑
j∈J

vjχj = 0 is the unique solution of the quadratic

optimisation problem in v on the inactive set

min
v∈K

[
1
2
( ε

2

τ
− γ)(v, v)h + γε2

2
(∇v,∇v)

]
(2.46)

where the first order necessary conditions are given by (2.45).

We show that (2.46) is a strictly convex minimisation problem. If τ ≤ ε2

γ
this follows

immediately. This is the time-step restriction that is usually taken for an implicit

time discretisation. However, we now show how this restriction can be relaxed. To

this end we need to control (v, v)h on K. Using the Poincaré inequality (2.44) we

obtain

γε2

2
(∇v,∇v) + 1

2
( ε

2

τ
− γ)(v, v)h ≥ (γε

2

2
+ 1

2
cph(

ε2

τ
− γ))(∇v,∇v) .

We hence obtain that (2.46) is uniquely solvable if (2.43) holds. �

In the Allen-Cahn model with double obstacle potential, interfaces have a thickness

of πε. Hence we expect that the typical Poincaré constant cph in (2.44), which

depends due to K only on Ih, scales like ε2. Then the time-step restriction is

much less severe than τ < ε2

γ
which is usually taken, see [43], in fully implicit time

discretisations of the Allen-Cahn equation. This shall be illustrated in the following

remark.

Remark 2.5.4. i) The Poincaré constant cph and therefore the maximal possible

time-step τ , see (2.43), can be estimated by a Poincaré constant cp(Ih) for a con-

tinuous problem. We introduce ΩIh := int{x ∈ Ω | x ∈ suppχj, j ∈ Ih},where intA

is the interior of a set A. Let cp(Ih) be a Poincaré constant such that

(v, v) ≤ cp(Ih) (∇v,∇v) ∀v ∈ H1
0 (ΩIh) with

∫
Ω

− vdx = 0 .
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Since (v, v)h ≤ (d + 2)(v, v) for all v ∈ Sh where d is the space dimension, see [79]

Lemma 11, we obtain (v, v)h ≤ cp(Ih) (d+ 2)(∇v,∇v) for v ∈ K and hence

cph ≤ cp(Ih) (d+ 2) .

ii) In one dimension it is shown in [56] Lemma 6.2 that for an interface I of width

πε a Poincaré constant cp(I) = 1
4
ε2 is obtained.

Then, given a good numerical approximation Ih of I no restriction at all has to be

enforced for the time-step τ in order to show unique solvability.

Remark 2.5.5. We can also solve a semi-implicit discretisation, i.e. in case that

we replace ψ0(uh) by ψ0(un−1
h )+ψ′0(un−1

h )(uh−un−1
h ), respectively ψ′0(uh) by ψ′0(un−1

h )

and in (2.33) γ(uh, ϕ)h by γ(un−1
h , ϕ)h, with a primal-dual active set algorithm. In

this case the resulting linear systems are always solvable, since in (2.46) the negative

term disappears. However it will turn out that the fully implicit time discretisation

is much more accurate, see Section 2.6.1.

Further features of the PDAS-approach

Although local convergence is shown, we can face slow convergence or oscillatory

behaviour of the method if the starting sets or the choice of c is not appropriate.

i) Slow convergence

One has to keep in mind that the convergence radius is unknown. In the worst case

the radius is so small that the active set of the initial guess is identical to the active

set of the solution. Then, however, the solution is obtained in one step, and hence

Theorem 2.5.2 proves local exactness, which follows directly with Theorem 2.5.3. In

practice we always observed convergence for a larger convergence radius. However,

there exist examples for elliptic non-local obstacle problems where the active set

only moves one mesh point per primal-dual active set iteration leading to a very

slow convergence [21]. To overcome this one can use regularisation techniques as for

example discussed in [76], or a nested approach can be used, i.e. the problem is first

solved on a coarse mesh and then this solution is used as initial data for the next

finer mesh. This process is repeated until the finest mesh is reached.

For Allen-Cahn variational inequalities we study discrete time evolutions and hence

we always have good starting values from the previous time-step leading to fast

convergence.

ii) Oscillations in the bilateral case.

For bilateral constraints there are situations in which iterates can oscillate between

the two constraints. In [21] an example for oscillatory behaviour is discussed for an

elliptic obstacle problem. This can be overcome by choosing c large enough. With

a scaling of the Lagrange multiplier µ by 1
ε

the parameter c should be chosen to be
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larger than 1. For values c < 1 oscillations can occur for Allen-Cahn problems and

also for Cahn-Hilliard variational inequalities, see [19]. This indicates that the local

convergence radius of the PDAS-method depends on the choice of c.

iii) Mesh-independence.

In general, as noticed for example in [16], one will face mesh dependent convergence

behaviour. To overcome this problem regularisation or penalisation techniques can

be applied to analytically obtain mesh independent convergence (e.g. [76, 87, 92]).

Alternatively for time independent problems, in practice one can use a nested iter-

ation approach. This approach, which can be interpreted as regularisation due to

discretisation, provides an efficient method that does not suffer (to a great extent)

from mesh dependence, see [21]. For time-dependent problems, like the Allen-Cahn

problems, even nested iteration is in practice not necessary, since good initial data

are provided by the solution of the previous time-step. Numerical evidence of this

can be seen in Section 2.6.1.

iv) Globalisation approaches.

In [65] a new globalisation approach of the primal-dual active set strategy for optimal

control problems is discussed. The primal-dual active set method is shown to be

equivalent to a non-smooth Newton method which is based on the formulation of the

optimal control problem as an unconstrained minimisation problem. The gradient

of the objective functional is the nonlinear Schur complement of the optimality

system and it can be used as descent direction. Using a damping strategy, such

as the Armijo rule, Gräser showed that the method converges for arbitrary initial

data. The same strategy is used by Gräser and Kornhuber in [67] for more general

set-valued saddle point problems. One of the applications discussed there is the

Cahn-Hilliard equation.

2.6 Numerical tests and discussion

In this section we discuss some computational results.

In Subsection 2.6.1 we consider examples where the exact solution is known. First,

we consider the Allen-Cahn variational inequality without integral constraint. We

compare our PDAS-method to the widely used projected SOR method and show

its efficiency. Furthermore, we see that the PDAS-method allows larger time-steps

resulting in a speed up without loss of accuracy. We show numerically that the

primal-dual active set method is mesh independent. Second, we present some res-

ults for the non-local Allen-Cahn equation. The computation times obtained are

similar to the local Allen-Cahn variational inequalities and again large time-steps

are possible. Furthermore, we consider one example where the explicit solution
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is known and show that implicit discretisation provides higher accuracy than the

semi-implicit one. Finally, in Subsection 2.6.2 we present two simulations for the

non-local Allen-Cahn equation.

Unless it is otherwise stated, we take ε = 1
16π

and γ = 1. Furthermore, we present

numerical results in two and three space dimensions, where we take Ω = (−1, 1)2

and, respectively, Ω = (−1, 1)3.

We note that since the interfacial thickness is proportional to ε in order to resolve

the interfacial layer we need to choose h � ε (see [45, 50] for details). Away

from the interface h can be chosen larger and hence adaptivity in space can heavily

speed up computations. In fact we use the finite element toolbox ALBERTA 2.0

(see Schmidt and Siebert [108]) for adaptivity and we implemented the same mesh

refinement strategy as in Barrett, Nürnberg and Styles [9]. We use un−1
h as an

indicator and mark an element for refinement if |un−1
h | < 1 on one of the vertices

of the element. An element is marked for coarsening if un−1
h = ±1 is fulfilled for

all vertices of the element. For refinement and coarsening we specify a maximal

element size hmax and a minimal element size hmin. For the computations in this

section we take the minimal diameter of all elements hmin = 1
256

and the maximal

diameter hmax = h = 1
16

, unless otherwise stated.

For the standard Allen-Cahn variational inequality, i.e. without mass constraint,

there is no Lagrange multiplier λ and (2.39) does not need to be considered. In

each PDAS iteration one has to solve the linear system (2.38) without the variable

λ present. For both the local and the non-local Allen-Cahn variational inequality

we use the conjugate gradient method to solve the linear system (2.38)-(2.39), see

also Remark 2.4.1.

2.6.1 Comparison with analytically known solutions

In order to show the accuracy and efficiency of our method we need problems where

the exact solution is known. First, we consider the Allen-Cahn equation without

volume constraint and we compare the primal-dual active set strategy to the widely

used projected SOR method. We look at the number of primal-dual active set

iterations needed for various time-step and mesh sizes and establish that the method

is numerically mesh independent. Then we discuss the efficiency and accuracy of

the method for the non-local Allen-Cahn variational inequality.

Comparison PDAS versus projected SOR

We begin by considering the Allen-Cahn equation without volume constraint. For

this problem a projected SOR (pSOR) algorithm is often used, see [43]. We compare

the PDAS method to the pSOR for the simple problems of a shrinking circle in R2
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and a shrinking sphere in R3 with radius 0.45 and centre 0 and we compare the CPU

times as well as the relative error at T = 0.01 of the two algorithms. In the tables

CPU total gives the computation time needed for the program to reach the time

T , whereas CPU solver gives the computation time needed for the solver only. For

the projected SOR method this is the computation time needed to solve the system

of equations using a projected SOR algorithm; for the PDAS method it is the time

needed to solve for ukj the linear system of equations (2.38) without λ (there is no

mass constraint present) using the conjugate gradient method. We calculate the

relative error by taking the zero level set of uh as an approximation of the sharp

interface and compare it to the solution of the sharp interface formulation for which

the radius R(t) at time t is given by the ODE d
dt
R(t) = − 1

R(t)
, R(0) = 0.45 [25]. To

be precise we measure the error between the intersection points of the positive x1-

axis with the circle and with the zero level set of uh. There may be minor variances

of uh in the other directions, but they have been negligible in our experiments. At

T = 0.01 we have R(T ) = 0.4272 and the circle disappears at t = 0.10125. For the

sphere the exact solution is given by the ODE d
dt
R(t) = − 1

2R(t)
, R(0) = 0.45, since

the mean curvature is defined to be the sum of the principle curvatures. Hence,

the sphere shrinks twice as fast as the circle. We expect essentially the relative

errors for the projected SOR and the PDAS to be of the same size, since we are

solving the same equation on the interface. However, for the SOR method we use

|uk,lj −u
k,l−1
j | < tol as stopping criterion while for the cg-method we use the residual.

We chose and fixed the tolerances in such a way that the relative errors are almost

the same for the smallest time-step. For the larger time-step the PDAS method

resulted in slightly higher accuracy. Furthermore, the given averages of the degrees

of freedom (DOFs) and the PDAS-iterations are averages over time. We use ø to

indicate that we mean the average.

time CPU total [s] CPU solver [s] DOFs rel. error PDAS-
step pSOR PDAS pSOR PDAS circa pSOR PDAS iter. ø
6.25·10−5 23.57 20.59 7.47 2.77 15500 9.64·10−3 7.61·10−3 2.1
5.00·10−4 13.90 7.43 10.12 3.27 16500 1.63·10−2 5.23·10−3 3.2
1.00·10−3 - 6.59 - 3.44 17700 - 6.11·10−3 4.2

Table 2.1: Projected SOR method vs. PDAS-method - CPU and error for various
time-steps in 2D at T = 0.01.

In the two dimensional case the results are listed in Table 2.1 and Figure 2.1. For

both time-steps τ = 6.25 · 10−5 and τ = 5 · 10−4 our PDAS-method is faster. In case

of τ = 5 · 10−4 it is even about 46% faster than the pSOR method. Furthermore, it

is more stable since for the pSOR method the time-step has to be less than 6 · 10−4

to converge. In Theorem 2.5.3 and the following remark we have shown that the

time-step can be much larger for the PDAS-method, which is also observed in the
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Figure 2.1: Number of Newton iterations for a shrinking circle

above calculations. In particular, in the numerical experiments the PDAS-method

worked for larger time-steps as long as the mean curvature does not become too

high. If the solution is only of interest at time T , large time-steps are favoured and

with the PDAS-method the computation time can be reduced significantly.

In addition, larger time-steps can be taken for the PDAS-method without loosing

accuracy. This is in contrast to the projected SOR method which gives a higher

error for τ = 5 · 10−4.

We note that the CPU time for the SOR solver in the projected SOR method

increases for larger time-steps although there are less equations to be solved. This

is due to the initial guess, which is the solution of the previous time-step, being

further away from the solution of the linear system in the current time-step. The

conjugate gradient solver does not depend that strongly on a good initial guess due

to a higher convergence rate and converges faster than the SOR method for larger

time-steps.

Moreover, the CPU time for the solver in the PDAS-method is significantly lower

than for the pSOR method, since the system of equations are considerably smaller.

However, the total CPU time does not decrease quite that much because extra time

is needed to determine the Lagrange multiplier µkj and to set the active and inactive

sets.

Note that in contrast to the PDAS-method for the pSOR method the system we solve

is nonlinear and hence the choice of solver is more limited. For the computations in

this section we are using the conjugated gradient algorithm in the PDAS-method.

In Chapter 4 we discuss different linear algebra solvers for the PDAS method.

The average number of Newton iterations increases for larger time-steps, since the

interface, and hence the active set moves more in a single time-step. The dependence

of the number of Newton iterations on the speed of the interface movement can also

be observed in time (see Figure 2.1). When the radius becomes smaller the number

of Newton iterations increases. Note that the circle disappears at t = 0.10125.
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time CPU total [s] CPU solver [s] DOFs rel. error PDAS-
step pSOR PDAS pSOR PDAS ø mill. pSOR PDAS iter. ø
6.25·10−5 12447 11350 3609 1697 1.9 8.48·10−3 8.95·10−3 4.2
5.00·10−4 6072 2500 4713 1029 2.1 4.22·10−3 2.63·10−3 4.7
1.00·10−3 - 2216 - 1290 2.3 - 3.18·10−3 6.1

Table 2.2: Projected SOR method vs. PDAS-method - CPU and error for various
time-steps in 3D at T = 0.01.

For the three dimensional test problem the same behaviour is observed as in the

two dimensional case, see Table 2.2. We note in particular that for τ = 5 · 10−4

our method is 2.4 times faster than the pSOR method. This is mostly due to the

decreased computation time needed to solve the linear systems. Since the mean

curvature is defined as the sum of all principle curvatures the curvature of the

sphere is twice as high as the curvature of a circle with the same radius. This has

the effect that the interface changes more rapidly and hence, the number of Newton

iterations is significantly higher for the three dimensional case. Moreover, we see

that in higher dimensions it is essential to be able to use large time-steps for the

study of the interface at a specific time T , which is possible with the PDAS-method.

In comparison to the pSOR method we obtain uh with a speed up of 64%.

The computations in Table 2.1 and 2.2 use a fixed mesh size as defined in the

beginning of this section. By fixed mesh size we mean that hmin and hmax are fixed

and an adaptive mesh is used. We also investigated other mesh sizes and compared

the computation times for PDAS and pSOR. In all cases the PDAS-method was

quicker than pSOR and the results presented here are representative.

Finally, we would like to mention that most existing literature concentrates up to

now on the explicit discretisation where with the use of mass lumping a non-linear

system of equations has to be solved [25, 57, 94]. The explicit discretisation has the

usual stability restriction for parabolic problems, τ ≤ Ch2. Since we need h � ε

this time-step restriction is very strong. In contrast, for the implicit discretisation

in time in combination with the suggested PDAS-method, which we study in this

paper, we only have the restriction (2.43). In our computations we were able to

increase the time-step up to τ = 1 · 10−3.

Mesh independence

Since we are applying the PDAS algorithm to the fully discrete problem the number

of PDAS iterations might depend on the element size h. Analytical results on this

are still lacking. However, we can investigate this numerically.

First, we fix ε = 1
16π

and τ = 5 · 10−4. We use a uniform mesh in a two dimensional

domain where the elements have a maximal size of h. We consider again the test

problem of the shrinking circle. The third column in Table 2.3 shows the average
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number of PDAS iterations for 60 time-step iterations, i.e. up to t = 0.03. Although

the number of PDAS iterations increases for smaller mesh size, this increase is only

by a factor of approximately 1.3 and not 2 or 4 as one might expect since the

element size is halved. This is due to the time evolution, since good initial data on

the current time-step are given from the solution of the previous time-step.

h DOFs PDAS iter. ø τ PDAS iter. ø
for τ = 5 · 10−4 for varying τ

1/128 66049 2.57 1 · 10−3 3.20
1/256 263169 3.10 5 · 10−4 3.10
1/512 1050625 4.02 2.5 · 10−4 3.30
1/1024 4198401 5.18 1.25 · 10−4 3.37

Table 2.3: Average number of PDAS iterations up to t = 0.03 for varying mesh and
time-step sizes.

However, in our applications the time-step τ and the space discretisation are in

general coupled. Hence it is more appropriate to look at the number of Newton

iterations when both τ and h are driven to zero. The average number of iterations

up to t = 0.03 is listed in the last column and is almost constant. Hence, although we

are not able to show mesh independence analytically, our numerical investigations

clearly indicate that the proposed method is mesh independent.

Non-local Allen-Cahn variational inequality

Example 1: To clarify the difference between problems without and with integral

constraints we consider the same model problem as before, i.e. a circle of radius

0.45 as initial interface, but now with volume conservation. Now the circle should

keep its shape and stay stationary. Therefore we expect only minor changes in the

active set due to discretisation errors. This behaviour can be seen in Table 2.4 by

looking at the numbers of Newton iterations averaged over time, which are between

1 and 2. Only for the first iteration we need 3 or 4 Newton iterations after which the

number of Newton iterations goes down to 2 and soon stabilises at only one Newton

iteration per time-step iteration. The CPU time does not increase compared to

the computations for the shrinking circle. As before we use the conjugate gradient

method and essentially we only add one more row and column to the linear system of

equations. Again large time-steps can be used and speed up the calculation without

loss of accuracy.

Example 2: Next, we take two spheres with radii r1 and r2 which do not intersect,

more precisely we set r1(0) = 0.3 and r2(0) = 0.2 with centres (−0.5, 0) and (0.5, 0).

This results for the sharp interface problem in r′1 = − 1
r1

+ λ, r′2 = − 1
r2

+ λ together

with the condition of volume conservation 0 = 1
2
(r2

1 +r2
2)′ which gives that λ = 2

r1+r2
.
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time-step CPU [s]
total

CPU [s]
solver

DOFs
circa

rel. error
Newton
iter. ø

6.25 · 10−5 19.75 4.42 16000 4.08 · 10−4 1.07
5.00 · 10−4 7.06 3.46 17000 4.04 · 10−4 1.50
1.00 · 10−3 6.74 3.95 17500 4.00 · 10−4 2.00

Table 2.4: PDAS-method for the volume conserved Allen-Cahn equation at T =
0.01.

This ODE can be solved analytically [103]. The larger circle grows while the smaller

one disappears roughly at time T = 0.053. Again we compared the radii of the sharp

interface solution with the approximations we obtained using the PDAS-method. We

employed a semi-implicit as well as an implicit discretisation in time. In Figure 2.2

the radii of the larger circle over time are displayed for all three solutions for three

different time-step sizes. The behaviour for the smaller circle is essentially the same

and therefore omitted. The semi-implicit approximation leads to very poor accuracy

for larger time-steps, in particular at growing time t. Although accuracy improves

for smaller time-steps it remains worse than the approximation obtained for implicit

discretisation in time. Hence, even though there is no time-step restriction for the

semi-implicit time discretisation the time-step still needs to be very small to achieve

accurate approximations. The implicit discretisation leads to better results.
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Figure 2.2: Comparison: sharp interface solution vs. semi-implicit and implicit
PDAS-approximation.

For the implicit discretisation the absolute error in time is given in Figure 2.3. The

errors are of order 10−3 but increase significantly when the circle with initial radius

r2(0) = 0.2 becomes very small. Close to this singularity a smaller time-step achieves

higher accuracy, whereas if the radii of the circles are big enough larger time-steps

can be chosen. This clearly indicates that an adaptive choice of the time-step would

be favourable. This however, is a subject for further research.

2.6.2 Numerical Simulations

For the first simulation (Figure 2.4) of interface evolution with volume constraint in

two space dimensions we set the initial values for the order parameter u randomly

between −0.1 and 0.1, i.e. there are no pure phases present. We used the time-step
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Figure 2.3: Absolute error between sharp interface solution and approximations
(using implicit discretisation in time) of r1 (left) and r2 (right) for various time-
steps.
τ = 6.25 · 10−5. Already at time t = 0.002 grains start to form and grow and at

t = 0.003 we have two phases (red and blue) separated by a diffuse interface. Now the

interface moves according to motion by mean curvature but preserving the volume

of both phases. That means that closed curves turn into circles and shapes with

less volume shrink and disappear while at the same time shapes with the highest

volume will grow. At the end (i.e. when the problem becomes stationary) there are

four different shapes we can obtain: a circle, a half circle, a quarter of a circle in

one of the corners (see Figure 2.4) and a straight vertical or horizontal line dividing

the two phases.

t = 0.000 t = 0.003 t = 0.010

t = 0.090 t = 0.250 t = 3.000

Figure 2.4: Volume controlled Allen-Cahn equation (2d) with random initial data
(varying between −0.1 and 0.1).

For the computation in Figure 2.5 we use a three dimensional domain with one

of the phases being a dumbbell. For this computation we had to take a coarser

mesh due to memory restrictions. We used hmin = 1
128

and hmax = 1
16

and we set
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τ = 6.25 · 10−5. Without the volume conservation the dumbbell would dissect and

the two spheres would shrink and disappear. The volume conservation forces the

dumbbell to turn into an ellipsoid before turning into a sphere and finally becoming

stationary.

t = 0.001 t = 0.010 t = 0.050

t = 0.100 t = 0.160 t = 0.500

Figure 2.5: Volume controlled Allen-Cahn equation with a dumbbell as initial data.



33

Chapter 3

Vector-valued Allen-Cahn

variational inequality with

non-local constraints

The scalar Allen-Cahn equation describes the motion of an interface separating two

phases. In practical applications often more than two phases occur [61, 77] and

the phase field concept has been extended to deal with multiphase systems [28, 59].

The phase field takes now the form of a vector-valued function u : Ω× (0, T )→ RN

which describes the fractions of the phases, i.e., each component ui of u describes

one phase.

The underlying non-convex energy is based on the Ginzburg-Landau energy for a

vector-valued phase field u ∈ RN

E(u) :=
∫
Ω

(
γε
2
|∇u|2 + γ

ε
ψ(u)

)
dx (3.1)

where Ω ⊂ Rd is a bounded domain, γ > 0 is a parameter related to the interfacial

energy and ψ is a bulk potential. Since each component of u stands for the fraction

of one phase, the phase space for the order parameter u is the Gibbs simplex

G := {ξ ∈ RN : ξ ≥ 0, ξ · 1 = 1}.

Here ξ ≥ 0 means ξi ≥ 0 for all i ∈ {1, ..., N}, 1 = (1, ..., 1)T and ξ · 1 =
N∑
i=1

ξi. For

the bulk potential ψ : RN → R+
0 ∪ {∞} we consider the multi-obstacle potential

ψ(ξ) =

{
ψ0(ξ) := −1

2
ξ ·Wξ for ξ ≥ 0, ξ · 1 = 1,

∞ otherwise,
(3.2)

with W being a symmetric constant N × N matrix [25, 47]. Let σmax(W ) be the
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largest eigenvalue of W . If all eigenvalues of W were negative ψ would be a convex

potential. However, different phases which correspond to minima of ψ only occur if

W has at least one positive eigenvalue. We hence assume that W has at least one

positive eigenvalue; the analysis in this paper would simplify if this were not the

case.

Given an initial phase distribution u(., 0) = u0 : Ω→ G at time t = 0 the interface

motion can be modelled by the steepest descent dynamics of E(u) with respect to

the L2-norm which results, after suitable rescaling of time, in the following vector-

valued Allen-Cahn equation

ε∂u
∂t

= −gradL2E(u) = γε∆u+ γ
ε
Wu− µ∗

where µ∗ ∈ ∂IG and ∂IG denotes the subdifferential of the indicator function IG

of the Gibbs simplex. As for the scalar case this equation leads to the following

variational inequality

ε(∂u
∂t
,χ− u) + γε(∇u,∇(χ− u))− γ

ε
(Wu,χ− u) ≥ 0 (3.3)

which has to hold for almost all t and all χ ∈ G := {v ∈H1(Ω) :
N∑
i=1

vi = 1, v ≥ 0}.

We denote by L2(Ω) and H1(Ω) the spaces of vector-valued functions (L2(Ω))N and

(H1(Ω))N respectively.

As in the scalar case one often considers systems in which the total spatial amount

of the phases are conserved. In this case one studies the steepest descent of (3.1)

under the constraint
∫
Ω

−u dx = m where m = (m1,m2, ...,mN)T with mi ∈ (0, 1) for

i ∈ {1, ..., N} being a fixed number. Here we use the notation m and mi in order

to avoid confusion with the mass vector m and its components mi introduced in

Section 2.4.1.

To ensure that all phases are present we require 0 < mi < 1 and
N∑
i=1

mi = 1, where

the last condition makes sure that
N∑
i=1

ui = 1 can be true. We define

Gm := {v ∈ G :
∫
Ω

− v −m = 0}

and note that for u ∈ Gm it follows
∫
Ω

− u−m ∈ S := {v ∈ RN :
N∑
i=1

vi = 0}.

Then the interface evolution with volume conservation can be formulated as:

(Pm) For given u(., 0) = u0 ∈ Gm find u ∈ L2(0, T ;Gm) ∩ H1(0, T ;L2(Ω)) such

that

ε(∂u
∂t
,χ− u) + γε(∇u,∇(χ− u))− γ

ε
(Wu,χ− u) ≥ 0 (3.4)
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which has to hold for almost all t ∈ (0, T ) and all χ ∈ Gm.

This chapter is organised in the same way as the previous chapter. First, we refor-

mulate (3.4) with the help of Lagrange multipliers µ,λ and Λ corresponding to the

constraints u ≥ 0,
∫
Ω

−u −m = 0 and
∑N

i=1 ui = 1 respectively. Using this formula-

tion we show existence and uniqueness of a solution u of (3.4) and of the Lagrange

multipliers. We derive a discretisation of (3.4) and apply the primal-dual active set

method to it. Using the equivalence of the PDAS method and a semi-smooth New-

ton method we show local convergence of our algorithm. Finally, we demonstrate

the efficiency and accuracy of our method using two model problems for which the

explicit solution is known. We also show numerically that the proposed method

is mesh independent as well as independent of the number of phases. Finally, we

present some interesting numerical simulations in two and three space dimensions

including soap bubble configurations and grain growth.

3.1 Formulation as a complementarity problem

Similar to the scalar case we first reformulate the problem (Pm) with the help of

(scaled) Lagrange multipliers µ corresponding to the inequality constraint u ≥ 0,

Λ corresponding to the constraint
N∑
i=1

ui = 1 and λ corresponding to the constraint

PS(
∫
Ω

− u −m) = 0, where PS : RN −→ S is a projection onto S. This could be

for example an orthogonal projection but other projections can also be used. Note

that due to the constraint
N∑
i=1

ui = 1 we have that
∫
Ω

− u−m ∈ S already and hence∫
Ω

−u−m = 0. The reason we are introducing a projection at this point is to obtain

N − 1 constraints for the volume constraints instead of N constraints. Thus all the

constraints are linearly independent and we can show uniqueness of a solution.

Lemma 3.1.1. Let T be a positive time and let Ω ⊂ Rd be a bounded domain

which is either convex or fulfils ∂Ω ∈ C1,1. A function u ∈ L2(0, T ;H2(Ω)) ∩
H1(0, T ;L2(Ω)) ∩ L2(0, T ;Gm) solves (Pm) if there exist µ ∈ L2(0, T ;L2(Ω)), λ ∈
L2(0, T ;S) and Λ ∈ L2(0, T ;L2(Ω)) such that

ε∂u
∂t
− γε∆u− γ

ε
Wu− 1

ε
µ− 1

ε
Λ1− 1

ε
λ = 0 a.e. in ΩT := Ω× (0, T ), (3.5)

u(0) = u0,
∂u
∂ν

= 0 a.e. on ∂Ω× (0, T ), (3.6)
N∑
i=1

ui = 1, u ≥ 0, µ ≥ 0 a.e. in ΩT , (3.7)

PS(
∫
Ω

− u−m) = 0, (µ,u) = 0 for almost all t ∈ (0, T ). (3.8)

Proof: Let χ ∈ Gm, then multiplying (3.5) by (χ − u) and integrating by parts
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gives ∫
Ω

(ε∂u
∂t
− γ

ε
Wu− 1

ε
µ− 1

ε
Λ1− 1

ε
λ) · (χ− u) +

∫
Ω

γε∇u · ∇(χ− u) = 0

for a.e. t ∈ (0, T ). Using the property χ ≥ 0 and (3.7) - (3.8) gives∫
Ω

µ · (χ− u) ≥ 0.

Using (3.8),
∫
Ω

− χ = m and the fact that λ is independent of x ∈ Ω we obtain

∫
Ω

λ · (χ− u) = λ ·
∫
Ω

(χ− u) = |Ω|λ · [(
∫
Ω

− χ−m)− (
∫
Ω

− u−m)] = 0.

Since
∫
Ω

1 · (χ− u) = 0 we obtain for all χ ∈ Gm and almost all t ∈ (0, T )

∫
Ω

(ε∂u
∂t
− γ

ε
Wu) · (χ− u) +

∫
Ω

γε∇u · ∇(χ− u) ≥ 0

and hence u solves (Pm).

�

3.2 Existence and uniqueness

To show the existence of (u,µ,λ,Λ) we now introduce the following regularisation

of ψ:

ψδ(ξ) = ψ0(ξ) + 1
δ
ψ̂(ξ) (3.9)

where

ψ̂(ξ) =
N∑
i=1

(min(ξi, 0))2. (3.10)

Similar regularisations were used in [47, 7, 8]. We define the function φ̂(r) =

2 min(r, 0) for all r ∈ R and note that Dψ̂(ξ) = φ̂(ξ) := (φ̂(ξi))
N
i=1. The func-

tions φ̂ and ψδ have the following properties:

• For all r, s ∈ R
0 ≤ (φ̂(r)− φ̂(s))(r − s). (3.11)
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• For all ξ,η ∈ RN

(ξ − η) ·Dψδ(η) ≤ 1
δ
ψ̂(ξ)− 1

δ
ψ̂(η)− (ξ − η) ·Wη

≤ ψδ(ξ)− ψδ(η) + 1
2
σmax(W )‖ξ − η‖2,

(3.12)

where we have used that ψ̂ is convex and the identity

−2(ξ − η) ·Wη = η ·Wη − ξ ·Wξ + (ξ − η) ·W (ξ − η).

• For all ξ ∈M := {ξ ∈ RN :
N∑
i=1

ξi = 1} and δ ≤ δ0 := 1
4N(N−1)2σmax(W )

we have

that

ψδ(ξ) ≥ 1
2δ

N∑
i=1

[ξi]
2
− − C(N, σmax(W )) (3.13)

where [·]− := min(·, 0). This follows from

ψδ(ξ) ≥ 1
δ

N∑
i=1

[ξi]
2
− −

N∑
i=1

σmax(W )ξ2
i

≥ 1
2δ

N∑
i=1

[ξi]
2
− + 1

2δ
[ξm]2− −Nσmax(W )ξ2

M (3.14)

where ξm := min
i=1,...,N

ξi and |ξM | := max
i=1,...,N

|ξi|.
Since ξ ∈M it follows that

[ξm]− ≤ ξM ≤ 1− (N − 1)[ξm]−

and hence

ξ2
M ≤ 2(1 + (N − 1)2[ξm]2−)

and hence (3.13) follows from (3.14) for all δ ≤ δ0.

In order to deal with the constraints
N∑
i=1

ui = 1 and
∫
Ω

− u −m = 0 we project Dψδ

orthogonally first onto the space S and then onto Gm. This results in the following

regularised version of the Allen-Cahn equation

ε∂uδ
∂t
− γε∆uδ + γ

ε
(I −

∫
Ω

−)(I − 1
∑
−)Dψδ(uδ) = 0 (3.15)

where (I −
∫
Ω

−)η := η −
∫
Ω

−η for all η ∈ L2(Ω) and (I − 1
∑
−)v := v − 1

∑
− v with

∑
− v := 1

N

N∑
i=1

vi
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for all v ∈ RN .

Equivalently we have to solve the following problem:

(P δ
m) Given uδ(., 0) = u0 ∈ Gm find uδ ∈ H1(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) such

that

ε(∂uδ
∂t
,χ) + γε(∇uδ,∇χ) + γ

ε
((I − 1

∑
−)(Dψδ(uδ)), (I −

∫
Ω

−)χ) = 0 (3.16)

for all χ ∈H1(Ω) and almost all t ∈ (0, T ).

Note that a solution of (P δ
m) is such that for almost every (x, t) ∈ ΩT

N∑
i=1

(uδ(x, t))i = 1. (3.17)

This follows from choosing χ = (N
∑
− uδ − 1)1 in (3.16) and using the fact that

u0 ∈ Gm.

Furthermore, (3.17) gives that ∑
− ∂uδ

∂t
= 0. (3.18)

Choosing a constant test function in (3.16) we obtain

d
dt

∫
Ω

uδ = 0 (3.19)

and hence the total masses of the components of uδ are preserved.

Theorem 3.2.1. Let Ω ⊂ Rd be a bounded domain and assume that either Ω is

convex or ∂Ω ∈ C1,1. Let uδ(x, 0) = u0(x) ∈ H1(Ω) with u0 ≥ 0,
∫
Ω

− u0 = m and

N∑
i=1

(u0)i = 1 a.e. in Ω and let β ∈ (0, 1) be such that β1 <
∫
Ω

− u0 < (1 − β)1. Then

there exists a unique solution uδ to (P δ
m) for all δ ∈ (0, 1] and a constant C > 0

which does not depend on δ such that

‖uδ‖L∞(0,T ;H1(Ω)) + ‖uδ‖H1(0,T ;L2(Ω)) ≤ C, (3.20)

1
δ
‖φ̂(uδ)‖L2(0,T ;L2(Ω)) ≤ C, (3.21)

‖[uδ]−‖L∞(0,T ;L2(Ω)) ≤ Cδ1/2 (3.22)

and

‖uδ‖L2(0,T ;H2(Ω)) ≤ C. (3.23)
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Proof: First we show that the solution is unique. Therefore assume that (P δ
m)

has two solutions u1
δ ,u

2
δ , subtracting them and choosing χ ≡ d := u1

δ − u2
δ gives

ε(∂d
∂t
,d) + γε‖∇d‖2

L2 + γ
ε
((I − 1

∑
−)(1

δ
φ̂(u1

δ)− 1
δ
φ̂(u2

δ)−Wd), (I −
∫
Ω

−)d) = 0.

Since
∑
− d = 0 and

∫
Ω

− d =
∫
Ω

− (u1
δ −m)−

∫
Ω

− (u2
δ −m) = 0 it follows that

ε
2
d
dt
‖d‖2

L2 + γε‖∇d‖2
L2 + γ

εδ
(φ̂(u1

δ)− φ̂(u2
δ),d) = γ

ε
(Wd,d) ≤ γ

ε
σmax(W )‖d‖2

L2 .

With (3.11) we obtain almost every t ∈ (0, T )

ε
2
d
dt
‖d‖2

L2 ≤ γ
ε
σmax(W )‖d‖2

L2 .

Now Grönwall’s inequality gives that ‖d‖2
L2 = 0 and thus u1

δ ≡ u2
δ .

The existence of a solution to (P δ
m) follows similarly to the scalar case by using

a Galerkin approximation, a priori estimates and a standard limit process. Using

the assumptions on Ω and the growth property of Dψδ, regularity theory gives

uδ ∈ L2(0, T ;H2(Ω)).

Setting now χ ≡ ∂uδ/∂t in (3.16) gives

ε‖∂uδ
∂t
‖2
L2 + γε

2
d
dt
‖∇uδ‖2

L2 + γ
ε
((I − 1

∑
−)Dψδ(uδ), (I −

∫
Ω

−)∂uδ
∂t

) = 0

and using (3.18) and (3.19) we obtain

ε‖∂uδ
∂t
‖2
L2 + γε

2
d
dt
‖∇uδ‖2

L2 + γ
ε
(Dψδ(uδ),

∂uδ
∂t

) = 0.

Integrating this equation over (0, t) and rearranging gives∫ t

0

ε‖∂uδ
∂t
‖2
L2ds+ γε

2
‖∇uδ(t)‖2

L2 + γ
ε
(ψδ(uδ), 1) = γε

2
‖∇u0‖2

L2 + γ
ε
(ψδ(u0), 1) ≤ C

(3.24)

since u0 ∈ Gm.

In particular, it follows that

(ψδ(uδ), 1) ≤ C.

Using (3.13) gives

1
δ
(
N∑
n=1

[(uδ)n]2−, 1) ≤ C(N, σmax(W ))

and hence
N∑
n=1

‖[(uδ)n]−‖2
L2 ≤ C(N, σmax(W ))δ.



3.2. Existence and uniqueness 40

So, we have that ‖[uδ(t)]−‖L2 ≤ C(N, σmax(W ))δ1/2 for a.e. t ∈ (0, T ) and thus

(3.22) follows.

Furthermore, from (3.24) it follows that ‖∇uδ‖L2 ≤ C and using the Poincaré

inequality

‖η‖L2 ≤ CP (‖∇η‖L2 + |(η, 1)|) ∀η ∈ H1(Ω) (3.25)

gives that ‖uδ(t)‖2
H1(Ω) ≤ C for a.e. t ∈ (0, T ) and thus uδ ∈ L∞(0, T ;H1(Ω)).

From (3.24) and (3.13) it also follows that
(
∂uδ
∂t

)
δ>0

is uniformly bounded in

L2(0, T ;L2(Ω)).

Setting χ ≡ 1
δ
(I − 1

∑
−)φ̂(uδ) in (3.16) gives

ε
δ
(∂uδ
∂t
, (I − 1

∑
−)φ̂(uδ)) + γε

δ
(∇uδ,∇(I − 1

∑
−)φ̂(uδ))

+ γ
εδ

((I − 1
∑
−)(Dψδ(uδ)), (I −

∫
Ω

−)(I − 1
∑
−)φ̂(uδ)) = 0.

Using (3.17) and (I − 1
∑
−)(Dψδ(uδ)) ≡ (I − 1

∑
−)[1

δ
φ̂(uδ)−Wuδ] gives

ε
δ
(∂uδ
∂t
, (I − 1

∑
−)φ̂(uδ)) + γε

δ
(∇uδ,∇φ̂(uδ)) + γ

δ2ε
((I − 1

∑
−)φ̂(uδ), (I −

∫
Ω

−)(I − 1
∑
−)φ̂(uδ))

= γ
εδ

((I − 1
∑
−)Wuδ, (I −

∫
Ω

−)(I − 1
∑
−)φ̂(uδ)).

Noting that ((I −
∫
Ω

−)v,
∫
Ω

− v) = 0 for any v ∈ L2(Ω) and using (3.19) we obtain

γε
δ

(∇uδ,∇φ̂(uδ)) + γ
δ2ε
‖(I −

∫
Ω

−)(I − 1
∑
−)φ̂(uδ)‖2

L2 ≤ ε
δ
|(∂uδ

∂t
, (I −

∫
Ω

−)(I − 1
∑
−)φ̂(uδ))|

+ γ
εδ
|((I − 1

∑
−)Wuδ, (I −

∫
Ω

−)(I − 1
∑
−)φ̂(uδ))|.

Since φ̂ is non-decreasing we have that
∫ T

0
(∇uδ,∇φ̂(uδ))dt ≥ 0 and hence Young’s

inequality and the uniform estimates on uδ ∈ L∞(0, T ;H1(Ω)) and

∂tuδ ∈ L2(0, T ;L2(Ω)) yield

1
δ2
‖(I −

∫
Ω

−)(I − 1
∑
−)φ̂(uδ)‖2

L2(0,T ;L2(Ω)) ≤ C. (3.26)

Choosing χ = uδ in (3.16) and using (3.17) we obtain

0 = ε(∂uδ
∂t
,uδ) + γε(∇uδ,∇uδ) + γ

ε
((I − 1

∑
−)Dψδ(uδ), (I −

∫
Ω

−)uδ)

= ε(∂uδ
∂t
,uδ) + γε(∇uδ,∇uδ) + γ

ε
(Dψδ(uδ), (I −

∫
Ω

−)uδ).
(3.27)
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From (3.27) and (3.12) it follows for any constant ξ ∈ RN and for a.e. t ∈ (0, T )

that

γ
ε
(Dψδ(uδ), ξ −

∫
Ω

− uδ) = γ
ε
(Dψδ(uδ), ξ − uδ)− γε‖∇uδ‖2

L2 − ε(∂uδ∂t ,uδ)

≤ γ
ε
(ψδ(ξ)− ψδ(uδ), 1) + γσmax(W )

2ε
‖ξ − uδ‖2

L2 + ε‖∂uδ
∂t
‖L2‖uδ‖L2 .

Setting now ξ ≡ (
∫
Ω

− uδ) ± βen, where en is the n-th unit vector, n = 1, ..., N , and

β ∈ (0, 1) such that β1 <
∫
Ω

− u0 < (1− β)1 we obtain

γ
δε

(φ̂(uδ),±βen) ≤ γ
ε
(Wuδ,±βen)− γ

2ε
(W (

∫
Ω

− uδ ± βen),
∫
Ω

− uδ ± βen) + γ
2ε

(Wuδ,uδ)

− γ
δε

(ψ̂(uδ), 1) + γσmax(W )
2ε

‖
∫
Ω

− uδ ± βen − uδ‖2
L2 + ε‖∂uδ

∂t
‖L2‖uδ‖L2

≤ γσmax(W )
ε
‖uδ‖L2 − γσmin(W )

2ε
‖
∫
Ω

− uδ ± βen‖2
L2 + γσmax(W )

ε
‖uδ‖2

L2

+γσmax(W )
2ε

‖
∫
Ω

− uδ ± βen‖2
L2 + ε‖∂uδ

∂t
‖L2‖uδ‖L2

where we used that ψ̂(ξ) = 0 and ψ̂(uδ) ≥ 0. By σmin(W ) we denote the minimal

eigenvalue of W . Using that −σmin(W ) ≤ |||W ||| and σmax(W ) ≤ |||W ||| where |||W |||
is the spectral norm of W , and 0 <

∫
Ω

− uδ ± βen < 1 the above estimate gives that

|Ω|
δ
|
∫
Ω

− {(φ̂(uδ)}n| ≤ C(1 + ‖uδ‖2
L2 + ‖∂uδ

∂t
‖L2‖uδ‖L2)

for all n = 1, ..., N and hence

|Ω|
δ
‖
∫
Ω

− φ̂(uδ)‖ ≤ C(1 + ‖uδ‖2
L2 + ‖∂uδ

∂t
‖L2‖uδ‖L2) (3.28)

where C depends on ε, γ,N, |||W ||| and σmax(W ) but not on δ. Integrating (3.28)

over t ∈ (0, T ) and using the same arguments as in Step 3 in the proof of Theorem

2.2.1, i.e. in particular that uδ ∈ L∞(0, T ;H1(Ω)) ∩H1(0, T ;L2(Ω)) yields that

1
δ
‖
∫
Ω

− φ̂(uδ)‖L2(0,T ;L2(Ω)) ≤ C. (3.29)

It follows that

1
δ
‖
∫
Ω

− (I − 1
∑
−)φ̂(uδ)‖L2(0,T ;L2(Ω)) ≤ 1

δ
‖
∫
Ω

− φ̂(uδ)‖L2(0,T ;L2(Ω)) + 1
δ
‖1
∑
−
∫
Ω

− φ̂(uδ)‖L2(0,T ;L2(Ω))

≤ C
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and together with (3.26) we obtain

1
δ
‖(I − 1

∑
−)φ̂(uδ)‖L2(0,T ;L2(Ω)) ≤ C. (3.30)

From (3.17) it follows that min{uδ(x, t)}n ≤ 1
N
≤ max{uδ(x, t)}n for almost every

(x, t) ∈ ΩT and since φ̂ is monotonically increasing we obtain

min
n=1,...,N

φ̂({uδ(x, t)}n) ≤ φ̂( 1
N

) = 0 = max
n=1,...,N

φ̂({uδ(x, t)}n).

Noting this and (3.30) yields that

1
δ
‖
∑
− φ̂(uδ)‖L2(0,T ;L2(Ω)) = 1

δ
‖φ̂( 1

N
)− 1

∑
− φ̂(uδ)‖L2(0,T ;L2(Ω))

≤ 1
δ
‖(I − 1

∑
−)φ̂(uδ)‖L2(0,T ;L2(Ω)) ≤ C.

Together with (3.30) we obtain

1
δ
‖φ̂(uδ)‖L2(0,T ;L2(Ω)) ≤ 1

δ
‖(I−1

∑
−)φ̂(uδ)‖L2(0,T ;L2(Ω))+

1
δ
‖1
∑
− φ̂(uδ)‖L2(0,T ;L2(Ω)) ≤ C.

We refer to [7] where similar arguments have been used in the context of a Cahn-

Hilliard system with a logarithmic free energy. Finally, (3.23) follows from (3.16),

(3.20), (3.21) and standard parabolic regularity theory.

�

For the uniqueness proof in the next theorem we are using some graph theory and

therefore we state the definitions of a graph, a path and connectivity of a graph. An

introduction to graph theory can be found for example in [118].

Definition 3.2.2. (i) A graph consists of a non-empty finite set of elements called

vertices and a finite family of unordered pairs of elements called edges.

(ii) A path in a graph is a sequence of vertices such that from each of its vertices

there is an edge to the next vertex in the sequence.

(iii) A graph is connected if there is a path between each pair of vertices.

Theorem 3.2.3. Let Ω ⊂ Rd be a bounded domain and assume that either Ω is

convex or fulfils ∂Ω ∈ C1,1. Let uδ(x, 0) = u0(x) ∈ H1(Ω) with u0 ≥ 0,
∫
Ω

− u0 = m

and
N∑
i=1

(u0)i = 1 a.e. in Ω and such that a β ∈ (0, 1) exists with β1 <
∫
Ω

−u0 < (1−β)1.

Then there exists a unique solution (u,µ,λ,Λ) to (3.5) - (3.8) with the following
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properties:

u ∈ L∞(0, T ;H1(Ω)) ∩H1(0, T ;L2(Ω)) ∩ L2(0, T ;H2(Ω)), (3.31)

µ ∈ L2(0, T ;L2(Ω)), (3.32)

λ ∈ L2(0, T ) and
N∑
i=1

λi = 0 for almost all t ∈ (0, T ), (3.33)

Λ ∈ L2(0, T ;L2(Ω)). (3.34)

Proof: As the bounds (3.20), (3.21) and (3.23) are independent of δ, it follows

that there exists u ∈ L∞(0, T ;H1(Ω)) ∩ H1(0, T ;L2(Ω)) ∩ L2(0, T ;H2(Ω)), ξ ∈
L2(0, T ;L2(Ω)) and ζ ∈ L2(0, T ) and a subsequence {uδ′} such that as δ′ → 0

uδ′ → u in L∞(0, T ;H1(Ω)) weak-star,

H1(0, T ;L2(Ω)) ∩ L2(0, T ;H2(Ω)) weakly, and

L2(0, T ;L2(Ω)) strongly,

(3.35)

1
δ′

∑
− φ̂(uδ′)→ ξ in L2(0, T ;L2(Ω)) weakly, (3.36)

1
δ′

∫
Ω

− φ̂(uδ′)→ ζ in L2(0, T ) weakly, (3.37)

where the third convergence in (3.35) follows from the first two weak convergences

in (3.35) [85].

Taking the limit δ′ → 0 in (3.22) gives that [u]− = 0 and thus u(x, t) ≥ 0 for almost

every (x, t) ∈ ΩT .

Since uδ ∈ L2(0, T ;H2(Ω)) we can use the strong formulation of (3.16) and obtain

ε∂uδ
∂t
− γε∆uδ + γ

ε
Dψδ(uδ)− γ

ε

∑
−Dψδ(uδ)1− γ

ε

∫
Ω

− (I − 1
∑
−)Dψδ(uδ) = 0.

Using Dψδ(uδ) = 1
δ
φ̂(uδ) −Wuδ and defining Λδ := γ

δ

∑
− φ̂(uδ) − γ

∑
−Wuδ, λδ :=

γ
δ

∫
Ω

− φ̂(uδ)− γ
∫
Ω

−Wuδ − γ
∫
Ω

− Λδ1 and µδ := −γ
δ
φ̂(uδ) the above equation becomes

ε∂uδ
∂t
− γε∆uδ − γ

ε
Wuδ − 1

ε
µδ − 1

ε
Λδ1− 1

ε
λδ = 0. (3.38)

Noting that Λδ ∈ L2(0, T ;L2(Ω)) and λδ ∈ L2(0, T ) gives together with the a priori

estimates on uδ that µδ ∈ L2(0, T ;L2(Ω)).

Hence there exists µ ∈ L2(0, T ;L2(Ω)) such that for a subsequence

µδ′ ⇀ µ in L2(0, T ;L2(Ω)) as δ
′ → 0.
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Since µ is the weak limit of functions which are componentwise non-negative we

obtain µ ≥ 0 a.e. in ΩT . Furthermore, from (3.35c) it follows that
N∑
i=1

ui = 1 and

d
dt

∫
Ω

u = 0 and hence
∫
Ω

− u = m. Note that
N∑
i=1

(λδ)i = 0 and hence
N∑
i=1

λi = 0.

In order to show that (µ,u) = 0 we first note that

(µδ,uδ) = −γ
δ
(φ̂(uδ),uδ) ≤ 0,

and using that uδ → u and µδ ⇀ µ in L2(0, T,L2(Ω)) it follows that (u,µ) ≤ 0.

However, since u ≥ 0 and µ ≥ 0 we have that (u,µ) = 0 a.e. in (0, T ).

It remains to show uniqueness. Assume that there are two solutions (u1,µ1,λ1,Λ1)

and (u2,µ2,λ2,Λ2). Then we define ū = u1 − u2, µ̄ = µ1 − µ2. Multiplying the

difference of the equation (3.5) for u1 and u2 with ū gives, after integration and

using
∫
Ω

1 · ū = 0, that

ε d
dt

∫
Ω

|ū|2 + γε

∫
Ω

|∇ū|2 − 1
ε

∫
Ω

(µ1 − µ2) · (u1 − u2) ≤ γσmax(W )
ε

∫
Ω

|ū|2. (3.39)

The complementarity conditions (3.7)-(3.8) imply that (µ1 − µ2) · (u1 − u2) ≤ 0

and hence we deduce that

ε d
dt

∫
Ω

|ū|2 + γε

∫
Ω

|∇ū|2 ≤ γσmax(W )
ε

∫
Ω

|ū|2.

Using a Grönwall argument now gives uniqueness of u. Hence µ+λ+Λ1 is uniquely

given through equation (3.5).

Now we show the uniqueness of the Lagrange multipliers λ,Λ and µ. For what

follows we fix t ∈ (0, T ) and using that uδ ∈ L2(0, T ;H2(Ω)) and hence continuous

for d ≤ 3, we define

Aij := {x ∈ Ω : ui(x, t) > 0, uj(x, t) > 0}

and

Aρij := {x ∈ Ω : ui(x, t) > ρ, uj(x, t) > ρ}.

Claim: λi − λj is uniquely defined for all pairs (i, j) with |Aij| > 0.

For (i, j) with |Aij| > 0 we find a ρ > 0 such that |Aρij| > 0. Using (3.5) and recalling

that ek is the k-th unit vector we obtain that on Aρij

(ε∂u
∂t
− γε∆u− γ

ε
Wu− 1

ε
λ) · (ei − ej) = 0 (3.40)
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where we have used that µi = µj = 0 on Aρij. We hence conclude

λi − λj = 1
|Aρij |

∫
Aρij

[
ε2 ∂ui

∂t
− γε2∆ui − γ(Wu)i − ε2 ∂uj

∂t
+ γε2∆uj + γ(Wu)j

]
.

This implies that the difference λi − λj is uniquely defined if |Aij| > 0.

We now introduce a graph E with vertices {1, ..., N} and edges {{i, j} : |Aij| > 0}.
Claim: E is a connected graph.

We define the following sets of indices

I = {i ∈ {1, ..., N} : there is a path from 1 to i} and J = {1, ..., N} \ I.

We need to show that J = ∅ and therefore we assume this is not true. We set

v =
∑
i∈I

ui and w =
∑
j∈J

uj

and note that v ≥ 0, w ≥ 0 and v + w = 1. Now one observes that the set

A := {x ∈ Ω : v(x) > 0 and w(x) > 0}

has measure zero. This is true because otherwise there exist i ∈ I and j ∈ J such

that |Aij| > 0 which contradicts the definition of I. We hence obtain that v only

attains the values 0 and 1. However, since J 6= ∅ we obtain that v is not constant.

Since a H1-function that attains finitely many values has to be constant we obtain

a contradiction.

Hence J = ∅ and the graph E is connected. This implies that the differences λi−λj
are for all i, j ∈ {1, ..., N} uniquely defined. In particular we obtain that λ1−λj = αj

for all j = 2, ..., N . Summing these equations over j and using that
N∑
i=1

λi = 0 we

obtain the uniqueness of λ.

Now we show the uniqueness of Λ. For any x0 ∈ Ω we can find a ρ > 0 and an

i ∈ {1, ..., N} such that x0 ∈ Aρi := {x ∈ Ω : ui(x, t) > ρ} and |Aρi | > 0. On Aρi we

know that µi = 0 and hence we can define

Λ = (ε2 ∂u
∂t
− γε2∆u− γWu− λ)i. (3.41)

The Lagrange multiplier Λ is well defined and unique since

(ε∂u
∂t
− γε∆u− γ

ε
Wu− 1

ε
λ)i(x, t) = (ε∂u

∂t
− γε∆u− γ

ε
Wu− 1

ε
λ)j(x, t)
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for almost every x ∈ Aij.
As t is chosen arbitrarily the Lagrange multipliers λ and Λ and hence µ are unique.

�

Remark 3.2.4. (i) It can be shown that (Pm) has a unique solution. Hence we

can conclude that for all solutions to (Pm) there exist Lagrange multipliers µ,λ,Λ

such that (3.5) - (3.8) hold.

(ii) Rodrigues and Santos [102] showed the existence of a solution for the vector-

valued Allen-Cahn equation without volume constraints by using a representation of

the Lagrange multipliers which cannot be used directly for a numerical approach.

They substitute uN by 1 −
∑N−1

i=1 ui and consider a system of parabolic variational

inequalities in RN−1.

3.3 Discretisation and primal-dual active set method

First, we discretise (Pm) in time using an implicit Euler discretisation. We denote

the time-step by τ , which can be a variable time-step, t0 = 0, tn := tn−1 + τ and

un ≈ u(., tn).

(P τ
m) Given un−1 ∈ Gm find u = un ∈ Gm such that

ε
τ
(u− un−1,η − u) + γε(∇u,∇η −∇u) ≥ γ

ε
(Wu,η − u) ∀η ∈ Gm. (3.42)

For simplicity we denote by u the time discrete solution at time tn. This discretisa-

tion can also be seen as the Euler-Lagrange equation of an implicit time discretisation

of the L2 gradient flow of the energy E, which is given as

min E(u) :=

∫
Ω

{
γε
2
|∇u|2 + γ

ε
ψ(u)

}
dx+ ε

2τ
‖u− un−1‖2

L2 .

As in Lemma 3.1.1 one can reformulate (P τ
m) by using scaled Lagrange-multipliers

µ ∈ L2(Ω) for the inequality constraint u ≥ 0, λ ∈ S for the constraint PS(
∫
Ω

− u−

m) = 0 and Λ ∈ L2(Ω) for the sum constraint
∑N

i=1 ui = 1 to obtain:

ε2

τ
(u− un−1)− γε2∆u−γWu− µ− λ− Λ1 = 0 a.e. in Ω , (3.43)

∂u
∂ν

= 0 a.e. on ∂Ω , (3.44)

PS(
∫
Ω

− u−m) = 0 (3.45)
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together with the complementary conditions

u ≥ 0 a.e. in Ω, (3.46)

µ ≥ 0 a.e. in Ω, (3.47)

(µ,u) = 0. (3.48)

The complementary conditions (3.46) - (3.48) can be reformulated using active sets

based on the primal variable u and the dual variable µ such that for any c > 0 and

for all i ∈ {1, ..., N}

ui = 0 a.e. in Ai, (3.49)

µi = 0 a.e. in Ii := Ω \ Ai, (3.50)

where

Ai = {x ∈ Ω | c(u(x))i − (µ(x))i < 0}. (3.51)

Before applying the primal-dual active set method to the vector-valued Allen-Cahn

equation with volume constraints we first need to discretise.

For the discretisation in space we use again a finite element approximation. We use

the notation introduced in Section 2.4.1 and we set Sh = (Sh)
N . Then uj ∈ RN for

j = 1, . . . , J denote the coefficients of the basis representation of uh in Sh which

is given by uh =
∑

j∈J ujχj. Additionally we introduce the vector of coefficients

u = (u1, u2, ..., uN) where ui ∈ RJ is the vector of coefficients of (ui)h for i = 1, ..., N .

In general we use the notation b for a vector in RJ , b for a vector in RN and b for

a vector in RJN .

Furthermore, we introduce the sets

Gh := {χ ∈ Sh| χ ≥ 0 and
N∑
i=1

(χi)j = 1 ∀j ∈ J }

and

Gmh := {η ∈ Gh|
∫
Ω

− η −m = 0}.

Here (χi)j denotes the j-th node of the i-th component χi of χ.

We now introduce the following finite element approximations of (P τ
m) given by

(3.42). In the following we consider a fixed time step τ = tn− tn−1 and omit in some

places the superscript n:

Given un−1
h ∈ Gmh find uh = unh ∈ Gmh such that

( ε
τ
(uh − un−1

h )− γ
ε
Wuh,χ− uh)h + γε(∇uh,∇(χ− uh)) ≥ 0 ∀χ ∈ Gmh . (3.52)
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Due to the use of piecewise linear finite elements and nodal basis functions the

reformulation of (3.52) with Lagrange multipliers µh ∈ Sh can be stated as follows:

Find uh ∈ Sh, µh ∈ Sh, λ ∈ S and Λ ∈ Sh such that

ε2

τ
(uh,ϕ)h − γ(Wuh,ϕ)h + γε2(∇uh,∇ϕ)− (µh,ϕ)h − (λ,ϕ)− (Λ1,ϕ)h

= ε2

τ
(un−1

h ,ϕ)h ∀ϕ ∈ Sh ,

(3.53)

N∑
i=1

(ui)j = 1 ∀ j ∈ J , (3.54)

PS(
∑
j∈J

mjuj −
∑
j∈J

mjm) = 0 , (3.55)

µj ≥ 0, uj ≥ 0 ∀ j ∈ J , (3.56)

(uj,µj) = 0 ∀ j ∈ J . (3.57)

In the following we will write λ ∈ S as (λ1, λ2, ..., λN−1,−λ1 − ... − λN−1)T thus

eliminating λN . Using (3.54) we can restate (3.55) as∑
j∈J

mj((ui)j − (uN)j) =
∑
j∈J

mj(m
i −mN)

for i ∈ {1, ..., N − 1}.
Applying now the PDAS-method to (3.53)-(3.57) we obtain the following algorithm.

Here we use the notation uki and un−1
i where the k denotes the k-th iteration in the

PDAS algorithm and n − 1 is the (n − 1)-st time-step. This is of course a slight

misuse of notation for k = n− 1.

Primal-Dual Active Set Algorithm (PDAS-I):

0. Set k = 0 and initialise A0
i , i ∈ {1, ..., N}.

1. Define Iki = J \ Aki for all i ∈ {1, ..., N}.
Set (uki )j = 0 for j ∈ Aki and (µki )j = 0 for j ∈ Iki for all i ∈ {1, ..., N}.

2. Solve the discrete PDE (3.53) with the constraints (3.54) and (3.55) to obtain
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(uki )j,Λ
k
j and λki for all (i, j) such that j ∈ Iki , i ∈ {1, ..., N}:

ε2

τ
mj(u

k
i )j − γmj

N∑
m=1

wim(ukm)j + γε2
∑
l∈J

alj(u
k
i )l −mj[λ

k
i + Λk

j ] = ε2

τ
mj(u

n−1
i )j,

(3.58)∑
j∈J

mj((u
k
i )j − (ukN)j) =

∑
j∈J

mj(m
i −mN) for i ∈ {1, ..., N − 1},

N∑
i=1

(uki )j = 1,

(3.59)

where λkN = −λk1 − ...− λkN−1.

3. Determine (µki )j for j ∈ Aki using (3.53) for all i ∈ {1, ..., N} as

(µki )j = ε2

τ
(uki )j − γ

N∑
m=1

wim(ukm)j + γε2 1
mj

∑
l∈J

alj(u
k
i )l − λki − Λk

j − ε2

τ
(un−1

i )j.

4. Set Ak+1
i := {j ∈ J : (uki )j −

(µki )j
c

< 0}, i ∈ {1, ..., N}.

5. If Ak+1
i = Aki for all i ∈ {1, ..., N} stop, otherwise set k = k + 1 and goto 1.

Remark 3.3.1. (i) In each node pj for j ∈ J some components of uh are active

and the others are inactive. The number of components which are active can vary

from point to point. Only for each individual component ui can we split the set of

nodes into nodes which are active and inactive for this component. This results in

a quite complex linear system, see Chapter 4.

(ii) We solve (3.58), (3.59) in two space dimensions using the direct solver UM-

FPACK [41] and in three space dimensions we use MINRES, see Chapter 4 for

more details on the solver.

(iii) Note that if j ∈ Ak1∩...∩Aki−1∩Aki+1∩...∩AkN we can use the fact that
N∑
i=1

(uki )j = 1

and set (uki )j = 1 without solving (3.58).

3.4 Convergence as a semi-smooth Newton method

In order to show that the PDAS method converges, we reformulate the method as

a semi-smooth Newton method. Instead of introducing active and inactive sets we

can reformulate (2.26)-(2.28) using the following semi-smooth function

Hi(ui, µi) := µi −max(0, cui − µi) (3.60)

for i ∈ {1, ..., N} and c > 0.
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Hence the PDAS algorithm is equivalent to a semi-smooth Newton algorithm applied

to (3.5) - (3.6) and (3.60), see e.g. [72].

Setting Aih := {j ∈ J : (ui)j − (µi)j
c

> 0}, I ih := J \ Aih for i ∈ {1, ..., N}
and using the the same principles as in the scalar case, one derives for the func-

tion Hi((ui)j, (µi)j) the slanting function Gi((ui)j, (µi)j) = (−c, 0) for j ∈ Aih and

Gi((ui)j, (µi)j) = (0, 1) for j ∈ I ih. We now consider the system (3.53) - (3.55) and

Hi((ui)j, (µi)j) = 0 as a problem of finding a root of F (u,µ,λ,Λ) = 0, by using

a semi-smooth Newton method (SSN) (uk+1,µk+1,λk+1,Λk+1) = (uk,µk,λk,Λk)−
G(uk,µk,λk,Λk)−1F (uk,µk,λk,Λk), recalling that u := (u1, ..., uN), µ := (µ1, ..., µN)

and ui, µi are the coefficient vectors of (ui)h, (µi)h.

In order to show local convergence of the semi-smooth Newton method we need to

show invertibility of G in some neighbourhood of a solution to F (u,µ,λ,Λ) = 0.

In order to show the invertibility of G(u,µ,λ,Λ) we need a discrete Poincaré in-

equality: There exists a Poincaré constant cph > 0 such that

(v,v)h ≤ cph(∇v,∇v) ∀v ∈K (3.61)

with K := {v ∈ Sh |
∫
Ω

v = 0,
∑

(vi)j = 0 ∀j ∈ J , vi(pj) = 0 if j ∈ Aih and i ∈

{1, ..., N}}. The Poincaré inequality holds in a more general space than K; in fact

only
∫
Ω

v = 0 is needed. However, as discussed in Remark 2.5.4 the Poincaré constant

in (3.61) can be estimated by the width of the interface rather than the width of

Ω.

To show invertibility we need in addition a discrete analogue of the graph theoretic

argument used in the proof of Theorem 3.2.3. Assume that active and inactive sets

are given. We then choose a graph Eh with vertices {1, ..., N} and edges {(i, l) : ∃j ∈
J s.t. i and l are inactive at j}.

Theorem 3.4.1. Assume that the graph Eh is connected and that

τ(σmax(A)− ε2

cph
) < ε2

γ
(3.62)

where cph is a Poincaré constant. Then the linear mapping G(u,µ,λ,Λ) is invertible

which is equivalent to the unique solvability of (3.58), (3.59).

Proof: We show that the kernel of G(u,µ,λ,Λ) contains only 0. The equation

G(u,µ,λ,Λ)(v,κ,α, β)t = 0 (3.63)
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is equivalent to

ε2

τ
mj(vi)j − γmj

N∑
m=1

wim(vm)j + γε2
∑
l∈J

alj(vi)l −mj(κi)j −mj[αi + βj] = 0,

(3.64)

Gi((ui)j, (µi)j) · ((vi)j, (κi)j) = 0 with Gi((ui)j, (µi)j) :=

{
(−c, 0) for j ∈ Aih,
(0, 1) for j ∈ I ih,

(3.65)∑
j∈J

mj((vi)j − (vN)j) = 0,
N∑
i=1

(vi)j = 0,
N∑
i=1

αi = 0 (3.66)

for i ∈ {1, ..., N} and j ∈ J . Note that αN = −α1 − ...− αN−1.

Equation (3.65) implies vi ≡ 0 on the active set Aih and κi = 0 on I ih for all

i ∈ {1, ..., N}.
To show that v, the coefficient vector of v ∈ Sh, equals 0 we prove that v = 0 is

the unique solution of the quadratic optimisation problem in v on the inactive set

I1 × I2 × ...× IN

min
v∈K

[
ε2

2τ
(v,v)h − γ

2
(Wv,v)h + γε2

2
(∇v,∇v)

]
(3.67)

where the first order necessary conditions are given by (3.63).

We show that (3.67) is a strictly convex minimisation problem. If τ ≤ ε2

γσmax(W )
this

follows immediately. In the other case we need to control (v,v)h on K. Using the

Poincaré inequality (3.61) we obtain

γε2

2
(∇v,∇v) + 1

2
( ε

2

τ
− γσmax(W ))(v,v)h ≥ (γε

2

2
+ 1

2
cph(

ε2

τ
− γσmax(W ))(∇v,∇v) .

Hence, it follows that (3.67) is uniquely solvable if (3.62) holds, and thus v ≡ 0.

Now we show that α = 0. Assume j ∈ I ih ∩ I lh. Using that v ≡ 0 in (3.64) and

(κl)j = (κi)j = 0 we obtain that

mjαi +mjβj = 0,

mjαl +mjβj = 0.

and hence αi = αl for i, l ∈ {1, ..., N − 1}.
Using the assumption that the graph Eh is connected we obtain together with αN =

−α1 − ...− αN−1 that αi = αl for all i, l ∈ {1, ..., N}.
In order to show that β = 0 note that for any j ∈ J there exists an i ∈ {1, ..., N}
such that j ∈ I ih. Using (3.64) and (κi)j = 0 it follows that βj = 0 and since j was
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chosen arbitrarily β = 0 which also gives that κ = 0.

�

Theorem 3.4.2. Assume (uh,µh,λh,Λh) is a solution of the discrete Allen-Cahn

problem (3.53) - (3.57). Assume that the inactive sets Î ih = {j ∈ J : (ui)h(pj) > 0}
are connected and assume that τ < ε2

γσmax(W )
. Then (PDAS-I) converges locally in a

neighbourhood of (uh,µh,λh,Λh).

Proof: We choose a neighbourhood of (uh,µh,λh,Λh) such that the corresponding

inactive sets are all connected. This is possible if we guarantee that all j ∈ Î ih
remain active in the neighbourhood. Now Theorem 3.4.1 guarantees invertibility of

G in this neighbourhood. Since only finitely many constellations with active sets

are possible we can deduce that G−1 is uniformly bounded in this neighbourhood.

Hence Theorem 1.1 in [72] now gives the local convergence result. �

Remark 3.4.3. i) Taking into account Theorem 3.2.3 we can fulfil the assumption

of Theorem 3.4.1 if h is sufficiently small. In practice we only need to ensure that

there are enough mesh points on the interface.

ii) Of course the condition on the time-step in Theorem 3.4.2 can be relaxed taking

Theorem 3.4.1 into account. As the Poincaré constants of all possible active sets in

the neighbourhood would enter into a precise assumption, we did not state such a

result in a precise way.

3.5 Numerical tests and discussion

In this section we discuss some computational results. In Subsection 3.5.1 we con-

sider problems where the explicit solution is known. We compare our numerical

solutions to the exact sharp interface solutions and we discuss some properties of

our method. In particular we show that the number of Newton iterations is mesh

independent and it does not depend on the number of phases N .

In Subsection 3.5.2 we present some numerical simulations in two and three space

dimensions including grain growth and soap bubble configurations.

For the implementation we used again the finite element toolbox ALBERTA 2.0 (see

Schmidt and Siebert [108]) for adaptivity and we use the same refinement strategy

as for the scalar case. Elements are marked for refinement if 0 < (un−1
h )i < 1 for

i = {1, ..., N}.
For the computations in two space dimensions we take the minimal diameter of all

elements hmin = 1
256

and the maximal diameter hmax = 1
16

, unless otherwise stated.

Furthermore, we set the interfacial parameters ε = 1
16π

, γ = 1 and we choose the

domain Ω = (−1, 1)2 (with the exception of the corner bubbles computations where
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Figure 3.1: Exact and approximate radii for time-step τ = 2 · 10−3 (left) and τ =
1 · 10−4 (right).

Ω is triangular). For the time-step we take τ = 1 · 10−4 unless otherwise stated.

For computations in three space dimensions we take Ω = (−1, 1)3, ε = 1
12π

, γ = 1,

hmin = 1
128

, and hmax = 1
8
. This is necessary due to memory restrictions. The matrix

W in the multi-obstacle potential term is set to be the identity matrix.

3.5.1 Comparison with analytically known solutions

Local vector-valued Allen-Cahn

In this subsection we compare the numerical approximations obtained by using the

PDAS-method to exact sharp interface solutions. We consider circles for which the

radius R(t) at time t is given by the ODE d
dt
R(t) = − 1

R(t)
, R(0) = 0.4 [25].

We set N = 3, i.e. three phases are present, and take the simple problem of two

shrinking circles with initial radii R(0) = 0.4 and centres (−0.5, 0) and (0.5, 0).

Two order parameters (uh)1 and (uh)2 are each set to be 1 on one circle and 0

anywhere else. The third order parameter (u3)h is 1 outside the circles and 0 inside.

We take smooth transition layers of width επ. Both circles shrink with the same

velocity − 1
R(t)

. We calculate the radius of the approximate solution in each time-

step by taking the intersection of the 0.5-level set of (u1)h and (u2)h and the x1-axis.

Figure 3.1 shows a plot of the exact and approximate radius for two timestep sizes

τ = 2 · 10−3 and τ = 1 · 10−4. The two circles shrink with exactly the same velocity

and hence we only present the radius of one of the circles. Between t = 0 and

t = 0.03 the approximation is very accurate, it only deteriorates when the radius

of the circle is less than 0.2 and a singularity (i.e. high curvature when the circle

is about to disappear) is approached. There is hardly any difference between the

two time-steps, so we can choose the larger time-step which is more efficient. Even

larger time-steps can be chosen, but the approximations deteriorate especially when

the curvature, and hence the velocity of the interface, is higher. For a noticeable

improvement of the approximation we need to take a finer mesh size on the interface.

If we half the minimal diameter the approximation remains accurate even when the

circle becomes very small.

As before we cannot show analytically that the number of PDAS iterations is mesh
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independent. However, in our application a good initial data on the current time-

step is given from the solution of the previous time-step. Therefore, mesh independ-

ence is only of interest if both element size h and also time-step τ are driven to 0.

We use a uniform mesh with element size h and the same initial data as previously

stated. Table 3.1 shows that when h and τ both are decreased simultaneously, the

number of PDAS iterations remains stable.

τ h DOFs PDAS-iter.
1 · 10−3 1/128 66049 4.77

2.5 · 10−4 1/256 263169 4.86
6.25 · 10−5 1/512 1050625 4.70

1.5625 · 10−5 1/1024 319230 1 4.57

Table 3.1: Average number of PDAS iterations up to t = 0.03 for varying mesh and
time-step sizes.

In the next computation we examine the number of PDAS-iterations for increasing

phases N . We take circles of radii 0.3 and position them such that they do not

intersect. For 3 order parameters we take two circles (one phase for each circle and

one phase outside the circles); for N = 4 we take three circles, and so on up to N = 7

where six circles are needed. Moreover, we consider N = 2 (one circle) for the vector-

valued Allen-Cahn equation with two order parameters and the scalar Allen-Cahn

equation. In this case the scalar equation is obtained by taking u2 = 1− u1. Figure

3.2 shows the average number of PDAS-iterations for t between 0 and 0.04 with fixed

timestep size τ = 1 · 10−4. For N = 1 and N = 2 the number of PDAS-iterations is

considerably lower than for larger N . This could be because both order parameters

are inactive on the interface. For larger N we have that two order parameters are

inactive on each of the interfaces whilst the other order parameters are active (i.e.

they are zero). For N ≥ 3 the average number of PDAS-iterations remains almost

stable. We conclude that the number of PDAS-iterations is driven by the change of

the active and inactive sets only, while the number of phases does not seem to make

much difference.

The computations thus far did not contain any triple points. In the next compu-

tation we consider a three phase system and we calculate the evolution of a triple

junction. As initial configuration we choose a T-shaped triple junction. This config-

uration violates the 120◦ angle condition also known as Young’s law [119]. In Figure

3.3 we show the evolution of the T-shape. Very quickly the 120◦ angle condition is

attained and the shape of the interfaces starts to change, approaching a constantly

transported profile. Finally the horizontal interface disappears and two of the phases

shrink to the corners of the domain and will disappear.

1Due to memory restrictions an adaptive mesh was used with hmin = h
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Figure 3.2: Average number of PDAS-iterations for increasing number of phases N

For the sharp interface problem, the constantly transported profile can be construc-

ted explicitely, see [59]. Figure 3.4 shows the calculated transport velocities of the

interface for different values on the y-axis and we see that they converge to the ve-

locity of the explicit solution of the sharp interface problem. Note that we consider

the domain Ω = (−1, 1)2 and hence the triple point is at y = 0. A comparison of

the sharp interface profile and the numerical solution at t = 0.5 is shown in Figure

3.5.

t = 0.00 t = 0.05 t = 0.30

t = 2.25 t = 4.25 t = 4.40

Figure 3.3: Evolution of a T-shaped structure using the vector-valued Allen-Cahn
variational inequality.

Non-local vector-valued Allen-Cahn

Now we shall consider the vector-valued Allen-Cahn variational inequality with

volume constraints. In the following we compare the approximation obtained using

the PDAS-method to the exact solution. Therefore, we need a setting where the

exact solution can be calculated analytically. For the scalar non-local Allen-Cahn
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Figure 3.4: Transport velocities of the diffuse interface for different values on the
y-axis compared to the velocity of the constantly transported solution of the sharp
interface problem.

Figure 3.5: Comparison of the simulated interface profile (lower branch in Figure
3.3) with the constantly transported sharp interface solution.

variational inequality we found explicit solutions for the model problem where one

phase occupies two circles of radii r1 and r2. We can use this problem in the case

of N = 3 by considering two decoupled systems, that is four circles that do not

intersect where phase 1 occupies two circles, phase 2 occupies the other two circles

and phase 3 is present outside these four circles, see Figure 3.6. For the first or-

der parameter (blue) we take the initial radii of the two circles to be r1(0) = 0.2

and r2(0) = 0.3 and for the second order parameter (red) we take r3(0) = 0.4 and

r2(0) = 0.25. The exact sharp interface solution to this problem is given by the

following system of ODEs: r′i = − 1
ri

+ 2
r1+r2

for i = 1, 2 and r′i = − 1
ri

+ 2
r3+r4

for

i = 3, 4. Figure 3.7 shows the approximate solution and the exact solution for the

two big circles for two different time-steps τ = 1 · 10−3 and τ = 1 · 10−4. The beha-

viour of the two small circles is essentially the same and therefore omitted. For both

time-steps the approximations are very good, even better than the ones without

volume conservation. This is to be expected since the volume constraints slow down

the speed at which the interfaces move. Larger time-steps can also be taken as long

as the curvature does not become too big.
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Figure 3.6: Initial configuration for vector-valued Allen-Cahn (N = 3) with volume
constraints for comparison with explicitely known solutions.
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Figure 3.7: Exact and approximate radii for time-step τ = 2 · 10−3 (left) and τ =
1 · 10−4 (right).
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3.5.2 Numerical simulations

Evolution of cellular structures

The vector-valued Allen-Cahn equation without volume constraints can be used to

simulate the evolution of cellular structures in foams. Cellular structures occur

naturally for example in biological tissue or polycrystalline metals, but also beer

froth or washing up foam. In the early 1950’s John von Neumann proved that in

two dimensional foams, grains with more than six neighbours grow, those with less

than six neighbours shrink and those with exactly six neighbours neither grow nor

shrink, although they can change their shape. In particular, von Neumann proved

the following law for the change of the area A of one bubble

dA

dt
= −2πMα

(
1− n

6

)
where M and α are constants describing mobility and surface tension of the bubble,

and n is the number of its neighbours [115].

For the computation in Figure 3.8 we use a Voronoi partitioning algorithm [6] to

randomly fill the two dimensional computational domain. We use 30 order para-

meters for this computation. At the beginning of the computation cell edges are

not smooth and angle conditions are not fulfilled, but already at time t = 0.004

the partitioning can be viewed as a foam. For inner cells we observe that they be-

have according to von Neumann’s law, see Figure 3.8. This computation could also

describe grain growth evolution. Each of the 30 phases describes a different orienta-

tional variant in a crystalline material. Of course, when computing grain growth it

is more appropriate to have less phases and more grains with the same orientation.

t = 0.001 t = 0.004 t = 0.040 t = 0.080

t = 0.150 t = 0.200 t = 0.600 t = 1.000

Figure 3.8: Vector-valued Allen-Cahn equation with Voronoi partitioning as initial
data (30 order parameters).
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t = 0.001 t = 0.010 t = 0.025

t = 0.050 t = 0.200 t = 1.000

Figure 3.9: Double bubble; vector-valued Allen-Cahn with volume constraints, 3
order parameters.

Soap bubble configurations

In nature, soap bubble configurations enclose and separate several regions of space.

They have fixed volumes and tend to minimise the total surface area. This obser-

vation leads to the following basic problem: How can one enclose and separate n

regions of R3 having volumes v1, v2, ..., vn with the smallest possible surface area.

For n = 1, i.e. a single region it is well known that a sphere is the optimal configur-

ation. It has been shown that for two regions the optimal configuration is a double

bubble [75].

We can use the vector-valued non-local Allen-Cahn equation to model soap bubble

configurations. Due to the volume constraints the regions to be separated have fixed

volume whilst the curvature driven motion tends to minimise the surface energy, and

hence the surface area. In the first computation we use three order parameters and

start with a sphere where the left half is occupied by phase 1 and the right half is

occupied by phase 2. We note that first very rapidly the 120◦ angle condition is

attained. Then the two halves gradually move outwards whilst staying attached in

the middle, see Figure 3.9. The movement ends when the steady state, a double

bubble, is reached.

Figure 3.10 shows a similar computation for N = 4. We begin the computations

with a sphere that is divided into three equal spherical wedges. Each of these wedges

is represented by a different phase, i.e. we have three phases in the sphere and one

phase outside. As before, first the angle condition is attained and then the three

parts move until a triple bubble is reached.

We conclude our soup bubble configurations by numerically investigating the results
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t = 0.001 t = 0.010 t = 0.020

t = 0.040 t = 0.100 t = 0.500

Figure 3.10: Triple bubble; vector-valued Allen-Cahn with volume constraints, 4
order parameters.

of Hruska et al. in [74]. This work examines enclosures of two connected regions

in a sector of the Euclidean plane bounded by two rays emanating from a common

point. The authors showed that for given a1, a2 > 0 and a corner of angle θ the

shortest way to enclose and separate connected regions with areas a1 and a2 with a

connected exterior region is either

1. two concentric circles inside the corner with the smaller area closer to the

corner (see Fig. 3.11 left), or

2. a “truncated standard double bubble” inside the corner, consisting of three

circular arcs meeting at a single vertex at angles of 120◦ and meeting the wall

at right angle in three distinct points (see Fig. 3.11 right).

Furthermore, Hruska et al. show that if

θ ≥ θ0 =
a1π

(
√
a1 +

√
a1 + a2 −

√
a2)2

,

then the truncated standard double bubble has shorter perimeter. Note that θ0

has a minimum of π/2 when a1 = a2. There exists also an angle θ1 for which the

concentric circle configuration has the shorter perimeter for all θ < θ1. However, θ1

is not known. It is not known either what happens for θ1 < θ < θ0 and whether

there is a unique angle at which the two configurations have equal perimeter.

We use the vector-valued Allen-Cahn equation with volume-conservation to examine

these theoretical results numerically. Note that both configurations, i.e. the con-

centric circles inside the corner (type 1) and the truncated standard double bubble
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Figure 3.11: Minimising configurations for two bubbles in a corner: two concentric
circles (left) and truncated standard double bubble (right).

Figure 3.12: Two computations for θ = 45◦ and equal areas in the corner leading to
both minimising configurations.

(type 2) are local minima. Starting with either of these configurations as initial

data will lead to a stationary system. Therefore, it is not suitable to start with

one particular shape of the two regions in the corner, since the system will converge

to the local minima which is ‘closer’ to this initial shape. Hence, we take random

initial data in the corner. We fix a triangular domain Ω with one of the angles being

θ. Away from the corner with angle θ the order parameter corresponding to the

exterior phase is set to be 1.0. Close to the corner (in 20 % of the domain Ω) we

set at each mesh point one of the two other order parameters to be 0.99 or 0.01.

We cannot take values 1.0 and 0.0 since the primal-dual active set methods needs

non-empty inactive sets. We vary the ratio of the areas a1 and a2 of the regions

in the corner and the angle θ. Table 3.2 shows which of the two configurations we

obtained. For each angle and area ratio we did three computations in order to make

sure that we are getting the same result independent of the initial data. In two cases

we obtained both configurations during the 3 trials. For these cases we computed 10

trials in total and also looked at the interfacial energy. The interfacial energy was

lower for whatever configuration appeared more often during the 10 trials. Figure

3.12 shows an example where both configurations occurred.

For angles greater than 90◦ we obtained the truncated double bubble for all compu-

tations. For decreasing angles the concentric circle configuration starts to appear;

at first only when the two areas are the same, but for very small angles (about 10◦)

this configuration appears throughout, see also Figure 3.13. In all computations one

of the two configurations was obtained as a steady state.
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angles volume ratios
50:50 30:70 15:85

135◦ type 2 type 2 type 2

90◦ type 2 type 2 type 2

45◦ type 2 2 type 2 type 2

30◦ type 1 3 type 1 type 2

20◦ type 1 type 1 type 2

10◦ type 1 type 1 type 1

Table 3.2: Computations for various angles and volume ratios

Figure 3.13: Minimising configurations obtained for θ = 90◦, 30◦, 10◦ and area ratios
50:50, 30:70, 15:85.

For the concentric circle configuration (type 1) the smaller area should be in the

corner. However, in most of our computation (10 out of 12) we end up with the

larger area in the corner. This is not due to numerical discretisation errors but is

more a problem of mean curvature flow itself, see Figure 3.14. Both concentric circle

configurations are local minima, yet the interfacial energy is lower when the smaller

area is in the corner - which coincides with the theoretical results.

For the truncated double bubble configuration it is conjectured that the larger region

is nestled in the corner [74], but it has not been proved yet. In all our computations

t = 0.000 t = 0.001 t = 0.017 t = 0.033

Figure 3.14: Formation of the concentric circle configuration

2In 7 out of 10 trials we obtained type 2
3In 8 out of 10 trials we obtained type 1
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t = 0.002 t = 0.010 t = 0.021 t = 0.056

Figure 3.15: Three bubbles in the corner for θ = 10◦

t = 0.002 t = 0.025 t = 0.060 t = 0.400

Figure 3.16: Three bubbles in the corner for θ = 90◦

we obtained that the larger region is nestled in the corner.

Thus far only the simple case of two bubbles in the corner has been formally analysed.

Since our computations proved accurate for two bubbles in the corner (with the

exception of the area distribution for the concentric circles) we also computed three

bubbles in the corner. We would expect the configurations to be similar to the ones

for the two bubbles, i.e. three concentric circles when the angle θ is small or some

sort of triple bubble for θ large.

We considered two settings. In the first setting we took θ = 10◦ and the areas of

the three bubbles were set to be equal. As expected we observe that the computed

minimising configuration consists of three concentric circles, see Figure 3.15. In the

second setting we changed θ to be 90◦ (the areas of the three bubbles are the same).

The computations give now a triple bubble configuration consisting of five circular

arcs meeting at two points at angles of 120◦, see Figure 3.16. For each of the two

settings we ran 3 computations all of which lead to the same steady state.
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Chapter 4

Strategies for solving the linear

systems

With the primal-dual active set strategy, which we introduced in Section 2.4.2, we

only need to solve a linear system on the inactive set. This makes the method very

flexible in the sense that various linear algebra solvers can be used. In fact, solving

the linear systems is generally one of the most expensive parts of the computation.

Especially for large time-steps it can take up more than 50% of the computation

time, see Tables 2.1 and 2.2. Hence, the choice of an appropriate solver speeds up

the method and makes it even more competitive.

In this chapter we have a closer look at the linear systems. We consider various solv-

ers, their advantages and disadvantages and we propose a preconditioning strategy.

The scalar and the vector-valued cases are dealt with separately mainly to avoid

confusions. The strategies, however, are very similar.

4.1 Non-local Allen-Cahn variational inequality

We consider the scalar non-local Allen-Cahn problem first, see Chapter 2. Recall

that after introducing active and inactive sets we can rewrite the equations (2.33)

and (2.34) as follows

LI,I LI,A+ LI,A− MI,I 0 0 −mI
LA+,I LA+,A+ LA+,A− 0 MA+,A+ 0 −mA+

LA−,I LA−,A+ LA−,A− 0 0 MA−,A− −mA−
0 0 0 I 0 0 0

0 I 0 0 0 0 0

0 0 I 0 0 0 0

mT
I mT

A+ mT
A+ 0 0 0 0





uI

uA+

uA−

µI

µA+

µA−

λ


=



bI

bA+

bA−

0I
1A+

−1A−
m |Ω|


.
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where L := ( ε
2

τ
− γ)M + ε2γA and b = ε2

τ
Mu(n−1). Given that uA+ = 1, uA− = −1

and µI = 0, this linear system can be reduced to the following form[
LI,I −mI
−mT

I 0

][
uI

λ

]
=

[
bI − LI,A+uA+ − LI,A−uA−
−m |Ω|+mT

A+uA+ +mT
A−uA−

]
. (4.1)

The Lagrange multipliers µ on A± are then given by

MA+,A+µA+ = bA+ − LA+,IuI − LA+,A+uA+ − LA+,A−uA− + λmA+

MA−,A−µA− = bA− − LA−,IuI − LA−,A+uA+ − LA−,A−uA− + λmA− .
(4.2)

For practical purposes we look at the system matrix

K :=

[
L −m
−mT 0

]
(4.3)

as we do not form the matrix LI,I but rather use L and implicitly work only on the

free variables uI . There are mainly two strategies to achieve this. One possibility

is to introduce a bijective mapping from the set of inactive nodes I to the set

{1, ..., nI} where nI is the number of points in I. Using this one can work with

vectors of length nI + 1, and whenever information from the matrix is needed one

can use this mapping. Another possibility is to work with the full matrix and ensure

that all the vector entries corresponding to nodes in A+ and A− are zero at any

time. Let p be a vector with zeroes on the active and inactive nodes and multiply

the matrix K by this vector, i.e.

Kp =


LI,I LI,A+ LI,A− −mI
LA+,I LA+,A+ LA+,A− −mA+

LA−,I LA−,A+ LA−,A− −mA−
mT
I mT

A+ mT
A+ 0




p(1)
I

p
(1)

A+ = 0

p
(1)

A− = 0

p(2)

 . (4.4)

Then it can easily be seen that if we eliminate the entries of Kp corresponding to

the sets A+ and A− working with system (4.3) is a feasible approach. Which of

these strategies one is using depends strongly on the software package. In general,

we have been working with the first approach.

Let us now focus on solving the linear system (4.1). The matrix in this system is

sparse and symmetric. We have shown in Theorem 2.5.3 that this matrix is invertible

if τ(1− ε2

cph
) < ε2

γ
holds. Under the same time-step restriction and using that the mass

matrix M is positive definite and the stiffness matrix A is positive semi-definite it

is also obvious that LI,I and also L are positive definite. Hence, the matrix K is

in so-called saddle point form. There are two classes of solvers for these kinds of
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problems: direct solvers and iterative solvers. Direct solvers are known to perform

extremely well when the dimension of the problem is not too big. Typically, direct

solvers can deal with linear systems with up to 800,000 unknowns. For larger systems

iterative methods have to be employed. The most common iterative solvers are the

so-called Krylov subspace methods. These methods minimise a given quantity over

the Krylov subspace span {r0,Kr0, ...,Kk−1r0} at the current (k-th) iteration where

r0 = b−Kx0. For symmetric positive definite matrices the conjugate gradient (CG)

method minimises the energy norm of the errors. Other Krylov subspace methods for

more general matrices include the minimal residual (MINRES) method, the general

minimal residual (GMRes) method and the (stabilised) BiCG method.

For the standard Allen-Cahn equation without volume conservation we have to

solve the first line of (4.1) with λ = 0. In [107] three solvers for this problem are

considered. The first solver is the SOR which is used mainly to demonstrate that

even when using the same solver the PDAS method is quicker than the projected

SOR method. The second solver is the conjugate gradient method and the last

solver tested is the direct solver UMFPACK [41]. UMFPACK is a set of routines

for solving unsymmetric sparse linear systems. It was originally developed by Davis

and Duff [42] in Fortran; the current version is written in C and it is easy to call

the routines from Alberta. However, UMFPACK requires the whole matrix LI,I

which has to be set in every Newton iteration. The numerical tests in [107] showed

that it depends very strongly on the problem and the parameters which of the three

solvers performs best. In general, for small time-steps, iterative solvers like SOR

and CG perform better, since they can take advantage of a good initial guess which

is provided by the previous Newton iteration. For larger time-steps quite often

UMFPACK was found to be the quickest solver. The research into sparse direct

solvers is much more advanced than for iterative solvers and hence good solvers

are available. One drawback of direct solvers is that they cannot deal with large

problems. For computations in three space dimensions UMFPACK cannot be used.

In [107] the CG method was used rather inefficiently. In order to use the ALBERTA

built-in CG solver the system matrix was changed to be the “identity” matrix (i.e.

the diagonal entry was set to equal 1 and all the other entries were set to 0) for active

rows. For inactive rows the system matrix remained unchanged. Active nodes in

the right hand side vector were treated like a Dirichlet boundary and were set to

1 and −1. The problem with this approach is that the system matrix needs to be

assembled for each Newton iteration which is of course expensive.

We have found another way to use the built-in ALBERTA solvers. It turns out that

one only has to modify the matrix-vector multiplication such that only LI,IuI is

considered. The right hand side vector and the vector for the initial guess also need

to be modified such that they are vectors of length nI and then a bijective mapping
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can be used to obtain the ‘correct’ vector u. With this strategy the following solvers

from the OEM library can be used: conjugate gradient (for symmetric positive def-

inite systems), stabilised BiCG (for non-symmetric system matrices), GMRes (for

regular system matrices), method of orthogonal directions (for symmetric positive

system matrices), and method of orthogonal residuals (for symmetric systems). For

the standard Allen-Cahn variational inequality without volume constraints we found

that the conjugate gradient method performed best. For the shrinking circle prob-

lem with ε = 1
16π
, τ = 1 · 10−3, hmin = 1

16
, hmax = 1

256
and T = 0.1 the following

computation times in seconds were obtained: 39.75 for CG, 51.38 for BiCG, 70.33

for GMRes with 0 restarts. The method of orthogonal directions cannot be used

since the system matrix has negative elements and the method of orthogonal resid-

uals does not seem to give good results for this time-step. Even if the tolerance for

the norm of the residual is taken to be extremely small (10−20) the system is still

solved very inaccurately and leads to very poor approximations. One reason might

be that the norm used is inappropriate for our sort of problem. It is to be expected

that for symmetric positive matrices CG performs better than the other two Krylov

subspace methods. For comparison, the UMFPACK solver needed 38.66 seconds

for this computation. However, for smaller time-steps CG performs better than the

direct solver UMFPACK and it also works for large problems.

Based on these experiences we suggest to use Krylov subspace solvers, especially for

large problems. The conjugate gradient method should only be used for symmetric

positive matrices. For indefinite matrices, such as in (4.1), we found that CG still

worked extremely well, but there is a small chance that it might not work. For

indefinite symmetric matrices the minimal residual method (MINRES) is the Krylov

subspace solver of choice. It minimises the Euclidean norm of the residual rk =

b − Kuk. Compared to the conjugate gradient method MINRES only requires two

extra vector operations in an iteration. We shall briefly investigate computation

times for the various solvers. We use an ellipse with major diameter 1.4 and minor

diameter 0.8 and we use the following set of parameters: ε = 1
16π
, τ = 1·10−3, hmin =

1
16
, hmax = 1

256
and T = 0.02. The following computation times in seconds were

obtained for the ALBERTA solvers: 27.99 for CG, 35.67 for BiCGStab and 69.22

for GMRes without restart. Using the direct solver UMFPACK the computation

time was 28.21, hence almost the same as CG. However, even though the conjugate

gradients seems to work very well for this problem, one should bear in mind that

it might fail. The solver MINRES needed 29.66 seconds for this computation. This

solver is easy to implement and we programmed it in such a way that it only uses

vectors of length nI + 1. The computation time for MINRES is pretty much the

same as for CG and UMFPACK, thus MINRES should be a good choice for a robust

solver which can also deal with large problems.
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The convergence behaviour of iterative schemes usually depends on the conditioning

of the problem and the clustering of the eigenvalues. Hence one may attempt to

transform the linear system into one that is equivalent, in the sense that it gives the

same solution, but has more favourable spectral properties, i.e. a smaller condition

number. Such a transformation is achieved by using a preconditioner. For instance,

if a matrix P approximates the coefficient matrix K in some way, the transformed

system P−1Kx = P−1b has the same solution as the original system Kx = b. For

a good choice of P the condition number of P−1K is smaller than the one of K and

hence the preconditioned system may be solved more efficiently.

Therefore, we will analyse the linear system (4.3) with respect to preconditioning.

For the ALBERTA built-in solvers there are three preconditioning strategies avail-

able: diagonal preconditioning, hierarchical basis preconditioning and BPX (mul-

tilevel preconditioner developed by Bramble, Pasciak and Xu). However, none of

these preconditioners seemed to speed up computations.

The linear equation (4.3) is in saddle point form which is known to arise in a variety

of applications [14] and has been studied in detail for example in [14, 51]. A common

ansatz for preconditioning a saddle point matrix of this form is given in [91]. Here

the preconditioning matrix is given by

P =

[
L 0

0T S

]

where S is the Schur complement −mTL−1m. The authors showed that for this

choice of ‘exact’ preconditioner the preconditioned system P−1K has at most three

distinct eigenvalues if P−1K is nonsingular.

However, we would like to avoid the approximation of S. Therefore, let us for the

moment assume that the preconditioner for (4.3) is given by

PBD =

[
L 0

0T 1

]
. (4.5)

Assuming that

(
λ,

[
v1

v2

])
represents an eigenpair of the preconditioned saddle

point matrix K, that means P−1
BDK, we get

Lv1 −mv2 = λLv1 (4.6)

−mTv1 = λv2. (4.7)

If λ = 1 then from (4.6) we get that −mv2 = 0 which means that v2 = 0 and hence

(4.7) becomes −mTv1 = 0, i.e. the hyperplane given by m⊥ is the eigenspace of
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λ = 1. As m ∈ RJ has a J − 1 dimensional kernel we obtain that the multiplicity of

1 is J − 1. Now, for λ 6= 1 equation (4.6) gives that

v1 =
1

1− λ
L−1mv2

and by putting this into (4.7) we obtain

− 1

1− λ
mTL−1mv2 = λv2.

Assuming now that σ is the eigenvalue of the Schur complement mTL−1m of K we

get

λ1 =
1

2
+

√
1

4
+ σ and λ2 =

1

2
−
√

1

4
+ σ

for the remaining two eigenvalues. This analysis indicates that for the Allen-Cahn

variational inequality with volume constraint the preconditioning of the (1, 1) block

of K is crucial as it can result in a clustering of the eigenvalues that guarantees fast

convergence. Thus, we will only focus on efficient preconditioning strategies for the

Allen-Cahn equation and then consider a preconditioner

PBD =

[
A0 0

0T 1

]
(4.8)

where A0 approximates the Allen-Cahn block. If one is willing to approximate the

Schur complement −mTL−1m of K techniques presented by Golub and Meurant in

[64] can be used.

For the preconditioning of the Allen-Cahn block L we propose using algebraic mul-

tigrid (AMG). Multigrid methods use two complementary processes: smoothing and

coarse-grid correction. Smoothing involves the application of a smoother which is

in general a simple iterative method like Gauss-Seidel. Coarse-grid correction in-

volves transferring information to a coarser grid and solving the coarse-grid system

of equations. The solution is transferred back onto the fine grid through interpola-

tion. This is a two-grid scheme. Multigrid methods are based on the recursive use of

this two-grid scheme. A V-cycle multigrid method is obtained when the coarse prob-

lem is solved approximately with one iteration of the two-grid scheme on that level,

and so on, until the coarsest level is reached on which the system is solved up to a

given tolerance. The algebraic multigrid method [27, 106] was introduced for solving

linear systems based on geometric multigrid principles, but in a way that only uses

algebraic information. Typically, AMG methods exhibit geometric multigrid-like

properties. When dealing with complicated geometries and meshes the algebraic

multigrid tends to perform better than the geometric multigrid. An introduction to
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AMG and the various AMG methods can be found in [55]. In our problems we solve

the linear system (4.3) only on the interface and for some problems this domain can

be quite complicated.

We have found now a promising preconditioner for the system matrix (4.3). Together

with the Krylov subspace solver MINRES this should be a good choice of solver.

We shall now demonstrate efficiency of this solver and preconditioner.

For the algebraic multigrid solver we used the ML package [63] which is available as

part of Trilinos [71]. It can be used independently of Trilinos and the user only needs

to provide two functions, one function for matrix-vector multiplication and another

function that reads out the positions and the values of non-zero entries for given

rows. This makes the package quite easy to use. Unfortunately, it also means that

the ML routines need to get all the information from ALBERTA and there are many

calls of the second function necessary, about two to three times as many as degrees

of freedom. This makes the AMG less efficient and therefore we also considered

an implementation where other packages of Trilinos are used as well. The system

matrix L needs to be stored in CRS (compressed row storage) form and then the

AMG routine can be used. The disadvantage is of course that we need memory for

an additional matrix but on the other hand once we have the matrix all the work is

done within Trilinos and we saved computation time by not communicating between

software packages. We found that this approach was quicker than the first one, but

one drawback is the additional memory required. This is especially the case for

large problems. At this point one might be better off using a different software to

ALBERTA. One big disadvantage of ALBERTA is that it uses its own DOF MATRIX

structure, which is very similar to the commonly used CRS structure, but cannot

be used directly. Other finite element software packages work with more general

matrix structures and hence it is easier to include additional software packages.

We apply AMG to the whole matrix L and then we only use the entries of the solution

vector corresponding to I. Thus the preconditioner only needs to be initialised once

per time-step. For one application of the preconditioner we use in general five

Gauss-Seidel smoothing steps [1] and one V-cycle.

We consider the following two dimensional test problem where the order parameter

is initialised with random values between −0.1 and 0.1, see also Figure 2.4. We set

ε = 1
16π

and γ = 1 and we take the following discretisation parameters: τ = 1 · 10−4,

hmin = 1
512

, and hmax = 1
16

. Furthermore, we set the tolerance for MINRES to 10−9.

Figure 4.1 shows the average number of MINRES iterations per Newton iteration for

the first 30 time-steps. Note that for the first 25 time-steps all nodes are inactive and

hence only one Newton iteration is needed for each time-step. During this period

the preconditioning works very well, reducing MINRES iterations up to a factor

of 10. When bulk regions are present the average number of MINRES iterations
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drops considerably when no preconditioning is used. Since more Newton iterations

are needed (here we had around 10 Newton iterations per time-step) a good initial

guess is provided for the second and all the following Newton iterations from the

previous Newton iteration. Hence the average number of MINRES iterations is

much lower. When preconditioning is used the average number of Newton iterations

goes up slightly when the bulk regions have formed. This is due to the presence of

active nodes. Recall that we approximate L−1
I,I by using AMG for the whole matrix

L and then only consider inactive nodes of the solution vector. It is to be expected

that this type of preconditioning will work better when LI,I = L. Nevertheless, the

reduction in iterations is still substantial. Less than a third MINRES iterations are

needed on average when a preconditioner is used.
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Figure 4.1: Average number of MINRES iterations for random data computation

Figure 4.2 shows the computation times for this problem. There is not much differ-

ence in computation times when preconditioning is used. For the first 20 iterations

preconditioning reduces processing times, however, after bulk regions have been

formed preconditioning fails to speed up computations. This indicates that the

computational costs for initialising and applying AMG are too high compared to

the costs for additional MINRES iterations.

There are situations where preconditioning will help. For example when using a

uniform mesh AMG only needs to be initialised once at the beginning of the compu-

tation. Preconditioning should then speed up computations. Also, one might choose

to use preconditioning only in the first few Newton iterations in each time-step.

For subsequent Newton iterations good initial guesses should reduce the number of

MINRES iterations already.

Moreover, using a different software package where AMG is already built-in or can

be used more efficiently will also speed up computations with preconditioning.
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Figure 4.2: Computation times for random data computation with and without
preconditioning.

4.2 Non-local vector-valued Allen-Cahn variational

inequality

Now we consider the vector-valued non-local Allen-Cahn problem from Chapter

3. For simplicity we will only consider the case where W is the identity matrix.

Without loss of generality we consider only 3 phases, i.e. N = 3. The generalisation

is straight forward and all the ideas can be applied to arbitrarily many phases. After

introducing active and inactive sets the equations (3.58) and (3.59) can be written

as

LI1,I1 0 0 −MI1,: −mI1 0

0 LI2,I2 0 −MI2,: 0 −mI2
0 0 LI3,I3 −MI3,: mI3 mI3

−M:,I1 −M:,I2 −M:,I3 0 0 0

−mT
I1 0T mT

I3 0T 0 0

0T −mT
I2 mT

I3 0T 0 0





(u1)I1
(u2)I2
(u3)I3

Λ

λ1

λ2


=



(
ε2

τ Mu
(n−1)
1

)
I1(

ε2

τ Mu
(n−1)
2

)
I2(

ε2

τ Mu
(n−1)
3

)
I3

−m
(m3 −m1) |Ω|
(m3 −m2) |Ω|


.

(4.9)

For a different choice of W the first 3 by 3 block changes and might loose the diag-

onal structure but it remains symmetric.

The system matrix in (4.9) is symmetric and indefinite and it is invertible under the

stated time-step restriction. Finding a suitable solver is harder in this case. The

conjugate gradient method does not work in most cases and/or is very inefficient.

The direct solver UMFPACK can deal with smaller problems, i.e. two dimensional

problems with N not too big. For larger problems we choose again MINRES as

our preferred solver. For the vector-valued case the system matrix is much more

complicated and a suitable preconditioning will help to speed up convergence.

We focus now on preconditioning. Since we do not want to compute a new precon-

ditioner in every Newton iteration we work again with the ‘full’ matrix. Using that
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(ui)Ai = 0 and (µi)Ii = 0 for i ∈ {1, ..., N} the system (4.9) becomes



L 0 0 −M −m 0

0 L 0 −M 0 −m
0 0 L −M m m

−MT −MT −MT 0 0 0

−mT 0T mT 0T 0 0

0T −mT mT 0T 0 0





u1

u2

u3

Λ

λ1

λ2


=



Mµ1 + ε2

τ
Mu

(k−1)
1

Mµ2 + ε2

τ
Mu

(k−1)
2

Mµ3 + ε2

τ
Mu

(k−1)
3

−m
(m3 −m1) |Ω|
(m3 −m2) |Ω|


(4.10)

As in the scalar case we work implicitly only on the free variables given in (4.9).

The variables (µi)Ai are then determined by the first three lines. The system matrix

in (4.10) is denoted by Kvv for the remainder of this section.

First, we note that Kvv is a saddle-point problem. In order to obtain a classical 2×2

saddle-point problem we have to decide how to split Kvv. We propose the following

splitting

B =


L 0 0 −M
0 L 0 −M
0 0 L −M
−MT −MT −MT 0

 and C =

[
−mT 0T mT

0T −mT mT

]
(4.11)

which we motivate by the following eigenvalue analysis. Assume that (λ,v) is an

eigenpair of the preconditioned problem P−1
vv Kvv[

B CT

C 0

]
v = λ

[
B 0

0 I

]
v (4.12)

where the matrix on the right hand side of the equation is the preconditioner Pvv.
Similar to the scalar case one can show [78, 91, 110] that there are nN−r eigenvalues

at 1, where r is the rank of the matrix C and nN is the size of the matrix B, or

more precisely nN = (N + 1)J . For N = 3, C obviously has rank 2 and hence

nN − 2 eigenvalues can be found at 1. The remaining 4 eigenvalues can be found

based on the eigenvalues of the Schur complement CB−1CT . Since in our case

nN � 2, we will not focus on a Schur complement approximation but rather on a

good preconditioner for the block B. A good preconditioner for Kvv is hence

Pvv =

[
B 0

0 I

]
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and depends strongly on a good preconditioner for B. As B itself is of saddle point

structure we need to devise an appropriate preconditioner. Again it is important to

choose the splitting of

B =


L 0 0 −M
0 L 0 −M
0 0 L −M
−MT −MT −MT 0


carefully and we suggest to take the block-diagonal matrix diag(L,L, L) as the B̃

block and the “skinny” matrix C̃ is given by
[
−MT −MT −MT

]
to reveal the

following 2× 2 saddle point matrix

B =

[
B̃ C̃T

C̃ 0

]
.

As mentioned before a preconditioner of B can be built from a good approximation

of B̃ and of the Schur complement S of B, see page 68. B̃ is a block diagonal

matrix containing Allen-Cahn equations and hence we can use an algebraic multigrid

preconditioner for each of these blocks. Note that since we apply the preconditioner

onto the whole matrix L and then modify the entries corresponding to active nodes,

we only need to initialise the preconditioner once in each time-step.

Next we need to approximate the Schur complement of B, which for N phases is

given by

S = N(MTL−1M)

However, when used with the active set method the individual matrices M and L

might be of different size. Nevertheless, the goal for the Schur complement is to

approximate the term MTL−1M as accurately as possible. For now, we will look at

(MTL−1M)−1 = (
ε2

τ
− γ)M−T + ε2γM−1AM−T

which represents the application of the inverse of the exact Schur complement. Note

that in a Krylov subspace solver only the action of matrices is required. For the

above example this means that all we need to do is approximate the inverse of the

mass matrix which in our case is a diagonal matrix.

We will use the MINRES method together with this preconditioning strategy and

show some numerical results. For the AMG preconditioner we use again 5 Gauss-

Seidel smoothing steps and 1 V-cycle.

First, we consider a two dimensional test problem where the order parameters are

initialised with random values between 0 and 1 such that the sum constraint is
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fulfilled and the volume constraints are roughly m1 = 0.4,m2 = 0.2,m3 = 0.4. We

take the following set of parameters ε = 1
16π

, γ = 1, τ = 1 · 10−4, hmin = 1
256

, and

hmax = 1
16

. Furthermore, we set the tolerance for MINRES to 10−10. Figure 4.3

shows the average number of MINRES iterations per Newton iteration for the first

300 time-steps. As in the scalar case, at the beginning of the computation all nodes

are inactive and only one Newton iteration is performed in each time-step. However,

after only 6 time-steps we obtain non-empty active sets and the number of Newton

iterations increases gradually. The difference in the averages of MINRES iterations

with and without preconditioning is substantial at all times; however, it is again

larger at the beginning of the computation when the initial value for MINRES is

not too close to the solution.
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Figure 4.3: Average number of MINRES iterations for vector-valued random data
computation

Figure 4.4 shows the computation times for this problem. With preconditioning

the computation times are reduced by a factor of 3 or 4. The reduction is larger

at the beginning of the computation when the iteration numbers are reduced more

efficiently, but even later in the computation the preconditioning still speeds up

computations.

For the second computation we use a three phase system consisting of two ellipses.

The first two order parameters are each set to be 1 on one ellipse and 0 elsewhere.

The interface is modelled to have a thickness of πε and the third order parameter is

set such that the sum equates to 1 in each mesh point. The two ellipses are centred

at (−0.4, 0) and (0.4, 0) and have major axes of 0.4 and 0.3 and minor axes of 0.15

and 0.2 respectively. As before we take ε = 1
16π

, γ = 1, τ = 1 · 10−4, and we use

an adaptive mesh with hmin = 1
512

and hmax = 1
16

which gives about 64000 mesh

points. The tolerance for MINRES is set to be 10−10 as in the previous example.
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Figure 4.4: Computation times for vector-valued random data computation with
and without preconditioning.

For this computation we use 10 steps of the Chebyshev smoother [1] rather than 5

Gauss-Seidel smoother steps. The Chebyshev smoother is rather cheap to apply and

the preconditioning results obtained are very good. Figure 4.5 shows the average

number of MINRES iterations per Newton iteration for the first 50 time-steps. The

reduction in the number of iterations for the computation with preconditioning is

always more than 10 times lower than without preconditioning. The computation

time also reduces substantially when preconditioning is used, see Figure 4.6.
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Figure 4.5: Average number of MINRES iterations for vector-valued volume con-
served Allen-Cahn with ellipses as initial data.

In [22] computations were carried out using the software deal.II which comes with

an interface for using the Trilinos library. The results were very similar, how-

ever, the differences in the computation times between preconditioned and non-

preconditioned computations were slightly larger. Especially for three dimensional

examples preconditioning reduced the computation time to about 25% of the unpre-
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Figure 4.6: Computation times for the 2D computation of two ellipses with and
without preconditioning.

conditioned computation. With ALBERTA we did not manage use AMG for three

dimensional computations since the matrix that needs to be copied into CRS format

requires too much storage.

In this chapter we have only presented a few computations. In conclusion, we have

found that MINRES preforms very well. For the scalar Allen-Cahn problem it is

not strictly necessary to use preconditioning as the number of MINRES iterations is

relatively low due to good initial data provided by the previous Newton iteration. For

the vector-valued Allen-Cahn equation preconditioning becomes more important.

Especially for large problems, e.g. very large number of mesh points or large number

of phases, the preconditioning strategy proposed in this chapter reduces computation

times significantly. Depending on the problem under consideration one can work out

the best strategy for solving the linear system.
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Chapter 5

Applications

The phase field model was first introduced to address problems in materials science.

More recently it has been used in various other fields including biology, geology and

image processing. In this chapter we focus on three extensions of the classical phase

field model. First, we consider an application to problems in structural topology

optimisation where the non-local Allen-Cahn equation is coupled to a linear elasticity

equation. Second, we introduce anisotropy to the model. This is an important

feature for applications in materials science since most materials exhibit anisotropic

behaviour. Finally, we use the Allen-Cahn equation to solve problems in image

processing. We discuss image segmentation and denoising of grayscale and colour

images and image inpainting for binary and grayscale images.

5.1 Structural topology optimisation

Structural topology optimisation denotes problems of finding optimal material dis-

tributions in a given design domain subject to certain criteria. It has become a

standard tool of engineering design, in particular in structural mechanics, see e.g.

[13]. There are two different problems of importance: (a) the maximisation of ma-

terial stiffness at given mass, and (b) the minimisation of mass while keeping a

certain stiffness. We consider only the first approach which is known as the minimal

compliance problem and is today well understood with respect to its mathemat-

ical formulation, see [2] for an overview. Various successful numerical techniques

have been proposed which rely on sensitivity analysis, mathematical programming,

homogenisation, see [13] for an overview, or more recently on level-set and phase

field methods [3, 116]. While level-set methods have become an accepted tool in

structural topology optimisation, the use of phase field methods in this field has not

yet become popular. There are only a few approaches considered, see [116, 30, 111].

These approaches use the Cahn-Hilliard equation which is obtained by taking the

H−1 gradient flow of the Ginzburg-Landau energy (1.1). This is a fourth order
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equation and hence the computational costs of solving this equation are very high.

We use the volume conserved Allen-Cahn equation which is easier to solve and gives

results that are very similar to the ones obtained using the Cahn-Hilliard equation.

5.1.1 Phase field formulation

We consider a structural topology optimisation problem of a statically loaded linear

elastic structure. The goal is to compute the material distribution in a given bounded

design domain Ω ⊂ Rd.

The material distribution is described by the phase field variable u which is 1 in the

void and −1 if material is present. We prescribe a given mass by using the volume

constraint
∫
Ω

− u = m where m ∈ (−1, 1) . We now assume a linear elastic material

with an elasticity tensor C1 and we model the void with a very small elasticity tensor

C2 where we later choose C2 = ε2C1 but other choices are possible. In the interfacial

region we interpolate the elastic properties and set

C(u) = C1 + 1
2
(1 + u)(C2 − C1) .

We now denote by v : Ω→ Rd the displacement vector and by E(v) := 1
2
(∇v+∇vt)

the strain tensor. Assuming that the outer forces are given by a linear functional

F on the Sobolev space H1 := H1(Ω)d the goal in classical structural topology

optimisation is to minimise the mean compliance F (v) subject to
∫
Ω

− u(x)dx = m

and

〈E(v), E(η)〉C(u) = F (η) (5.1)

which has to hold for all η ∈ H1(Ω) such that η = 0 on a given non-empty Dirichlet

boundary ΓD. Here we use the notation

〈A,B〉C :=
∫
Ω

A : CB

where the :–product of matrices G and H is given as G : H :=
∑d

i,j=1 GijHij.

The outer forces F can be given for example by a boundary traction on ΓF ⊂ ∂Ω\ΓD
and in this case we have

F (η) =

∫
ΓF

f · η (5.2)

where f : ΓF → Rd describes outer forces acting on the structure. The strong



5.1. Structural topology optimisation 80

formulation of (5.1) with F of the form (5.2) is now given as

−∇ · [C(u)E(v)] = 0 in Ω ,

v = 0 on ΓD ,

[C(u)E(v)] · ν = f on ΓF ,

[C(u)E(v)] · ν = 0 on ∂Ω \ (ΓD ∪ FF ) .

In the above formulation the problem is ill-posed and unwanted checkerboard pat-

terns and mesh dependencies are well-known phenomena, see [109].

A possible regularisation is to add a perimeter penalisation to the functional which

penalises length for d = 2 and area if d = 3 for the interface between material

and void. This regularisation in particular avoids checkerboard patterns if spatial

discretisation parameters tend to zero, see [70, 96].

In phase field approaches such a penalisation can be modelled with the help of the

Ginzburg-Landau energy E(u), see (1.1). It is well known that this energy converges

to a scalar multiple of the perimeter functional, see [89].

We now want to solve

min J(u,v) := E(u) + F (v) (5.3)

subject to (5.1) and
∫
Ω

− u(x)dx = m. For a given u we can compute a unique v(u)

with v(u) = 0 on ΓD which solves (5.1). We can hence consider the reduced problem

min Ĵ(u) subject to
∫
Ω

− u(x)dx = m (5.4)

with the reduced functional

Ĵ(u) := J(u,v(u)) .

In order to compute the first variation of the reduced functional Ĵ we apply a formal

Lagrange approach, see e.g. Hinze et al. [73]. We therefore introduce the adjoint

variable p : Ω→ Rd and define the Lagrangian

L(u,v,p) := E(u) + F (v)− 〈E(v), E(p)〉C(u) + F (p) .

We now seek stationary states (u,v,p) of L. If the first variation for (u,v,p)

vanishes we observe that v and p both solve (5.1). Assuming ΓD 6= ∅ we obtain

that (5.1) has a unique solution with Dirichlet data on ΓD [120, Chapter 61] and we

hence conclude v ≡ p. Using this we obtain

δĴ
δu

(u) = δL
δu

(u,v,p) = δE
δu

(u)− 〈E(v), E(v)〉C′(u) ,
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where δĴ
δu

, δL
δu

and δE
δu

denote the first variation with respect to u and v solves (5.1).

As for the standard phase field model we now use a steepest descent approach in

order to find (local) minima of (5.4). We use the L2–gradient flow, where also

the mass constraint
∫
Ω

− u = m has to be enforced. Note that in the context of

topology optimisation the time variable is artificial and leads to a pseudo time-

stepping approach. Using the obstacle potential (1.4) we obtain on an arbitrary

time interval (0, T ):

(P1) Find u ∈ H1(ΩT ) and v ∈ L∞(0, T ; H1(Ω)) such that

∫
Ω

− u(x, t)dx = m,u(., 0) = u0, |u| ≤ 1 a.e. in ΩT ,v = 0 a.e. on ΓD × (0, T ) ,

(ε∂tu+ γ
ε
ψ′0(u), χ− u) + γε(∇u,∇(χ− u)) ≥ 1

2
〈E(v), E(v)(χ− u)〉C2−C1 ,

〈E(v), E(η)〉C(u) = F (η)

which has to hold for almost all t and all χ ∈ H1(Ω) with |χ| ≤ 1 and
∫
Ω

− χ = m and

all η ∈ H1(Ω) such that η = 0 on the Dirichlet boundary ΓD.

Stationary states of (P1) fulfil the first order necessary conditions for (5.3).

5.1.2 Discretisation

In this section we describe how we solve (P1) numerically. We use the notation

from 2.4.1. In addition to that, we employ a quadrature formula 〈A,B〉hC in place

of 〈A,B〉C, with the property that 〈A,B〉hC = 〈A,B〉C for piecewise affine linear

integrands A : CB.

Taking a fixed time step τ = tn − tn−1 we obtain the following finite element ap-

proximation of (P1):

(Ph
1) Given un−1

h ∈ Kmh find (unh,v
n
h) ∈ Kmh × (Sh)

d such that

vnh = 0 on ΓD ,

〈E(vnh), E(η)〉hC(un−1
h )

= F (η) ∀ η ∈ (Sh)
d with η = 0 on ΓD , (5.5)

( ε
τ
(unh − un−1

h )− γ
ε
unh, χ− unh)h + γε(∇unh,∇(χ− unh))

≥ 1
2
〈E(vnh), E(vnh)(χ− unh)〉hC2−C1 ∀χ ∈ K

m
h . (5.6)

As (5.5) is independent of unh we use a preconditioned conjugate gradient solver to

compute vnh from this equation, see also [62, 60]. As in Chapter 2 we can reformulate

(5.6) with Lagrange multipliers µh ∈ Sh and λ ∈ R:

Given (un−1
h ,vnh) ∈ Kmh × (Sh)

d, find unh ∈ Kmh , µh ∈ Sh and λ ∈ R such that



5.1. Structural topology optimisation 82

F

Figure 5.1: The design domain for a cantilever beam

( ε
2

τ
− γ)(unh, χ)h + γε2(∇unh,∇χ) + (µh, χ)h − λ(1, χ)

= ε2

τ
(un−1

h , χ)h + ε
2
〈E(vnh), E(vnh)χ〉hC2−C1 ∀χ ∈ Sh, (5.7)∫

Ω

− unh = m, (5.8)

(µj)− ≥ 0, (µj)+ ≥ 0, |uj| ≤ 1, (5.9)

(uj + 1)(µj)− = (uj − 1)(µj)+ = 0 ∀ j ∈ J . (5.10)

To solve (5.7)-(5.10) we apply the PDAS-method.

5.1.3 Numerical simulations

In this section we present a numerical simulation for a cantilever beam geometry,

see Figure 5.1. We pose Dirichlet boundary conditions on the left boundary ΓD

and a vertical force is acting at the bottom of its free vertical edge. We take Ω =

(−1, 1) × (0, 1), and hence ΓD = {(−1, y) ∈ R2 : y ∈ [0, 1]}. The force F is

acting on ΓF := {(x, 0) ∈ R2 : x ∈ [0.75, 1]} and is defined by f(x) = (0, 250)T

for x ∈ ΓF . In our computations we use an isotropic elasticity tensor C1 of the

form C1E = 2µ1E + λ1(trE)I with the Lamé constants λ1 = µ1 = 5000 and choose

C2 = ε2C1 in the void. We initialise the order parameter u with random values

between−0.1 and 0.1 which ensures that we approximately have the same proportion

of material and void, i.e. m ≈ 0. We set the interfacial parameters ε = 1
16π

and

γ = 1 and we take the minimal diameter of all elements hmin = 1
128

and the maximal

diameter hmax = 1
16

. The time-step is chosen as t = 6.25 · 10−6.

Figure 5.2 shows the results obtained where the state at t = 0.160 appears to be a

numerical steady state.

In [20] the volume conserved Allen-Cahn and the Cahn-Hilliard model are used for

this numerical simulation. Using a very similar set of data it was found that the

optimal shape is almost the same. However, the evolution towards this shape is very

different. For the Allen-Cahn approach the final structure evolves directly from the

random initial state within the same spatial scale whereas for the Cahn-Hilliard

approach the evolution follows a coarsening process from fine scale structures to
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t = 0.000 t = 0.001 t = 0.002

t = 0.055 t = 0.010 t = 0.160

Figure 5.2: Allen-Cahn results for the cantilever beam computation at various times;
material in red and void in blue.

coarser scales. This results from the spinodal decomposition in the early evolution.

For structural topology optimisation only the final state is of interest and the com-

putations in [20] demonstrate that the Cahn-Hilliard model can be replaced by a

volume conserved Allen-Cahn equation which reduces computational costs consid-

erably and makes the phase field approach more efficient.

5.1.4 Multi-structural topology optimisation

The phase field approach described above can be generalised for multi-material

structural topology optimisation. Zhou and Wang [116] used multi-phase Cahn-

Hilliard equations for this purpose. We demonstrate that the non-local vector-valued

Allen-Cahn equation can be used instead. Very similar to the scalar case we can

consider the minimisation problem

min J(u,v) := E(u) + F (v)

subject to 〈E(v), E(v)〉C(u) = F (v) and
∫
Ω

− u = m. The elasticity tensor C(u)

is defined as C(u) =
∑N

i=1 Ciui where Ci is the elasticity tensor of the material

represented by the i-th phase.

We can use the same formal Lagrangian approach for this minimisation problem as

before to obtain the following variational problem:
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Find u : Ω× [0,∞)→ RN and v : Ω× [0,∞)→ Rd such that

∫
Ω

− u(x, t)dx = m,u(., 0) = u0,u ≥ 0, a.e.,
N∑
i=1

ui = 1,v = 0 a.e. on ΓD × (0,∞),

(5.11)

(ε∂tui, χ− ui) + γε(∇ui,∇(χ− ui)) + γ
ε
((Wu)i, χ− ui) ≥ 〈E(v), E(v)(χ− ui)〉Ci

(5.12)

〈E(v), E(η)〉C(u) = F (η) (5.13)

which has to hold for all i ∈ {1, ..., N} and for almost all t and all χ ∈ H1(Ω) with

|χ| ≤ 1 and
∫
Ω

− χ = m and all η ∈ H1(Ω) such that η = 0 on a given Dirichlet

boundary ΓD.

This problem is then discrete in time and space and the primal-dual active set

strategy is used to solve the modified vector-valued Allen-Cahn equation with volume

constraints.

In structural topology optimisation the 120◦ angle condition at triple junctions is

not in all cases realistic. In the following we consider a system consisting of hard

material, soft material and void. When all these three structures meet at a triple

point 120◦ angles would suggest that the soft and hard material ‘break apart’. This

is not realistic and can be overcome by adjusting the matrix W in the multi-obstacle

potential. Assuming that the hard material is described by u1, the soft material by

u2 and the void by u3 we take

W =

 0 −0.1 −1

−0.1 0 −1

−1 −1 0


which forces the angle at the void to be larger than the other two angles.

We use the same cantilever beam geometry as for the scalar case, see Figure 5.1. The

force acting on ΓF is again defined as f(x) = (0, 250)T if x ∈ ΓF and 0 otherwise. In

our computations we use 40% hard material, 20% soft material and 40% void. For

the hard material (associated with phase 1) we use the Lame constants λ1 = µ1 =

5000; for the soft material (associated with phase 2) we choose C2 = 1
2
C1 and for the

void we take C2 = (2ε)2C1. We set γ = 1, τ = 6.25× 10−6 and use an adaptive mesh

with hmin = 1
128

and hmax = 1
8
. We initialise the order parameter u with random

values such that the sum constraint is fulfilled and the proportions of hard material,

soft material and void are as required. Figure 5.3 shows the results obtained, where

the state at t = 0.330 appears to be a numerical steady state.
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t = 0.000 t = 0.005 t = 0.010

t = 0.020 t = 0.045 t = 0.330

Figure 5.3: Results for the cantilever beam computation at various times; hard
material in blue, soft material in red and void in green.

5.2 Anisotropy

Up to now we considered only isotropic motion by mean curvature. All properties of

the materials involved were homogeneous in all directions which resulted in circles

and spheres as optimal shapes. However, most materials exhibit anisotropic beha-

viour which means that one or more of their physical properties are directionally

dependent. Hence optimal shapes can include corners or edges. In this section we

discuss the incorporation of anisotropy into the Allen-Cahn model.

5.2.1 Anisotropic Allen-Cahn variational inequality

Surface energy anisotropy was first included in phase field models by Kobayashi [80]

to describe dendritic crystal growth. We recall that the Ginzburg-Landau energy

(1.1) does not depend on the direction of ∇u. Replacing the gradient term in (1.1),

we get

E(u) :=

∫
Ω

(εA(∇u) + 1
ε
ψ(u))dx (5.14)

where A ∈ C2(Rd) is a strictly convex function with the following properties:

(i) A is homogeneous of degree two, that is A(λp) = λ2A(p) for λ > 0 and p ∈ Rd;

(ii) A(p) ≥ 0 for p ∈ Rd \ {0}.

This problem is anisotropic, see e.g. [112], and taking the gradient flow of this

energy we obtain the corresponding Allen-Cahn variational inequality

ε(∂tu, χ− u) + ε(A′(∇u),∇(χ− u)) + 1
ε
(ψ′0(u), χ− u) ≥ 0, (5.15)

which has to hold for almost all t and all χ ∈ H1(Ω) with |χ| ≤ 1.
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McFadden et al. [86], Wheeler and McFadden [117], Bellettini and Paolini [10] used

formal asymptotics to prove the conjecture that the anisotropic Allen-Cahn equation

with smooth potential ψ approximates the anisotropic mean curvature flow, which

reads

V = −Hγγ(ς) (5.16)

where γ :=
√

2A is the anisotropic interface energy density, ς is the unit normal of

the interface Γ and Hγ is the anisotropic mean curvature of Γ which is defined as

Hγ(x) = ∇Γ ·Dγ(ς(x))

for all x ∈ Γ. Note that for γ(p) = |p| we obtain Hγ = ∇Γ · ς(x) which is the

mean curvature. Elliott and Schätzle [49] proved that solutions of the anisotropic

Allen-Cahn equation with double obstacle potential, i.e. of the variational inequality

(5.15), converge to the anisotropic mean curvature flow.

Anisotropy is normally visualised by using the Frank diagram F and the Wulff shape

W :

F = {p ∈ Rd : γ(p) ≤ 1}, W = {q ∈ Rd : γ∗(q) ≤ 1},

where γ∗ is the dual of γ, which is given by

γ∗(q) = sup
p∈Rd\{0}

p · q
γ(p)

.

For a fixed volume, the boundary of the (rescaled) Wulff shape is the energetically

optimal shape of the interface under the anisotropic energy (5.14). For the choice

γ(p) = |p|, i.e. for the isotropic case, we have that F = W = {p ∈ Rd : |p| ≤ 1}
is the closed unit ball. Typical choices for anisotropy are the discrete lr-norms for

1 ≤ r ≤ ∞,

γ(p) = ‖p‖lr =

(
d∑

k=1

|pk|r
) 1

r

,

with the obvious modification for r = ∞. For our problems, however, we need γ

to be sufficiently smooth and hence regularised versions of the lr-norms should be

used.

5.2.2 Discretisation and primal-dual active set method

In the following we will discretise (5.15) using implicit Euler in time and finite

elements in space and then apply the primal-dual active set method derived in

Chapter 2. We use the same notation as before. Furthermore, we use that ψ′0(u) =

−u. The fully discrete problem reads as follows:
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Given un−1
h ∈ Kh find uh = unh ∈ Kh such that

( ε
τ
(uh − un−1

h )− 1
ε
uh, χ− uh)h + ε(∇A′(∇uh),∇(χ− uh)) ≥ 0 ∀χ ∈ Kh.

We can reformulate this variational problem using a Lagrange multiplier µh ∈ Sh in

the same way as for the isotropic Allen-Cahn equation and we obtain:

Find uh ∈ Sh and µh ∈ Sh such that

( ε
2

τ
− 1)(uh, ϕ)h + ε2(A′(∇uh),∇ϕ) + (µh, ϕ)h = ε2

τ
(un−1

h , ϕ)h ∀ϕ ∈ Sh , (5.17)

(µj)− ≥ 0, (µj)+ ≥ 0, |uj| ≤ 1, (5.18)

(uj + 1)(µj)− = (uj − 1)(µj)+ = 0 ∀ j ∈ J . (5.19)

As in (2.37) the complementarity condition can be rewritten as

H(uj, µj) := µj − c
[
max(0,

µj
c

+ (uj − 1)) + min(0,
µj
c

+ (uj + 1))
]

= 0 ∀j ∈ J .
(5.20)

We now consider the system (5.17) - (5.20) as a problem of finding a root of

F (u, µ, λ) = 0 by using a semi-smooth Newton method

G(uk, µk, λk)((uk+1, µk+1, λk+1)− (uk, µk, λk)) = −F (uk, µk, λk)

where G is a slanting function for F . For H we can use the slanting function

defined in (2.40), (2.41). Hence we only need to find a slanting function for (5.17).

Using that d
du

(∇·A′(∇u))v = ∇·A′′(∇u)∇v and applying the semi-smooth Newton

method to (5.17) gives

(( ε
2

τ
− 1)(uk+1 − uk), ϕ)h + ε2(A′′(∇uk)∇(uk+1 − uk),∇ϕ) + (µk+1 − µk, ϕ)h =

ε2

τ
(un−1

h , ϕ)h − (( ε
2

τ
− 1)uk, ϕ)h − ε2(A′(∇uk),∇ϕ)− (µk, ϕ)h.

(5.21)

Defining M := (χi, χj)h and S := (A′′(∇uk)∇χi,∇χj) we derive for F the slanting

function

G(u, µ, λ) =

(
( ε

2

τ
− γ)M + γε2S M

Gu(u, µ) Gµ(u, µ)

)
. (5.22)

Since A is homogeneous of degree two and hence in particular A′ is homogeneous of

degree one, it follows from Euler’s homogeneous function theorem [98] that A′′(p) ·
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p = A′(p) for all p ∈ Rd \ {0}. Using this in (5.21) we obtain

(( ε
2

τ
− 1)uk+1, ϕ)h + ε2(A′′(∇uk)∇uk+1,∇ϕ) + (µk+1, ϕ)h = ε2

τ
(un−1

h , ϕ)h. (5.23)

The resulting algorithm now reads as follows:

0. Set k = 0 and initialise A±0 .

1. Define Ik = J \ (A+
k ∪ A

−
k ).

Set ukj = ±1 for j ∈ A±k and µkj = 0 for j ∈ Ik.

2. Solve the discrete PDE (5.23) to obtain ukj for j ∈ Ik:

( ε
τ
− 1
ε
)mju

k
j+ε

∑
i∈Ik

siju
k
i = ε

τ
mju

n−1
j +ε(

∑
i∈A−k

sij−
∑
i∈A+

k

sij) ∀j ∈ Ik. (5.24)

3. Determine µkj for j ∈ A±k using (5.17):

µkj = −( ε
2

τ
− 1)ukj − ε2 1

mj

∑
i∈J

siju
k
i + ε2

τ
un−1
j .

4. Set A+
k+1 := {j ∈ J : ukj +

µkj
c
> 1}, A−k+1 := {j ∈ J : ukj +

µkj
c
< −1}.

5. If A±k+1 = A±k goto 6, otherwise set k = k + 1 and goto 1.

6. If max
j∈J

(uk−1
j − ukj ) > tol set k = k + 1 and goto 1, otherwise stop.

Remark 5.2.1. Note that the algorithm does not necessarily terminate when the

active and inactive sets stop to change. Our numerical computations show that if

we take tol = 10−7 we need around 2-5 additional iterations. The question whether

the active and inactive sets remain unchanged after we reach step 6 for the first time

is still open. Our numerical computations suggest that once optimal active/inactive

sets are found the sets do not change any more.

5.2.3 Numerical simulations

For anisotropies in two space dimensions one often uses the representation of p =

(px, py)
T in polar coordinates, i.e. p = |p|(cos θ, sin θ) where tan θ = py

px
. Then we

can write the anisotropy function γ(p) as follows:

γ(p) = γ(|p|(cos θ, sin θ)) = |p|γ(cos θ, sin θ) = |p|γ̃(θ).
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Figure 5.4: Frank diagram and Wulff shape for (5.25)

t = 0.000 t = 0.010 t = 0.025

t = 0.100 t = 0.150 t = 0.200

Figure 5.5: Anisotropic Allen-Cahn with anisotropy function (5.25)

For this representation the Frank diagram corresponds to the polar diagram of γ̃(θ)−1

and the Wulff shape can be parameterised as

x(θ) = γ̃(θ) cos θ − γ̃′(θ) sin θ,

y(θ) = γ̃(θ) sin θ + γ̃′(θ) cos θ,

see [69] for a proof of this statement and further details.

One standard example for anisotropic mean curvature flow is to take the anisotropy

function

γ̃(θ) = 1 + 0.028 cos(6θ) (5.25)

for which the Frank diagram and the Wulff shape are shown in Figure 5.4. We recall

that A(p) = 1
2
|p|2γ̃2. We use this anisotropy for our first computation. We start

with a circle of radius 0.7 which is centred at the middle of the domain Ω = (−1, 1)2.

The circle quite quickly evolves into a hexagon with rounded corners, the Wulff shape

of (5.25), and then shrinks, see Figure 5.5. The hexagon disappears at t = 0.250.
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Figure 5.6: Frank diagram and Wulff shape for (5.26)

t = 0.000 t = 0.015 t = 0.025

t = 0.100 t = 0.150 t = 0.200

Figure 5.7: Anisotropic Allen-Cahn with anisotropy function (5.26)

For the second computation we use the anisotropy function

γ̃(θ) = 1− 0.06 cos(4θ). (5.26)

Figure 5.6 shows the Frank diagram and the Wulff shape of (5.26). This function

leads to a regularised square under anisotropic mean curvature flow, see Figure 5.7.

It disappears at t = 0.253.

For both computations we used the following set of parameters: ε = 1
16π
, hmin =

1
512
, hmax = 1

32
, τ = 1 · 10−4.

The third computation is an example in three space dimensions, Ω = (−1, 1)3. For

the anisotropy function we use the regularised l1-norm

γ(p) =
3∑
i=1

[δ2
1|p|2 + p2

i (1− δ2
1)]

1
2 (5.27)

where we take δ1 = 0.1. The discretisation parameters are chosen to be τ = 1 ·
10−4, hmin = 1

256
, hmax = 1

32
and we set the interfacial parameter ε = 1

16π
. We start
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t = 0.000

t = 0.001 t = 0.003

t = 0.005 t = 0.008

Figure 5.8: Anisotropic Allen-Cahn equation in three space dimensions

Figure 5.9: Anisotropic volume conserved Allen-Cahn for various anisotropic energy
density functions γ; (5.25), (5.26) and (5.27) from left to right.

the computation with a sphere of radius 0.4 and centre at the origin. It gradually

evolves into a cube with rounded edges while shrinking at the same time, see Figure

5.8.

All these computations can also be done using the volume conserved Allen-Cahn

equation. In this case the Wulff shape is obtained for a fixed area/volume, i.e. that

of the circle/sphere from the initial data u0. Figure 5.9 shows the steady states

obtained for the three anisotropy functions considered previously.

It is also possible to extend the vector-valued Allen-Cahn equation to the anisotropic

case [58]. Here one could also consider the materials to have different anisotropic

behaviours. This however remains to be studied.

5.3 Image processing

Image processing is used to preprocess an image and convert it into a form more

suitable for further analysis. Examples of such operations include reduction of image
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noise, increasing sharpness, detecting contours of objects in the image but also filling

in missing information. In this section we will discuss two interesting problems in

image processing: image segmentation and image inpainting.

Image segmentation refers to the process of partitioning the original image into some

meaningful regions. Most commonly segmentation is used to detect physical objects

from images. Some of the practical application fields of image segmentation are

medicine, astronomy, microscopy and face or fingerprint recognition.

Image inpainting is the process of reconstructing missing parts of damaged images

based on the information obtained from the surrounding areas. Digital inpainting

was inspired by the real inpainting process of image restoration artists. Important

applications of digital inpainting include for example the digital restoration of an-

cient paintings, the restoration of aged or damaged photographs or films and text

or object removal in images.

5.3.1 Image segmentation and denoising

The Mumford-Shah functional, which was first proposed in [90] as a way to pose the

general problem of image segmentation, is one of the best known models in image

segmentation and is the basis of many algorithms. Given a domain Ω ⊂ R2 and an

image I : Ω −→ R, the Mumford-Shah method seeks to partition the domain Ω into

several subdomains Ωi separated by a set K of boundaries (sometimes also referred

to as edges or discontinuities). The original image I is approximated by piecewise

smooth functions u on Ω\K which are discontinuous along the set of edges K. The

pair (K, u) is obtained by minimising the functional

MS(K, u) =

∫
Ω\K
|∇u|2dx+ β

∫
K

dσ + α

∫
Ω

(u− I)2dx (5.28)

where α and β are positive constants. The first term minimises the variation of u

and promotes its smoothness, the second term minimises the length of interfaces and

determines the location of the boundaries K and the third term controls the quality

of the approximation of I by u. The third term is often referred to as the fidelity

or fitting term. The coefficients α and β are scale and contrast parameters. An

overview of the Mumford-Shah model can be found for example in [97]. In practice

it has proved difficult to compute a solution to this problem. Many variations

of the model have been proposed since its first formulation. Mumford and Shah

themselves proposed a reduced form of the problem, the so called minimal partition

problem. They restrict u to piecewise constant functions where u is constant on

each connected region Ωi. The minimising values are then the averages of I across

each region Ωi. Chan and Vese [36, 37] use a level set algorithm to minimise this
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reduced Mumford-Shah problem. Phase field models and in particular the Allen-

Cahn equation have also been used for image segmentation [12, 77, 53]. Recalling

that the Ginzburg-Landau free energy is defined as

E(u) :=

∫
Ω

(γε
2
|∇u|2 + γ

ε
ψ(u))dx

we note that the first term of this equation is identical (up to a scaling constant) to

the first term in (5.28). The second term in the Ginzburg-Landau energy reduces

the width and the length of interfaces between phases and hence has a very similar

role to the second term in (5.28). In the following we will use the vector-valued

Allen-Cahn equation and we combine it with fitting terms similar to the third term

in (5.28). This method was proposed by Kay and Tomasi [77] and is based on the

level set approach by Chan and Vese [37]. Kay and Tomasi use a multigrid algorithm

to solve the modified vector-valued Allen-Cahn equation.

Modified Allen-Cahn equation for grayscale images

To introduce the basic concept of the method, let us first assume that we want

to partition the original grayscale image I : Ω −→ [0, 1] into two segments. For

this purpose we can use the scalar Allen-Cahn equation. For simplicity we further

assume that the potential ψ is smooth with global minima at 0 and 1. For the

double obstacle potential the same heuristics can be used, the only difference being

that instead of the Allen-Cahn equation one obtains the Allen-Cahn variational

inequality. Now consider the following functional

Es(u, c1, c2) =

∫
Ω

(γε
2
|∇u|2 + γ

ε
ψ(u)) + α[u(I − c1)2 + (1− u)(I − c2)2]dx (5.29)

where we have added two fitting terms to the Ginzburg-Landau energy. The same

fitting terms have been used in [37] combined with a level set method and they can

be directly related to the reduced Mumford-Shah problem.

Minimising the energy functional Es(u, c1, c2) with respect to u and taking the L2–

gradient flow gives the modified Allen-Cahn equation

εut = ε∆u− 1
ε
ψ′(u)− α(I − c1)2 + α(I − c2)2.

Keeping u fixed in (5.29) and minimising Es(u, c1, c2) with respect to the constants

c1 and c2 it is easy to express these constants as functions of u by

c1 =

∫
Ω
Iu∫

Ω
u

and c2 =

∫
Ω
I(1− u)∫

Ω
(1− u)

.
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Hence these constants represent the average of I on suppu and supp (1−u) respect-

ively. The segmented image Ĩ is then obtained by setting

Ĩ = c1u+ c2(1− u)

where u can be rounded such that it only attains values of 0 and 1. This is also

called the ‘rounded composite’.

In order to achieve a simultaneous segmentation of the image I into N ≥ 2 pieces we

use the vector-valued Allen-Cahn model introduced in Chapter 3. Similar to (5.29)

we add a fidelity term to the free energy (3.1) and obtain

Es(u) :=
∫
Ω

(
γε
2
|∇u|2 + γ

ε
ψ(u) + αu · F (c, I)

)
dx (5.30)

where

Fi(c, I) = (I − ci)2, ci =

∫
Ω
Iui∫

Ω
ui

for all i = 1, ..., N. (5.31)

In the following we treat the variables ci for i = 1, ..., N as constants, since otherwise

the first variation of the last term in the energy Es(u) would lead to additional terms

in (5.32). Taking the L2–gradient flow of the energy Es(u) and taking ψ to be the

multi-obstacle potential as defined in (3.2) with W being the identity matrix we

obtain the following variational inequality:

ε(∂u
∂t
,χ− u) + γε(∇u,∇(χ− u))− γ

ε
(u,χ− u) + α(F (c, I),χ− u) ≥ 0 (5.32)

which has to hold for almost all t and all χ ∈ G.

We discretise (5.32) in time using an implicit Euler scheme. We assume that the

constants ci for i = 1, ..., N in the fidelity term are known. More precisely, we

update c in each time-step iteration after having computed un and use the updated

c in the next time-step n+ 1. For the discretisation in space we use piecewise linear

finite elements as before. Furthermore, we introduce Lagrange multipliers µ and

Λ for the inequality constraints u ≥ 0 and the sum constraint
∑N

i=1 ui = 1 of the

vector-valued Allen-Cahn equation. Taking a fixed time-step τ = tn−tn−1 we obtain

the following problem:

Find uh = unh ∈ Sh, µh ∈ Sh, and Λ ∈ Sh such that

ε2

τ
(uh,ϕ)h − γ(uh,ϕ)h + γε2(∇uh,∇ϕ)− (µh,ϕ)h − (Λ1,ϕ)h

= ε2

τ
(un−1

h ,ϕ)h − α(F (c, Ih),ϕ) ∀ϕ ∈ Sh ,
(5.33)

N∑
i=1

(ui)j = 1, µj ≥ 0, uj ≥ 0, (uj,µj) = 0 ∀ j ∈ J (5.34)
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Figure 5.10: Colour image and corresponding grayscale image, converted using the
MATLAB routine rgb2gray

where

Fi(c, Ih) = (Ih − ci)2, ci =

∫
Ω
Ih(u

n−1
h )i∫

Ω
(un−1

h )i
for all i = 1, ..., N.

For this problem we can apply the primal-dual active set method for the vector-

valued Allen-Cahn variational inequality as introduced in Chapter 3.

For the post-processing it is useful to round the values of all the components of u

such that one of them (the dominant component) equals 1 and all the others are set

to equal 0 at any given node j ∈ J . The rounded composite Ĩ is then obtained by

taking

Ĩj =
N∑
i=1

ci(ui)j

at each node j ∈ J .

Segmentation of colour images

Most of the pictures and photographs we are dealing with are coloured. While it

is possible to transform them into a grayscale image some information will get lost

and in the worst case segments get lost, see Figure 5.10.

Colour images can be represented in different colour spaces, the most common one

being the RGB colour space. We only consider RGB images but in principle the

method is not limited to this space. In the RGB space, colour is represented by

the RGB triplets; any colour in the gamut of the RGB colour space can be created

by mixing a certain amount of red, green and blue light. Hence a colour image

has 3 data channels, each of which can be thought of as a ‘grayscale’ image. It

may seem natural to perform the image segmentation on each channel individually,

but this does not take into account that the information from each channel has a

certain correlation. Another problem would be how to combine the resulting three
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segmentations.

There has been some work on colour image segmentation using PDEs. A model

introduced by Meyer [88] for grayscale image segmentation has been extended to

colour image segmentation by Aujol and Kang [5]. Tomasi and Kay [77] modified

the fidelity term in the modified vector-valued Allen-Cahn equation to take into

account multi channel data. We will follow their approach.

Let I : Ω −→ [0, 1]d be an image with d > 1 data channels or colours. Tomasi and

Kay [77] proposed to incorporate the multi-channel information into the modified

vector-valued Allen-Cahn model by modifying the fidelity term (5.31) as follows

Fi(c, I) =
d∑
l=1

(Il − cil)2, cil =

∫
Ω
Ilui∫

Ω
ui

for all i = 1, ..., N. (5.35)

We can use the same discretisation as for the grayscale image segmentation and

apply the primal-dual active set method to obtain the segments u1, ..., uN . For the

post-processing we find the dominant phase in each node and we set it to 1 while all

the other phases are set to 0. Then we get for each channel l = 1, ..., d the rounded

composite Ĩl

˜(Il)j =
N∑
i=1

cil(ui)j

for all j ∈ J .

Numerical examples for image segmentation

The first computation is a grayscale image consisting of two concentric circles. About

60% of random noise with amplitude 0.15 was added to the original image. We

use the modified vector-valued Allen-Cahn equation with N = 3 to perform the

segmentation. Figure 5.11 shows the original image, the 3 segments and the rounded

composite. The noise has been removed completely during the segmentation process.

The parameters for this computation are chosen as follows: ε = 1
16π
, γ = 1, τ =

1 · 10−4, hmin = 1
512
, hmax = 1

64
, α = 2000. The steady state is attained after 32 time-

steps at t = 0.0032. We use an adaptive mesh as before with the only difference

being that for the image data we do not use interpolation when we refine but use

a projection instead where a newly created node is assigned the value of one of its

neighbours. This is done to avoid creating spurious gradients, see [77] for details.

Tomasi and Kay [77] also propose to use a more natural length scale and set ε to

be the size of a pixel. We found that we did not need this in our computations.

As initial data for the order parameters u1, u2 and u3 we use information from the

original image. Since the original image itself already consists of values between

0 and 1 we took u1 to equal a half of the value of I at the corresponding node,
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Original image (left) and rounded composite (right)

Segmentation result for N = 3

Figure 5.11: Segmentation of two concentric circles.

and we set u2 = 1.5u1 and u3 = 1.0 − u1 − u2. This is somehow ad hoc and other

choices work as well. One could also start with random data for u as long as the

components sum up to 1 in each node. However, when we did this the computations

took longer and sometimes the image was not segmented properly, i.e. one of the

order parameters converged to 0 everywhere. For our choice of initial data this does

not happen. Moreover, the constants c1, c2 and c3 are, with this choice of initial

data, sufficiently different such that the corresponding phases converge to the gray-

value closest to these constants. This is also why constant initial data, i.e. setting

u1 ≡ 1
3

is not suitable and may not lead to a satisfactory result.

For the next computation we use a colour image where we added about 50% of

random noise with amplitude 0.15 (where the values of the image have been con-

verted to be in the space [0, 1]3). We use N = 4 and set the other parameters to be

ε = 1
16π
, γ = 1, τ = 1 · 10−4, hmin = 1

512
, hmax = 1

64
and α = 8000. Figure 5.12 shows

the segmentation we obtained using the modified vector-valued Allen-Cahn model.

All the segments are identified correctly and the colours match the original picture,

see Figure 5.10 (left). The steady state is obtained at about t = 0.020, i.e. after 200

time-step iterations. However, a very good segmentation is already obtained much

earlier after about 30 - 50 time-steps.

For the third computation we use a ‘real’ colour image and set N = 10. We obtain

good segmentations (see Figure 5.13) using the following set of parameters for the

Allen-Cahn equation: ε = 1
16π
, γ = 1, τ = 1·10−4, hmin = 1

256
, hmax = 1

64
. We use two

different values for the parameter α and obtain two segmentations that are roughly

similar, but do have some differences. For larger α finer structures can be detected
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Original noisy image (left) and rounded composite (right)

Segmentation result for N = 4

Figure 5.12: Segmentation of a noisy colour image.

and the colours seem a bit more realistic whereas for smaller α the segmentation is

coarser. Depending on the purpose of the segmentation one can tune the parameter

α such that one obtains a more suitable segmentation. Both segmentations were

obtained at t = 0.025 after 250 iterations.

Figure 5.13: Original image (left) and rounded composite for α = 20000 (middle)
and α = 30000 (right).

For the initial data we use a similar method as for the grayscale image. The image

I consists of three channels Ir, Ig, Ib, each of which can be interpreted as a grayscale

image. First we take the average over these three channels and then we take suitable

fractions of this average to be the initial data for ui for i = 1, ..., N − 1. We need to

set uN such that the sum of all the components of u adds up to 1. We found that
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this method works well and convergence was achieved reasonably quickly. Other

choices of initial data are of course possible.

One of the drawbacks of the method is that sometimes even small changes in colour

(for example sun versus shade) are detected as different segments and the difference

between the colours becomes exaggerated. Another problem is that for the current

formulation of the segmentation algorithm one has to specify the number of segments

in advance. It would of course be desirable to have an algorithm that can change

the number of segments depending on the processed image.

5.3.2 Inpainting

Image inpainting is the filling in of damaged or missing parts of an image with

the use of information from the surrounding areas. Given an image I : Ω −→ R,

the problem is to reconstruct the original image u in the damaged domain D ⊂ Ω

which is called the inpainting domain. We are especially interested in non-texture

inpainting, i.e. the inpainting of structures like edges and uniformly coloured areas

in the image rather than texture.

Image inpainting for digital image processing was first introduced by Bertalmio et

al. [17]. They used partial differential equations to extend the graylevels at the

boundary of the damaged domain continuously into the interior. They used the

nonlinear partial differential equation ut = ∇⊥u · ∇∆u which is solved inside the

inpainting domain D using information from a small strip around D. In subsequent

works variational models have been used which were originally derived for image

denoising, deblurring and segmentation. In contrast to previous approaches these

variational algorithms are applied to the whole domain Ω and hence several damaged

domains in the image can be dealt with simultaneously. The general form for such

a variational approach is

min
u∈B1

(
J(u) = R(u) + 1

2
‖α(I − u)‖2

B2

)
, (5.36)

where B1 and B2 are Banach spaces on Ω, R : B1 −→ R is a regularising term and α

is the characteristic function of Ω \D multiplied by a large constant. Depending on

the choice of the regularising term R(u) and the spaces B1 and B2 various approaches

have been developed. The best known model is the total variation (TV) model,

where R(u) =
∫

Ω
|∇u|dx is the total variation of u, B2 = L2(Ω) and B1 is the space

of functions of bounded variations, see e.g. [105, 104, 35]. Other variational models

are for example the Euler elastica model [38], the active contour model [114] which is

based on the Mumford-Shah segmentation problem, but also higher order variational

approaches. A third order approach is the Curvature Driven Diffusion method [34]

which performs very well at connecting level lines across a large inpainting domain.
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The fourth order Cahn Hilliard equation has also been used successfully [18, 29].

We use the Allen-Cahn equation as the regularising term and it turns out that

the results we obtain are comparable to the ones obtained for the Cahn-Hilliard

approach whilst being more cost efficient. For an overview and a comparison of

the most common mathematical models for local non-texture image inpainting the

reader is referred to [33, 18].

Modified Allen-Cahn equation

Instead of using the fourth-order Cahn-Hilliard equation we propose to use the Allen-

Cahn equation. We take the Ginzburg-Landau free energy as the regularising term

R(u) in (5.36) and obtain

J(u) =

∫
Ω

ε
2
|∇u|2 + 1

ε
ψ(u) + 1

2
|α(I − u)|2dx,

where α is defined as

α(x) =

{
0 if x ∈ D ,

α0 if x ∈ Ω \D .

Minimising this functional using an L2 gradient flow and taking ψ to be the double

obstacle potential leads to the modified Allen-Cahn problem

Find u ∈ H1(ΩT ) such that u(., 0) = u0, |u| ≤ 1 a.e. in ΩT and

ε(∂tu, χ− u) + ε(∇u,∇(χ− u)) + 1
ε
(ψ′0(u), χ− u)− (α(I − u), χ− u) ≥ 0 (5.37)

which has to hold for almost all t and all χ ∈ H1(Ω) with |χ| ≤ 1.

We can discretise this problem in time using an implicit Euler scheme and in space

using linear finite elements and then we are in the situation where we can apply the

primal-dual active set strategy. This is straight forward and is therefore omitted.

Numerical examples for image inpainting

First we present some computations for binary images, i.e. most of the image is black

and white. Since we have defined the double obstacle potential to have local minima

at -1 and 1 we rescale grayscale (and binary) images such that I : Ω −→ [−1, 1].

Alternatively, we could change the potential to have local minima at 0 and 1.

For the initial value u0 one can choose u0 ≡ I on Ω \ D and u0 ≡ 0 on D. For

the inpainting of binary images we set ε = 1
32π
, τ = 1 · 10−5, and α0 = 105. The

element size in the adaptive mesh is set to have the maximal diameter of all elements

hmax = 1
64

and the minimal diameter of all elements hmin = 1
512

.
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Figure 5.14: Original image with inpainting region in gray (left), intermediate in-
painting result after 40 time-step iterations (middle) and final inpainting result after
100 time step iterations (right).

Figure 5.15: First row: Original images with inpainting region in gray; Second row:
Inpainting results obtained after 150 time-step iterations (left picture), 500 time-step
iterations (middle picture), 110 time-steps (right picture).

Figure 5.14 shows how the inpainting algorithm works. The gray region in the left

picture represents the inpainting domain. Gradually the image is ‘inpainted’ from

the boundary towards the middle of the inpainting region. The picture on the right

is obtained after 100 time-step iterations.

Figure 5.15 shows some further inpainting computations. In each of the three compu-

tations the gray region denotes the inpainting region. For the first two computations

the algorithm works very well and combines the lines. In the last computation the

inpainting region is not wide enough and the algorithm does not manage to connect

the line. One could of course set a new inpainting region over the area where the line

is dissected and use the inpainting algorithm again. This effect is known to occur

for TV inpainting and other second order variational approaches. The Curvature

Driven Diffusion method by Chen and Shen [34] overcomes this problem by modify-
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ing the TV inpainting model such that large curvatures inside the inpainting domain

are penalised.

The examples presented above have also been used in [18, 29] where a modified

Cahn-Hilliard model is applied. The results are comparable to our results, how-

ever, in general more iterations are needed for the Cahn-Hilliard approach. For

the inpainting of the cross in Figure 5.14 the Cahn-Hilliard approach needs 1000

time-step iterations in [18] and 1200 iterations in [29]. However, with the Cahn-

Hilliard approach a steady state is reached which is not always the case with the

Allen-Cahn model - at least one may not obtain the best inpainting result. For

the first two straight line examples in Figure 5.15 the inpainting result corresponds

to the steady state. For the third computation in that figure the segments keep

moving further away and a steady state is reached when the gap between the two

segments is about the size of the original inpainting domain. For the inpainting of

the cross the movement also continues and the corners in the middle of the cross

become more rounded (which does also happen with the Cahn-Hilliard method). In

contrast to the Cahn-Hilliard model the Allen-Cahn model we are using does not

preserve mass. Outside the inpainting region this mass constraint is not necessary

since variations from the original image are penalised. Inside the inpainting domain

mass conservation is only useful when it is known in advance how much mass there

should be, which of course is not the case. One way out of this could be to use the

Allen-Cahn model as we did in this section and to enforce a volume constraint once

the inpainting region is filled. Depending on the size of the inpainting region one

could roughly estimate how long it will take to inpaint it.

Another difference in the Cahn-Hilliard approach is that a two-step method is used.

First the interfacial parameter ε is chosen relatively large in order to reconnect

shapes across larger regions. The second step uses the results of the first step and

continues the computation with a much smaller value of ε in order to sharpen the

edges. We found that we did not need a two-step method. Even with ε small the

algorithm managed to reconnect shapes across relatively large regions.

Both the Allen-Cahn and the Cahn-Hilliard model are very well suited for binary

images where the two local minima in the potential are chosen to correspond to the

two colours. A practical application of binary image inpainting is the deconvolution

of barcodes [52]. The data obtained from scanning is incomplete and noisy and

hence needs to be recovered. For grayscale images this approach can still be used

but might not always give the best results. In [29] the authors suggest a modified

TV model for grayscale images where the H−1 norm is used to minimise the TV

term.

We use the same Allen-Cahn approach as for binary images and show two examples

of grayscale image inpainting. For the first computation we use a picture of Beachy
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Head. The light house has been marked on the picture with a black circular line.

We would like to remove this marking and restore the original picture. Using the

time-step τ = 1 · 10−5, the mesh size hmin = 1
512

and hmax = 1
64

and the fidelity

parameter α0 = 1000 we obtain the inpainting result shown in Figure 5.16. For

the interfacial parameter we use two values, we set ε = 1
16π

for t ≤ 7 · 10−5 and

ε = 1
32π

for t > 7 · 10−5. The inpainting result in Figure 5.16 is obtained after only

10 time-steps. The initial data in the inpainting domain is set to be 0 where we

have transformed the picture to have values between −1 and 1.

Figure 5.16: Original image with inpainting (or damaged) region in black (left) and
inpainting result after 10 time-step iterations (right).

For the second computation we use a picture with black text written on it. We

want to remove the text and set the inpainting domain to be exactly the space filled

by the text. Time step and mesh sizes are the same as before and we use again

α0 = 1000. This time we switch from ε = 1
16π

to the smaller interfacial parameter

ε = 1
32π

at t = 1.4 · 10−4. Figure 5.17 shows the inpainting result at t = 2.1 · 10−4,

i.e. after 21 iterations.

In both computations the inpainting domain is filled in adequately. The marking

or text is removed completely and replaced by information that fits into the image.

Due to the diffusion term in the Ginzburg Landau energy the image becomes a bit

blurred outside the inpainting domain. One possibility to get rid of this is to take

the inpainting result and only use it for the inpainting domain. For the rest of the

image we can take the original image and thus get rid of the blurring. In this work

we are more interested in applications of the Allen-Cahn equation and hence we do

not pursue this issue further. The inpainting results we show correspond exactly to

what we obtained by applying the algorithm described in this section.
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Figure 5.17: Original image with black text to be removed (left) and inpainting
result after 21 time-step iterations (right).
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Chapter 6

Conclusions

In this thesis we used a primal-dual active set method to solve Allen-Cahn vari-

ational inequalities. One of the key advantages of this method is that it reduces

the problem to solving a linear system only on the interface rather than solving a

nonlinear system on the whole domain. Furthermore, we investigated linear solvers

and preconditioning strategies, which improve efficiency of the proposed method.

Local convergence of the method was shown analytically and in practice we found

that the method converged for all of the problems we considered.

There is of course scope for further research and improvement. An adaptive time-

step strategy might speed up computations further, since small time-steps only seem

to be needed when the active sets change quickly. However, iterative solvers converge

faster for smaller time-steps where a good initial value is provided by the previous

time-step or Newton iteration.

Computations could also be accelerated by using inexact solving in Newton iter-

ations. Recalling that the vectors uk and µk are only needed to obtain the new

active and inactive sets for the next Newton iteration, they do not have to be exact.

Once the optimal active sets are found uk should be calculated more precisely. This

strategy can speed up computations if one finds that uk does not need to be too

precise in order to determine the active sets correctly. For this thesis we felt that it

was more important to find an efficient linear algebra solver first before considering

inexact solving.

In the current version of the primal-dual active set method for solving Allen-Cahn

variational inequalities we are restricted to piecewise linear finite elements since we

use mass lumping. It would be interesting to investigate whether the method can

be modified as to allow for higher order finite elements.

A different area for improvement is the software used for implementation. While AL-

BERTA has the advantage of handling adaptive finite elements, it does not provide

many linear algebra solvers. Due to the matrix structure in ALBERTA the usage of

most external libraries is only possible when the matrix is first converted to a dif-
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ferent format. We have used external libraries and we found that although it is not

difficult to combine external software packages with ALBERTA, there is still some

loss in efficiency due to additional memory requirements. Instead of using space

adaptivity one might also consider using a uniform mesh where mass and stiffness

matrix can be calculated easily and only need minimal storage. Since the linear

system is solved only on the inactive set, the dimension of this system does not in-

crease. Even though the vectors of coefficients, u,µ and Λ are a lot bigger and need

more storage space, they can be updated very easily on the active sets and hence

should not slow down computations. Another advantage of a uniform mesh is that

one not only saves the time needed to assemble the system matrix in each time-step

but one also needs to initialise the preconditioner only once at the beginning of the

computation. For the practical use of this strategy a suitable computational envir-

onment is needed. Since the computations in this thesis were implemented using

the adaptive finite element toolbox ALBERTA we did not consider uniform meshes.

Further improvements to the computation time could be made by using parallel

computing. During the last decade more and more software has become available

which facilitates computations in parallel. This however, was not the objective of

this work and needs to be investigated in future projects.

Phase field models have been used in various areas of research. We presented some

important applications where phase field models are used as regularising terms.

Most of the literature in this context seems to focus on the Cahn-Hilliard equation.

We showed that for some problems we can replace this fourth order equation by

the second order (non-local) Allen-Cahn equation which makes computations more

efficient. There are of course many other interesting problems and extensions to

the classical Allen-Cahn model and we hope that with this thesis we provided an

efficient method that can be extended to more general problems.
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